
1Chair of Geoinformatics, Technische Universität München, Germany 

(kanishk.chaturvedi,kutzner,thomas.kolbe)@tum.de 
2OpenSitePlan 

steve@opensiteplan.org 
3LIRIS, Université de Lyon 

gilles.gesquiere@liris.cnrs.fr 

Abstract   Semantic 3D city models describe city entities by objects with thematic and spa-

tial attributes and their interrelationships. Today, more and more cities worldwide are rep-

resenting their 3D city models according to the CityGML standard issued by the Open Geo-

spatial Consortium (OGC). Various application areas of 3D city models such as urban 

planning or architecture require that authorities or stakeholders manage parallel alternative 

versions of city models and their evolution over time, which is currently not supported by 

the CityGML standard 2.0.  

In this paper, we propose a concept and a data model extending CityGML by denoting ver-

sions of models or model elements as planning alternatives. We support transitions between 

these versions to manage history or evolution of the city models over time. This approach 

facilitates the interoperable integration and exchange of different versions of a 3D city 

model within one dataset, including a possibly complex history of a repository. Such an in-

tegrated dataset can be used by different software systems to visualize and work with all the 

versions. The versions and version transitions in our proposed data model are bi-temporal 

in nature. They are defined as separate feature types, which allow the users to manage ver-

sioning and to perform queries about versions using an OGC Web Feature Service. We ap-

ply this data model to a use case of planning concurrent versions and demonstrate it with 

example instance data. The concept is general in the sense that it can be directly applied to 

other GML-based application schemas including the European INSPIRE data themes and 

national standards for topography and cadasters like the British Ordnance Survey Master-

map or the German cadaster standard ALKIS.  

Keywords   Semantic 3D city models, CityGML, planning versions, history, city model 

lifecycle 

1 Introduction 

Semantic 3D city models describe the urban topography by decomposing and 

classifying the occupied physical space according to a semantic data model. The 

relevant real world entities are represented by objects with thematic and spatial at-

tributes and interrelationships to other objects.  However, authorities or city plan-

ners often face issues with data heterogeneity as the data is gathered from different 

sources at different times with differing geometric and semantic modeling tech-

This article is published within the book: Alias Abdul Rahman (ed.), Advances in 3D Geoinformation, 
Lecture Notes in Cartography and Geoinformation, Springer, 2016, ISBN 978-3-319-25691-7

Managing versions and history within semantic 3D city 

models for the next generation of CityGML 

Kanishk Chaturvedi1*, Carl Stephen Smyth2, Gilles Gesquière3, Tatjana Kutzner1 

and Thomas H. Kolbe1 

mailto:steve@opensiteplan.org


2  

 

niques (Kolbe 2009). CityGML (Gröger et al. 2012) is an international standard 

issued by the OGC, facilitating the integration of heterogeneous data from multi-

ple sources and the representation of the geometrical and semantic attributes of the 

city level objects along with their interrelationship to other objects – making it a 

highly semantically enriched data model in this way.  As a result, today, more and 

more cities worldwide are representing their 3D city models according to the 

CityGML standard. 

CityGML is an important source of information in urban planning, architecture, 

business development and tourism. These areas of application often address plan-

ning alternatives of buildings or other structures, e.g. for comparison by a review-

ing body. The planning alternatives are not different versions of actual structures 

at different times but different structures that might be substituted for one another. 

However, CityGML currently does not support versions. Thus, the motivation be-

hind this work is to extend CityGML by mechanisms for denoting versions of 

models or model elements as planning alternatives. 

In the paper, we propose an approach to extend the CityGML data model and 

exchange format to support different versions and version transitions to allow 

identification and organization of multiple states in a city model. The approach is 

helpful in dealing with two important facets of multi-representation of semantic 

3D city models (Gröger et al. 2005). The first facet is maintenance of the complete 

history or evolution of the city model, which is supported by version transitions 

having bi-temporal attributes answering the questions “How did the city look like 

at a specific point in time?” and “How did the city model look like at a specific 

point in time?”. The second facet of multi-representation is managing parallel al-

ternative designs of the objects at the same time. Although there have been a few 

approaches to manage versions and history of 3D city models within 3D geo-

databases (Gröger et al. 2005), our approach extends CityGML to support versions 

and version transitions. This approach allows the different versions to be used in 

an interoperable exchange format and exchanging all the versions of a repository 

as one dataset. Furthermore, this single dataset can be used by different software 

systems to visualize and work with all the versions. 

