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Zusammenfassung

Wir verallgemeinern den Lévy-getriebenen Ornstein-Uhlenbeck Prozess von einem Prozess
mit Zeitparameter zu einem Raum-Zeit Prozess. Dazu stellen wir eine stochastische
Volterra-Integralgleichung in Raum und Zeit auf, welche ein stochastisches Integral
bezüglich einer Lévy-Basis als Komponente enthält. Wir formulieren Bedingungen für
die Existenz und Eindeutigkeit der Lösung und leiten eine explizite Lösungsformel her.
Nachdem wir Kriterien für die Stationarität des Lösungsprozesses angeben, berechnen
wir die Kovarianzstruktur im stationären Fall anhand der Lösungsformel. Die theoretis-
chen Resultate werden von konkreten Beispielen veranschaulicht.

Summary

We extend the Lévy-driven Ornstein-Uhlenbeck process as a timewise process to time
and space. This is achieved by deploying stochastic Volterra integral equations in time
and space, which comprises a stochastic integral with respect to a Lévy basis. We for-
mulate conditions for the existence and uniqueness of the solution and derive an explicit
solution formula. After giving criteria for stationarity of these processes, we establish
the second order structure in the stationary case by means of the solution formula. The
theoretical results are illustrated by concrete examples.
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1 Introduction

1 Introduction

A Lévy-driven Ornstein-Uhlenbeck (OU) process is defined as the unique solution of the
stochastic integral equation

X(t) =

∫ t

0

−λX(s) ds+

∫ t

0

dL(s), t ≥ 0,

where L is a Lévy process, i.e. a process with independent and stationary increments
and càdlàg paths (see e.g. Applebaum [1, Section 4.3.5]). The main goal of this thesis
is to generalize the timewise OU process to time and space. Our method to achieve this
is to generalize the defining stochastic integral equation. First we introduce a spatial
component x as an element of the space Rd in addition to the temporal component t.
Moreover, we use a multi-parameter analogue of a Lévy process in order to work in a
tempo-spatial framework. Lévy bases (see Definition 2.10) have proven to be a suitable
replacement for the Lévy process since they inherit most important properties of Lévy
processes and there exists a tractable stochastic integration theory for them (see Rajput
and Rosinski [7]).
Now let us consider the following stochastic integral equation

X(t, x) =

∫ t

0

−λX(s, x) ds+

∫ t

0

∫
Rd
e−λ

′‖x−y‖Λ(ds, dy), t ≥ 0, x ∈ Rd,

where Λ is a Lévy basis. The underlying idea of this model is that innovations coming
from Λ at any site do not only affect the evolution of the process at this site but rather
at every site in the whole space. However, the magnitude of the impact is damped
depending on the distance to the site at which the innovation occurred. This is realized
with an exponential function as integrand of the second integral. Again, both integrals
integrate within the time interval from 0 to t in order to allow for temporal causality.
That is, the past influences the present and the present does not depend on the future.
Models like the previous one are studied in this thesis in the more general context of
convolution Volterra integral equations, which are equations of the form

X(t, x) =

∫ t

0

∫
Rd
X(t− s, x− y)µ(ds, dy) + f(t, x), t ≥ 0, x ∈ Rd,

where µ denotes a measure on R+ × Rd and f is a function on R+ × Rd, usually called
the forcing function. A rather complete theory exists for these equations in the case
where the forcing function is deterministic (see Gripenberg [4, Chapter 4]). In contrast,
we study these equations under the assumption that the forcing function is a stochastic
integral, allowing us to embed the above model. More precisely, f is chosen to be

f(t, x) =

∫ t

0

∫
Rd
g(t− s, x− y)Λ(ds, dy), t ≥ 0, x ∈ Rd,

11



1 Introduction

where g is a deterministic function on R+ × Rd. We examine for which combinations
of µ, g and Λ the stochastic convolution Volterra integral equation has a solution and
employ the theory to define Lévy-driven tempo-spatial Ornstein-Uhlenbeck processes.

This thesis is structured as follows. After a brief recap of the integration theory w.r.t.
Lévy bases and the deterministic theory of convolution Volterra integral equations in
section 2, these two concepts are merged in section 3. Therein we solve the stochastic
Volterra equation and present an explicit formula for its unique solution. Furthermore,
the model above is taken up again and analyzed together with two additional models. In
section 4 the question of stationarity is investigated. An affirmative answer is deduced
under some mild assumptions. Finally, the second order structure in stationary cases is
examined in section 5.
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2 Preliminaries

This section provides the theoretical background for this thesis. We briefly review the
theory on Volterra integral equations to the extent which is needed for what follows.
Additionally a summary of the stochastic integration theory by Rajput and Rosinski [7]
is given.

2.1 The deterministic convolution Volterra integral equation

Volterra integral equations, a special class of integral equations, naturally arise and
are broadly used in applications, such as physics (cosmic ray transport models, super-
fluidity), materials science (viscoelasticity of materials with memory) or demography
(population dynamics), see [4, Section 1.2] and the examples therein. They are named
after Vito Volterra, who was one of the first to examine equations of this type. In this
thesis we deal with convolution Volterra integral equations in space-time1, these are
equations of the form

X(t, x) =

∫ t

0

∫
Rd
X(t− s, x− y)µ(ds, dy) + f(t, x), (2.1)

where a measure µ and a deterministic function f , called the forcing function, are given2.
In this case a rather complete theory exists, which we present in line with Gripenberg
[4]. Note that t is usually interpreted as a time parameter, likewise x its the spatial
parameter.
Before we proceed to solve this equation for X, let us fix some terminology. Let S be
a Borel subset of Rd for some dimension d ∈ N, then M(S) denotes the space of all
signed complete Borel measures on S with finite total variation. For µ ∈ M(S) let |µ|
be its total variation measure and ‖µ‖ = |µ|(S) be its total variation norm. As a matter
of fact, M(S) becomes a Banach space when equipped with this norm, which will be
employed later on.
Moreover, the notation Mloc(R+×Rd) is used for signed measures on R+×Rd which lie
inM([0, T ]×Rd) when restricted to [0, T ]×Rd for all positive T . Similarly L1

loc(R+×Rd)
is the set of real functions on R+ × Rd which are Lebesgue integrable over [0, T ] × Rd

when restricted to [0, T ]× Rd for all positive T .

1More precisely the equation is called a deterministic linear convolution Volterra integral equation of
the second kind in space-time.

2By
∫ t
0

∫
Rd X(t− s, x− y)µ(ds,dy) we mean

∫
[0,t]×Rd X(t− s, x− y)µ(ds,dy). We choose this notation

in order to emphasize the distinction between the time component and the space component.

13



2 Preliminaries

Definition 2.1 For two measures µ, η ∈M(Rd+1) the convolution µ ∗ η is the comple-
tion of the measure that assigns to each Borel set B ⊂ Rd+1 the value

(µ ∗ η)(B) =

∫
Rd+1

η(B − z)µ(dz),

where B − z = {s− z|s ∈ B}.
For two measures µ, η ∈M(R+×Rd) the convolution µ∗η is defined by firstly extending
µ and η onto Rd+1 via setting µ(B) = µ(B ∩ (R+ ×Rd)) and η(B) = η(B ∩ (R+ ×Rd)),
then obtaining µ∗η as above and finally restricting it again to R+×Rd. The convolution
of two measures µ, η ∈M([0, T ]× Rd) is defined analogously.
µ∗j denotes the (j − 1)−fold convolution of µ by itself if this exists. By convention we
set µ∗0 = δ0, i.e. the Dirac measure in the origin. �

Remark 2.2 The function z 7→ η(B−z) is Borel measurable and bounded, as a result
the integral

∫
Rn+1 η(B − z)µ(dz) exists and the convolution µ ∗ η is well-defined (see [4,

p. 112]). �

The following proposition sums up some useful properties of the convolution (see [4,
Section 4.1] or [8, Example 10.3]).

Proposition 2.3. Let S be Rn+1, R+ × Rd or [0, T ]× Rd and µ, η and σ be measures
in M(S). Then

1. µ ∗ η ∈M(S) and ‖µ ∗ η‖ ≤ ‖µ‖‖η‖,

2. (µ ∗ η) ∗ σ = µ ∗ (η ∗ σ),

3. µ ∗ η = η ∗ µ.

Moreover, M(S) equipped with the total variation norm and the convolution product is
a commutative unital Banach algebra.

In light of this proposition the next result is immediate.

Corollary 2.4. For µ, η and σ ∈ Mloc(R+ × Rd) it holds µ ∗ η ∈ Mloc(R+ × Rd),
(µ ∗ η) ∗ σ = µ ∗ (η ∗ σ) and µ ∗ η = η ∗ µ.

