
Reconfigurable Industrial Process Monitoring
using the CHROMOSOME Middleware

Stephan Sommer∗, Michael Geisinger†, Christian Buckl†, Gerd Bauer‡, Alois Knoll∗

∗Technische Universität München, Boltzmannstraße 3, D-85748 Garching, Germany, {sommerst,knoll}@in.tum.de
†fortiss GmbH, Guerickestraße 25, D-80805 München, Germany, {geisinger,buckl}@fortiss.org
‡efm-systems GmbH, Reinsburgstraße 96/1, D-70197 Stuttgart, Germany, bauer@efm-systems.de

Abstract—In all areas of industrial production and construc-
tion, companies have to implement processes with increasing
complexity and reliability to satisfy their customer’s needs with
respect to product quality and continuity. Fulfilling these re-
quirements means to employ continuous process monitoring and
documentation without increasing production cost significantly
even in case of subsequent reorganization of the production
facility. The Multifunk research project focuses on the devel-
opment and integration of features into the CHROMOSOME
middleware to provide the basis for an intelligent, self-adapting
process monitoring framework for production quality assurance.
The key features of the framework are self-organization and self-
configuration based on meta information in combination with
industry standard protocols to guarantee an easy integration into
industrial processes. The CHROMOSOME middleware is used on
top of smart sensor platform MST2012 that has been developed
in the course of the research project to tie established analog
sensors to the digital process monitoring world. The contribution
of this paper is a flexible, self-adaptive embedded middleware in
combination with a smart sensor gateway for industrial process
monitoring.

I. INTRODUCTION

In the past decades, the complexity of industrial production
processes has increased. Nowadays, it is often not only impor-
tant for a produced good to pass quality checks at the end of the
production process, but the individual production steps as well
as the collected data need to be documented and stored for later
reference. These monitoring systems can be quite complex
themselves. Hence, the motivation of the Multifunk1 research
project was to ease deployment and configuration of sensor
networks for process monitoring such that the complexity
visible to the developer is low. This is achieved by two major
concepts: on the one hand, a model-driven development tool
that is used for code generation abstracts from the underlying
complexity of the system and provides the developer with a
functional and topological view of the system. On the other
hand, self-adaptation and self-configuration features are built
into the communication infrastructure such that changes in
the sensor network topology are automatically detected and
reacted upon. The latter point is of special importance consid-
ering that production facilities are nowadays often rearranged
and reconfigured to match changed production requirements.

Process monitoring is concerned with the recording of data
from the production process and, among others, storing the
data for later reference. In many production processes, the
same data are used to control the actual process. This is why

1http://www.multi-funk.de/

analog sensors are directly connected to Programmable Logic
Controllers (PLC) to obtain the data required for process con-
trol and monitoring in classic industrial control and automation
scenarios. The obtained data is then periodically forwarded to
a database for permanent storage. However, this setup has two
major drawbacks:

1) The described setup makes the monitoring process
very inflexible, because the collection of monitoring
data is tightly integrated into the control programs of
the PLCs that are responsible for the actual produc-
tion and changes in either part of the program will
affect the other.

2) The collection of data for process monitoring is not
implemented independently from the sensing required
for process control itself. Hence, if the single faulty
sensor provides values that “look good”, but do not
actually represent the physical state of the plant, both
the control as well as the monitoring will not ring an
alarm bell, although the product will be faulty.

To get an independent instance for the production docu-
mentation, an individual sensor network only responsible for
the documentation is reasonable. To decrease cost for the ad-
ditional sensor network, integrating sensors and electronics of
both sensor networks into the same physical housing is a cost
efficient tradeoff as long as the sub-systems stay independent
of each other (with respect to sensing). This also allows placing
sensors for process monitoring at optimal locations without
directly influencing process control. It also allows adaption
of the sensor network without touching the PLC programs
responsible for process control, which is crucial in a running
production plant.

