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Abstract—We study the variant of the successive refinement
problem where the receivers require identical reconstructions. We
characterize the rate region when the joint support of the source
and the side information variables is the Cartesian product of
their individual supports. The characterization indicates that the
side information can be fully used to reduce the communication
rates via binning; however, the reconstruction functions can
depend only on the Gács-Körner common randomness shared
by the two receivers. Unlike existing (inner and outer) bounds
to the rate region of the general successive refinement problem,
the characterization for the variant studied requires only one
auxiliary random variable.

I. INTRODUCTION

We consider the successive refinement (SR) problem where
the reconstructions at the receivers are required to be identical.
We call this the common receiver reconstructions (CRR)
requirement. In this problem, the encoder compresses the
source into two messages – one that is common and is intended
for both receivers; and the other is private and is intended for
only one of the receivers. Each receiver has side information
correlated with the source. The receivers use their received
messages along with the side information to generate source
reconstructions that: (a) meet certain fidelity requirements, and
(b) are identical to one another. The problem considered can
be viewed as an abstraction of the communication scenario
that could arise when conveying data (e.g., meteorological or
geological survey data, or an MRI scan) over a network for
storage in separate data clusters storing past records of the
data. The records, which serve as side information, could be
an earlier survey data or a previous scan, depending on the
case. The framework considered here arises when data is to
be communicated over a degraded broadcast channel using a
separate source-channel coding paradigm.

Characterization of rate region of the general successive
refinement problem in open and only inner and outer bounds
exist [1], [2]. The version of the SR problem where the
private message is absent, known as the Heegard-Berger
(HB) problem, is open as well [3], [4]. However, complete
characterization exists for specific settings of both SR and HB
problems. For example, the rate region of the SR problem is
known when the side information of the receiver that receives
one message is a degraded version of side information of the
other receiver [1]. Similarly, the rate region of the HB problem
is known when the side information is degraded [3].

The common reconstruction variant of the Wyner-Ziv prob-
lem was first motivated and solved by Steinberg [5]. Common
reconstructions in other problems were then considered in [6].
In our previous work [7], we characterised the rate region for
several cases of the HB problem with CRR requirement. In
this work, we characterize the rate region for the SR problem
with the CRR requirement (SR-CRR problem) when the joint
distribution of the source and side information variables satisfy
a certain support condition. The characterization indicates
that while the respective side information can be completely
used for binning, only the Gács-Körner common randomness
between the two side information variables can be used for
generating the reconstructions. This feature is also seen in
the characterization for the HB problem with the CRR re-
quirement. Unlike the best-known bounds for the SR problem,
the characterization of the SR-CRR rate region (when the
source satisfies a certain support condition) requires only one
auxiliary random variable that is decoded by both receivers.
Thus, the CRR requirement obviates the need for a second
auxiliary random variable to absorb the private message.

The paper is organized as follows. Section II defines the
notation used, and Sec. III defines the problem studied.
Section IV presents useful terminologies and their properties,
Sec. V presents the main result and its proofs, and the Ap-
pendix provides the proofs of the auxiliary results of Sec. IV.

II. NOTATION

For a set T , and a, b ∈ T , we let 1(a, b) = 1 if a = b,
and 0, otherwise. Uppercase letters (e.g., S, U , V ) denote
random variables (RVs), and the script versions (e.g., S, U ,
V) denote their alphabets. All alphabets are assumed to be
finite. Realizations of RVs are given by lowercase letters
(e.g., x, u, v). Vectors are indicated by superscripts, and their
components by subscripts. So, xn , (x1, . . . , xn). We denote
xn\i , (x1, . . . , xi−1, xi+1, . . . , xn). For RVs A,B,C, we
denote A−B−C if they form a Markov chain. Given RVs A
and B, we denote A ≡ B iff H(A|B) = H(B|A) = 0. The
probability of an event E is given by P(E), and E denotes
the expectation operator. supp(·) denotes the support of a
random variable, and cl(·) denotes the (topological) closure.
Lastly, for a p.m.f. pAB , σA , min{pA(a) : pA(a) > 0} and
σA|B , min{pA|B(a|b) : pA|B(a|b) > 0, ; pB(b) > 0}.
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III. PROBLEM DEFINITION

