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Abstract— Driving through a constantly changing environ-
ment is one of the main challenges of autonomous driving. To
navigate successfully, the vehicle should be able to handle a
variety of possible situations on the road by constantly analyz-
ing the traffic environment and determine which objects might
influence its current behavior. This paper presents an artificial
intelligence method to improve the perception and situation
awareness of autonomous vehicles by detecting and extracting
meaningful information from different traffic scenarios, and
inferring the correct driving behavior for each of them. Our
method uses a state of the art technique based on semantic
reasoning previously used for recognizing human activities
in cooking scenarios. This algorithm has been adapted and
extended to the automotive domain by introducing new object
properties such as ObjectInFront, ObjectActedOn, MoveForward,
Turn. The main advantage of our proposed method is its
adaptability to different mobile domains without any additional
training. First, our system is trained on traffic situations.
The obtained semantic models are later used to autonomously
navigate a mobile robot in an indoor environment by utilizing
the acquired knowledge and inference from the automotive
domain. The results show that the overall positive classification
rate for traffic scenarios recognition is 90.14% of the cases. In
addition, the average processing and behavior generation time
for the implemented system is 0.177 seconds, which allows the
mobile robot to react online to the newly encountered situations.

I. INTRODUCTION

Recent developments in autonomous driving show that
autonomous vehicles can bring a lot of benefits to our
society e.g. reduction of traffic incidents, increased mobility
for the elderly and disabled people, more efficient traffic
flow, reduction of fuel consumption and many more [1].
In order to achieve that, these vehicles have to overcome
many problems such as moving in a dynamic environment,
processing vast amount of data from different sensors, han-
dling driving rules, path planning and collision avoidance [2].
One of the main challenges is understanding the encountered
traffic situations to estimate the proper driving behavior by
considering the meaningful traffic participants and relations
between them. However, finding this meaningful information
represents another set of challenges such as complexity
of the perceived environment, which leads to problems of
having partial observable information. Typically, to solve
this problem it is necessary to implement a sophisticated
method which can recognize, analyze and extract contextual
information about each scenario, learn and use it to determine
vehicle behaviors when this scenario is encountered again
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Fig. 1: General overview of our system which shows two
examples where we reuse the learned semantic models: a)
shows an example of the new traffic scenario and b) depicts
an example of the domain transference of learned model1.

[3]. The extracted contextual data is represented as spatio-
temporal relationships between the ego vehicle and traffic
environment [4]. This context information can be obtained
from the generation of dynamic maps [5] which will enhance
the tracking of the objects around the vehicle. However,
there are a vast amount of objects which can influence the
vehicle motion depending on their behavior, and learning all
possible traffic scenarios involving all these different objects
would be computationally expensive in terms of execution
and memory. Thus, semantic representation and knowledge
methods can greatly improve such systems.

The goal of this paper is to create a simple and general
ontology model which can be used to describe different
scenarios in mobile domains. For this reason, we propose a
method that can automatically recognize and extract spatial
relationships from such scenarios using a simple perception
system and create a reasoning mechanism which can infer
appropriate vehicle behavior for each situation. Fig. 1 shows
an example of our proposed system, exemplifying how the
model of the same behavior can be applied to two different
scenarios. First, the compact general model was created for
the input scenario involving the yellow car which is not
moving in front of the vehicle and the traffic light is showing
a green light. To avoid collision the vehicle has to slow

1The traffic scenario image is a courtesy of Verlag Heinrich Vogel.
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down even if the traffic light is green. A similar situation
was simulated using the PR2 robot: the monitor represents
the traffic light and there is a wheelchair standing in front of
the robot path. Using such knowledge our system can detect
that both car and wheelchair are mobile entities therefore
both will infer the same behavior: slow speed.

This paper is organized as follows: Section II describes
related work. Section III introduces the framework consisting
of the object properties, semantic rules and the ontology.
Section IV shows the application of the generated framework
to mobile robot domain, and Section V presents conclusion
and an outlook on possible future work.