In the following sections, after a brief introduction of use cases and related 

work for supporting versions, we explain our proposed data model. Further, we 

give an illustration of the concept by demonstrating a scenario with the help of an 

example CityGML document. 

2 Use Cases 

Semantic 3D city models are used in applications like urban planning or for help-

ing in decision making processes. As cities are constantly evolving, it is also nec-

essary to record their changes over time. It is important that each city object may 

be represented with its own lifecycle. For example, for a time sequence, a building 

may be constructed, modified, destructed and replaced by other ones (Pfeiffer et 



3 

 

al. 2013) as illustrated in Figure 1. Similar needs can also be identified in serious 

game projects where objects of a scene may evolve according to a given scenario. 

For instance, a building may be represented in different states like “destroyed”, 

“burned” or “partially destroyed” that can be called by the application in coordina-

tion with user actions (Chambelland et al. 2011). 

V3V2V1

Field Church Pile of stones Auditorium

Construction Destruction Modification

Timeline

V4

 

Fig. 1. An example of “historical succession”. Image adapted from (Pfeiffer et al. 2013) 

Semantic 3D models also have a growing role in the documentation and recon-

struction of both historical and contemporary events. Examples include crime sce-

ne and accident reconstructions, representation of battles and other historical 

events, archival descriptions of historical structures before demolition, documenta-

tion of construction and demolition of buildings. Each of these involves a se-

quence of versions of a “reality” at a certain time or in a certain time sequence. 

Events are often reconstructed from conflicting and incomplete evidence and a 

complete reconstruction must allow branching to handle the alternative possibili-

ties (see Figure 2 on the next page). Modeling such approach would also allow 

backward compatibility to handle multiple representations of the past of a city. A 

given date may be a starting point to imagine the past and constructing several 

scenarios. Any other framework does not support such feature so far.  



4  

 

V1a V2a V3a V4a

V1b V2b V3b V4b

V1c V2c V3c V4c

Vf

Facts a

Facts b

Facts c

Reconstruction a

Reconstruction b

Reconstruction c

 

Fig. 2.  Reconstruction of events to handle alternative models 

As shown in Figure 3, the model should be capable of representing two differ-

ent states of the city in the past, indicated here by V0 and V0'. In urban planning 

scenarios, different planning authorities can also work with alternative planned 

versions (V2 and V3 respectively) at the same time to insert a newly generated ob-

ject or delete or update any existing object. 

V2 V2a

V1

V3 V3a

V4

Workspace A

Workspace B

V0

V0'

 

Fig. 3. History and version management 

3 Related Work 

3.1 Related Standards and Tools 

3.1.1 AAA/INSPIRE 

Two semantic information models are to be mentioned here which provide the 

concept of chronological versioning, i.e. the INSPIRE data specifications which 

define Europe-wide consistent conceptual schemas for various data themes as part 

of the European spatial data infrastructure initiative INSPIRE (Infrastructure for 



5 

 

Spatial Information in the European Community) and the German AFIS-ALKIS-

ATKIS (AAA) Reference Model which defines conceptual schemas for the Ger-

man geospatial base data of geotopography and real estate cadaster. 

INSPIRE defines several requirements and recommendations for modeling life-

cycle information of spatial objects which include UML stereotypes and properties 

allowing for bi-temporal modeling of geospatial objects. Furthermore, a separate 

property exists for denoting a specific version of a geospatial object (INSPIRE 

Drafting Team “Data Specifications” 2014). However, currently only exchanging 

the last version of spatial objects is supported by INSPIRE; historic versions can-

not be provided yet (and especially not within one data file). 

Similarly, AAA allows for managing multiple versions by means of a specific 

AAA versioning schema, which makes use of life-cycle properties and an object 

container, where versioned objects are registered. However, the AAA versioning 

schema exists only as a concept: no concrete implementation is available. It is also 

unclear how an implementation would look like. 