The aim of the successive refinement problem is to encode
a discrete memoryless source pS with S ∈ S into a pair of
messages – one is broadcasted to two receivers, and the other is
sent exclusively to one of the receivers. As is given in Fig. 1,
the receiver that receives one message has side information
U ∈ U , and the other that receives both the messages has side
information V ∈ V . These side information variables and the
source are together generated by a discrete memoryless source
with p.m.f. pSUV . This work focuses on common receiver
reconstructions, where the aim of the encoder is to compress
S so that: (1) each receiver can reconstruct the source to
within a prescribed level of distortion under a given distortion
measure; and (2) the two receiver reconstructions are almost
always identical. We aim to characterize the rate region for
this problem, which is formally defined as follows.

Definition 1: Given a p.m.f. pSUV and a bounded distortion
measure d : S × Ŝ → [0, D̄], we say common receiver
reconstructions at distortion D ≥ 0 are achievable at a
rate pair (ruv, rv)

T , if for each ε > 0, there exist: (a)
n ∈ N, (b) encoders Euv : Sn → {1, . . . , d2n(ruv+ε)e} and
Ev : Sn → {1, . . . , d2n(rv+ε)e}, and (c) receiver reconstruc-
tion functions Du : {1, . . . , d2n(ruv+ε)e} × Un → Ŝn, and
Dv :{1,. . . ,d2n(ruv+ε)e}×{1,. . . ,d2n(rv+ε)e}×Vn→Ŝn s.t.

Ŝn , Du(Euv(S
n), Un)

S̃n , Dv(Euv(S
n), Ev(S

n), V n)
(1)

satisfy:
P[Ŝn 6= S̃n] ≤ ε∑n

i=1 E[d(Si, Ŝi)] ≤ n(D + ε)∑n
i=1 E[d(Si, S̃i)] ≤ n(D + ε)

. (2)

Dv

Muv = Euv(Sn)

Un

V n

Ŝn

S̃n

Sn

Du
Euv

Ev

Mv = Ev(Sn)

Fig. 1. The successive refinement problem.

We define the rate region RSR−CRR(D) for the successive
refinement problem with the CRR requirement as the set of
all rate pairs achievable in the above sense. Without loss
of generality, we may assume that D ∈ [D, D̄], where
D , minφ:S→Ŝ E[d(S, φ(S))]. This minimum distortion D
is attained when S is conveyed to the receivers.

IV. ADDITIONAL TERMINOLOGIES

Given a p.m.f. pXY on X × Y , define bipartite graph
GX,Y [pXY ] with left nodes X , right nodes Y and edges
between x ∈ X and y ∈ Y iff pXY (x, y) > 0. Define an
equivalence relation on Y by y1 −⇀↽− y2 iff they are in the same
connected component of GX,Y [pXY ]. Let GKX,Y : Y → Y
satisfy GKX,Y (y1) = GKX,Y (y2) iff y1 −⇀↽− y2.

⇣⌘
X

Y

GKX,Y

abcdefgh

↵���✏

dg

GX,Y [pXY ]

Y
b

Fig. 2. Ilustration of GX,Y [pXY ] and GKX,Y .

Fig. 2 illustrates an example of GX,Y [pXY ] and a choice
for GKX,Y . While there are many choices for GKX,Y , any
two are equivalent, i,e., given two choices GKX,Y1 GKX,Y2 ,
GKX,Y1 (Y ) ≡ GKX,Y2 (Y ). In this work, we use any one choice
to represent GKX,Y and use the resulting RV GKX,Y (Y ) as
the representation of the Gács-Körner common randomness
between X and Y [8]. We now define the spaces of p.m.f.’s and
associated regions required for the rate region characterization.

