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Abstract—We propose an efficient sparse channel estimation al-
gorithm based on the compressed sensing (CS) approach for large
scale multi-user (MU) MIMO systems. The proposed scheme is
a hybrid one comprising Bayesian and greedy methods. It can
improve the estimation performance by incorporating the spatial
channel knowledge that the neighboring antennas in an array
share the same support. The pilot overhead can be reduced by
utilizing the data symbols using a reliability measure for channel
estimation. Moreover, the effect of interfering and non-interfering
pilots on the estimation performance will be investigated. It will
be shown that the proposed hybrid technique performs similar
or better than the Bayesian method with substantially reduced
complexity.

Index terms— multi-user massive MIMO, OFDM, dis-
tributed channel estimation; compressed sensing, sparse

recovery

I. INTRODUCTION

The demand for higher throughput and capacity is increas-
ing at a staggering rate for cellular networks [1]. The deploy-
ment of very large number of antennas at the base station (BS),
also known as massive MIMO, is considered as key enabler
to achieve these growing demands of throughput. Moreover,
massive MIMO can also provide substantial improvement in
both spectral and energy efficiency [2].

The spectral efficiency in massive MIMO relies on the good
estimate of the channel impulse response (CIR) or channel
state information (CSI) at the base station. The downlink CSI
can be estimated from the uplink CSI by exploiting the channel
reciprocity in time-division duplex (TDD) mode. The uplink
CSl is typically acquired by having the users send pilots, based
on which the base station estimates the CIR to each user.
Channel estimation in massive MIMO system becomes quite
challenging and computationally expensive due to the large
number of channel coefficients to estimate. The related work
on massive MIMO channel estimation is reported in [3]-[4].

Recently, there has been growing interest to apply com-
pressed sensing (CS) based techniques for massive MIMO
channel estimation in order to reduce the computational com-
plexity [5], [6]. CS based techniques rely on the idea that
the wireless channel between the user and the base station
is expected to be sparse in nature due to the finite number of
scatterers. In [7], Masood et al. applied a Bayesian framework,
Support Agnostic Bayesian Matching Pursuit (SABMP) [7],

to estimate the sparse channels in massive MIMO-OFDM
system. Their work can improve the estimation performance
by incorporating the a priori knowledge that the neighboring
antennas in an array observe the channel with a similar
support. It can also reduce the pilot overhead using the data
symbols for channel estimation based on a reliability measure.

The main contribution of this paper is the development of
the weighted version of iterative hard thresholding (WIHT)
to estimate the sparse channel and extend the work [§]
to the multi-user massive MIMO-OFDM systems. We will
investigate the effect of pilots sequence on same sub-carriers
(interfering pilots) and time division multiplexed pilots (non-
interfering pilots) on channel estimation. It will be shown that
the proposed scheme has similar or better performance than the
SABMP algorithm with less computational complexity. This
paper is organized as follows. Section II introduces the system
model. Section III formulates the sparse recovery problem and
presents SAMBP and WIHT algorithms. Section V describes
the methodology to share the common support among the
antennas. A data-aided version of the algorithm is presented
in Section VI. Simulation results are presented in Section VIII
and conclusions are given in Section IX.

II. SYSTEM MODEL

Let us consider the uplink of a multi-user Massive MIMO
wireless system using OFDM with N subcarriers. The base
station has R = M X G receive antennas and there are U
single-antenna users. The channel from user u € {1,...,U}
to receive antenna r € {1...,R} is denoted as h! =
[h7[0], ..., hn[L —1]]", where L is the channel length.

