
Mining User Reviews from Mobile
Applications for Software Evolution

Emitzá Guzmán

Faculty of Informatics

Technische Universität München

October 2015

Technische Universität München

Fakultät für Informatik
Lehrstuhl für Angewandte

Softwaretechnik

Mining User Reviews from Mobile Applications
for Software Evolution

Adriana Emitzá Guzmán Ortega

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.- Prof. Dr. Nassir Navab

Prüfer der Dissertation: 1. Univ.- Prof. Bernd Brügge, Ph.D.

2. Univ.- Prof. Dr. Anne Brüggemann-Klein

Die Dissertation wurde am 07/10/2015 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 24/11/2015 angenommen.

To Carmen and Manuel

Acknowledgements

Thank you Bernd Brügge, for giving me the freedom, support and confidence to pursue my
research interests. From you I learnt to be more assertive, write more clearly, risk more,
worry less and think about the larger picture. I think that as time goes by and I look back I
will continue to learn from you. Thank you Anne Brüggemann-Klein, for accepting to be
my second supervisor. I first met you as a Masters student and it was your lecture that first
sparked my interest in working with text from an Informatics perspective. Thank you for
the women in CS lunch meetings which provided a lot encouragement, joy and support as a
fresh doctoral student.

I am very lucky to have worked with wonderful colleagues and friends. Thank you Hoda
Naguib, for being there for me during the good and bad. Thank you also, for the working
sessions of the pre-last year and for all the support when recruiting experiment participants,
setting up experiments and performing interviews. Thank you Yang Li, for your insightful
input, the good discussions and for the statistical advice. I learnt a lot from you when working
together and from your practical approach to life. Thank you Jan Knobloch, for being the
best officemate one could have, for always being willing to give technical advice and share
your time for any type of talk, research or not research related, thank you for caring. Thank
you Juan Haladjian, for your willingness to read my work and give thoughtful feedback, as
well as for the numerous discussions about empirical research. Thank you Nitesh Narayan,
for reminding me through your humor to not take things too seriously. Thank you Stefan
Nosović, for your good disposition to listen, your positive way of approaching life helped
me keep my head high. Thank you Han Xu for supporting me when things got rough and
giving motivation before paper deadlines. Thank you Barbara Reichart, for your patience
and support when we were TAs together. Thank you Tobias Röhm, for pointing me out to the
research the chair was doing when we were masters students, it was because of you that I
got to know our chair. Thank you Dennis Pagano, for the discussions about user feedback,
they provided inspiration and encouragement for my work. Thank you Monika Markl, for
your efforts to accommodate meetings and for helping me with the organizational aspects of
my work. Thank you Helma Schneider, for procuring me the technical infrastructure that I

vi

needed for my research. Thank you Uta Weber, for helping with the financial aspects of my
studies and conference travels.

During the last years of my Ph.D. studies I had the opportunity to work with motivated and
talented students. Thank you Greta Barth, Elsa Bakiu, Padma Bhuvanagiri, Muhammad El-
Haliby and Bardh Lohaj, working and discussing with you enriched my research. Muhammad
El-Haliby helped with the classification experiments and the coordination efforts for the
creation of the classification truth set and Padma Bhuvanagiri implemented the visualization
prototype described in this dissertation.

Thank you David Azócar for patiently listening and discussing the first ideas of this disser-
tation. You encouraged me when I struggled to find a research topic, gave feedback on my
first papers and pointed me to SentiStrength. Thank you for walking by me (and sometimes
pushing and pulling) during the early stages of my research, I know they were not the easiest
times.

Thank you Omar Aly for your help when implementing the DIVERSE prototype and recruit-
ing experiment participants. It was a lot of fun to work with you.

I am also very grateful for all my experiment participants, who generously gave their time
for trying out prototypes and provided valuable and insightful feedback that helped improve
my research. I would also like to thank the truth set annotators for their effort.

Last but not least, I thank my family and friends. Thank you Carmen and Manuel, for all
your patience and love. Thank you for the laughs and for making home feel not so far away.
Thank you also, for helping me put things into perspective, for the great effort you put into
my education and for setting an example of continuous learning and living. Thank you Bon,
for your friendship and for sharing life with me. Thank you Bety, for your unconditional
support, patience and for being my family in Munich. Thank you "Grupo Intenso de Munich",
for all the fun and for enriching my life with your different ways of living and perceiving
things.

Abstract

Application distribution platforms or app stores allow users to search, buy, and download
software applications for mobile devices, also referred to as apps. In addition, they allow
users to share their opinion about downloaded apps in form of reviews and ratings. Recent
studies found that app store reviews include information that is useful for analysts and app
designers, such as user requirements, bug reports, feature requests, and documentation of user
experiences with specific app features. This information can be used to drive the development
effort and improve forthcoming releases.

However, there are several limitations that prevent analysts and development teams from
using the review information. First, app stores include a large amount of reviews, which
require a large effort to be analyzed. Second, the information provided in user reviews is
unstructured and therefore difficult to parse and analyze. Third, the quality of the reviews
varies widely, from helpful advice and innovative ideas to insulting comments. Finally, the
usefulness of app ratings for software evolution is limited as they do not contain information
about the specific features that users like or dislike.

This dissertation addresses these limitations by (1) summarizing feature and sentiment
information present in user reviews, (2) visualizing the summaries, (3) classifying user
reviews into categories that are relevant for software evolution, and (4) retrieving user
reviews that are representative of diverse user opinions and experiences.

We summarized user reviews by extracting app features mentioned in the reviews, as well as
by applying sentiment analysis and topic modeling techniques. Furthermore, we used the
generated information to create interactive visualizations of the review content. We classified
the reviews by using supervised machine learning algorithms. Moreover, we implemented a
greedy algorithm for retrieving a group of diverse reviews in terms of the mentioned features
and the sentiments associated to the features.

We evaluated our approaches and found that the feature extraction approach had a good
performance for some evaluated apps. Additionally, the sentiment analysis results had a

viii

strong positive correlation when compared to human assessment. Qualitative evaluations
showed that the generated summaries were coherent and relevant to software evolution
tasks. Moreover, the interactive visualization of the extracted features and sentiments was
considered useful for performing software evolution tasks by software professionals. We
obtained satisfactory results for the classification of user reviews into categories relevant to
software evolution. Additionally, the diversity retrieval mechanism collected diverse reviews
and helped developers analyze them in a shorter amount of time. A further experiment
showed that collected reviews were relevant for software evolution according to participants
with software engineering experience.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Overview . 3
1.2 Scope . 4
1.3 Outline . 5

2 Background 7
2.1 User Involvement and Software Development 7

2.1.1 User Feedback . 8
2.1.2 Mobile Applications and Application Distribution Platforms 9

2.2 Software Evolution . 10
2.3 Foundations of Mining User Feedback . 11

2.3.1 Feature Extraction . 11
2.3.2 Sentiment Analysis . 12
2.3.3 Text Summarization . 13
2.3.4 Text Classification . 14
2.3.5 Information Visualization . 15

3 Feature Extraction, Sentiment Analysis and Summarization 17
3.1 Introduction . 17
3.2 Approach . 18

3.2.1 Data Collection and Preprocessing 19
3.2.2 Feature Extraction . 20
3.2.3 Sentiment Analysis . 20
3.2.4 Topic Modeling . 22

3.3 Evaluation Methodology . 23

x Table of contents

3.3.1 Dataset . 24
3.3.2 Truth Set Creation . 25
3.3.3 Metrics . 28

3.4 Evaluation Results . 29
3.4.1 Feature Extraction . 29
3.4.2 Precision, Recall and F-Measure 30
3.4.3 Coherence and Evolution Relevance 31
3.4.4 Sentiment Analysis . 33

3.5 Discussion . 34
3.5.1 Results . 34
3.5.2 Limitations and Threats to Validity 35

3.6 Related Work . 36
3.6.1 Mining User Feedback for Software Engineering 36
3.6.2 Automated Feature Extraction and Sentiment Analysis 37

4 Visualizing Features, Sentiments and Summaries 39
4.1 Introduction . 39
4.2 Visualization Components . 40

4.2.1 Home Screen . 41
4.2.2 Fine-grained Visualizations . 42
4.2.3 Interactions with Fine-grained Visualizations 43
4.2.4 Coloring Scheme . 44

4.3 Preliminary Study . 45
4.3.1 Identifying Urgent Issues . 45
4.3.2 Identifying General Opinions, Conflicting Opinions and Co-occurring

Features . 46
4.3.3 Participants’ Impressions and Feedback 46

4.4 Related Work . 47

5 Classification into Software Evolution Categories 49
5.1 Introduction . 49
5.2 User Review Taxonomy for Software Evolution 50
5.3 Approach . 52

5.3.1 Preprocessing . 53
5.3.2 Classification . 54
5.3.3 Feature Extraction . 55
5.3.4 Summarization . 55

Table of contents xi

5.4 Evaluation Methodology . 55
5.4.1 Truth Set Creation . 56

5.5 Classification . 60
5.5.1 Setup . 60
5.5.2 Metrics . 62
5.5.3 Results . 62

5.6 Summarization . 65
5.6.1 Setup . 65
5.6.2 Metrics . 67

5.7 Results . 69
5.8 Discussion . 70

5.8.1 Results . 70
5.8.2 Threats to Validity . 72

5.9 Related Work . 73
5.9.1 Mining User Feedback for Software Engineering 73
5.9.2 Classification of Software Artifacts 74
5.9.3 Summarization of Software Artifacts 74

6 Diversity Retrieval 77
6.1 Introduction . 77
6.2 Formal Task Definition . 79
6.3 Approach . 79

6.3.1 Preprocessing, Feature Extraction and Sentiment Analysis 80
6.3.2 Feature Sentiment Retrieval . 80
6.3.3 Grouping Similar Reviews . 81

6.4 Evaluation Methodology . 81
6.5 Diversity Retrieval Performance . 82

6.5.1 Diversity Metric . 82
6.5.2 Setup . 84
6.5.3 Results . 84

6.6 Impact and Usefulness . 86
6.6.1 Setup . 86
6.6.2 Procedure . 88
6.6.3 Results . 90

6.7 Software Evolution Relevance . 93
6.7.1 Setup . 94
6.7.2 Results . 96

xii Table of contents

6.8 Discussion . 97
6.8.1 Results . 97
6.8.2 Limitations and Threats to Validity 99

6.9 Related Work . 100
6.9.1 Mining User Feedback for Software Engineering 100
6.9.2 Diversity Retrieval in other Domains 101

7 Conclusion and Future Work 103
7.1 Contributions . 104
7.2 Future Work . 107

Appendix Annotation Guide For Labeling Features and its Sentiments in User Re-
views 111

Appendix Annotation Guide For Labeling Software Evolution Categories of User
Reviews 117

Appendix Statistical Analysis of Classifiers’ Performance 125

Appendix Semi-structured Interview for Measuring Perceived Usefulness of DI-
VERSE 129

References 131

List of figures

2.1 Examples of user reviews from Apple’s AppStore and Android’s GooglePlay. 9

3.1 Overview of the approach. 18
3.2 Annotation tool for the creation of the feature and sentiment truth set. . . . 26
3.3 Feature-Sentiment distribution of the truth set. 28
3.4 Extracted features from Pinterest and Dropbox apps. 34

4.1 REV home screen view. 40
4.2 REV review based view. 42

5.1 Overview of the approach. 54
5.2 Annotation tool for the creation of the classification truth set. 57
5.3 Example of word intrusion and topic intrusion tasks. 68

6.1 Presentation of reviews for the test group. 88
6.2 Presentation of reviews for the control group. 89
6.3 Perceived difficulty for hrename filei and hpdf vieweri tasks in control and

test group. 90
6.4 Perceived usefulness of DIVERSE among test participants. 93
6.5 Assessed review relevance per app and queried feature. 97

List of tables

3.1 Examples of SentiStrength scores in the user reviews. 22
3.2 Overview of the apps used during the evaluation. 24
3.3 Overview of the truth set. 27
3.4 Number of extracted fine-grained features per app. 29
3.5 Precision, recall, and F-measure for the coarse-grained feature extraction

with topic modeling. 30
3.6 Most common topics extracted from the user reviews of the Dropbox app

with their sentiments. 31
3.7 Most common topics extracted from the user reviews of Pinterest with their

sentiments. 31
3.8 Coherence and software evolution relevance of topics. 32

5.1 Mapping between previous work and our taxonomy. 51
5.2 Examples of reviews belonging to each taxonomy category. 53
5.3 Causes of disagreement. 58
5.4 Overview of the classification truth set. 60
5.5 The individual classifier and ensemble results on the test set. 63
5.6 Results from classification and feature extraction steps for Dropbox and

Evernote. 66
5.7 Examples of Dropbox and Evernote topics for different categories. 69
5.8 Model Precision (MP) and Topic Log Odd (TLO) average for the Dropbox

and Evernote summaries. 70

6.1 Summary of evaluated approaches and their characteristics. 83
6.2 Queried features for each app. 84
6.3 a-nDCG@10 results for the diversity retrieval approaches. 85
6.4 Review browsing and answering time. 92
6.5 Examples of review comments that are useful for software evolution. 95

xvi List of tables

6.6 Features used in qualitative evaluation for review set retrieval. 95
6.7 Examples of reviews of varying sentiments retrieved by DIVERSE. 96

1 Possible outcomes of two classifiers. 125
2 z score of each model per category. 127

Chapter 1

Introduction

In the beginning of the digital age, software users consisted of small groups of engineers or
scientists with specific technical requirements. However, with the evolution of computing
power and the emergence of affordable personal computers and mobile computing the
definition of user has extended to include more heterogeneous groups of people with a wide
variety of needs and expectations [55]. Previous research has pointed out the importance
of considering user needs and expectations in order to create useful and usable systems
[20], [87], [99], [100], [161], [166]. Moreover, to keep software useful and relevant through
its evolution1 it is necessary that user needs and expectations –expressed in the form of
user feedback –are considered in the post-deployment phase [23], [92]. With the growing
trend of Internet use, more users are writing feedback about software applications through
social media, specialized user feedback platforms or directly in the application distribution
platforms by means of integrated review systems [135].

This dissertation studies mechanisms for processing user feedback for mobile applications,
commonly referred to as apps, obtained through mobile application distribution platforms.
Mobile distribution platforms or app stores have grown exponentially in the past years. In
2014, Apple’s AppStore2 had around 1.2 million apps and 9 million registered developers,
its competitor Google Play3 reported similar numbers [139]. App stores allow users to
download the apps of their interest, and provide feedback about the downloaded applications
in the form of ratings and user reviews. Recent empirical studies [27], [48], [137] show that
app store reviews include information that is useful to analysts and app designers, such as

1We refer to software evolution as all that occurs to software after it has been released. A more extensive
discussion of the term is provided in Section 2.2

2https://itunes.apple.com/en/genre/ios/id36?mt=8
3https://play.google.com

2 Introduction

requirements, bug reports, feature requests, and documentation of user experiences with
specific application features. This feedback can represent a "voice of the users" and be used
to drive the development effort and improve forthcoming releases [113], [152].

Due to the iterative process of mobile application development [89], immediate and useful
feedback is decisive in the evolution of the app. Therefore, it is advantageous that developers
and other stakeholders involved in software evolution access high quality feedback in a short
amount of time and with low effort. However, processing and considering user feedback
provided in application distribution platforms presents the following problems:

1. High amount of user reviews for popular mobile applications. A recent empirical
study [137] found that mobile apps received approximately 23 reviews per day and that
popular apps such as Facebook4 received an average of 4275 reviews per day in the
AppStore distribution platform. Results from a mobile analytics tool5 confirmed the
high amount of reviews received by popular applications. For example, the tool reports
that Facebook received more than 2000 reviews per day, and Whatsapp6 received
around 1500 reviews per day in 2014 in the Android distribution platform.

2. Unstructured review comments. In app stores user review comments are given in
free form and no predetermined fields are used. Unstructured text has the disadvantage
that it is difficult to automatically parse and analyze.

3. Relatively low proportion of informative user reviews. Previous research [27], [48],
[137] found that about one third of the reviews contain information that can be useful
for the evolution of the application, such as bug reports, feature shortcomings and
usage scenarios. From these results we conclude that a large amount of the received
feedback in application distribution platforms is not useful for developers and that they
need to filter out the feedback that is relevant for the evolution of the application.

4. Limited usefulness of rating information. The usefulness of star ratings in the
reviews is limited for development teams as a rating represents an evaluation for the
whole mobile application and can combine both positive and negative assessments of
the single features mentioned in the review.

This dissertation addresses these problems by automatically summarizing, visualizing, clas-
sifying and retrieving useful information from user feedback submitted through mobile
application distribution platforms.

4https://www.facebook.com/
5https://www.appannie.com/
6https://www.whatsapp.com/

1.1 Overview 3

1.1 Overview

Previous research has highlighted the importance of more effective methods for processing
user feedback [135]. In this dissertation we apply data mining techniques to address the
aforementioned problems when analyzing user reviews submitted through mobile application
distribution platforms. Most previous research has focused on feedback elicitation and
processing in early stages of development [42]. In this work we focus on user feedback
provided after the software has been released, i.e. during the evolution of the software. The
results of our work cover four different directions:

• Summary Generation of User Reviews: We describe two techniques for summariz-
ing user reviews on a fine and coarse-grained level. The content of the fine-grained
summaries consists of the features mentioned in the reviews, as well as the sentiments
associated to the features. The coarse-grained summaries consist of groups of features
that are frequently mentioned in the same reviews, as well as an average sentiment.
Through the summaries, developers and analysts can detect the level of user satisfaction
concerning certain features. This information could help them prioritize their work.
Furthermore, the generated summaries can help deal with information overload, the
unstructured nature of user reviews, as well as with the limited usefulness of rating
information.

• Visualization of User Reviews: We present an interactive visualization of user reviews
and the generated summaries, REV (REview Visualization). REV allows for an
interactive analysis of user reviews in different granularity levels. Through REV
developers and analysts can explore the results of mining user reviews and interpret
and analyze these results more easily.

• Classification of User Reviews: We present a taxonomy for classifying user reviews
into categories relevant for software evolution tasks (e.g., feature request, bug report and
feature shortcoming). This taxonomy can aid developers and analysts in categorizing
reviews during software evolution. Furthermore, we conducted an experiment in
which we examined the performance of supervised machine learning techniques for the
automatic classification of user reviews into the categories presented in our taxonomy.
The automatic classification of user reviews can help developers identify reviews that
are relevant for performing specific software evolution tasks. Also, it can be useful
for identifying and filtering uninformative or irrelevant reviews. The results of our
experiment can give guidelines to researchers and developers about the techniques that
yield most positive results.

4 Introduction

• Retrieval of User Reviews with Diverse Opinions: To address the concerns of non-
traditional as well as less vocal users and gain understanding in the conflicting opinions
present in user feedback, we present DIVERSE (DIVErsity Retrieval SoftwarE). DI-
VERSE is an approach to reduce the effort in collecting a comprehensive set of user
reviews. In particular, we focus on the retrieval of app store reviews which represent
the diverse user opinions concerning different application features. This part of our
work highlights the importance of not obfuscating the voice of non-traditional and less
vocal users when applying data mining techniques to user feedback.

Parts of this dissertation have been previously published in [57], [58], [60], [62], [63].

1.2 Scope

User feedback in software engineering is an extensive area, we limit the scope of this
dissertation as follows:

1. Software Lifecycle Phase. User feedback can be provided throughout the software
lifecycle [126]. We focus on the user feedback that is given after an executable system
is launched to the users, i.e. software that is in the evolution phase.

2. Software Type. Software can be of various types, from system software which
includes operating systems and utilities, to application software that allows users to
directly execute tasks and perform specific activities. In this dissertation we focus on
user feedback from application software for mobile devices.

3. User Community Size. Software products can have varied user communities with
a diverse set of expectations and interests. While we do not limit the domain of the
software product and its user community types, in this dissertation we focus on user
feedback provided to software products with a large number of users where the vast
volume of data calls for automatic approaches to aid in its processing.

4. User Feedback Type. User feedback can be provided in oral, written or visual form.
We are interested in analyzing user feedback in written form. In particular, feedback
for mobile applications submitted to well known distribution platforms. This feedback
can be provided by end-users, software developers and software competitors.

1.3 Outline 5

1.3 Outline

The dissertation is divided into seven chapters. Chapter 2 presents the general background
of the dissertation. Chapter 3 presents an approach for generating feature and sentiment
centric fine and coarse grained summaries. Chapter 4 describes a prototype that interactively
visualizes these summaries. Chapter 5 presents a taxonomy for app user reviews that can be
used during software evolution and an approach for classifying and summarizing the reviews
for software evolution. Chapter 6 presents a formalization for retrieving user reviews that have
a comprehensive set of opinions related to a specific feature, as well as an implementation
that approximates the formalization. Chapter 7 concludes and describes future work.

Chapter 2

Background

This chapter describes background knowledge related to user involvement and software
development. Additionally, it describes the foundations of the data mining techniques we use
for the feature extraction, sentiment analysis, summarization, classification and visualization
of user reviews from mobile applications.

2.1 User Involvement and Software Development

User involvement is an established research field [71], [99]. However, it has no fixed
definition [11], [134]. A possible reason for the lack of agreement in its definition is the
evolution of the user and software applications through time [134]. Before the emergence
of the personal computer, software users were mainly engineers, scientists or programmers,
and software was tailored to this homogeneous group. With the appearance of the personal
computer, users started to include people with different backgrounds and computer science
research began to consider users and user satisfaction [55]. In the context of this dissertation,
we define user involvement as a "systematic exchange of information between users (prospec-
tive or not) and developers with the common goal to maximize system usefulness in a specific
context" [134].

Previous research found that users are involved in different forms and phases of software
development [12], [29], [99], [126]. Users have been more frequently involved in the
early phases of development for requirements and feedback elicitation than when actual
implementations of the system are done [42]. Nevertheless, due to increasing project
failures related to user disatisfaction [162] software engineering methodologies involved

8 Background

users throughout the software lifecycle [79]. Users can be involved by providing requirements
and early feedback that affects the initial design of the system [29], [79], [150], [161], by
participating in the development of the software [41], [100], by giving information that can
affect software evolution decisions [48], [137] or by actually developing software systems
through end-user programming [84], [104].

Examples of software engineering methodologies that include users throughout the life-
cycle are Prototyping [53], the Spiral model [21] Agile Methodologies such as Extreme
Programming [14] and SCRUM [151], and Joint Application Development (JAD) [167] .

2.1.1 User Feedback

In the context of this dissertation, we adapt the definition of Morales-Ramirez [125] for
end-user feedback. End-user feedback is the relevant information provided by end-users of
software applications with the purpose of requesting enhancements and changes, reporting
issues and communicating needs, as well as to report their overall experience and opin-
ions about the applications. We will use the terms end-user feedback and user feedback
interchangeably. We consider user feedback as the result of the systematic information
exchange that occurs in user involvement. User feedback can be explicit or implicit [5],
[112]. In explicit feedback users actively give developers information, whereas in implicit
feedback developers obtain information about their users through the analysis of documents,
such as usage data. Additionally, user feedback can be obtained through direct or indirect
communication with the developers and analysts involved in the software development [68].
In direct communication the user information is sent directly to the developers or analysts,
whereas in indirect communication the information is shared among other users, whereas
developers and analysts access the information by observing their interactions.

Research has shown that the consideration of user feedback in software development can
improve the quality of the requirements, as well as the usability and usefulness of the
software [106]. These improvements result in lower maintenance costs and higher sales
[161]. However, in practice the consideration of user feedback has been limited by its costs
and the limited knowledge about the relationship between feedback benefits and cost [161].
Therefore, more cost-effective user feedback approaches for its elicitation and processing
will benefit its further adoption [134].

Pagano et al. [135] studied the role of user feedback during software evolution. Through
an exploratory study the authors hypothesized that there is a need for user feedback tools
that aid in structuring, analyzing and tracking user feedback. Their results suggest that

2.1 User Involvement and Software Development 9

Fig. 2.1 Examples of user reviews from Apple’s AppStore (above) and Android’s GooglePlay
(below).

developers benefit from assistance in identifying similar and duplicate reports, categorizing
the type of provided feedback, as well as distinguishing the features affected by the feedback.
Furthermore, their results also indicate that developers’ main information needs concerning
user feedback include the appearance frequency of specific concerns or themes, as well as
information about the users writing the feedback, such as how often and how long they have
used the software and how avid they are about submitting feedback about the software.

In this dissertation we apply data mining techniques for processing explicit user feedback,
provided through direct communication with developers and analysts. The information
gained through mining the feedback helps developers to structure, analyze and track user
feedback. Additionally, it helps to identify similar feedback, automatically categorize the
content in the given feedback and distinguish explicitly mentioned features. Moreover, the
fine-grained summaries described in Chapter 3 give statistics about the appearance frequency
of common concerns or themes.

2.1.2 Mobile Applications and Application Distribution Platforms

A mobile application, or app, is a software application that runs on smartphones, tablets or
other mobile devices. Mobile applications can be delivered to users through mobile applica-
tion distribution platforms, also referred to as app stores. Mobile application distribution
platforms allow users to download the app and to write a user review about the app they have
downloaded. User reviews allow users to provide feedback about the apps they are using.
In a user review users can give a rating to the app and write comments. Other users and

10 Background

developers can read these reviews and, in some platforms, vote for the most helpful reviews.
Figure 2.1 shows two examples of user reviews written for Apple’s AppStore and Android’s
GooglePlay store, respectively. Common fields in user reviews are date, title, user comment
and rating.

In mobile application development, apps are usually developed for the commercial market
and not for a specific customer. In this context, users and their needs are unknown. Therefore,
the feedback given by users in the form of app store reviews has a high value for developers
and others involved in the app evolution as it allows them to become familiar with users and
their needs.

In this dissertation we refer to app stores and mobile distribution platforms interchangeably.
Similarly, we use the terms app, mobile application and application indistinguishably.

2.2 Software Evolution

Software systems are used in a continuously changing environment [32] that involves
technical and social factors [52], e.g., the run-time infrastructure, as well as the needs and
opinions of their users. Previous research [102] has pointed out the importance that software
systems evolve and adapt themselves to the changing environment to avoid an early death.

According to Mens [122] software evolution is "mainly concerned with changes in a software
system over versions or releases of the same system". In software engineering the terms
evolution and maintenance are often used as synonyms. However, Godfrey and German
[52] have pointed out semantic differences between these terms. While maintenance implies
preservation and repair without any changes to the software design, the term evolution
allows for the creation of new software designs that evolve from previous ones. Furthermore,
maintenance is generally considered to be a set of planned activities, whereas evolution
includes everything that occurs to a software system over time and therefore includes planned
and unplanned activities. Examples of unplanned activities are performance increase or
decrease, bloated interfaces, the appearance of users with different needs and the emergence
of new usage scenarios than the ones the system was originally designed to perform.

Many software development models consider software development as an iterative and
incremental activity [21], [80], [119]. In these models software development consists of
several mini-cycles with different development stages, such as requirements elicitation
and analysis, design and implementation, and testing. These mini-cycles are performed
iteratively and incrementally. Evolution and maintenance are not concrete stages in itself,

2.3 Foundations of Mining User Feedback 11

but the iterations and increments performed throughout the software life-cycle represent the
evolution of the system [52].

In this dissertation we focus on user feedback that is given to evolving systems after it has
been launched to the users.

2.3 Foundations of Mining User Feedback

Data mining, also referred to as knowledge discovery [45], is at the intersection of multiple
research areas, such as machine learning, statistics, pattern recognition, databases and
information visualization. The goal of data mining is twofold [94]: (1) identify patterns and
trends in data, and (2) make predictions based on input data.

In this dissertation we mine user reviews for both purposes. We identify patterns and trends
in data and use this information for summarizing and visualizing the review content, as well
as for retrieving diverse sets of reviews. Furthermore, we mine the reviews to predict their
categories by using previously labeled data.

In order to perform these tasks we use data mining techniques from sentiment analysis,
feature extraction, text summarization, text classification and information visualization. In
the following we briefly describe each of these techniques.

2.3.1 Feature Extraction

We refer to feature extraction as the process of identifying product features mentioned in
text. The scope of this dissertation is the analysis of reviews from apps. Therefore, we are
mostly interested in the extraction of app features. In this context, we refer to a feature
as a prominent or distinctive visible characteristic or quality of an app [86]. It can be any
description of specific app functionality visible to the user (e.g., “uploading files” or “sending
a message”), a specific screen of the app (e.g., “configuration screen”), a general quality
of the app (e.g., “load time”, “size of storage”, or “price”), as well as specific technical
characteristics (e.g., “encryption technology”).

We use a collocation finding algorithm [117] for finding the features mentioned in the user
reviews. A collocation is a collection of words that co-occur unusually often [16]. Manning
and Schütze define collocations as expressions of two or more words which correspond to a
conventional way of referring to things [117]. An example of a collocation is <strong tea>,
whereas <powerful tea> is not a collocation since these two words are not normally used

12 Background

in the English language together. Collocations do not necessarily imply that the words are
adjacent. Several words can be between the words that constitute the collocation. Features
can generally be described as collocations, as they are normally a collection of terms that
are used repeatedly to convey a specific meaning. Examples of collocations that identify
application features are <pdf viewer>, <user interface> and <view picture>. We use a
likelihood-ratio test [117] for finding collocations consisting of two words in our reviews.

Feature extraction has been a widely researched technique in other product domains such
as movies, cameras, desktop software [50], [76], [75], [140] and blogs [121]. In software
engineering it has been used to detect faulty features or software functionality [91] and for
recommending feature implementations in software product lines [40], [66].

2.3.2 Sentiment Analysis

Sentiment analysis is the process of assigning a quantitative value (positive or negative) to
a piece of text which expresses an affect or mood [98]. The term is often interchangeably
used with opinion mining [108] and in this dissertation we also consider them as synonyms.
Sentiment analysis uses methods from data mining and natural language processing and has
been investigated at three levels of granularity: (1) document level: quantifies the overall
sentiment in a whole document. It assumes that the document expresses the opinion of a
single entity and is therefore not applicable for documents which evaluate different entities,
(2) sentence level: quantifies the sentiment of single sentences instead of whole documents,
and (3) feature (aspect) level: quantifies the sentiment of given target entities, such as specific
products (software, cameras, printers) or specific features about the products (UI, price,
speed). There are different approaches for performing sentiment analysis: lexical, statistical
and ontology-based.

Sentiment analysis has been applied on a large number of domains to solve a variety of
problems. For example, it has been used to explore sentiments and opinions in social
media [1], [2], [96], newspaper comments [90], [149] and product reviews [31]. In software
engineering sentiment analysis has been used to analyze the developers sentiments in wiki
content [61], commit messages [59], as well as in social media [33].

In this dissertation we use lexical-based sentiment analysis due to its independence from
labeled data. Furthermore, we focus on sentiment analysis at the feature level. Thus, we
are mainly concerned with extracting the sentiment concerning specific app features. In this
way, we address the limited usefulness of app store ratings which give an overall rating to
the whole app but do not indicate the users’ satisfaction with specific aspects of the app.

2.3 Foundations of Mining User Feedback 13

Additionally, feature level sentiment analysis addresses previous research findings that show
that feature information is of high interest for developers and others involved in software
development [15], [135].

2.3.3 Text Summarization

Text summarization is the process of creating summaries. Summaries can be generated from
single or multiple documents, preserve essential information and are at least half length
shorter than the original document(s) [142]. There are two main types of summarization
methods [30]: (1) extractive: the focus is the summary content, its objective is to excerpt
subsets of words, phrases or sentences present in the original text(s), and (2) abstractive: the
focus is the form, its goal is to produce a grammatical summary and it usually uses natural
language generation techniques. The summary might contain words that were not present in
the original summarized text(s).

