

Information-theoretic results for phase noise channels

Luca Barletta Technische Universität München - Institute for Advanced Study

> Milano December 19th, 2014

Outline

- Introduction
- Wiener phase noise channel
 - Simplified model
 - Complete model
- White phase noise channel
- 4 Conclusions

Outline

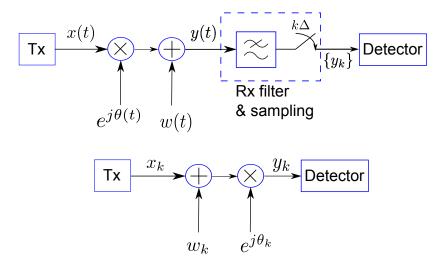
- Introduction
- Wiener phase noise channel
 - Simplified model
 - Complete model
- White phase noise channel
- 4 Conclusions

Phase noise in fiber-optic communication

- Laser phase noise
 - Lorentzian spectrum Wiener process
 - f^{-n} spectrum Autoregressive moving-average process
- Nonlinear Kerr-induced phase noise
 - Self phase modulation (SPM)
 - Cross phase modulation (XPM)

This talk mainly considers phase noise generated by lasers/oscillators.

Waveform model vs. discrete-time model



Information-theoretic limits

• What can be said about capacity?

$$C(SNR) = \lim_{n \to \infty} \sup_{E[|X_k|^2] < SNR\Delta} \frac{1}{n} I\left(X_1^n; Y_1^{Ln}\right) \tag{1}$$

where $L = T_{\text{symb}}/\Delta$ is the oversampling factor

Information-theoretic limits

• What can be said about capacity?

$$C(SNR) = \lim_{n \to \infty} \sup_{E[|X_k|^2] < SNR\Delta} \frac{1}{n} I\left(X_1^n; Y_1^{Ln}\right) \tag{1}$$

where $L=T_{\mathsf{symb}}/\Delta$ is the oversampling factor

• It can be a challenging problem due to phase noise's memory

Information-theoretic limits

• What can be said about capacity?

$$C(SNR) = \lim_{n \to \infty} \sup_{E[|X_k|^2] < SNR\Delta} \frac{1}{n} I\left(X_1^n; Y_1^{Ln}\right) \tag{1}$$

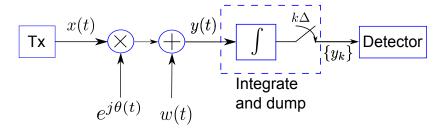
where $L=T_{\mathrm{symb}}/\Delta$ is the oversampling factor

- It can be a challenging problem due to phase noise's memory
- We review capacity results for
 - Wiener phase noise
 - White phase noise

Outline

- Introduction
- Wiener phase noise channel
 - Simplified model
 - Complete model
- White phase noise channel
- 4 Conclusions

Waveform model with integrate & dump receiver

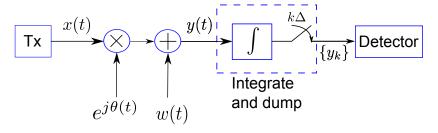


$$Y_k = \int_{(k-1)\Delta}^{k\Delta} Y(t) \, \mathrm{d}t = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j\Theta(t)} \, \mathrm{d}t + W_k \tag{2}$$

Hypothesis: Tx uses a rectangular pulse shape in time domain Δ : sampling time, T_{symb} : symbol time

$$W_k \sim \mathcal{CN}(0,1), \qquad \mathsf{E}\left[W_m W_n^{\star}\right] = 1_{\{m=n\}}.$$

Waveform model with integrate & dump receiver



$$Y_k = \int_{(k-1)\Delta}^{k\Delta} Y(t) \, \mathrm{d}t = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j\Theta(t)} \, \mathrm{d}t + W_k \tag{2}$$

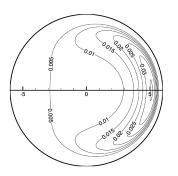
Phase noise and amplitude fading!

Wiener phase noise

Define $\Theta_k = \Theta((k-1)\Delta)$ and $N_k \sim \mathcal{N}(0,1)$:

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{3}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j(\Theta(t) - \Theta_k)} \, \mathrm{d}t + W_k \tag{4}$$



Contour plot of the unnormalized fading pdf for $\Delta = 6$ and $\gamma = 1$. (Y. Wang et al., TCOM 2006, vol. 54, no. 5)

Symbol-spaced Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{T_{\mathsf{symb}}} N_k \tag{5}$$

$$Y_k = X_k e^{j\Theta_k} + W_k \tag{6}$$

 The phase noise is assumed constant in each symbol time, and varies symbol by symbol according to (5)

¹Barletta *et al.*, J. Lightw. Technol., 2012, vol. 30, no. 12 ²Barletta *et al.*, IEEE Photon. Technol. Lett., 2013, vol. 25, no. 13

Symbol-spaced Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{T_{\mathsf{symb}}} N_k \tag{5}$$

$$Y_k = X_k e^{j\Theta_k} + W_k \tag{6}$$

- The phase noise is assumed constant in each symbol time, and varies symbol by symbol according to (5)
- Bounds on information rates are evaluated by using Bayesian tracking techniques ¹