In addition to the convolution of two measures, we define the convolution of a function
and a measure.

Definition 2.5 For a measure µ ∈M(R+×Rd) and a real-valued, measurable function
h on R+ × Rd the convolution h ∗ µ = µ ∗ h is the function

(h ∗ µ)(u) = (µ ∗ h)(u) =

∫
R+×Rd

h(u− z)µ(dz),

14



2 Preliminaries

defined for those u for which the integral exists, i.e. for those u for which the function
s 7→ h(u− s) is |µ|-integrable. �

Similar to Proposition 2.3, some information about the convolution of a function with a
measure is given in the next proposition (see [4, Section 3.6]).

Proposition 2.6. Let µ and η be measures in Mloc(R+ × Rd) and h ∈ L1
loc(R+ × Rd).

Then

1. h ∗ µ ∈ L1
loc(R+ × Rd),

2. (h ∗ µ) ∗ η = h ∗ (µ ∗ η) and (µ ∗ h) ∗ η = µ ∗ (h ∗ η).

3. If additionally µ ∈ M(R+ × Rd) and h ∈ L1(R+ × Rd) is bounded, then h ∗ µ ∈
L1(R+ × Rd) is bounded.

Having established these results we are able to proceed with solving equation (2.1). A
function X from R+ × Rd to R is called a solution of (2.1) if the equation holds for
almost all (t, x) ∈ R+ ×Rd. We cannot expect more since the forcing function f , which
is usually chosen to be an element of L1

loc(R+ × Rd), is only defined up to null sets. In
certain cases, that is for special choices of µ and f , there is a unique solution and it can
be expressed explicitly in terms of a measure ρ, which is related to µ. In the construction
of ρ we follow the structure of the proof of [4, Thm. 3.3.1]. However, Gripenberg only
deals with the purely temporal case, this is why we have to extend the proof to our
tempo-spatial setting.

Theorem 2.7. Let µ ∈ Mloc(R+ × Rd) such that µ({0} × Rd) = 0. Then there exists a
unique measure ρ ∈Mloc(R+ × Rd) such that ρ+ µ = µ ∗ ρ.

Proof. First we show that for each positive T there is a unique ρT in M([0, T ]× Rd)
such that

ρT + µT = µT ∗ ρT .
Here µT is the restriction of µ on [0, T ]× Rd.
To show the existence of ρT we construct a geometric series and use a Banach space
argument:
Let us consider first the special case ‖µT‖ = |µT |([0, T ] × Rd) = |µT |((0, T ] × Rd) < 1,
where the second equation follows from the assumptions. Define

ρm := −
m∑
j=1

µ∗jT , m ∈ N,

then

ρm + µT = −
m∑
j=1

µ∗jT + µT = −
m∑
j=2

µ∗jT = µT ∗ (−
m−1∑
j=1

µ∗jT ) = µT ∗ ρm−1, m ∈ N\{1}.

15



2 Preliminaries

By Proposition 2.3, we have
‖µ∗jT ‖ ≤ ‖µT‖

j,

thus (ρm) is a Cauchy sequence and converges to some ρT ∈ M([0, T ] × Rd) because
M([0, T ]×Rd) is a Banach space. In addition, µT ∗ ρm → µT ∗ ρT in M([0, T ]×Rd) by
Proposition 2.3, so that we get

ρT + µT = µT ∗ ρT .

Next we show that we may always, without loss of generality, take ‖µT‖ < 1. To see this
consider the measure λm(ds, dy) := e−msµT (ds, dy) and note that for sufficiently large
m we have ‖λm‖ < 1. In this case there is a unique ηm satisfying ηm + λm = λm ∗ ηm as
above. But then ρT (ds, dy) := emsηm(ds, dy) satisfies

ρT (ds, dy) + µT (ds, dy) = emsηm(ds, dy) + emse−msµT (ds, dy)

= emsηm(ds, dy) + emsλm(ds, dy)

= ems(ηm(ds, dy) + λm(ds, dy))

= ems(λm ∗ ηm)(ds, dy)

= ([emsλm(ds, dy)] ∗ [emsηm(ds, dy)])(ds, dy)

= (µT ∗ ρT )(ds, dy),

where the fifth equation follows from the definition of the convolution. Thus ρT + µT =
µT ∗ ρT .
To show uniqueness of ρT assume that there are ρT and ηT in M([0, T ] × Rd) with
ρT + µT = µT ∗ ρT and ηT + µT = µT ∗ ηT . Then

ρT = µT ∗ρt−µT = (µT ∗ηT−ηT )∗ρT−µT = ηT ∗(µT ∗ρT−ρT )−µT = ηT ∗µT−µT = ηT .

Now, having constructed ρT for every positive T and noting that for every j ∈ N the
restriction of ρj+1 to [0, j]×Rd must be equal to ρj by uniqueness, we define a measure
ρ on R+ × Rd by setting ρ = ρT on [0, T ] × Rd and extend it onto R+ × Rd via the
uniqueness theorem for measures (see e.g. Billingsley [3, Thm. 3.3]). Note that it also
holds ρ ∈Mloc(R+ × Rd) and ρ+ µ = µ ∗ ρ, which finishes the proof. �

Definition 2.8 The measure ρ in Theorem 2.7 is called the resolvent of µ. �

With the resolvent at our disposal we can prove the main theorem of this subsection.

Theorem 2.9. Let µ ∈Mloc(R+ × Rd) with µ({0} × Rd) = 0. Then

1. for every f ∈ L1
loc(R+ × Rd) there is a unique solution X ∈ L1

loc(R+ × Rd) of (2.1).
This solution is given by

X(t, x) = f(t, x)−
∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy), (t, x) ∈ R+ × Rd (2.2)

or in short X = f − f ∗ ρ, where ρ is the resolvent of µ.

16



2 Preliminaries

2. for every measurable f : R+ × Rd → R such that f ∗ ρ, f ∗ µ and (f ∗ ρ) ∗ µ exist
there is a unique measurable solution X : R+ × Rd → R of (2.1). This solution is
also given by (2.2).

Proof. Let ρ be the resolvent of µ as in Theorem 2.7. Then for f ∈ L1
loc(R+ × Rd)

define X by (2.2) while employing Proposition 2.6. Also by Proposition 2.6, we obtain
X ∈ L1

loc(R+ × Rd) and

X − µ ∗X = X − µ ∗ (f − ρ ∗ f) = X − (µ− µ ∗ ρ) ∗ f = X + ρ ∗ f = f,

thus X is a solution of (2.1).
To show uniqueness let X̃ be an arbitrary solution of (2.1) in L1

loc(R+ × Rd). Then

X̃ = f + µ ∗ X̃ = f + (ρ ∗ µ− ρ) ∗ X̃ = f − ρ ∗ (X̃ − µ ∗ X̃) = f − ρ ∗ f,

hence X̃ = X. The proof in the second case is analogous. �

2.2 Stochastic integration w.r.t. Lévy bases

No stochasticity was involved in our previous considerations. We will later bring it in
to allow for stochastic modeling. This will be done through the concept of stochastic
integration with respect to so-called Lévy bases, which was proposed by Rajput and
Rosinski in their seminal paper [7]. Let us briefly recall this theory. For the rest of this
thesis we fix some complete probability space (Ω,F , P ). Also let Bb(S) be the collection
of all bounded Borel sets in S ⊆ Rd.

Definition 2.10 A stochastic process (Λ(B))B∈Bb(S) is called a random measure on3

Bb(S) if for disjoint sets (Bi)i∈N in Bb(S) satisfying
⋃∞
i=1 Bi ∈ Bb(S) we have

Λ
( ∞⋃
i=1

Bi

)
=
∞∑
i=1

Λ(Bi)

almost surely, where the r.h.s. is assumed to converge almost surely.
Further it is called independently scattered if (Λ(Bi))i∈N are independent for disjoint
(Bi)i∈N in Bb(S).
If Λ(B) is infinitely divisible for all B ∈ Bb(S), then Λ is called infinitely divisible, too.
Now a Lévy basis on S is an infinitely divisible independently scattered random measure
on Bb(S).
Moreover it is called homogeneous if Leb(B) = Leb(B̃) implies Λ(B)

d
= Λ(B̃) for all

B, B̃ in Bb(S), i.e. Λ(B) and Λ(B̃) have the same distribution. Here Leb denotes the
Lebesgue measure. �

3We also say "on S" instead of on "on Bb(S)".