In this dissertation we use topic modeling [18] for summarizing the content of user reviews.
Topic modeling is an extractive summarization technique that discovers the main themes or
topics present in a collection of documents. In topic modeling documents can be associated
with one or more topics and each topic is a collection of words that are associated to a specific
theme, e.g., the set of words {basketball, championship, game, players} is associated to the
basketball theme, whereas the set of words {elections, president, vote, congress} might be
related to a politics theme.

Examples of topic modeling algorithms are Latent Semantic Indexing (LSI) [36] and Latent
Dirichlet Allocation (LDA) [19]. We use LDA as a summarization algorithm due to its better
performance, compared to other topic modeling algorithms when summarizing software
engineering artifacts [110].

Topic modeling has been previously used to find the topics of scientific publications [54],
newspaper articles [170] and online user reviews [158]. In software engineering it has
been used to extract business topics from source code [120], feature location [107], bug
localization [110], source code labeling [34], expert identification [107], software traceability
[6], [49], test case prioritization [157], and evolution analysis [72], [156].

In this dissertation we consider the results of combining the feature extraction and sentiment
analysis results as summaries, as well as the results of applying the topic modeling algorithm.
The automatic generation of summaries helps developers and analysts to deal with the
high amount of received reviews. Additionally, it gives some structure to the originally
unstructured submitted feedback.

14 Background

2.3.4 Text Classification

Text classification is the process of categorizing a set of documents into one or more pre-
defined categories [83]. A document can be classified into several categories, exactly one
or no category at all [83]. Supervised machine learning requires pre-labeled observations.
Therefore, a dataset with examples of correct category predictions needs to be provided.
These observations are used to train the machine learning algorithm as well as to validate
and test its results.

Machine learning algorithms generally require that an initial set of preprocessing steps be
executed. In these steps the documents - in this case the reviews - are transformed into a
representation that is suitable for the machine learning algorithm. Then, the pre-labeled
dataset is split into a training set, validation set and test set. The machine learning algorithm
is given the training set and it produces a model1 that maps new unseen data to predicted
categories. The parameters of the model can then be fine-tuned using the validation set.
Afterwards, the model can be evaluated for its prediction accuracy on the unseen test set.

A common procedure for the training and validation of models or classifiers is the k-fold
cross validation. In this technique the training and validation sets are split into k mutually
exclusive subsets or folds of similar size. The classifier is trained on k-1 folds and validated
on the remaining fold. The process is repeated k times until each fold is used once for its
validation. The evaluation is computed by calculating the average results among the k runs
[93]. These results are used to fine-tune the parameters of the model or classifier.

In our work, we compared the performance of different machine learning learning algorithms,
such as Naive Bayes, Support Vector Machines (SVM), Logistic Regression and Neural Net-
works. We chose these algorithms based on their popularity and accuracy when performing
text classification tasks [17], [116], [124].

Text classification has been used for a wide range of applications, such as identifying spam
email [4], spam reviews [82] and the gender of the author of a text [95]. In software
engineering text classification has been used for classifying the content in development
emails [7], bug reports [171] and software blogs [141], among other applications.

In this dissertation we analyze the use of supervised machine learning for the classification of
user reviews into categories relevant to software evolution (e.g., feature shortcoming, bug re-
port, usage scenario). The classification of reviews into different categories allows developers
and analysts to filter the reviews according to the evolution tasks they are performing.

1In this dissertation the terms classifier and model are used interchangeably.

2.3 Foundations of Mining User Feedback 15

2.3.5 Information Visualization

Information visualization focuses on the use of visualization techniques to help people
understand and analyze data. The goal of information visualization is to aid human cognition
by leveraging the visual capacity for identifying patterns, trends and outliers [70]. When well
designed, visualizations can replace human cognition with perceptual inferences, improve
understanding, memory and decision making [70].

Previous research has investigated the principles that visualization should follow in order
to aid human cognition. A popular principle, which we apply in this dissertation is the
Information Seeking Mantra proposed by Schneiderman [153]: overview first, then zoom
and filter, details on demand.

Information visualization techniques have been used in software engineering mainly for
visualizing source code [9], [118], software metrics [10], execution traces [35] and software
testing data [85].

In this work we visualize the results from data mining techniques. The combination of data
mining and information visualization allows for the incorporation of human’s flexibility,
creativity and general knowledge, as well as the machine’s storage capacity and computational
power [88].

Chapter 3

Feature Extraction, Sentiment Analysis
and Summarization

3.1 Introduction

As discussed in Chapter 2, app stores allow users to share their opinion about downloaded
apps through reviews, where they can, for example, express their satisfaction with a specific
app feature or request a new feature. Empirical studies [67], [48], [137] have shown that
app store reviews include useful information, such as user requirements, bug reports, feature
requests, and documentation of user experiences with specific app features.

To reduce the effort spent in understanding user feedback from the app reviews, we describe
an approach that automatically extracts app features referred in the reviews together with the
user sentiments about them. The approach produces a fine-grained list of features mentioned
in the reviews. Moreover, it extracts the user sentiments of the identified features and gives
them a general score across all reviews. Additionally, it groups fine-grained features into
more meaningful coarse-grained summaries that include features that tend to be mentioned
in the same reviews and shows the sentiments of users about these coarse-grained summaries.
The approach uses collocation finding [117] for extracting the fine-grained features, sentiment
analysis [155] for automatically assigning the sentiments associated to the features, and topic
modeling [19] for the grouping of related features.

We ran the approach on 32210 reviews for four iOS apps and three Android apps and
compared the automatically generated results with 2800 manually peer-analyzed reviews.
The results show that: (1) the approach successfully extracts features that are mentioned

18 Feature Extraction, Sentiment Analysis and Summarization

Fig. 3.1 Overview of the approach.

frequently in the app store reviews, (2) the groups of features are coherent and relevant to
software evolution, and (3) the automatically extracted sentiments positively correlate to the
manually assigned sentiment scores.

The remainder of the chapter is structured as follows. Section 3.2 introduces the approach,
whereas Section 3.3 describes the evaluation method and the content analysis study. Sec-
tion 3.4 details the results, while Section 3.5 interprets the findings, and discusses its limita-
tions. Finally, Section 3.6 summarizes the related work.

3.2 Approach

The main goal is to automatically identify application features mentioned in user reviews, as
well as the sentiments associated to these features. For this we use natural language processing
and data mining techniques. Figure 3.1 shows an overview of the main steps. First, we collect
the user reviews for a specific app and extract the title and text comments from each review.
Then, we preprocess the text data to remove the noise for feature extraction. Afterwards,
we extract the features from the reviews by applying a collocation finding algorithm and
aggregating features by their meaning. This produces the list of fine-grained features, each

3.2 Approach 19

consisting of two keywords. We refer to this list as fine-grained summaries through this
dissertation. To extract the sentiments about the feature we apply lexical sentiment analysis
to the raw data from the titles and comments. Lexical sentiment analysis assigns a sentiment
score to each sentence in the review. When a feature is present in the sentence, the sentiment
score of the sentence is assigned to the feature. Finally, we apply a topic modeling algorithm
to the extracted features and their associated sentiment scores to create a more coarse-grained
summary, which groups features that are mentioned in the same reviews. In the following we
explain the main steps.

3.2.1 Data Collection and Preprocessing

When developing and evaluating our approach we used reviews from the Apple App Store
and Google Play. However, it can also be applied to reviews from other platforms. For
collecting the Apple Store data we used a modified version of an open source scraping tool1.
For the collection of Google Play reviews we developed a tool which uses the Google Play
Application Programming Interface (API). We store the collected data in a MySQL database.
After gathering the data, we extract the title and comments from each review as both might
include references to features or sentiments.

The feature extraction process requires three additional preprocessing steps:

• Noun, verb, and adjective extraction. We use the part of speech tagging (POST)
functionality of the Natural Language Toolkit, NLTK2, for identifying and extracting
the nouns, verbs, and adjectives in the reviews. We assume that these parts of speech
are the most likely to describe features as opposed to others such as adverbs, numbers,
or quantifiers. A manual inspection of 100 reviews confirmed this assumption.

• Stopword removal. Stopwords are words that are very common in the English
language but that are not informative (e.g., “and”, “this”, and “is”’). We use the
standard list of stopwords provided by Lucene3 and expand it to include words that are
common in user reviews, but are not used to describe features. The words we added
to the stopword list are the name of the application itself, as well as the words "app",
"please", and "fix".

1https://github.com/oklahomaok/AppStoreReview
2http://nltk.org/
3https://lucene.apache.org/

20 Feature Extraction, Sentiment Analysis and Summarization

• Lemmatization. We use the Wordnet [123] lemmatizer from NLTK for grouping
the different inflected forms of words with the same part of speech tag which are
syntactically different but semantically equal. This step reduces the number of feature
descriptors that need to be later inspected. For example, with this process the words
"sees" and "saw", describing different tenses of the verb "see", are grouped into the
word "see".

3.2.2 Feature Extraction

We use the collocation finding algorithm provided by the NLTK toolkit for extracting features
from the user reviews. After running the algorithm and finding the collocations, we filter
them by taking into consideration only those that appear in at least three reviews and that
have less than three words (nouns, verbs, or adjectives) distance between them. Typically,
the order of the words is important for collocations. However, we consider word ordering
unimportant for describing features. Therefore, we merge collocations that consist of the
same words but have different ordering. For example, we consider the pairs <pdf viewer> and
<viewer pdf> to have the same meaning, although the latter might be used less frequently.

Users can use different words to refer to the same feature. We group collocations whose pairs
of words are synonyms and use Wordnet [123] as a synonym dictionary. The Wordnet spell
corrector allows us to group collocations with misspellings and correct spelling together.

When grouping features together, we consider the collocation with the highest frequency
to be the name of the feature. For example, assume we have the following collocations:
<picture view>, <view photographs> and <see photo> with a frequency of 30, 10, and 4
respectively. We group these features together since they are synonyms. Afterwards, we
choose the one with the highest frequency as the name for the feature, in this case <picture
view>.

3.2.3 Sentiment Analysis

For analyzing sentiments in user reviews, we use SentiStrength [155], a lexical sentiment
analysis tool specialized in dealing with short, informal text. SentiStrength has a good
accuracy for short and informal text from Twitter4 and movie reviews [154]. Pagano and
Maalej [137] found that 80.4% of the comment reviews in the App Store contain less than
160 characters, making SentiStrength a good candidate for analyzing sentiments in user

4https://twitter.com/

3.2 Approach 21

reviews. Furthermore, a manual inspection of 100 user reviews from Google Play and the
App Store revealed that most users used an informal language when writing app reviews,
supporting our decision to use SentiStrength.

SentiStrength uses lexical information and rules to detect the intensity of positive and negative
sentiment expressed in short texts. It is strongly based on results from emotion psychology
which have shown that positive and negative sentiments can co-occur [46] and that both
sentiment polarities are relatively independent, especially with non-extreme sentiment levels
and over longer periods of time [37], [77], [165]. SentiStrength conceives sentiments as
consisting of two separate measurable positive and components and assigns each sentence a
positive and a negative sentiment. Positive sentiments are in the [1,5] range where here 5
denotes an extremely positive sentiment and 1 denotes the absence of sentiment. Similarly,
negative sentiments range from [�5,�1], where �5 denotes an extremely negative sentiment
and �1 indicates the absence of any negative sentiment.

SentiStrength uses a dictionary of sentiment words whose polarity (positive and negative) and
intensity ([1,5], [�5,�1]) have been manually annotated by different subjects5. Moreover,
it uses a list of negation words to invert the polarity of the sentiment words that follow
the negation in the sentence. However, negation words are ignored in question sentences.
Moreover, it also detects sentiment intensity modifiers (e.g., absolutely, greatly), repetition
of letters in a word (e.g., hellooooo, looooove), punctuation marks (e.g., !! or ???) and
emoticons (e.g., :) or :() to modify the intensity of the sentiment accordingly.

The sentiment score of a sentence is computed by taking the maximum and minimum scores
of all the words in the sentence. Table 3.1 shows three examples of sentiment scores from
sentences of real user reviews as computed by SentiStrength.

After calculating the sentiment score in the sentences, we compute the sentiment score for the
features. We consider the sentiment score of a feature to be equal to the positive or negative
score of the sentence in which it is present. As a feature score we choose the score with the
maximum absolute value. In case the positive and negative values are the same, we assign
the negative value to the feature. In this case, we give a preference to negative sentiments
over positive ones, because negativity is less frequent in human written texts6.

For example, consider the sentence "Uploading pictures with the app is so annoying!". This
sentence contains the feature <uploading pictures>, and the sentiment score of the sentence
is {1,-3}. Therefore, we assign the feature the sentiment score of �3. This step produces a
list of all extracted features, their frequencies (how often they were mentioned), and their

5The dictionary used by SentiStrength was made by the creators of the tool.
6As explained in the SentiStrength’s user manual: http://sentistrength.wlv.ac.uk/

22 Feature Extraction, Sentiment Analysis and Summarization

Table 3.1 Examples of SentiStrength scores in the user reviews.

Sentence in review Word scores Sentence
score

had fun using it before but now its really
horrible :(help!!

had fun[2] using it before but now its re-
ally horrible[-4] [-1 booster word] :[[-1
emoticon] help!![-1 punctuation empha-
sis]

{2,-5}

uploading pictures with the app is so an-
noying!

uploading pictures with the app is so
annoying[-3]! [-1 punctuation emphasis]

{1,-3}

pleeeeease add an unlike button and I will
love you forever!!

pleeeeease[3] [+0.6 spelling emphasis]
add an unlike button and I will love[3]
you forever!![+1 punctuation emphasis]

{5, -1}

sentiment scores. This list is a fine-grained summary which developers and requirement
analysts can use to obtain an understanding of users’ primary concerns.

3.2.4 Topic Modeling

The final result of this step is a coarse-grained summary. This summary contains groups of
different features and a corresponding sentiment score. To group features that tend to appear
frequently (co-occur) in the same reviews we use Latent Dirichlet Allocation (LDA) [19],
a topic modeling algorithm. LDA is a probabilistic distribution algorithm which assigns
topics to documents, in our case user reviews. In LDA, a topic is a probabilistic distribution
over words and each document is modeled as a mixture of topics. Thus, each review can
be associated to different topics and that topics are associated to different words with a
certain probability. An example of a topic in the app user review domain can be the set of
words {crash, update, frustrated, newest, version, help, bug} which describes typical user
formulations when updating a faulty app.

We used the Matlab Topic Modeling Toolbox7. Instead of inputting the words forming the
vocabulary of our analyzed reviews to the LDA algorithm, as is normally the case when
applying LDA, we input the list of extracted features and model each feature as a single word.
For example, the feature described with the <picture view> collocation is transformed into
the single term picture_view. LDA then outputs the feature distribution of each topic and the
probabilistic topic composition for each review. An example of a topic with this modification

7http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

3.3 Evaluation Methodology 23

could be the set of features {picture_view, camera_picture, upload_picture, delete_picture}
which describes features related to manipulating pictures in an application.

We calculate the sentiment score of each topic as follows. Let R = {r1,r2, ...,rn} be the set
of analyzed reviews and T = {t1, t2, ..., tm} the set of extracted topics. The final output of
the LDA computation is the matrix Wn⇥m, where wi, j contains the number of times a feature
mentioned in review ri is associated with topic t j. We use a weighted average to calculate the
sentiment score of each topic. For every topic t j we calculate the topic sentiment score ts j as:

ts j =

n

Â
i=1

wi, j · si

n

Â
i=1

wi, j

where S = {s1,s2, ...,sl} denotes the sentiment score of each feature associated to the topic
t j.

3.3 Evaluation Methodology

To determine (1) the relevance of the automatically identified features from the reviews, and
(2) the correctness of the automatically calculated sentiment estimation for each feature over
all reviews, we focus our evaluation on three questions:

1. Does the extracted text represent app features?

2. Are the extracted and grouped features coherent and relevant for app analysts and
developers?

3. Is the automated sentiment estimation comparable to a manually conducted sentiment
assessment?

To answer these questions, we created a truth set through a content analysis process [130].
We then compared the results of our approach against the manual analysis. In the following
we describe the dataset used in our evaluation, how the truth set was created, as well as the
quality metrics that we considered for the evaluation.

24 Feature Extraction, Sentiment Analysis and Summarization

Table 3.2 Overview of the apps used during the evaluation.

App Category Platform # Reviews µ Character
Length

AngryBirds Games App Store 1538 128.39
Dropbox Productivity AppStore 2009 168.11
Evernote Productivity App Store 8878 196.69
TripAdvisor Travel App Store 3165 140.36
PicsArt Photography Google Play 4438 50.74
Pinterest Social Google Play 4486 81.33
Whatsapp Communication Google Play 7696 38.38

3.3.1 Dataset

Our evaluation data consisted of user reviews from the US App Store and Google Play.
The App Store is an application distribution platform for Apple devices, whereas Google
Play distributes applications for Android devices. Both app stores allow users to write
reviews about apps. Additionally, both stores cluster apps into different categories based
on functionality. For our evaluation, we selected seven apps from the lists of "most popular
apps" in different categories. Table 3.2 shows these apps, their categories, the number of
reviews considered in the evaluation and the average number of characters in each review.

For the App Store we selected the apps AngryBirds, Dropbox, Evernote, and TripAdvisor
from the categories Games, Productivity, and Travel. We collected all user reviews written in
2013 for these apps. For Google Play we selected the apps PicsArt, Pinterest, and Whatsapp
from the categories Photography, Social, and Communication. We collected the maximum
number of reviews allowed by the Google Play APIs. These were the most recent 4000 to
7000 reviews for the apps, as of February 2014.

We chose popular apps to increase the probability that the people creating the truth set were
familiar with the apps, reducing the manual feature extraction effort and minimizing errors
during the truth set creation. Popular apps are also more likely to have more reviews. An
automated analysis for these apps would probably be more realistic and useful. On average,
the reviews of the App Store apps had 158 characters, while Google Play apps included only
57 characters.

We selected different categories of apps because our goal was to evaluate our approach
against reviews containing diverse vocabularies, describing different features, and written by
different user audiences. We assume that users from, for example, Angrybirds, Dropbox, and
TripAdvisor might have different expectations, interact with technology in various manners,

3.3 Evaluation Methodology 25

belong to different age groups, and express their sentiments and experiences in different
ways.

For each user review we collected the title, comment, date, author, version, and star rating.
We ran our approach on the text in the title and comment of each review. To compare the
generated results with human assessments, we created a truth set of the features mentioned
in the review and their associated sentiments.

3.3.2 Truth Set Creation

For the creation of the truth set we used content analysis techniques as described by Neuendorf
[130] and by Maalej and Robillard [114]. This process involved the systematic assessment of
a reviews sample by human annotators, who have read each review and assessed its contents
according to a strict annotation guide. This process involved nine trained annotators who
independently annotated 2800 randomly sampled user reviews totaling 60,738 words. For
each user review, two annotators independently: (1) indicated whether the review contained
a bug report, feature request or feedback about an existing feature8, (2) identified the app
features mentioned in the review, and (3) assessed the sentiments associated to each feature.

The first step of the truth set creation consisted of developing the annotation guide. We
needed the guide because the review content and the annotation task can be interpreted
differently by the annotators. The goal of an annotation guide is to systemize the task and
minimize disagreements between annotators. The guide contains instructions about the task,
clear definitions of a feature, feature request, feedback on a feature, and of the different
sentiment scales. The guide also includes examples for each possible assessment and rules to
follow. The annotation guide was created in an iterative process including four iterations.
In each iteration, two researchers, including the author of this dissertation, tested the guide
by independently assessing 50 reviews9. Disagreements were manually analyzed and the
annotation guide was modified (e.g., include more examples and improve the definitions) to
avoid similar disagreements in the next iteration.

The second step consisted of the sampling. We selected 400 reviews for each of the seven
apps based on stratified random sampling [148]. Our sampling scheme took into account the
rating distribution of the specific apps. The reviews in each strata were selected randomly
from the corresponding group of ratings.

8Although this information was annotated, it was not used during the evaluation.
9The test reviews were different from the reviews in the evaluation samples.

26 Feature Extraction, Sentiment Analysis and Summarization

Fig. 3.2 Annotation tool for the creation of the feature and sentiment truth set. The following
aspects are shown: (A) the review text to be annotated, (B) the type of the review, (C) features
references in the review, (D) sentiment about the feature, (E) navigation button, and (F)
progress bar.

The third step consisted of the annotation of the reviews in the sample. For this task, we
developed an annotation tool, which displays a single review (title, comment, and rating)
at a time. Besides the review, the annotators can see the fields they need to annotate.
Figure 3.2 shows a screenshot of the tool. When using the annotation tool the annotators
could select the features from the review text by clicking on the words describing the feature.
Additionally, the annotators assigned a sentiment to each of the features. The sentiments had
the following Likert scale values [105]: very positive, positive, neutral, negative, and very
negative. Furthermore, the annotators were asked to indicate if the review included feedback
about an already existing feature, a request for a new feature, a bug report, or other type of
content. Multiple selections were allowed. Annotators were able to stop and resume their
annotation tasks at any time they wished.

The annotators were graduate students with a high command of English and software
development experience. The reviews were randomly assigned to the annotators, so that each
review was assigned twice and that each annotator shared a similar number of assignments
with all other annotators.

Each annotator received the annotation guide, the tool, and the annotation assignments. In a
short meeting, we explained the annotation task and were available for clarification requests
during the annotation period. To assure that the annotators had some knowledge about the
apps used during the evaluation, we asked them to read the app store descriptions of the
seven apps.

3.3 Evaluation Methodology 27

Table 3.3 Overview of the truth set.

App Platform # App Fea-
tures

µ Rev.
Features

µ Feature
Senti Score

AngryBirds App Store 408 1.71 -0.65
Dropbox App Store 623 1.93 -1.0
Evernote App Store 725 2.60 0.03
TripAdvisor App Store 589 2.22 0.56
PicsArt Google Play 184 1.33 0.84
Pinterest Google Play 258 1.77 0.60
Whatsapp Google Play 141 1.57 0.22
?All apps 2928 1.88 0.09

We also asked the annotators to record the total time spent on their annotation assignments in
order to estimate the amount of effort necessary for a fine-grained manual analysis of user
reviews. Annotators reported spending between 8 and 12.5 hours for annotating about 900
reviews. These numbers confirm previous studies, which have highlighted the large amount
of effort needed to manually analyze user feedback [48] , [137].

The final step in the truth set creation consisted of the analysis of disagreements. Overall 30%
of the annotated reviews included feedback about features and 10% included feature requests.
The average sentiment for all annotated features was 0.17 (i.e. neutral). These results also
confirm the findings of previous exploratory studies [137]. The annotators identified a total
of 3005 features, agreeing on 1395 features (53%) and disagreeing on 1610 features (47%).
The annotators agreed that 1086 (39%) reviews did not contain any features. Disagreement
was handled in two steps. First, we randomly selected 100 reviews with disagreements and
analyzed reasons, and common patterns for falsely classified features. We then used the
results to automatically filter misclassified features. Second, the author of this dissertation
manually reviewed the remaining features with disagreement and decided if each of the
previously labeled features was mentioned in the review or not. At the end, the truth set
included 2928 features. We resolved the disagreement between the sentiments associated
to features by transforming the categorical values into numerical values and calculating the
average of both annotators.

Table 3.3 shows the number of labeled features per app, the average number of features
mentioned in each reviews, as well as the average sentiment score of the features in each
app, whereas Figure 3.3 shows the feature-sentiment distribution of the reviews for each app.
Overall, we can say that all apps had reviews from the three sentiment polarities. Reviews
with a neutral sentiment towards the app features are the most common among all apps, with

28 Feature Extraction, Sentiment Analysis and Summarization

AngryBirds

Dropbox

Evernote

TripAdvisor

PicsArt

Pinterest

Whatsapp

Feature-Sentiment Distribution Among the Different Apps

0 100 200 300 400 500 600 700

Whatsapp

Pinterest

PicsArt

TripAdvisor

Evernote

Dropbox

AngryBirds

0 100 200 300 400 500 600 700

Fig. 3.3 Feature-Sentiment distribution of the truth set.

the exception of Whatsapp where the features associated with a negative sentiment are the
most common. In total 2928 features were manually labeled. Evernote and Dropbox were
the apps with the most labeled features with 725 and 623, respectively. Whatsapp and Picsart
had the least number of labeled features, 141 and 184, respectively. The average of labeled
features per review is 1.88. Except for AngryBirds all App Store apps had a higher feature
mention than their Google Play counterparts.

3.3.3 Metrics

We evaluate the extracted features in the generated topics using metrics traditionally used
in information retrieval: precision, recall, and F-measure. These metrics are computed as
follows:

Precision =
#TruePositive

#TruePositive+#FalsePositive
(3.1)

Recall =
#TruePositive

#TruePositive+#FalseNegative
(3.2)

3.4 Evaluation Results 29

Table 3.4 Number of extracted fine-grained features per app.

App FS FNS
AngryBirds 284 219
Dropbox 612 600
Evernote 3700 3127
TripAdvisor 846 754
PicsArt 290 181
Pinterest 625 465
Whatsapp 383 234

F�measure = 2 · Precision ·Recall
Precision+Recall

(3.3)

We define a feature as true positive, if it is present in a review associated to a review where the
feature was manually identified as present. False positives are features that were automatically
associated to a review in one of the topics, but were not identified manually in that review.
Finally, false negative features were manually identified in a review but were not present in
any of the extracted topics associated to the review.

We used two additional metrics to determine the quality of the topics (groups of features)
generated by the LDA algorithm. The topic coherence assesses how logical and consistent
topics are and whether they share a common theme. The evolution relevance measures
whether the topics contain information that help define, understand, and evolve the app.
These metrics were qualitatively evaluated by two researchers with a 5-level Likert scale.

3.4 Evaluation Results

We first report on the feature extraction results and then on the evaluation of the sentiment
estimations.

3.4.1 Feature Extraction

We evaluated the coarse-grained generated topics and not the fine-grained list of features.
The topics contain the fine-grained features, therefore, the results from the topic evaluation
reflect the performance of the fine-grained feature extraction. Due to the large amount of
fine-grained features (e.g., 3700 for Evernote) a manual qualitative evaluation would be
unfeasible and the consideration of the N-top features would produce unwanted bias.

30 Feature Extraction, Sentiment Analysis and Summarization

Table 3.5 Precision, recall, and F-measure for the coarse-grained feature extraction with topic
modeling.

FS FNS
App Precision Recall F-

measure
Precision Recall F-

measure
AngryBirds 0.34 0.33 0.33 0.37 0.32 0.34
Dropbox 0.61 0.48 0.53 0.60 0.473 0.53
Evernote 0.47 0.42 0.44 0.45 0.389 0.42
TripAdvisor 0.42 0.40 0.41 0.40 0.370 0.39
PicsArt 0.75 0.67 0.71 0.82 0.66 0.73
Pinterest 0.64 0.62 0.63 0.66 0.59 0.62
Whatsapp 0.84 0.73 0.78 0.91 0.73 0.81
Average 0.58 0.52 0.55 0.60 0.51 0.55

After running the feature extraction step on the whole dataset we obtained a list of wordsets
designating app features. Many of the wordsets extracted as features contained words that do
not describe features but rather the sentiments of users (e.g., great, bad, good, like, hate). To
filter these words we decided to slightly modify the feature extraction step and include all
words that are assigned a sentiment by the lexical sentiment analysis tool into the stopword
list. We use FS to refer to the original approach which includes words with a sentiment
meaning into the feature extraction algorithm, and FNS to refer to the modified version which
excludes sentiment words when generating feature descriptors. Figure 3.4 shows examples
of the most common features extracted by FNS for two of the applications.

Table 3.4 shows the number of different features extracted for each app for FS and FNS. The
number of extracted feature varies between 181 and 3700 features. To deal with this large
amount of information, we gather the extracted features into coarse-grained summaries using
topic modeling.

3.4.2 Precision, Recall and F-Measure

We calculated the precision, recall and F-measure of the extracted features in the topic models
for the seven apps. We generated 20 topic models for each app. Table 3.6 and Table 3.7
show examples of topics and their associated sentiments for the Dropbox and Pinterest apps
respectively. We compared the results when using the FNS and FS. Table 3.5 summarizes the
results. Both approaches had similar results, varying on a project basis. We achieved the
highest precision of 91% for Whatsapp with FNS and the highest recall of 73% for the same
app with FNS. On average, the precision of FNS was approximately 60% and the recall was

3.4 Evaluation Results 31

Table 3.6 Most common topics extracted from the user reviews of the Dropbox app with their
sentiments.

Topic Senti. score
upload_photo, load_photo, photo_take, photo_want, upload_want, down-
load_photo, upload_feature, move_photo, keep_upload, keep_try

1.51 Positive

file_name, folder_file, rename_file, file_add, folder_rename,
make_folder, file_change, change_name, file_copy, option_folder

1.49 Positive

file_load, video_load, video_upload, download_file, download_video,
download_phone, download_time, file_phone, update_need, com-
puter_phone

1.75 Positive

Table 3.7 Most common topics extracted from the user reviews of Pinterest with their
sentiments.

Topic Senti. score
board_pin, pin_wish, make_board, create_board, sub_board, create_pin,
use_board, edit_board, button_pin, edit_pin

2.47 Very Positive

pin_see, pin_go, load_pin, keep_thing, board_change, pin_scroll,
click_pin, pin_everything, time_search, browse_pin

2.28 Very Positive

craft_idea, craft_recipe, home_idea, idea_diy, look_idea, every-
thing_want, home_decor, thing_internet, art_craft, load_image

2.23 Very Positive

about 50%. The average precision of FS was 58% and its recall was of 52%. We observed the
lowest precision and recall for AngryBirds, an iOS game, which also resulted in the largest
amount of disagreement during the truth set creation. Android Apps had a higher precision
and recall than iOS apps.

3.4.3 Coherence and Evolution Relevance

For measuring the coherence and the evolution relevance, we manually examined the 20
topics generated by the FNS version of our approach for each evaluation app. We also
examined the 10 features which were most strongly associated to each of the topics. Table 3.8
summarizes the results.

To qualitatively measure the coherence of the generated topics, we manually analyzed the ten
most popular features for each topic. We evaluated the coherence of each topic by analyzing
if the features conforming the topic shared a common theme. Then, we rated the coherence of
each topic on a 5-level Likert scale (from very good to very bad). Afterwards, we converted
the individual ratings for each topic into a numerical scale ([-2,2] range) and calculated a

32 Feature Extraction, Sentiment Analysis and Summarization

Table 3.8 Coherence and software evolution relevance of topics.

App Coherence Req. Relevance
AngryBirds Good Good
Dropbox Good Very Good
Evernote Good Good
TripAdvisor Good Very Good
PicsArt Neutral Good
Pinterest Good Good
Whatsapp Bad Good

coherence average for each app. The topics of all apps had a good to neutral coherence,
with the exception of Whatsapp. The difference in the coherence levels for Whatsapp can be
explained by the average length of its reviews. These were much shorter than the reviews
for the other apps and LDA has a difficulty for generating meaningful topics on sparse data
[74]. With the exception of Whatsapp, mixed topics (topics with no common theme) were
not prevalent in the other apps. However, the presence of duplicate topics (topics sharing
a very similar theme) was more prevalent in apps with less functionality or shorter length
reviews, such as PicsArt and Whatsapp. LDA allows for the configuration of the number of
topics and more experimentation with this variable could lead to less duplicate topics and
different coherence results.