In our paper, we present a setup consisting of hardware
(MST2012 smart sensor system) and software (CHROMO-
SOME middleware [1]). MST2012 is equipped with two
independent data sampling and processing channels to provide
independent data for process control as well as for process
monitoring. The data transport and validation is done with
the CHROMOSOME middleware which provides us with self-
adaptation based on a meta information driven publish and
subscribe paradigm and health monitoring for the system.

The remainder of this paper is structured as follows: the
related work and a system architecture for sensor networks in
control applications are described in Section II. A description
of the CHROMOSOME middleware and its key components
is presented in Section III. The real world application scenario
and the MST2012 smart sensor are discussed in Section IV.

mailto:sommerst@in.tum.de
mailto:knoll@in.tum.de
mailto:geisinger@fortiss.org
mailto:buckl@fortiss.org
mailto:bauer@efm-systems.de
http://www.multi-funk.de/


Profibus / DeviceNet

Ethernet TCP/IP

SmS1 S2

SM2SM1

Bus coupler

SMl

Field Layer SnS1 S2 S3 S4

Conventional Setup Anticipated Setup

Automation

Layer

Monitoring

Layer

PLC

Fig. 1. Exemplary monitoring system setups (conventional and anticipated).

Finally, the paper is concluded with a summary of our expe-
rience and directions for future work in Section V.

II. RELATED WORK

A classical design pattern for control applications in in-
dustry is to directly connect sensors to a PLC. However, this
prevents system designers from using these sensors in more
than one control task. To cope with changing surrounding
conditions, flexible systems are required to allow adapta-
tions and extensions to comply with future requirements. An
overview of requirements and state of the art in industrial
sensor networks (wired and wireless) is given in [2]. Key
features for industrial scenarios are the integration of already
deployed sensors into new applications with reasonable effort
as well as the integration of newly deployed sensors into
already running applications and the seamless interconnection
to business applications.

Both monitoring scenarios are depicted in Figure 1: in
the automation domain, deployments are typically divided into
three layers. The lowest layer is the field layer where wired (Si)
and mobile (SMi) sensors are located and local control tasks
are performed using PLCs. Communication between PLCs
is realized in the automation layer. Finally, the monitoring
layer provides interfaces to business applications like process
planning and management tools.

The bottom left of Figure 1 shows a common automation
scenario with sensors directly connected to a PLC, whereas
the sensors on the right are connected to an industrial bus
using bus couplers. Unlike the design on the left, the design
on the right allows to use sensors in multiple control tasks. To
integrate different sensors from different vendors into multiple
applications, at least a standardized interface to the sensors
like IEEE 1451 [3] is required as a basis. As soon as sensors
are connected using a standardized interface, access to this
layer needs to granted to the next layer by, for example, a
uniform sensor network gateway providing the sensor data
to consumers located at the monitoring layer. Using this
approach, data acquisition can be treated as a service provided
by the sensor network. The feasibility of a service oriented
approach (SOA) for sensor networks is discussed in [4], [5].

The data centric communication paradigm in combination
with an optimized and flexible middleware can cope with
the mentioned challenges. One well known implementation

of such a scheme is provided by the OMG Data Distribution
Service (DDS) [6]. In contrast to CHROMOSOME, DDS
does not support meta information and seems not suitable
for resource constrained systems. Although the requirement
to support meta information for a dynamic, self-adapting
system consisting of many independent and decoupled parts
is already known to be a key factor for years [7], self-adaptive
middleware implementations for embedded systems using this
technique are still rare. Summing up the related work, there are
solutions covering a subset of the requirements in the domain,
but there is none covering all of them by itself.

III. CHROMOSOME MIDDLEWARE

CHROMOSOME [1] is a middleware and runtime system
targeting, among others, distributed embedded systems and
their connection to PCs. It is common knowledge that a high
amount of the code developed for networked embedded sys-
tems is infrastructure code and does not depend on a specific
application. Testing the code is at least as time consuming than
writing it [8], and hence parts of the system which include high
complexity should be reused if possible. CHROMOSOME
implements a publish and subscribe communication paradigm
that is based on data centric communication as well as a
platform independent runtime environment and hence allows
a developer to concentrate on his application rather than the
infrastructure. It is designed in a modular way and can be
configured according to the intended use case.

