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Abstract— In cooperative manipulation tasks, load allocation is
a crucial step in order to solve the intrinsic redundancy of the
system. The desired wrench needs to be suitably distributed
between the end-effectors to implement the desired motion of
the manipulated object. In this framework, both the grasp
kinematics and the individual capacities of each manipulator
provide relevant constraints. On one hand, the end effector
wrenches act on the object via the grasp geometry. On the other
hand, the individual admissible payload further depends on the
current configuration of the robots. In this paper we focus on a
heterogeneous cooperative manipulation setting and we design
a proper allocation strategy to distribute the desired object
wrench, considering both constant and time-varying constraints
for the load distribution. The relevance of our findings is
illustrated by means of an experimental study involving two
anthropomorphic robots manipulating a common object.

I. INTRODUCTION

Cooperative manipulation of a common object enhances sig-
nificantly the manipulation task capacity of the manipulator
team in terms of payload and dexterity. Potential application
areas of cooperating manipulators are manufacturing, con-
struction, agriculture, and search and rescue. The benefits
obtained by employing a team of robotic manipulators come
at the cost of an increased complexity for the robot coor-
dination. There exists an infinite number of combinations
for the individually allocated manipulator load, given a
desired force/torque applied to the manipulated object. The
load distribution strategy resolves the intrinsic redundancy
occurring in cooperative manipulation tasks and allocates
suitable force/torque setpoints for the manipulators.
The load distribution problem in robotic manipulation tasks
can be considered as a control allocation problem for an over-
actuated mechanical system [1]. In cooperative manipulation,
the load distribution problem is equivalent to the computation
of suitable setpoints for the force control schemes of the
individual manipulator such as impedance control schemes
[2]. The authors of [3] formulate the load distribution as
a quadratic optimization problem with equality constraint.
The available degrees of freedom for the load allocation
are commonly interpreted in terms of motion-inducing and

1A. Zambelli is with Dipartimento di Ingegneria Industriale,
University of Trento, via Sommarive 9, 38123 Trento, Italy
zambelli@itr.ei.tum.de

2S. Erhart and S. Hirche are with the Chair of Information-oriented con-
trol, Technische Universität München, Arcisstraße 21, D-80290 München,
Germany {erhart,hirche}@tum.de

3L. Zaccarian is with CNRS, LAAS, 7 avenue du Colonel
Roche, F-31400 Toulouse, France and Université de Toulouse, 7 av-
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internal wrench components, which lead the authors of [4]–
[6] to conclude on the existence of a specific non-squeezing
load distribution avoiding internal stress applied to the object.
The work in [7] proposes a different result for the non-
squeezing load distribution, rising the question about which
load distribution is the one without internal object loading.
Recently, a novel interpretation of internal stress as violation
of the kinematic constraints gives a physically motivated
explanation that there exists no unique non-squeezing load
distribution [8]. This new paradigm for the characterization
of internal stress offers additional degrees of freedom for
choosing a suitable load distribution, allowing one to in-
corporate heterogeneous payload capacities. Moreover, the
admissible payload of an individual robotic arm depends in
general on the current manipulator posture, constraining the
magnitude and potentially also the rate of the admissible end-
effector payload. An input allocation scheme for redundant
control systems accounting for magnitude and rate limits of
the actuators is presented in [9].
In this paper we present a novel load distribution scheme for
cooperative multi-robot manipulation tasks that enables the
allocation of heterogeneous end-effector payloads for a ma-
nipulator ensemble. We present an intuitive tuning strategy
for balancing the payload between individual manipulators in
terms of weighting coefficients. For a particular case, we give
an explicit expression of the solution of the corresponding
optimization problem. In view of a dynamic load allocation
strategy, we present a consistent manipulator payload model
assuming constant joint torques. We treat the emerging
magnitude-saturation of the manipulators as a system with
slowly time-varying parameters and design a proper dynamic
allocator. The presented findings are evaluated by means of
an experimental study on two cooperating manipulators.
The remainder of this paper is organized as follows. In
Section II the general problem setting is presented. Section
III and IV deal with the static and dynamic load distribution
problem, respectively. Experimental results are presented in
Section V and a conclusion is given in Section VI.