We evaluated the evolution relevance of the extracted topics to the app evolution by manually
analyzing the 10 most popular extracted features for each topic. Similarly to the coherence
evaluation, we used a 5-level Likert scale to rate whether a topic was relevant for evolving
the app. We considered a topic to be relevant to app evolution when it consisted mostly of
app features, app qualities, or information indicating how the users utilized the app. Topics
including information concerning app malfunctioning or features to be improved were also
considered relevant to the evolution of the app.

The generated topics had a very good to good relevance for software evolution for all apps.
Even when the topics were not coherent, the 10 most popular sets of words identified by the
collocation algorithm as features were usually actual app features or sets of words describing
how the users utilize the app or failures in the app. Each app usually had one or two topics
with words that describe bug reports. These wordsets were usually not considered as features
in our manual annotation. However, they contain valuable information for the evolution and

3.4 Evaluation Results 33

maintenance of the app. The presence of noise10 in the 10 most popular features of each
topic was virtually non existent for all apps.

3.4.4 Sentiment Analysis

The sentiment analysis step assigns each extracted feature the sentiment score of the sentence
in which it is located. Figure 3.4 shows examples of extracted features and their associated
sentiment. This information can be used to detect the features with the highest and lowest
user approval. To compare the automatically extracted feature sentiment scores with the ones
given by the annotators, we converted the automatically extracted scores to categorical values.
Similar to Kucuktunc et al. [98] we consider all reviews in the (2,5] range to be very positive,
those in the (1,2] range positive, whereas those in the [-1,1] range are neutral. Reviews with
a sentiment score in the [-2,-1) range are considered negative and those with a [-5,-2) range
very negative. In this way, we converted all extracted sentiment scores into the Likert scale
used by the annotators.

We then converted the categorical values into numerical values in the [-2,2] range, where -2
denotes a very negative sentiment and 2 a very positive sentiment. After that, we calculated
the average sentiment score given by the two annotators and used this as the “true sentiment”
associated to each feature.

The Spearman’s rho correlation coefficient between the sentence-based sentiment score and
the truth set was of 0.445 (p-value< 2.2e-16), indicating a moderate positive correlation
between them. Figure 3.4 shows examples of the most common positive and negative features
for Dropbox and Pinterest.

We calculated an additional sentiment score for each feature by assigning each feature the
sentiment score of the whole review in which it is mentioned. We computed the sentiment of
an entire review by calculating the positive and negative average scores of all sentences in
the review separately. For the case where both positive and negative sentence averages were
in the [-1,1] range we assigned the whole review the neutral score of 0. When the sentence
negative average multiplied by 1.5 was less than the positive average, we assigned the review
the sentiment score of the negative average. In the opposite case, the review received the
positive average score.

10We define all wordsets that did not describe actual app features, how the users utilize the app or app failures
as noise.

34 Feature Extraction, Sentiment Analysis and Summarization

use easy

find thing

pin board

pin thing

idea recipe

force close

update search

look pin

search something

show pin

Pinterest (Android)

0 20 40 60 80 100 120 140

upload photo

open file

file name

view file

pdf view

delete photo

take photo

move file

want upload

update time

Dropbox (iOS)

0 50 100 150
Appeareance frequencyAppeareance frequency

A
pp

 F
ea

tu
re

s

Positive sentimentNegative sentiment
A

pp
 F

ea
tu

re
s

Fig. 3.4 Extracted features from Pinterest and Dropbox apps. Positive features are represented
in blue, negative in red.

With this review-based sentiment estimation, the positive correlation between the sentiment
score and the truth set sentiment score was of 0.592 (p-value< 2.2e-16), representing a strong
positive correlation.

One possible explanation for the higher correlation of the review-based sentiment score in
comparison with the sentence-based is that people frequently use more than one sentence
to express their sentiment or opinion about a specific feature. That is, context is important
when determining the sentiment associated to a specific feature.

3.5 Discussion

In this section we discuss our results, as well as the limitations and threats to validity of the
work presented in this chapter.

3.5.1 Results

The qualitative and quantitative results are promising. The feature extraction step was able
to detect app features mentioned in the user reviews for a diverse set of apps belonging to
different categories and serving different types of users. Also, it had a good performance
for apps belonging to all analyzed categories with exception of the games category. One

3.5 Discussion 35

possible explanation can be the various ways users describe the gaming app features. Human
annotators had the largest difficulties when identifying features from this type of apps, as
noted by their level of disagreement, confirming the challenges of examining this type of
reviews.

The qualitative evaluation showed that the topics were coherent, contained little noise, and
were relevant for app evolution tasks. Even for the apps where the feature extraction recall
was relatively low (i.e. 33-47%) the qualitative results showed that the topics accurately
describe the overall functionality of the apps. Due to the inner workings of the LDA
algorithm [19], topics were more coherent when dealing with lengthier reviews. Additionally,
duplicate topics are more common for apps with less functionality and shorter reviews, such
as PicsArts or Whatsapp. An advantage of the topic modeling step is that the number of
topics (a parameter for LDA) can be manually tuned for each app by the project team to get
less duplicate topics and better coherence and precision.

Finally, precision results were higher for apps with short reviews containing few or no
features. One important finding is that our approach has a high performance for detecting
reviews with no features mentioned in short reviews. This makes the approach useful for
filtering non-informative reviews, which, e.g., only include praise or dispraise. These types
of reviews tend to be very frequent in app stores [137]. Filtering them will help developers
focus on the relevant and informative reviews.

3.5.2 Limitations and Threats to Validity

A limitation of the feature extraction step is that non frequently mentioned features are often
not detected, as reflected by the recall values. This can be improved by including linguistic
patterns, which describe the language structure in which features are described. This would
allow for the identification of non common features through such patterns.

Lexical sentiment analysis has the disadvantage of a limited handling of negation and
conditionals, and no handling of past tense and sarcasm. However, the positive correlations
found in both the review and sentence based sentiment computations suggest that the produced
noise due to this limitation is minimal. The expansion of the dictionary to include jargon
common in user reviews, such as "bug", "crash", or "please fix!" could enhance the sentiment
analysis performance. The outperformance of the review-based sentiment analysis over
the sentence-based confirms the importance of taking context into account when assigning
sentiment scores to features.

36 Feature Extraction, Sentiment Analysis and Summarization

LDA had a satisfactory performance on the applications that tended to have lengthier reviews.
However, in applications with very short reviews the produced summaries were not coherent.
Algorithms specialized in summarizing short text with little context information, as the
ones proposed by Yan et al. [169] and Guo and Diab [56] could improve the quality of the
generated summaries.

The qualitative evaluation of the topic relevance to evolution tasks was done by the author
of this dissertation and another researcher and not by actual developers of the apps. This is
a threat to validity as the evaluators could be biased or could have incomplete knowledge
or misunderstandings about the specific information that developers working on these apps
need with respect to evolution engineering. Another threat to validity is the high level of
disagreement between (47%) annotators of what constitutes an app feature. We tried to alle-
viate disagreement by providing a annotation guide with a precise definitions and examples.
Furthermore, we identified patterns for common human errors during the annotation task.
These human errors were a common cause for disagreement.

3.6 Related Work

We focus the related work discussion in three areas: mining user feedback for software
engineering, as well as feature extraction and sentiment analysis in software engineering and
in other domains.

3.6.1 Mining User Feedback for Software Engineering

User feedback mining has recently attracted the attention of Software Engineering researchers
resulting in several studies, most of them of exploratory nature.

Harman et al. [67] analyzed technical and business aspects of apps by extracting app features
from the official app descriptions using a collocation and a greedy algorithm for the extraction
and grouping of features. While their feature extraction mechanism is similar to ours,
the motivations are different. We are interested in extracting app features and the users
sentiments associated to these features to help software teams understand the needs of their
users. We therefore mine the features from the reviews and not from the semi-structured app
descriptions.

Iacob and Harrison [78] extracted feature requests from app store reviews by means of
linguistic rules and used LDA to group the feature requests. Our work is complementary,

3.6 Related Work 37

we are interested in extracting all app features mentioned in reviews, in presenting them
in different granularity levels and extracting their associated sentiments. While we also
use LDA to aggregate our extracted features, we use feature-based topics instead of single
word-based topics for the grouping of similar features. Furthermore, we are interested in
extracting all features that are mentioned in the reviews, not only requested features. We also
extract and aggregate the sentiment associated to the features.

Galvis Carreño and Winbladh [48] analyzed the use of LDA to summarize user review
comments. Their applied model includes Sentiment Analysis, although it is not the focus
of their work. Our work is complementary, we focus on describing user acceptance of
features by generating different granularity levels for the extracted features and by proposing
mechanisms for aggregating the sentiment on these different levels. This allows for a more
detailed and focused view of user feature acceptance.

Li et al. [103] analyzed user reviews to measure user satisfaction. The authors extracted
quality indicators from the reviews by matching words or phrases in the user comments with
a predefined dictionary, while we use a probabilistic method (likelihood-ratio) for extracting
the features.

Zou et al. [173] assessed the quality of API’s by analyzing user comments on the web. Unlike
the approach presented in this chapter, they focused on extracting a single feature at a time
instead of all features.

3.6.2 Automated Feature Extraction and Sentiment Analysis

The automatic extraction of features in text documents is relatively new in software engi-
neering. Knauss et al. [91] used Naive Bayes to extract clarifications in requirements from
software team communication artifacts to detect requirements that are not progressing in a
project. They make use of previously tagged data, while we utilize an unsupervised approach.
Dumtitru et al. [40] and Hariri et al. [66] extracted features from product descriptions to
recommend feature implementation for software product lines through text mining algo-
rithms, they then group them together through diffusive clustering. The features are mined
by recognizing keywords present in bullet points lists of product descriptions, while we have
no structural information indicating the presence of a feature.

While feature extraction and sentiment analysis (also called opinion mining) are relatively
new in software engineering, they have been used in other domains to analyze movie reviews,
for analyzing opinions of different products, such as movies, cameras and desktop software
[76], [140] and blogs [121]. Extracting features and sentiments from app stores poses

38 Feature Extraction, Sentiment Analysis and Summarization

different challenges than when extracting them from other product reviews, as the text in
app store reviews tends to be 3 to 4 times shorter [81], having a length that is comparable to
that of a Twitter message [137], but posing an additional challenge in comparison to feature
extraction in Twitter messages due to the absence of hashtags.

Chapter 4

Visualizing Features, Sentiments and
Summaries

4.1 Introduction

Information visualization supports individuals’ data understanding and analysis by lever-
aging their visual capacity for identifying patterns, trends and outliers. In this chapter we
present REview Visualization (REV). REV interactively visualizes the information mined
in Chapter 3 to incorporate human interpretation into the analysis process more easily. It
visualizes user reviews in four different abstraction levels: general, review based, feature
based and feature-topic based. REV contains rating and sentiment information and can help
developers and analysts get an overview of the most and least popular app features, as well
as the rating and sentiment distributions among the reviews. REV’s interactive nature allows
for the navigation of different review granularities: from groups of related features, to single
features, to the actual review text that contains the features. Furthermore, different filters
allow REV users to customize the amount of displayed information.

Previous research work [3], [44], [109], [133], [168] has visualized features and sentiments
of products from non-software domains. However, they have not included the actual review
text in their visualizations. We consider it a crucial piece of information in software evolution
as it can help developers and analysts understand the user context, find the reasons behind
app feature (un)popularity and aid them in taking the appropriate measures to address current
issues.

40 Visualizing Features, Sentiments and Summaries

Fig. 4.1 REV home screen view. The following aspects are shown in the view: (1) rating
distribution, (2) sentiment distribution (3) review distribution over time, (4) visualizations
for finer-grained analysis, (5) navigation menu.

The rest of this chapter is structured as follows: Section 4.2 describes the main components
in REV and Section 4.3 reports on a preliminary study where the usability of REV was
evaluated. Section 4.4 discusses previous work related to the visualization of user review
content.

4.2 Visualization Components

REV has two main components: (1) a home screen which shows an overview of the re-
views, its ratings and the sentiments expressed in the reviews and (2) fine-grained analysis
visualizations which allow for a more detailed analysis by interactively navigating different
abstractions levels of reviews, mentioned features and groups of features. We used the D3.js
library1 for the implementation of the visualization prototype.

To generate the data displayed by REV we use the natural language processing and data
mining techniques presented in Chapter 3. First, we preprocess the comment and title of
each review and prepare it for feature extraction. Then, we apply a collocation algorithm and
extract the mentioned app features. Afterwards, we apply lexical sentiment analysis to the

1http://d3js.org/

4.2 Visualization Components 41

comment and title in the review and assign a sentiment to each extracted feature. Finally, we
use topic modeling to group related features.

In the following sections we describe the two main components of REV, the possible
interactions and the used coloring scheme.

4.2.1 Home Screen

The home screen of REV is a simple interactive dashboard. It provides a dynamic visualiza-
tion of the user reviews in terms of star ratings, user sentiment associated with each review
and a cumulative rating performance over the entire year. Figure 4.1 shows the home screen
of REV, which contains four essential components:

Rating distribution

The interactive pie chart shows the overall distribution of the app’s ratings, in terms of the
number of stars given in the user reviews. When clicking on the different ratings shown in
the pie chart, the rest of the graphs in the home screen are updated to reflect the information
about the selected pie chart rating.

Sentiment distribution

When no type of rating is selected in the rating distribution pie chart, the sentiment bar graph
is displayed in a dark grey color, depicting the overall user sentiments of all reviews. When
the reviews with a particular type of rating are selected from the ratings distribution pie chart,
the sentiment bar graph automatically changes to display the sentiment scale of the selected
reviews with the selected rating, changing its color to the one corresponding to the rating.

Review distribution over time

The line graph shows the month-wise distribution of all reviews. When the visualization user
chooses a particular rating in the rating pie chart, this graph dynamically changes to display
the month-wise distribution of the reviews of the selected rating.

42 Visualizing Features, Sentiments and Summaries

Fig. 4.2 REV review based view. Hovering over a point where only some of the months are
activated.

Fine-grained visualizations overview

This component provides an overview of the three different types of finer-grained user
feedback views: review based, feature based and feature-topic based. Hovering the mouse
over each image, enlarges it, allowing the user to get a more detailed view. We explain more
about each fine-grained visualization and its possible interactions in the next section.

4.2.2 Fine-grained Visualizations

REV has three visualizations for fine-grained analysis which are explained in the following
sections.

Review Based Visualization

This interactive visualization provides detailed information about the app reviews’ distribution
over time. It captures two main aspects: the sentiment score of each review and its rating.
The reviews are visualized as hexagonal points in a scatter plot. The y-axis of the scatter
plot depicts the sentiment score of the reviews and the review-points are color-coded to
reflect the ratings. For popular apps the number of reviews received from the customers
is generally in the order of thousands or more. Visualizing all of them in a single scatter
plot can be overwhelming for the user, as the graph seems over-crowded. In order to reduce
information overload only reviews with automatically extracted features are displayed. We

4.2 Visualization Components 43

consider these reviews to be the most informative for developers as they give developers a
more concrete idea about the precise aspects of the app that users like or dislike. Further
filters, explained in Section 4.2.3, allow REV’s users to further reduce information overload
in this view. Figure 4.2 shows the review based visualization displaying the reviews with the
highest ratings for the January and February months.

Feature Based Visualization

This visualization shows the average sentiment score and appearance frequency of each of
the extracted app features. The features are visualized as hexagonal points in a scatter plot. In
the plot, each hexagonal point representing an identified feature serves as a link to visualize
all the underlying reviews that have comments concerning the feature. Therefore, when users
clicks on a point, a scatter plot depicting all the reviews mentioning the clicked feature is
shown.

Feature-topic Based Visualization

This visualization shows groups of related features. The features in each group topic are
visualized as hexagonal points in a scatter plot. The y-axis of the plot depicts the frequency
of each feature and the x-axis depicts the different topics. Each topic is depicted in a
unique color and named after the most frequent feature in the topic. As in the feature based
visualization, each hexagonal point representing an identified feature in the scatter plot serves
as a link to visualize all the underlying reviews that mention the feature.

4.2.3 Interactions with Fine-grained Visualizations

There are four main interactions in REV:

Zoom and Pan

The three scatter plots of the fine-grained visualizations are enabled with both zoom and pan
features. Double-clicking at any point in the graph allows the user to zoom into the scatter
plot. Additionally, the user can drag or pan the mouse to shift the visualization component to
another screen area.

44 Visualizing Features, Sentiments and Summaries

Detailed Information Display

Hovering over each point in the fine-grained visualization’s scatter plot enables the user to
view: (1) review fine-grained details such as the review title, comment, number of stars,
sentiment score, app version number and the date in which the review was written or (2)
feature fine-grained details such as its frequency, positive score and negative score. We
visualize the positive and negative scores in order to avoid loosing important information due
to averaging [59] and to aid developers and analysts detect conflicting opinions about certain
features. Additionally, when pointing to the different parts of the home screen ring chart and
line graph further information about each rating or time point is displayed through a tooltip,
an example of this tooltip can be seen in Figure 4.1 next to the mouse pointer.

Keyword Search

All fine-grained visualizations include a search box. In the search box users can enter multiple
words. The displayed results are then filtered to only contain the entities containing the words
typed into the search box or its lemmas.

Information Filtering

To reduce information overload users can choose to only visualize features which frequency
is higher than a given threshold, or to visualize reviews that only mention features that are
mentioned at least N given times. Furthermore, in the review based view a dropdown menu
offers a filter for pruning reviews month-wise, as well as based on rating.

4.2.4 Coloring Scheme

With the exception of the topic based visualization, where each topic is depicted in a unique
color, all visualizations in REV are color coded to reflect the ratings. Magenta2 is used for
the lowest rating (1 star), while green is used for the highest rating (5 stars). The intermediary
colors pink, purple and blue, reflect the intermediary ratings (2-4 stars).

2To make the visualization more visually accessible we decided not to use red.

4.3 Preliminary Study 45

4.3 Preliminary Study

We evaluated the usability of REV by conducting a user study with 5 software developers.
We selected this initial number of participants since Nielsen and Landauer [131] showed that
five users are sufficient to discover 80% of usability problems. All participants were in the
information technology industry and had an industry experience between 1 and 4 years, with
an average experience mean of 2.8 years. Their roles were varied, two of them were system
engineers, whereas one was a quality engineer, web developer and database administrator.
Four participants reported having previous experiences as technical consultants, human-
machine interface designers and web developers. Two of the user study participants were
female and three were male.

For the study, all of the Dropbox app reviews for the year 2013 from the dataset presented in
Section 3.3.1 were visualized. A total of 2009 reviews and 600 unique extracted features
were input to REV.

At the beginning of the study one of the authors introduced the Dropbox app and the
participants were shortly briefed about REV, its main views and the possible interactions.
Afterwards, the participants had 6 to 7 minutes for interacting and exploring the tool as they
wished. Next, each participant was given two tasks in which they had to imagine they were
developers working for the Dropbox app. In the first task, participants had to detect the three
most urgent issues based on the user review comments and asked to justify their choices. In
the second task, they were asked about the general user opinion of the pdf viewer feature.
Additionally, they were asked to identify if there were conflicting opinions concerning the
pdf viewer feature and to identify other features users frequently mentioned when writing
about the aforementioned feature (co-occurring features). During the execution of the tasks
one of the authors observed each participant and took note of the interactions done with the
tool and the participant’s comments.

4.3.1 Identifying Urgent Issues

Participants used two different strategies for identifying the three most urgent issues. Three
participants used the review based view, whereas two participants used the feature based
view. Only one participant analyzed the home screen pie chart to get an idea of the number
of negative reviews before navigating to the review based view. Participants using the review
based view followed a similar workflow: they filtered the reviews from the most recent
months, and lower ratings. Additionally, they applied a frequency filter in the visualization

46 Visualizing Features, Sentiments and Summaries

so that only reviews with popular features would be shown. Afterwards, they only focused on
the reviews with lower sentiment. All of the participants using the review based visualization
navigated to the actual review text. The participants using the feature based approach
concentrated on the most frequently mentioned features with the most negative sentiments.
One of the participants navigated to the actual review text, whereas the other identified the
features without looking for further information. Since the current version of REV does not
contain any additional filters in the feature based view, none of the participants reduced the
shown information.

Independently of the used strategy, we found that participants agreed in most of the issues
identified as urgent. Two participants paid special attention to the version information in
the reviews’ detailed view, indicating that this is important information for some developers.
Interestingly, while participants asked how the sentiments in the reviews were computed,
none of the participants looked at the sentiment scores displayed in the actual review text
while performing their tasks, but rather at the sentiment quadrants were the points were
displayed. This could be an indicator that review sentiment scores are very fine-grained
information.

4.3.2 Identifying General Opinions, Conflicting Opinions and Co-occurring
Features

In the second task, participants used varied strategies. Two participants used a combination
of the feature and topic based views for solving the task. One participant used the single
review based, feature based and topic based views. Two possible explanations for the variety
of used strategies, can be the participants’ different information processing tactics or their
unfamiliarity with REV. However, independently of the used strategy, all participants found
that the pdf viewer feature had conflicting user opinions and found similar sets of co-occurring
features, with the exception of one participant who when analyzing the single reviews’ text
declared that no additional features were being mentioned when writing about the pdf viewer
feature.

4.3.3 Participants’ Impressions and Feedback

After the execution of the two tasks, we asked participants about the perceived usefulness of
REV in software development, about the amount of information and levels of granularity
displayed by the tool, as well as for improvement suggestions. All participants thought that

4.4 Related Work 47

the tool would be helpful for developers and others involved in software development, such
as testers and people from quality assurance. One participant thought REV would also be
useful for end app users. Additionally, all participants answered affirmatively when asked if
they would use the tool for their work if available. They thought that the tool could allow
them to identify issues and prioritize their tasks. Furthermore, one of the participants praised
REV for displaying the actual review text. Two participants mentioned that a particular
weakness of the tool was based on its display of user reviews, without any previous quality
filtering. On this respect one participant commented: "The usefulness of this tool depends on
the quality of reviews because at times the users can be exaggerated and biased", whereas
another participant mentioned: "The people from whom the reviews are considered matters a
lot. They have to be focused on a subset of people who can give honest and useful reviews."
All participants said that the amount of information displayed in the study was manageable
and that the filters were very useful for reducing the information and finding what they were
interested in. Furthermore, all participants agreed that the tool had a learning curve and
that some of the main components (topics and sentiments) needed an explanation because
they were not familiar with the terms. During the study participants were interested in
understanding the cases in which there was a mismatch between the rating and the sentiment
score. Some of these cases were because of limitations in the sentiment analysis, while others
were due to the neutral language used in the review. Only one of the participants mentioned
that she would wish for a higher quality in the naming of the features, indicating that the
users were satisfied with the feature extraction mechanism.

4.4 Related Work

To the best of our knowledge no previous research has explored the visualization of user
reviews for software evolution. However, user feedback visualization has been an active
research topic in other domains.

Liu et al. [109] visualized positive and negative opinions of product (e.g., printers and
cameras) features with bar charts.The main differences between their approach and REV
is the interactiveness of the visualization and the different levels of granularity that REV
offers. OpinionBlocks [3] is an interactive visualization which displays increasingly detailed
textual information from user reviews. The information provided by the visualization is
based on manually extracted and grouped features, as well as their sentiments. REV bases
the visualization on automatically extracted information, displaying additional attributes such
as time and rating, as well as enabling the search and visualization of targeted information.

48 Visualizing Features, Sentiments and Summaries

OpinionSeer [168] visualizes features and sentiments extracted from hotel reviews. The
authors use a radial visualization to compare the mentioned features and their associated senti-
ments against different user demographics. Our visualization approaches are complementary
and REV could benefit from demographic visualizations to aid developers and analysts in
understanding app users and their diverse needs. Oelke et al. [133] visualized features and
their associated sentiments for printer reviews. Besides the domain, the main difference with
our visualization is REV’s focus on a single app, as well as its display of actual review text
in the most detailed views. Opinion Space [44] is a visualization tool, which offers several
interfaces for end users to navigate review comments that present different opinions concern-
ing certain features. REV could be complemented by visualizations where diverse opinions
concerning app features are displayed. This information could help developers and analysts
detect and reason about conflicting opinions, as well as make appropriate decisions, such
as the creation of different software product lines. In Chapter 6 we present DIVERSE, an
approach for automatically collecting reviews with diverse opinions about specific features.

Chapter 5

Classification into Software Evolution
Categories

5.1 Introduction

In this chapter we present an approach to help developers categorize and summarize feedback
that is relevant for software evolution. In particular, it (1) classifies user reviews into different
categories relevant to software evolution, and (2) generates feature-centric summaries of the
user reviews belonging to each category.

We use supervised machine learning techniques for classifying the user reviews, a collocation
algorithm [117] for extracting the mentioned features and topic modeling [19] for grouping
features that tend to co-occur in the same reviews. Feature extraction and topic modeling
for summary generation were the focus of Chapter 3. In this chapter we extend the work
described in Chapter 3 to summarize reviews classified into categories relevant for software
evolution. Furthermore, we use quantitative metrics for assessing the perceived quality of the
summaries by human subjects. The final output is a set of feature-centric summaries for each
category.

The chapter is structured as follows. Section 5.2 describes a fine-grained taxonomy consisting
of seven user review categories that are relevant to software evolution. In Section 5.3 we
present the approach for automatically classifying user reviews into the categories defined
in our taxonomy and for generating feature-centric summaries. Furthermore, Section 5.4
explains the evaluation methodology. Particularly, we describe the content analysis methods
that we employed for creating the truth set of 4550 reviews created systematically through

50 Classification into Software Evolution Categories

content analysis methods. Section 5.6 describes an experiment that evaluated the accuracy of
machine learning techniques for the classification of app reviews and Section 5.7 describes
an experiment that evaluates the quality of the feature-centric summaries. In Section 5.8 we
discuss the threats to validity and in Section 5.9 we summarize related work.

5.2 User Review Taxonomy for Software Evolution

In this section we present a taxonomy that categorizes user review content into dimensions
that are relevant for software evolution. The taxonomy can help developers and other
evolution stakeholders to find and organize reviews related to the evolution task they want to
perform, as well as to plan and prioritize their work.

The definition of our taxonomy is based on the categories found in a previous study [137]
that manually analyzed the content of app store user reviews. For the development of our
taxonomy, two researchers with experience in software development, manually annotated
the relevance to software evolution of each previously defined category. Overall, nine of the
original categories were considered relevant for software evolution. Categories were deemed
as important for software evolution when they gave information about aspects of the app
that needed to be improved or implemented. Additionally, categories that highlighted the
features or functionality that satisfy users were also contemplated as relevant to software
evolution. The reasoning behind is that this information notifies developers about aspects
of the app that are important for users and about features that are being actively used1. We
considered general praise and complaint as categories relevant to software evolution because
they give information about the overall user acceptance and this knowledge might affect
software evolution decisions. An example of decisions that benefit from general praises and
complaints is whether to continue or discontinue a software product. We renamed some of
the original categories into terms we considered more descriptive and modified some of the
previous definitions for better clarity during the annotation of our truth set (see Section 5.4.1).
Table 5.1 shows the annotated relevance of each category and the mapping between both
naming conventions.

The taxonomy we arrived at consists of the following 7 categories:

• Bug report: Reviews that report a problem, such as faulty behavior of the application
or of a specific feature.

1Previous studies have found that developers are highly interested in features or software functionality that
users use and like [15]

5.2 User Review Taxonomy for Software Evolution 51

Ta
bl

e
5.

1
M

ap
pi

ng
be

tw
ee

n
pr

ev
io

us
w

or
k

[1
37

]a
nd

ou
rt

ax
on

om
y.

O
ri

gi
na

lC
at

eg
or

y
O

ri
gi

na
lD

es
cr

ip
tio

n
SW

Ev
.R

el
.

%
in

St
ud

y[
13

7]
Ta

xo
no

m
y

C
at

eg
or

y
Pr

ai
se

Ex
pr

es
se

s
ap

pr
ec

ia
tio

n
ye

s
75

.3
6%

Pr
ai

se
H

el
pf

ul
ne

ss
Sc

en
ar

io
th

e
ap

p
ha

s
pr

ov
en

he
lp

fu
lf

or
ye

s
22

.4
5%

U
sa

ge
sc

en
ar

io
Fe

at
ur

e
in

fo
rm

at
io

n
C

on
cr

et
e

fe
at

ur
e

or
us

er
in

te
rf

ac
e

ye
s

14
.4

5%
Fe

at
ur

e
st

re
ng

th
Sh

or
tc

om
in

g
C

on
cr

et
e

as
pe

ct
,u

se
ri

s
no

th
ap

py
w

ith
ye

s
13

.2
7%

Fe
at

ur
e

sh
or

tc
om

in
g

B
ug

re
po

rt
B

ug
re

po
rt

or
cr

as
h

re
po

rt
ye

s
10

.0
0%

B
ug

re
po

rt
Fe

at
ur

e
re

qu
es

t
A

sk
s

fo
rm

is
si

ng
fe

at
ur

e
ye

s
6.

91
%

Fe
at

ur
e

re
qu

es
t

O
th

er
ap

p
R

ef
er

en
ce

to
ot

he
ra

pp
,e

.g
.f

or
co

m
pa

ris
on

no
3.

91
%

–
R

ec
om

m
en

da
tio

n
Su

gg
es

ts
ac

qu
is

iti
on

no
3.

82
%

–
N

oi
se

M
ea

ni
ng

le
ss

in
fo

rm
at

io
n

no
3.

27
%

–
D

is
su

as
io

n
ad

vi
se

s
ag

ai
ns

tp
ur

ch
as

e
no

3.
27

%
–

C
on

te
nt

re
qu

es
t

A
sk

s
fo

rm
is

si
ng

co
nt

en
t

ye
s

2.
91

%
Fe

at
ur

e
re

qu
es

t
Pr

om
is

e
Tr

ad
es

a
be

tte
rr

at
in

g
fo

ra
sp

ec
ifi

c
im

pr
ov

em
en

t
no

2.
00

%
–

Q
ue

st
io

n
A

sk
s

ho
w

to
us

e
a

sp
ec

ifi
c

fe
at

ur
e

no
1.

27
%

–
Im

pr
ov

em
en

tr
eq

ue
st

R
eq

ue
st

s
im

pr
ov

em
en

t
ye

s
1.

18
%

Fe
at

ur
e

re
qu

es
t

D
is

pr
ai

se
O

pp
os

ite
of

pr
ai

se
ye

s
1.

18
%

C
om

pl
ai

nt
O

th
er

fe
ed

ba
ck

R
ef

er
en

ce
s

or
an

sw
er

s
ot

he
rf

ee
db

ac
k

no
1.

09
%

–
H

ow
to

Ex
pl

ai
ns

ot
he

ru
se

rs
ho

w
to

us
e

th
e

ap
p

no
0.

91
%

–

52 Classification into Software Evolution Categories

• Feature strength: Reviews that identify an aspect about an existing feature that users
are satisfied with.

• Feature shortcoming: Reviews that identify an aspect about an existing feature that
users are unsatisfied with.

• Feature request: Reviews that ask for a missing feature, functionality or content, as
well as reviews that ask for the improvement of an existing feature.

• Praise: Reviews where users express general appreciation with the application. It
focuses on general judgment, unlike feature strength which emphasizes on the positive
feedback about a specific feature.

• Complaint: Reviews where users express general dissatisfaction with the application.
In contrast with feature shortcoming, which focuses on the negative feedback about a
specific existing feature, general complaint concentrates on general judgment.

• Usage scenario: Reviews where users describe workarounds, use cases and scenarios
involving the app.

Table 5.2 shows examples of reviews sentences for each of the categories in our taxonomy.

