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Abstract—In this paper, we study how the number of confer-
encing rounds effects the capacity of large interference networks.
We take Wyner’s asymmetric linear (soft-handoff) model, include
conferencing links between closely located transmitters and
receivers, and we consider the per-user asymptotic multiplexing
gain. Our results show, for example, that when the capacities
of the conferencing links scale at most (1/4) logP with the
power P and when one can choose which transmitters and
receivers cooperate, then there is no loss in terms of asymptotic
multiplexing gain in having only one round of conferencing. In
contrast, when the capacities of the conferencing links grow faster
than (1/4) logP , then the asymptotic multiplexing gain with one
round of conferencing is strictly smaller than that achieved with
multiple rounds.

I. INTRODUCTION

Conferencing in networks started with Willems’ work [1]
on the two-user discrete memoryless multiple-access channel
(MAC). Willems’ idea was to include a conferencing phase,
prior to communicating over the MAC, during which the
transmitters exchanged messages over noiseless rate-limited
channels. Interestingly, Willems showed that a simple confer-
encing scheme is capacity achieving: Each transmitter shares
part of its message with the other during conferencing, and
both transmitters treat these shared parts as a common message
when communicating over the MAC.

Further capacity results for networks with transmitter con-
ferencing were obtained in [2]–[5]. A common feature of the
proposed capacity-achieving strategies is that the transmitters
share parts of their messages during the conferencing phase,
and these shared parts are treated as common messages during
the communications phase. Moreover, the capacity-achieving
strategies in [1]–[4] employ one-shot conferencing (the infor-
mation shared by a transmitter during conferencing depends
only on that transmitter’s message). This is notable because
the conferencing models in [1]–[4] actually permit multiple-
round conferencing, where the transmitters may interactively
exchange many messages over multiple rounds. One-shot
conferencing, however, is not always optimal; for example,
the scheme in [5] requires two conferencing rounds.

Dabora and Servetto studied the two-user broadcast channel
(BC) with conferencing receivers in [6, 7], and they obtained
capacity results for some special cases of the general BC. In
all such cases, the capacity-achieving strategies only required
one-shot conferencing between the receivers: The receivers

either quantize their observed channel outputs and shared
the quantizer index with the other receivers, or they decode
parts of their messages solely based on their observed channel
outputs and shared parts of the decoded messages. For more
general BCs, where the capacity region has not yet been es-
tablished, Dabora and Servetto presented achievable interactive
two-step conferencing strategies.

In an interesting recent paper [8], Ntranos, Maddah-Ali
and Caire studied large Gaussian interference networks with
conferencing links between transmitters and between receivers,
assuming one-shot interference alignment (IA) techniques [9]
are used for communications. In this scenario, they showed
that it is suboptimal for the transmitters to share parts of their
messages and for the receivers to share quantized versions
of the channel output signals. In particular, strictly better
performance can be achieved if the transmitters exchange
quantized versions of their transmit signals, and the receivers
share parts of their decoded messages.

The setup in [8] can be modelled as a Gaussian interference
network with conferencing links between transmitters and
between receivers. The achievability scheme in [8] requires
multiple conferencing rounds. Multiple conferencing rounds
between the transmitters is necessary because the transmitters
wish to exchange quantized versions of their transmit signals,
and the transmit signals, in turn, depend on conferencing mes-
sages from previous rounds. Similarly, multiple conferencing
rounds between the receivers is necessary because the receivers
wish to exchange parts of their decoded messages, and each
decoded message depends on conferencing messages from
previous rounds.

In practice, it is not always feasible to employ complicated
multiple-round conferencing strategies. In mobile cellular net-
works, for example, conferencing can be implemented over
a cloud radio access network (C-RAN) with limited storage
and computational capabilities. In such cases, the C-RAN is
typically oblivious [9] — not aware of the employed code-
books — and limited to quantizing the receive signals before
relaying them or reroute functions of incoming messages.