Definition 2: Given pSUV , k ∈N, D≥D and ε > 0:
1. P†ε,D,k denotes the set of p.m.f.’s qABCSUV s.t. (a) qSUV =
pSUV , (A,B,C) − S − (U, V ), max{|A|, |B|, |C|} ≤ k; and
(b) there exist f :A×C×V → Ŝ and g :A×B×U → Ŝ s.t.

P[f(A,C, V ) 6= g(A,B,U)] ≤ ε (3)

E
[
d
(
S, f(A,C, V )

)]
≤ D (4)

2. P‡D,k denotes the set of all p.m.f.’s qABCSUV s.t. (a)
qSUV = pSUV , (A,B,C)−S−(U, V ), max{|A|, |B|, |C|} ≤ k;
and (b) there exists a function f : A× C × V → Ŝ, such that

E[d(S, f(GKABU,ACV (A,C, V )))] ≤ D. (5)

3. P∗D,k denotes the set of all p.m.f.’s qASUV s.t. (a) qSUV =
pSUV , A−S− (U, V ), |A| ≤ k; and (b) there exists function
f : A× V → Ŝ, such that

E[d(S, f(GKAU,AV (A, V )))] ≤ D. (6)

Definition 3: Given pSUV , k ∈ N, and D ≥ D, let

R†ε,k(D) ,
⋃

q∈P†
ε,D,k


(
ruv
rv

)
:

ruv ≥ I(S;AB|U)

rv+ruv ≥
(
I(S;B|ACUV )

+I(S;AC|V )

).
Also, let R‡k(D) be the resultant region when the union over
q ∈ P†ε,D,k above is replaced by a union over q ∈ P‡D,k. Let

R∗k(D) , cl

[ ⋃
q∈P∗D,k

{(
ruv
rv

)
:

ruv ≥ I(S;A|U)
rv + ruv ≥ I(S;A|V )

}]
.

Remark 1: For any pSUV , D≥D, k∈N, and ε > 0,
P‡D,k ⊆ P†ε,D,k and R∗k(D) ⊆ R‡k(D) ⊆ R†ε,k(D).

V. THE MAIN RESULT

The achievablity of R∗|S|+3(D) follows from a standard
proof employing letter typicality, and is omitted. The main
result here is the converse when the source p.m.f. satisfies

supp((S,U, V )) = supp(S)× supp((U, V )). (7)
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Before we prove the converse, four ancillary results quantify-
ing how the three regions of Def 3 are related are presented.
Proofs of the first two results are given in the Appendix. The
first result is the key step in reducing the symbol error between
the two reconstructions from ε to 0, i.e., to prove that for each
p.m.f. q ∈ P†ε,D,k satisfying (3) and (4) can be tweaked slightly
to a p.m.f. q′ ∈ P‡D′,k for some D′ marginally larger than D.

Lemma 1: Let k ∈ N, D ≥ D, 0 < ε <
σ4
SUV

10000|S|4 , and
pSUV satisfying (7) be given. Let (ruv, rv)

T ∈ R†ε,k(D) and

Ξ(x) , |S|x
σSUV −|S|x log |S|

2(σSUV −|S|x)
x . Then,

(ruv + Ξ(2 4
√
ε), rv + 2 Ξ(2 4

√
ε))T ∈ R‡k

(
D + 2

√
εD̄

σS−
√
ε

)
.

Lemma 2: Let pSUV , k ∈ N and D ≥ D be given. If pSUV
satisfies (7), then R‡k(D) ⊆ R∗k2(D).

Lemma 3: For any p.m.f. pSUV , k ∈ N and D ≥ D,
R∗k(D) ⊆ R∗|S|+3(D).

Proof: The proof is identical to that of Lemma 3 of [7]
with the exception of requiring one more function to preserve
the value of I(S;A|U). The proof is therefore omitted.

Lemma 4: Let p.m.f. pSUV , sequence of rate pairs
{(ruvi, rvi)T }i∈N, and sequence {Di}i∈N be given such that:
(a) lim

i→∞
(ruvi, rvi)

T = (r∗uv, rv
∗)T ; (b) lim

i→∞
Di = D∗ > D;

and (c) (ruvi, rvi)
T ∈ R∗|S|+3(Di).