¹Barletta *et al.*, J. Lightw. Technol., 2012, vol. 30, no. 12

²Barletta *et al.*, IEEE Photon. Technol. Lett., 2013, vol. 25, no. 13

Symbol-spaced Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{T_{\mathsf{symb}}} N_k \tag{5}$$

$$Y_k = X_k e^{j\Theta_k} + W_k \tag{6}$$

- The phase noise is assumed constant in each symbol time, and varies symbol by symbol according to (5)
- Bounds on information rates are evaluated by using Bayesian tracking techniques ¹
- The continuous state space $[0,2\pi)$ is discretized into bins, and a low-complexity trellis-based detector is devised to lower-bound the mutual information 2

¹Barletta et al., J. Lightw. Technol., 2012, vol. 30, no. 12

²Barletta et al., IEEE Photon. Technol. Lett., 2013, vol. 25, no. 13

Symbol-spaced Wiener phase noise channel - Results

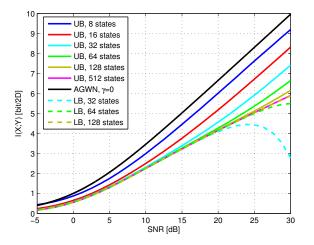


Figure 1: Circularly symmetric Gaussian input distribution.

Symbol-spaced Wiener phase noise channel - Results

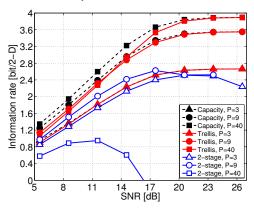


Figure 2: Low-complexity trellis-based detector (in red), versus a two-stage carrier recovery proposed by Magarini *et al.*, IEEE PTL, 2012, vol. 24, no. 9.

Oversampled Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{7}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} + W_k \tag{8}$$

 The phase noise is assumed constant in each sample time, and varies sample by sample according to (7)

³Ghozlan/Kramer, ISIT, 2013 and 2014

⁴Barletta/Kramer, arXiv:1411.0390

Oversampled Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{7}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} + W_k \tag{8}$$

- The phase noise is assumed constant in each sample time, and varies sample by sample according to (7)
- An analytical capacity lower bound is found by a mismatched decoder argument ³

³Ghozlan/Kramer, ISIT, 2013 and 2014

⁴Barletta/Kramer, arXiv:1411.0390

Oversampled Wiener phase noise channel

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{7}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} + W_k \tag{8}$$

- The phase noise is assumed constant in each sample time, and varies sample by sample according to (7)
- An analytical capacity lower bound is found by a mismatched decoder argument ³
- An analytical capacity upper bound is found by a genie-aided decoder argument ⁴

³Ghozlan/Kramer, ISIT, 2013 and 2014

⁴Barletta/Kramer, arXiv:1411.0390

High SNR analysis

• How does the capacity behave at high SNR?

High SNR analysis

- How does the capacity behave at high SNR?
- We present analytical results on the so-called capacity prelog:

$$\lim_{\mathsf{SNR}\to\infty} \frac{\mathsf{C}(\mathsf{SNR})}{\log(\mathsf{SNR})} \tag{9}$$

• Example: for an AWGN channel, C(SNR) = log(1 + SNR), therefore the prelog is 1

High SNR analysis

- How does the capacity behave at high SNR?
- We present analytical results on the so-called capacity prelog:

$$\lim_{\mathsf{SNR}\to\infty} \frac{\mathsf{C}(\mathsf{SNR})}{\log(\mathsf{SNR})} \tag{9}$$

- Example: for an AWGN channel, C(SNR) = log(1 + SNR), therefore the prelog is 1
- ullet We let the sampling time Δ scale with the SNR as

$$\Delta = \frac{1}{\mathsf{SNR}^{\alpha}}, \qquad 0 < \alpha < 1 \tag{10}$$

Oversampled Wiener phase noise channel - Results

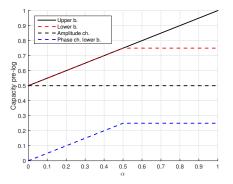


Figure 3 : Prelog upper bound and lower bound versus $\alpha = -\frac{\log(\Delta)}{\log(\mathsf{SNR})}$.

Upper bound: Barletta/Kramer, arXiv:1411.0390

Lower bound: Ghozlan/Kramer, ISIT, 2013 and 2014

A capacity achieving scheme for $0 \le \alpha \le 1/2$

• Choose a uniform pdf for $\angle X_k$ and

$$p_{|X_k|^2}(x) = \frac{\Delta}{\mathsf{SNR}\Delta^2 - 1} \exp\left(-\frac{\Delta x - 1}{\mathsf{SNR}\Delta^2 - 1}\right), \qquad x \ge 1/\Delta \tag{11}$$

A capacity achieving scheme for $0 \le \alpha \le 1/2$

• Choose a uniform pdf for $\angle X_k$ and

$$p_{|X_k|^2}(x) = \frac{\Delta}{\mathsf{SNR}\Delta^2 - 1} \exp\left(-\frac{\Delta x - 1}{\mathsf{SNR}\Delta^2 - 1}\right), \qquad x \ge 1/\Delta \tag{11}$$