At each time instant, each user generates an OFDM symbol
X, € CV*X1 containing N individual Q-QAM modulated
samples. The transmitter applies IFFT to X', adds a cyclic
prefix and converts it to the carrier frequency. Each antenna r
in the base station receives a linear combination of the symbols
from all users u. The cyclic prefix is removed and an IFFT is
applied to obtain Y". This can be compactly written as:

U
y =3 [FHF'x,]+ 2", (1)

u=1
where H?, € CV*¥ is a circulant matrix whose rows are
cyclical shifts of the channel impulse response h’, and Z" €



CN*1 is AWGN noise. Due to the circulant property of H”,

we have FH F = diag [Fh’], where F € CV*Z is a matrix
built with the first L columns of an N x N DFT matrix.
Plugging this into (1) yields:

U
Y=Y [diag [Eh}] X,] + 27
u;l "
= [diag [X,]Fh}] + 2" =Y [Ah]+ 2", ()
u=1 u=1

where A, = diag [X,]F € CN*L,

The channel estimation problem amounts to obtaining an
estimate of the channels hj, for all users u and all receive
antennas r. For this purpose, known pilot symbols need to be
sent on some subcarriers. From (2) it is seen that each user
suffers interference from all others, unless the pilot sequences
are orthogonal to each other. However, only a few mutually
orthogonal sequences are available (no more than the sequence
length). Therefore, we focus on a scenario where all users send
pilots simultaneously and the sequences are not necessarily
orthogonal, but chosen pseudo-randomly and different for each
user to minimize correlation.

If the pilot locations are different for each user, the inter-
ference will come from the other users’ pilots; otherwise, it
will come from their data symbols. The knowledge of the
pilot sequences of the other users allows for an iterative
interference cancellation technique which improves estimation
performance and will be presented later in this paper. There-
fore, all users have the same pilot locations, which are chosen
pseudo-randomly. Let us denote the number of pilots by P,
and the set of indices of the pilot locations by P. Then, the
received symbols in these locations are given by:

r

U
Y => [Ah]+Z, 3)
u=1

where Y =Y (P)eCP*, A, = A, (P) e CP*L, and
Z' = Z" (P) € CP*! are obtained by indexing the rows of
the corresponding matrices with the pilot indices P.

III. SPARSE RECOVERY OF INDIVIDUAL CHANNELS

As depicted in Fig. 1, the individual channels hj], can be
assumed to be sparse, due to the distribution of the scatterers
in a typical propagation scenario. This allows us to apply
compressed sensing techniques to obtain a first estimate of
these channels. To estimate the channel to each user, all the
contributions from the other users are considered noise and
the following sparse reconstruction problem is solved:

Y =An +Z, “)
where ?Z =Z + ZU/E{L“"R} A, /h7, combines the noise

u'#u
and the interference. The result of this estimation will not be
very accurate because of the high interference, but an iterative
technique to improve the result will be introduced later.

Fig. 1. Sparse distribution of scatterers in a Massive MIMO channel.

Sparse recovery is run independently for each user and
antenna. Therefore, for the remainder of this section, the
scripts v and r will be dropped for ease of notation. This work
deals with greedy sparse recovery algorithms, which attempt
to solve the optimization problem:

h = arg mﬁn{”? — Ath} st. |hl, T, (5

i.e., find the least-squares solution among all vectors with
at most T active taps. There is another approach for sparse
recovery, namely the /; minimization algorithms [9], but their
high computational complexity makes them less attractive for
this Massive MIMO scenario, in which sparse recovery must
be run a large amount of times.

Greedy sparse recovery algorithms need to know the spar-
sity 7', but the performance of the algorithms is not degraded
noticeably if this value is overestimated by a small amount.
Thus, as proposed in [10], we choose 1" to be slightly higher
than the number of elements of |AH ?\ that are greater or
equal than half its maximum value.

R I
{islatyl= 1873 |

where a; is the j-th column of A.

We also note that the greedy sparse recovery algorithms
admit the weighting w € CE*! as input. This weighting is the
a priori probability of each tap of the solution being active:
w[l] £ p (h[l] #0|Y). It will play an important role in the
collaborative estimation of the channels, but on the first run of
sparse recovery there is still no information about these priors
and they are all set to T'/L.

