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Abstract. The 15-puzzle is a well-known game which has a long history
stretching back in the 1870’s. The goal of the game is to arrange a shuffled
set of 15 numbered tiles in ascending order, by sliding tiles into the one
vacant space on a 4× 4 grid. In this paper, we study how Reinforcement
Learning can be employed to solve the 15-puzzle problem. Mathemati-
cally, this problem can be described as a Markov Decision Process with
the states being puzzle configurations. This leads to a large state space
with approximately 1013 elements. In order to deal with this large state
space, we present a local variation of the Value-Iteration approach ap-
propriate to solve the 15-puzzle starting from arbitrary configurations.
Furthermore, we provide a theoretical analysis of the proposed strategy
for solving the 15-puzzle problem. The feasibility of the approach and the
plausibility of the analysis are additionally shown by simulation results.

1 Introduction

The 15-puzzle is a sliding puzzle invented by Samuel Loyd in 1870’s [4]. In this
game, 15 tiles are arranged on a 4× 4 grid with one vacant space. The tiles are
numbered from 1 to 15. Figure 1 left shows a possible configuration of the puzzle.
The state of the puzzle can be changed by sliding one of the numbered tiles –
adjacent to the vacant space – into the vacant space. The action is denoted by
the direction, in which the numbered tile is moved. For each state, the set of
possible actions As is therefore a subset of {up,down, left, right}. The goal is to
get the puzzle to the final state shown in Fig. 1 right by applying a sequence of
actions. A puzzle configuration is considered as solvable, if there exists a sequence
of actions which leads to the goal configuration. This holds true for exactly half
of all possible puzzle configurations [10].

Solving the 15-puzzle problem has been thoroughly investigated in the op-
timization community [5]. Search algorithms, such as A∗ and IDA∗ [6], can be
employed to find feasible solutions. The major difficulty of the game is the size of
the state space. The 15-puzzle has (16)! ≈ 2 · 1013 different states. Even optimal
solutions may take up to 80 moves to solve the puzzle. Because of the huge size
of the state space, a complete search is difficult and the 15-puzzle problem is one
of the most popular benchmarks for heuristic search algorithms [5].



In this paper, we study how Reinforcement Learning (RL) [7, 13] can be em-
ployed to solve the 15-puzzle problem. Thus, we seek to learn a general strategy
for finding solutions for all solvable puzzle configurations. It is well-known that
RL suffers from the problem of large state spaces [7]. It is therefore difficult
to straightforwardly employ state-of-the-art RL algorithms for solving the 15-
puzzle problem. However, in [1] Pizlo and Li analysed how humans deal with this
enormous state space of the 15-puzzle. Their study shows that humans try to
locally solve the puzzle tile by tile. While this approach does not always provide
optimal solutions, it significantly reduces the complexity of the problem. Inspired
by the work in [1], we propose a local variation of the Value-Iteration approach
appropriate for solving the 15-puzzle problem. Furthermore, we provide some
theoretical analysis of the proposed strategy in this study.

The remainder of the paper is organized as follows: in the next section, we
introduce a formal notation for the 15-puzzle problem. In Section 3, we briefly
review the basic idea behind RL. In Section 4, we introduce the local Value-
Iteration approach to solve the puzzle, followed by a section with an analysis
of the puzzle and the proposed approach. In Section 6, simulation results are
provided supporting the analysis and showing the feasibility of the proposed
approach. A conclusion is given in Section 7.

2 Notation

Let Π16 be the set of all possible permutations on the set {1, 2, . . . , 16}. If we
map the vacant space of the 15-puzzle to 16 and all tiles to its corresponding
number, we can interpret a given puzzle configuration as a permutation π ∈ Π16