17
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In [7], the stochastic integral w.r.t. a Lévy basis is firstly defined for simple integrands
and then for more general deterministic integrands. However, since we only regard
homogeneous Lévy bases, the theory simplifies considerably. Let us fix a homogeneous
Lévy basis Λ on S for the rest of this subsection. Due to the homogeneity and the
Lévy-Khintchine formula for infinitely divisible distributions (see e.g. Applebaum [1]),
the characteristic function of Λ(B) can be written as

Φ(Λ(B))(u) = exp

{
Leb(B)[iub− 1

2
u2C +

∫
R
(eiuz − 1− iuτ(z))ν(dz)]

}
for all u ∈ R and B ∈ Bb(S), where the truncation function τ is defined as τ(z) =
z1(−1,1)(z). The drift term b ∈ R, the Gaussian part C ∈ R+ and the Lévy measure
ν on R are independent of the choice of B. We call (b, C, ν) the characteristic triplet
of Λ. Now a simple function is a function h of the form h =

∑n
i=1wi1Bi with real wi

and disjoint Bi ∈ Bb(S). For those, the canonical integral over a Borel set B ∈ B(S) is
defined as ∫

B

h dΛ =
n∑
i=1

wiΛ(B ∩Bi).

Definition 2.11 A measurable function h : S → R is called Λ-integrable if there exists
a sequence of simple functions (hn) such that

1. hn converges to h Leb-a.e.,

2. (
∫
B
hn dΛ) converges in probability for all B ∈ B(S).

In this case we define: ∫
B

h dΛ = P- lim
n→∞

∫
B

hn dΛ.

Here P- lim
n→∞

denotes the limit in probability. �

Remark 2.12 It can be shown, that the integral above does not depend on the ap-
proximating sequence (hn), hence the integral is well-defined (see [7]). �

This definition does not exactly specify the class of integrable functions. Nevertheless,
Rajput and Rosinski give an integrability condition in terms of the characteristic triplet
of Λ in [7, Thm. 2.7]. We state it for homogeneous Lévy bases in the next proposition,
which is a special case of theorem [7, Thm. 2.7].

Proposition 2.13. A measurable function h : S → R is Λ-integrable if and only if

1.
∫
S
|bh(s) +

∫
R(τ(zh(s))− h(s)τ(z))ν(dz)| ds <∞,

2.
∫
S
C|h(s)|2 ds <∞,

18
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3.
∫
S

∫
R min{1, |zh(s)|2}ν(dz) ds <∞.

In that case the characteristic function of
∫
S
h dΛ can be written as

Φ

(∫
S

h dΛ

)
(u) = exp

{
iubh −

1

2
u2Ch +

∫
R
(eiuz − 1− iuτ(z))νh(dz)

}
,

where

• bh =
∫
S
(bh(s) +

∫
R(τ(zh(s))− h(s)τ(z))ν(dz)) ds,

• Ch =
∫
S
C|h(s)|2 ds,

• νh(B) = F ({(s, z) ∈ S × R|h(s)z ∈ B\{0}}) with F = Leb× ν.

19
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3 The stochastic case

The deterministic convolution Volterra integral equation was solved in the last section.
As already mentioned, we are going to implement the stochasticity in this section. This
will be done by choosing the forcing function f in equation (2.1) to be a certain stochastic
integral itself, namely

f(t, x) =

∫ t

0

∫
Rd
g(t− s, x− y)Λ(ds, dy), (3.1)

or in short f = g ∗ Λ. We present conditions for f to be well-defined. Afterwards
we proceed with solving the stochastic convolution Volterra integral equation and give
an explicit formula for the solution. In some cases it has itself a representation as a
stochastic integral w.r.t. the same Lévy basis Λ from (3.1). This fact is extensively
used in upcoming sections. The second part of this section applies these results to three
concrete examples including the model which was mentioned in the introduction.

3.1 The general solution

Our first concern should be to ensure that f in equation (3.1) is well defined. For
simplicity we assume Λ to have finite second moments. Then f is already well defined
under the additional assumptions of boundedness and integrability of g. This result is
stated more generally in the next lemma.

Lemma 3.1. Let S ⊆ Rd, h : S → R be a bounded and integrable function and Λ be a
homogeneous Lévy basis on S with finite second moments, i.e. Λ(B) ∈ L2(Ω,F , P ) for
all B ∈ Bb(S). Then h is Λ-integrable.

Proof. Our aim is to confirm the conditions of Proposition 2.13. Let (b, C, ν) be the
characteristics of Λ and K ∈ R+ be a bound on h, i.e. |h(s)| ≤ K for all s ∈ S. Without
loss of generality let K > 1.

1. Let us first show, that

|1(−1,1)(xh(s))− 1(−1,1)(x)| ≤ 1R\(−K−1,K−1)(x)

for all s ∈ S and x ∈ R.
If h(s) = 0, then

|1(−1,1)(xh(s))− 1(−1,1)(x)| = 1R\(−1,1)(x) ≤ 1R\(−K−1,K−1)(x).

If 0 < |h(s)| ≤ 1, then

|1(−1,1)(xh(s))− 1(−1,1)(x)| = 1(−|h(s)|−1,|h(s)|−1)\(−1,1)(x) ≤ 1R\(−K−1,K−1)(x).

21



3 The stochastic case

Finally if 1 < |h(s)| ≤ K, then

|1(−1,1)(xh(s))− 1(−1,1)(x)| = 1(−1,1)\(−|h(s)|−1,|h(s)|−1)(x) ≤ 1(−1,1)\(−K−1,K−1)(x)

≤ 1R\(−K−1,K−1)(x).

Recalling τ(x) = x1(−1,1)(x), we get∫
S

|bh(s) +

∫
R
(τ(xh(s))− h(s)τ(x))ν(dx)| ds

≤
∫
S

|bh(s)| ds+

∫
S

∣∣∣∣∫
R
(τ(xh(s))− h(s)τ(x))ν(dx)

∣∣∣∣ ds

=

∫
S

|bh(s)| ds+

∫
S

∣∣∣∣∫
R
h(s)x1(−1,1)(xh(s))− h(s)x1(−1,1)(x)ν(dx)

∣∣∣∣ ds

≤
∫
S

|bh(s)| ds+

∫
S

|h(s)|
∫
R
|x||1(−1,1)(xh(s))− 1(−1,1)(x)|ν(dx) ds

≤
∫
S

|bh(s)| ds+

∫
S

|h(s)|
∫
R\(−K−1,K−1)

|x|ν(dx) ds

=(|b|+
∫
R\(−K−1,K−1)

|x|ν(dx))

∫
S

|h(s)| ds.

Since Λ has finite second moments, it has finite first moments. This implies that the
first integral in the last line is finite (see [1, Section 2.5]). Since h is integrable on S,
the second integral in the last line is finite, too.

2. As a bounded and integrable function on S, h is also square-integrable. Hence∫
S
C|h(s)|2 ds <∞.

3.
∫
S

∫
R min{1, |xh(s)|2}ν(dx) ds ≤

∫
S

∫
R |xh(s)|2ν(dx) ds =

∫
R |x|

2ν(dx)
∫
S
|h(s)|2 ds <

∞ because Λ has finite second moments and h is square-integrable.

�

Corollary 3.2. Let g ∈ L1
loc(R+ × Rd) be bounded and Λ be a homogeneous Lévy basis

on R+ × Rd with finite second moments. Then f(t, x) in (3.1) is well defined for all
t ∈ R+ and x ∈ Rd.

Proof. Fix t ∈ R+ and x ∈ Rd. Then the function (s, y) 7→ g(t− s, y − x) is bounded
and integrable on [0, t] × Rd by assumption. The restriction of Λ to [0, t] × Rd is still
homogeneous and has finite second moments. Therefore the integral

∫ t
0

∫
Rd g(t − s, x −

y)Λ(ds, dy) exists by Theorem 3.1. �

For our purposes it is often necessary to work with a measurable version of f(t, x).
Two stochastic processes f(t, x) and f̃(t, x) on R+ × Rd are versions of each other if
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3 The stochastic case

f(t, x) = f̃(t, x) a.s. for all t ∈ R+ and x ∈ Rd. From now on we will always assume f
to be almost surely measurable. This is justified by the next lemma, which is a direct
consequence of Lebedev [5, Thm. 1].

Lemma 3.3. Let g ∈ L1
loc(R+ × Rd) be bounded and Λ be a homogeneous Lévy basis on

R+ × Rd with finite second moments. Then f(t, x) as defined in (3.1) has a version,
which is almost surely measurable.