3.1.2 IFC 

The Industry Foundation Classes (IFC) have been developed by build-

ingSMART (the former International Alliance for Interoperability), as an open 

standard for sharing Building Information Models (BIM) data among different 

software applications.  To the best of our knowledge, the concept of temporal ver-

sion is not currently implemented in IFC, but some extensions have been proposed 

in the literature. For instance, in (Beer et al. 2004), it is possible to find an ap-

proach inspired from the CAD domain.  

Extensions of the IFC standard have been proposed in (Zada et al. 2014). Six 

existing entities from the IFC standard have been suggested to be modified to rep-

resent as new entities within the IFC schema to support the idea of object version-

ing that holds the history of changes to objects of the BIM model. In (Nour and 

Beucke 2010), a novel approach is introduced, where both object versioning and 

IFC model are integrated together in an open multidisciplinary collaborative envi-

ronment. Object versioning gives the possibility to have several versions of the 

content (attributes’ values) of an object. The development of design in terms of 

addition of new objects, deletion of objects or modifications of attributes’ values 

of pre-existing objects can be captured in a graph structure. 

3.1.3 Tools for Supporting Versions 

The concept of versions has successfully been incorporated by Oracle using the 

Oracle Workspace Manager (Beauregard and Speckhard 2014). The Oracle Work-

space Manager allows managing multiple versions of the data in the same Oracle 

Relational Database Management System in the form of workspaces. A workspace 

is a virtual copy of the data, which separates the collection of changes in the dif-



6  

 

ferent versions from the live (production) data. The version-enabled data are 

stored in separate tables with additional columns representing the version metada-

ta. Such additional columns contain the version and workspace of each data row 

along with the date and time of each update. The database view is created on the 

version-enabled table and triggers are defined to enable SQL operations such as 

insert, delete, and update. This approach allows preservation of the structure of the 

original table and shows the data of only the respective version. The Oracle Work-

space Manager also provides the management of historical data by using save-

points and the means for resolving possible conflicts during the merging of the 

different versions.  

Similarly, versions can also be managed within ESRI ArcSDE Geodatabases 

(ESRI 2004). ESRI also supports managing history, performing “what-if” analysis 

and conflict detection and resolution.  However, there are no interoperable ex-

change formats related to both Oracle and ESRI which would allow exchanging 

all versions of a repository as one dataset, nor which would allow use of the same 

dataset by both Oracle and ESRI. 

3.1.4 GIT/SVC 

Version or revision control systems (VCS/RCS) such as git (2015a), Mercurial 

(2015b), Concurrent Versions System (CVS) (Vesperman 2006), and Subversion 

(SVN) (2015c), have a structure and goals similar to the approach described in this 

paper. VCS were developed primarily to support parallel development within a 

single project. Although there are operational and architectural differences be-

tween these systems, they all maintain versions of collections of files comprising a 

project. These collections are often organized in a tree structure, similar to a com-

puter file system directory hierarchy.  

A VCS has the representational power to manage changes, parallel updates, and 

merges of versions of CityGML models with one exception: versions always rep-

resent change in the forward direction of time. The collection maintained by a 

VCS is rooted in an original version, that is, the versions form a rooted directed 

acyclic graph (DAG). The original version is the oldest version and it is not possi-

ble to create versions earlier than the root.  

In addition to the problem of forward-only temporality, a VCS also has a des-

ignated node in the DAG, usually called the head, and a distinguished path in the 

DAG, from the root to the head, usually called the “trunk” or “main branch”. Nei-

ther of these is required for maintaining versions of CityGML models. Although it 

might be possible to gain the needed representational power by piecing together 

multiple VCS projects, which share a common root, it would be awkward, at best. 