5.3 Approach

The main goal is to aid developers in processing user feedback by creating text summaries of
the user reviews belonging to the categories presented in our taxonomy. Figure 5.1 shows
an overview of the approach. For this purpose we use natural language processing and
machine learning techniques. First, we extract the title, comment and rating of each user
review. Next, we preprocess the text by removing noise and transforming words into their
root form. Afterwards, we classify our reviews into the categories defined in our taxonomy
by applying machine learning techniques to the previously preprocessed text. Then, we
apply a collocation algorithm to the preprocessed text and extract the features mentioned
in the reviews (see Section 3.2.2). Finally, we use the results from the classification and
feature extraction to summarize the text belonging to each user review category though a
topic modeling algorithm (see Section 3.2.4).

The approach performs the classification and summarization steps on a review-granularity.
This choice is not random, but based on a small study of app review content. We randomly

5.3 Approach 53

Table 5.2 Examples of reviews belonging to each taxonomy category. The sentences were
extracted from reviews from the AppStore distribution platform.

Category Example
Bug report Everytime I start the app, it crashes!

I’m really disappointed with the IOS 7 version of this app, saving documents
doesn’t work anymore

Feature strength Loads so much faster now and it is easy to use
I love the automatic syncing of this app

Feature shortcoming Syncing files takes a horrible amount of time
Stop asking me if I want to enable background uploads. I’ve said no about
twenty times now, figure it out.

Feature request It would be great if we could copy and paste
Please add an option to add color to text

Praise I think this game is really Cool!!
I downloaded this game on my ipad and my daughter loves this game. Thank
you!

Complaint This game is horrible! What a waste of time!
DONT DOWNLOAD THIS APP EVER its horrible

Usage scenario I rely on Dropbox daily at work and I have it on my home computer as well
I use dropbox for my college classes

sampled 33 app reviews containing 160 sentences. Then, two researchers attempted to make
a manual classification of the reviews and the single sentences contained in the reviews into
the categories defined in our taxonomy. However, they concluded that many of the single
sentences lacked the necessary context to make an accurate classification and we therefore
decided for a review granularity in the classification and summarization steps.

In the following we explain the preprocessing and classification steps. Descriptions of
the feature extraction and summarization steps are found in Chapter 3 and are only briefly
described in this chapter.

5.3.1 Preprocessing

In this step we extract the title and comment of each review and apply the following prepro-
cessing activities:

• Stopword removal: In this step we remove non-informative words that are very
common in the English language and have little value in helping us classify reviews

54 Classification into Software Evolution Categories

Fig. 5.1 Overview of the approach.

or identify app features (e.g., “and”, “this”, and “is”’). We use the standard list of
stopwords provided by NLTK2 for this step.

• Stemming: Stemming is the process of eliminating inflectional forms of words in a
text and reducing words to their basic grammatical roots. For example, a stemmer for
English, would be able to identify the words "crashing" and "crashes" as based on the
root "crash". For this step we use the implementation of Porter’s algorithm as provided
by the NLTK library.

5.3.2 Classification

The goal of the classification step is to automatically organize the reviews into the different
categories described in Section 5.2.

A review can be associated to different categories, e.g., a review can describe a bug report and
contain a general praise: "The app is crashing after the newest update. Please fix it, I love
and need this app!". In machine learning the classification of documents into one or more

2http://www.nltk.org/

5.4 Evaluation Methodology 55

categories is referred to as multi-label classification and can be solved via the binary relevance
method [160] where a classifier for each category is trained. In the binary relevance method,
the final prediction for a specific review is determined by aggregating the classification results
from all independent classifiers. To train each classifier we apply the following steps on the
preprocessed data: (1) convert our reviews into a vector space model using TF-IDF [124] as
a weighting scheme, (2) add additional features into the vector space model for each review,
such as review rating, number of words in the review, number of characters in the review,
number of lower case characters, number of upper case characters, number of exclamation
marks, number of "@" symbols, number of spaces, average word length, ratio of positive
sentiment words, ratio of negative sentiment words3, (3) reduce the dimensions of our data
by applying the chi-squared metric (c2) [124] or, alternatively, Support Vector Machines
(SVM), (4) train our classifiers on a set of manually labeled reviews and (5) predict the
categories of user reviews using the trained classifiers. We used the SciKit learn4 toolbox for
all activities described in our classification step.

5.3.3 Feature Extraction

After the classification of the reviews has been done the feature extraction is done in all
reviews independently of their category, as described in Chapter 3. This step produces a list
of features as mentioned per each analyzed review.

5.3.4 Summarization

In this step, the features belonging to the reviews of each category are input to the topic
modeling algorithm (an LDA algorithm). This action is done separately for each category.
The output of this step are independent summaries (also called topics in this work) for each
category.

5.4 Evaluation Methodology

The purpose of the evaluation is to assess the quality of the classification and of the feature-
centric summaries. In our evaluation we performed two experiments.

3Positive and negative sentiment words were obtained from the predefined lists of the lexical sentiment
analysis tool SentiStrength: http://sentistrength.wlv.ac.uk/.

4http://scikit-learn.org

56 Classification into Software Evolution Categories

In the first experiment we compared different machine learning classifiers against a truth set
created manually by 5 annotators. In the second experiment we produced feature-centric
summaries for two apps and 16 subjects manually assessed the quality of the summaries.

In the following subsection we describe the steps for the creation of the truth set against
which we compared the classification results.

5.4.1 Truth Set Creation

We created our truth set by sampling some of the reviews from the dataset described in
Chapter 3.3.1. For the creation of the truth set we used the content analysis methods
described by Neuendorf [130] and Maalej and Robillard [114]. During the truth set creation
human annotators systematically assessed the contents of a sample of user reviews according
to an annotation guide. The truth set was created by five annotators who independently
annotated 4550 reviews. For each review two annotators independently assessed if the review
described any of the categories defined in our taxonomy: bug report, feature strength, feature
shortcoming, feature request, praise, complaint or usage scenario, as well as an additional
category named noise, used to refer to reviews that are written in languages other than
English, that only contain non-character symbols and that in general do not make any sense
to the annotators. The truth set creation process consisted of four steps: (1) design of an
annotation guide, (2) sampling of user reviews, (3) annotation of user review sample and (4)
disagreement handling between annotators. In the following we describe each of the steps.

Annotation Guide Design

We created an annotation guide to systemize the truth set creation task and to minimize the
disagreement between annotators. The guide contained instructions about the annotation
task, as well as clear definitions and examples of the categories defined in our taxonomy.
Furthermore, it also contained a brief description of each of the apps from which the reviews
were collected and provided the participants with links where they could find additional
information. The guide was created during five iterations. In each iteration a set of 20 reviews
was annotated by two graduate students with software engineering knowledge and the guide
was modified in order to provide more precise definitions of the annotation task and of each
of the categories. During the last iteration the disagreement between annotators was less than
5%.

5.4 Evaluation Methodology 57

Fig. 5.2 Annotation tool for the creation of the classification truth set.

User Reviews Sampling

We selected 650 reviews from each app based on a stratified random sampling scheme [148]
that took into consideration the rating distribution of each app. The main advantage of this
sampling scheme is the comprehensive representation of the dataset.

User Review Annotation

Five trained annotators each independently labeled 1820 reviews (260 reviews per app)
from the total sample of 4550 reviews. All annotators were graduate students with software
development experience and good English knowledge. The annotation was done through a
specialized web tool that was developed for this task. For each review, the title, comment and
rating were displayed and the annotators labeled the corresponding categories of the review.
Annotators could label more than one category for each review. Annotators could stop and
resume their annotation task whenever they wished and were encouraged to take breaks to
prevent overload and errors. Moreover, we were available to solve questions that occurred
during the annotation task.

Before starting the annotation task all annotators were requested to read the annotation guide
and conduct a pilot annotation with 33 reviews that were not part of the sample that was later
used for training the classifiers. Afterwards, their answers were compared with an answer
key and common misunderstandings and errors were clarified. One of the most common

58 Classification into Software Evolution Categories

errors was the labeling of the reviews as belonging to only one category, when they could be
classified into more.

Each annotator was asked to record the time required to realize the complete annotation task.
The average recorded time was 22 hours for labeling 1820 reviews. This result corroborates
the large amount of effort required to manually analyze user feedback reported in previous
studies [48], [137].

All reviews in the sample were annotated twice and a disagreement analysis, explained next,
was performed to increase the confidence in the truth set.

Category Total FP FN A Problematic Coders
Feature request 35 13 14 8 {4}(11),{2}(6),{1}(6)
Feature strength 30 19 7 4 {2,4}(9)
Feature shortcoming 34 17 12 5 {3}(5),{2}(7),{4}(10)
Praise 35 12 13 10 {5}(5),{1}(6),{4}(6)
Complaint 32 22 7 3 {5}(6),{2}(7),{4}(9)
Usage scenario 32 11 16 5 {3}(5),{2}(9),{4}(7)
Bug report 34 13 16 5 {3}(6),{2}(8),{4}(9)
Noise 13 9 4 0 {4}(5)

Table 5.3 Causes of disagreement (FP: Number of false positives, FN: Number of false
negatives, A: Number of ambiguous). Problematic annotators are identified under the "{}"
characters, the number of reviews erroneously annotated by them is marked under the "()"
characters.

Disagreement Handling

The level of disagreement between annotators indicates the difficulty of manually categorizing
a review. The disagreement can be due to ambiguity in the annotation guide or in the review
content. For the disagreement analysis and reconciliation, we followed the procedure
presented by Maalej and Robillard [114]. First, we analyzed the frequency of disagreement
between annotators and implemented strategies for its automatic reconciliation. To gain more
understanding about the causes of the disagreement, we manually inspected samples of the
disagreements per each category.

In total 1743 reviews (38.31%), out of 4550 reviews, had a disagreement. We took a sample
of 80 reviews for 3 of the apps (Dropbox, TripAdvisor, Evernote), where 10 reviews belonged

5.4 Evaluation Methodology 59

to each category. Afterwards, we manually inspected each review in this sample, noted its
responsible annotator and classified its problems as follows:

• False positive: A category is erroneously annotated as present when there is no clear
evidence of its presence.

• False negative: A category is erroneously annotated as not present when there is clear
evidence of its presence.

• Ambiguous: A review is either unclear or has a category that is not covered by the
guide or its category could be interpreted as both a false negative and false positive.

Furthermore, we ignored erroneously labeled reviews, that is, reviews which categories are
clearly chosen by mistake. For example, if a review contains many positive words, such as
"great", "fabulous" or "awesome" and is assigned to the complaint category, then we assume
that the category was erroneously chosen. Table 5.3 shows a summary of the causes of
disagreements among the annotators per category.

From this analysis we identified a problematic annotator and found that annotators tended
to not label reviews that mention a feature shortcoming as a complaint, even if there is
sometimes a general complaint present.

Afterwards, we executed the following disagreement reconciliation steps (in the mentioned
order) suggested by Maalej and Robillard [114]:

1. If the disagreement includes a problematic annotator for a specific category, then select
the category chosen by the other annotator.

2. If the disagreement includes a category that tends to not be labeled as present in the
review although it is present (false negative) or it includes a category that tends to be
erroneously labeled as present (false positive), then correct accordingly. A category
is considered to have a specific tendency when at least 50% of the analyzed reviews
present the problem.

3. If the disagreement includes two problematic annotators, then select the category
chosen by of the annotator with less errors.

4. If neither of the above cases apply we consider the disagreement to be ambiguous and
remove the category from the current review.

60 Classification into Software Evolution Categories

Table 5.4 Overview of the classification truth set.

App Bug report Feature strength Feature shortcoming Feature request Praise Complaint Usage scenario Noise
Angrybirds 97 77 205 43 243 71 34 19
Dropbox 190 116 203 93 172 21 130 11
Evernote 226 139 227 82 190 51 172 10
Tripadvisor 102 127 249 80 182 43 157 18
Picsart 87 77 99 24 380 41 27 48
Pininterest 214 77 201 48 256 23 53 5
Whatsapp 74 31 97 34 280 27 19 156
Total 990 644 1281 404 1703 277 593 267
Percentage 16.074 % 10.456 % 20.799 % 6.560 % 27.651 % 4.497 % 9.628 % 4.335 %

Table 5.4 shows an overview of the truth set after performing the disagreement steps. In the
truth set, the praise category is the most common category, confirming the results of previous
research [137].

5.5 Classification

The purpose of this experiment was to measure the performance of the user review classi-
fication into the categories defined in our taxonomy (see Section 5.2). In the following we
describe the experiment setup, the used metrics and the main results.

5.5.1 Setup

For this experiment we compared the performance of four different classification algorithms
and the combination of their predictions. More concretely, we compared the performance of
Naive Bayes, Support Vector Machines (SVMs), Logistic Regression and Neural Networks.
We chose Naive Bayes and SVM due to their popular use when classifying text [17], [116],
[124]. Moreover, we chose Logistic Regression and Neural Networks because these algo-
rithms won several competitions5 when performing text classification tasks. We used the
truth set described in Section 5.4.1 for training the classifiers and evaluating its results.

For training our classifiers and reporting on their performance we divided the 4550 annotated
reviews into two different sets: a training and validation set (80% of the reviews) and a test
set (20% of the reviews). We trained the different classifiers and fine-tuned the parameters
of each classifier by applying a 10-fold cross validation on the training and validation set.
Furthermore, we used the test set to evaluate the final performance of the classifiers and avoid

5https://www.kaggle.com/

5.5 Classification 61

overfitting due to the parameter tuning performed during the cross validation6. In the 10-fold
cross validation, 9 folds (90% of the training and validation set) were used for training and
the remaining fold for validating the performance of the classifier.

For the Naive Bayes and Logistic Regression algorithms we built several models and com-
bined their probability predictions. We did not do so for the SVMs and Neural Networks
because SVMs does not produce probability predictions in their outcome and in the case of
Neural Networks, due to the large amount of time required to train the models. Building
only one model per machine learning algorithm might not be the ideal way for reporting the
model performance, since a specific model could be highly dependent on the provided dataset
[64]. Thus, we argue that it is better to train different models (using different parameters) per
machine learning algorithm and then average the predictions of the models.

We apply a decision rule on the probability predictions of the best models of the machine
learning algorithm. The decision rule averages the predictions of each of the models and sets
the prediction to 1 if the average prediction is greater than a certain threshold and it sets the
prediction to 0 otherwise. The decision rule can be formalized as follows:

Mj(r) = 1 () 1
m
(

m

Â
l=1

hl, j(r))> k (5.1)

where Mj(r) is the prediction of the group of models over review r on category j, m is the
number of models built using the classification algorithm, hl, j(r) is the prediction of model l
on category j for review r and k designates the threshold value7.

To assure a satisfactory performance, the models that were selected for combination had a
precision average of 65% or higher and had an F-Measure value of 50% or higher. In the
remainder of this chapter whenever we speak about individual classifiers of the Naive Bayes
and Logistic Regression classifiers we refer to the model combination of the classifiers.

Furthermore, we used ensemble methods to combine the prediction of the different classifi-
cation algorithms. Ensemble methods provide techniques to merge a set of classifiers and
then predict a new result using the vote of the individual predictions [38]. The motivation for
using ensembles is to emphasize the strengths of different classification algorithms while
diluting their weaknesses.

6We used the grid search functionality from Scikit for the parameter tuning of each classifier: http:scikit-
learn.orgstablemodulesgrid_search.html

7We tuned the threshold value by using the grid search functionality of SciKit: http:scikit-
learn.orgstablemodulesgrid_search.html

62 Classification into Software Evolution Categories

We apply the majority voting scheme [101] to combine the output of the four chosen
classification algorithms. Let r be a review, H j(r) the prediction of the ensemble on review r
for the category j and hi, j(r) the prediction of a specific classification algorithm i for category
j for review r. Further, let n be the number of individual classifiers conforming the ensemble.
We define the majority voting scheme of our ensemble as follows:

H j(r) =

(
1 if Ân

i=1 hi, j(r)> n/2
0 otherwise

(5.2)

where 1 denotes that the review belongs to the j category and 0 that it does not.

In our experiment we evaluated three ensembles (A, B and C). In ensemble A, the 4 classifiers
were grouped to vote for the final prediction. In ensemble B, we excluded the Naive
Bayes classifier since it had the worst performance among all individual classifiers (see
Section 5.5.3). In ensemble C, Naive Bayes and SVMs, the first and second worst performing
algorithms (see Section 5.5.3), were excluded.

5.5.2 Metrics

We used three metrics traditionally used in supervised machine learning for evaluating the
accuracy of the classifiers: precision, recall and F-Measure. We define them as described in
Chapter 3 (equations 3.1, 3.2, 3.3). In this case, a true positive occurs when the classifier
predicts a category for a review and the review is also categorized as such in the truth set.
A false positive occurs when the classifier predicts a review as belonging to a category not
assigned in the truth set. A false negative occurs when the classifier does not predict a review
as belonging to a category that is assigned in the truth set.

5.5.3 Results

Table 5.5 shows the results of the Naive Bayes, SVM, Logistic Regression and Neural
Network classifiers, as well as for the three ensembles.

Overall, the Logistic Regression and Neural Network classifiers showed a better precision
than the Naive Bayes and SVM models. Furthermore, the Neural Network model had the
highest recall and F-measure average among all individual classifiers.

The ensembles performed similar to the individual classifiers when predicting most categories.
Although a high precision could be achieved by solely using Logistic Regression or a Neural

5.5 Classification 63

Ta
bl

e
5.

5
Th

e
in

di
vi

du
al

cl
as

si
fie

ra
nd

en
se

m
bl

e
re

su
lts

on
th

e
te

st
se

t.
P

st
an

ds
fo

rp
re

ci
si

on
,R

fo
rr

ec
al

la
nd

F
fo

rF
-m

ea
su

re
.

N
ai

ve
Ba

ye
s

SV
M

Lo
gi

st
ic

R
eg

re
ss

io
n

N
eu

ra
lN

et
w

or
k

En
se

m
bl

e
A

En
se

m
bl

e
B

En
se

m
bl

e
C

P
R

F
P

R
F

P
R

F
P

R
F

P
R

F
P

R
F

P
R

F
Bu

g
re

po
rt

0.
86

0.
66

0.
74

0.
86

0.
68

0.
76

0.
90

0.
60

0.
72

0.
83

0.
75

0.
79

0.
86

0.
72

0.
78

0.
86

0.
72

0.
78

0.
83

0.
80

0.
81

C
om

pl
ai

nt
0.

50
0.

02
0.

03
0.

20
0.

03
0.

06
0.

50
0.

02
0.

03
0.

45
0.

08
0.

14
0.

20
0.

03
0.

06
0.

20
0.

05
0.

07
0.

45
0.

08
0.

14
Fe

at
ur

e
re

qu
es

t
0.

73
0.

18
0.

26
0.

69
0.

33
0.

45
0.

68
0.

26
0.

38
0.

71
0.

39
0.

50
0.

72
0.

40
0.

51
0.

72
0.

40
0.

51
0.

71
0.

39
0.

50
Fe

at
ur

e
sh

or
tc

om
in

g
0.

70
0.

77
0.

73
0.

72
0.

57
0.

64
0.

69
0.

57
0.

62
0.

74
0.

75
0.

75
0.

70
0.

77
0.

73
0.

70
0.

77
0.

73
0.

68
0.

80
0.

73
Fe

at
ur

e
st

re
ng

th
0.

60
0.

13
0.

22
0.

69
0.

29
0.

41
0.

75
0.

23
0.

35
0.

70
0.

50
0.

59
0.

70
0.

50
0.

59
0.

70
0.

50
0.

59
0.

70
0.

50
0.

59
N

oi
se

0.
83

0.
42

0.
56

0.
83

0.
42

0.
56

1.
00

0.
58

0.
74

0.
69

0.
75

0.
72

0.
69

0.
75

0.
72

0.
69

0.
75

0.
72

0.
69

0.
75

0.
72

Pr
ai

se
0.

67
0.

75
0.

71
0.

74
0.

71
0.

72
0.

76
0.

54
0.

63
0.

76
0.

73
0.

74
0.

71
0.

79
0.

74
0.

71
0.

79
0.

74
0.

71
0.

75
0.

73
U

sa
ge

sc
en

ar
io

0.
67

0.
09

0.
16

0.
56

0.
18

0.
27

0.
70

0.
19

0.
29

0.
73

0.
27

0.
39

0.
59

0.
21

0.
31

0.
59

0.
23

0.
34

0.
69

0.
34

0.
46

A
v
e
r
a
g
e

0.
70

0.
48

0.
51

0.
70

0.
49

0.
55

0.
75

0.
42

0.
52

0.
74

0.
59

0.
64

0.
70

0.
57

0.
62

0.
69

0.
63

0.
65

0.
71

0.
62

0.
64

64 Classification into Software Evolution Categories

Network, the ensembles achieved higher recall. However, as the individual classifiers,
ensembles failed to detect the complaint category. Nevertheless, they managed to identify
more of the usage scenario and feature strength reviews, as reflected in the higher recall
values when comparing with the individual classifiers.

To get more insight into the performance of each classifier we performed a McNemar test
[73] (see Appendix 7.2 on the performance of each classifier for predicting each category and
comparing supervised classification learning algorithms as done in previous work [22], [39].
Overall, Neural Networks performed statistically significant better than the other individual
approaches. Among the ensembles, ensemble C performed the best. With the exception of
the praise and feature shortcoming categories, where Neural Networks performed statistically
better, ensemble C was statistically better or equal to the other machine learning algorithms
or ensembles. Furthermore, ensemble C tended to outperform the individual algorithms
with statistical significance with the exception of Neural Networks were there was almost
no statistical significant difference among their performance in the different classification
categories (with exception of the bug report and usage scenario categories, where ensemble
C performed better and the feature shortcoming category where Neural Networks was better).

As Table 5.5 shows, all the classifiers had a similar performance when predicting the praise
and bug report categories. The reason for the precise prediction is the high frequency of
certain words, as observed in the c2 feature selection results. For example, the words
"crash" and "fix" were highly correlated to the bug report category, while the words "good",
"awesome" and "nice" were highly correlated to the praise category. As a result, these words
provided the best discrimination between the categories. Moreover, according to the truth set
the reviews that were labeled as praise and bug report, were very frequent (see Table 5.4)
hence, the models were trained using a high number of reviews belonging to these categories.

Unfortunately, there were few discriminative words for the other categories. Consequently,
categories such as complaint and usage scenario were poorly detected. However, we believe
that more reasons might have contributed to the poor performance of the complaint category.
One problematic source might be the annotation guide where definitions could have been
misunderstood or apparently similar categories, such as complaint and feature shortcoming
could have been confused. To diminish this threat, at least one clarification session with each
of the annotators and one of the authors was held. However, misunderstandings could still
be possible. Moreover, we observed some overlapping words between categories in the c2

results. For example, within the reviews associated to the complaint and feature shortcoming
categories, words such as "horrible" and "terrible" overlapped. In addition, reviews labeled
as feature shortcoming were far more frequent than those labeled as complaint and therefore

5.6 Summarization 65

more prevalent in the training set (see Table 5.4). The same problems applied to praise and
feature strength categories, with the difference that in this case the praise category was more
prevalent in the truth set than the feature strength category. All the classifiers had a similar
performance in predicting the noise category, although the category was not very frequent,
but rather associated to a very distinctive set of words.

We noticed that some of the features were redundant such as "good" and "gud", two words
with the same meaning but different spelling. The stemming step is not able to fix such issue,
therefore, a spell checker method could provide an improvement to our preprocessing step
by removing duplicate words. We also observed that some of the reviews associated to the
praise category, were actually sarcasm.

5.6 Summarization

The purpose of the experiment was to evaluate the quality of the feature-centric summaries.
More concretely, we were interested in assessing the coherence of the summaries and the
accuracy of the association between the original user reviews and the summaries. In the
following we describe the experiment setup, the used metrics and the main results.

5.6.1 Setup

We evaluated the quality of the summaries of the reviews of the Dropbox and Evernote apps.
Our choice was motivated bu the fact that the two apps had the highest amount of features
according to annotators and were the apps with the lengthiest reviews (see Table 3.2 and
Table 3.3), indicating a higher need of summarization techniques. During our setup, we ran
the Neural Network classifier on the remaining reviews from the two apps that were not
used for training and testing the classifiers. We chose the Neural Network because it was the
most effective of the individual classifiers (see Section 5.5.3). Afterwards, we extracted the
features for each of the apps and applied an LDA algorithm (see Chapter 3, Section 3.2.4) to
the extracted features belonging to each category. Because our summaries are feature-based
and features change significantly between the different apps, we analyze the summaries of
the two apps separately. Table 5.6 shows the number of classified reviews for each category,
as well as the number of automatically extracted features per category.

To run the LDA algorithm we need to assign the number of topics k to generate. We based
our initial choice in the k parameters chosen by Galvis et al. [48], who also summarized app

66 Classification into Software Evolution Categories

user reviews with LDA on apps with similar numbers of reviews. Following their choices
we decided to evaluate the Evernote summaries with k = 100 and k = 70 and Dropbox with
k = 30 and k = 60. However, when manually analyzing the topics, we noticed that the
Dropbox summaries had a high amount of sparse topics with only one or two features from
the input vocabulary, indicating that the k value was too high to get semantically coherent
reviews. Therefore, we decided to reduce the k value until topics with at least 7 features
were prevalent. At the end, we generated the Dropbox topics with k = 5 and k = 108. It is
important to note that this problem did not occur with the Evernote summaries, possibly
because the Evernote reviews were much richer in terms of the automatically extracted
features, as Table 5.6 shows.

We evaluated the quality of the feature-centric summaries with the help of the two assessment
tasks proposed by Chang et al. [26] for evaluating topics created by probabilistic topic models,
such as LDA:

1. Word intrusion: This task evaluates the semantic coherence of the topics according to
human assessors9. In the task we show the participant a list of 4 features belonging to
a topic (according to the LDA algorithm) and a feature not belonging to the topic, a
feature intruder, in random order. The participant then tries to identify the intruder.
The reasoning behind the task is that if the features belonging to the topic are coherent
then it should be easy for the participants to find the intruder (e.g. in the topic {format
font, color highlight, format option, io device} one can easily identify the io device

8We generated LDA topics for the reviews from the Dropbox app in Chapter 3 as well, with a k value of 20.
However, the sparsity problem did not occur then, as the LDA algorithm was run on all of the review sample
(400 reviews) instead of on reviews belonging to specific categories.

9We evaluated the coherence of the coarse-grained summaries in Chapter 3 by allowing assessors to explicitly
rate the perceived coherence using a Likert scale. In this chapter we introduce a new evaluation methodology
that quantifies the perceived coherence and reduces the subjectiveness of the assessment.

Table 5.6 Results from classification and feature extraction steps for Dropbox and Evernote.

Dropbox Evernote
reviews # features # reviews # features

Bug report 489 164 1566 10173
Feature strength 68 11 840 6426
Feature short. 577 182 2250 19351
Feature request 121 60 171 1640
Praise 413 29 4495 15618
Complaint 3 1 14 21
Usage scenario 80 29 1347 16520
Noise 20 0 100 79

5.6 Summarization 67

feature as the intruder). If the topic lacks coherence it might be difficult to identify the
intruder and people would then usually make a random choice(e.g. in the topic {format
note, sync folder, ipad crash, free upgrade} it is unclear which feature is the intruder).

2. Topic intrusion: This task tests if the association between topics and reviews is accurate.
In the task we present the participant the title and comment of a review, along with 3
topics associated to it with a high probability according to the LDA algorithm and an
intruder topic. Then, the participant tries to identify the intruder topic. Similar to the
word intrusion task, if the association between the reviews and the topics is relevant and
intuitive the participants should not have any trouble identifying the intruder. However,
if this is not the case participants will likely choose randomly.

We evaluated 5 randomly chosen topics for each review category that had more than 100
assigned reviews. Only categories that had more than 100 reviews were considered since
these were regarded as the categories in need to be summarized due to the high number of
associated reviews. Similarly, we also evaluated 5 randomly chosen reviews belonging to
each of the categories associated with more than 100 reviews. We chose the intruder features
and topics randomly10.

In total, 16 participants performed the summary evaluation. To avoid bias, all participants
were not familiar with the LDA generated summaries and the procedure for its generation. In
total, the participants performed 20 word intrusion tasks and 20 topic intrusion for Dropbox
and 30 word intrusion tasks and 30 topic intrusion tasks for Evernote. Each task was executed
twice by two different participants. Figure 5.3 shows and example of the word and topic
intrusion tasks.

5.6.2 Metrics

For evaluating the summaries we used the Model Precision (MP) and Topic Log Odd (TLO)
metrics proposed by Chang et al. [26]. The metrics are based on the results of the previously
described topic and word intrusion tasks and are defined as follows:

• Model Precision: Model precision is defined by the fraction of participants agreeing
with the LDA topic model on which feature is considered an intruder. Let f m

k be
the index of the intruding feature generated from the kth topic inferred by model m.

10To assure that they were not associated with the evaluated topic or review we chose the intruder among the
features and topics that had a low probability association with the assessed topic or review, respectively.

68 Classification into Software Evolution Categories

Word Intrusion

Topic Intrusion

One of the following features does not belong to the group. Select
the odd one out.

color font
note laptop
format option
color highlight
option font

Select the group of features that does not match the following user
review.
Best app ever! It works... Flawlessly. Allows you to record, keep track of,
organize, and access your notes, anywhere you are. What more can I say?

note cloud, note option, note folder, note desk
note list, list grocery, recommend anyone, access information
note keep, access note, track note, form note

Fig. 5.3 Example of word intrusion and topic intrusion tasks.

Additionally, let imk,p be the intruder selected by participant p on the set of features of
the topic k created by the model m and P the number of participants. Model precision
is then defined as follows:

MPm
k = Â

P

f(imk,p, f m
k)

P
where

f(imk,p, f m
k) =

(
1 if imk,p = f m

k
0 otherwise

(5.3)

• Topic Log Odd: This metric is a quantitative measure of the agreement between human
judgement and the output of the LDA model with respect to the association between
reviews and the generated topics. Let q m

r be the vector that stores the probability with
which review r is associated to the topics created by the LDA model m. Additionally,
let jm

r,p 2 1...K be the intruding topic selected by the participant p for review r in model
m. Furthermore, let jm

r,⇤ be the "real" intruder and P the total of participants. Topic
Log Odd is then defined as the log radio of the probability that the real intruder is
associated to topic k and the probability that the intruder detected by the participants is
associated to topic k:

TLOm
r = Â

P

(logq m
r, jmr,⇤
� logq m

r, jmr,p
)

P
(5.4)

The upper bound of TLOm
r is 0, the higher the value of TLOm

r the greater the corre-
spondence between the topic model and the experiment participants.

5.7 Results 69

Table 5.7 Examples of Dropbox (k = 10) and Evernote (k = 70) topics for different categories.

Dropbox
Bug report

screen_view, file_phone, screen_gray, open_ipad
Feature shortcoming

drain_battery, version_update, ipad_iphone, use_space
Feature request

add_ability, file_edit, view_document, pdf_view
Evernote
Bug report

iphone_freeze, reinstall_freeze, freeze_access, iphone_install
Feature shortcoming

year_premium user_experience log_time slow_respond
Feature request

color_font, format_option, color_highlight, font_change

5.7 Results

Table 5.7 shows examples of the feature-centric topics that conform the summaries of the
Dropbox and Evernote apps for different categories. Developers can use the summaries to get
an idea of the most frequent topics mentioned by users and prioritize their work accordingly
without needing to read the complete set of reviews. For example, the feature shortcoming
topic consisting of the features {drain battery, version update, ipad iphone, use space, io
device} from the Dropbox app indicates that users are reporting problems with the power
and space consumption while using their mobile devices after updating the app. Therefore,
developers could decide to focus on this app functionality for the next release. Similarly, the
Evernote topic from the feature request category with the {color font, format option, color
highlight, font change} features indicates that users are interested in having more formatting
features in the app and this information could help developers prioritize their evolution tasks.
As discussed in Chapter 3.4.1 and shown in the examples of Table 5.7, not all terms detected
as features in our approach are actually app features. However, these non-feature wordsets
convey much needed context to the topics.