by reading the tile-numbers row-wise. For example, for the left puzzle in Fig. 1 we
have π = (15, 10, 16, 13, 11, 4, 1, 12, 3, 7, 9, 8, 2, 14, 6, 5). As shown in [10], exactly
half of the permutations correspond to solvable puzzles, i.e. puzzles that can be
brought to ascending order by a sequence of sliding actions ([10] also provide a
simple criterion to check for solvability). We define the state space of the 15-
puzzle as the set S15 ⊂ Π16 of all solvable puzzles. The tile on position i, i.e.
i-th entry of the permutation s ∈ S15, is denoted by s(i). The position of tile i is
written as s−1(i) (note that s−1(16) gives the position of the vacant space). This
implies s(4) = 13 and s−1(7) = 10 for the example given in Fig. 1 on the left.
The goal state of the 15-puzzle is defined as state sgoal ∈ S15 with sgoal(i) = i for
all i = 1, . . . , 16, as shown in Fig. 1 on the right. Depending on the configuration
of the puzzle, the possible action set is a subset of {up,down, left, right}. In the
permutation s, each action corresponds to a transposition, i.e. a switch of two
elements of the permutation. Formally, a transposition is defined as permutation
τ with τ(i) 6= i for exactly two elements i, j and therefore is denoted by τ = (i, j).
Thus, the application of each action left, right, up, down (which describes the
movement direction of the numbered tile into the vacant space) corresponds to
the concatenation of the state permutation s with a corresponding transposition
τ , s ◦ τ . Given a state s, we define transpositions corresponding to each actions
and provide conditions when each action is applicable.
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Fig. 1. A possible start state (left) and the goal state (right) of the 15-puzzle.

– left : τ` =
(
s−1(16), s−1(16) + 1

)
applicable iff s−1(16) 6≡ 0 mod 4

– right : τr =
(
s−1(16), s−1(16)− 1

)
applicable iff s−1(16) 6≡ 1 mod 4

– up: τu =
(
s−1(16), s−1(16) + 4

)
applicable iff s−1(16) ≤ 12

– down: τd =
(
s−1(16), s−1(16)− 4

)
applicable iff s−1(16) ≥ 5

Elements of the set of possible actions a ∈ As are the transpositions τ that
perform the corresponding switch of elements. Instead of writing s′ = s ◦ τ , the
action corresponding to τ can also be given as f(s, a) = s′, where f(·) is the
so-called transition function or dynamics model.

3 Reinforcement Learning: A Brief Review

In this section, we will briefly introduce RL, see [7, 13] for detailed introductions.
Reinforcement Learning is a sub area of machine learning that deals with goal
directed learning. The idea is to use an environment feedback about the desir-
ability of states, and let the agent learn to find a task solution while optimizing
the overall gathered reward.

The state of a learning agent is given by s ∈ S, in each state actions a ∈
As ⊆ A can be applied. A reward function r : s 7→ R defines the desirability of
states and hence encodes the learning goal. The function f : s, a 7→ s′ describes
the dynamics of the considered system. The goal of the learning agent is to find
a policy π : s 7→ a which maximizes the long term reward

∑∞
i=0 γ

ir(si). Here,
0 < γ < 1 is a discount factor, s0 is the start state and si = f(si−1, π(si−1))
holds. Many Reinforcement Learning algorithms are based on a value-function
V π(s0) =

∑∞
i=0 γ

ir(si) with si = f(si−1, π(si−1)), which encodes the long term
reward starting in state s0 and acting according to policy π. The optimal value-
function V is defined as V (s) = maxπ {V π(s)}, the optimal policy can be derived
by π(s) = arg maxa∈As

{V (s′) | s′ = f(s, a)}. The optimal value-function V (·)
is latent. In the literature, different ways to estimate V (·) can be found. A well-
studied approach for the estimation of V (·) is Value-Iteration which is used in



various applications [14, 15]. It is given by an iterative application of

∀s ∈ S : Vt+1(s)← r(s) + γ ·maxa∈As {Vt(s′) | s′ = f(s, a)}

until convergence of Vt. It is guaranteed that Vt converges to the optimal value-
function V for t→∞ [7].

In the context of the 15-puzzle problem, the state space S corresponds to the
puzzle-configurations S15, an action a ∈ As is the sliding of a numbered tile into
the vacant space – as explained in the previous section. The reward function is
defined as

r(s) =

{
1, if s = sgoal

0, else.

With these definitions, Value-Iteration can be performed. The policy π(s) : s 7→ a
resulting from the learned value-function V (·) returns for every puzzle configu-
ration s the sliding action a for reaching the goal-state.

While this approach theoretically gives us optimal solutions to all solvable
puzzles, it is practically intractable. The reason is the size of the state space
S15 with |S15| ≈ 1013. The Value-Iteration approach will iterate over all possible
states, which obviously cannot be performed. In the next section, we describe
how the computational effort can be reduced significantly by decomposing the
problem into tractable subproblems.