In this work, we consider the information-theoretic limits of
a simple mobile cellular network model with two conferencing
modes: In Mode 1, the transmitters and the receivers can
hold their conferences over an arbitrary number of rounds,
and in Mode 2 only over a single round. We will present



optimal strategies for Mode 1 and Mode 2, where the latter
does not require any knowledge of the codebooks during the
conferencing phase.

We consider Wyner’s asymmetric linear model [10]–[12],
and we use the per-user asymptotic multiplexing gain (also
called degrees of freedom or prelog) as a performance metric.
In our model, each transmitter obtains conferencing messages
from the tL transmitters to its left and the tR transmitters to its
right. Similarly, each receiver obtains conferencing messages
from the rL receivers to its left and the rR receivers to its right.
Prelog constraints µTx and µRx are imposed on the capacities
of the transmitter and receiver conferencing links respectively.
The asymptotic multiplexing gain per user for Mode 2, without
receiver cooperation (rL = rR = 0) and equal transmitter
cooperation (tL = tR) was previously derived in [13]. For
unbounded µTx = µRx =∞, the asymptotic multiplexing gain
per user is the same for Mode 1 and 2 and was found in [14].
See [12] for an overview over various forms of cooperation in
the Wyner network.

We present general upper and lower bounds on the per-
user asymptotic multiplexing gain for Mode 1, and the bounds
match when conferencing is limited to adjacent transmitters
and receivers (tL, tR, rL, rR ∈ {0, 1}). We show that this setup
also achieves the optimized per-user asymptotic multiplexing
gain, i.e., the largest asymptotic multiplexing gain per user
subject to total conferencing prelog constraints µTx(tL+tR) ≤
ηTx and µRx(rL + rR) ≤ ηRx.

For Mode 2, we present a general lower bound on the
asymptotic multiplexing gain per user and show that it is tight
when only the transmitters or only the receivers conference,
i.e., when µRx = 0 or µTx = 0. We present the optimized
per-user asymptotic multiplexing for these two special cases.

Our results demonstrate a duality between transmitter con-
ferencing (parameters tL, tR, µTx) and receiver conferencing
(parameters rL, rR, µRx). They also show that while for some
setups Mode 2 has a strictly smaller asymptotic multiplexing
gain per user than Mode 1, for others this is not the case. The
same is true also for the optimized asymptotic multiplexing
gain per user.

II. PROBLEM SETUP

Consider a communications system with K pairs of trans-
mitters and receivers, labeled with the index k = 1, 2, . . . ,K.
Assume that all transmitters and receivers are equipped with a
single antenna, and that all channel inputs and outputs are real
valued. We envision a network with short-range interference,
à la [10, 11, 13, 14], so that the signal sent by transmitter k
is only observed by receivers k and (k + 1), see Fig. 1.
Specifically, the time-t channel output at receiver k is

Yk,t = Xk,t + αkXk−1,t + Zk,t, (1)

where Xk,t and Xk−1,t are the symbols sent by transmitters k
and (k−1) at time t respectively; {Zk,t} are independent and
identically distributed (i.i.d.) standard Gaussians for all k and
t; αk 6= 0 is a given real number; and X0,t = 0 for all t.
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Fig. 1. Wyner’s asymmetric network with rate-limited conferencing links
between neighboring transmitters and receivers. The figure depicts our setup
with parameters tL = tR = rL = rR = 1.

Transmitter k (for all k) is required to reliably communicate
a message Mk to receiver k, where Mk is uniform on

Mk , {1, 2, . . . , benRkc}.
We assume that all messages (M1,M2, . . . ,MK) are indepen-
dent of one another and the noise {Zk,t}, and we impose a
symmetric average block-power constraint P > 0 on the input
sequences

1

n

n∑
t=1

X2
k,t ≤ P, a.s. ∀ k ∈ {1, . . . ,K}. (2)

A key feature of this work is that we allow rate-limited local
cooperation between neighboring transmitters and neighboring
receivers; for example, see Fig. 1. Specifically, let us suppose
that the communications process consists of four phases.