Then, (r∗uv, r
∗
v)T ∈ R∗|S|+3(D∗). Further, if pSUV satisfies (7),

the claim holds even if D∗ = D.
Proof: The proof uses time-sharing arguments to show

R∗|S|+3(D) changes smoothly with D, and is omitted.
We are now ready to prove the main result. The proof first

uses standard arguments to identify suitable auxiliary RVs and
derive an outer bound that does not, per se, seem achievable.
It is with the use of above lemmas that the outer bound is then
reduced to the correct form.

Theorem 1 (Converse): Let p.m.f. pSUV satisfying (7) be
given. Let D ≥ D. Then, RSR−CRR(D) ⊆ R∗|S|+3(D).

Proof of Converse: Let (ruv, rv)
T ∈ RSR−CRR(D). Let

0 < ε <
σ4
SUV

10000|S|4 . By Def 1, there exist functions Euv , Ev ,
Du, Dv satisfying (2). Let Muv , Euv(S

n), Mv , Ev(S
n),

Ŝn , Du(Muv, U
n), and S̃n , Dv(Muv,Mv, V

n). Then,

n(ruv + ε) ≥ H(Muv) ≥ H(Muv|Un) ≥ I(Sn;Muv|Un)

=
n∑
i=1

I(Si;Muv|UnSi−1) =
n∑
i=1

I(Si;MuvU
n\iSi−1|Ui)

,
n∑
i=1

I(Si;AiBi|Ui), (8)

where Ai , (Muv, U
i−1) and Bi , (Uni+1S

i−1). Similarly,

n(ruv+rv+2ε) ≥ H(MuvMv) ≥ I(Sn;MuvMv|V n) (9)
= I(Sn;MuvMvU

n|V n)− I(Sn;Un|MuvMvV
n) (10)

=
n∑
i=1

[
I(Si;MuvMvU

nV n\iSi−1|Vi)
−I(Sn;Ui|MuvMvV

nU i−1)

]
(11)

=
n∑
i=1

[
I(Si;AiBiMvV

n\iUi|Vi)−H(Ui|AiMvV
n)

+H(Ui|AiMvV
nSn)

]
(12)

(a)
=

n∑
i=1

[
I(Si;AiBiCiUi|Vi)−H(Ui|AiCiVi)

+H(Ui|AiCiViSi)

]
(13)

=
n∑
i=1

[
I(Si;AiBiCiUi|Vi)− I(Si;Ui|AiCiVi)

]
(14)

=
n∑
i=1

[
I(Si;AiCi|Vi) + I(Si;Bi|AiCiUiVi)

]
, (15)

where in (a) we have denoted Ci , (Mv, V
n\i) and have used

Ui − (Muv,Mv, V
n, U i−1, Si)− (Muv,Mv, V

n, U i−1, Sn).
Now, note that H(MuvMvV

n|AiCiVi) = 0 and
H(MuvU

n|AiBiUi) = 0. Hence, Ŝi and S̃i are functions of
(Ai, Bi, Ui) and (Ai, Ci, Vi), resp. Let Ŝi , gi(Ai, Bi, Ui)
and S̃i , fi(Ai, Ci, Vi). Define RVs Q ∈ {1, . . . , n},
Ā ∈ {1, . . . , n} × ∪ni=1Ai, B̄ ∈ ∪ni=1Bi, C̄ ∈ ∪ni=1Ci, S̄ ∈ S,
U ∈ U and V ∈ V as follows. For i, j ∈ {1, . . . , n}, a ∈ Ai

pĀ,Q((j, a), i) =
pAi (a)

n 1(i, j)
pB̄C̄S̄UV |Ā=(i,a),Q=i = pBiCiSiUiVi|Ai=a,

(16)