7 

 

3.2 Temporality in semantic 3D city models 

Objects that compose the city such as buildings, bridges, vegetation, and terrain 

change over time. For instance, for a building, different kinds of transformations 

can be identified. (De Luca et al. 2010) propose to define the following states for a 

building: creation, destruction, reconstruction, division (the building is separated 

in several parts), union, and variation (modifications). Other transformations are 

linked to the semantic part of the building, for instance when the owner of a house 

changes (Stefani et al. 2008). Describing the building lifecycle implies taking into 

account states and spatial changes along a temporal arc (Stefani et al. 2011). How-

ever, this scheme must also be extended to all objects of the city including terrain 

and vegetation, for example. It must take into account semantic, topological, ap-

pearance and geometric changes. Changes involving buildings can be sudden or 

gradual. For instance, a change of property is a sudden event. On the other hand, 

changes may be progressive: for example, building demolition is a short event, but 

the construction of a Gothic cathedral is a long event that lasts several centuries. 

Furthermore, historical building deteriorations may take centuries or millennia 

(Stefani et al. 2010).  

Keeping the possibility of exchanging data with other tools and making a snap-

shot for a given date of the city is essential. Several papers propose methods based 

on CityGML. For instance in (Pfeiffer et al. 2013), the CityGML scheme is 

modified to add temporal information on buildings. However, this method allows 

to register only definite states. CityGML scheme modification and possible stand-

ardized exports are not discussed.  Another method proposed is based on a modifi-

cation of CityGML (Morel and Gesquière 2014). In this paper the authors propose 

to add two additional concepts to take into account the possibility for a city object 

to change and the time value which fixes this change in the city lifecycle. Howev-

er, this method does not support the possibility of having different scenarios. 

3.3 Requirements 

Considering the limitations in related standards and tools, the following re-

quirements have been gathered to be included in the proposed approach: 

 None of the standards supports managing multiple historic versions. INSPIRE 

supports exchanging only the last version of spatial objects. The proposed 

methodology should allow supporting multiple historic versions within one da-

ta file. 

 The existing approaches allow only forward-temporality. The proposed ap-

proach should allow backward compatibility to handle multiple representations 

of the past of a city. 

 Although the DBMS systems such as Oracle or ESRI ArcSDE Geodatabases 

already support versions and conflict managements, the proposed approach 



8  

 

within CityGML documents would allow exchanging all versions of a reposito-

ry as one dataset and furthermore, the same dataset would be used by DBMS 

systems such as Oracle and ESRI.  

4 Methodology 

In our proposed methodology, versions become first class objects in CityGML 

and are modeled as feature types. Figure 4 presents the methodology as a UML 

model.  

«FeatureType»

Core::CityModel

«FeatureType»

Core::AbstractCityObject

«Property»

+ relativeToTerrain  :RelativeToTerrainType [0..1]

+ relativeToWater  :RelativeToWaterType [0..1]

«FeatureType»

Core::AbstractAppearance

«FeatureType»

Version

«Property»

+ tag  :CharacterString [0..*]

«FeatureType»

VersionTransition

«Property»

+ reason  :CharacterString [0..1]

+ clonePredecessor  :Boolean

+ type  :TransitionValue [0..1]

«enumeration»

TransitionValue

 planned

 realized

 historical succesion

 fork

 merge

«dataType»

Transaction

«Property»

+ type  :TransactionValue

«enumeration»

TransactionValue

 insert

 delete

 replace

«FeatureType»

VersionableAbstractFeature

«Property»

+ creationDate  :DateTime [0..1]

+ terminationDate  :DateTime [0..1]

+ validFrom  :DateTime [0..1]

+ validTo  :DateTime [0..1]

AbstractObject

«type»

gmlBase::AbstractGML

+ description  :CharacterString [0..1]

+ descriptionReference  :URI [0..1]

+ name  :GenericName [0..*]

+ identifier  :ScopedName [0..1]

«FeatureType»

feature::AbstractFeature

+ boundedBy  :GM_Envelope [0..1]

+appearanceMember

0..*

0..1

+to

«Property»

+versionMember0..*

0..*

0..1

+from

«Property»

+cityObjectMember

«Property» *

*

+oldFeature
0..1

+newFeature0..1

+transaction

«Property» 0..*

 

Fig. 4. Version and version transitions defined as UML model. Newly introduced classes are 

shown in green. Names of abstract classes are in italics. 