Having specified f(t, x) in a proper way, we continue with studying the stochastic con-
volution Volterra integral equation

X(t, x) =

∫ t

0

∫
Rd
X(t− s, x− y)µ(ds, dy) +

∫ t

0

∫
Rd
g(t− s, x− y)Λ(ds, dy). (3.2)

Similarly to the deterministic case, a stochastic process X on R+×Rd is called a solution
to (3.2) if the equation holds almost surely for almost all (t, x). The strategy for solving
(3.2) is to solve it ω-wise by using the deterministic theory in section 2. This is retained
in the main theorem of this section:

Theorem 3.4. Let µ ∈ Mloc(R+ × Rd) with µ({0} × Rd) = 0, g ∈ L1
loc(R+ × Rd) be

bounded and Λ be a homogeneous Lévy basis on R+ × Rd with finite second moments.
Furthermore let f be an almost surely measurable version in equation (3.1) via Corol-
lary 3.2 and Lemma 3.3. Then there is a unique (up to versions) solution of (3.2). This
solution is given by

X(t, x) = f(t, x)−
∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy), (t, x) ∈ R+ × Rd, (3.3)

or in short X = f − f ∗ ρ, where ρ is the resolvent of µ.

Proof. We begin with claiming that for all T ∈ R+ there is a CT ∈ R+ such that

sup
[0,T ]×Rd

E(|f(t, x)|) ≤ CT .

For t ∈ R+ and x, x̃ ∈ Rd it holds that

f(t, x+ x̃) =

∫ t

0

∫
Rd
g(t− s, x+ x̃− y)Λ(ds, dy) =

∫ t

0

∫
Rd
g(t− s, x− y)Λ(ds, x̃+ dy)

d
=

∫ t

0

∫
Rd
g(t− s, x− y)Λ(ds, dy) = f(t, x).

Therefore the distribution of f(t, x) does not depend on x. Using Theorem 5.2 from
Section 5 we get for all T ∈ R+

sup
[0,T ]×Rd

E(|f(t, x)|) ≤ sup
[0,T ]×Rd

√
E(|f(t, x)|2) = sup

[0,T ]×Rd

√
Var(f(t, x)) + E(f(t, x))2 <∞,
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3 The stochastic case

which proves the claim. Note that the first inequality holds by Jensen’s inequality.
Recalling ρ ∈ Mloc(R+ × Rd) and invoking the measurability of f , it follows for all
t ∈ R+, x ∈ Rd that

E
(∣∣∣∣∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy)

∣∣∣∣)
≤E

(∫ t

0

∫
Rd
|f(t− s, x− y)||ρ|(ds, dy)

)
≤
∫ t

0

∫
Rd

E(|f(t− s, x− y)|)|ρ|(ds, dy)

≤
∫ t

0

∫
Rd
Ct|ρ|(ds, dy)

=Ct|ρ|([0, t]× Rd) <∞.

This implies that
∫ t

0

∫
Rd f(t− s, x− y)ρ(ds, dy) exists and is finite almost surely for all

(t, x). Analogously we have that f ∗ µ is well defined. Now we only have to use the
second part of Theorem 2.9 ω-wise to finish the proof. �

Our solution in equation (3.3) can also be represented as a stochastic integral with respect
to Λ. Beforehand, we need an auxiliary Fubini type result which allows us to interchange
the order of integration between a stochastic integral and a Lebesgue integral. For a
proof we refer to Lebedev [5, Thm. 2].

Lemma 3.5. Let B ⊆ Rd, T ∈ R+, S = [0, T ]× B and Λ be a homogeneous Lévy basis
with finite second moments on S. Further let S̃ ⊆ Rd̃, d̃ ∈ N and µ be a signed measure
on S̃. If a measurable function h : S × S̃ → R is such that

1. h(·, s̃) is Λ-integrable for µ-almost all s̃ ∈ S̃ and

2.
∫
S̃
(
∫
S
h2(s, s̃) ds)

1
2 |µ|(ds̃) <∞,

then
∫
S̃

∫
S
h(s, s̃)Λ(ds)µ(ds̃) is well-defined,

∫
S̃
h(s, s̃)µ(ds̃) is Λ-integrable and∫

S̃

∫
S

h(s, s̃)Λ(ds)µ(ds̃) =

∫
S

∫
S̃

h(s, s̃)µ(ds̃)Λ(ds) a.s.

Theorem 3.6. Under the conditions of Theorem 3.4, the unique solution X has a ver-
sion with the representation

X(t, x) =

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy), (t, x) ∈ R+ × Rd, (3.4)

or in short X = (g ∗ (δ0 − ρ)) ∗ Λ.
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3 The stochastic case

Proof. Extend g onto R × Rd by setting g(s, y) := 0 for all s < 0, y ∈ Rd and fix
(t, x) ∈ R+ × Rd. Then it holds under Theorem 3.4

X(t, x) = f(t, x)−
∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy)

=

∫ t

0

∫
Rd
f(t− s, x− y)δ0(ds, dy)−

∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy)

=

∫ t

0

∫
Rd
f(t− s, x− y)(δ0 − ρ)(ds, dy)

=

∫ t

0

∫
Rd

∫ t−s

0

∫
Rd
g(t− s− α, x− y − β)Λ(dα, dβ)(δ0 − ρ)(ds, dy)

=

∫ t

0

∫
Rd

∫ t

0

∫
Rd
g(t− s− α, x− y − β)Λ(dα, dβ)(δ0 − ρ)(ds, dy) = (∗).

Our intention is the application of Lemma 3.5 with the choice S = S̃ = [0, t] × Rd. By
the definition of the extension of g and Theorem 3.1, the function (t−s−α, x−y−β) 7→
g(t− s−α, x− y− β) is Λ-integrable for all (s, y) ∈ R+×Rd. For this reason condition
one in Lemma 3.5 is satisfied. Since g is integrable and bounded on [0, T ]×Rd for every
positive T , it is square-integrable on [0, T ]× Rd for every positive T . Consequently,∫ t

0

∫
Rd

(∫ t

0

∫
Rd
g2(t− s− α, x− y − β)dαdβ

) 1
2

|(δ0 − ρ)|(ds, dy)

=

∫ t

0

∫
Rd

(∫ t−s

0

∫
Rd
g2(t− s− α, x− y − β)dαdβ

) 1
2

|(δ0 − ρ)|(ds, dy)

=

∫ t

0

∫
Rd
‖g‖L2([0,t−s]×Rd)|(δ0 − ρ)|(ds, dy) ≤ ‖g‖L2([0,t]×Rd)|(δ0 − ρ)|([0, t]× Rd) <∞,

where the last inequality holds because (δ0 − ρ) is an element of Mloc(R+ × Rd). Since
the second condition is also satisfied, Lemma 3.5 implies

(∗) =

∫ t

0

∫
Rd

∫ t

0

∫
Rd
g(t− s− α, x− y − β)(δ0 − ρ)(ds, dy)Λ(dα, dβ)

=

∫ t

0

∫
Rd

∫ t−α

0

∫
Rd
g(t− s− α, x− y − β)(δ0 − ρ)(ds, dy)Λ(dα, dβ)

=

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− α, x− β)Λ(dα, dβ)

=

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy),

which proves the theorem. �
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3 The stochastic case

3.2 Examples

The measure µ and the function g in equation (3.2) are specified in the following three
examples, giving rise to three stochastic models in time and space. By means of the just
developed theory we examine the tempo-spatial evolution of these processes depending
on the underlying driving Lévy basis. In fact, all three models share the same measure
µ which originates from the classical OU process. Against this background, it may
seem fair to call any of these examples an Lévy-driven tempo-spatial Ornstein-Uhlenbeck
process.

3.2.1 The first model

The first model is exactly the model mentioned in the introduction, namely

X(t, x) =

∫ t

0

−λX(s, x) ds+

∫ t

0

∫
Rd
e−λ

′‖x−y‖Λ(ds, dy), (3.5)

λ, λ′ > 0, (t, x) ∈ R+ × Rd. Here and henceforth ‖ · ‖ stands for the Euclidean norm
whenever the argument is a vector in Rd. A thorough inspection of the equation reveals
that the first integral on the right-hand side is copied from the classical OU process taken
in time for each fixed site. This results in a mean-reverting feature like in the classical
OU case. In addition, the second integral sums up all past innovations coming from
Λ. As a consequence, every innovation affects every site in the whole space. The fact
that both integrals have the integration borders 0 and t leads to temporal causality, i.e.
the past influences the present, which does not depend on the future. The exponential
function is chosen as the integrand of the second integral. It damps the magnitude of the
innovations in space. If an innovation occurs at site y, then the impact of this innovation
on another site x is damped exponentially in terms of the distance between x and y.
It can be seen that this model is of the form (3.2) with the identifications4

µ = −λLebR+ ⊗ δ0,Rd

and
g(s, y) = e−λ

′‖y‖, (s, y) ∈ R+ × Rd.

Attempting to solve this equation through Theorem 3.6 we need to calculate the resolvent
of µ first.

Theorem 3.7. Let λ > 0 and µ = −λLebR+ ⊗ δ0,Rd. Then the resolvent of µ is ρ =
(λe−λtdt)⊗ δ0,Rd.