T = , (6)

A. Support Agnostic Bayesian Matching Pursuit (SABMP)

SABMP is a robust technique developed in [10], which
provides a Bayesian estimate of h by performing a greedy
search on the possible support sets S and applying the
Theorem on Total Expectation. The support set is the set
of indices of the active taps of the sparse vector: & =

{1efo,...,L—1}: hll] £ 0}.



Algorithm 1 summarizes the SABMP method, where Js €
C**L is a binary matrix that selects the indices in the support
set, t = |S|, and As = AJHZ € CK*!. The scripts u and r
have been dropped for ease of notation. More information and
the derivation of this algorithm can be found in [10].

Algorithm 1 Greedy SABMP
Input: Y, A, w, T
Initialize: S = {}, pr = 07«1
fort=1:7T do

Ptemp = 0N><1
forn=0:(N-1),n¢S do

S=8u {n}; p (S) = Hiegwl Hj¢§ (1- wg)
) lmzad “an,

Ptemp [TL] =p
end for
find 7,05 such that piemp [Mmax] = Mmax [Premp)
S§=8SuU {nmax}; pr [t] = Ptemp [nmax]
end for
Normalize: pt = pr/sum(pr)

. T -1 —
h = Et:l Pk [t]Jg(hf,) (Ag(ht,)AS(l:f«)) A‘Is:lr(l:t)y
Output: h

B. Weighted Iterative Hard Thresholding (WIHT)

The SABMP technique is very robust in a wide range of
scenarios, but the greedy search over the support sets and
the computation of a pseudo-inverse for each support set
makes its complexity somewhat high, namely O (LPT?) if
the efficient implementation of pseudo-inverses of growing
matrices proposed in [10] is used. Therefore, we propose an
alternative much faster method that achieves good performance
when the input priors w are accurate enough.

The proposed WIHT algorithm is based on Iterative Hard
Thresholding (IHT) method [8]. IHT consists of a Steepest
Descent approach in which a hard thresholding operator Hy (-)
is applied after each step. This operator keeps the 7' maximum
samples of its argument and sets all other samples to 0.

The proposed WIHT method runs a single iteration of stan-
dard THT but applying the weighting w before thresholding:

) = Hy (diag [w] A7Y). (7)

We found out that the values of the taps of the sparse
vector h are generally not well approximated after only one
iteration, but the support of h® usually coincides with that
of h. Therefore, Weighted IHT takes the support S of b
and performs a Best Linear Unbiased Estimate (BLUE) over
it, which reduces to a pseudo-inverse because the noise is
assumed uncorrelated:

h=Jf (AlAs) " ALY, ®)
where A ¢ is obtained by taking the columns of A whose
indices are in the support S = supp (fl(i“it)). This BLUE
estimate approximates the conditional expectation over the
observation and the computed support, h~E [h|§, 5’} The

complexity of WIHT is given by this pseudo-inverse, and is
O (PT?), L times lower than that of SABMP.

Algorithm 2 Weighted Iterative Hard Thresholding (WIHT)

Input: Y, A, w, T
Weighting matrix: W = diag [w] B
Estimated support set: S = supp [Hr (WAZY)]

—1

. P 1H (AHA . H™;

BLUE Estimate h = J (AS AS) ALY
Output: h

IV. CANCELLATION OF MULTI-USER INTERFERENCE

Each antenna runs sparse recovery separately for each user
according to (5). This first estimation of the user-antenna
channel h,"™" is good enough for the single-user scenario
considered in [10], but not very accurate in the multi-user case
because of the interference from all other users. Therefore, a
refinement step is proposed that consists of running sparse
recovery again after subtracting from the observation vector
the contribution of the current estimates of the channels to
all other users. Mathematically, the following new observation
vector is computed at each antenna for each user:

{7 (init
> Ao
u'e{1,....U}
u' #u
and then sparse recovery is run again at each antenna for each
user to compute the refined individual channel estimation:

7 (init)

v, "=y -

7 (init)

flz(ind) = arg Hﬁlrn { Hy“ — Auhz

2
2} st. |n), < T.
(10)

V. COLLABORATION BETWEEN ANTENNAS

1] |

14 37 48 14 37 48

Fig. 2. Invariance of support set along neighboring antennas.