II. RELATED WORK

There are multiple approaches for analyzing and estimat-
ing traffic scenarios. The method presented in [6] models
scenarios as a state space, containing information about the
vehicle, properties of its surroundings, possible behaviors and
trajectories of the vehicles using Dynamic Bayesian Network
(DBN) to predict the driver’s behavior in its current scenario.
A similar approach by Agamennoni et al. [7] introduces fea-
ture functions to characterize dynamic relationships between
traffic participants to form context models which are used
by DBN to predict states of all objects influencing vehicle
behaviors. In contrast, [8] introduce evidential grids which
utilizes geographic information from digital maps to detect
navigable space for the vehicles. However, this approach is
used only for obstacle avoidance and do not incorporate
any data about the road infrastructure (for example traffic
signs). Another method is described in [9] where a tree-
like hierarchy of classifiers is introduced. Each node in the
hierarchy is predefined and predicts only one certain property
of an input object and can activate a child node if a specific
output is predicted. In [10] a Bayesian network is used to
find impact of traffic situations to each participant and predict
their behavior, where participants are represented as nodes
connected with conditional distribution functions. However
all these approaches require a complicated perception sys-
tem, large amount of samples for each driving situation
and do not extrapolate and exploit semantic relations for
prediction use.

Another group of methods for analyzing traffic situations
are based on description logic. An ontology can be used
to describe road intersections by mapping atomic concepts
to specific geometric primitives [11]. Another way of using
an ontology is to represent lanes and vehicles moving on
them as a graph like network and detect conflicts between
traffic participants at the same intersection [12]. To analyze
more complex situations an ontology can be represented
as a knowledge base with hierarchical structure consisting
of atomic concepts and relations between them [13]. This
method can be extended to find dependencies in interaction
of the traffic participants to infer their likely behavior in
current situations [4]. However, the described methods are
using manually generated rules for reasoning, which are
very specific to each situation. Moreover, their ontology
representations are created for driving scenarios and cannot

be applied to any other mobile domains without significant
changes.

Conversely, our method provides a framework for au-
tonomous learning semantic rules from sensory data which
together with the ontology, allows to transfer knowledge
from the traffic domain to other mobile domains.

III. SEMANTIC REASONING AND KNOWLEDGE
REPRESENTATION

The overview of the created framework is shown in Fig.
2. The contextual information perceived by the vehicle is
processed to detect objects and their spatial properties and
then stored in the ontology. The reasoning module utilizes
knowledge from the ontology to recognise traffic scenarios
and uses semantic rules to infer driving behavior with respect
to the road context (traffic rules and objects in driving
environment). The semantic rules are generated using the
decision tree classifier trained on the driving tests obtained
from an online driving school2.

Fig. 2: Framework overview3.

A. Identification of Object Properties

Fig. 3: Example of detecting properties from traffic situation,
the input video was obtained from the online driving school3.

To analyze different driving scenarios the video tests
described above were used. Each video was manually an-
notated, and we found that for each traffic participant in-
fluencing the behavior of the vehicle at the current time
point there is a set of common properties which are always
applicable regardless of the participant type. These properties

2www.fahren-lernen.de
3The traffic scenario image is a courtesy of Verlag Heinrich Vogel.
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evaluates spatial relationships between the participants and
the ego vehicle. Each traffic participant is represented as an
abstract object and the following properties are defined:

1) ObjectInHand: the object is very close to the ego
vehicle and can cause a collision. In Fig. 3 the red
car is considered to be ObjectInHand, because if the
vehicle would turn left it will crash with that car.

2) ObjectActedOn: the object is in the range of interest of
the ego vehicle and might require a certain action, but
neglecting the execution of this action will not lead to a
collision. In Fig. 3 both motorcycles are considered to
be ObjectActedOn because normally the vehicle should
reduce speed to keep proper distance, but even if it
maintain current speed there will be no collision until
the vehicle would reach the motorcycles (but then they
become ObjectInHand).

The above properties were inspired by the similar ones
defined in [19] and readapted to driving scenarios. At any
particular time point the object can have only one of these
two properties (either ObjectInHand or ObjectActedOn) but
not both of them. Additionally, we define the following
properties:

3) ObjectInFront: the object is in front of the current driv-
ing path of the ego vehicle. In Fig. 3 both motorcycles
are ObjectInFront because both of them are moving on
the same lane as the ego vehicle.