Table 5.8 shows the Model Precision (MP) and Topic Log Odd (TLO) averages for both
apps11. The MP was similar for the Evernote summaries, independently of the k values.
However, the Dropbox MP when generating 5 topics was lower than when creating 10 topics.
The result indicates that the summaries generated with the higher k value were more coherent
for Dropbox. A possible explanation for this result could be that with k = 5 the topics are too

11For MP the closer to 1 the better the result, for TLO the closer to 0 (higher) the better the result.

70 Classification into Software Evolution Categories

Table 5.8 Model Precision (MP) and Topic Log Odd (TLO) average for the Dropbox and
Evernote summaries.

App # Topics µ MP µ TLO
Dropbox 5 0.55 -4.29
Dropbox 10 0.75 -4.34
Evernote 70 0.75 -6.05
Evernote 100 0.77 -6.73

generic and few semantic commonalities between the features can be identified. On the other
hand, the Dropbox reviews had a stronger association with the created topics compared to
the Evernote reviews, as is demonstrated in the TLO averages. There was a small difference
in the TLO results of the models of the same app generated with different k values. There is,
to the best of our knowledge, no previous work that has used the MP and TLO metrics for
analyzing the quality of software artifacts and, in particular, user feedback. However, our
MP values are comparable to previous summaries created on newspaper and Wikipedia12

articles [26], indicating that the results are acceptable. Nevertheless, the TLO comparison is
less encouraging indicating the need for more fine tuning in the topic model.

5.8 Discussion

In this section we discuss our results and describe the threats to validity of the experiments
we performed.

5.8.1 Results

The best performing individual classifier was the Neural Network. From the ensembles,
Ensemble C (consisting of the Logistic Regression and Neural Network individual classifiers)
was the best. There were few statistical significant differences between both of these
classifiers (see Appendix). In the bug report and usage scenario categories, Ensemble C
performed better with statistical significance. In the feature shortcoming and praise categories
the Neural Network performed better with statistical significance.

While Neural Network had the best performance among the individual classifiers, during the
training and testing phases it used the most storage space, whereas Naive Bayes required the
least. Moreover, the Neural Network was the slowest algorithm. The number of parameters

12https://en.wikipedia.org

5.8 Discussion 71

to be tuned, is an indicator for the ease of use of an algorithm. In this respect, the Neural
Network was by far the most complex and most sensitive to tuning. On the other hand,
Naive Bayes was the easiest to use because of its few parameters. Accordingly, the results
of the Naive Bayes algorithm could be easily interpreted because of the simple nature of its
algorithm that relies on probabilities, unlike the Neural Network, Logistic Regression and
SVM.

The poor prediction performance regarding certain categories might be also a result of the
limitations of the binary problem transformation performed in the preprocessing of the
classification step, as mentioned in Section 5.3. The ground assumption of the category
independence is a key disadvantage of this approach. To overcome this issue, capturing the
loss information through the introduction of category dependency might be an improvement
to our work. In other words, a label power-set method could be introduced, as described
by Tsoumakas et al. [160]. The label power-set combines the entire category set into a set
containing all possible category combinations. As a result the classifiers take into account
the category correlation. However, time complexity, which can be exponential due to the
combinatorics method, is a key disadvantage.

It is important to mention that all classifiers were trained on mixed data (i.e. from reviews
from the different apps). We hypothesize that better results would be obtained when creating
classifiers for each app.

While the summaries could be useful for software evolution, we noticed some limitations. In
the Evernote summaries, where the k values were much larger, duplicate topics (topics with
the same theme) were present. Furthermore, dominating features, that is features that tended
to appear in many topics e.g., the rename file and transfer file features for Dropbox and make
note and sync note for Evernote, appeared in summaries from both apps.

Moreover, we noticed that some topics associated with for e.g. the praise category contained
features that would most likely be associated with the bug report category e.g., black screen.
This happens because the classification is done on the review level and reviews can be
associated to more than one category (e.g. the review "I love this app, but after this update
it keeps crashing" belongs to both in the praise and bug report categories). Sentence-level
classification might show better results in this respect (i.e. less mixed topics). However,
the small study described in Section 5.3 showed that sentence-level classification was in
many cases difficult to perform due to insufficient context. Furthermore, LDA tends to work
better on longer text [74]. Therefore, alternative summarization techniques for sentence-level
summarization would need to be explored.

72 Classification into Software Evolution Categories

Additionally, we found that some of the topics were hard to understand due to the lack of
context and the exclusive presentation of extracted features. For example, as mentioned
in Section 5.7, the topic {drain battery, version update, ipad iphone, use space, io device}
describes problems with the power and space consumption on mobile devices after an update.
However, the interpretation of the topic requires some experience with abstracting information
from the summaries. We believe that complementing the summaries with sentences that
contain the extracted features could aid developers in better understanding and interpreting
them.

In Chapter 3 we evaluated the coherence of feature centric summaries by allowing researchers
with development experience to assign a Likert scale value to the logical structure and
consistency of the summaries according to their perception (see Section 3.4.3). The coherence
levels for the Dropbox and Evernote apps was good (see Section 3.5.1). MP values are in
the [0,1] range. If we convert them to the 5-level Likert scale used in Chapter 3, the results
of the evaluation in this Chapter for both apps is also good and therefore, the same as the
previously reported results.

5.8.2 Threats to Validity

A construct validity threat in our study was the creation of the truth set. Annotators might
have misconceptions about the categories included in our taxonomy and could erroneously
label the truth set. We tried to reduce this threat by providing an annotation guide with
detailed definitions and by holding a trial run of the annotation task with each annotator and
discussing the occurred errors with one of the authors. Misconceptions between annotators
were also handled by labeling each review twice. Additionally, we handled disagreements by
detecting problematic annotators and giving a higher vote to annotators who had a low error
rate when labeling the relevant category.

Reporting classification results obtained on the validation set when fine-tuning parameter
models during the 10-fold cross validation can result in overfitting and therefore, results can
be overly optimistic. We handled this threat by fine tuning the parameters on the validation
set during the 10-fold cross validation and then reporting the results of the classifier on the
previously unseen test set.

We avoided participant bias in the evaluation of the coherence of the summaries and its
association accuracy by choosing participants that were not previously familiar with our
approach and the generated results. Furthermore, we handled threats to internal validity in
the summary evaluation by randomly selecting the topics and features used in the topic and

5.9 Related Work 73

word intrusion tasks. Moreover, the intruders were also randomly selected among features
and topics that had a low probability of being associated with the tested topic or review.

The classification step of our approach was evaluated on app reviews from 7 different
apps from two different app stores. The apps were from a wide range of categories and,
as a consequence, reviews were written in different styles and with varying vocabularies.
However, our results cannot be generalizable to all apps. Similarly, the summarization
step was evaluated on the reviews from 2 different apps. While both apps have different
functionalities and therefore different descriptions in their reviews, larger evaluations need to
be conducted to generalize the results.

5.9 Related Work

We focus our related work on three main research directions: mining user feedback for
software engineering, as well as the classification and summarization of software artifacts
that contain natural language.

5.9.1 Mining User Feedback for Software Engineering

Iacob and Harrison [78] extracted feature requests from app store reviews by means of
linguistic rules and used LDA to group the feature requests, our approach con be extended
to include linguistic rules to help improve the accuracy of the classification step. Galvis
Carreño and Winbladh [48] applied LDA to summarize user reviews. The summarization
step of our approach can be seen as an extension of their work. Instead of using simple terms
we input the feature extraction mechanism presented in Chapter refchapter:re to the LDA.

Fu et al. [47] apply a linear regression model combining the text from user reviews and its
ratings to identify incorrectly rated reviews. They input the words classified as negative
words into an LDA algorithm to find the main reason why users are unsatisfied with the app.
Furthermore, Li et al. [103] analyze user reviews to measure user satisfaction by matching
words or phrases in the user comments with a predefined dictionary. In contrast, we are
interested not only on the satisfaction of users, but also on their requests, failure reports and
the scenarios in which they are using the app.

Chen et al. [27] used Naive Bayes for finding informative review sentences and LDA for
grouping sentences with similar content. They then rank the groups of reviews according to

74 Classification into Software Evolution Categories

a scheme which analyzes volume, time patterns and ratings. Our approach could be extended
to include a review ranking and could also benefit from the filtering of uninformative reviews.

5.9.2 Classification of Software Artifacts

Automatic classification of different software artifacts has received widespread attention
from the community. The work that is perhaps most similar to ours is that of Panichella et
al. [138] who classified user reviews into a taxonomy created after the analysis of developer
emails. In their approach they use linguistic rules and machine learning for classifying
the reviews. In comparison our approach does not make use of predefined rules and the
taxonomy presented in this paper can map to finer-grained evolution tasks and was created
from content present in app store reviews. Furthermore, we analyze the performance of the
combination of individual classifiers or ensembles. Hedegaard and Simonsen [69] proposed
a taxonomy of usability and user experience (UUX) and used machine learning classification
algorithms to automatically categorize single sentences of the reviews. Similar to us, they
used binary transformation in their classification. However, they did not apply ensemble
methods to combine the predictions of single classifiers. Bacchelli et al. [7] presented an
approach to classify useful information from development emails using Naive Bayes and
a natural language parser. Antoniol et al. [51] built classifiers to categorize posts in bug
tracking systems as either bugs or change requests. Furthermore, Pingclasai et al. [128]
proposed an alternative for classifying bug reports based on topic modeling, whereas Zhou et
al. [171] applied machine learning techniques for classifying bug reports based on structured
and unstructured text. Additional machine learning approaches have also been applied
to classify software blogs [141] and for categorizing the content value in API reference
documentation[146].

5.9.3 Summarization of Software Artifacts

Most summarization of natural language in software artifacts has been done in bug reports.
Rastkar et al. [144] proposed the use supervised machine learning techniques for their
summarization. Furthermore, Lukins et al. [110] applied LDA to summarize bug reports
and software code and perform concept location. Mani et al. [115] presented the use of four
unsupervised methods for summarizing bug reports.

However, previous work has also investigated summarization techniques for other software
artifacts containing natural language. Guzman and Bruegge [61] used LDA to summarize

5.9 Related Work 75

email communication and wiki collaborations in software teams and applied sentiment
analysis to summarize the affect information in the artifacts. Hindle et al. [72] proposed a
probabilistic topic modeling method with time windows to summarize commit messages and
analyze how they evolve over time. Furthermore, Pagano and Maalej [136] summarized and
analyzed the content of developers’ blogs by applying LDA.

Chapter 6

Diversity Retrieval

6.1 Introduction

With the growing trend of the Internet, more users are giving feedback about software appli-
cations through specialized user feedback sites or in the case of apps, by writing user reviews
directly in the app stores. The large amount and unstructured nature of user feedback makes
its analysis and processing a challenging task. To this end, previous research [27, 48, 172] has
proposed algorithms for automatically summarizing user feedback. However, summarization
through traditional text mining methods can lead to the silencing of experiences and opinions
of those who do not belong to the majority of users providing feedback.

The needs and opinions of non-traditional or less vocal users should be considered because
their stand can be technically valuable and conduct to better decision making, leading to
software products with higher quality and usability. Furthermore, being aware of user needs
and opinions allows those involved in the creation of software to become more conscious of
the diversity in their user base and could motivate them to create and evolve software that is
more inclusive of society sectors that are usually ignored by the software industry.

To avoid the silencing of non-traditional or less vocal users and gain understanding on
conflicting opinions present in user feedback we propose DIVERSE (DIVErsity Retrieval
SoftwarE), an approach to reduce the effort in collecting a comprehensive set of user reviews.
In particular, we focus on the retrieval of app store reviews which represent the diverse user
opinions concerning different app features.

In our main usage scenario, developers and analysts can query for reviews mentioning a
feature(s) of their interest (e.g., "share files"). DIVERSE then returns a set of reviews which

78 Diversity Retrieval

mention the queried feature(s) and are representative of the positive, negative or neutral
experiences and opinions users have concerning the feature(s) (e.g., the set of 3 reviews with
the following comments: "sharing files with the app has made my work much better" -positive,
"I hate sharing files with the app, it is so slow" -negative, "the app has functionality for
sharing files" -neutral). DIVERSE users can then click on the review that is most interesting
for them and see a group of reviews that are semantically similar and which have a similar
sentiment.

By grouping reviews by their mentioned features and sentiments DIVERSE can help de-
velopers and other decision makers recognize conflicting opinions concerning a feature.
Furthermore, augmented with additional information, such as the number of reviews asso-
ciated to each group, it can help decision makers recognize the opinions of majority and
minority users and can also help in prioritizing tasks. DIVERSE allows for the election of the
number of groups, allowing for fine or coarse grained analysis of the sentiments associated
to the feature(s) of interest.

DIVERSE extends the approach described in Chapter 3 for extracting mentioned features
and their associated sentiments (opinions and experiences concerning features) from user
reviews. In this chapter, we formalize the problem of collecting a representative set of user
reviews in terms of the features and opinions mentioned in the reviews as an information
retrieval task and implement a greedy algorithm as an approximation to the formalization.
We evaluated DIVERSE quantitatively on reviews from 7 apps from two different app stores.
The quantitative evaluation results show that DIVERSE has a better diversity performance
than the baseline approaches. Additionally, a controlled experiment found that DIVERSE
can help save time when analyzing user reviews and is considered useful for finding con-
flicting opinions. Furthermore, an additional experiment found that the retrieved reviews are
considered relevant for software evolution by subjects with software development experience.

The chapter is organized as follows. Section 6.2 presents the feature and sentiment centric
collection of user reviews as an information retrieval task. In Section 6.3 we introduce the
DIVERSE approach. Section 6.4 describes our evaluation methodology, whereas Section 6.5,
Section 6.6 and Section 6.7 detail the setup and results of our three experiments. In Section 6.8
we discuss our findings, as well as the limitations and implications of DIVERSE.

6.2 Formal Task Definition 79

6.2 Formal Task Definition

We formalize the task of retrieving a set of reviews mentioning a wide range of features
with a wide range of associated sentiments as an information retrieval task with a focus on
diversification. We base our formalization on the task definition provided by Naveed et al.
[129] for the retrieval of diverse product reviews and refer to this task as FS-COVERAGE(k).

Let R= {r1,r2, ...,rm} be the set of reviews associated to app A, where F = { f1, f2, .., fn}
are the queried app features and s(f ,r) is a positive or negative quantitative sentiment value
associated to feature f in review r. The goal of FS-COVERAGE(k) is to retrieve k reviews
from R by maximizing the number of features F mentioned in the reviews and the sentiment
range associated to each feature.

It is possible for a review to contain both positive and negative sentiments concerning a
feature, e.g., "I loved sharing files with the app until the last release, it’s awful now". In this
sentence, the feature hsharing f ilesi has a positive and a negative sentiment associated to
it. Similar to the sentiment analysis techniques described in Chapter 3, Section 3.2.3, we
represent the positive sentiment of feature f in review r as s+(f ,r) 2 [1,5], and its negative
sentiment as s�(f ,r) 2 [-1,-5]. Given the subset of reviews R0 where R0 ✓R we define the
feature-sentiment diversity score FS-Div(R0) as follows:

FS-Div(R0) = Â
f2F

w1.max
r2R0

s+(f ,r)+w2.max
r2R0

| s�(f ,r) | (6.1)

where w1 and w2 denote the weights which allow for the fine-tuning of the retrieval. When
users are more interested in retrieving more positive reviews over negative ones, they can
assign w1 a score that is higher than w2. Similarly, when users are more interested on
negative reviews they can assign a higher score to w2 than w1. FS-COVERAGE(k) maximizes
FS-Div(R0) so that |R0| k. Following the proof of Tsaparas et al. [159] we can conclude
that FS-COVERAGE(k) is NP-hard.

6.3 Approach

DIVERSE’s main goal is to retrieve a set of reviews which mention the largest number of
features in F (as defined in Section 6.2) and to cover the largest sentiment range associated
to each of the features. For this we (1) extract the review comment and title and preprocess
the text, (2) extract the app features mentioned in the reviews, (3) apply lexical sentiment

80 Diversity Retrieval

analysis in order to excerpt the sentiments associated to the extracted features, (4) use a
greedy algorithm to retrieve a set of diverse reviews in terms of the mentioned features and
its sentiments, (5) group reviews whose content and sentiment are similar.

Using the terms presented in our task definition (Section 6.2) we can say that the extraction
of features from our complete collection of reviews results in the set F⇤ where F ✓ F⇤.
Furthermore, sentiment analysis performs the role of the functions s+(f ,r) and s�(f ,r). In
the following section we describe each of the steps of the DIVERSE approach.

6.3.1 Preprocessing, Feature Extraction and Sentiment Analysis

We execute the preprocessing and feature extraction described in Chapter 3 on app user
reviews. For sentiment analysis we use the intermediate results of the sentiment analysis
described in Chapter 3 and assign each feature both sentiment polarities (positive and
negative) assigned to the review in which it is present. We use the review score as the
sentiment score for all features present in the review, as the results from Chapter 3 show that
the review-based score correlated better to the sentiments assigned by human annotators. The
end result of this step is a list of features with a determined positive and negative sentiment.

Algorithm 1 Greedy Diversification Algorithm
Input: Set of reviews R = {r1...rn}, set of features F = { f1... fn}, number of reviews to
return k.
Output: Set of reviews R0 = {r j...rk} where R0 ✓R

1: R00 = {}
2: for i 2 1 · · ·k do
3: for r 2R\R0i�1 do
4: compute FS-GREEDY(r)
5: end for
6: r0i = argmax

r2R\R0
FS-GREEDY(r)

7: R0i =R0i�1[r0i
8: end for
9: return R0k

6.3.2 Feature Sentiment Retrieval

The main goal of the feature sentiment retrieval is to collect a set of reviews which contains
the maximum number of features in F associated to the largest range of sentiments. This

6.4 Evaluation Methodology 81

problem was formalized in Section 6.2 and referred to as FS-COVERAGE(k). Since FS-
COVERAGE(k) is NP-hard we use a greedy algorithm for its computation. The algorithm
receives as an input the set of reviews from which the retrieval will be performed, the
number of desired retrieved reviews k, as well as the set of features F among which the
diversification should occur. The algorithm starts with the empty set of reviews R0. It then
iteratively calculates the cumulative score function FS-GREEDY(r) and adds the review
with the highest score to R0. FS-GREEDY(r) is defined as the gain in terms of feature and
sentiment coverage when adding review r and is formally described as follows:

FS-GREEDY(r) = Â
f2F

w1.[max(0,s+(f ,r))�max

r02R0
s+(f ,r0)]

+w2.[max(0, | s�(f ,r) |)�max
r02R0

| s�(f ,r0) |]
� (6.2)

where max
r2R0

s+(f ,r) and max
r2R0

s�(f ,r) represent the most positive and negative sentiments

of feature f present in R0. In other words, the coverage gain by adding review r to R0 is
computed by calculating the difference between the most positive and negative sentiments
in R0 regarding f and the positive and negative sentiments of f in review r. The greedy
algorithm returns the set of reviews R0 ✓R which contains the features that better satisfied
the FS-GREEDY scoring function. R0 is the final output of DIVERSE. Algorithm 1 shows
this step in the form of pseudo-code.

6.3.3 Grouping Similar Reviews

To reduce information overload, each review that was not retrieved by the diversification
algorithm, denoted by the set R00 (where R00 ✓ R\R0) is grouped with the most similar
review r0 (where r0 ✓ R0). We consider that two reviews are similar to each other when they
mention the same feature and if the sum of the absolute values of the differences between their
respective positive and negative sentiment scores is within a certain configurable threshold.
The reviews that are most similar are those that fulfill the threshold condition and have the
smallest difference between their respective sentiment scores.

6.4 Evaluation Methodology

We aimed at evaluating (1) the diversity of the reviews retrieved by DIVERSE, (2) the impact
and usefulness of DIVERSE when analyzing reviews and making decisions concerning the

82 Diversity Retrieval

evolution of features and (3) the software evolution relevance of the reviews retrieved by
DIVERSE.

We performed a quantitative evaluation for measuring DIVERSE’s diversity retrieval per-
formance, a controlled experiment to assess the impact and usefulness of DIVERSE when
analyzing user reviews. Also, we conducted an evaluation where subjects with software
engineering knowledge assessed the relevance of the retrieved reviews for software evolution.

For all evaluations we used parts of the dataset described in Chapter 3.

Section 6.5 reports on the details of the quantitative evaluation, whereas Section 6.6 describes
the controlled experiment design and its main results. Section 6.7 reports the setup and results
of the experiment that was conducted to measure the evolution relevance of the reviews.

6.5 Diversity Retrieval Performance

To measure the diversity retrieval performance of DIVERSE, we use an information retrieval
metric which emphasizes novelty and diversity. Furthermore, we compare its diversity
performance against a feature-based baseline approach. Additionally, we compare DIVERSE
with a variation of itself which calculates sentiments on the sentence level.

In the following sections we explain the metrics used to measure its performance, the
approaches against which DIVERSE was compared and the evaluation setup. We finalize the
section with the description of the main results.

6.5.1 Diversity Metric

We evaluate the performance of DIVERSE for the retrieval of diverse reviews with the a
Normalized Discounted Cumulative Gain measure (a-nDCG) proposed by Clarke et al. [28].
a-nDCG emphasizes the novelty and diversity of the retrieved results and assumes that all
documents contain information entities of equal relevance which represent the users’ intent
when querying.

For our evaluation we consider each feature and its associated sentiment to be an information
entity and each review as a document. The value range of a-nDCG[k] is [0,1] where a higher
value implies a higher relevance with respect to the user query, as well as higher novelty and
diversity in respect to the contained features and the sentiments associated to these features.
In the following paragraphs we explain how a-nDCG is computed.

6.5 Diversity Retrieval Performance 83

Table 6.1 Summary of evaluated approaches and their characteristics.

Approach Greedy
alg.

Feature-
centric

Senti-
centric

BASEFEA yes yes no
DIVERSEREV yes yes yes
DIVERSESEN yes yes yes

The main concept in a-nDCG is the gain value. a-nDCG defines the gain value of document
k as:

G(k) =
m

Â
i=n

j(dk, i)(1�a)(ri,k�1) (6.3)

where j(dk, i) is a binary value of 0 or 1, representing if the information entity i is mentioned
in document k according to the truth set and a is a constant value used to balance novelty and
redundancy. A higher a favors novelty over redundancy and a lower a increases redundancy
at the cost of novelty. Additionally, (ri,k�1) represents how many higher ranked documents
have previously contained information entity i. The discounted cumulative gain value is
given by:

DCG(k) =
k

Â
j=1

G[j]/log2(1+ j) (6.4)

where log2(1+ j) is used as a discount function to penalize documents that are lower ranked.

Let DCG’ be the ideal gain obtained by ordering the documents according to the truth set.
The normalization of DCG by DCG’ is defined as a-nDCG:

a�nDCG(k) = DCG(k)/DCG0(k) (6.5)

In our evaluation we use an a value of 0.5, as used in other diversity retrieval evaluations
[129]. Furthermore, we assign j(dk, i) to 1 if review k contains the automatically extracted
feature f and if f is also labeled in the corresponding review in the truth set described in
Chapter 3. We compare the automatically extracted sentiments and the sentiments present
in the truth set by converting the numerical sentiment scores of the automatically extracted
sentiments into positive, neutral and negative categorical values. We consider the sentiment
scores in the [-1,1] range as neutral, those in the (1,5] as positive and those the (-1,5] range
as negative.

84 Diversity Retrieval

Table 6.2 Queried features for each app.

App Queried features
AngryBirds red feather, game ad, game time, update level, game piggy
Dropbox open file, cloud store, pdf view, upload photo, rename file
Evernote note take, note keep, note sync, organize note, write note
TripAdvisor write review, find place, read review, find hotel, review place
PicsArt photo edit, edit pic, add effect, collage make, pic art
Pinterest board pin, pin send, find thing, pin see, pin find
Whatsapp video send, sd card, send pic, use android, profile pic

6.5.2 Setup

We compared two variations of DIVERSE against a baseline based on the retrieval of
features (BASEFEA). BASEFEA implements a greedy algorithm which only takes the features
mentioned in the reviews and its frequency into account. The feature-sentiment based
approach, DIVERSESEN, uses the diversification technique explained in Section 6.3.2, with
sentence granularity for sentiment estimation. In this case, features are assigned the sentiment
score of the sentence in which they are present, instead of the sentiment score of the review,
as done in DIVERSEREV. All of the approaches use the feature extraction mechanism
described in Chapter 3 . Table 6.1 presents an overview of the characteristics of all evaluated
approaches.

We compared DIVERSE against the baseline using the a-nDCG[k] metric with a k value of
10 (a-nDCG@10). We assigned the weight values w1 and w2 of the scoring function of the
DIVERSE greedy algorithm (see Equation 2) to 1. This gives equal importance to reviews
containing positive and negative sentiments. Additionally, we queried for 5 popular features
for each of the apps according to the truth set and ran the different approaches on the truth
set. Table 6.2 shows the queried features for each app.

6.5.3 Results

Table 6.3 shows the a-nDCG@10 scores of the approaches when retrieving reviews from the
different apps. DIVERSEREV has the highest performance average (a-nDCG@10 µ = 0.66)
followed by DIVERSESEN (a-nDCG@10 µ = 0.64), whereas BASEFEA had the worst
performance average (a-nDCG@10 µ = 0.49). In the sentiment analysis evaluation results
Chapter 3 we found that the sentiment analysis approach used in DIVERSE performed

6.5 Diversity Retrieval Performance 85

Table 6.3 a-nDCG@10 results for the diversity retrieval approaches.

App DIVERSESEN DIVERSEREV BASEFEA

AngryBirds 0.52 0.52 0.32
Dropbox 0.51 0.52 0.41
Evernote 0.51 0.39 0.07
TripAdvisor 0.42 0.51 0.41
PicsArt 0.90 0.97 0.99
Pinterest 0.97 1.00 0.42
Whatsapp 0.68 0.68 0.77
µ All apps 0.64 0.66 0.49

better when calculating sentiments on a review based granularity, due to the importance of
context when extracting sentiments. These previous results are a feasible explanation for
the average outperformance of DIVERSEREV over DIVERSESEN. Moreover, we observe
that the results for the reviews from the different apps vary greatly. For example, in the case
of DIVERSEREV, results go from 1.00 for the best performing case, to 0.52 for the worst
performing. The result variance can be explained by the varying language that users from
different apps utilize when writing reviews, as it affects the feature extraction and sentiment
analysis accuracy and therefore the a-nDCG results.

Previous research work [129] has focused on the retrieval of diverse set of user reviews from
non-software products, e.g., cameras, printers, etc. However, a direct comparison to these
previous results (a-nDCG µ = 0.74) is not reasonable for two main reasons: (1) their datasets
are different and from distinct domains. The analyzed reviews from previous work tend to be
lengthier, have different sentiment polarity and mention product features that are not similar
to software features (and therefore described differently). These distinctions have an impact
in the results of the a-nDCG metric, as the precision of the feature extraction and sentiment
analysis techniques vary, (2) the feature extraction mechanism is more coarse-grained and
therefore has better accuracy. Previous work uses Latent Dirichlet Allocation (LDA) to
extract the features. LDA produces more general descriptions, where words describing
features (or other aspects in the review) that are frequently mentioned in the same reviews
are merged together. The final output of LDA is groups of features that might be related to
each other. On the other hand, we are interested in a fine-grained feature description that
can lead developers to analyze the exact features that developers need to focus on when
developing evolution tasks. Taking these differences into account and comparing with the
results of previous work we conclude that the a-nDCG results obtained by DIVERSE in the
app review domain with fine-grained feature extraction are encouraging.

86 Diversity Retrieval

To get a further understanding of the results presented in Table 6.3 we performed statistical
tests on our results. A Shapiro-Wilk test revealed that our data was normally distributed (p�
value = 0.06). However, an ANOVA test concluded that there were no significant differences
between the approaches. To get a deeper insight on the exact differences we performed a
Tukey-HSD test. The test found that there is a significant difference between the results
obtained by DIVERSEREV and BASEFEA (p = 0.01). We found no statistical significant
differences between the performance of the other approaches. The significant outperformance
of DIVERSEREV over the approach solely based on feature retrieval (BASEFEA), highlights
the importance of the use of sentiment analysis in our approach.

Furthermore, the results show that the approaches tend to perform better on the reviews of the
Google Play apps, where the results of Chapter 3 showed better results for feature extraction.
A Welch t-test test showed that the difference between the app stores is statistically significant
(p� value = 0.0018).

6.6 Impact and Usefulness

To assess the impact and usefulness of DIVERSE we conducted a controlled experiment in
which we measured the impact of DIVERSE in terms of time spent when analyzing reviews.
Additionally, we analyzed the usefulness of DIVERSE for making decisions concerning the
evolution of features and for detecting conflicting opinions.

6.6.1 Setup

Participants

Twenty participants took part in our experiment, all of whom had software development
experience. Thirteen participants considered themselves experienced in front-end devel-
opment. Six of the participants were working in the industry, whereas 14 were graduate
students in Computer Science from the Technische Universität München, with experience
in Software Engineering projects. At the time of the experiment, 13 of the students had
part-time jobs in the software industry. Moreover, all participants reported having a fair or
above knowledge of English and had experience using Dropbox, the app from which the
reviews for the experiment came from. Fifteen participants were in the 20-29 age range and
5 were in the 30-39 age range. Furthermore, seven of the participants were female and 13
male. We distributed the participants in the control and test group randomly.

6.6 Impact and Usefulness 87

Data

The experiment presented reviews related to the hrename filei and hpdf vieweri features of
the Dropbox app from the complete dataset described in Section 6.4. We chose the Dropbox
app because of the high likelihood that all participants would be familiar with the app as
users. In total we displayed 47 reviews related to the hrename filei feature and 37 reviews
associated to the hpdf vieweri feature. We selected these features because participants would
be able to easily understand what the feature was about based on their experience as Dropbox
users. The reviews related to the hrename filei feature consisted of reviews requesting that the
feature be implemented in the app; no conflicting opinions, needs or experiences were present.
On the other hand, the reviews associated to the hpdf vieweri had conflicting opinions, needs
and experiences due to the use of different app versions and the different functioning of the
feature on diverse devices. Most of the users mentioning this feature were reporting failures
and asking for the feature to be fixed.

Data Presentation

Both test and control groups could browse the same reviews. For each review we showed
the title, comment, date, rating and reviewer. However, only the test group could view
the sentiment feature score and the grouping based on the feature-sentiment score. The
visual presentation for both groups varied as well. Figure 6.1 shows the presentation of
reviews as seen by the test group, the data shown in this view was generated by DIVERSE.
Figure 6.2 shows the presentation which the control group used for analyzing the reviews.
Participants in the control group could view the reviews in a list form. On the other hand,
the test group could browse the reviews by clicking through the different sentiment groups.
In the general overview the test participants could see an example of a review belonging to
each sentiment group. By clicking on a button the test participants could then inspect all
reviews that were grouped together with the initial displayed review due to their sentiment
and semantical similarity. The reviews displayed as examples of a group were generated by
the diversity retrieval algorithm of DIVERSE with k = 5. To avoid participant confusion and
the introduction of noise, the feature-sentiment score was calculated manually.