1) Tx-conferencing phase: Each transmitter may send in-
dividual messages to the nearest tL and tR transmitters
on its left and right respectively. We assume that this
conferencing takes place over noiseless channels, and
that each channel has a maximum rate budget of RTx
bits. We parametrise RTx as

RTx , µTx
1

2
log(1 + P ), (3)

where µTx is the prelog constant. Our main interest
in this parametrisation is µTx, which is the dominant
parameter in the power regime of interest P � 1. Figure
1 shows the case where tL = tR = 1.

2) Cooperative-communication phase: The transmitters
communicate over the K-user interference channel (1).
Transmitter k’s channel input is a function of the mes-
sage Mk and the conferencing messages it received
during the transmitter-conferencing phase.

3) Rx-conferencing phase: Each receiver may send individ-
ual messages to the nearest rL and rR receivers on its left
and right respectively. The conferencing takes place over
noiseless channels, each with a maximum rate budget of

RRx , µRx
1

2
(1 + P ). (4)

Figure 1 shows that case where rL = rR = 1.



4) Side-information-aided decoding phase in which the re-
ceivers decode their desired messages from the channel
outputs and conferencing messages received during the
Rx-conferencing phase.

We consider two modes for the conferencing phases.
Mode 1: The Tx and Rx conferencing phases consist of
κTx and κRx conferencing rounds respectively, where κTx
and κRx are parameters of the coding scheme.

Mode 2: The Tx and Rx conferencing phases both consist
of a single “one shot” round. This mode is motivated by
systems with limited terminal computational power or
stringent delay constraints on the conferencing phases.

We now describe the communications phases for Mode 1.
Mode 2 is obtained by setting κTx = κRx = 1.

A. Tx-Conferencing Phase
Let us denote the indices of transmitter k’s neighbors by

Tx-Nbhood(k) ,
{
k′ ∈ {1, . . . ,K}\{k}

: k − tL ≤ k′ ≤ k + tR
}
.

There are κTx conferencing rounds in Mode 1. In the j-th
round (j = 1, 2, . . . , κTx), transmitter k sends

U
(j)
k→k′ = φ

(j)
k,k′

(
Mk,U

(1)
all→k,U

(2)
all→k, . . . ,U

(j−1)
all→k

)
(5)

to its neighbor k′ ∈ Tx-Nbhood(k). Here

U(j′)
all→k ,

(
U

(j′)
k′→k ; k′ ∈ Tx-Nbhood(k)

)
denotes the tuple of all conferencing messages sent to trans-
mitter k in the earlier conferencing round j′ ∈ {1, . . . , j−1},

φ
(j)
k,k′ :Mk×

j−1∏
j′=1

∏
k̃ : k∈Tx-Nbhood(k̃)

{
1, 2, . . . , b2nR

(j′)
Tx,k̃→kc

}
−→

{
1, 2, . . . , b2nR

(j)

Tx,k→k′ c
}
,

and R
(j′)
Tx,k→k′ is the rate of the j′-th conferencing message

from transmitter k to transmitter k′. We require that the total
conferencing rate from any transmitter k to any receiver k′ ∈
Tx-Nbhood(k) does not exceed the budget RTx in (3),

κTx∑
j=1

R
(j)
Tx,k→k′ ≤ RTx. (6)

B. Cooperative-Communication Phase
The channel input signals of transmitter k are a function

of its message Mk and the conferencing messages it received
during Tx-conferencing. Specifically, transmitter k sends

Xn
k = fk

(
Mk,U

(1)
all→k,U

(2)
all→k, . . . ,U

(κTx)
all→k

)
, (7)

over the interference channel, where

Xn
k = (Xk,1, Xk,2, . . . , Xk,n)

and

fk :Mk ×
κTx∏
j=1

∏
k′∈Tx-Nbhood(k)

{
1, 2, . . . , b2nR

(j)

Tx,k→k′ c
}
→ Rn.