4 Local Value-Iteration for Solving the 15-Puzzle

The work by Pizlo and Li [1] analysed how humans deal with the enormous
state space of the 15-puzzle. The study shows that humans try to locally solve
the puzzle tile by tile. While this approach does not provide optimal solutions,
it significantly reduces the complexity of the problem [1]. The basic principle
behind the solution strategy is to hierarchically divide the global problem into
small local problems (e.g. move each tile to its correct position sequentially). As
we will see later, it is not always sufficient to only consider one single tile. Instead
of that, multiple tiles have to be considered at once in some scenarios (see Sect.
5). Inspired by the work in [1], we present a RL approach using local state space
information, similar to the ideas given in [2, 3]. Thus, when learning a policy
to move a given tile to its correct position, we consider only a limited number
of possible puzzle configurations. Furthermore, the size of the local region can
be set adaptively. After solving the local subproblems, the complete solution is
obtained by sequential application of the local solutions.

A local subproblem can be defined by a set G = {i1, . . . , ik} ⊆ {1, . . . , 15} of
k tiles which need to be moved to distinct positions i1, . . . , ik without moving
tiles R = {j1, . . . , j`}. For example, for G = {3} and R = {1, 2} the G,R-
subproblem is to bring tile 3 to its correct position without moving tiles 1 and
2. Here, R ∩ G = ∅ must hold, the free space must not be part of R and we
restrict the action sets As according to R (to prevent that a tile from the set R
is moved).



Algorithm 1 Value-Iteration to Solve the Local G,R-problem

function value iteration(SG,R
15 )

V G,R
0 ← 0, t← 0 . Initial value-function

repeat
for all s ∈ SG,R

15 do . Apply Value-Iteration Update step on all states

V G,R
t+1 (s)← r(s) + γmaxa∈As

{
V G,R
t (s′) | s′ = f(s, a), s′ ∈ SG,R

n

}
end for
t← t+ 1

until V G,R
t has converged

πG,R(·)← arg maxa∈As

{
V G,R(s′) | s′ = f(·, a)

}
. Derive optimal policy πG,R : SG,R

15 → A
return V G,R

t , πG,R

end function

When moving the tiles in the local set G to their correct positions, we do not
need to keep track of the positions of all other tiles of the puzzle. Thus, the state
of the G,R-subproblem has the form (i1, . . . , ik, j), i.e. the positions of the k
tiles in G including the position of the free space. The number of elements of the
state space SG,R15 can be given as |SG,R15 | = 1

2 (16− `)(16− `− 1) . . . (16− `− k)
with ` = |R|. Note, that the factor 1

2 bases on the fact that only half of all

permutations are solvable [10]. In general, the SG,R15 state space is significantly
smaller than S15. For example, the state space to move tiles 6 and 7 to correct
positions without moving tiles {1, . . . , 5} has only 495 elements (compared to
1013 elements in S15).

As the G,R-subproblems have significantly smaller state spaces, we can em-
ploy state-of-the-art RL algorithms, such as Value-Iteration shown in Algorithm
1, for learning a policy to move a given tile to its desired position. Here, f is
the dynamics function applied on elements s ∈ SG,R15 , the reward function is
defined as given in Sect. 3. The algorithm returns the value-function V G,R and
the optimal local policy πG,R. To solve the G,R-subproblem for a given puzzle
configuration s, we subsequently apply actions a = πG,R(s) until all tiles in G
are at their correct positions.

Until now, we described how Value-Iteration can be employed on local G,R-
subproblems for learning an optimal local policy πG,R. In the next step, we
discuss an approach to determine the sets G and R for a given puzzle configu-
ration. A naive approach would be to successively set G = {i} for i = 1, . . . , 15
and R = {1, . . . , i− 1}. That would mean solving the puzzle tile by tile, while
fixing all lower numbered tiles. However, this simple approach does not work for
many puzzles, as we will show in the next section. Thus, we need to adaptively
vary the local region of G and possibly consider many tiles at once. A systematic
approach is to successively move tiles from set R to G until a solution is found.
Thus, if no solution is found for G = {i} and R = {1, . . . , i− 1}, we first set
G = G ∪ {i− 1} and R = R\{i− 1} and continue to increase G and decrease R
by setting G = G ∪ max(R) and R = R \max(R). This procedure is done until