4A subscript at a measure denotes the domain of this measure. Also note that
∫ t
0
−λX(s, x) ds =∫ t

0
−λX(t− s, x) ds.
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3 The stochastic case

Proof. The measure µ = −λLebR+ ⊗ δ0,Rd lies in Mloc(R+ ×Rd) and satisfies µ({0} ×
Rd) = −λLebR+({0}) · δ0,Rd(Rd) = −λ · 0 · 1 = 0. Using Theorem 2.7 and since ρ ∈
Mloc(R+ × Rd), we only need to show

ρ+ µ = µ ∗ ρ. (3.6)

Let B = [0, T ]× {0} for some T ∈ R+. Then

ρ(B) =

∫ T

0

λe−λs ds = [−e−λs]T0 = 1− e−λT .

Since µ(B) = −λT , we obtain µ(B) + ρ(B) = 1 − e−λT − λT. Moreover, recalling
Definition 2.1,

µ ∗ ρ(B) = ρ ∗ µ(B) =

∫
R+×Rd

µ(B − s)ρ(ds)

=

∫
[0,T ]×{0}

µ(B − s)ρ(ds)

=

∫ T

0

−λ(T − s)λe−λs ds

= 1− e−λT − λT.

The third equality holds because µ(B − s) = 0 if s /∈ [0, T ]× {0}. Therefore (3.6) holds
for B. Now let B̃ ∈ B(R+ × (Rd\{0})), then

ρ(B + B̃) + µ(B + B̃) = ρ(B) + µ(B) = µ ∗ ρ(B)

=

∫
[0,T ]×{0}

µ(B − s)ρ(ds) =

∫
R+×{0}

µ(B − s)ρ(ds)

=

∫
R+×{0}

µ(B + B̃ − s)ρ(ds) =

∫
R+×Rd

µ(B + B̃ − s)ρ(ds)

= µ ∗ ρ(B + B̃).

The fifth and the sixth equality hold because µ and ρ only charge R+×{0}. Consequently
(3.6) is also true for B + B̃. Now the set {B + B̃|B = [0, T ], T ∈ R+, B̃ ∈ B(R+ ×
Rd\R+×{0})} is a intersection-stable generator of B(R+×Rd). Applying the uniqueness
theorem of measures finishes the proof (see [3, Thm. 3.3]). �

Remark 3.8 Note that ρ = (λe−λtdt)⊗ δ0,Rd ∈Mloc(R+×Rd) also lies in M(R+×Rd)
since

‖ρ‖ = |ρ|(R+ × Rd) = ρ(R+ × Rd) =

∫
R+

λe−λs ds = 1 <∞.

�

Now we have all tools to solve equation (3.5).
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3 The stochastic case

Theorem 3.9. Let Λ be a homogeneous Lévy basis on R+ × Rd with finite second mo-
ments. Then the unique solution to equation (3.5) is

X(t, x) =

∫ t

0

∫
Rd
e−λ(t−s)−λ′‖x−y‖Λ(ds, dy). (3.7)

Proof. All conditions in Theorem 3.4 are satisfied, since g lies in L1
loc(R+ × Rd). In

light of Theorem 3.6, the only thing that is left to show is

(g ∗ (δ0 − ρ))(t− s, x− y) = e−λ(t−s)−λ′‖x−y‖.

Clearly, g ∗ δ0(t− s, x− y) = g(t− s, x− y) = e−λ
′‖x−y‖. Recalling ρ = (λe−λtdt)⊗ δ0,Rd

we compute

g ∗ ρ(t− s, x− y) =

∫ t−s

0

∫
Rd
g(t− s− α, x− y − β)ρ(dα, dβ)

=

∫ t−s

0

∫
Rd
e−λ

′‖x−y−β‖ρ(dα, dβ)

=

∫ t−s

0

e−λ
′‖x−y‖λe−λα dα

= e−λ
′‖x−y‖(1− e−λ(t−s)).

As a consequence,

(g ∗ (δ0 − ρ))(t− s, x− y) = g ∗ δ0(t− s, x− y)− g ∗ ρ(t− s, x− y)

= e−λ
′‖x−y‖ − e−λ′‖x−y‖(1− e−λ(t−s))

= e−λ(t−s)−λ′‖x−y‖.

�

Remark 3.10 The second integral in equation (3.5) is a Lévy process for fixed x.
Nevertheless the solution in Theorem 3.9 is a timewise OU process for fixed x, which is
clearly not a Lévy process. �
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Figure 1: A sample of the tempo-spatial evolution of a single jump innovation in the first model is
depicted. The peak belongs to the point of occurrence of the innovation in space-time.
Exponential decay in both time and space can be observed. For pure-jump Lévy bases the
first model can be understood as the superposition of numerous such jump effects.

3.2.2 The second model

In the first model, innovations of Λ at any site x have an instantaneous damped effect
on other sites. In contrast to this, the next model takes a delayed impact mechanism
into account, implying that a certain amount of time is needed for the propagation of
the innovations from one site to another in space. This is realized by summing up the
innovations only on a restricted domain of influence A(t, x) rather than the whole space.
These so-called ambit sets were introduced by Barndorff-Nielsen and Schmiegel in a
seminal paper on ambit stochastics, see [2]. It is reasonable to assume

A(s, x) ⊂ A(t, x) for all s < t and A(t, x) ∩ (t,∞)× Rd = ∅,

since these conditions on the ambit sets maintain temporal causality. For simplicity, we
only consider translation invariant ambit sets, i.e. ambit sets of the form

A(t, x) = A+ (t, x).

A is chosen to be
A = {(t, x) ∈ R− × Rd : ‖x‖ ≤ c|t|},
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3 The stochastic case

where c > 0 is the constant propagation velocity, see Figure 2.

Figure 2: The ambit set A = {(t, x) ∈ R− × Rd : ‖x‖ ≤ c|t|}.

Remark 3.11 It is also possible to model non-constant propagation velocity by setting
A = {(t, x) ∈ R− × Rd : |x| ≤ q(|t|)}, where q is a non-negative strictly increasing
function on [0,∞] with q(0) = 0 (see Nguyen and Veraart [6]). For instance choose
q(|t|) = c|t|2 for an uniformly decelerated propagation. �

The ambit sets are incorporated in our second model

X(t, x) =

∫ t

0

−λX(s, x) ds+

∫ t

0

∫
Rd
1A(t,x)(s, y)e

−λ‖x−y‖
c Λ(ds, dy), (3.8)

c, λ > 0, (t, x) ∈ R+×Rd. The only difference to the first model is the appearance of the
indicator function in the second integral. Notice that we also choose the parameter λ′ in
the first model to be λ

c
in the second model. Although this replacement is not necessary,

it simplifies the solution formula. As before we aim to solve this equation. The measure
µ is here the same as in the first model, which spares us the calculation of the resolvent
ρ.

Theorem 3.12. Let Λ be a homogeneous Lévy basis on R+ × Rd with finite second
moments. Then the unique solution to equation (3.8) is

X(t, x) =

∫ t

0

∫
Rd
1A(t,x)(s, y)e−λ(t−s)Λ(ds, dy). (3.9)

Proof. First of all we have

1A(t,x)(s, y) = 1−A(t− s, x− y).
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3 The stochastic case

Therefore
g(s, y) = 1−A(s, y)e

−λ‖y‖
c , (s, y) ∈ R+ × Rd

lies in L1
loc(R+ × Rd). Once again all conditions in Theorem 3.4 are satisfied and via

Theorem 3.6 we only have to show

(g ∗ (δ0 − ρ))(t− s, x− y) = 1A(t,x)(s, y)e−λ(t−s) = 1−A(t− s, x− y)e−λ(t−s)

to finish the proof. Recall that ρ = (λe−λtdt)⊗ δ0,Rd by Theorem 3.7. We compute

g ∗ δ0(t− s, x− y) = g(t− s, x− y) = 1−A(t− s, x− y)e
−λ‖x−y‖

c

and

g ∗ ρ(t− s, x− y) =

∫ t−s

0

∫
Rd
g(t− s− α, x− y − β)ρ(dα, dβ)

=

∫ t−s

0

∫
Rd
1−A(t− s− α, x− y − β)e−

λ
c
‖x−y−β‖ρ(dα, dβ)

=

∫ t−s

0

∫
Rd
1A(t−s,x−y)(α, β)e−

λ
c
‖x−y−β‖ρ(dα, dβ) = (∗).

Since ρ is supported on the time axis R+ × {0}, we determine the intersection of A(t−
s, x − y) with the time axis. To do this define γ ∈ R as the time component of the
intersection of A(t−s, x−y) = A+(t−s, x−y) with the whole axis R×{0}, see Figure
3.

Figure 3: Intersection γ of A(t− s, x− y) with R× {0}.