As introduced in [10] and depicted in Fig. 2, due to spatial
correlation, the support sets of the channels from a given user
u to the receiving antennas can be assumed to either have the
same support set along the whole receiving array or a slowly
varying support set which is constant along smaller regions of
the array. The maximum distance along which the support set
can be assumed constant is given by diyax = 155, Where c is
the speed of light and B is the bandwidth [10].

This support set invariance can be exploited by adding
a collaboration step to the channel estimation process, also
proposed in [10]. After the individual channel estimation



;™9 has been obtained from (10), a score @ [1] is computed
for each tap of each channel ﬁz(ind) []. This score aims to
roughly approximate the probability that the considered tap
is active (nonzero), and is set to zero for all zero taps of
1™ The nonzero taps get a score based on the rank of their
magnitude in an ascending-order sorted list, normalized by the
number of taps. This means that the highest tap in ﬁZ(md) gets
a score of T/T, the second highest gets (T' — 1)/T, and so
on:

0 ifA™=0

wll=Nyr i (E;r(ind))

_ ilr(ind) [l] (11)
(T+1-t) " ’

where (-),,) denotes “n-th maximum sample”. These scores
are shared among antennas in an iterative fashion as explained
in [10]: at each collaboration iteration, each antenna sends its
scores to its neighboring antennas, and updates its own scores
by averaging them with the ones it received from its neighbors.

After D collaboration iterations (chosen so that space in-
variance distance is not exceeded), sparse recovery algorithms
are run again at each antenna, now using the updated scores
WZ(D) as weighting input w for the algorithms. The only
difference with respect to [10] is that, for the multi-user case,
this new run of sparse recovery should be applied to a newly
refined observation vector obtained by once again subtracting
the estimated interference from all other users:

yz(collab) _ y?“ . Z Au/flzgind)' (12)
u'e{1,..,U}
u' #u
The result of this run of sparse recovery is a new estimate

of the channels flz(couab).

VI. REFINING THE ESTIMATE USING RELIABLE CARRIERS

A final improvement of the channel estimates can be
achieved through the use of reliable carriers. Reliable carriers
are data carriers in which we have high certainty that the
transmitted symbol was not moved to a different constellation
region by the noise, and therefore we can assume the equalized
and demodulated value is correct. The geometric reliability
measure proposed in [10] is used in this work:

\/idmin -

X,-0 [xu}
V2 in

_|_

Cos (492717@[2”} +7T> , (13)

where X, is the vector of equalized symbols, Q [[] obtains
the closest constellation point to its argument, and 6 #,-Ql%,
is the angle to the closest constellation point. This reliability
measure accounts for the fact that both a shorter distance
to the closest constellation point and an angle to it closer
to %THW, k € {0,...,3} indicate a bigger gap between the
distance to the closest constellation point and to the second

closest, as depicted in Fig. 3.

Fig. 3. Reliability measure of two received symbols

Here, another difference with respect to the single user
scenario needs to be taken into account. When there is only
one user, the channel can be equalized separately at each
antenna and then a different set of reliable carriers chosen.
However, in the multi-user case, this is no longer possible. At
each subcarrier n, the received vector is:

(14)

where Y[n] € C*! stacks the received samples for subcarrier
n at all antennas, H[n] € C**U is a matrix whose entry at
row 7 and column u is the n-th sample of the DFT of the
channel h”, and X[n] € CY*! stacks the symbols sent on
subcarrier n by all users. Equalization can then only obtain a
single estimate of X » for all antennas. Therefore, the same
set of reliable carriers must be chosen for all antennas.