C. Rx-Conferencing Phase

The Rx-conferencing phase takes place after all the channel
outputs have been been observed by the receivers. Denote
receiver k’ channel outputs by

Y nk = (Yk,1, . . . , Yk,n).

Let

Rx-Nbhood(k) ,
{
k′ ∈ {1, . . . ,K}\{k})

: k − rL ≤ k′ ≤ k + rR
}
.

In round j, receiver k sends

V
(j)
k→k′ = ψ

(j)
k,k′

(
Y nk ,V

(1)
all→k,V

(2)
all→k, . . . ,V

(j−1)
all→k

)
(8)

to its neighbor k′ ∈ Rx-Nbhood(k). Here,

ψ
(j)
k,k′ : R

n ×
j−1∏
j′=1

∏
k̃ : k∈Rx-Nbhood(k̃)

{
1, 2, . . . , b2nR

(j′)
Rx,k̃→kc

}
−→

{
1, 2, . . . , b2nR

(j)

Rx,k→k′ c
}
,

where R
(j′)
Tx,k→k′ is the rate of the round j′ conferencing

message from receiver k to receiver k′, and

V
(j′)
all→k ,

(
V

(j′)
k′→k ; k′ ∈ Rx-Nbhood(k)

)
. (9)

is the tuple of all conferencing messages received at trans-
mitter k in round j′. The total conferencing rate from any
receiver k to any receiver k′ ∈ Tx-Nbhood(k) has to satisfy
the total rate-budget in (4),

κRx∑
j=1

R
(j)
Rx,k→k′ ≤ RRx. (10)

D. Side-Information-Aided Decoding Phase

After observing the channel output Y nk and conferencing
messages V(1)

all→k, V(2)
all→k to V(κRx)

all→k, receiver k produces

M̂k , gk

(
Y nk ,V

(1)
all→k,V

(2)
all→k, . . . ,V

(κRx)
all→k

)
(11)

as its guess of Message M̂k, where

gk : Rn ×
κRx∏
j′=1

∏
k′∈Rx-Nbhood(k)

{1, 2, . . . , b2nR
(j′)
Rx,k→k′ c} →Mk.

We call the collection of all transmitter and receiver mappings
in (5)–(9) a (R1, R2, . . . , RK , µTx, µRx, P )-code.

E. Performance Measures

We say that a rate tuple (R1, R2, . . . , RK) is (µTx, µRx, P )-
achievable if for any ε > 0 there exists a (R1, . . . , RK , µTx,
µRx, P )-code, with sufficiently large blocklength n, such that

Pr
[
(M̂1, . . . , M̂K) 6= (M1, . . . ,MK)

]
≤ ε.

The capacity region C(µTx, µRx, P ) is the closure of the set of
all achievable rate tuples. The sum capacity is

CΣ(µTx, µRx, P ) , max
(R1,...,RK)∈C

K∑
k=1

Rk



Our main focus in this work is on the high-SNR asymptote of
the sum-capacity, the per-user asymptotic multiplexing gain

S(µTx, µRx) , lim
K→∞

lim
P→∞

CΣ(µTx, µRx, P )
K
2 logP

,

where lim denotes the limit supremum. To make its depen-
dency on the mode explicit, we write SMode1(µTx, µRx) and
SMode2(µTx, µRx).

III. RESULTS AND DISCUSSION

A. Main Results for Mode 1

Theorem 1: Let υTx denote the number of Tx-conferencing
parameters tL, tR that are positive, and let υRx the number
of Rx-conferencing parameters rL, rR that are positive. For
Mode 1, we have
1

2
min

{
2, 1 + µTxυTx + µRxυRx

}
≤ SMode1(µTx, µRx)

≤ 1

2
min

{
2, 1 + µTx(tL + tR) + µRx(rL + rR)

}
.

Proof: Omitted.

If all the conferencing parameters are either 0 or 1, then the
bounds in Theorem 1 match.