By construction, we have pS̄UV = pSUV and for 1 ≤ i ≤ n,
(Ai, Bi, Ci)−Si−(Ui, Vi) and hence (Ā, B̄, C̄)− S̄−(U, V ).
Further, the rate expressions (8) and (15) single-letterize to

ruv + ε ≥ I(S̄; ĀB̄|U)
ruv + rv + 2ε ≥ I(S̄; ĀC̄|V ) + I(S̄; B̄|ĀC̄UV )

(17)

Define maps ḡ : Ā × B̄ × U → Ŝ and f̄ : Ā × C̄ × V → Ŝ by

ḡ((i, a), b, u) = gi(a, b, u)
f̄((i, a), c, v) = fi(a, c, v)

(18)

Then,

ε
(b)

≥
n∑
i=1

P[Ŝi 6= S̃i]

n
=

n∑
i=1

P[fi(Ai, Ci, Vi) 6= gi(Ai, Bi, Ui)]

n

= P[f̄(Ā, C̄, V ) 6= ḡ(Ā, B̄, U)], (19)

where (b) follows from (2). Additionally,

E[d(S̄, f̄(Ā, C̄, V )] =

n∑
i=1

E[d(Si, fi(Ai, Ci, Vi)]

n

(c)

≤ D + ε,

where (c) holds because fi(Ai, Ci, Vi) = S̃i. Let us denote
k̄ , max{|Ā|, |B̄|, |C̄|}. Then, by Def. 3,

(ruv+ε,rv+ε)T ∈R†
ε,k̄

(D+ε)

(a)⇒
(
ruv + ε+ Ξ(2 4

√
ε)

rv + ε+ 2 Ξ(2 4
√
ε)

)
∈ R‡

k̄

(
D+ε+ 2

√
εD̄

σS−
√
ε

)
(b)⇒
(
ruv + ε+ Ξ(2 4

√
ε)

rv + ε+ 2 Ξ(2 4
√
ε)

)
∈ R∗|S|+3

(
D+ε+ 2

√
εD̄

σS−
√
ε

)
,

where (a) follows from Lemma 1, (b) from Lemmas 2 and 3.
The proof is then complete after invoking Lemma 4.

APPENDIX

A. Proof of Lemma 1

Let (ruv, ru)T ∈ R†ε,k(D) for ε < σ4
SUV

10000|S|4 . Then, there
must exist a p.m.f. pABCSUV ∈ P†ε,D,k such that

ruv ≥ I(S;AB|U)
rv + ruv ≥ I(S;AC|V ) + I(S;B|ACUV ).

(20)
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Let f, g be reconstruction functions meeting (3), (4). Define
E∗ ⊆ A× B × C by (a, b, c) ∈ E∗ if

P
[
f(A,C,U) 6=g(A,B,U)|(A,B,C)=(a, b, c)

]
≤√ε (21)

Then, by Markov inequality and (3), P[(A,B,C) /∈ E∗] ≤ √ε.
Note that for (a, b, c) ∈ E∗, (21) can be rewritten as∑
u,v

pUV |ABC(u, v|a, b, c)1[f(a, c, v), g(a, b, u)] ≥ 1−√ε.

Since pSUV satisfies (7), we have the following.

min
s∈supp(S)

(u,v)∈supp((U,V ))

(
pUV |S(u,v|s)
pUV (u,v)

)
≥ σUV |S > 0. (22)

Then, note that for any (u, v) ∈ supp((U, V )),

pUV |ABC(u, v|a, b, c) =
∑

s∈supp(S)

pUV S|ABC(u, v, s|a, b, c)

≥
∑

s∈supp(S)

σUV |SpUV (u, v)pS|ABC(s|a, b, c)≥ σUV |SσUV (23)

Using (23) in (21), we see that for (a, b, c) ∈ E∗∑
(u,v)∈supp((U,V ))

(
1− 1[f(a, c, v), g(a, b, u)]

)
≤

√
ε

σUV σUV |S
< 1.