Due to its discovery mechanisms, CHROMOSOME is
applicable to dynamic networks, where data producers and
consumers change over time. Finally, CHROMOSOME is open
source and free of charge, which provides a good basis for long
term availability. The key-features that make CHROMOSOME
a good choice for this application are:

• Support for resource constrained embedded systems.

• Decoupling of senders and receivers of data due to
data centric communication paradigm.

• Flexibility and self-adaptability.

• Reliability due to health monitoring.

In this section, we will stress the self-adaptability concepts
of CHROMOSOME and introduce the respective architecture
and software components (compare Figure 2).

A. Architecture

Figure 2 shows the structure of a single node that runs
the CHROMOSOME middleware. The very bottom shows an
excerpt of the hardware periphery in gray color. The next
layer is the hardware abstraction layer (green color), which
provides a uniform interface for the remaining part of the
middleware and ensures that applications can be easily ported
to different target platforms. In the case of MST2012, we
are using the FreeRTOS [9] operating system on the ARM
target and Windows for the PC counterpart. Based on this
foundation layer, the primitive components (violet) and core
components (yellow and orange) are built. Core components
provide the basic system functionality like communication and
scheduling while primitive components provide services for
hardware access arbitration. Depending on the platform, the



HAL components 

Mandatory core components 

Advanced components 

Optional core components 

Hardware periphery 

Function call 

Data centric communication 

Primitive 

Components 

Advanced 

Components 

Health 

Monitor 

Hardware Abstraction Layer (HAL) 

Ethernet 

Periphery 

Communication 

Library 

GPIO, ADC, 

… Periphery 

Operating System 

Interrupts 

Broker 

Interface Manager 

TCP 

Plug-in 

UDP 

Plug-in 

Directory 

…
 

GPIO, ADC, 

… Drivers 
... 

Primitive components 

Hardware abstraction layer 

Fig. 2. Simplified diagram of CHROMOSOME node system architecture.

number of core components differs but a fixed set of manda-
tory components (yellow) is always present. One example
is communication: depending on the required communication
characteristics, the user can select between UDP and TCP
traffic as well as between unicast and multicast messages. By
default, communication is achieved using multicast to lower
the network load. Finally, application-specific advanced com-
ponents (shown in red color) implement the actual application
behavior based on the software components from lower levels.
This also includes the components implementing the logic for
the MST2012 sensor gateway.

In the following paragraphs, a subset of components will
be discussed in more detail, namely Directory and Health
Monitor.

B. Directory Component and Data Centric Communication

In CHROMOSOME, data flow between software com-
ponents is not specified explicitly. Instead, publishing and
subscribing components specify the type of data they produce
(so-called topics) as well as meta information (e.g., timstamp
of current sensor value, tolerance of physical sensor). This
communication pattern is called data centric communication.
The information about publications and subscriptions are
forwarded to the directory component, which is currently
deployed to one dedicated node in the network only. The direc-
tory stores a representation of the subscription and publication
requests as well as the attached meta-data. Whenever a new
request is issued or a change in network topology requires
reconfiguration, the directory matches publisher and subscriber
information against each other and establishes logical routes
within the network based on topology information that is
preconfigured or obtain by neighborhood detection during
runtime. In the latter case, logical route calculation is an
optimization problem with parameters such as resource and
bandwidth usage. Establishing of logical routes is performed
by adapting the routing information in all nodes along the
communication path. These updates are sent to the respective
nodes via dedicated route management data channels that are
statically allocated between the directory and each node.

Once a data path has been set up, the broker component,
which is available on every node, forwards the data locally to
the destination (for incoming data) or the respective network
interface (for outgoing data or data that use the respective node
as a gateway for multiple networks).

In case this dynamic behavior is not required or intended,
a subset or all data routes between components can also be
pre-configured and established statically to save memory and
processing power on small scale devices.