4) ObjectOnLeft: the object is on the left possible path of
the ego vehicle. In Fig. 3 the red car is ObjectOnLeft
because it is moving on the lane which is to the left
of the current driving path of the ego vehicle.

5) ObjectOnRight: the object is on the right possible
path of the ego vehicle. In Fig. 3 the blue car is
ObjectOnRight because even if there is no separation
line, the car is parked on a different lane according to
driving rules, and this lane is to the right of the current
driving path of the ego vehicle.

For automatic detection of the above Object Properties we
define the formulas shown in Table I. Where l =

√
x2 + z2 is

the distance to the object, r1 and r2 are distance thresholds,
xob j, xle f t and xright are x coordinates of the Cartesian
position of the object , left boundary and right boundary of
the driving tube respectively. The framework do not require
global positions of the objects or the ego vehicle for property
detection and utilize only their local positions with respect
to the ego vehicle. Fig. 4 shows an example of properties
detection, where the blue dot represents the ego vehicle:
• The obstacle1 (green dot) is detected as ObjectInHand.

TABLE I: Definition of Object Properties.

Name Formula
ObjectInHand l < r1

ObjectActedOn r1 < l < r2
ObjectInFront xle f t < xob j < xright
ObjectOnLeft xob j < xle f t

ObjectOnRight xob j > xright

• The obstacle3 (yellow dot) is ObjectActedOn.
• The obstacle1 (green dot) is ObjectInFront.
• The obstacle2 (purple dot) is ObjectOnLeft.
• The obstacle3 (yellow dot) is ObjectOnRight.

Fig. 4: Graphical Example of the Object Properties detection.

In addition, we identified that traffic participants of the same
type can have different properties which we called Instance
Properties. For the data obtained from the video tests we
define the following Instance Properties:
• MoveToward: the object is moving towards the vehicle.
• MoveForward: the object is moving forward the vehicle.
• NotMove: the object is not moving.
• ChangingLane: the object is changing lane.
• Crossing: the object is crossing the path of the vehicle.
• Turn: the object is turning.

It is always possible to add additional Instance Properties to
generate a more accurate model of traffic scenarios.

B. Semantic Rules

In order to map the Object properties to the ego vehicle
driving activities, a decision tree classifier was build similar
to [20]. The training data sample contains the current Object
Properties:

1) ObjectInHand (None, Something)
2) ObjectActedOn (None, Something)
3) ObjectInFront (None, Something)
4) ObjectOnLeft (None, Something)
5) ObjectOnRight (None, Something)

where Something represents an object with certain instance
property (for example Vehicle MoveToward) and None is
used if there is no object with that particular Object Property.
And a target concept value which describes a current vehicle
behavior:

Class : VehicleActivity{NormalSpeed,SlowSpeed,

NormalStop,LaneChange}.

Here is an example of a training sample:

{None,Vehicle MoveToward,None,Vehicle MoveToward,

None,NormalSpeed}.

It is possible to have two separate sets of Object Properties
for different Classes in order to describe the situation in more



detail. For example, the class Vehicle can have the properties:

{ObjectInHand1,ObjectActedOn1,ObjectInFront1,

ObjectOnLeft1,ObjectOnRight1}

where 1 indicates that this is a first set of properties. While,
the class Pedestrian can have a different set of properties:

{ObjectInHand2,ObjectActedOn2,ObjectInFront2,

ObjectOnLeft2,ObjectOnRight2}.

where 2 indicates that this is a second set of properties. In this
case, the training sample should contain combination of both
properties, which means that each ego vehicle activity can
be represented by several combinations of Object properties
(in contrast to [20]). To learn a target concept value from
the data samples we trained a decision tree classifier based
on the C4.5 algorithm [14]. The information gain is defined
as follows:

Gain(S,P) = Entropy(S)− ∑
v∈Values(P)

|Sv|
S

Entropy(Sv)

where Values(P) is the set of all possible values of the Object
properties, and Sv = s ∈ S|P(s) = v.

