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Gaussian Process Dynamical Systems

Assumption
 - Nonlinear System 
 - Identification approach:
   Linear system with unknown nonlinear dynamics

     

 - Nonlinear dynamics are modelled by Gaussian
   Processes
 - State dependent Gaussian distributed probability
 variable     is defined by mean and variance
 - Also known as discrete-time, continuous space
   Markov chain

Stability Conditions

  Is the learned system                 stable?

   The system must fulfill the following condition

   If the linear system part is stable it is possible to 
   find an appropriate Lyapunov function                 .                  

  
   The expected value must be bounded to ensure
   stochastic stability.

  
   The a-posteriori mean    and variance     of the
   Gaussian Process with squared exponential
   kernel is bounded.

  Conjecture
   Stochastic asymptotic stability if the equilibrium
   point has no variance.
   
 
  

Mean square boundedness 

Motivation

Gaussian Process
 + Flexible nonlinear, nonparametric regression
 + Based on Bayesian probability mathematics
 + Knowledge about uncertainty of the estimation

     

Application
 Usage of Gaussian Processes to identify nonlinear
 system dynamics in model-based control techniques
 e.g. control of chemical processes or prediction of
 human behavior.                [Turner at al.]

A linear stable system with additive uncertainties is mean
square bounded if the unknown dynamics are modelled
by a Gaussian Process with squared exponential kernel.

xk

x k+
1

 

 

xk+1 = f(xk)
xk+1 = Axk
ferr(xk)

Mean function

Covariance function

Training points

Continuous Input

Co
nt

in
uo

us
 O

ut
pu

t

Simulation

xk

D
i�

er
en

ce

   Training points

Time

St
at

e

 

 

Mean function
Real system

Numerical validation with example system

     

Real system: 
Assumption:

First and second moment of the Gaussian Process
Dynamical System are bounded.