9 

 

The city object within a specific version is assigned a stable object ID for the 

entire lifetime of the object – the so-called major ID. This ID is supported in GML 

3.2.1 through the element identifier in the class AbstractGML, which is used for 

providing globally unique identifiers. Further, an extension to this major ID is giv-

en in the form of a sub ID or minor ID to distinguish different versions of the 

same real world entity. A separator symbol is introduced to separate the identifier 

from the version.  For example, the specific version of a city object can be denoted 

as Building1020_Version1, where Building1020 is the gml:identifier  representing 

the stable major ID globally and Version1 is the minor ID to represent the specific 

version of the building object Building1020. This concatenated major and minor 

ID (Building1020_Version1) is used as the gml:id to distinguish the different ver-

sions of the same real world object. One CityGML instance document can there-

fore include multiple versions of the same real world object having different 

gml:id but identical gml:identifier values. The idea of minor ID and major ID has 

been adopted from the German AAA model and the INSPIRE Data Specifications 

(INSPIRE Drafting Team 2014). Referencing objects by either their minor ID or 

their major ID is inspired by (Cox 2006).  

We introduce a new abstract subclass VersionableAbstractFeature of class Ab-

stractFeature, from which, in the future, all geo-object types shall be derived in 

order to become version managed. The class VersionableAbstractFeature contains 

four time attributes for expressing a bi-temporal existence model for versions. 

These attributes are: creationDate and terminationDate, reflecting the database 

transaction time, and validFrom and validTo, reflecting the actual world time. This 

approach is similar to the existing INSPIRE model where these attributes can be 

used to query how the city model looks like at a specific point in time and how the 

actual city looks like at a specific point in time. These attributes can be defined as 

an extension to the CityGML core module and may replace the existing attributes 

yearOfCreation and yearOfDemolition attributes in the CityGML building mod-

ule.  Furthermore, the class Version allows each version to be denoted by a set of 

user-defined tag attributes. With the help of such tag attributes, the user can, e.g, 

search for a version developed by a specific worker. The city objects within each 

version can be referenced in two ways: by using a simple XLink to the gml:id of 

the referenced object which references a specific version of a real world object, or 

by using the XML Path Language (XPath) (W3C Recommendation 2011). XPath 

in conjunction with XLink allows referencing an object element in a remote XML 

document (or GML object repository) using the gml:identifier property of that ob-

ject (Cox 2006). The XPath-XLink approach provides a general reference to a real 

world object by its major ID and does not take into account a specific version. 

This approach allows selecting multiple instances with the same gml:identifier 

value, but with a different gml:id. For example, by using a single XPath-XLink 

query, the user can retrieve multiple versions of the CityGML building parts with-

in the same version of the building. However, it is necessary for the application to 

determine which specific version of the real world object representation should be 

used. The attributes creationDate, terminationDate, validFrom, and validTo can 



10  

 

also be used to choose the appropriate version that was valid at a specific database 

or real world time, respectively. 

 

Fig. 5.  Issues with versioning of aggregated features. Image taken from (Stadler and Kolbe 

2007) 

In CityGML, features can also have aggregated sub-features. For example, a 

building feature can consist of features such as roof surface or wall surface, which 

may further consist of sub-features such as window or door. However, in case of a 

change in any of the sub-features, the model would require changing all the parent 

features in the aggregation levels above because aggregate objects point to their 

parts. If the part is replaced by a new version with a new gml:id, the pointer in the 

aggregate object also will have to be updated. This will create a new object ver-

sion also for the aggregate object, and so on, following up the aggregation hierar-

chy. For example, the window in Figure 5 has been replaced by a new window 

with insulated glazing and a new frame. In the new version, the window will have 

to be changed along with its parent features. In our approach, this issue has been 

resolved by referencing the Major ID attribute using the XPath-XLink mechanism 

(see an example in section 5). 

Furthermore, in order to manage history or evolution of city models, version 

transitions are also supported. Version transitions represent the causal relation-

ships between the version snapshots. A snapshot is a representation of the state of 

all features of the entire city model at a specific point in time. It explicitly links to 

all objects in their versions belonging to the respective city model version (see 

Figure 6).  

Building

BuildingPartBuildingPart

Roof

Surf.

Roof

Surf.

Door

Wall

Surf.

Wall

Surf.

Win

dow

Building 

Installation

...

...
...