Algorithm 2 Local Value-Iteration for Solving the 15-puzzle
function solve puzzle(start state)

s ← start state
for i← 1, . . . , 15 do

Gi ← {i}, Ri ← {1, . . . , i− 1} . Successively move tiles to correct positions
V Gi,Ri , πGi,Ri ← value iteration(SGi,Ri

15 )
while V Gi,Ri(s) = 0 do . holds iff it is not possible to solve Gi, Ri for s

Gi = Gi ∪max(Ri) . move tile with highest number from set Ri to Gi

Ri = Ri \max(Ri)
V Gi,Ri , πGi,Ri ← value iteration(SGi,Ri

15 )
end while

. Now solve the part of the puzzle corresponding to Gi, Ri

while ∃i ∈ Gi : s(i) 6= i do . while at least one tile of Gi is not at its goal
position

abest ← πGi,Ri(s) . Policy π returns the action to solve Gi, Ri

s← f(s, abest) . Apply sliding action
end while

end for
end function

a solution is found. If the puzzle is solvable, this approach guarantees to find a
solution, because you will finally end up with R = ∅. This idea of increasing the
local region gives us the following technique to solve an arbitrary puzzle:
Given a solvable starting puzzle configuration s, we successively try to solve
G = {i} for i = 1, . . . , 15 and R = {1, . . . , i− 1} while employing Value-Iteration
on SG,R, as given in Algorithm 1. We can move the tiles in G to their correct
positions without moving tiles in the set R, if and only if V G,R(s) 6= 0. In this
case, we just apply the corresponding policy πG,R to bring the tiles to their
correct positions. Otherwise, we increase the set G and decrease the set R, such
as G = G ∪ max(R) and R = R \ max(R). Subsequently, we go back to the
Value-Iteration step with the new sets G,R. The resulting local Value-Iteration
approach is summarized in Algorithm 2.

5 Analysis of Local Value-Iteration for the 15-Puzzle

As the proposed RL method bases on the well-known Value-Iteration [7], it
guarantees to find a solution for any solvable 15-puzzle configuration. However,
the proposed local approach involves the consideration of many tiles at times and,
thus, can increase the computational complexity. In this section, we analyse the
proposed algorithm and develop a bound for the maximum number of tiles that
are considered at each step. Furthermore, we provide the maximal cardinality
of involved state spaces and give bounds on the maximum number of actions to
solve a given puzzle configuration.

Definition 1. Consider a random puzzle s ∈ S15. Let Gi be the set used in
Local Value-Iteration to bring tile i to its correct position (see Algorithm 2). The



probability, that |Gi| = j holds is denoted by τ ji . The subset of puzzles Sk ⊆ S15

is defined by s ∈ Sk, if and only if max(G1, . . . , G15) = k holds. Finally, Φ(Sk)
gives an upper bound on the number of actions, that are necessary to solve any
puzzle s ∈ Sk using Local Value-Iteration.

In Definition 1, the factor τ ji describes the probability that j tiles {i, . . . , i−j+1}
need to be considered to bring tile i to its correct position given a random puzzle.
For example, tile 2 can always be moved to position 2 without moving tile 1.
Hence, it is τ12 = 1 and τ `2 = 0 for all ` > 1. As we will see later, tile 4 can be
moved to its correct position without moving tile 3 in τ14 = 1

12 of the cases. In
other cases, tile 3 needs to be moved in order to get tile 4 to the right position
and, thus, τ24 = 11

12 . The proportions τ1i , τ
2
i , . . . always have to sum up to 1. The

classes Sk partition the set of all puzzle configurations. Informally, s ∈ Sk states
that the puzzle s can be solved with Local Value-Iteration by considering k tiles
at once.

Theorem 1. Given a puzzle s ∈ S15, then the state spaces involved to solve
the puzzle s with local Value-Iteration have at most 10080 elements. For i ∈
{1, 2, 3, 5, 6, 7, 9, 14, 15} it holds that τ1i = 1. For i ∈ {4, 8, 10, 11, 12, 13} τ ji is
given as
Tile i τ1i τ2i τ3i τ4i τ5i Max. state space size

4 1
12

11
12

∣∣∣S{3,4},{1,2}15

∣∣∣ = 1092

8 1
8

7
8

∣∣∣S{7,8},{1,...,6}15

∣∣∣ = 360

10 2100
2520

420
2520

∣∣∣S{9,10},{1,...,8}15

∣∣∣ = 168

11 216
360

72
360

72
360

∣∣∣S{9,10,11},{1,...,8}15

∣∣∣ = 840

12 15
60

30
60

15
60

∣∣∣S{9,...,12},{1,...,8}15

∣∣∣ = 3360

13 4
12

8
12

∣∣∣S{9,...,13},{1,...,8}15

∣∣∣ = 10080

Proof. In the following, we provide the calculation for the probabilities τ ji , as
well as the maximal cardinality of the state space involved for each tile i.