• Amplitude modulation. Use the statistic $V_k = \sum_{i=1}^L |Y_{(k-1)L+i}|^2$ to detect $|X_k|$

A capacity achieving scheme for $0 \le \alpha \le 1/2$

• Choose a uniform pdf for $\angle X_k$ and

$$p_{|X_k|^2}(x) = \frac{\Delta}{\mathsf{SNR}\Delta^2 - 1} \exp\left(-\frac{\Delta x - 1}{\mathsf{SNR}\Delta^2 - 1}\right), \qquad x \ge 1/\Delta \tag{11}$$

- Amplitude modulation. Use the statistic $V_k = \sum_{i=1}^L |Y_{(k-1)L+i}|^2$ to detect $|X_k|$
- Phase modulation. Use the statistic

$$\angle \widetilde{Y}_k = \angle \left(Y_{(k-1)L+1} \left(\frac{Y_{(k-1)L}}{X_{k-1}} \right)^* \right) \tag{12}$$

to detect $\angle X_k$

Complete model

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{13}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j(\Theta(t)-\Theta_k)} \, \mathrm{d}t + W_k \tag{14}$$

 Discrete-time Wiener phase noise and memoryless fading impair the transmission

⁵Ghozlan/Kramer, Globecom, 2013

Complete model

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{13}$$

$$Y_k = X_{\lceil k\Delta/T_{\mathsf{symb}} \rceil} e^{j\Theta_k} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j(\Theta(t)-\Theta_k)} \, \mathrm{d}t + W_k \tag{14}$$

- Discrete-time Wiener phase noise and memoryless fading impair the transmission
- Lower bounds on information rates are evaluated by using Bayesian tracking techniques ⁵

⁵Ghozlan/Kramer, Globecom, 2013

Complete model

$$\Theta_k = \Theta_{k-1} + \gamma \sqrt{\Delta} N_k \tag{13}$$

$$Y_k = X_{\lceil k\Delta/T_{\text{symb}} \rceil} e^{j\Theta_k} \frac{1}{\Delta} \int_{(k-1)\Delta}^{k\Delta} e^{j(\Theta(t)-\Theta_k)} dt + W_k$$
 (14)

- Discrete-time Wiener phase noise and memoryless fading impair the transmission
- Lower bounds on information rates are evaluated by using Bayesian tracking techniques ⁵
- The information rate increases compared to the simplified model

⁵Ghozlan/Kramer, Globecom, 2013

Complete model - Results

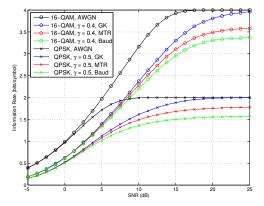


Figure 4: Oversampled model (in blue) versus the simplified symbol-spaced model (in green).

Complete model - Results

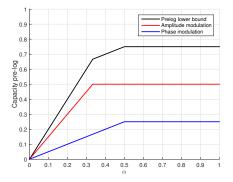


Figure 5 : Prelog lower bound versus $\alpha = -\frac{\log(\Delta)}{\log(\mathrm{SNR})}$.

For $1/3 \le \alpha < 1$: Ghozlan, PhD Thesis, 2014. (Amplitude modulation only) For $0 < \alpha < 1$: Barletta, unpublished. (Amplitude and phase modulation)

Outline

- 1 Introduction
- Wiener phase noise channel
 - Simplified model
 - Complete model
- White phase noise channel
- 4 Conclusions

White phase noise model

ullet Consider a phase noise process where the samples $\{e^{j\Theta(t)}\}$ are uncorrelated

⁶Barletta/Kramer, ISIT, 2014 Barletta/Kramer, CROWNCOM, 2014

White phase noise model

- \bullet Consider a phase noise process where the samples $\{e^{j\Theta(t)}\}$ are uncorrelated
- ullet Also, consider a stationary average $\mathsf{E}\left[e^{j\Theta(t)}
 ight]=\mu_{\Theta}$

⁶Barletta/Kramer, ISIT, 2014 Barletta/Kramer, CROWNCOM, 2014

White phase noise model

- ullet Consider a phase noise process where the samples $\{e^{j\Theta(t)}\}$ are uncorrelated
- Also, consider a stationary average $\mathsf{E}\left[e^{j\Theta(t)}\right] = \mu_{\Theta}$
- It can be shown⁶ that the output of the sampled matched filter $\{Y_k\}$ is a sufficient statistic for data detection:

$$Y_k = \mu_{\Theta} X_k + W_k \tag{15}$$

where $|\mu_{\Theta}| \leq 1$ represents an SNR loss

⁶Barletta/Kramer, ISIT. 2014 Barletta/Kramer, CROWNCOM, 2014

Outline

- Introduction
- Wiener phase noise channe
 - Simplified model
 - Complete model
- White phase noise channel
- 4 Conclusions

Conclusions

- For Wiener phase noise channels, oversampling is needed to increase information rates
- Bayesian tracking techniques are good for designing quasi-optimal detectors
- White phase noise channels are equivalent to AWGN channels with an SNR penalty