Composite

Solid

SolidSolid

Poly

gon

Poly

gon

Poly

gon

Poly

gon

Composite

Surface

...

...
...

Poly

gon

Semantics Geometry

Composite

Surface

 
Semantics

based on ISO 19109

Geometry
based on ISO 19107



11 

 

V1

List of all 

features

V2 V3

List of all 

features
List of 

transactions

List of 

transactions

Changes Changes

Snapshot Snapshot

Version Transitions

 

Fig. 6. Representation of version transitions. 

In the proposed data model shown in Figure 4, version transition is modeled as 

a separate feature type VersionTransition, and represented by the attributes: (i) 

reason,  reflecting the reason for the change in version, (ii) clonePredecessor, 

which is an indicator whether the list of features is derived from a predecessor 

version, (iii) type of transition, whether the transition is planned, realized, a histor-

ical succession, fork or merge, and (iv) transaction, a list of updates/transactions 

from a predecessor value, reflecting what types of transaction values are contained 

such as insert, delete or update. There are a few advantages with version transi-

tions. This approach requires low memory or storage requirements. It is similar to 

the combination of full back-ups and incremental back-ups. It may also be used to 

stream dynamic changes. 

V1

V2

V3

V4
Historical Succession

Convergence

(implies ‘after‘)

 

Fig. 7.  Conflicts/convergence of multiple versions 

However, a limitation with this approach is that it may be necessary to deter-

mine the actual members of a version by going back via the predecessors. One 

important aspect with version transitions is the merging of two different versions, 

which may lead to possible conflicts. For all such convergence situations, it must 

be ensured that the members of the converged version/state can be determined un-

ambiguously. As shown in Figure 7, the easiest and safest way is to require that at 

maximum one of the incoming transitions has transactions. Such transitions are 

required to be able to detect who has changed an object and whether there are any 

conflicts. (Doboš and Steed 2012) have identified the methods supporting differ-

encing and merging of 3D models. Several methods have also been identified to 



12  

 

detect changes in CityGML files such as (Pédrinis et al. 2015) and (Redweik and 

Becker 2015). These methods may be useful tools to resolve conflicts in similar 

way as with the “diff” command in SVN. 

5 Illustration of Concept 

This section explains an example scenario for managing different versions 

within CityGML documents. Figure 8(a) represents the evolution of the city in the 

form of different versions of CityGML documents.  

V2 V2a

V1 V3

Workspace A (Addition/modification)

V0
MergeHistorical Succession

 

Fig. 8(a).  An example scenario of evolution of city in the form of different versions 

The successive versions represent the state of all features of the entire city at 

specific points in time. In addition, the authorities can work, in parallel, with dif-

ferent workspaces or branches to insert, delete or modify the objects. Such addi-

tions can be merged with the earlier versions of the CityGML documents to form 

the final versions. Figure 8(b) represents the evolution from initial to final ver-

sions.  

Initial version Final version
 

Fig. 8(b). The initial version versus the final version 



13 

 

However, looking more into details, the following example represents one such 

possibility of modification scenarios. As shown in Figure 9, a building with the 

major ID B1020 has a function property Office and one of its building parts with 

major ID BP12 has a roofType property Flat. Over a period of time, the building’s 

function property is changed to Living which has been captured in version 2. Fur-

thermore, at a point in time, the roofType property of the same building has been 

changed to Saddle. 

Below is an example representing the version management in a CityGML in-

stance data set. The building object in version 1 can be denoted as B1020_t1 at a 

specific point in time t1. However, XPath can be used with XLink to retrieve all 

the instances of the same building object. 