6.6.2 Procedure

The experiment consists of three main parts. In the first part of the experiment participants
were requested to assume they were Dropbox employees in charge of making evolution

88 Diversity Retrieval

Fig. 6.1 Presentation of reviews for the test group.

Fig. 6.2 Presentation of reviews for the control group.

6.6 Impact and Usefulness 89

decisions for the hrename filei and hpdf vieweri features. Then, all participants read reviews
concerning the aforementioned features. For each feature they were asked to:

1. Make a decision concerning the evolution of the examined feature, taking into account
the displayed reviews. To answer this question we provided the participants with
predefined answers, i.e. implement feature, improve feature, fix feature, remove feature
and also gave participants the option to add their own responses in case the predefined
answers were not adequate. Additionally, we asked the participants to describe the
reasons behind their decision.

2. Rate the difficulty of making the decision in a 5-point Likert scale.

3. Indicate if there were conflicting opinions, needs and experiences in the reviews and
give examples in case they were present.

We measured the time that each participant took to browse each set of reviews and the time
they took to answer the questions. To assure that there were no misunderstandings about the
feature-sentiment score, the test group was given some information about the concept at the
beginning of the experiment.

In the second part, test participants assessed the DIVERSE approach in terms of its useful-
ness for: (1) detecting conflicting opinions, (2) identifying the needs and experiences of
non-traditional or less vocal users and (3) software evolution. They assessed these points
individually with a 5-point Likert scale.

In the third part, we conducted an individual semi-structured interview to gain more insight
about the importance of non-traditional and less vocal user feedback in the perspective of
the participants. Additionally, we asked the test group about the perceived usefulness of
DIVERSE and their willingness to use it during their work.

The first two parts of the experiment were conducted through a web page. For the first part of
the experiment, participants were instructed to read as many reviews as they wished. In order
for them to be aware of the questions that would be answered after browsing the reviews,
questions were presented before displaying the reviews and again when the participants
indicated that they were ready to answer the corresponding questions. Participants could
shift between answering questions and browsing the reviews as they wished. A researcher
was available during the whole experiment to address emerging issues. To avoid the intro-
duction of researcher bias, researchers were instructed to only answer clarification questions
concerning the experiment tasks and the feature-sentiment concept.

90 Diversity Retrieval

difficult easy neutral

control
test

Perceived Difficulty for Rename File Task

0
2

4
6

8
10

difficult easy neutral

control
test

Perceived Difficulty for Pdf Viewer Task

0
2

4
6

8

Fig. 6.3 Perceived difficulty for hrename filei and hpdf vieweri tasks in control and test group.

To gain further insight of our results we performed a statistical analysis using the different
features as the independent variable and the time, perceived level of difficulty and number of
identified conflicting opinions as dependent variables.

6.6.3 Results

Diversity Retrieval and Time

As shown in Table 6.4, on average, the test group spent less time browsing reviews than
the participants in the control group. However, the test group participants spent more time
answering questions than the control group participants. We consider that the decision
making process concerning the evolution of the feature takes place while browsing the
reviews and answering the questions about the reviews. Therefore, we computed the sum of
the time for browsing and answering questions. The test group spent on average less time
browsing and answering the questions than the control group.

A Shapiro-Wilk test revealed that our data was not normally distributed. Because of this,
we performed a Wilcoxon rank-sum test to analyze if the differences between both groups
are significant (see Table 6.4). The test results revealed that there is a significant difference
between the time taken by the test and control group for browsing the reviews and for
answering the questions regarding the reviews. Furthermore, there is a statistical significant
difference for the total time spent in browsing the reviews and answering the questions
corresponding to each of the features.

6.6 Impact and Usefulness 91

Diversity Retrieval and Decision Making

Participants were asked to make an evolution decision (i.e., implement feature, improve
feature, fix feature, remove feature) regarding the hrename filei and hpdf vieweri features
based on the read reviews. For the hrename filei feature 8 of the participants in the test group
and 9 of the participants in the control group gave answers that were consistent with the
reviews. It is important to note that all participants with answers deemed as incorrect assumed
the feature was existing and needed fixing. Furthermore, they took considerably less than the
average time to go through the reviews, indicating that the incorrect answer could stem from
not reading the reviews carefully enough. On the other hand, for the hpdf vieweri feature all
participants in the control and test group answered with options that were consistent with the
displayed reviews. A chi-squared test demonstrated that the difference between the control
and test group is not significant for the hrename filei feature. Therefore, we can conclude
that DIVERSE did not play a role in the decision making process of our experiment.

Diversity Retrieval and Perceived Level of Difficulty

The perceived level of difficulty for the decision making process of the two features was
almost the same for both groups. Figure 6.3 summarizes the results. A chi-squared test found
that the differences are not significant between the groups for both of the features. In the case
of the hrename filei feature all participants in the test group considered the task easy, whereas
8 participants in the control group also considered it easy, one neutral and another participant
considered it difficult. In the case of the hpdf vieweri analysis 7 participants of the test group
considered the decision task related to the hrename filei feature an easy task, two considered
it a task with neutral difficulty and one considered it a difficult task. On the other hand, 8
participants in the control group considered it an easy task, whereas one considered it a task
with a neutral difficulty and another participant considered it a difficult task.

Diversity Retrieval and Detection of Conflicting Opinions

Concerning the detection of conflicting opinions the results for both test and control groups
for the two features were similar. For the hrename filei feature all participants considered
that there were no conflicting opinions related to the feature. However, participants noted
that while the opinions, experiences and needs were not conflicting the sentiments in which
the users expressed their dissatisfaction were different. For the hpdf vieweri feature all
participants in the control group found that there were conflicting opinions or experiences

92 Diversity Retrieval

Table 6.4 Review browsing and answering time.

Feature Time test group Time control group p-value
(µ += s in min.) (µ += s in min.)
Browsing Browsing

rename file 4.73 += 3.32 6.99 += 4.18 1.52e�08

pdf viewer 5.00 += 2.38 5.27 += 2.61 4.20e�08

Answering Answering
rename file 4.01 += 1.97 3.99 += 1.54 1.52e�08

pdf viewer 4.17 += 1.88 4.03 += 1.89 8.37e�08

Browsing+Answering Browsing+Answering
rename file 8.74 += 4.71 10.98 += 5.18 1.52e�08

pdf viewer 9.17 += 3.76 9.30 += 4.09 4.21e�08

in the reviews. On the other hand, all participants in the test group, with the exception of
one, considered that there were conflicting opinions in the reviews. The participant with the
differing answer took the least time to read the reviews, suggesting that he might have missed
important details. A chi-squared test revealed that the difference between both groups is not
statistically significant.

Perceived Usefulness of DIVERSE

Through a questionnaire and semi-structured interview we asked the test participants to
assess the DIVERSE approach in terms of its usefulness for detecting conflicting opinions,
uncovering of non-traditional and less vocal users and for software evolution. Additionally,
we also asked the test participants if they would like to use a tool like DIVERSE when
analyzing feedback. Figure 6.4 summarizes the answers of the participants.

Overall, participants agreed that DIVERSE is helpful for detecting conflicting opinions and
for software evolution. In the interview participants mentioned that DIVERSE helped them
get an overall picture of the different sentiments related to the feature, and considered it
useful for prioritizing their work, as they could focus on the reviews with the most negative
sentiments. Furthermore, several participants mentioned that the count displaying the times
a sentiment was associated to a feature was especially useful. Additionally, some of the
participants found that the separation into the different groups motivated them to read more
into the reviews to understand the sentiments and opinions of the users.

Most of the participants said they would like to use an approach like DIVERSE for analyzing
user reviews. However, there were conflicting opinions about its usefulness for detecting

6.7 Software Evolution Relevance 93

Q
1

Q
2

Q
3

Q
4

Perception of FEStER Usefulness among Participants

0 2 4 6 8 10

strongly agree
agree

neutral
disagree

Perception of DIVERSE’s Usefulness among Participants

Fig. 6.4 Perceived usefulness of DIVERSE among test participants. Q1: usefulness for de-
tecting conflicting opinions, Q2: usefulness for uncovering non-traditional or less vocal users,
Q3: usefulness for performing software evolution and Q4: willingness of the participants to
use an approach similar to DIVERSE in their work.

the different experiences, needs and opinions of non-traditional and less vocal users. Some
of the participants considered the grouping did not help them detect non-traditional users
and thought that additional information concerning demographics and usage patterns (such
as length and frequency of feature usage) would be helpful for detecting feedback of non-
traditional users. One participant mentioned that an automatic categorization of users
depending on these different factors would be useful for the analysis of non-traditional user
feedback. On the other hand, some of the participants considered that the feedback of less
vocal users was easier to detect as they thought these users would be more brief in their
reviews.

6.7 Software Evolution Relevance

To determine the software evolution relevance of the results retrieved by DIVERSE, 5
participants with software development experience manually assessed the relevance to
software evolution of 140 reviews retrieved by DIVERSE. The reviews were from the
dataset described in Chapter 3. In the following sections we describe the assessment setup
and results.

94 Diversity Retrieval

6.7.1 Setup

Participants

Each retrieved review was assessed by all participants. The participants were computer
science graduate students from the Technische Universität München with experience in
developing industry software. Two of the participants had three or more years of experience
in app development, two participants had a year or less experience in app development, while
one participant did not have any previous experience developing apps. All participants were
familiar with the evaluated apps and a brief description of each one of them was given.

Data

For the evaluation we retrieved two sets of ten reviews for each app (k = 10). We retrieved
each set by running DIVERSEREV on the complete dataset and assigning F to two of the
most common features in each app. Each feature was chosen randomly and belonged to
the top-ten most frequently extracted features. Table 6.6 shows the features that were used
when retrieving the sets for each app, whereas Table 6.7 shows the retrieved reviews for the
Dropbox app when querying for the feature <view pdf>. It is important to highlight that
during this evaluation task we only showed the participants individual reviews and not the
groups of reviews that mentioned the same feature with a similar sentiment, as generated
when applying the step described in Section 6.3.3 of this chapter.

Evaluation Guide

During the evaluation, participants used predetermined forms to mark if each of the retrieved
reviews was relevant to the evolution of the app or not, or if they were unsure. To assure that
all participants understood the task we provided them with an evaluation guide.

The guide described the task in detail and contained examples of different types of review text
that could be classified as useful for software evolution. However, in the guide we mentioned
that the examples were only for explanatory purposes, and that participants should go with
their instinct and use their previous experience and knowledge when giving their answers.
To gain more insight into the reasons behind their answers we asked them to mark a special

6.7 Software Evolution Relevance 95

Table 6.5 Examples of review comments that are useful for software evolution.

Example
Syncing files takes a horrible amount of time
Every time I open a file my app crashes
I wish you could add a button that would allow me to share the info with my
friends

Table 6.6 Features used in qualitative evaluation for review set retrieval.

App Features
AngryBirds try level, red feather
Dropbox pdf view, upload photo
Evernote note take, device synch
TripAdvisor write review, plan trip
PicsArt photo edit, add effect
Pinterest board pin , pin send
Whatsapp video send, sd card

field in the evaluation form and comment on their decision when a contradiction between
their answer and the guide occurred.

The guide was refined during two pilot evaluations in which one of the authors and another
researcher manually assessed the relevance of two sets of reviews which were different to the
ones analyzed during the final evaluation. Both pilot evaluators discussed their perceived
problems and the corresponding modifications were made. Table 6.5 shows examples
included in the guide to illustrate reviews that could be considered relevant for software
evolution.

Procedure

Each participant received the evaluation guide and an evaluation form containing the corre-
sponding app name, queried feature, review id, title and comment of each of the retrieved
reviews. All reviews corresponding to the same feature query were shown together. After the
review assessment was done, participants answered questions regarding their opinion about
the importance of diversity retrieval for software evolution. They were also asked to give
comments about the assessment task, and background information about themselves.

96 Diversity Retrieval

Table 6.7 Examples of four Dropbox reviews of varying sentiments retrieved by DIVERSE
when querying for the <view pdf> feature.

Title Comment Senti.
Score

Excellent It’s a really good cloud app, but what makes it stand out is the
new .pdf viewer! Now I can read huge files on the iPad. You
can’t do that on Google Drives app.

2.67,
very
positive

Sweet: new
PDF viewer

Search, chapters, pages grid, side scroll button, and dictionary
are all great features. The only thing missing is annotation, but
I dont always need that. I had an instance of a PDF not showing
when viewing another time, but I just tapped the pdf again and
I loaded just fine. Specs: iPhone 5; iOS 6.0.1

1.8, posi-
tive

Can’t view
PDF

The new version is not allowing me to view a PDF file once I
have viewed it once. When going back to the file to view it I
get a gray screen.

0, neu-
tral

No preview Older versions of this app used to allow me to preview word,
excel and pdf documents. While the preview pane is still there
the app just tells me the file name and size and does NOT
display the content... Completely useless.

-1.75,
negative

6.7.2 Results

Most of the disagreement among the participants occurred with reviews that were giving
positive feedback about the apps’ features. While the less experienced developers tended to
consider positive feedback useful for software evolution, the most experienced app developers
tended to regard these reviews as irrelevant for the evolution of the apps. In their comments
experienced developers argued that reviews with positive feedback were unimportant because
they did not motivate changes in the code. On the other hand, the less experienced developers
commented that positive feedback on the features was useful for software evolution because
it helped to justify why changes to the feature were not made. As reflected in our results,
usefulness perception is highly subjective and can be dependent on developers’ experience,
role within the project and also on their individual preferences.

We managed the disagreement between participants by choosing the answer with the majority
of votes. When there was a tie, an additional participant resolved the tie. Participants
considered that 84% of the retrieved reviews were relevant to app evolution, while 16% of
the reviews were labeled as not relevant for the evolution of the app. The high amount of
reviews considered relevant to software evolution can be explained by the fact that DIVERSE
is feature-based and thus generally filters out reviews which do not mention specific aspects

6.8 Discussion 97

AngryBirds Dropbox Evernote PicsArt Pinterest TripAdvisor Whatsapp

0

25

50

75

100

First Second First Second First Second First Second First Second First Second First Second
Feature

P
er
ce
nt
ag
e

Relevance
Irrelevant

Relevant

try
level

red
feather

pdf
view

upload
photo

sd
card

video
send

plan
trip

write
review

board
pin

pin
send

add
effect

photo
edit

device
syn

note
take

Features

Pe
rc

en
ta

ge

Irrelevant

Relevant

Relevance

Fig. 6.5 Assessed review relevance per app and queried feature.

of the app. This characteristic increases the probability that the remaining reviews contain
information that is considered useful for software evolution.

Figure 6.5 presents the assessed relevance for the different apps per queried feature. The
distribution of relevant and non-relevant reviews is similar for all apps, with the exception
of PicsArt which had a high number of non-relevant reviews for the query on the feature
<photo edit>. PicsArt is a small app whose main functionality is to edit pictures so most of
the reviews retrieved with the "photo edit" query were giving a general praise or complaint.

6.8 Discussion

In this section we discuss our results and describe the limitations of DIVERSE and threats to
validity of the performed evaluation.

6.8.1 Results

The results of the DIVERSE evaluation are promising. On average, DIVERSE outperforms
the baseline in terms of the novelty and diversity of the retrieved reviews. Furthermore, our
results show that on average the sentiment analysis component of DIVERSE performs better
on the review level than on the sentence level and that the consideration of the sentiment
scores in the diversity retrieval tends to produce better results.

98 Diversity Retrieval

Participants using DIVERSE took significantly less time when browsing reviews and making
decisions concerning the features mentioned in the reviews (e.g. implement feature, improve
feature, fix feature, remove feature). Also, participants using DIVERSE considered it useful
for software evolution and for detecting conflicting opinions. However, our results show that
the made decisions, the perceived level of difficulty for making the decisions and the detection
of conflicting opinions did not differ considerably when using or not using DIVERSE. Further
experiments with a higher number of reviews or a different set of queried features could
indicate otherwise.

Additionally, participants using DIVERSE had different stances about its usefulness for
detecting the opinions, needs and experiences of non-traditional or less vocal users. Half
of the test participants considered DIVERSE useful for this purpose, whereas half of the
participants did not due to the lack of additional information, such as demographics and
feature usage. The formalization of the retrieval task in DIVERSE, FS-Div(R) (Equation
6.1) can be expanded to include other variables of interest, such as ratings, emotional di-
mensions (e.g., excitement, anger, arousal), personality traits (e.g., neuroticism, extraversion,
openness), feedback types (e.g., bug report, feature request), feature usage (e.g., advanced,
intermediate user) and demographical information (e.g., location, gender, age). Previous
work has proposed approaches for the automatic extraction of emotional dimensions e.g.,
[127, 132], personality traits e.g., [13, 145] and feature usage e.g., [147] and we believe that
these approaches can be used to extend DIVERSE, so that user differences are modeled
more precisely. These dimensions could further help developers detect the reviews written
by non-traditional or less vocal users and therefore, more easily identify their opinions,
needs and experiences. Moreover, less vocal users can be detected by changing the weight
parameters of the FS-Div(R) formalization (Equation 6.1) used by DIVERSE. These weights
can be configured to modify the relevance of positive and negative sentiments, and during
our evaluation we gave equal weights to them. To identify the voices of less vocal users,
developers or analysts could first retrieve a diverse set of reviews about their feature(s) of
interest to get an overview of the overall sentiment, examine the frequencies of each feature-
sentiment score in the whole dataset and then modify the weights in the greedy algorithm to
favor the less prevalent sentiment. This allows for a more finer-grained diversification of the
sentiments or opinions that are less common.

The interpretation of a review’s relevance to software evolution is a subjective task, reflected
in the Fleiss-Kappa values of our qualitative evaluation. However, most of the reviews
retrieved by DIVERSE were considered relevant to software evolution.

6.8 Discussion 99

6.8.2 Limitations and Threats to Validity

DIVERSE relies on comments written by users. These comments could give insufficient
information about how to reproduce a reported bug, or could poorly describe feature requests,
desired feature improvements or experiences. The lack of sufficient information could lead
to the exclusion of these review comments in the software evolution process. To solve this
problem, DIVERSE could be complemented with user feedback approaches which motivate
users to produce more informative and higher quality reviews.

While DIVERSE reduces information overload, reviewers still have to read k reviews which
might contain pieces of text that are not relevant for software evolution. The overload could
be further reduced by making the retrieval finer-grained, e.g., in the sentence-level. This
would omit the parts of the review where no features are being mentioned. We plan to address
this in our future work.

In our qualitative experiments we selected the features of our experiment based on the number
of reviews mentioning them in the dataset and their comprehension easiness. It would be
interesting to conduct a further experiment with features associated to a higher number of
reviews, as DIVERSE could have a higher impact on the browsing and decision making time,
as well as on the detection of conflicting opinions.

A threat to validity in our work is the selection of our experiment participants. While they
all have experience in software development and were familiar with the evaluated app, they
are not actual developers of the app. This could lead to misunderstandings when analyzing
the review comments or higher analysis times. Our results provide good evidence about
DIVERSE’s usefulness. However, additional experiments with more participants that are
familiar with the type of reviews being displayed by DIVERSE should be conducted to get
more sound results. Another threat to validity in our work is the different presentations used
in the impact and usefulness experiment experiment for the test and control groups. Further
experiments should be executed with the same type of presentations for DIVERSE and the
baseline approach.

One of the goals of the impact and usefulness experiment was to assess the impact of diversity
retrieval in the analysis of user reviews. To avoid the introduction of noise produced by
limitations in the lexical sentiment analysis, the sentiments presented in the experiment
were manually labeled. DIVERSE would benefit from more effective methods for sentiment
analysis, an active research topic. In the future we plan to improve the sentiment analysis of
DIVERSE by including deep learning algorithms, which have showed better performance
than lexical-based approaches.

100 Diversity Retrieval

6.9 Related Work

We focus our related work in two areas: mining user feedback in software engineering and
diversity retrieval in other domains.

6.9.1 Mining User Feedback for Software Engineering

User feedback mining is an emerging field in Software Engineering and has received growing
attention from researchers in the past few years. To our knowledge, no previous work has
studied diversity retrieval on user reviews from software applications. There is however,
research that has mined user reviews to solve other existing problems. In this section we
review previous work and describe how it is related to DIVERSE.

Iacob and Harrison [78] extracted feature requests from app store reviews by means of
linguistic rules and used LDA to group the feature requests. DIVERSE could be extended
by including linguistic patterns or machine learning classification techniques to categorize
reviews into different user feedback types (as the ones presented in Chapter 5). This would
allow developers to only search for the type of feedback in reviews they are interested in.

Galvis Carreño and Winbladh [48] applied LDA to summarize user reviews. Our approach
could use the topics generated by LDA to group similar features and input these topics to
the greedy algorithm, instead of the fine-grained features. However, this could make the
retrieved reviews less specific to a feature, but would allow developers to find reviews about
related features.

Li et al. [103] analyze user reviews to measure user satisfaction. The authors extract quality
indicators from the reviews by matching words or phrases in the user comments with a
predefined dictionary. DIVERSE currently has information about the number of times a
specific feature in a set of reviews is assigned with a positive, a negative o neutral sentiment.
It would however, benefit from more complex measures that measure user satisfaction.

Fu et al. [47] analyze user reviews from Google Play and apply a linear regression model
combining the text from the reviews and its ratings to identify incorrectly rated reviews. They
input the words classified as negative words into an LDA algorithm to find the main reason
why users are unsatisfied with the app. On the other hand, we are interested in retrieving a
set of apps which represent all of the opinions users have about the app, not only the negative
opinions.

6.9 Related Work 101

Zou et al. [173] assess the quality of API’s by analyzing user reviews on the web. Their
assessment model is based on previously defined feature characteristics and sentiment
analysis. However, their model does not take into account opposing sentiments related to a
feature. The focus of our work is different, while they retrieve all reviews in order to assess the
quality of the API, we are interested in selecting a representative set of reviews that summarize
the different opinions and experiences reported by users. We believe that DIVERSE could
benefit from quality assessment metrics that take into account users’ conflicting opinions.

Chen et al. [27] use a Naive Bayes algorithm for finding informative extracts of reviews
and LDA for grouping content related review extracts. They then rank the groups of review
extracts according to a scheme which analyzes volume, time patterns and ratings. Due to
its feature centric focus DIVERSE is also able to filter out non-informative reviews, which
usually contain no mention of app features but are general praises or complaints. However,
DIVERSE could be complemented with their work. Developers could make a targeted feature
based retrieval of reviews based on their evolution task, get an overview of the different
sentiments involving the feature(s) and use their ranking approach to prioritize the retrieved
reviews or a subset of them.

6.9.2 Diversity Retrieval in other Domains

Diversity retrieval is an active research topic in the information retrieval community. Carterette
[25] presented an overview of the diversification problem and emphasized on its evaluation.

Existing research has studied the retrieval of diverse product reviews, of different wares such
as cameras, printers and cell phones where the text in the reviews tends to be 3 or 4 times
longer than in app store reviews [81]. Previous work has approached the task of retrieving
diverse product reviews from the user perspective, retrieving a set of diverse reviews with
the intention of helping users make a more informed decision of which product to buy. We
approach the problem from the manufacturer, in this case, developer perspective and analyze
if DIVERSE could help developers become more aware of the opinions and experiences of
non-traditional and less vocal users during software evolution.

Tsaparas et al. [159] formalized the diversification task for the retrieval of product reviews
and proposed the use of greedy algorithm for its implementation. In their work diverse
retrieval is exclusively based on the mentioned features, whereas we present a feature and
sentiment centric approach.

Krestel and Dokoohaki [97] retrieved diverse product reviews in terms of the review com-
ments and ratings. Similar to us, they implemented their approach using a greedy algorithm.

102 Diversity Retrieval

The DIVERSE problem definition could be extended to include rating information in the
diversification.

Naveed et al. [129] presented an approach for the retrieval of diverse product reviews based
on the mentioned features and their associated sentiments. This is perhaps the work most
similar to ours. However, two main factors differentiate the approaches: (1) Naveed et al.
use LDA [19] for the feature extraction, whereas we use a finer-grained extraction based
on collocations, (2) we include different weights in the diversity retrieval task definitions,
allowing developers to assign their desired relevance to the positive and negative sentiments
associated to the features.

Chapter 7

Conclusion and Future Work

Mobile applications can receive feedback through user reviews from application distributions
platforms. Studies have found that these reviews contain valuable information for software
evolution. However, the large amount of reviews, its unstructured nature, the relatively low
proportion of quality reviews, and the limited usefulness of its ratings makes its consideration
during software evolution a challenging task.

In this dissertation we applied data mining techniques to address these problems and facilitate
the analysis of user feedback during software evolution. In particular, we applied data
mining techniques to produce fine and coarse grained summaries and classify user reviews
into different categories relevant to software evolution (e.g., bug report, usage scenario,
feature shortcoming). Additionally, we generated a visualization of the different summaries
and implemented an algorithm that retrieves a comprehensive set of reviews and allows
developers to address the information obfuscation that comes from mining large amounts of
data.

We measured the outcome quality through quantitative and qualitative methods. The results
confirm that data mining can help create coherent summaries that are relevant to software
evolution, and that accurately describe important aspects or functionality of the apps. In
addition, they demonstrate that the use of supervised machine learning classifiers can help
developers to automatically categorize reviews. Also, the results show that the interactive
visualization of the mined approaches could help developers analyze and interpret feedback,
and that our retrieval algorithm is able to retrieve diverse sets of reviews that are relevant to
software evolution.

This dissertation contributes to the application of data mining techniques to increase user
involvement during software evolution. In particular, it contributes to the extraction of

104 Conclusion and Future Work

features and sentiments mentioned in user reviews, its abstraction into fine and coarse grained
summaries, the visualization of mined information, as well as the classification of user
reviews. Moreover, this work brings attention to the voice obfuscation of less-vocal or
non-traditional users when applying data mining techniques and raises it as an important
issue that should be addressed by the software engineering community.

7.1 Contributions

In the following we elaborate on the main contributions of this dissertation.

Summary Generation of User Reviews

We applied natural language processing and topic modeling techniques to generate feature
and sentiment centric summaries. The created summaries have two granularities: fine and
coarse grained.

For the fine-grained summary generation we used a collocation finding algorithm for extract-
ing the features and lexical sentiment analysis for excerpting the sentiments. The output
of the fine-grained summaries consists of a list of features mentioned in the reviews, their
associated sentiment and the appearance frequency of each feature. Our evaluation shows
that the fine-grained summaries contain information that describes features and other aspects
that can be interesting for software evolution. Additionally, the extracted sentiments had a
strong positive correlation with respect to human assessment.

We applied a topic modeling algorithm on the automatically extracted features. This step
creates groups of features that tend to frequently appear in the same reviews. Additionally,
we computed a weighted sentiment average score for each group. The evaluation results
show that the coarse-grained summaries were considered coherent and relevant for software
evolution.

The truth set created for the evaluation of the finer-grained summaries was generated system-
atically using content analysis techniques. It could be used by other researchers wishing to
replicate or improve our work.

The summaries can help developers prioritize their work and detect the level of user sat-
isfaction concerning certain features. Additionally, they help to overcome the problem of
dealing with a high amount of unstructured reviews. By extracting sentiment and feature

7.1 Contributions 105

information they help developers and analysts access information that can be useful for
software evolution.

This contribution presents a solution to a problem highlighted by software developers:
obtaining information about user satisfaction concerning specific software features [15].

Retrieval of User Reviews with Diverse Opinions

We presented DIVERSE (DIVErsity Retrieval SoftwarE) an approach for retrieving a com-
prehensive set of user reviews with respect to opinions about specific features mentioned in
the reviews. We formalized the problem of collecting a representative set of user reviews as
an information retrieval task and implemented a greedy algorithm as an approximation to the
formalization.

DIVERSE can be used to help developers analyze different opinions concerning a feature(s).
It also allows developers to become more aware of the feedback of less vocal users. When
enhanced with demographic and usage information it could help developers identify non-
traditional users and their opinions. Furthermore, when aided with simple statistics (e.g.,
appearance frequency of a feature with a specific opinion) it can help developers prioritize
their work. Additionally, the computation of nDCG, part of the a-nDCG diversity metric
used in our evaluation, could serve as an indicator for developers of how much consensus
exists concerning a feature. This metric could then help developers decide on the evolution
of a feature and on the creation of software product lines.

We believe that DIVERSE is an initial step towards making developers more aware of the
opinions and needs of users that do not conform to the user majority. Having a set of reviews
which represent a wide range of opinions and experiences can motivate developers to create
and evolve software with characteristics that are relevant to a more diverse group of users
than when only analyzing majority opinions. This could be an initial step towards increasing
social sustainability in the software industry.

The summarization, classification and visualization of reviews deals with the identified
problem of processing a large amount of unstructured reviews with limited quality, as well
as with the restricted usefulness of the review rating. The retrieval of reviews with diverse
opinions, deals with the information obfuscation that comes when applying data mining
techniques on large amounts of data. This problem has been recognized in other computer
science fields [65], [163]. In this work we highlight the importance of paying attention to
minority groups when applying data mining for software engineering purposes. In particular,

106 Conclusion and Future Work

we focus on underlining the needs and expectations of non-traditional or less vocal users
providing feedback through app stores.

Classification of User Reviews

We presented a taxonomy for classifying user reviews of mobile applications into categories
relevant to software evolution (e.g., usage scenario, feature shortcoming, bug report). The
taxonomy is based on a previous empirical study that analyzed the content of mobile applica-
tion reviews. The taxonomy can be useful for practitioners aiming to categorize user reviews
when planning tasks that are required for software evolution.

We solved the problem of automatically classifying user reviews (and in this way obtaining
and separating information relevant to software evolution) by applying supervised machine
learning techniques.

We ran an experiment to compare the performance of individual machine learning techniques
against different ensembles when classifying user reviews into the categories described in
our taxonomy. We evaluated our results against a truth set created systematically using
content analysis techniques. Our results show that supervised machine learning techniques
can be used to efficiently categorize user reviews. These results can serve as a guideline for
practitioners wishing to classify user reviews and aid them in finding the most appropriate
classifier for their needs.

The truth set can be used by further researchers to replicate and improve our work, as well
as by practitioners wishing to create machine learning models for classifying similar user
reviews without labeling their own data.

Visualization of User Reviews

We described REV (REview Visualization), an interactive visualization of user reviews and
its summaries. REV aids developers and analysts in their analysis of mined results. A
preliminary study with industry professionals showed that participants utilizing REV had
different strategies for exploring the mined information. This result highlights the potential
importance of having visualizations with different granularity levels. Independently of the
used strategy, all participants were able to identify urgent issues, general opinions, as well
as conflicting opinions by using REV. Additionally, all participants thought that REV was
useful for software development and mentioned that if available they would use the tool in
their daily work.

7.2 Future Work 107

End-users

In this dissertation we focused on the importance of applying data mining techniques for
improving user involvement during software evolution from a development perspective.
We believe that the application of these techniques could also be beneficial for end-users.
Through the generation of feature and sentiment centric summaries potential app users
could quickly understand if apps are having or lacking features that are important for them.
Similarly, the categorization and further summarization of the reviews could allow users
to further understand the strengths and weaknesses of an app, aiding them in the decision
process of acquiring an app. The visualization of the information could allow end-users to
identify patterns, outliers and trends more easily. Also, DIVERSE could allow them to be
aware of different opinions about the apps of their interest.