C. Health Monitor Component

A health monitoring concept ensures proper behavior of
the distributed system. This feature is implemented in the
health monitor, a local component on every node, and a health
manager component which is deployed on a dedicated node.
Depending on the monitoring requirements, it can be sufficient
to monitor if data is sent regularly by all networked nodes
(alive-signal). In addition, regular checks of the hardware
(using predefined test cases) can be scheduled.

For our application scenario, it is sufficient to know that all
nodes are alive and, in addition, to know that the gathered data
is within a certain range. These requirements are implemented
in form of runtime tests in the health monitor. The test results
are recorded to a log file and, in addition, reported to the user.

IV. USE CASE

The MST2012 sensor system has been initially developed
for a plant in which unfinished tires are pressed under high
temperature to form the final tires. During processing, tempera-
ture and pressure profiles have to be precisely met to get a high
quality tire which is safe to use for many years. Different tire
models have different temperature/pressure profiles. Hence,
temperature profiles should be acquired and stored as quality
demonstration record.

As explained in the introduction, it is meaningful to sepa-
rate acquisition of sensor data for process control (here the
PLCs that control the tire press) from the sensor data for
quality assessment (here a separate sensor network attached
to a PC with a database system). Using this arrangement of
sensors allows checking the quality of each sensor reading by
comparing the values of the redundant sensors. Hence, broken
sensors, sensor drift and probably even fouling (accumulation
of unwanted material at the sensor) can be detected. In an
additional process, the data recorded by the analog sensors
connected to the PLCs is also compared to the process moni-
toring data.

Redundant acquisition of sensor data is one of the re-
quirements for the setup. Furthermore, the monitoring system
should be easily reconfigurable and self-adaptable such that
subsequent changes to the processing equipment (e.g., for the
production of a new type of tire) should not be blocked or
deferred by the monitoring system.

The MST2012 smart sensor gateway (compare Figure 3)
is introduced to implement the redundant acquisition of sensor
data and to meet the requirements for self-adaptability. It
consists of two independent processing paths, where each path
is connected to a dedicated high-resolution analog to digital



3,3V 

ETH/ 
USART 

3,3V 

ETH/ 
USART 

Process 

control 

interface 

Quality 

assessment 

interface 

ADC 1 
CPU 1 

 STM32F107 

ARM Cortex-M3 

Pt100 

SPI 

ADC 2 Pt100 

CPU 2 

 STM32F107 

ARM Cortex-M3 

PLC 

PC, 

Data- 

base 

USART Isolation 

 

Modbus/TCP 

or Modbus/RS485 

PoE/PS 

analog 

analog 

 

Modbus/TCP 

or Modbus/RS485 

PoE/PS 

Fig. 3. Schematic diagram of MST2012 sensor gateway: the upper (process
control) and lower (quality assessment) paths in MST2012 are isolated from
each other to minimize influence of quality assessment on the (time-critical)
process under control. On Ethernet, Power over Ethernet (PoE) can be used;
otherwise a separate power connector and power supply module (PS) is used.
Each CPU uses its dedicated ADC only by default.

Fig. 4. MST2012 prototype with Ethernet, DC/DC and CPU+ADC board.

converter (ADC) using the SPI bus. In this scenario, two Pt100
temperature sensors are connected to the ADCs.

Data processing occurs independently on each microcon-
troller and the result is provided to the consumers by a
RS485 [10] or Ethernet interface. The respective part of the
sensor system might also be powered using Power over Ether-
net (PoE) [11], reducing the number of cables involved com-
pared to conventional digital sensor systems. For compatibility
reasons, the protocol Modbus, which is widely used in industry
and supported by many PLCs, is used as communication
protocol (either Modbus/RS485 or Modbus/TCP).

V. CONCLUSION

In this paper the demand on smart and reliable sensor
infrastructure for industrial process monitoring is illustrated
and a solution, the smart sensor gateway MST2012 in com-
bination with the CHROMOSOME middleware is provided.
MST2012 replaces analog sensors for temperature and pressure
measurements. It is designed for industry compliance with
respect to field bus support and use in harsh environments.