Corollary 1: If tL, tR, rL, rR,∈ {0, 1}, then

SMode1(µTx, µRx)

=
1

2
min

{
2, 1 + µTx(tL + tR) + µRx(rL + rR)

}
.

Let S?Mode1(µTx, µRx) denote Mode 1’s optimised asymptotic
multiplexing gain per user:

S?Mode1(ηTx, ηRx) , max

tL
′,tR

′,rL
′,rR

′,∈N, µ′
Tx,µ

′
Rx≥0:

µ′
Rx(rL

′+rR
′)≤ηRx

µ′
Tx(tL

′+tR
′)≤ηTx

SMode1(µ
′
Tx, µ

′
Rx)

Corollary 1 and Theorem 1 yield the following result.

Corollary 2:

S?Mode1(ηTx, ηRx) =
1

2
min

{
2, 1 + ηTx + ηRx

}
.

B. Results for Mode 2

Our results for this Mode 2 depend on the ordering of

πtL ,
tL
µTx

, πtR ,
tR
µTx

, πrL ,
rL

µRx
and πrR ,

rR

µRx
.

Let π`1 , π`2 , π`3 , π`4 denote the set {πtL , πtR , πrL , πrR} ar-
ranged in descending order; that is,

`1, `2, `3, `4 are distinct elements of {tL, tR, rL, rR}
such that π`1 ≥ π`2 ≥ π`3 ≥ π`4 .

Let
µtL , µtR , µTx and µrL , µrR , µRx.

Theorem 2: In Mode 2, the asymptotic multiplexing gain
per user is as shown in (12) on the next page.

Proof: Omitted.

The achievability bound in Theorem 2 is optimal when
we are limited to either transmitter conferencing or receiver
conferencing.

Theorem 3: In the absence of receiver conferencing,

SMode2(µTx, µRx = 0)

=


1+2µTx

2 if µTx ≤ min{tL,tR}
2 min{tL,tR}+2

min{tL,tR}+1+µTx
min{tL,tR}+2 if min{tL,tR}

2 min{tL,tR}+2 < µTx ≤ max{tL,tR}
tL+tR+2

tL+tR+1
tL+tR+2 if µTx >

max{tL,tR}
tL+tR+2 .

If in the above we replace parameters tL, tR, µTx by rL, rR, µRx,
we obtain SMode2(µTx = 0, µRx).

Proof: Achievability by Theorem 2. Converse omitted.

There is a duality between Tx conferencing and Rx confer-
encing in the sense that the parameters (rL, rR, µRx) influence
the per-user asymptotic multiplexing gain in the same way
as the parameters (tL, tR, µTx). Thus, Tx conferencing and Rx
conferencing are equally useful.

Let S?Mode2(ηTx, ηRx) denote Mode 2’s optimised asymptotic
multiplexing gain per user

S?Mode2(ηTx, ηRx) , max

tL
′,tR

′,rL
′,rR

′∈N, µ′
Tx,µ

′
Rx≥0:

µ′
Rx(rL

′+rR
′)≤ηRx

µ′
Tx(tL

′+tR
′)≤ηTx

SMode2(µ
′
Tx, µ

′
Rx).

From Theorem 3 we obtain the following theorem. An anal-
ogous result holds in the absence of transmitter conferencing.

Corollary 3: In the absence of receiver conferencing,

S?Mode2(ηTx, ηRx = 0) =


1
2 + ηTx

2 if ηTx ∈
[
0, 1

2

]
3
4 if ηTx ∈

(
1
2 ,

3
4

]
2
3 + ηTx

9 if µTx ∈
(

3
4 , 1
]
.

A choice of conferencing parameters (rL, rR) that achieves
S?Mode2(ηTx, ηRx = 0) is:{

(rL, rR) = (1, 1) if ηRx ∈ [0, 3/4]

(rL, rR) = (2, 1) if ηRx ∈ (3/4, 1].