7.2 Future Work

A possible improvement to the work presented in this dissertation is the application of more
efficient data mining and visualization techniques. Both are active research areas and we
could greatly benefit from its advances. In the following we describe possible improvements:

• Sentiment Analysis: The limitation of the lexical sentiment analysis for detecting
sarcasm and context could be addressed by including the review rating in the computa-
tion of the sentiment score. In this way, reviews that have, for example, a very high
rating and a very negative sentiment score, could be marked as unusual and a manual
inspection or special handling could be conducted. Another possible improvement
would be the application of machine learning approaches for the sentiment analysis
components.

• Feature Extraction: Other feature extraction methods, such as the one described by
Bakar et al. [8] could be applied, evaluated and compared against the collocation-based
approach presented in this dissertation.

• Summarization: User reviews’ length varied greatly depending on the analyzed app
and app store. The topic modeling results were less encouraging for apps where the
average length was notably shorter. An interesting research direction for mining app
store reviews would be text summarization techniques for very short text. Additionally,
other summarization algorithms (also for longer text) could be applied and compared
with the current LDA results.

108 Conclusion and Future Work

• Classification: As discussed in Section 5.5.1, the poor prediction performance regard-
ing certain categories, might also be a result of the limitations of the binary problem
transformation. The ground assumption of the category independence is a key disad-
vantage. To overcome this issue, a label power-set method [160] could be introduced.
This method takes into account the category correlation and could help improve the
classification results.

• Diversity Retrieval: DIVERSE was useful for identifying the opinions of non-
majority users. However, it did not provide enough information about users. Therefore,
the identification of non-traditional users was difficult. The addition of demographic
and feature usage information in DIVERSE could help developers understand and
know their users better, and aid them in identifying non-traditional users and their
opinions. Additionally, research on other mechanisms to extract information provided
by minority groups could be performed.

• Information Visualization: The usability and the visual metaphors employed by
REV can be improved. Visualization and human interaction research has elaborated
guidelines about how to represent and interact with data (e.g., [24], [43], [164]). Our
work could benefit from the incorporation of these results. Moreover, REV can be
expanded to include the classification and diversity retrieval information presented in
this dissertation.

The approaches presented in this dissertation can be extended to automatically rank the re-
views by taking the extracted sentiments, features and categories into account and combining
it with additional information, such as date, version and rating. Chen’s et al. [27] work on
ranking user reviews could be used as an initial reference. Additionally, other data mining
techniques could be explored in order to create personas or user profiles from the available
reviews, as well as to link user feedback to other software engineering artifacts by means of
traceability mechanisms [143].

The approaches presented in this work could be applied to other type of user feedback submit-
ted through different type of platforms, such as social media (e.g., Facebook, Twitter, blogs),
surveys, issue tracking systems and specialized user feedback platforms (e.g., UserVoice1

and GetSatisfaction2).

The obtained results could be similar for feedback submitted in the earlier phases of devel-
opment, such as requirements elicitation and beta-testing. There are numerous enterprise

1https://www.uservoice.com/
2https://getsatisfaction.com

7.2 Future Work 109

app stores that provide functionality for feedback elicitation before the actual release (e.g.,
Hockeyapp3 and TestFlight4). The data collected through these applications could also be
mined with the approaches presented in this work. Similarly, the approaches described in this
work could be applied on feedback from other types of applications that are not exclusively
mobile, such as desktop or web applications.

Another interesting research direction is the processing of user feedback from ubiquitous com-
puting applications [111]. This type of feedback includes information coming directly from
the users (explicit feedback) and sensor information (implicit feedback) and its combination
and interpretation present new challenges.

A long term evaluation in an industrial setting that shows the benefits of mining user feedback
would also be an interesting research direction. For this purpose, an integrated tool could be
implemented. When combined with configuration management tools that developers use,
interesting insights regarding feedback and actual development changes could be obtained.
These changes could then be analyzed and correlated to user satisfaction. The results from
such a long term evaluation would be beneficial, as there is limited knowledge about the
cost-benefit of user involvement during software evolution [134]. Based on the positive
feedback obtained from our experiment participants we believe that an integrated tool with
the techniques presented in this dissertation could also be of interest for the industry.

Another compelling research direction is the study of the synergy between user feedback
elicitation and processing, as well as decision making support based on processed feedback.
Mechanisms that motivate users to give more valuable feedback will be of great benefit for
the mining of reviews. Additionally, recommendation systems that help developers in their
decision making based on knowledge abstracted from mining feedback is also an interesting
research direction.

3http://hockeyapp.net/
4https://itunes.apple.com/en/app/testflight/id899247664?mt=8

Annotation Guide For Labeling Features
and its Sentiments in User Reviews

Analysis(of(User(Sentiments!in#App#Reviews#!
Coding'Guide!

Thank&you&for&helping&us&with&our&study!&Your&task&(called&coding&task)&is&to&read&
user!reviews&from&the&Apple&and&Google(Play(app&stores&and&to&answer&a&few&
questions&about&them.&This&guide&describes&the&instructions,&which&you&should&
follow&carefully&in&order&to&successfully&conduct&this&task.&Together&with&this&guide&
you&received&the&CADO!tool,&which&you&will&use&for&the&coding.&We&recommend&to&
print&this&guide&and&use&it&as&a&reference.&

Your&task&is&to&read&app&reviews&that&are&assigned&to&you&in&the&CADO&tool&one&by&
one.&For&each&review&you&will:&

A. Classify!the!Review,&i.e.&indicate&whether&it&contains&a&bug&report,&feature&
request,&feedback&about&a&feature.&

B. Identify!App!Features&that&are&mentioned&in&the&review.&
C. Assess!Sentiments&associated&to&each&feature.&

You&will&evaluate&reviews&for&3&iOS&apps:&AngryBirds,&Evernote,&TripAdvisor&and&3&
Android&apps:&PicsArt,&Pinterest&and&Whatsapp.&Before&starting&this&task,&please&read&
the&descriptions&of&these&apps&available&on&the&following&links.&&&

• AngryBirds:&&
https://itunes.apple.com/en/app/angryMbirds/id343200656?mt=8&&

• Evernote:&
https://itunes.apple.com/en/app/evernote/id281796108?mt=8&&

• TripAdvisor:&
https://itunes.apple.com/en/app/tripadvisorMhotelsM
flights/id284876795?mt=8&&

• PicsArt:&
https://play.google.com/store/apps/details?id=com.picsart.studio&&

• Pinterest:&
https://play.google.com/store/apps/details?id=com.pinterest&

• Whatsapp:&
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en&&

Then,&follow&the&next&steps:&

1. Start&the&CADO&tool&and&logMin&with&the&credentials&provided&to&you.&&
2. Fetch&your&coding&assignments&from&the&server&as&shown&in&figure&1.&You&can&

see&then&the&total&number&of&your&review&assignments.&&
3. Press&the&“Start&with&coding”&button.&

&

Figure!1:!!CADO!Welcome!Screen!

A&review&will&be&presented&to&you&as&shown&on&Figure&2.&Read&the&review&text,&which&
includes&the&title&and&comment(of&the&user.&Make&sure&that&your&read&all(the(text.&If&
the&review&is¬&in&English,&just&skip&it!&&

A.!Classify!the!Review!
Classify&the&review&by&indicating&whether&the&review&includes&a&feedback&about&a&
feature,&a&bug&report,&or&a&feature&request,&following&the&these&instructions:&

Feedback!about!a!feature:!the&user&explicitly&refers&to&a&specific&existing(feature(of&
the&app&in&the&review.&He&might&report&his&satisfaction,&dissatisfaction&with&that&
feature,&describe&his&experience&with&the&feature,&or&simply&describe&what&the&
feature&does&and¬&or&how&it&works.&Examples:&&

• "I(love(uploading(pictures(with(the(app"&
• "The(share(link(makes(it(so(much(easier(to(collaborate(with(colleagues"&
• “Syncing(files(takes(a(horrible(amount(of(time”&

Bug!report:!The&user&reports&a&problem,&such&as&a&faulty&behavior&of(the(app&or&of&a&
specific&feature.&Examples:&&

• “Uploading(is(not(working(with(the(iOS6”&
• "Everytime(I(launch(the(app,(it(crashes".&
• "After(the(new(update,(my(mobile(freezes(after(I've(been(using(the(app(for(a(few(

minutes".&
• “I(lost(all(my(phone(contacts.(Great,(thank(you!”&

Feature!request:!The&user&asks&for&a&missing(feature,&a&missing&functionality,&a&
missing&content,&or&a&feature&that&should&be&implemented&or&improved.&Examples:&&

• "It(would(be(great(if(we(could(copy(and(paste(text"&&
• “The(app(is(slow(when(I(am(on(the(road.(Would(be(nice(to(improve(this”(
• "I(wish(you(could(add(a(link(that(would(allow(me(to(share(the(information(with(

my(facebook(friends"&
You&can&choose&more!than!one!option&for&each&review.&In&case&the&review&includes&
other&types&of&information,&please&write&what&it&is.&This&is&optional.&&
&

&
Figure!2:!!CADO!G!Coding!View!!

B.!Identify!App!Features!!
Please&identify&all(app(features!that&are&mentioned&in&the&review.&Please&identify&
both&existing(app(features&and&wished(or(requested(features.&A&feature&can&be&a&
description&of&specific&app&functionality&visible&to&the&user&(e.g.&uploading&files,&
sending&email,&adding&friends,&follow,&unfollow&etc.).&A&feature&can&also&be&a&specific&
screen&of&the&app,&a&general&quality&of&the&app&(such&as&time&needed&to&load,&
encryption,&size&of&storage,&file&types,&a&license,&or&a&price)&as&well&as&specific&
technical(characteristics&(a&certain&technology&or&a&specific&version&of&a&technology,&
e.g.&a&network&protocol,&HTML5,&etc.).&&

Some&examples&from&user&review&sentences&containing&features&(underlined)&are&the&
following:&
• Syncing(does(not(occur.(Files(are(at(least(a(month(old.(If(the(free(service(is(this(

bad(then(I(would(not(trust(the(pay(service(at(all.(

• This(application(does(not(work;(do(not(waste(your(time(on(it.(First(of(all(it(will(

not(let(me(use(my(email(I(have(had(5(years,(says(it(is(taken((?).(Second,("technical(

support"(and("Contact(Us(are(nonSexistent.(

• Dropbox(is(great(for(storing(files,(but(HORRIBLE(for(streaming(stored(music.(

• What's(up?(Just(updated(drop(box(and(it's(crashing(every(time(I(login!
• Why(would(I(be(able(to(upload(video(but(not(download((Note:(Please(add(word(

video(to(the(feature(description)(it(to(another(device?(

• Needs(the(ability(to(move(download((Note:(Please(add(word(file(to(feature(

description)(and(rename(files.(

• I(use(this(app(daily.(Love(the(graphics.(Love(the(simplicity(and(usability…(

Text

Title A. Classify Review

B. Identify Features

C. Assess Sentiments

Use hotkeys when mouse
 cursor is in this are
(see note at end of doc.)

You&can&add&a&feature&by&marking&the&words&describing&the&feature&in&the&text&and&
right(clicking&on&it.&You&can&also©/paste&the&text&or&simply&type&the&feature&in&the&
feature&description&text&field.&In&case&you&decide&to&type&please&use&the&same!
vocabulary&used&in&the&review&text&and&do¬&make&your&own&abstractions&from&
the&text.&For&example,&in&the&sentence:&
&
• There is a lack of OpenDocument format support for saving my notes.((
(

Do¬&write&as&a&feature&label:&compatible(format(support,&but&rather&choose&as&
feature&label:&OpenDocument format support&
 NOTE.&Some&features&can&also&be&described&by&several(words,&which&might&be&
continuous!or!not.&In&this&case&please&add&all&the&words&into&the&text&field&for&the&
feature&description.&&
Please&write&only&one(feature&on&each&text&field.&For&example,&if&the&review&includes:&
• Synch(my(notes,(photos(and(documents(easily.((

(

Add&of&the&following&features&into&the&text&field:&
Synch¬es&
Synch&photos&
Synch&documents&
&

C.#Assess#Sentiments#
Give&a&sentiment!score&for&each&feature&that&is&mentioned&in&the&review&and&that&
you&have&identified.&Note:&this&score&does¬&have&to&be&the&same&as&the&star&rating&
in&the&review.&There&are&5&scores&which&range&from&very&negative&to&very&positive:&
&
Very!negative:!The&review&text&is&very&negative&about&the&feature&typically&using&
superlatives&and&verbose&description.&In&this&case&the&user&might&use&words&like&
“hate”&or&“scrap”.&They&can&also&get&insulting.&Examples:&

• I(hate(the(upload(functionality!from(Dropbox(
• Also(you(can't(rename(files.(What(the(heck?!

Negative!features:&The&review&text&is&rather&negative&but¬&extreme.&Examples:&
• Don’t(like(the(upload(functionality(from(Dropbox&
• The(app(is(useless(until(you(fix(the(syncing(problem&

Neutral:&The&review&text&is&neutral&(neither&positive&nor&negative)&
• Dropbox lets me upload my files
• Need to be able to link my documents.

Positive: The review text is rather positive but not very enthusiastic. Examples:
• I(like(that(dropbox(lets(me(upload(my(files.(&
• Now(the(app(works(as(expected.&

Very!positive:!The&review&text&is&very&positive,&usually&using&words&like&“love”,&
“great”&or&superlatives&like&“best”,&“most”.&Examples:!

• I(love(that(dropbox(lets(me(upload(my(files!&

• Best(app(ever!&
• If(you(do(not(own(this(app,(your(life(must(be(so(much(tougher.(

&
NOTE:&In&case&a&feature&is&mentioned&more!than!one!time!in&a&review,&added&as&
often&as&it&is&mentioned&and&assign&it&a&sentiment&for&each&time&it&appears&in&the&
review.&&
&

In&order&to&continue&evaluating&the&next&review,&press&the&“Next”&button.&If&you&wish&
to&quit&the&evaluation&session&click&the&“Finish”&button.&The&next&time&you&start&the&
tool&your&session&will&start&where&you&left&it&the&last&time&you&were&using&the&tool.&

Once&you&finish&all&your&assignments&please&upload&your&work&to&the&server&“Push!
my!codings”.&

Note!on!hotkeys:&There&are&some&hotkeys&implemented&in&CADO.&In&case&you&want&
to&classify&a&review,&use&the&numbers&“1”&(feedback&about&feature),&“2”&(bug&report),&
“3”&(feature&request)&and&4&(other).&If&you&want&to&add&a&feature&type&“a”.&You&need&to&
be&situated&in&the&user&review&text&box&to&be&able&to&use&the&hotkeys&(see&Figure&2).&
&

Annotation Guide For Labeling Software
Evolution Categories of User Reviews

Towards an Approach for the Automatic Analysis
of Users Reviews

Labeling Guide

Thank you for helping us in our study. Our study aims at helping software developers to

efficiently focus on the most essential user feedback. Your task is to read user reviews from the

Apple and Google Play app stores and to answer a few questions about them. This guide describes

the instructions, which you should follow carefully in order to successfully conduct the task.

Together with this guide, you received our labeling tool, which you will use for completing your

task. We recommend to print this guide and use it as a reference.

Your task is to read the reviews assigned to you on our labeling tool one by one. For each

review you will:

• Classify the Review, indicate whether the review belongs to one or more categories.

The available categories are: feature shortcoming, bug report, feature strength,

feature request, usage scenario, general praise or/and general complaint, noise and

other. We will explain each category later in this guide.

• Assess Sentiment, indicate the sentiment of each review. The sentiments are

expressed on a five-point scale from very positive to very negative.

You will evaluate reviews for 4 iOS apps: AngryBirds, Evernote, TripAdvisor and Dropbox and 3

Android apps: PicsArt, Pinterest and Whatsapp. Before starting this task, please read the

descriptions of these apps available on the following links:

• AngryBirds: http://bit.ly/1lDttIA

• Evernote: http://bit.ly/1cBNCxJ

• TripAdvisor: http://bit.ly/1AXfsPZ

• Dropbox: http://bit.ly/1dSSkc1

• PicsArt: http://bit.ly/1aar1n1

• Pinterest: http://bit.ly/Jtwxdz

• Whatsapp: http://bit.ly/MOtlet

Then, follow the next steps:

1. Start your favorite browser preferably, IE 10, Chrome, Firefox or Safari. You'll need to be

connected online during the execution of the whole task.

2. Go to our labeling tool web app by clicking the following link:

• http://bit.ly/1sglY1A

3. Log-in using the credentials provided.

A review of a certain application will be displayed on the left pane, as shown in Figure 1.

Read the review text, which includes the title and the comment of a user. Make sure that you

read the whole text.

A. Classify the Review

Classify the review by indicating whether the review contains one or many of the following:

Feature Shortcoming: The user identifies an aspect about an existing feature that the user is not

happy with. The user might report dissatisfaction with that feature and can ask for feature

improvements. Example:

• “Syncing files takes a horrible amount of time”

• “Stop asking me if I want to enable background uploads. I've said no about twenty

times now, figure it out.”

Explanation: This example is taken from picsart, the app prompts a notification,

asking about enabling background uploads every time the user minimizes the app.

The notification is an existing feature of the app that the user is clearly not happy

with.

• “It is no longer usable”

Explanation: The user is not satisfied with the usability of the app. Usability is a

feature of the app.

• “It is hard to find the save button on the options menu. The save button should be a

bit bigger or colored differently.”

Explanation: The user is not satisfied with the user interface,which is a feature, and

he wishes to improve the layout.

Figure 1: first screen after you login. The name of the project and the review is on the the left pane.

Title

Text

Go to next

or previous

review

Project

of reviews read per

project

Overall Progress

A. Classify a review

B. Assess sentiment

Go to a specified review

Feature Strength: The user identifies an aspect about an existing feature that the user is happy

with. The user reports satisfaction with that feature. Example:

• “I love uploading pictures with this app”

• “I love the automatic syncing of this app”

• “Loads so much faster now and it is easy to use”

Feature Request: The user asks for a missing feature, missing functionality, a missing content or a

feature that should be implemented. Example:

• “It would be great if we could copy and paste”

Bug Report: The user reports a problem, such as a faulty behavior of the application or of a

specific feature. Bug reports may contain words like “fix”, “error” or “crash”. Moreover, bug

reports could also be about a certain feature that used to be working fine and suddenly stopped

working. Example:

• “Everytime I start the app, it crashes!”

• “I'm really disappointed with the IOS 7 version of this app, saving documents doesnt

work anymore”

• “Was nice , won't open since update”

Usage Scenario: The user reports his positive/negative experience with the app or a certain feature.

The user could also report a workaround, a use case or how he uses the app. Example:

• "I rely on Dropbox daily at work and I have it on my home computer as well”

• “I use dropbox for my college classes”

General Praise: The user expresses general appreciation with the application. For instance, it could

be assigned to reviews containing the word “Cool”, “great!” or “Awesome”. It focuses on general

judgment of the application, unlike feature strength which focuses on the positive feedback about

an existing feature. Example:

• “I think this game is really Cool!!”

• “I downloaded this game on my ipad and my daughter loves this game. Thank you!”

General Complaint: The user expresses general dissatisfaction with the application. It includes

topics that are related to the judgment of the application. In contrast, feature shortcoming focuses on

the negative feedback about an existing feature. Example:

• “This game is horrible! What a waste of time!”

• “DONT DOWNLOAD THIS APP EVER its horrible”

Noise: Select this option only for non-English reviews or nonsense symbols or reviews that do not

make any sense. Note that, you will not need to choose a sentiment if this option is selected.

Example:

• “It's not me!”

• “???!? #$! ??!”

Other: In case the review contains another category not included in the labels, please write what it

is.

When labeling you can choose more than one option for each review. Example:

• Feature Shortcoming and Bug Report:

◦ “The upload option is not only slow, but crashes every time it runs in the

background”

Explanation: This example is identified as both, feature shortcoming and bug report.

Since, the user is not happy with the upload feature therefore, its tagged as feature

shortcoming. Also the example is a tagged as a bug report, since the user reported the

crashing of the app.

• Feature Request and General Praise:

◦ “if only I could buy more powerful guns in this game, I think It will be a great

addition to the game play, rather than this, its one of the best games I've ever

played on iphone”

Explanation: The user requested a missing feature which is “buying powerful guns”

and rated this game as the best game on apple store. That's why this example should

be identified as feature request and general praise.

• Feature Strength and Usage Scenario:

◦ "I rely on Dropbox for syncing daily annotated PDFs from my iPad to my home

computer"

Explanation: The user reports a positive experience regarding the syncing feature of

the app. The example is identified as a feature strength because “syncing” feature

was mentioned in a positive context. Also the example was tagged as usage scenario,

because the user reported his daily experience regarding syncing files from an iPad

and a computer.

• Usage Scenario and Bug Report:

◦ “I found a workaround as the only way to to get out of the app once it's stuck in

this loop is to press the iPad sleep button, then swipe the camera as if to take a

photo, and then press the home button.”

Explanation: The user reported a workaround for exiting the app. Clearly, this is a

faulty behavior of the app and the app should exit normally, that's why the example is

identified as bug report. Also, the user's experience and the steps followed to quit the

app were mentioned in the example. For this reason, the example is identified as

usage scenario.

• Usage Scenario and Feature Shortcoming:

◦ “I keep accidentally exiting the document and then I end up scrolling for 10

minutes to get to where I was”

Explanation: This example is identified as feature shortcoming, because the user is

expressing frustration regarding the scrolling feature. Also, the example is identified

as usage scenario, because the user reported his negative experience with app.

Frequently Asked Questions

• What's the difference between feature shortcoming and bug report?

◦ Feature shortcoming includes reviews in which the user reported a negative experience

or is not happy with a certain feature and also includes improvement requests regarding

a certain feature. On the other hand, bug report includes reviews in which the user

reported crashes of the app or a feature, in other words, if something (feature or the app)

is not working or keeps crashing, then the review should be identified as bug report.

• What's the difference between general praise and feature strength?

◦ Feature strength focuses on the positive feedback about an existing feature while

general praise focuses on the whole app.

• What's the difference between general complaint and feature shortcoming?

◦ Feature shortcoming focuses on the negative feedback about an existing feature while

general complaint focuses on the whole app.

• What is a feature?

◦ A feature could be user interface, performance, security aspect and any characteristic of

the app.

B. Assess Sentiments

People express opinions every day on issues large and small. Whether the topic is politics, fashion

or films, we often rate situations and experiences on a sliding scale of sentiment ranging from very

positive to very negative. In our tool you will be required to give a sentiment score for each review,

note that this score does not have to be the same as the star rating in the review. Your assessment

will be based on evaluating both, the user experience and the language that the user used. In the

labeling tool there are 5 scores which range from very negative to very positive:

Very negative: The review text is very negative. In this case the user might use words like “hate”

or “terrible”. They can also get insulting. Examples:

• “I hate the upload functionality from Dropbox”

• “3rd time deleting this stupid app”

• “This app is good in crashing every time I try to do something. This app is an utter waste of

money and time!”

• “FIRE ALL THE MONKEYS WORKING ON THIS APP!”

Negative: The review text is rather negative but not extreme. Examples:

• “Don't like the upload functionality from dropbox”

• “The app is useless until you fix the syncing issue”

• “How many engineers have you hired?” (The user is mocking the bad engineering of the

app)

• “My friends lost all his photos because of this app”

Neutral: The review text is neutral (neither negative nor positive). Examples:

• “Dropbox lets me upload my files”

• “Need to be able to link my docs”

Positive: The review text is rather positive but not very enthusiastic. Examples:

• “I like that dropbox lets me upload my files”

• “now the app works as expected”

• “Finally the monkeys working on this app did something right!”

Very Positive: The review text is very positive, usually words like “love”, “great” or superlatives

like “best”, “most”. Examples:

• “I love that dropbox lets me upload my files”

• “Best app ever!!”

In order to continue evaluating the next review, press the “>” button, Note: that everything is saved

once you click either “>”(next) or save button. You can also jump to reviews using the “Go” bar by

specifying the review number. Notice that, you can only jump to labeled reviews only. After you

finish evaluating reviews of one project, please select another project from the dropdown in the

upper left corner (“Project”). The next time time you log-in to the tool, your session will start where

you left in the last time you were using the tool.

Statistical Analysis of Classifiers’
Performance

We applied a McNemar test on the results presented in Section 5.5.3 to know if the results of
the different classifiers had a statistical significant difference. We followed similar methods
as those described by Bostanci et al. [22] and Dietterich [39] for comparing the performance
of different supervised learning algorithms. We applied the McNemar test on the predictions
performed on the test set. The McNemar test uses a 2x2 contingency table to compare the
classifiers’ outcomes on the test set. Table 1 shows the main components of the contingency
table.

Table 1 Possible outcomes of two classifiers according to Bostanci and Bostanci et al. [22].

Classifier A failed Classifier A succeeded
Classifier B failed N f f Ns f
Classifier B succeeded N f s Nss

Where N f f denotes the number of misclassified samples by both classifiers and Nss denotes
the number of correctly classified samples by both classifiers. Ns f and N f s indicate the
number of samples misclassified by only one the classifiers.

For measuring the performance difference between two classifiers, we computed the z score
as follows:

z =
|Ns f �N f s|�1p

Ns f +N f s
(1)

The z score is used to test the null hypothesis. In this case, the null hypothesis indicates that
two classifiers perform similarly (the difference is not significant). Since McNemar’s test
is based on the c2 test [39], we use the 95% confidence level to test our null hypothesis.
Therefore, if z is less than 1.645 (95% confidence level) we consider the null hypothesis to
be correct. The significance in difference performance is increased with the divergence of z
score in positive direction (greater than 1.645). We calculated the z score for all categories

126 Statistical Analysis of Classifiers’ Performance

and classifiers. Table 2 shows the results of the McNemar test together with the z score. We
used different arrowheads (and ") to denote which classifier performed better.

127
Table 2 z score of each model per category.

Bug report
Ensemble A Ensemble B Ensemble C Naive Bayes Logistic reg. SVM

Neural net. 1.73 10.18 " 1.73 1.44 1.80 0.75
Ensemble A 10.82 " 0.12 1.12 0.0 0.92
Ensemble B " 10.82 " 9.81 " 10.82 " 9.91
Ensemble C 1.2 0.0 0.91
Naive Bayes 0.0 " 0.69
Logistic reg. " 0.92

Complaint
Neural net. " 1.26 1.03 0 0 0 1.21
Ensemble A 0.5 " 2.06 " 1.57 " 2.04 0
Ensemble B " 1.58 " 2.04 " 1.58 " 0 .5
Ensemble C 0.5 0 2.04
Naive Bayes " 0.5 1.77
Logistic reg. 1.58

Feature request
Neural net. " 0.66 1.96 0 1.87 1.27 1.28
Ensemble A 2.18 " 1.96 1.64 0.55 0
Ensemble B " 3.32 " 0.15 " 0.84 " 2.18
Ensemble C 1.88 1.35 0.65
Naive Bayes " 0.47 " 1.21
Logistic reg. " 0.65

Feature shortcoming
Neural net. 2.14 8.54 2.80 1.27 4.30 3.39
Ensemble A 8.89 0 " 0.50 0 1.87
Ensemble B " 8.89 " 7.47 " 8.89 " 5.60
Ensemble C " 0.50 0 1.82
Naive Bayes 2.89 2.21
Logistic reg. " 1.01

Feature strength
Neural net. 0 3.96 0 3.92 2.27 2.16
Ensemble A 3.46 0 3.92 3.18 2.16
Ensemble B " 3.96 1.90 0.89 0
Ensemble C 3.92 3.18 2.16
Naive Bayes " 2.16 " 2.30
Logistic reg. " 0.13

Noise
Neural net. 0 1.78 0 0 0.41 0
Ensemble A 1.78 0 0 0 0
Ensemble B " 1.72 " 0.82 " 0.94 " 0.80
Ensemble C 0 0 0
Naive Bayes " 0.89 0.70
Logistic reg. 0.89

Praise
Neural net. 1.29 8.41 1.29 2.82 2.92 0.92
Ensemble A 9.01 0 1.70 0 " 0.11
Ensemble B " 9.01 " 6.46 " 9.01 " 7.71
Ensemble C 1.70 0 " 0.11
Naive Bayes 0 " 1.83
Logistic reg. " 2.29

Usage scenario
Neural net. 2.93 3.94 " 2.96 3.05 1.47 2.93
Ensemble A 2.91 " 0.26 0 " 0.26 0
Ensemble B " 1.74 " 1.57 "1.74 " 2.91
Ensemble C 0.6 0 0.36
Naive Bayes " 1.49 0
Logistic reg. 1.71

Semi-structured Interview for Measuring
Perceived Usefulness of DIVERSE

1. [Control & Test Group] How important do you consider user feedback when devel-
oping software for end-users?

2. [Control & Test Group] Would you consider developing different product lines for
the app based on the conflicting opinions, needs and experiences found in the reviews
related to these two features?

[Note to interviewer: Give software product line definition in case interviewee is
unfamiliar with term.]

3. [Control & Test Group] Do you think it is important to take user feedback of non-
traditional or less vocal users into account? Why?

[Note to interviewer: After an initial answer mention the following perspective: One
of the main goals of technology is to improve the life of humans in general. Afterwards,
ask the following questions: Do you think the software industry has created products
that are really beneficial for all humans or just to specific groups? (Give examples
of imbalance if needed). What do you think about the imbalance? Do you think the
software industry can change the imbalance? What would be your concrete suggestions
for addressing this imbalance?]

4. [Control & Test Group] What suggestions do you have for making developers and
others involved in software development more aware of the needs of non-traditional or
less vocal users?

[Note to interviewer: Only ask if interviewee considered that it was important to take
user feedback of non-traditional or less vocal users into account.]

5. [Test Group] Do you think the grouping of reviews according to their sentiment helps
to detect conflicting opinions? Why?

130 Semi-structured Interview for Measuring Perceived Usefulness of DIVERSE

6. [Test Group] Do you think the grouping of reviews according to their sentiment helps
to be aware of the different opinions of non-traditional or less vocal users? Why?

7. [Test Group] Do you think the grouping of reviews according to their sentiment and
their display in separate groups could be useful during software evolution? Why?

8. [Test Group] Would you like to use something similar to the tool you just tried when
analyzing written feedback?

9. [Control & Test Group] What was your impression on how long the task took to
complete?

10. [Control & Test Group] Do you have any additional comments or suggestions?

References

[1] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passonneau, R. (2011). Sentiment
analysis of twitter data. In Proceedings of the Workshop on Languages in Social Media,
pages 30–38. Association for Computational Linguistics.

[2] Ahkter, J. K. and Soria, S. (2010). Sentiment analysis: Facebook status messages.
Master’s thesis, Stanford University.

[3] Alper, B., Yang, H., Haber, E., and Kandogan, E. (2011). OpinionBlocks: Visualizing
consumer reviews. In Proceedings of the IEEE VisWeek Workshop on Interactive Text
Analytics for Decision Making. IEEE.

[4] Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., and Spyropoulos, C. D. (2000).
An experimental comparison of naive Bayesian and keyword-based anti-spam filtering
with personal e-mail messages. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 160–167.
ACM.

[5] Arapakis, I., Jose, J. M., and Gray, P. D. (2008). Affective feedback: an investigation into
the role of emotions in the information seeking process. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 395–402. ACM.

[6] Asuncion, H. U., Asuncion, A. U., and Taylor, R. N. (2010). Software traceability
with topic modeling. In Proceedings of the 32nd International Conference on Software
Engineering (ICSE), pages 95–104. ACM.

[7] Bacchelli, A., Dal Sasso, T., D’Ambros, M., and Lanza, M. (2012). Content classification
of development emails. In Proceedings of the 34th International Conference on Software
Engineering (ICSE), pages 375–385. IEEE.