Equalization does of course give different symbol estima-
tions for each user, and therefore different sets of reliable
carriers could be chosen for different users. However, this
would degrade the effectiveness of the proposed iterative
interference cancellation step (9), as the rows of the matrices
A, would correspond to different subcarriers for each user,
and therefore the subtraction of interference would only be
possible on the subcarriers that are simultaneously reliable for
all users. It was found that better results are obtained if all
users have the same set of reliable carriers. As the reliability
measure is an approximation of the probability of no error,
a joint reliability measure is proposed that is given by the
product of the individual reliability measures:

Ryonlnl = [ R (Bl -@[tm]). a3
u=1

The set R of the K subcarriers with highest Rgeom[n] is
chosen, and then a new matrix A = A, (P UR) is formed
for each user, as well as a new observation vector:

Z Aflr/el) flzgcollab) (16)
u'e{l,...,U}
u'#u

~—r(rel)

Y, =Y (PUR)-



for each antenna, which include both the pilots and the reliable
carriers, and once again subtract the estimated interference
from the other users. Finally, sparse recovery is run for a last
time to obtain the definitive estimate of the channels h’,

VII. COMPUTATIONAL COMPLEXITY

The SABMP technique needs to compute a pseudo-inverse
of complexity O (P |S |2) for each calculated probability.
With the efficient computation of pseudo-inverses of growing
matrices proposed in [11], this can be reduced to O (P |S|).
This needs to be done L times for each possible support set
size |S| € {1,...,T}, resulting in an overall complexity of
O (LPT?) for SABMP.

The complexity of the WIHT algorithm is determined by
the pseudo-inverse in (8), and given by O (PT?). This is L
times lower than SABMP.

In our simulations, we compare three different estimation
schemes. The first one (SABMP-SABMP), already proposed
in previous works for the single-user scenario, uses SABMP in
all 4 stages of sparse recovery. The second scheme (SABMP-
WIHT), which is our proposed hybrid method, uses SABMP
for the individual estimate (h"™® and BL(““”; but WIHT for
the collaborative estimate (HZ(COHab) and ﬁz(rel ). As the com-
plexity of WIHT is negligible compared to that of SABMP,
this means that the proposed hybrid method executes twice as
fast as the full SABMP approach (iterative collaboration and
reliability measurements do not have a noticeable contribution
to execution time).

The third compared approach (WIHT-WIHT) uses WIHT
for all 4 sparse recovery runs, and is therefore L times faster
than full SABMP.

VIII. SIMULATION RESULTS

In this section, simulation results will be provided to eval-
uate the performance of the sparse recovery techniques in a
multi-user scenario. Two multi-user (U = 3 users) scenarios
have been tested: one where pilot sequences do not interfere
with each other (for example, one in which TDMA, CDMA,
FDMA or orthogonality are used to separate the pilots, as
analyzed in [12] for MIMO-OFDM systems), and one in which
they are chosen pseudo-randomly, to potentially allow for a
higher number of users. A Massive MIMO-OFDM system
with R = M x G = 20 x 20 receive antennas and N = 512
subcarriers was simulated. A convolutional code of rate 2/3
was used in all transmissions. The maximum channel length is
L = 64, with T' = 3 active taps. The channels were generated
using the IlmProp program, developed by TU Ilmenau [13],
which accurately models the correlation between antennas. A
value of K = 275 reliable carriers was found to give best
results. Apart from bit error rate, the Normalized Mean Square
Error (NMSE) was used as a performance measure. This figure
of merit is defined as:

T
b,

2 b

I R ‘

U
NMSE (dB) = ﬁ 3N

i=1u=1r=1 ‘ h

flfu -
(7) a7

u(7)

2
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Fig. 4. NMSE vs number of pilots for the non-interfering pilots scenario.

where I = 500 is the number of Monte-Carlo runs.

A. Scenario with Non-interfering Pilot Sequences

The two first experiments were aimed at comparing the
performance of SABMP and WIHT in the case where pilot
sequences do not suffer interference from each other, due to
orthogonality in the time domain.