– Tiles 1, 2, 3, 5, 6, 7: It is easy to check that these tiles can be moved to
their goal position without moving lower numbered tiles. This implies τ1i =
1 for all i ∈ {1, 2, 3, 5, 6, 7}. The state spaces considered have the size∣∣∣S{i},{1,...,i−1}15

∣∣∣ = 1
2 (16− i+ 1)(16− i), which is at most 1

2 · 16 · 15 = 120.

– Tiles 4, 8: In 1
13 (resp. 1

9 ) of all states, tile 4 (resp. 8) is already on its correct
position. Tile 4 (8) can also be brought to its correct position, if tile 4 (8)
is in position 8 (12) and the vacant space is on position 4 (8). This applies
to 1

13 ·
1
12 (resp. 1

9 ·
1
8 ) of all remaining puzzles with fixed tile 1 to 3. For the

rest of the cases, one can check that it is not possible to bring tile 4 (resp.
8) to its position without moving lower numbered tiles. But it is sufficient
to only move tile 3 (7): It is always possible to move tile 4 (8) below its
correct position with the free space below tile 4 (8). The following sequence



will then bring tiles 3 and 4 (7 and 8) to its correct position: Down, Down,
Right, Up, Left, Up, Right, Down, Down, Left, Up. This implies

τ14 =
1

13
+

1

13
· 1

12
=

1

12
, τ24 =

11

12
, τ18 =

1

9
+

1

9
· 1

8
=

1

8
, τ28 =

7

8
.

The largest state space is S
{3,4},{1,2}
15 with

∣∣∣S{3,4},{1,2}15

∣∣∣ = 1
214·13·12 = 1092.

– Tile 9: Tile 9 can be brought to its correct position by moving the vacant

space circle wise, τ19 = 1 with
∣∣∣S{9},{1,...,8}15

∣∣∣ = 1
28 · 7 = 28.

– Tiles 10, 11, 12, 13: If the puzzle is solved up to tile 9, the remaining number
of solvable puzzles is 1

27! = 2520 (as mentioned Sect. 2, only half of the
states are solvable puzzles). We calculate the proportions τ by application
of Algorithm 2 on all 2520 solvable puzzles.

– Tiles 14, 15: As can be checked, it holds τ114 = τ115 = 1, the state spaces have
3 resp. 2 elements.

This concludes the proof for Theorem 1. The Theorem shows, that Local Value-
Iteration considers in the worst-case a state space with 10080 elements – com-
pared to 1013 elements of original Value-Iteration. In the next step, we investigate
the puzzle classes Sk introduced in Definition 1. Theorem 1 directly implies the
following corollary.

Corollary 1. It is τ ji = 0 for all 1 ≤ i ≤ 15, j > 5. Hence Sk = ∅ holds for all
k > 5 and S1,S2,S3,S4,S5 partition S15.

Thus, Local Value-Iteration considers at most 5 tiles at once to any given puzzle
and puzzles of the class Sk can be considered the most difficult to solve. With
the next theorem, we investigate how the puzzles S15 split up into the difficulty
classes S1 to S5.

Theorem 2. Consider the classes S1,S2, . . . ,S5 introduced in Definition 1.
Then

∣∣S1
∣∣ ≈ 0, 04% |S15|, S2 ≈ 6, 62% |S15|, S3 = 18, 3% |S15|, S4 = 8, 3% |S15|,

S5 = 66, 6% |S15| holds.