Hence, it must be the case that when (a, b, c) ∈ E∗,

P
[
f(A,C,U) 6=g(A,B,U)|(A,B,C)=(a, b, c)

]
=0 (24)

Since the two reconstruction functions agree exactly on E∗,
and since P[(A,B,C) ∈ E∗] ≥ 1−√ε, it is possible to prune
the distribution pABCS to have a support E∗ × supp(S). To
do so, define p.m.f. p∗A∗B∗C∗S over A× B × C × S by

p∗A∗B∗C∗S(a, b, c, s)=

{
pABCS(a,b,c,s)

P[(A,B,C)∈E∗|S=s] ,
(a,b,c)∈E∗
s∈supp(S)

.
0, otherwise

(25)

Extend pA∗B∗C∗S to p∗A∗B∗C∗SUV s.t. p∗SUV = pSUV and
(A∗, B∗, C∗)− S − (U, V ). From (24) and (25), we have

P[f(A∗, C∗, U) 6= g(A∗, B∗, V )] = 0 (26)

Further, by a simple triangle inequality, we see that

E[d(S, f(A∗, C∗, V ))] ≤ E[d(S, f(A,C, V ))]
+D̄ ||p∗A∗C∗SV − pACSV ||1

(a)

≤ D + D̄
(

2
√
ε

σS−
√
ε

)
,

where (a) follows from P1 of Lemma 6. Hence, p∗ ∈ P†D′,k,
where D′ , D+ 2

√
εD̄

σS−
√
ε
. Now, from P6 of Lemma 6, we get

∆1 ,
∣∣I(S;A∗B∗|U)−I(S;AB|U)

∣∣
=
∣∣H(S|ABU)−H(S|A∗B∗U)

∣∣ ≤ Ξ(2 4
√
ε)

(27)

Similarly,

∆2 ,
∣∣I(S;A∗C∗|V )−I(S;AC|V )

∣∣
=
∣∣H(S|ACV )−H(S|A∗C∗V )

∣∣ ≤ Ξ(2 4
√
ε)

. (28)

Now, consider ∆3 ,
∣∣I(S;B∗|A∗C∗UV )− I(S;B|ACUV )

∣∣.
Expressing ∆3 using conditional entropies and comparing
corresponding terms using P5 and P6 of Lemma 6 yields:

∆3 ≤ Ξ(
√
ε) + Ξ(2 4

√
ε) ≤ 2 Ξ( 4

√
ε).

Combining the bounds for ∆1,∆2,∆3 with (20), we have

ruv+Ξ(2 4
√
ε)≥ I(S;A∗B∗|U)

rv+ruv+ 3 Ξ(2 4
√
ε)≥ I(S;B∗|A∗C∗UV )+I(S;A∗C∗|V ).

Hence, the claim follows.

B. Proof of Lemma 2

Pick pABCSUV ∈ P‡D,k. Let f : A× C × V → Ŝ satisfy

E[d(S, f(GKABU,ACV (A,C, V )))] ≤ D. (29)

An application of Lemma 5 with A1 = (A,C) and A2 =
(A,B) yields the following conclusion.

GKACV,ABU (A,C, V ) ≡ (GKAC,AB(A,C),GKV,U (V )) (30)

Now, define Ã , GKAB,AC(A,C) and let p̃ÃSUV denote the
p.m.f. of (Ã, S, U, V ). Then, by construction the Markov chain
Ã− S − (U, V ) holds. Further,

H(Ã,GKU,V (V )|GKÃV,ÃU (Ã, V )) = 0 (31)

Then, by (30), H(GKABU,ACV(A,C,V )|GKÃV,ÃU(Ã,V ))=0.
Let f̃ : Ã × V → A× C × V be such that

f̃(GKÃU,ÃV (Ã, V )) = GKABU,ACV (A,C, V ). (32)

Then, from (29), E[d(S, f(f̃(GKÃV,ÃU (Ã, V ))))] ≤ D.
Hence, p̃ÃSUV ∈ P∗D,k2 since Ã ⊆ A × C. Lastly, note that

ruv≥I(S;AB|U)≥I(S;GKAC,AB(A,C)|U)= I(S;Ã|U)

rv+ruv≥I(S;AC|V )≥ I(S;GKAC,AB(A,C)|V )= I(S;Ã|V )

The claim holds since pABCSUV was chosen at random.