C. Ontology Model

The formal definition of an ontology is ”an explicit spec-
ification of a conceptualization” [15], in other words it is an
unambiguous representation of the knowledge about a certain
domain. An ontology usually consists of terms organized
in hierarchical structure and relationships between those
terms. Our proposed ontology was built as a knowledge base
using Knowrob [16] and represented in the Web Ontology
Language (OWL) [17]. It consists of the terminological box
(TBox) and the assertional box (ABox) [18] .

1) Tbox describes concepts in the ontology, which are
usually called Classes. Each concept has a set of
properties called attributes. Relations between concepts
are represented by rules and axioms.

2) Abox describes instances of concepts.
The terminology box consists of:

1) Classes which represent different types of objects
detected from the traffic environment.

2) Object Properties: properties described previously,
which are common for all classes or for a specific class.

3) Instance Properties: these properties are defined for
each object, and two objects belonging to same class
can have different instance properties.

The assertional box was defined as following:
• Abox consists of instances which belong to classes

defined in Tbox. All perceived objects are contained in
Abox and if any of the Object Properties are held, their
instances are created and placed in Abox.

To implement the obtained semantic rules in the Reasoning
module and connect them with the ontology the Knowrob
Computable Classes were used. The Computable defines a
semantic relation between instances of classes representing

possible behavior of the ego vehicle and Object Properties.
For example:

if (oi = Vehicle) & Ob jectInHand2(oi) &
Ob jectInFront2(oi) & (NotMove(oi)) then

NormalStop
end if

where oi is an object detected in the traffic environment.
The Computables were implemented using Prolog, which
provides a useful functionality for ontology description,
knowledge inference, searching and pattern matching.

IV. EXPERIMENT

To prove that our proposed methodology is working in
different mobile domains, first the framework described in
Section III was applied to create the semantic rules for traffic
scenarios. Next, to test the robustness of our system in the
real environment we used it to navigate PR2 mobile robot.
The robot environment contains unknown objects and we
will demonstrate how without any additional training the
PR2 can utilize the system build for traffic scenarios and
generate correct behavior by taking advantage of knowledge
and inference.

A. Semantic Tree Training

TABLE II: Confusion matrix of the recognized driving
behavior.

Predicted Class

A
ct

ua
l

C
la

ss NormalSpeed NormalStop SlowSpeed LaneChange
NormalSpeed 94.4% 0 5.6% 0
NormalStop 0 98.5% 1.5% 0
SlowSpeed 3.6% 0 96.4% 0

LaneChange 0 0 0 100%

For training we used 14 video samples of the driving tests
(see Section III). Each sample had a length of 15 seconds
and contained 150 video frames. The video tests consist
of different complex traffic scenarios involving multiple
road participants, traffic signs and pedestrians. In the first
experiment, each frame of the input video was manually
annotated to obtain training samples, containing a sequence
of detected objects and its properties as well as the class
of the recognized driving behavior. A decision tree was
generated in the Weka data mining system [21] and was
tested on a 3 new video samples of the driving tests con-
taining previously untrained traffic scenarios. The resulting
classification rate was 94.6%, and the confusion matrix is
shown in Table II. The partial decision tree is shown on
Fig. 5, where each driving situation is identified by a set
of specific properties and instances, which allows a compact
and general representation.

By analyzing the obtained results, we concluded that seg-
menting each frame of the video was redundant, and instead
it is better to extract only 5 samples for each traffic situation
recognized in the input video. To prove this theory, a second
experiment was conducted using the same video samples for
training and testing as before, and the resulting classification



Fig. 5: Partial decision tree obtained from the first experiment instance.

rate was 90.14%. The confusion matrix generated for the
new setup is shown in Table III. The resulting decision tree
remained the same as the one obtained in the first experiment,
which clearly indicates that our proposed method do not
require large amount of data for training.

TABLE III: Confusion matrix for the second experiment with
less training samples.

Predicted Class

A
ct

ua
l

C
la

ss NormalSpeed NormalStop SlowSpeed LaneChange
NormalSpeed 92.5% 0 7.5% 0
NormalStop 0 97.8% 2.2% 0
SlowSpeed 6.8% 0% 93.2% 0

LaneChange 0 0 0 100%

B. Integration with the Robotics Domain

The framework was integrated with a PR2 mobile robot
and the overview of the created system is shown on Fig.
6. The robot behavior is generated reactively based on the
perception data obtained from the robot camera.