By definition of A, γ has to satisfy the equation c((t−s)−γ) = ‖x−y‖, that is equivalent
to

γ = t− s− ‖x− y‖
c

.
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If γ ≥ 0, then γ is the intersection of A(t−s, x−y) with the positive time axis. Otherwise
there is no intersection and the integral in (∗) becomes zero. Furthermore,

γ ≥ 0 ⇐⇒ t− s− ‖x− y‖
c

≥ 0 ⇐⇒ c(t− s) ≥ ‖x− y‖ ⇐⇒ (t− s, x− y) ∈ −A

because t− s ≥ 0. Consequently,

(∗) = 1−A(t− s, x− y)

∫ γ

0

e−
λ
c
‖x−y‖λe−λs ds

= 1−A(t− s, x− y)e−
λ
c
‖x−y‖[−e−λs]γ0

= 1−A(t− s, x− y)e−
λ
c
‖x−y‖(1− e−λγ)

= 1−A(t− s, x− y)(e−
λ
c
‖x−y‖ − e−λ(t−s))

Thus,

(g ∗ (δ0 − ρ))(t− s, x− y) = g ∗ δ0(t− s, x− y)− g ∗ ρ(t− s, x− y)

= 1−A(t− s, x− y)e
−λ‖x−y‖

c − 1−A(t− s, x− y)(e−
λ
c
‖x−y‖ − e−λ(t−s))

= 1−A(t− s, x− y)e−λ(t−s).

�

Figure 4: A sample of the tempo-spatial evolution of a single jump innovation in the second model.
The peak belongs to the point of occurrence of the innovation in space-time. An exponential
decay in time and an uniform propagation in space are observable. For pure-jump Lévy bases
the second model can be understood as the superposition of a large number of these jump
effects.
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In a final remark on the second model the question of why the exponential function in
equation (3.9) is only dependent on time is investigated. This is not a priori obvious
in regard to the solution in equation (3.7). The second integral in equation (3.8) tells
us that every innovation is damped with a rate of λ

c
in terms of space units. Further

the innovations propagate with speed c, resulting in a damping at rate cλ
c

= λ in terms
of time units. As a result, the damping rate is λ in every time interval leading to the
solution formula in (3.9). This is why the reason for the simple form of this solution is
the right choice of the damping rates in (3.8).

3.2.3 The third model

Using the same notation as in the second model, we discuss

X(t, x) =

∫ t

0

−λX(s, x) ds+

∫ t

0

∫
Rd
1A(t,x)(s, y)Λ(ds, dy) (3.10)

as our third model. The only change lies in omitting the exponential function in the
second integral. Hence the dynamics of these two models are quite similar. The major
difference is the effect that innovations do not lose their original magnitude when trav-
eling from site to site. Once arrived the magnitude declines exponentially in time as
usual due to the mean-reverting integral.

Theorem 3.13. Let Λ be a homogeneous Lévy basis on R+ × Rd with finite second
moments. Then the unique solution to equation (3.10) is

X(t, x) =

∫ t

0

∫
Rd
1A(t,x)(s, y)e−λ(t−s− ‖x−y‖

c
)Λ(ds, dy). (3.11)

Proof. The proof is completely analogous to the proof of Theorem 3.12. In this case
we have

g ∗ δ0(t− s, x− y) = 1−A(t− s, x− y)

and
g ∗ ρ(t− s, x− y) = 1−A(t− s, x− y)(1− e−λγ),

where γ is again the intersection of A(t− s, x− y) with R× {0}. �

In comparison to the second model, the absence of the exponential function in the second
integral of equation (3.10) leads to the additional factor e

λ‖x−y‖
c in the solution formula.
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3 The stochastic case

Figure 5: A sample of the tempo-spatial evolution of a single jump innovation in the third model.
Two edges at the height of the jump shape the form of the ambit set A. Innovations do not
lose their original magnitude when propagating through space. An uniform propagation in
space and an exponential decay in time upon arrival are observable. For pure-jump Lévy
bases the third model can be understood as the superposition of a large number of these
jump effects.
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4 Stationarity

In this section we study in which cases the solution to the stochastic convolution Volterra
integral equation is stationary. More precisely:

Definition 4.1 A stochastic process X on R+×Rd is called strictly stationary if for ev-
ery n ∈ N, t̃, t1, ..., tn ∈ R+ and x̃, x1, ..., xn ∈ Rd the distribution of (X(t1, x1), ..., X(tn, xn))
is equal in law to the distribution of (X(t1 + t̃, x1 + x̃), ..., X(tn + t̃, xn + x̃)). �

From the explicit solution formula in Theorem 3.6 we see that our processes are not
strictly stationary (the process X is deterministic at time point t = 0, namely zero, but
it is not deterministic in general for other time points). To circumvent this obstacle let
us modify the integral equation to

X(t, x) =

∫ t

0

∫
Rd
X(t−s, x−y)µ(ds, dy)+

∫ t

0

∫
Rd
g(t−s, x−y)Λ(ds, dy)+V (t, x), (4.1)

where V (t, x) is a stochastic process on R+×Rd. Under mild conditions on V a slightly
altered solution formula is obtained. This is then used to construct a stationary solution
by choosing X̃ of a specific form.

Lemma 4.2. Let µ ∈ Mloc(R+ × Rd) such that µ({0} × Rd) = 0, ρ be the resolvent of
µ, g ∈ L1

loc(R+×Rd) be bounded, Λ be a homogeneous Lévy basis on R+×Rd with finite
second moments and V be a stochastic process on R+ × Rd. Furthermore let f be an
almost surely measurable version in equation (3.1) via Corollary 3.2 and Lemma 3.3.
Under the assumptions

• V is almost surely measurable and

• sup
[0,T ]×Rd

E(|V (t, x)|) <∞ for every positive T ,

there is a unique (up to versions) solution of (4.1). This solution is given by

X(t, x) =

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy) + V (t, x)

−
∫ t

0

∫
Rd
V (t− s, x− y)ρ(ds, dy), (t, x) ∈ R+ × Rd, (4.2)

or in short X = (g ∗ (δ0 − ρ)) ∗ Λ + V − V ∗ ρ.
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4 Stationarity

Proof. Defining f̃(t, x) = f(t, x) + V (t, x) as the forcing function we deduce analo-
gously to the proof of Theorem 3.4 that the unique solution of (4.1) is given by

X(t, x) = f̃(t, x)−
∫ t

0

∫
Rd
f̃(t− s, x− y)ρ(ds, dy)

= f(t, x)−
∫ t

0

∫
Rd
f(t− s, x− y)ρ(ds, dy) + V (t, x)−

∫ t

0

∫
Rd
V (t− s, x− y)ρ(ds, dy).

Additionally the stochastic Fubini theorem is applicable as in Theorem 3.6 and the
solution can be rewritten in the form

X(t, x) =

∫ t

0

∫
Rd

(g∗(δ0−ρ))(t−s, x−y)Λ(ds, dy)+V (t, x)−
∫ t

0

∫
Rd
V (t−s, x−y)ρ(ds, dy).

�

Theorem 4.3. Let µ ∈ Mloc(R+ × Rd) such that µ({0} × Rd) = 0, ρ be the resolvent
of µ, g ∈ L1

loc(R+ ×Rd) be bounded and Λ be a homogeneous Lévy basis on R×Rd with
finite second moments. If g ∗ (δ0− ρ) ∈ L1(R+×Rd) and is bounded, then there exists a
stochastic process V on R+ ×Rd such that equation (4.1) has a unique (up to versions)
strictly stationary solution, namely

X(t, x) =

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy), (t, x) ∈ R+ × Rd. (4.3)

Proof. Set g̃ := g ∗ (δ0 − ρ) for abbreviation. Then g̃ ∈ L1(R+ × Rd) and is bounded
implies g̃ ∈ L2(R+ × Rd). Moreover (t − s, x − y) 7→ g̃(t − s, x − y) is bounded and
integrable over R− × Rd for every (t, x) ∈ R+ × Rd. By Lemma 3.1, we can define

X̃(t, x) :=

∫ 0

−∞

∫
Rd
g̃(t− s, x− y)Λ(ds, dy),

and choose X̃ to be measurable due to Lemma 3.3. For any (t, x) ∈ R+ × Rd it holds

E(|X̃(t, x)|) ≤
√

E(|X̃(t, x)|2) =

√
Var(X̃(t, x)) + E(X̃(t, x))2

=

√
κ2

∫ ∞
t

∫
Rd
g̃2(s, y) dsdy + κ2

1

(∫ ∞
t

∫
Rd
g̃(s, y) dsdy

)2

≤
√
κ2‖g̃‖2

L2(R+×Rd)
+ κ2

1‖g̃‖2
L1(R+×Rd)

=: K <∞,

with the notation of Theorem 5.2. Set X̃ ∗ µ(t, x) :=
∫ t

0

∫
Rd X̃(t − s, x − y)µ(ds, dy).