<cityObjectMember> 

    <Building gml:id="B1020_t1"> 

        <identifier>B1020</identifier> 

        <consistsOfBuildingPart> 

            <BuildingPart xlink:href="//identifier[text()='BP12']"/>  

        </consistsOfBuildingPart> 

        <creationDate>2012-08-02</creationDate> 

        <terminationDate>2013-10-10</terminationDate> 

        <function>Office</function> 

    </Building> 

</cityObjectMember> 

<cityObjectMember> 

    <Building gml:id="B1020_t2"> 

        <identifier>B1020</identifier> 

        <consistsOfBuildingPart> 

            <BuildingPart xlink:href="//identifier[text()='BP12']"/>  

        </consistsOfBuildingPart> 

        <creationDate>2013-10-10</creationDate> 

        <function>Living</function> 

    </Building> 

</cityObjectMember> 

<cityObjectMember> 

    <BuildingPart gml:id="BP12_t1"> 

        <identifier>BP12</identifier> 

        <creationDate>2012-08-02</creationDate> 

        <terminationDate>2014-06-04</terminationDate> 

        <roofType>Flat</roofType> 

    </BuildingPart> 

</cityObjectMember> 

<cityObjectMember> 

    <BuildingPart gml:id="BP12_t3"> 

        <identifier>BP12</identifier> 

        <creationDate>2014-06-04</creationDate> 

        <roofType>Saddle</roofType> 

     </BuildingPart> 

</cityObjectMember> 

The instance data can also include <version> elements for managing different 

versions of an object. However, due to limited space availability, this example il-

lustrates a simple version management where it is sufficient to just use the bi-

temporal time attributes and the major/minor IDs. 



14  

 

Building : B1020

function = ‘Living‘

BuildingPart : BP12

roofType = ‘Saddle‘

Building : B1020

function = ‘Office‘

BuildingPart : BP12

roofType = ‘Flat‘

Version 1

02-Aug-2012

Time (t2)Time (t1) Time (t3)

Timeline

Version 2

10-Oct-2013

Version 3

04-Jun-2014
 

Fig. 9.  An instance example of versions representing modification of a building 

6 Conclusions 

In this paper, we present a new modeling approach and a smart implementation 

for supporting the management of versions and history within CityGML. The ad-

vantage of our approach is that it not only facilitates the data model for supporting 

different versions, but also allows the different versions to be used in an interoper-

able exchange format and the exchange of all versions of a repository within one 

dataset. Such a dataset can be used by different software systems to visualize and 

work with all the versions. The approach not only addresses the implementation of  

versionable CityGML models but also considers new aspects to previous work 

such as managing multiple histories or multiple interpretations of the past of a 

city. However, currently such interpretations represent slower changes; for exam-

ple, change of the real property values, geometries, or ownership over time. In the 

future, it is also intended to support highly dynamic properties (comparatively 

faster changes); for example, variations of thematic attributes such as changes of 

physical quantities like energy demands, temperature, solar irradiation levels. The 

proposed UML model handles versions and version transitions as feature types, 

which allows the version management to be completely handled using the OGC 

Web Feature Service. No extension of other OGC standards is required.  

The mentioned concept is going to be proposed as an official extension to the 

next version of CityGML (version 3.0). The concept already addresses the possi-

bility that every feature of CityGML can be made versionable. However, in the fu-

ture it might be required to also make individual geometry objects within city 

models versionable. It is possible to introduce the versioning of objects at a higher 



15 

 

level in the class hierarchy of GML just below AbstractObject. In this way, every 

object of CityGML (and of GML in general) would become versionable. Howev-

er, this would require changes in the GML specification, which is out of scope of 

the OGC CityGML standards working group (CityGML SWG). In the presented 

form the concept is completely modeled in the framework of the CityGML appli-

cation schema and can be standardized by the CityGML SWG without changing 

other OGC or ISO specifications. 

This concept also does not require a database or GIS with specific version 

management capabilities. However, in the future, it will be interesting to find out 

how the proposed versioning schema can be mapped onto existing version man-

agement tools of 3D GIS and databases (c.f. section 3.1.3). 

Acknowledgments   Part of this work has been carried out within the project Modeling City Sys-

tems funded by the Climate-KIC of the European Institute of Technology and Innovation (EIT). 

We would like to thank Climate-KIC and the EIT for supporting this work. 

References 

Beauregard B, Speckhard B (2014) Oracle Database Workspace Manager Developer’s Guide, 

12c Release 1 (12.1) E49170-01.  

Beer DG, Firmenich B, Richter T (2004) A Concept for CAD Systems with Persistent Versioned 

Data Models.  

Chambelland J-C, Raffin R, Desbenoit B, Gesquière G (2011) SIMFOR: towards a collaborative 

software platform for urban crisis management.  