Fig. 6: Overview of the system for automatic recognition of
driving scenarios implemented on the PR2.

First, each image frame obtained from the robot right
camera is processed to detect existing objects and their
properties. The realistic detection of objects and pedestrians
is out of the scope of this paper, that is why the visual
processing module was implemented using the OpenCV and
the aruco library [22], which allows to detect AR markers
and obtain their 3D position and orientation by using only
one camera. Additionally, the color based detection was used
to recognize lines of the driving tube in the testing area. For
evaluation only positions in 2D space were used, because

the robot and most objects it encounters cannot move in
vertical direction. When objects and properties are obtained,
the system uses the Reasoning module described in Section
III to infer the correct behavior in a current situation (Fig. 6).
To prove that the robot can reuse the semantic rules obtained
from the decision tree trained on traffic situations the testing
scenario shown on Fig. 7 was created. The robot can move
inside the lane formed by the red lines, or by the middle red
and blue lines. The middle red line represents a dashed road
line, and the blue one represents a continuous road line. On
his path PR2 encounters the wheelchair which is not moving
and has the property ObjectInHand2. Moreover, the robot
always perceives the dashed road line which can be crossed
for overtaking and has property the ObjectInHand3. Using
the obtained data from the tree shown in Fig. 5, the following
Computable will be called4:

if Ob jectInHand2(oi) & Ob jectInFront2(oi) &
(NotMove(oi) & (oi = Vehicle) &
Ob jectInHand3(o j) & (o j = RoadLine Dashed)
then

LaneChange
end if

where oi and o j are objects detected in traffic environment.
However, the object oi with the ObjectInHand3 property
is not the Vehicle but the WheelChair which means that
the direct execution of the Computable would fail and
additional information from the ontology will be requested.
The ontology will infer the class hierarchy of the object oi
and detect that the class WheelChair is a subclass of Vehicle
:

oi vWheelChair @ LightVehicle @Vehicle

Consequently, the computable defined above will be executed
and the LaneChange behavior will be generated.

The performance of the system is shown in Table IV
which clearly indicates that the average reaction time for
each perceived situation is 0.177 seconds5. This means that

4Please note that this is a simplified example of the Prolog implementa-
tion.

5Our system was implemented on a computer with the Intel(R) Core(TM)
i5 CPU 750 2.67 GHz and 4GB memory.



Fig. 7: Overview of the experimental setup.

the mobile robot, i.e. PR2, takes around 0.177 seconds to
make a decision. It is possible that the inference time will
improve when a faster perception system is used.

TABLE IV: Performance for each input frame obtained from
the PR2 camera.

Type of the operation Average execution time in sec
Image processing and object detection 0.0685529
Properties detection 0.0166563
Behavior inference 0.0917922
Total 0.1770014

V. CONCLUSIONS
In this paper a framework for recognition and extraction of

driving situations using an artificial intelligence method was
presented. This framework improves perception and situation
awareness of autonomous vehicles in dynamic environments
and creates general compact models of different traffic sce-
narios which are used to reason on road contexts. First,
we trained our system in the traffic domain, and with the
obtained model we tested new unknown scenarios obtaining
a classification rate of 90%. Next, to demonstrate the ro-
bustness of our method we tested it on the new environment
with the PR2 mobile robot. The robot reused the framework
obtained from the first experiment to recognise new and
previously untrained situations by taking advantage of the
proposed ontology and inference methods. This framework
allowed the robot to navigate successfully in an indoor
environment with an average reaction time of 0.177 seconds.
The results show that knowledge and semantic reasoning
allows to apply our framework to different mobile domains
by using the same semantic rules to enable mobile agents to
correctly infer driving behaviors without additional training.

The methodology was implemented using a simple per-
ception system, and though it used only a frontal camera,
the system can be easily extended for full range detection
using different types of sensors or data from dynamic maps,
which will require only one additional property for objects
at the back of the vehicle.
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