II. PROBLEM SETTING
Consider N manipulators grasping a rigid object. In the
sequel we assume a rigid grasp, i.e. no end-effector slippage
occurs. Then the relationship between the force/torque hdo
applied to the object and the end-effector wrenches hd

corresponds to:

hdo = Ghd, (1)

wherein hdo = (fdo
T
, tdo

T
)T ∈ R6 is the desired wrench

applied to the origin of the object frame O, with the force



and torque components fi and ti ∈ R3 for i ∈ {1, . . . , N}
respectively. We assume that the desired object wrench is
given a priori, e.g. by specifying the object trajectory and
computing hdo by the object’s inverse dynamics as e.g.
done in standard impedance control design approaches [10].
hd = (hd1

T
, . . . , hdN

T
)T ∈ R6N is the stacked vector of

the end-effector wrenches and G ∈ R6×6N is the grasp
matrix [11] defined by means of the end-effector grasp points
ri ∈ R3, as follows:

G =

[
I3 03 · · · I3 03

S(r1) I3 · · · S(rN ) I3

]
, (2)

where S(·) is a skew-symmetric matrix performing the cross-
product, i.e. S(u)w = u × w for u,w ∈ R3. If not
stated otherwise, all quantities are expressed in the object-
fixed coordinate frame O. This coordinate frame and the
manipulation task kinematics are illustrated in Fig. 1.
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Fig. 1. Grasp kinematics of the cooperative manipulation task.

The coordinate frame O is chosen to coincide with the
object’s center of mass. Note that a wrench h̃ = (f̃T , t̃T )T

applied to an arbitrary location r̃ ∈ R3 on the object (differ-
ent from its center of mass) does not induce any rotational
motion if t̃ = −S(r̃)f̃ , since the torque t̃ compensates the
emerging torque due to the force f̃ and r̃ 6= 0. However, the
application of the same wrench h̃ about the object’s center of
mass induces actually a rotation of the object. Different from
previous results [5], the choice of the coordinate system is in
fact relevant to the wrench analysis and the object’s center
of mass is a physically consistent choice [8].
Problem statement: Find a static or dynamic load allocation
strategy for the cooperative manipulation task. Namely, given
a desired wrench hdo, assign suitable desired end-effector
wrenches hd for the manipulator ensemble
• satisfying constraint (1), i.e. the applied end-effector

wrenches implement the desired object wrench;
• taking into account the potentially heterogeneous pay-

load capacities for the load distribution;
• accounting for dynamical (time-varying) constraints on

the individual manipulator payload;
• minimizing internal wrenches that can possibly damage

the manipulated object.
In the sequel we assume feasibility of the allocation problem,
i.e. the desired wrench hdo can always be implemented
without exceeding the static and dynamic saturation limits
of the manipulator ensemble.

III. STATIC LOAD ALLOCATION

For the static load allocation we aim at finding a parametrized
generalized inverse G+ for inverting (1) such that

hd = G+(β) hdo, (3)

where parameters β are defined below and where hd satisfies
the equality constraint (1). To this end, we reformulate
the load allocation problem as a constrained optimization
problem and introduce weighting coefficients in order to tune
the individual manipulator load. Let βi ∈ R with 0 < βi < 1
denote the constant associated load distribution coefficient
for the i-th manipulator. By imposing the normalization

N∑
i=1

βi = 1, 0 < βi < 1, i = 1, . . . , N (4)

the βi’s can be interpreted as the percentage of load dis-
tributed to the i-th manipulator.

A. Constrained optimization problem

The load distribution problem in (3) can be expressed as a
constrained optimization problem according to

min
hd

hd
T
Whd

s.t. hdo = Ghd
(5)

with the (constant) block-diagonal positive definite ma-
trix W = blockdiag{ 1

βi
I6}, i = 1, . . . , N . The Lagrange

Multiplier theorem [12] can be applied to derive an ex-
plicit, closed-form solution for the the desired end-effector
wrenches hdi . Given G in (2) and any βi satisfying (4), the
unique optimal solution to (5) is given by:

(
fdi
tdi

)
= βi

[
I3 − S̄K∆S(∆) S̄K∆

−K∆S(∆) K∆

](
fdo
tdo

)
(6)

with S̄ = S(∆) − S(ri), and K∆ = (I3 + T )
−1,

T =
(
It − S(∆)

T
S(∆)

)
and

∆ =
N∑
i=1

βiri. (7)

The vector ∆ ∈ R3 points from the object’s physical
center of mass to its virtual center of mass (VCM) depicted
with the coordinate system O∗ in Fig. 1 and matrix T
represents the weighted inertia tensor of the system of end-
effectors with respect to its virtual center of mass, while
It =

∑N
i=1 βiS(ri)S

T (ri) is the weighted inertia tensor with
respect to the center of mass of the object.

B. Choice of the weighting coefficients

The choice of the weighting coefficients βi is initially
arbitrary. However, as indicated in (7), they determine the
displacement ∆ between the VCM and the physical center
of mass (see Fig. 1). By combining (4) and (7) it is
straightforward to verify that the VCM is contained in the
convex hull of the grasp points ri. The VCM is closer to



the end-effectors with the largest weight βi, i.e. the ones
with comparatively larger virtual masses. For β1 > β2, β3

the resulting location of the VCM is illustrated in Fig 1.
To understand the consequences of selecting ∆ 6= 0, notice
that in all cases the ensemble of allocated (desired) end-
effector wrenches hd produces the desired wrench applied
to the object hdo as required in (1). However, when ∆ 6= 0,
the resulting object wrench hdo is not applied to its physical
center of mass but to its virtual center of mass. This means
that an additional (undesired) torque is applied to the object’s
physical center of mass, which is given by

t∆ = S(∆) fdo . (8)

Clearly, the torque t∆ vanishes for ∆ = 0. In general this
additional torque is considered to be a disturbance and thus
limits the admissible choices of the weighting coefficients
βi. The emerging question is whether one can find βi such
that ∆ = 0. An answer is given in the next result.
Proposition 1: The set of load distribution weights βi lead-
ing to ∆ = 0 satisfies the following:
• it has exactly one solution for N = 2 with the grasp

point vector r1 = −cr2 for any c ∈ R+, otherwise it is
empty (i.e. for almost all grasp point vectors r1, r2).

• has exactly one solution for N = 3 and the grasp point
vectors ri spanning R3.

• has multiple solutions for N > 3 and the grasp point
vectors ri spanning R3.
Proof: The result follows from reformulating (7) as

a system of linear equations in βi and requiring ∆ = 0,
namely:

∆ =
[
r1 . . . rN

]︸ ︷︷ ︸
R:=

β1

...
βN

 =

0
0
0

 . (9)

The vector β = [β1, . . . , βN ]T needs to lie in the null
space of matrix R in (9). For N = 2, since R ∈ R3×2,
this null space is empty for almost all selections of vectors
ri. If N = 2 and r1 = −cr2 for some c > 0 then one
may select [β1, β2]T = 1

1+c [1, c]
T . For N = 3 the result

follows similarly because ri spanning R3 implies that R is
non-singular. Finally, due to the manipulator redundancy for
N > 3, the solution to (9) is no longer unique.
In case of ∆ = 0, the expression for the generalized inverse
in (3) as presented in (6) simplifies to

G+
0 (β) =


β1I3 −β1S(r1)K∆

03 β1K∆

...
...

βNI3 −βNS(rN )K∆

03 βNK∆

 ∈ R6N×6, (10)

with K∆ = (I3 + It)−1. Matrix G+
0 (β) in (10) is a right

inverse of the grasp matrix, i.e. GG+
0 (β) = I . Moreover,

G+
0 (β) represents a generalization of the Moore-Penrose

pseudo-inverse, as presented in [7], to the case of hetero-
geneous payload capacities.

C. Illustration of the load allocation strategy
Consider the cooperative manipulation task example for
N = 2 and r1 = −r2 = (−1, 0, 0)Tm depicted in Fig. 2.
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Fig. 2. Manipulation task example for N = 2.