Then
E(|X̃ ∗ µ(t, x)|) ≤ K|µ|([0, t]× Rd),

hence X̃ ∗µ(t, x) is almost surely finite for every (t, x) ∈ R+×Rd. Further X̃ ∗µ is almost
surely measurable as a convolution of a measurable X̃ with a measure µ ∈Mloc(R+×Rd)
and

sup
[0,T ]×Rd

E(|X̃ ∗ µ(t, x)|) ≤ K|µ|([0, T ]× Rd) <∞
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4 Stationarity

for every positive T . Now choose V (t, x) := X̃(t, x) − X̃ ∗ µ(t, x). The conditions in
Lemma 4.2 are satisfied, thus the unique solution can be written as

X(t, x) =

∫ t

0

∫
Rd

(g∗(δ0−ρ))(t−s, x−y)Λ(ds, dy)+V (t, x)−
∫ t

0

∫
Rd
V (t−s, x−y)ρ(ds, dy)

Deploying the definition of V yields

V (t, x)−
∫ t

0

∫
Rd
V (t− s, x− y)ρ(ds, dy)

=X̃(t, x)−
∫ t

0

∫
Rd
X̃(t− s, x− y)µ(ds, dy)−

∫ t

0

∫
Rd
X̃(t− s, x− y)ρ(ds, dy)

+

∫ t

0

∫
Rd
X̃(t− s, x− y)(µ ∗ ρ)(ds, dy)

=X̃(t, x).

The first equation holds due to Proposition 2.6 and the second due to the definition of
the resolvent. As a result we have

X(t, x) =

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy) + X̃(t, x)

=

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy) +

∫ 0

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy)

=

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy), (t, x) ∈ R+ × Rd.

For strict stationarity consider

X(t+ t̃, x+ x̃) =

∫ t+t̃

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t+ t̃− s︸︷︷︸
−α

, x+ x̃− y︸ ︷︷ ︸
−β

)Λ(ds, dy)

=

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− α, x− β)Λ(t̃+ dα, x̃+ dβ)

d
=

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− α, x− β)Λ(dα, dβ)

= X(t, x),

for every t, t̃ ∈ R+ and x, x̃ ∈ Rd under the homogeneity of Λ. The general case n ∈ N
in Definition 4.1 is treated similarly. �

Remark 4.4 The conditions g ∈ L1(R+ × Rd) and is bounded and ρ ∈ M(R+ × Rd)
are sufficient for the condition g ∗ (δ0 − ρ) ∈ L1(R+ × Rd) and is bounded due to
Proposition 2.6. �
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Let us apply this theorem to our examples. In the first model the measure µ =
−λLebR+⊗δ0,Rd satisfies the conditions µ ∈Mloc(R+×Rd) and µ({0}×Rd) = 0. Recalling
g(s, y) = e−λ

′‖y‖ and (g∗(δ0−ρ))(s, y) = e−λs−λ
′‖y‖ we compute

∫
R+

∫
Rd e

−λs−λ′‖y‖ dsdy =∫
R+ e

−λs ds
∫
Rd e

−λ′‖y‖ dy = 2πd\2Γ(d)

λλ′dΓ( d
2

)
< ∞, where Γ(·) is the gamma function. Conse-

quently g ∗ (δ0 − ρ) is integrable over R+ × Rd. Since g ∗ (δ0 − ρ) is also bounded by 1,
Theorem 4.3 is applicable. The strictly stationary solution in the first model can then
be represented as

X(t, x) =

∫ t

−∞

∫
Rd
e−λ(t−s)−λ′‖x−y‖Λ(ds, dy).

The same argument holds for the second model, where g(s, y) = 1−A(s, y)e
−λ‖y‖
c . Here

we have (g ∗ (δ0 − ρ))(s, y) = 1−A(s, y)e−λs and∫
R+

∫
Rd
1−A(s, y)e−λs dyds =

∫
R+

e−λs(cs)dVold(B1(0)) ds

=

∫
R+

e−λs(cs)d
πd/2

Γ(d
2

+ 1)
ds

=
πd\2cd

Γ(d
2

+ 1)

∫
R+

e−λssd ds

=
πd\2cdΓ(d+ 1)

Γ(d
2

+ 1)λd+1
(4.4)

<∞,

where Vold(B1(0)) denotes the d-dimensional volume of the Euclidean unit ball in Rd.
The strictly stationary solution in the second model is then given by

X(t, x) =

∫ t

−∞

∫
Rd
1A(t,x)(s, y)e−λ(t−s)Λ(ds, dy) =

∫
A(t,x)

e−λ(t−s)Λ(ds, dy),

which is exactly the canonical OU∧ process introduced in Barndorff-Nielsen and Schmiegel
[2]. Finally, g(s, y) = 1−A(s, y) and (g ∗ (δ0 − ρ))(s, y) = 1−A(s, y)e−λs+λ

‖y‖
c in the

third model. However,
∫
R+

∫
Rd 1−A(s, y)e−λs+λ

‖y‖
c dyds =

∫
R+ e

−λs ∫
‖x‖≤cs e

λ
‖y‖
c dyds =∫

R+ e
−λs 2πd\2

Γ(d\2)

∫ cs
0
rd−1eλ

r
c drds = ∞, i.e. g ∗ (δ0 − ρ) is not integrable over R+ × Rd.

Thus we do not obtain a stationary solution in the sense of Theorem 4.3 in this case.
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5 Second order structure

Definition 5.1 Let X be a stationary stochastic process on R+ × Rd. The function

acf(t̃, x̃) = Cov(X(0, 0), X(t̃, x̃)), (t̃, x̃) ∈ R+ × Rd

is called the autocovariance function of X. The function

acorrf(t̃, x̃) = corr(X(0, 0), X(t̃, x̃)), (t̃, x̃) ∈ R+ × Rd

is called the autocorrelation function of X. �

The autocovariance function, is an important tool for stochastic modeling and sta-
tistical inference. Note that for stationary X we have E(X(t, x)) = E(X(0, 0)) and
Cov(X(t, x), X(t + t̃, x + x̃)) = Cov(X(0, 0), X(t̃, x̃)) for every (t, x) ∈ R+ × Rd. The
following theorem is useful for determining the second order structure.

Theorem 5.2. Let S ⊆ Rd, h1, h2 : S → R be bounded and integrable functions and Λ be
a homogeneous Lévy basis on S with finite second moments and characteristics (b, C, ν).
Then it holds

E
(∫

S

h1(x)Λ(dx)

)
= κ1

∫
S

h1(x) dx

and
Cov

(∫
S

h1(x)Λ(dx),

∫
S

h2(x)Λ(dx)

)
= κ2

∫
S

h1(x)h2(x) dx,

where κ1 = b+
∫
R\(−1,1)

x ν(dx) ∈ R and κ2 = C +
∫
R x

2 ν(dx) ∈ R+ are the expectation
and the variance of an infinitely divisible distribution with a finite second moment and
characteristics (b, C, ν).

Proof. Define H1 :=
∫
S
h1(x)Λ(dx) and H2 :=

∫
S
h2(x)Λ(dx) using Theorem 3.1. The

proof consists of two parts. In the first part we assume h1 and h2 to be simple functions
whereas in the second part we deal with the general case.
Part 1. Assume h1 =

∑n
i=1 xi1Ai and h2 =

∑m
j=1 xj1Bj with xi, yj ∈ R and Ai, Bj ∈

Bb(S). Then H1 and H2 have finite second moments for Λ has finite second moments.
Employing that Λ is a homogeneous Lévy basis, we compute

E(H1) = E
( n∑
i=1

xiΛ(Ai)
)

=
n∑
i=1

xiE(Λ(Ai))

=
n∑
i=1

xiκ1Leb(Ai) = κ1

n∑
i=1

xiLeb(Ai)

= κ1

∫
S

h1(x) dx,
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5 Second order structure

and

Cov(H1, H2) = Cov
( n∑
i=1

xiΛ(Ai),
m∑
j=1

xjΛ(Bj)
)

=
n∑
i=1

m∑
j=1

xixjCov(Λ(Ai),Λ(Bj))

=
n∑
i=1

m∑
j=1

xixjVar(Λ(Ai ∩Bj)) =
n∑
i=1

m∑
j=1

xixjκ2Leb(Ai ∩Bj)

= κ2

n∑
i=1

m∑
j=1

xixjLeb(Ai ∩Bj) = κ2

∫
S

h1(x)h2(x) dx.