1) Required Number of Pilots: First, the E,/Ny was fixed
at 13dB and the NMSE was plotted against the number of
pilots P. The resulting curves are shown in Fig. 4. The three
different settings described in Section VII were compared. The
proposed hybrid SABMP-WIHT approach shows a significant
gain with respect to the SABMP-SABMP method, which is
due to both a low SNR regime and a low number of pilots
needed to recover the channel. In this situation, even though
SABMP is able to find the correct support, the computation
of the probabilities of other support sets, p (S |Y) is not
accurate, and too high weightings are applied to wrong support
sets. Therefore, the actual values of the taps have a greater
error than the output of WIHT, which only takes into account
the most probable support set. The consequence is that this
hybrid SABMP-WIHT approach needs about 6 fewer pilots to
recover the channels.

2) BER performance: Next, an experiment was run to
assess how this improvement in NMSE performance obtained
by using the hybrid technique SABMP-WIHT translates into
the BER domain. For this purpose, the number of pilots was
fixed at K = 24, and the BER vs E} /Ny plot in Fig. 5 was
obtained. It can again be verified that the hybrid approach
that uses SABMP for the individual estimate and WIHT
for the collaborative one can exploit the advantages of both
techniques and needs about 0.5 dB less FE}, /N, than SABMP-
SABMP to achieve the same BER. In addition, SABMP-WIHT
executes twice as fast because it only needs to run SABMP
twice instead of four times, and the complexity of WIHT is
negligible with respect to that of SABMP.

However, if WIHT is used for both the individual and
the collaborative estimate, the graph (blue curve) shows that
the performance degrades considerably, making the method
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Fig. 5. BER vs SNR for the non-interfering pilots scenario.

unusable. This is because WIHT relies very heavily on good
input priors w,, and these are not available during the first,
individual estimate, when the receiver still has no information
about the tap activation probabilities.

Therefore, for the non-interfering pilots case and the low
SNR regime, SABMP-WIHT is the best option in all senses.

B. Scenario with Interfering Pilot Sequences

In the last experiment, the performance of the channel
recovery techniques was tested in a scenario with U = 3
users and pseudo-random pilot sequences, using the iterative
subtraction technique explained in Section IV. As all users
send pseudo-random pilots on the same subcarriers, more
pilots are needed to obtain accurate estimates of the channel.
Fig. 6 plots the resulting BER vs SNR curve for a simulation
was with P = 80 pilots.
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Fig. 6. BER vs SNR for the interfering pilots scenario

The plot shows that in this case, if SABMP is used in the
first (individual) estimate, the results of using SABMP (red
curve) or WIHT (pink curve) in the collaborative estimate
are almost the same, unlike in the single-user scenario. The
reason for this is that, due to pilot and data interference,

a higher SNR is needed to recover the data correctly. The
more complex SABMP technique becomes better at high SNR,
and even slightly outperforms WIHT. Nevertheless, due to
the good priors received by WIHT from collaboration, the
hybrid approach SABMP-WIHT performs only slightly (less
than 0.1 dB) worse than SABMP-SABMP. Therefore, the
halved execution time may still make SABMP-WIHT a more
attractive approach even in this case with interfering pilots.

IX. CONCLUSION

The high spectral efficiency in large scale MIMO systems is
achieved by serving several users simultaneously through spa-
tial multiplexing. However, it requires obtaining a good knowl-
edge of the CSI of each user at the base station. In this paper,
we have exploited the two characteristics of the propagation
environment, i.e., sparsity and common support, to obtain a
better estimate of CSI of each user to the base station. Two
multi-user scenarios in a single cell were investigated: one with
non-interfering pilots using time-division multiplexing, and
one with interfering pilots. Simulation results show that the
our scheme requires less number of pilots for non-interfering
pilot sequences. Moreover, the computational complexity is
substantially small compared with the fully Bayesian method.
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