C. Ancillary Results

Lemma 5: Let p.m.f. pA1A2SUV over A1×A2×S×U×V
be s.t.: (a) (A1, A2)− S − (U, V ), and (b) (7) is met. Then,

GKA1V,A2U (A1, V ) ≡ (GKA1,A2(A1),GKU,V (V )). (33)

Proof: Let η∗ , min
(s,u,v)∈supp(S,U,V )

pUV |S(u,v|s)
pUV (u,v) . Then,

η∗ > 0 due to (7) . Now, let (a1, a2) ∈ supp(A1, A2) and
(u, v) ∈ supp(U, V ). Then,

pA1VA2U (a1,v,a2,u) =
∑

s∈supp(S)

pA1A2|S(a1, a2, s)pUV |S(u, v|s)

≥
∑

s∈supp(S)

η∗pA1A2S(a1, a2, s)pUV (u, v)

= η∗pA1A2(a1, a2)pUV (u, v) > 0.

Hence, for (a1, v), (a′1, v
′) ∈ A1 × V , (a1, v) −⇀↽− (a′1, v

′) in
GA1V,A2U [pA1V A2U ] if and only if a1 −⇀↽− a′1 in GA1,A2 [pA1A2 ]

and v −⇀↽− v′ in GU,V [pUV ]. Hence, the claim follows.
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Lemma 6: Let p.m.f. pA1A2SB1B2
be given such that

(A1, A2) − S − (B1, B2) and (7) is met. Let δ < σSB1B2

and E ⊆ A1 × A2 be such that P[(A1, A2) ∈ E ] ≥ 1 − δ.
Define p.m.f. p̃Ã1Ã2S

by

p̃A1A2S(a1, a2, s)=

{
pA1A2S

(a1,a2,s)

1−P[(A1,A2)/∈E|S=s] ,
(a1,a2)∈E

s∈supp(S) .
.

0, otherwise

and extend it to a p.m.f. p̃Ã1Ã2SB1B2
by setting (Ã1, Ã2) −

S − (B1, B2) and p̃SB1B2 = pSB1B2 . Let Ξ(·) be as defined
in Lemma 1. Then the following hold.

P1
∣∣∣∣p̃Ã1Ã2SB1B2

− pA1A2SB1B2

∣∣∣∣
1
≤ 2δ

σS−δ .

P2 If (a1a2, b2, b2)∈supp((A1, A2, B1, B2)) and (a1, a2)∈E ,∣∣∣∣∣∣∣∣p̃S|Ã2Ã2B1B2
(·|a1, a2, b1, b2)

−pS|A1A2B1B2
(·|a1, a2, b1, b2)

∣∣∣∣∣∣∣∣
1

≤ δ

σS − δ

P3. Let D =
{
a1 ∈ A1 : P[(A1, A2) /∈ E|A1 = a1] ≤

√
δ
}

.

Then, P[A1 ∈ D] ≥ 1−
√
δ.

P4. If a1 ∈ D, and b1 ∈ B1 s.t. pB1A1
(b1, a1) > 0, then∣∣∣∣∣∣pS|Ã1B1

(·|a1, b1)−pS|A1B1
(·|a1, b1)

∣∣∣∣∣∣
1
≤ 2

√
δ|S|

σSB1B2
−2
√
δ|S| .

Additionally, if δ ≤ σ2
SB1B2

100|S|2 , then the following hold:

P5. |H(S|Ã1Ã2B1B2)−H(S|A1A2B1B2)| ≤ Ξ(δ).

P6. |H(S|Ã1B1)−H(S|A1B1)| ≤ Ξ(2
√
δ).

Proof: To prove P1, first note that the contribution to
the L1-norm due to elements of Ec × S × B1 × B2 equals
P[(A1, A2) /∈ E ] ≤ δ ≤ δ

σS−δ . When (a1, a2) ∈ E and
(a1, a2, s, b1, b2) ∈ supp((A1, A2, S,B1, B2)), we see that

1 ≤
p̃Ã1Ã2SB1B2

(a1, a2, s, b1, b2)

pA1A2SB1B2(a1, a2, s, b1, b2)
≤ σS
σS − δ

, (34)

since P[(A1, A2) /∈ E|S = s] = P[(A1,A2)∈E,S=s]
pS(s) ≤ δ

σS
.