Part 2. Since h1 and h2 are bounded and integrable, they are also square-integrable,
which further implies that h1h2 is integrable by the Cauchy-Schwarz inequality. Take
without loss of generality two approximating sequences (h1,n) and (h2,n) of simple func-
tions such that

• h1,n → h1 almost surely, in L1(S) and in L2(S),

• h2,n → h2 almost surely, in L1(S) and in L2(S) and

• h1,nh2,n → h1h2 in L1(S).

Set H1,n :=
∫
S
h1,n(x)Λ(dx) and H2,n :=

∫
S
h2,n(x)Λ(dx). Applying part 1, it holds

‖H1,n −H1,m‖2
L2(Ω) = E((H1,n −H1,m)2)

= Var(H1,n −H1,m) + E(H1,n −H1,m)2

= Var

(∫
S

(h1,n − h1,m)(x)Λ(dx)

)
+ E

(∫
S

(h1,n − h1,m)(x)Λ(dx)

)2

= κ2

∫
S

(h1,n − h1,m)2(x) dx+

(
κ1

∫
S

(h1,n − h1,m)(x) dx

)2

≤ κ2‖h1,n − h1,m‖2
L2(S) + κ2

1‖h1,n − h1,m‖2
L1(S)

Since h1,n converges in L1(S) and in L2(S), H1,n is a Cauchy sequence in L2(Ω). It
follows from the completeness of L2(Ω) that H1,n converges in L2(Ω) to a limit in L2(Ω).
In light of Remark 2.12 this limit has to be H1. Moreover H1,n → H1 in L1(Ω), because
convergence in L2(Ω) implies convergence in L1(Ω). Thus

κ2

∫
S

h2
1,n(x) dx = Var(H1,n)→ Var(H1)

and
κ1

∫
S

h1,n(x) dx = E(H1,n)→ E(H1).
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Recalling h1,n → h1 in L1(S) and in L2(S) we get

E
(∫

S

h1(x)Λ(dx)

)
= κ1

∫
S

h1(x) dx

and
Var

(∫
S

h1(x)Λ(dx)

)
= κ2

∫
S

h1(x)2 dx.

Analogously it can be shown that H1,nH2,n → H1H2 in L1(Ω) and

κ2

∫
S

h1,n(x)h2,n(x) dx = Cov(H1,n, H2,n)

= E(H1,nH2,n)− E(H1,n)E(H2,n)→ E(H1H2)− E(H1)E(H2)

= Cov(H1, H2).

Finally

Cov

(∫
S

h1(x)Λ(dx),

∫
S

h2(x)Λ(dx)

)
= κ2

∫
S

h1(x)h2(x) dx

since h1,nh2,n → h1h2 in L1(S). �

For simplicity the second order structure is only stated in the stationary case in the next
result although it is also possible to state it in the general case.

Corollary 5.3. Under the conditions of Theorem 4.3 let X be the strictly stationary
solution of equation (4.1). Then the second order structure of X is given by

E(X(0, 0)) = κ1

∫
R+

∫
Rd

(g ∗ (δ0 − ρ))(s, y) dsdy

acf(t̃, x̃) = Cov(X(t, x), X(t+t̃, x+x̃)) = κ2

∫
R+

∫
Rd

(g∗(δ0−ρ))(s, y)(g∗(δ0−ρ))(s+t̃, y+x̃) dsdy,

for all t, t̃ ∈ R+, x, x̃ ∈ Rd and κ1, κ2 as in Theorem 5.2.

Proof. Recall

X(t, x) =

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy) =

∫ t

−∞

∫
Rd
g̃(t− s, x− y)Λ(ds, dy)

with g̃ := g ∗ (δ0 − ρ) for abbreviation. Invoking Theorem 5.2 allows us to compute

E(X(0, 0)) = κ1

∫ 0

−∞

∫
Rd
g̃(−s, x− y) dsdy = κ1

∫
R+

∫
Rd
g̃(s, y) dsdy
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and

acf(t̃, x̃)

=Cov(X(0, 0), X(t̃, x̃))

=Cov

(∫ 0

−∞

∫
Rd
g̃(−s,−y)Λ(ds, dy),

∫ t̃

−∞

∫
Rd
g̃(t̃− s, x̃− y)Λ(ds, dy)

)

=Cov

(∫
R

∫
Rd
1(−∞,0]×Rd g̃(−s,−y)Λ(ds, dy),

∫
R

∫
Rd
1(−∞,t̃]×Rd g̃(t̃− s, x̃− y)Λ(ds, dy)

)
=κ2

∫
R

∫
Rd
1(−∞,0]×Rd g̃(−s,−y)1(−∞,t̃]×Rd g̃(t̃− s, x̃− y) dsdy

=κ2

∫ 0

−∞

∫
Rd
g̃(−s,−y)g̃(t̃− s, x̃− y) dsdy

=κ2

∫
R+

∫
Rd
g̃(s, y)g̃(s+ t̃, y + x̃) dsdy.

�

Example 5.4 An application of this corollary to the first model yields the following
second order structure.

E(X(0, 0)) = κ1

∫
R+

∫
Rd
e−λs−λ

′‖y‖ dsdy = κ1

∫
R+

e−λs ds

∫
Rd
e−λ

′‖y‖ dy =
2κ1π

d\2Γ(d)

λλ′dΓ(d
2
)

acf(t̃, x̃) = κ2

∫
R+

∫
Rd
e−λs−λ

′‖y‖e−λ(s+t̃)−λ′‖y+x̃‖ dsdy

= κ2e
−λt̃
∫
R+

e−2λs ds

∫
Rd
e−λ

′‖y‖−λ′‖y+x̃‖ dy

=
κ2e
−λt̃

2λ

∫
Rd
e−λ

′‖y‖−λ′‖y+x̃‖ dy

If d = 1, i.e. in the case where the space domain is one-dimensional, the explicit formula
of the above integral is given by∫

R
e−λ

′‖y‖−λ′‖y+x̃‖ dy =
λ′‖x̃‖+ 1

λ′
e−λ

′‖x̃‖.

This implies an autocorrelation of the form

acorrf(t̃, x̃) = e−λt̃−λ
′‖x̃‖(λ′‖x̃‖+ 1).

�

Example 5.5 In the second model it holds similarly

E(X(0, 0)) = κ1

∫
R+

∫
Rd
1−A(s, y)e−λs dsdy =

κ1π
d\2cdΓ(d+ 1)

Γ(d
2

+ 1)λd+1
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by equation (4.4) and

acf(t̃, x̃) = κ2

∫
R+

∫
Rd
1−A(s, y)e−λs1−A(s+ t̃, y + x̃)e−λ(s+t̃) dsdy.

The explicit form of the autocorrelation function in the second model is

acorrf(t̃, x̃) = min(exp(−λt̃), exp(−λ|x̃|
c

)),

which is non-separable in t and x (see Nguyen and Veraart [6, Example 2]). �
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5 Second order structure

Figure 6: The autocorrelation function in the first model acorrf(t, x) = e−λt−λ
′‖x‖(λ′‖x‖+ 1).

Figure 7: The autocorrelation function in the second model acorrf(t, x) = min(exp(−λt), exp(−λ|x|c )).
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6 Index of Notation

| · | the absolute value in R or the total variation measure
‖ · ‖ the Euclidean norm in Rd or the total variation norm of a measure
d
= equality in distribution
1B(·) the indicator function
A(t, x) an ambit set
acf(·, ·) the autocovariance function of a stationary process on R+ × Rd

acorrf(·, ·) the autocorrelation function of a stationary process on R+ × Rd

Bb(S) the collection of all bounded Borel sets in S ⊆ Rd

(b, C, ν) the characteristic triplet of a homogeneous Lévy basis or an infinitely
divisible distribution

µ ∗ η, h ∗ µ the convolution product of two measures or a function and a measure
δ0 the Dirac measure in the origin
E(X) the expectation of a random variable
Γ(·) the gamma function
Λ a Lévy basis
Leb(·) the Lebesgue measure
Lp(·) the Lp-spaces
L1

loc(R+ × Rd) the set of real functions on R+ × Rd which are Lebesgue integrable over
[0, T ]× Rd when restricted to [0, T ]× Rd for all positive T

M(S) the space of all signed complete Borel measures on S with finite total
variation

Mloc(R+ × Rd) the set of signed measures on R+ ×Rd which lie in M([0, T ]×Rd) when
restricted to [0, T ]× Rd for all positive T

N the set {1, 2, . . .} of natural numbers
P- lim

n→∞
limit in probability

R+ [0,∞)
R− (−∞, 0]
τ(z) the truncation function τ(z) = z1(−1,1)(z)
Var(X) the variance of a random variable
Vold(B1(0)) the d-dimensional volume of the Euclidean unit ball in Rd
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