“Smart” sensors have the capability of running applications
locally on the sensor nodes. This also makes the whole system
much more flexible, because self-adaptation functionality is
implemented directly at the field layer (compare Figure 1). Due
to the two-channel design, the reconfiguration of the process
monitoring system can take place without disruption of the
process control system.

To cope with the challenges like reliability, safety and
heterogeneity, key features from the data centric middle-

ware CHROMOSOME are used and extended, such as self-
organization of the network.

Our experience using the data centric approach shows that
this development pattern can reduce overhead and development
time for future applications due to its separation of concerns.
The developer can focus on his tasks and does not have to take
care about the infrastructure.

The whole project is carried out in close cooperation with
our partners form industry to ensure that the results are appli-
cable in practice. As soon as the final development steps have
been completed to make the design industry compliant (e.g.,
IP67 compliant housing as depicted in Figure 4) MST2012 and
the CHROMOSOME middleware will we deployed to the real
industrial setting for a long term test.

As future work, we plan to introduce security features to
guarantee a trustworthily communication between devices as
well as scalability tests in real world settings. We are also
working on a graphical deployment and management tool
based on the model driven approach and will be used to
create initial configurations and template code using a code
generator.

ACKNOWLEDGMENTS

We would like to thank the German Ministry of Education
and Research (BMBF) for funding the project under grant
number 16SV3883 and the VDI/VDE Innovation + Technik
GmbH for project supervision. In addition, we would like to
thank our partners, especially T.V.P. Gerds GbR2, for their
input and the many fruitful discussions.

REFERENCES

[1] “CHROMOSOME Middleware,” fortiss GmbH. [Online]. Available:
http://chromosome.fortiss.org/

[2] A. Flammini, P. Ferrari, D. Marioli, E. Sisinni, and A. Taroni, “Wired
and wireless sensor networks for industrial applications,” Microelec-
tronics Journal, vol. 40, no. 9, pp. 1322–1336, 2009.

[3] D. Wobschall, “IEEE 1451—a universal transducer protocol standard,”
in Autotestcon, 2007 IEEE, Sep. 2007, pp. 359–363.

[4] A. Scholz, C. Buckl, S. Sommer, A. Kemper, A. Knoll, J. Heuer, and
A. Schmitt, “eSOA - service oriented architectures adapted for embed-
ded networks,” in Proceedings of the 7th International Conference on
Industrial Informatics, Jun. 2009.

[5] F. Golatowski, J. Blumenthal, M. Handy, M. Haase, H. Burchardt,
and D. Timmermann, “Service-oriented software architecture for sensor
networks,” in Proceedings of the International Workshop on Mobile
Computing (IMC’03), Rockstock, Germany, 2003.

[6] G. Pardo-Castellote, “OMG data-distribution service: Architectural
overview,” in Proceedings of the 23rd International Conference on
Distributed Computing Systems. IEEE, 2003, pp. 200–206.

[7] F. Curbera and N. Mukhi, “Metadata-driven middleware for web ser-
vices,” in Proc. of the 4th International Conference on Web Information
Systems Engineering (WISE 2003). IEEE, 2003, pp. 278–283.

[8] V. Encontre, “Testing embedded systems: Do you have the guts for it,”
IBM, November, 2003.

[9] R. Barry, “Real time application design using FreeRTOS in small
embedded systems,” 2003.

[10] B&B Electronics Mfg. Co. Inc., “RS-422 and RS-485 appl. note,” 2006.
[11] IEEE Computer Society, “IEEE 802.3at-2009 Part 3: carrier sense

multiple access with collision detection access method and physical
layer specifications - Amendment 3: data terminal equipment power
via the media dependent interface enhancements,” 2002.

2http://www.tvp-online.de/

http://chromosome.fortiss.org/
http://www.tvp-online.de/

	Introduction
	Related Work
	CHROMOSOME Middleware
	Architecture
	Directory Component and Data Centric Communication
	Health Monitor Component

	Use Case
	Conclusion
	References