Rearranging and summing (34) over all elements of the set
E × S × B1 × B2 yields an upper bound of δ

σS−δ for the
contribution from E × S × B1 × B2.

P2 follows from straightfoward algebraic manipulations of
(34), and is omitted. We now prove the validity of P3.

δ≥P[(A1, A2) /∈E ]≥ ∑
a1∈Dc

pA1
(a1)P[(A1, A2) /∈E|A1 = a1]

≥
√
δ · P[A1 ∈ Dc] =

√
δ
(
1− P[A1 ∈ D]

)
. (35)

To prove P4, we use the following arguments.

p̃S|Ã1B1
(s|a1, b1) =

∑
a2
p̃SÃ1Ã2B1

(s, a1, a2, b1)∑
a2,s′

p̃SÃ1Ã2B1
(s′, a1, a2, b1)

(36)

=

∑
a2:(a1,a2)∈E

pSA1A2B1
(s,a1,a2,b1)

1−P[(A1,A2)/∈E|S=s]∑
s′∈S, a2:(a1,a2)∈E

pSA1A2B1
(s′,a1,a2,b1)

1−P[(A1,A2)/∈E|S=s′]

(37)

≤
(

σS
σS−δ

)
pSA1B1(s, a1, b1)

pA1,B1(a1, b1)−P[(A1, A2) /∈E , A1 = a1]
(38)

=
pS|A1B1

(s|a1, b1)

1−
√
δ

pB1|A1
(b1|a1)

· 1

1− δ
σS

(a)

≤ pS|A1B1
(s|a1, b1)

1−
√
δ

σB1|S
− δ

σS

, (39)

where in (a) we have used

min
b1,a1

pB1|A1
(b1|a1) = min

b1,a1

∑
s
pS|A1

(s)pB1|S(b1|s) ≥ σB1|S .

Using (37), we see that

p̃S|Ã1B1
(s|a1, b1) ≥

∑
a2:(a1,a2)∈E

pSA1A2B1
(s, a1, a2, b1)(

σS
σS−δ

)
pA1B1(a1, b1)

=

pSA1B1
(s, a1, b1)− ∑

a2:(a1,a2)/∈E
pSA1A2B1

(s, a1, a2, b1)(
σS
σS−δ

)
pA1B1(a1, b1)

≥
(
1− δ

σS

)(
pS|A1B1

(s|a1b1)−
√
δ

pB1|A1
(b1|a1)

)
(40)

≥ pS|A1B1
(s|a1b1)− δ

σS
−

√
δ

σB1|S
. (41)

A straighforward argument combining (39) and (41) along
with the fact that δ

σS
+

√
δ

σB1|S
≤ 2

√
δ

σSB1B2
yields∣∣∣∣p̃S|Ã1B1

(·|a1b1)− pS|A1B1
(·|a1b1)

∣∣∣∣
1
≤ 2

√
δ|S|

σSB1B2
−2
√
δ|S| .

P5 follows from P2 upon an application of Lemma 2.7 of
[9]. The proof of P5 is omitted since it is similar to that
of P6 outlined below. Since δ <

σ2
SB1B2

100|S|2 , Lemma 2.7 of [9]
guarantees that when a1 ∈ D, and pB1A1

(b1, a1) > 0,∣∣∣ H(S|A1=a1,B1=b1)

−H(S|Ã1=a1,B1=b1)

∣∣∣ ≤ 2
√
δ|S|

σSB1B2
−2
√
δ|S| log

σSB1B2
−2
√
δ|S|

2
√
δ

.

Further, when a1 /∈ D, the difference in the conditional
entropies can be bounded by log |S|. Combining these two
conditional entropy bounds with P1 and P3, we obtain P6.
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