Proof. We compute the cardinalites using the proportions τ ji from Theorem 1:

∣∣S1
∣∣ = τ14 · τ18 · τ110 · τ111 · τ112 · τ113

=
1

2304
|S15| ≈ 0, 04% |S15|∣∣S2

∣∣ =
[
τ24 ·

(
τ18 + τ28

)
·
(
τ110 + τ210

)
·
(
τ111 + τ211

)
+ τ14 · τ28 ·

(
τ110 + τ210

)
·
(
τ111 + τ211

)
+ τ14 · τ18 · τ210 ·

(
τ111 + τ211

)
+τ14 · τ18 · τ110 · τ211

]
· τ112 · τ113 · |S15|

=
763

11520
|S15| ≈ 6, 62 |S15|

∣∣S3
∣∣ =

[
τ311
(
τ112 + τ312

)
+
(
τ111 + τ211

)
τ312
]
τ113 |S15|

=
11

60
|S15| = 18, 3% |S15|∣∣S4

∣∣ = τ412 · τ113

=
1

12
|S15| = 8, 3% |S15|∣∣S5

∣∣ = τ513 |S15|

=
2

3
|S15| = 66, 6% |S15|



According to Theorem 2, only 0.04% of all puzzles can be solved tile by tile
without moving lower numbered tiles. On the other hand, 66, 6% of all puzzle
involve a situation, where 4 lower numbered tiles need to be considered to solve
the puzzle. As already mentioned, the membership of a puzzle s ∈ S15 in a class
Sk describes its difficulty in terms of how many tiles need to be considered at
once to solve the puzzle with Local Value-Iteration. Another possible measure
for the difficulty of a puzzle, is the number of sliding actions necessary to solve
it. Now, our final step is to give upper bounds Φ(Sk) which give the maximal
number of actions that need to be applied to solve any puzzle s ∈ Sk. As we
will see, Φ(Sk) will go up with k meaning that puzzle from a higher class Sk

also potentially need more actions to be solved.

Theorem 3. Given a puzzle s ∈ Sk. Then the maximal number of actions
necessary to solve the puzzle s using Algorithm 2 is given by ϕ(S1) = 142,
ϕ(S2) = 220, ϕ(S3) = 248, ϕ(S4) = 255, ϕ(S5) = 288.

Proof. We proof the statement by inspection of the value-function learned with
Algorithm 1. An entry V (s) =

∑∞
t=k γ

t implies, that k actions are necessary to
reach the goal state given state s under an optimal policy. Let MG,R denote the
maximal number of actions necessary to solve G,R. The relevant subproblems
G,R are given in Theorem 1. By application of Algorithm 1, the following values
for MG,R can be given:

M{1},∅ = 21

M{2},{1} = 17

M{3},{1,2} = 20

M{4},{1,2,3} = 1

M{4,3},{1,2} = 32

M{5},{1,...,4} = 17

M{6},{1,...,5} = 13

M{7},{1,...,6} = 18

M{8},{1,...,7} = 1

M{8,7},{1,...,6} = 29

M{9},{1,...,8} = 15

M{10},{1,...,9} = 9

M{10,9},{1,...,8} = 20

M{11},{1,...,10} = 6

M{11,10},{1,...,9} = 14

M{11,10,9},{1,...,8} = 23

M{12},{1,...,11} = 1

M{12,11,10},{1,...,9} = 20

M{12,...,9},{1,...,8} = 27

M{13},{1,...,12} = 1

M{13,...,9},{1,...,8} = 34

M{14},{1,...,13} = 1

M{15},{1,...,14} = 1

Given these maximal numbers of actions to solve a subproblem G,R, we
can now estimate the worst-case, i.e. the maximal number of actions, to solve a
puzzle s ∈ Sk. Therefore, we compute

ϕ(Sk) =

15∑
i=1

max
{
M{i},{1,...,i−1}, . . . ,M{i,...,i−k+1},{1,...,i−k}

}
where the max-operator only considers entries MG,R that are given above (other
subproblems G,R are not relevant according to Theorem 1).



6 Simulation Results

This section contains experimental results when Local Value-Iteration is applied
to solve the 15-Puzzle. The experiments will show the feasibility of the Local
Value-Iteration approach and will also support the analysis provided in the pre-
vious section.

We will use the Local Value-Iteration Algorithm 2 to solve instances of the
15-Puzzle. Here, subproblems G,R will recur for different puzzles. Hence, we
will learn the value-function and the corresponding policy only once for a given
subproblem G,R. On a standard desktop PC, the training for all involved G,R-
problems took 155 seconds. After the training, arbitrary puzzles can be solved.
We build a set S̃ of 100000 random puzzles, all puzzles s ∈ S̃ could successfully
be solved with Algorithm 2 with an average of approximately 0.25 seconds to
solve one puzzle.