Cox S (2006) Object identifiers in GML. 

https://www.seegrid.csiro.au/wiki/AppSchemas/GmlIdentifiers#gml:identifier_elemen

t. Accessed 29 Jun 2015 

De Luca L, Busarayat C, Stefani C, et al (2010) An iconography-based modeling approach for 

the spatio-temporal analysis of architectural heritage. In: Shape Modeling Internation-

al Conference (SMI), 2010. IEEE, pp 78–89 

Doboš J, Steed A (2012) 3D Diff: an interactive approach to mesh differencing and conflict reso-

lution. In: SIGGRAPH Asia 2012 Technical Briefs. ACM, p 20 

ESRI (2004) Versioning | White Papers. 

http://support.esri.com/es/knowledgebase/whitepapers/view/productid/19/metaid/721. 

Accessed 26 Feb 2015 

Gröger G, Kolbe TH, Nagel C, Häfele K-H (2012) OGC City Geography Markup Language 

(CityGML) Encoding Standard.  

Gröger G, Kolbe TH, Schmittwilken J, et al (2005) Integrating versions, history and levels-of-

detail within a 3D geodatabase.  

INSPIRE Drafting Team “Data Specifications” (2014) INSPIRE Generic Conceptual Model. 

http://inspire.ec.europa.eu/documents/Data_Specifications/D2.5_v3.4.pdf. Accessed 

10 Apr 2015 

Kolbe TH (2009) Representing and exchanging 3D city models with CityGML. In: 3D geo-

information sciences. Springer, pp 15–31 



16  

 

Morel M, Gesquière G (2014) Managing Temporal Change of Cities with CityGML. In: UDMV. 

pp 37–42 

Nour M, Beucke K (2010) Object versioning as a basis for design change management within a 

BIM context. In: Proceedings of the 13th international conference on computing in 

civil and building engineering (ICCCBE-XIII), Nottingham, UK.  

Pédrinis F, Morel M, Gesquière G (2015) Change Detection of Cities. In: 3D Geoinformation 

Science. Springer, pp 123–139 

Pfeiffer M, Carré C, Delfosse V, Billen R (2013) Virtual Leodium: From an historical 3D city 

scale model to an archaeological information system. ISPRS Ann Photogramm Re-

mote Sens Spat Inf Sci II-5 W 1:241–246. 

Redweik R, Becker T (2015) Change Detection in CityGML Documents. In: 3D Geoinformation 

Science. Springer, pp 107–121 

Stadler A, Kolbe TH (2007) Spatio-semantic coherence in the integration of 3D city models. In: 

Proceedings of the 5th International Symposium on Spatial Data Quality, Enschede.  

Stefani C, De Luca L, Veron P, Florenzano M (2011) A Tool for the 3D Spatio-Temporal Struc-

turing of Historic Building Reconstructions. Digit Media Its Appl Cult Herit 153–168. 

Stefani C, De Luca L, Véron P, Florenzano M (2008) Reasoning about space-time changes: an 

approach for modeling the temporal dimension in architectural heritage. In: Proceed-

ings of the IADIS International Conference.  

Stefani C, De Luca L, Véron P, Florenzano M (2010) Time indeterminacy and spatio-temporal 

building transformations: an approach for architectural heritage understanding. Int J 

Interact Des Manuf IJIDeM 4:61–74. 

Vesperman J (2006) Essential CVS.  O’Reilly Media, Inc. 

W3C Recommendation (2011) XML Path Language (XPath) 2.0 (Second Edition). 

http://www.w3.org/TR/xpath20/. Accessed 26 Feb 2015 

Zada AJ, Tizani W, Oti AH (2014) Building Information Modelling (BIM)—Versioning for Col-

laborative Design. In: Computing in Civil and Building Engineering (2014). ASCE, pp 

512–519 

(2015a) Git User’s Manual. https://www.kernel.org/pub/software/scm/git/docs/user-manual.html. 

Accessed 9 Mar 2015 

(2015b) Mercurial SCM. http://mercurial.selenic.com/. Accessed 9 Mar 2015 

(2015c) Apache Subversion. http://subversion.apache.org/. Accessed 9 Mar 2015 