C. Comparison of Modes 1 and 2

Example 1: Let tL = tR = rL = rR = 1 and µTx ≥ µRx ≥ 0.
We have

SMode1(µTx, µRx) =
1

2
+ µTx + µRx,

and

SMode2(µTx, µRx) ≥


1
2 + µTx + µRx, if 2µTx + 4µRx ≤ 1
5
6 , if 6µRx ≥ 1
3
4 + 1

2µRx, otherwise.

Thus, sometimes the per-user asymptotic multiplexing gains
for Modes 1 and 2 coincide and sometimes the former is larger.



SMode2(µTx, µRx)≥



1+µ`1
+µ`2

+µ`3
+µ`4

2 if `1
π`1

+ `2
π`2

+ `3
π`3

+ `4+2
π`4

< 1
`4+1+µ`1

+µ`2
+µ`3

`4+2 if `1
π`1

+ `2
π`2

+ `3
π`3

+ `4+2
π`4
≥ 1 > `1

π`1
+ `2

π`2
+ `3+`4+2

π`3
`4+`3+1+µ`1

+µ`2

`4+`3+2 if `1
π`1

+ `2
π`2

+ `3+`4+2
π`3

≥ 1 > `1
π`1

+ `2+`3+`4+2
π`2

`4+`3+`2+1+µ`1

`4+`3+`2+2 if `1
π`1

+ `2+`3+`4+2
π`2

≥ 1 > `1+`2+`3+`4+2
π`1

`4+`3+`2+`1+1
`4+`3+`2+`1+2 if `1+`2+`3+`4+2

π`1
≥ 1.

(12)

In particular, Mode 2 seems to perform as well as Mode 1
when the prelog constraints µTx, µRx are small.

Our observation applies also to the optimized asymptotic
multiplexing gain per user, see Corollaries 2 and 3 and the
following example.

Example 2: Let ηTx = 0 and ηRx = 1. Then,

S?Mode1(ηTx, ηRx) = 1 and S?Mode2(ηTx, ηRx) =
7

9
.

IV. ROUGH SKETCH OF CODING SCHEMES

We briefly sketch our coding schemes for Modes 1 and 2
leading to the lower bounds in Theorems 1 and 2.

A. Scheme for Mode 1

For Mode 1, we silence some of the transmitters so as to
partition the network into one big subnet that exploits the
conferencing links and several isolated point-to-point channels
that ignore the conferencing links completely. If tL > 0
(tR > 0), then KµTx transmitters of the big subnet send a
“prelog-1” quantisation of their input signal to their closest
right-neighbor (left-neighbor). If rL > 0 (rR > 0), then KµRx
receivers in the big subnet send their decoded messages—
which are also of prelog 1—to their immediate right-neighbor
(left-neighbor). The conferenced quantized signals permit to
cancel interference at the transmitters by means of dirty-
paper coding, and the conferenced decoded messages permit
to reconstruct and subtract interfering signals at the receivers.
Time-sharing K instances of the described scheme where we
vary the transmitters and receivers that conference, allows to
satisfy the conferencing prelog constraints µTx and µRx.

In this scheme each transmitter and receiver conferences
only with its immediate left- and right-neighbor. Neverthe-
less, our conferencing protocol makes that information from
some of the transmitters (receivers) propagates to the KµTx
transmitters (the KµRx receivers) to its left or right.

B. Scheme for Mode 2

Our scheme for Mode 2 is inspired by [13, 14]. We silence
every tL + tR + rL + rR + 2-th transmitter so as to split the
network into many subnets. In each of these subnets a subset
of transmitters share their “prelog-1” messages to the tL (tR)
transmitters to their left (right), and a subset of receivers send
a “prelog-1” quantisation of their receive signals to the rL
(rR) receivers to their left (right). The conferenced messages
permit to cancel interference at the transmitters by means
of dirty-paper coding, and the conferenced quantised signals

permit to cancel interference through successive interference
cancellation at the receivers. Carefully time-sharing several
instances of the described scheme for different parameters
allows to achieve the desired multiplexing gain per user and
to satisfy the prelog constraints µTx and µRx.
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