In the analysis section, Theorem 2 states the proportions of the classes Sk

relative to the set of all puzzles. These proportions can also be estimated by
experiment: for each puzzle s ∈ S̃, we keep track of the maximum number of
tiles k considered at once to solve the puzzle and subsequently sort them in the

corresponding class S̃k. The results after solving all 100000 random puzzles in
S̃ are∣∣∣S̃1

∣∣∣ = 42 = 0.042%
∣∣∣S̃∣∣∣∣∣∣S̃2

∣∣∣ = 6539 = 6.539%
∣∣∣S̃∣∣∣∣∣∣S̃3

∣∣∣ = 18362 = 18.362%
∣∣∣S̃∣∣∣

∣∣∣S̃4
∣∣∣ = 8446 = 8.446%

∣∣∣S̃∣∣∣∣∣∣S̃5
∣∣∣ = 66611 = 66.611%

∣∣∣S̃∣∣∣
These empirical proportions correspond to the values given in Theorem 2 up to

errors of less than 0.15%. For each of the five classes S̃k, we compute the average
and maximum number of actions necessary to solve a puzzle. The results are
given in Table 1 and correspond to the statements of Theorem 3. The results
show, that when the number of tiles which need to be considered increases, the
number of actions to solve the puzzle also increases.

Table 1. We solved 100000 puzzles with Local Value-Iteration and classified them into
the classes Sk. The table gives the average and maximum number of actions necessary
to solve puzzles of the subsequent classes.

S1 S2 S3 S4 S5 overall

average # actions 68.85 100.68 112.16 122.92 128.71 123.35

maximum # actions 107 156 165 174 202 202

So far, we start with one tile, i.e. Gi = {i}, and increased the local region,
if the subproblem could not be solved. While Value-Iteration provides optimal
solutions for the subproblems, the overall solution is in general not optimal



(with respect to the number of actions necessary to solve a puzzle). On the
other hand, solving the complete puzzle at once, i.e. G = {1, . . . , 15}, will give
us the optimal solution, but is computationally intractable. In the next step, we
vary between those two extremes and increase the initial size of the local region
to find better solutions – in terms of fewer actions necessary to solve the puzzle
–, while accepting higher computational efforts. For an initial local size `, we
define Gi = {`i− `+ 1, . . . , `i}. If we increase, for example, the size to ` = 2,
this will give us G1 = {1, 2}, G2 = {3, 4}, G3 = {5, 6} and so on. We solved the
100000 random puzzles in S̃ again, now with initial size from 1 to 5. Figure 2
shows on the left, that the average as well as the maximal number of actions to
solve a puzzles declines as expected when we increase the region size. The cost of
this improvement is shown in Fig. 2 on the right – the computation time grows
exponentially. The detailed results can be found in Table 2.
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Fig. 2. The initial size of the local region G for Local Value-Iteration is varied from 1,
i.e. initial Gi = {i}, up to 5, i.e. initial Gi = {5i− 4, . . . , 5i}. The left figure shows the
average as well as maximal number of actions to solve 100000 random puzzles. On the
right, the necessary overall training time for each initial local size is shown.

Table 2. We adapted the initial local size from 1, i.e. Gi = {i} for i = 1, . . . , 15, up to
5, i.e. Gi = {5i− 4, . . . 5i} for i = 1, . . . 3. We solved 100000 puzzles with each initial
local size, the table gives the average and maximum number of actions necessary to
solve solve the puzzles. The last row states the necessary training time on a standard
desktop PC.

default size local region 1 2 3 4 5

average # actions 123.35 99.36 93.69 78.07 73.82

maximum # actions 202 150 136 115 107

training time in minutes 2.58 7.10 57.87 109.03 312.33



7 Conclusion

In this study, we investigate the possibility of using RL to solve the popular
15-puzzle game. Due to the high state space dimension of the problem, it is
difficult to straightforwardly employ state-of-the-art RL algorithms. In order to
deal with this large state space, we proposed a local variation of the well-known
Value-Iteration appropriate to solve the 15-puzzle problem. Our algorithm is in-
spired by the insight that humans use to solve the 15-puzzle game locally, by
sequentially moving tiles to their correct positions. Furthermore, we provide a
theoretical analysis showing the feasibility of the proposed approach. The plau-
sibility of the analysis is supported by several simulation results.
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