[8] Bakar, N. H., Kasirun, Z. M., and Salleh, N. (2015). Feature extraction approaches from
natural language requirements for reuse in software product lines: A systematic literature
review. Journal of Systems and Software, 106:132–149.

[9] Ball, T. and Eick, S. G. (1996). Software visualization in the large. Computer, 29(4):33–
43.

[10] Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi treemaps for the visual-
ization of software metrics. In Proceedings of the 2005 ACM Symposium on Software
Visualization, pages 165–172. ACM.

132 References

[11] Bano, M. and Zowghi, D. (2013). User involvement in software development and
system success: A systematic literature review. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering, pages 125–130.
ACM.

[12] Barki, H. and Hartwick, J. (1989). Rethinking the concept of user involvement. MIS
quarterly, pages 53–63.

[13] Bazelli, B., Hindle, A., and Stroulia, E. (2013). On the personality traits of StackOver-
flow users. In Proceedings of International Conference on Software Maintenance (ICSM),
pages 460–463. IEEE.

[14] Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley
Professional.

[15] Begel, A. and Zimmermann, T. (2014). Analyze this! 145 questions for data scientists
in software engineering. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 12–23. ACM.

[16] Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python.
O’Reilly.

[17] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[18] Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4):77–
84.

[19] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. The Journal
of Machine Learning Research, 3:993–1022.

[20] Blomberg, J. and Burrell, M. (2009). An ethnographic approach to design. In A., J. J.
and A., S., editors, The human–computer interaction handbook: Fundamentals, evolving
technologies and emerging applications, pages 71–94. Laurence Erlbaum.

[21] Boehm, B. W. (1988). A spiral model of software development and enhancement.
Computer, 21(5):61–72.

[22] Bostanci, B. and Bostanci, E. (2013). An evaluation of classification algorithms
using Mc Nemar’s test. In Proceedings of the International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA), pages 15–26. Springer.

[23] Bruegge, B. and Dutoit, A. (2009). Object-oriented software engineering: Using UML,
Patterns and Java. Prentice Hall, 3rd edition.

[24] Carr, D. A. (1999). Guidelines for designing information visualization applications.
Proceedings of Proceedings Ericsson Conference on Usability Engineering (ECUE),
99:1–3.

[25] Carterette, B. (2011). An analysis of NP-completeness in novelty and diversity ranking.
Information Retrieval, 14(1):89–106.

References 133

[26] Chang, J., Gerrish, S., Wang, C., and Blei, D. M. (2009). Reading tea leaves: How
humans interpret topic models. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams,
C. K. I., and Culotta, A., editors, Advances in Neural Information Processing Systems
(NIPS), pages 288–296.

[27] Chen, N., Lin, J., Hoi, S. C., Xiao, X., and Zhang, B. (2014). AR-Miner: mining infor-
mative reviews for developers from mobile app marketplace. In International Conference
on Software Engineering (ICSE), pages 767–778. ACM.

[28] Clarke, C. L. A., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher,
S., and MacKinnon, I. (2008). Novelty and diversity in information retrieval evaluation.
In Proceedings of the 31st International Conference on Research and Development in
Information Retrieval (SIGIR), pages 659–666. ACM.

[29] Damodaran, L. (1996). User involvement in the systems design process-a practical
guide for users. Behaviour & Information Technology, 15(6):363–377.

[30] Das, D. and Martins, A. F. T. (2007). A survey on automatic text summarization.
Unpublished manuscript, Literature Survey for the Language and Statistics II course at
CMU.

[31] Dave, K., Lawrence, S., and Pennock, D. M. (2003). Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews. In Proceedings of the 12th
international Conference on World Wide Web (WWW), pages 519–528. ACM.

[32] Dawkins, R. (2006). The selfish gene. Oxford University Press.

[33] De Choudhury, M. and Counts, S. (2013). Understanding affect in the workplace via
social media. In Proceedings of the Conference on Computer Supported Cooperative
Work (CSCW), pages 303–316. ACM.

[34] De Lucia, A., Penta, M. D., Oliveto, R., Panichella, A., and Panichella, S. (2012). Using
IR methods for labeling source code artifacts: Is it worthwhile? In Proceedings of the 20th
International Conference on Program Comprehension (ICPC), pages 193–202. IEEE.

[35] De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., and Yang, J. (2002).
Visualizing the execution of Java programs. In Software Visualization, pages 151–162.
Springer.

[36] Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman,
R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

[37] Diener, E. and Emmons, R. A. (1984). The independence of positive and negative
affect. Journal of personality and social psychology, 47(5):1105–1117.

[38] Dietterich, T. G. (1990). Ensemble methods in machine learning. Multiple Classifier
Systems, (1):1–15.

[39] Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural computation, 10(7):1895–1923.

134 References

[40] Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera,
C., and Mirakhorli, M. (2011). On-demand feature recommendations derived from mining
public product descriptions. In Proceeding of the 33rd International Conference on
Software Engineering (ICSE), pages 181–190. ACM.

[41] El Emam, K. and Madhavji, N. H. (1995). A field study of requirements engineering
practices in information systems development. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering, pages 68–80. IEEE.

[42] El Emam, K., Quintin, S., and Madhavji, N. H. (1996). User participation in the
requirements engineering process: An empirical study. Requirements engineering, 1(1):4–
26.

[43] Elmqvist, N. and Fekete, J.-D. (2010). Hierarchical aggregation for information visual-
ization: Overview, techniques, and design guidelines. IEEE Transactions on Visualization
and Computer Graphics, 16(3):439–454.

[44] Faridani, S., Bitton, E., Ryokai, K., and Goldberg, K. (2010). Opinion space: a scalable
tool for browsing online comments. In Proceedings of the 28th International Conference
on Human factors in Computing Systems (CHI), pages 1175–1184. ACM.

[45] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowl-
edge discovery in databases. AI magazine, 17(3):37.

[46] Fox, E. (2008). Emotion science cognitive and neuroscientific approaches to under-
standing human emotions. Palgrave Macmillan.

[47] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N. (2013). Why people
hate your app. Making sense of user feedback in a mobile app store. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining (KDD), pages
1276–1284. ACM.

[48] Galvis Carreño, L. V. and Winbladh, K. (2013). Analysis of user comments: an approach
for software requirements evolution. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 582–591. IEEE.

[49] Gethers, M., Oliveto, R., Poshyvanyk, D., and Lucia, A. (2011). On integrating
orthogonal information retrieval methods to improve traceability recovery. In Proceedings
of the 27th IEEE International Conference on Software Maintenance (ICSM), pages
133–142. IEEE.

[50] Ghorashi, S. H., Ibrahim, R., Noekhah, S., and Dastjerdi, N. S. (2012). A frequent
pattern mining algorithm for feature extraction of customer reviews. International Journal
of Computer Science Issues (IJCSI), pages 29–35.

[51] Giuliano, A., Ayari, K., and Di Penta, Massimiliano , Khomh, Foutse, Guéhéneuc, Y.-G.
(2008). Is it a bug or an enhancement?: A text-based approach to classify change requests.
In Proceedings of the Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds (CASCON), pages 304–318. ACM.

References 135

[52] Godfrey, M. W. and German, D. M. (2008). The past, present, and future of software
evolution. In Proceedings of Frontiers of Software Maintenance (FoSM), pages 129–138.
IEEE.

[53] Graham, I. (1989). Structured prototyping for requirements specification of expert
systems. In Colloquium on Expert Systems Lifecycle, pages 1–5.

[54] Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the
National Academy of Sciences, 101:5228–5235.

[55] Grudin, J. (1991). Interactive systems: Bridging the gaps between developers and users.
Computer, (4):59–69.

[56] Guo, W. and Diab, M. (2012). Modeling sentences in the latent space. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics, pages 864–872.
Association for Computational Linguistics.

[57] Guzman, E. (2014). Summarizing, classifying and diversifying user feedback. In
Proceedings of the Software Engineering Conference, pages 237–240.

[58] Guzman, E., Aly, O., and Bruegge, B. (2015a). Retrieving diverse opinions from
app reviews. In Proceedings of the Empirical Software Engineering and Measurement
Conference (ESEM), pages 1–10. IEEE.

[59] Guzman, E., Azócar, D., and Li, Y. (2014a). Sentiment analysis of commit comments
in GitHub: an empirical study. In Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR), pages 352–355. ACM.

[60] Guzman, E., Bhuvanagiri, P., and Bruegge, B. (2014b). FAVe: Visualizing user feedback
for software evolution. In Second IEEE Working Conference on Software Visualization
(VISSOFT), pages 167–171. IEEE.

[61] Guzman, E. and Bruegge, B. (2013). Towards emotional awareness in software devel-
opment teams. In Foundations of Software Engineering (FSE), pages 671–674. ACM.

[62] Guzman, E., El-Halaby, M., and Bruegge, B. (2015b). Ensemble methods for app
review classification: an approach for software evolution. In Proceedings of the Automated
Software Enginering Conference (ASE), pages 771–776. IEEE.

[63] Guzman, E. and Maalej, W. (2014). How do users like this Feature? A fine grained
sentiment analysis of app reviews. In Proceedings of the International Conference on
Requirements Engineering (RE), pages 153–162. IEEE.

[64] Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (10):993–1001.

[65] Hardt, M. (2014). How big data is unfair. Understanding sources of unfairness in data
driven decision making. [Medium serial on the Internet].

[66] Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., and Mobasher, B.
(2013). Supporting domain analysis through mining and recommending features from
online product listings. IEEE Transactions on Software Engineering, 39(12):1736–1752.

136 References

[67] Harman, M., Jia, Y., and Zhang, Y. (2012). App store mining and analysis: MSR for app
stores. In Proceedings of Working Conference on Mining Software Repositories (MSR),
pages 108–111. IEEE.

[68] Hattie, J. and Timperley, H. (2007). The power of feedback. Review of educational
research, 77(1):81–112.

[69] Hedegaard, S. and Simonsen, J. G. (2013). Extracting usability and user experience
information from online user reviews. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), pages 2089–2098. ACM.

[70] Heer, J., Bostock, M., and Ogievetsky, V. (2010). A tour through the visualization zoo.
Commununications of the ACM, 53(6):59–67.

[71] Heinbokel, T., Sonnentag, S., Frese, M., Stolte, W., and Brodbeck, F. C. (1996). Don’t
underestimate the problems of user centredness in software development projectsthere are
many! Behaviour & Information Technology, 15(4):226–236.

[72] Hindle, A., Godfrey, M. W., and Holt, R. C. (2009). What’s hot and what’s not:
Windowed developer topic analysis. In IEEE International Conference on Software
Maintenance (ICSM), pages 339–348. IEEE.

[73] Hollander, M. and Wolfe, D. A. (1999). Nonparametric statistical methods, volume 2.
John Wiley & Sons.

[74] Hong, L. and Davison, B. D. (2010). Empirical study of topic modeling in twitter. In
Proceedings of the First Workshop on Social Media Analytics, pages 80–88. ACM.

[75] Hu, M. and Liu, B. (2004a). Mining and summarizing customer reviews. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining (KDD), pages
168–177. ACM.

[76] Hu, M. and Liu, B. (2004b). Mining opinion features in customer reviews. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 755–760. AAAI Press.

[77] Huppert, F. A. and Whittington, J. E. (2003). Evidence for the independence of positive
and negative well-being: Implications for quality of life assessment. British journal of
health psychology, 8(1):107–122.

[78] Iacob, C. and Harrison, R. (2013). Retrieving and analyzing mobile apps feature
requests from online reviews. In Proceedings of the Working Conference on Mining
Software Repositories (MSR), pages 41–44. IEEE.

[79] Ives, B. and Olson, M. H. (1984). User involvement and MIS success: A review of
research. Management science, 30(5):586–603.

[80] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The unified software development
process, volume 1. Addison-Wesley Reading.

[81] Jakob, N., Weber, S. H., Müller, M. C., and Gurevych, I. (2009). Beyond the stars:
exploiting free-text user reviews to improve the accuracy of movie recommendations. In
Proceedings of the International CIKM workshop on Topic-sentiment analysis for Mass
Opinion (TSA), pages 57–64. ACM.

References 137

[82] Jindal, N. and Liu, B. (2007). Review spam detection. In Proceedings of the 16th
International Conference on World Wide Web (WWW), pages 1189–1190. ACM.

[83] Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. Springer.

[84] Jones, C. (1995). End user programming. Computer, 28(9):68–70.

[85] Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on Software
Engineering (ICSE), pages 467–477. ACM.

[86] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990).
Feature-oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie-Mellon University.

[87] Karat, J. (1997). Evolving the scope of user-centered design. Communications of the
ACM, 40(7):33–38.

[88] Keim, D. (2002). Information visualization and visual data mining. IEEE Transactions
on Visualization and Computer Graphics, 8(1):1–8.

[89] Kemper, H.-G. and Wolf, E. (2002). Iterative process models for mobile application
systems: A framework. Proceedings of the International Conference on Information
Systems, pages 401–413.

[90] Kim, Y., Jung, Y., and Myaeng, S.-H. (2007). Identifying opinion holders in opinion
text from online newspapers. In Proceedings of the 2007 IEEE International Conference
on Granular Computing (GRC), pages s 699–702. IEEE.

[91] Knauss, E., Damian, D., Poo-Caamano, G., and Cleland-Huang, J. (2012). Detecting
and classifying patterns of requirements clarifications. In 20th International Requirements
Engineering Conference (RE), pages 251–260. IEEE.

[92] Ko, A. J., Lee, M. J., Ferrari, V., Ip, S., and Tran, C. (2011). A case study of post-
deployment user feedback triage. In Proceedings of the 4th International Workshop on
Cooperative and Human Aspects of Software Engineering, pages 1–8. ACM.

[93] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, volume 14, pages 1137–1145. Morgan Kaufmann.

[94] Kohavi, R. (2001). Data mining and visualization. In Sixth Annual Siymposium on
Frontiers of Engineering, pages 30–40. National Academy Press.

[95] Koppel, M., Argamon, S., and Shimoni, A. R. (2002). Automatically categorizing
written texts by author gender. Literary and Linguistic Computing, 17(4):401–412.

[96] Kouloumpis, E., Wilson, T., and Moore, J. (2011). Twitter sentiment analysis: The
good the bad and the omg! Proceedings of the International AAAI Conference on Web
and Social Media (ICWSM), 11:538–541.

138 References

[97] Krestel, R. and Dokoohaki, N. (2011). Diversifying product review rankings: Getting
the full picture. In International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), volume 1, pages 138–145. IEEE.

[98] Kucuktunc, O., Cambazoglu, B. B., Weber, I., and Ferhatosmanoglu, H. (2012). A
large-scale sentiment analysis for Yahoo! Answers. In Proceedings of the International
Conference on Web search and Data Mining (WSDM), pages 633–642. ACM.

[99] Kujala, S. (2003). User involvement: a review of the benefits and challenges. Behaviour
& information technology, 22(1):1–16.

[100] Kujala, S., Kauppinen, M., Lehtola, L., and Kojo, T. (2005). The role of user involve-
ment in requirements quality and project success. In Proceedings of the International
Conference on Requirements Engineering (RE), pages 75–84. IEEE.

[101] Lam, L. and Suen, C. Y. (1997). Application of majority voting to pattern recognition:
an analysis of its behavior and performance. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 27(5):553–568.

[102] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. M. (1997).
Metrics and laws of software evolution-the nineties view. In Software Metrics Symposium,
1997. Proceedings., Fourth International, pages 20–32. IEEE.

[103] Li, H., Zhang, L., Zhang, L., and Shen, J. (2010). A user satisfaction analysis
approach for software evolution. In International Conference on Progress in Informatics
and Computing (PIC), volume 2, pages 1093–1097. IEEE.

[104] Lieberman, H., Paternò, F., Klann, M., and Wulf, V. (2006). End-user development:
An emerging paradigm. Springer.

[105] Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychol-
ogy.

[106] Lin, W. T. and Shao, B. B. M. (2000). The relationship between user participation
and system success: a simultaneous contingency approach. Information & Management,
37(6):283–295.

[107] Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi, P. (2007). Mining eclipse
developer contributions via author-topic models. In Fourth International Workshop on
Mining Software Repositories (MSR), pages 30–33. IEEE.

[108] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human
Language Technologies, 5(1):1–167.

[109] Liu, B., Hu, M., and Cheng, J. (2005). Opinion observer: analyzing and comparing
opinions on the Web. In Proceedings of the 14th International Conference on World Wide
Web (WWW), pages 342–351. ACM.

[110] Lukins, S. K., Kraft, N. A., and Etzkorn, L. H. (2008). Source code retrieval for
bug localization using latent dirichlet allocation. In Proceedings of the 15th Working
Conference on Reverse Engineering (WCRE), pages 155–164.

References 139

[111] Lyytinen, K. and Yoo, Y. (2002). Ubiquitous computing. Communications of the
ACM, 45(12):63–96.

[112] Maalej, W., Happel, H.-J., and Rashid, A. (2009). When users become collaborators.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (OOPSLA), pages 981–990. ACM.

[113] Maalej, W. and Pagano, D. (2011). On the socialness of software. In Ninth Interna-
tional Conference on Dependable, Autonomic and Secure Computing, pages 864–871.
IEEE.

[114] Maalej, W. and Robillard, M. P. (2013). Patterns of knowledge in API reference
documentation. IEEE Transactions on Software Engineering, 39(9):1264–1282.

[115] Mani, S., Catherine, R., Sinha, V. S., and Dubey, A. (2012). AUSUM: Approach
for unsupervised bug report summarization. In Proceedings of the 20th International
Symposium on the Foundations of Software Engineering (FSE), pages 1–11. ACM.

[116] Manning, C. D., Raghavan, P., Schütze, H., and Others (2008). Introduction to
information retrieval, volume 1. Cambridge University Press.

[117] Manning, Christopher D., Schütze, H. (1999). Foundations of statistical natural
language processing. MIT Press.

[118] Marcus, A., Feng, L., and Maletic, J. I. (2003). 3D representations for software
visualization. In Proceedings of the Symposium on Software Visualization, pages 27–36.
ACM.

[119] Martin, R. C. (2003). Agile software development: principles, patterns, and practices.
Prentice Hall PTR.

[120] Maskeri, G., Sarkar, S., and Heafield, K. (2008). Mining business topics in source
code using latent dirichlet allocation. In Proceedings of the 1st India Software Engineering
Conference (ISEC), pages 113–120. ACM.

[121] Mei, Q., Ling, X., Wondra, M., Su, H., and Zhai, C. (2007). Topic sentiment mixture:
modeling facets and opinions in Weblogs. In Proceedings of the 16th International
Conference on World Wide Web (WWW), pages 171–180. ACM.

[122] Mens, T. (2008). Introduction and roadmap: History and challenges of software
evolution. Springer.

[123] Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the
ACM, 38(11):39–41.

[124] Mitchell, T. M. (1997). Machine Learning, volume 4 of McGraw-Hill Series in
Computer Science. McGraw-Hill.

[125] Morales-Ramirez, I. (2013). On exploiting end-user feedback in requirements engi-
neering. In Proceedings of the 19th International Working Conference on Requirements
Engineering: Foundations for Software Quality (REFSQ), pages 223–230. Springer.

140 References

[126] Muller, M. J., Haslwanter, J. H., and Dayton, T. (1997). Participatory practices in the
software lifecycle. Handbook of human-computer interaction, 2:255–297.

[127] Murgia, A., Tourani, P., Adams, B., and Ortu, M. (2014). Do developers feel emotions?
An exploratory analysis of emotions in software artifacts. Proceedings of the Working
Conference on Mining Software Repositories (MSR), pages 262–271.

[128] Natthakul, P., Hata, H., and Matsumoto, K.-i. (2013). Classifying bug reports to bugs
and other requests using topic modeling. In Proceedings of the Software Engineering
Conference (APSEC), pages 13–18. IEEE.

[129] Naveed, N., Gottron, T., and Staab, S. (2013). Feature sentiment diversification of user
generated reviews: The FREuD approach. In Proceedings of the International Conference
on Weblogs and Social Media (ICWSM), page 429–438. AAAI Press.

[130] Neuendorf, K. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage
Publications.

[131] Nielsen, J. and Landauer, T. K. (1993). A mathematical model of the finding of
usability problems. In Proceedings of the INTERACT and CHI Conference on Human
Factors in Computing Systems, pages 206–213. ACM.

[132] Novielli, N., Calefato, F., and Lanubile, F. (2014). Towards discovering the role of
emotions in stack overflow. In Proceedings of the International Workshop on Social
Software Engineering (SSE), pages 33–36. ACM.

[133] Oelke, D., Hao, M., Rohrdantz, C., Keim, D. A., Dayal, U., Haug, L.-E., and Janetzko,
H. (2009). Visual opinion analysis of customer feedback data. In IEEE Symposium on
Visual Analytics Science and Technology, pages 187–194. IEEE.

[134] Pagano, D. (2013). Portneuf – A Framework for Continuous User Involvement. PhD
thesis, Technische Universität München.

[135] Pagano, D. and Bruegge, B. (2013). User involvement in software evolution practice :
A case study. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 953–962. IEEE.

[136] Pagano, D. and Maalej, W. (2011). How do developers blog? An exploratory study.
In Proceeding of the 8th Working Conference on Mining Software Repositories (MSR),
pages 123–132. ACM.

[137] Pagano, D. and Maalej, W. (2013). User feedback in the appstore: An empirical study.
In Proceedings of the International Conference on Requirements Engineering (RE), pages
125–134. IEEE.

[138] Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C., Canfora, G., and Gall, H.
(2015). How Can I Improve My App? Classifying User Reviews for Software Mainte-
nance and Evolution. In Proceedings of the 31st International Conference on Software
Maintenance and Evolution (ICSME), pages 281 – 290. IEEE.

[139] Perez, S. (2014). itunes app store now has 1.2 million apps, has seen 75 billion
downloads to date. TechCrunch [serial on the Internet].

References 141

[140] Popescu, A.-M. and Etzioni, O. (2005). Extracting product features and opinions
from reviews. In Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing (HLT), pages 339–346. Association
for Computational Linguistics.

[141] Prasetyo, P. K., Lo, D., Achananuparp, P., Tian, Y., and Lim, E. P. (2012). Auto-
matic classification of software related microblogs. In Proceedings of the International
Conference on Software Maintenance, (ICSM), pages 596–599. IEEE.

[142] Radev, D. R., Hovy, E., and McKeown, K. (2002). Introduction to the special issue on
summarization. Computational linguistics, 28(4):399–408.

[143] Ramesh, B. and Jarke, M. (2001). Toward reference models for requirements trace-
ability. IEEE Transactions on Software Engineering, 27(1):58–93.

[144] Rastkar, S., Murphy, G. C., and Murray, G. (2010). Summarizing software artifacts:
a case study of bug reports. Proceedings of 32nd International Conference on Software
Engineering (ICSE), 1:505–514.

[145] Rigby, P. C. and Hassan, A. E. (2007). What can OSS mailing lists tell us? A
preliminary psychometric text analysis of the apache developer mailing list. In Proceedings
of the International Workshop on Mining Software Repositories (MSR), pages 23–31.
IEEE.

[146] Robillard, M. P. and Chhetri, Y. B. (2015). Empirical Software Engineering,
20(6):1558–1586.

[147] Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C., and Walid, M. (2013). Monitoring
user interactions for supporting failure reproduction. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages 73–82. IEEE.

[148] Rosnow, R. L. (2008). Beginning behavioral research: a conceptual primer. Pear-
son/Prentice Hall.

[149] Sarmento, L., Carvalho, P., Silva, M. J., and De Oliveira, E. (2009). Automatic
creation of a reference corpus for political opinion mining in user-generated content. In
Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass
opinion, pages 29–36. ACM.

[150] Schuler, D. and Namioka, A. (1993). Participatory design: Principles and practices.
CRC Press.

[151] Schwaber, K. (1997). Scrum development process. In Business Object Design and
Implementation, pages 117–134. Springer.

[152] Seyff, N., Graf, F., and Maiden, N. (2010). Using mobile RE tools to give end-
users their own voice. In Proceedings of the International Requirements Engineering
Conference (RE), pages 37–46. IEEE.

[153] Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages
336–343. IEEE.

142 References

[154] Thelwall, M., Buckley, K., and Paltoglou, G. (2012). Sentiment strength detection for
the social web. Journal of the American Society for Information Science and Technology,
63(1):163–173.

[155] Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kappas, A. (2010). Sentiment
strength detection in short informal text. Journal of the American Society for Information
Science and Technology, 61(12):2544–2558.

[156] Thomas, S. W., Adams, B., Hassan, A. E., and Blostein, D. (2010). Validating the
use of topic models for software evolution. In Proceedings of the 10th IEEE Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 55–64. IEEE.

[157] Thomas, S. W., Hemmati, H., Hassan, A. E., and Blostein, D. (2014). Static test case
prioritization using topic models. Empirical Software Engineering, 19(1):182–212.

[158] Titov, I. and McDonald, R. (2008). Modeling online reviews with multi-grain topic
models. In Proceedings of the 17th International Conference on World Wide Web (WWW),
pages 111–120. ACM.

[159] Tsaparas, P., Ntoulas, A., and Terzi, E. (2011). Selecting a comprehensive set of
reviews. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (KDD), pages 168–176. ACM.

[160] Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.
International Journal of Data Warehousing and Mining, 3:1–13.

[161] Vredenburg, K., Mao, J.-Y., Smith, P. W., and Carey, T. (2002). A survey of user-
centered design practice. In Proceedings of the Conference on Human Factors in Comput-
ing Systems (CHI), pages 471–478. ACM.

[162] Wagner, E. L. and Piccoli, G. (2007). Moving beyond user participation to achieve
successful IS design. Communications of the ACM, 50(12):51–55.

[163] Wallach, H. (2014). Big data, machine learning, and the social sciences: Fairness,
accountability, and transparency. In NIPS Workshop on Fairness, Accountability, and
Transparency in Machine Learning.

[164] Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines
for using multiple views in information visualization. In Proceedings of the working
conference on Advanced visual interfaces, pages 110–119. ACM.

[165] Watson, D., Clark, L. A., and Tellegen, A. (1988). Development and validation of
brief measures of positive and negative affect: the PANAS scales. Journal of personality
and social psychology, 54(6):1063.

[166] Wilson, S., Bekker, M., Johnson, P., and Johnson, H. (1997). Helping and hindering
user involvement – a tale of everyday design. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI), pages 178–185. ACM.

[167] Wood, J. and Silver, D. (1995). Joint application development. John Wiley & Sons,
Inc.

References 143

[168] Wu, Y., Wei, F., Liu, S., Au, N., Cui, W., Zhou, H., and Qu, H. (2010). OpinionSeer:
interactive visualization of hotel customer feedback. IEEE Transactions on Visualization
and Computer Graphics, 16(6):1109–18.

[169] Yan, X., Guo, J., Lan, Y., and Cheng, X. (2013). A biterm topic model for short texts.
In Proceedings of the 22nd International Conference on World Wide Web (WWW), pages
1445–1456. ACM.

[170] Yang, T.-I., Torget, A. J., and Mihalcea, R. (2011). Topic modeling on historical
newspapers. In Proceedings of the 5th ACL-HLT Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Humanities, pages 96–104. Association for
Computational Linguistics.

[171] Yu, Z., Yanxiang, T., Ruihang, G., and Gall, H. (2014). Combining text mining and
data mining for bug report classification. In Proceedings of International Conference in
Software Maintenance and Evolution (ICSME), pages 311–320. IEEE.

[172] Zhang, Y. and Hou, D. (2013). Extracting problematic API features from forum
discussions. In Proceedings of the International Conference on Program Comprehension
(ICPC), pages 142–151. IEEE.

[173] Zou, Y., Liu, C., Jin, Y., and Xie, B. (2013). Assessing software quality through
web comment search and analysis. In Safe and Secure Software Reuse, pages 208–223.
Springer.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Outline

	2 Background
	2.1 User Involvement and Software Development
	2.1.1 User Feedback
	2.1.2 Mobile Applications and Application Distribution Platforms

	2.2 Software Evolution
	2.3 Foundations of Mining User Feedback
	2.3.1 Feature Extraction
	2.3.2 Sentiment Analysis
	2.3.3 Text Summarization
	2.3.4 Text Classification
	2.3.5 Information Visualization

	3 Feature Extraction, Sentiment Analysis and Summarization
	3.1 Introduction
	3.2 Approach
	3.2.1 Data Collection and Preprocessing
	3.2.2 Feature Extraction
	3.2.3 Sentiment Analysis
	3.2.4 Topic Modeling

	3.3 Evaluation Methodology
	3.3.1 Dataset
	3.3.2 Truth Set Creation
	3.3.3 Metrics

	3.4 Evaluation Results
	3.4.1 Feature Extraction
	3.4.2 Precision, Recall and F-Measure
	3.4.3 Coherence and Evolution Relevance
	3.4.4 Sentiment Analysis

	3.5 Discussion
	3.5.1 Results
	3.5.2 Limitations and Threats to Validity

	3.6 Related Work
	3.6.1 Mining User Feedback for Software Engineering
	3.6.2 Automated Feature Extraction and Sentiment Analysis

	4 Visualizing Features, Sentiments and Summaries
	4.1 Introduction
	4.2 Visualization Components
	4.2.1 Home Screen
	4.2.2 Fine-grained Visualizations
	4.2.3 Interactions with Fine-grained Visualizations
	4.2.4 Coloring Scheme

	4.3 Preliminary Study
	4.3.1 Identifying Urgent Issues
	4.3.2 Identifying General Opinions, Conflicting Opinions and Co-occurring Features
	4.3.3 Participants' Impressions and Feedback

	4.4 Related Work

	5 Classification into Software Evolution Categories
	5.1 Introduction
	5.2 User Review Taxonomy for Software Evolution
	5.3 Approach
	5.3.1 Preprocessing
	5.3.2 Classification
	5.3.3 Feature Extraction
	5.3.4 Summarization

	5.4 Evaluation Methodology
	5.4.1 Truth Set Creation

	5.5 Classification
	5.5.1 Setup
	5.5.2 Metrics
	5.5.3 Results

	5.6 Summarization
	5.6.1 Setup
	5.6.2 Metrics

	5.7 Results
	5.8 Discussion
	5.8.1 Results
	5.8.2 Threats to Validity

	5.9 Related Work
	5.9.1 Mining User Feedback for Software Engineering
	5.9.2 Classification of Software Artifacts
	5.9.3 Summarization of Software Artifacts

	6 Diversity Retrieval
	6.1 Introduction
	6.2 Formal Task Definition
	6.3 Approach
	6.3.1 Preprocessing, Feature Extraction and Sentiment Analysis
	6.3.2 Feature Sentiment Retrieval
	6.3.3 Grouping Similar Reviews

	6.4 Evaluation Methodology
	6.5 Diversity Retrieval Performance
	6.5.1 Diversity Metric
	6.5.2 Setup
	6.5.3 Results

	6.6 Impact and Usefulness
	6.6.1 Setup
	6.6.2 Procedure
	6.6.3 Results

	6.7 Software Evolution Relevance
	6.7.1 Setup
	6.7.2 Results

	6.8 Discussion
	6.8.1 Results
	6.8.2 Limitations and Threats to Validity

	6.9 Related Work
	6.9.1 Mining User Feedback for Software Engineering
	6.9.2 Diversity Retrieval in other Domains

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Future Work

	Appendix Annotation Guide For Labeling Features and its Sentiments in User Reviews
	Appendix Annotation Guide For Labeling Software Evolution Categories of User Reviews
	Appendix Statistical Analysis of Classifiers' Performance
	Appendix Semi-structured Interview for Measuring Perceived Usefulness of DIVERSE
	References