Let fdo = (0, 10, 0)TN and tdo = 0 and choose the load
allocation strategy according to β1 = 0.7 and β2 = 0.3. Em-
ploying (6) for computing the desired end-effector wrenches
yields fd1 = (0, 6.1, 0)TN and fd2 = (0, 3.9, 0)TN. Since
∆ = 0.4m, the allocated end-effector forces themselves
would induce a resulting torque about the object’s physical
center of mass. This explains why the allocation strategy
(6) yields the allocated torques td1 = (0, 0, 1.52)TNm and
td2 = (0, 0, 0.65)TNm for the allocated end-effector torques,
that are needed to compensate the disturbing torque t∆.
Note further that the resulting undesired torque
t∆ = (0, 0,−2.2)TNm can either be compensated
by the values of td1 and td2 indicated above or by any
other combination of td1 and td2 summing up to t∆. For
example td1 = (0, 0, 1.1)TNm and td2 = (0, 0, 1.1)TNm
or td1 = (0, 0, 2.2)TNm and td2 = (0, 0, 0)TNm represent
valid load distributions, too. This observation indicates
that there are additional degrees of freedom available for
the load distribution which are not incorporated in the
weighting coefficients β. It turns out that our choice of
an equivalent weighting of force and torque components
restricts artificially the available degrees of freedom for the
load allocation.

D. Allocation analysis for ∆ 6= 0

In this section we investigate in more detail the impact of
∆ 6= 0 and the implicitly performed compensation through
the allocation strategy (6). By introducing

h∆ =

[
f∆

t∆

]
=

[
S(∆)K∆t

d
o

S(∆)fdo

]
(11)

we rearrange the terms in (6) in order to obtain

hd = G+
0 (β) hdo + C(λ) h∆. (12)

The additional weighting coefficients λ = (λ1, . . . , λN )T

with λi ∈ R satisfying 0 ≤ λi ≤ 1, i = 1, . . . , N parametrize
the compensation matrix

C(λ) =


β1I3 −λ1S̄λKλ

03 λ1Kλ

...
...

βNI3 −λN S̄λKλ

03 λNKλ

 ∈ R6N×6. (13)



TABLE I
SIMULATION RESULTS

Force Torque

Wrench fx fy fz tx ty tz

hdo 0 10 0 0 0 0

A
hd1 0 6.1 0 0 0 1.52
hd2 0 3.9 0 0 0 0.65

B
hd1 0 6 0 0 0 1
hd2 0 4 0 0 0 1

C
hd1 0 7 0 0 0 4
hd2 0 3 0 0 0 0

The matrices S̄λ and Kλ are obtained by replacing β with
λ in S̄ and K∆ defined below equation (6). It is easily
verified that C(λ)h∆ in (12) vanishes for ∆ = 0. In
this sense, we interpret C(λ)h∆ as a compensating wrench
ensuring the equality constraint (1) whenever ∆ 6= 0 and
G+

0 (β)hdo as the nominally allocated end-effector wrench. As
motivated through the observations in the previous section,
the compensation matrix C parameterized by λ provides
additional degrees of freedom for the load distribution, which
are discussed in the following example.
Example: Consider again the manipulation task depicted in
Fig. 2 with β1 = 0.7 and β2 = 0.3. Table I 1 shows the
end-effector wrench obtained from (12) with the comparison
between three different compensation strategies:

A. λi = βi, i = 1, 2. The resulting wrench is equivalent
to the one obtained in Section III-C;

B. λ1 = λ2 = 0.5. We choose a uniform distribution of
the compensation wrench: it follows that t1z = t2z .

C. λ1 = 1, λ2 = 0. Only manipulator 1 is assigned the
compensation task, i.e. t1z

6= 0 and t2z
= 0.

According to (12), the resulting force in cases A and B is af-
fected by the distribution of h∆ to the individual manipulator
wrenches. This is due to the fact that we set equal weights for
the force and torque components. In addition, notice that the
new formulation of the end-effector wrench does not always
correspond to the minimization criterion imposed by (5). In
general, if λi 6= βi the resulting wrench (12) will be different
from the solution of the optimization problem (5).
Remark 1: Notice that any load distribution in this example
satisfies (1). The torques do not contribute to the effective
motion of the object and are therefore internal.

IV. DYNAMIC LOAD ALLOCATION

In this section we extend the presented load distribution
scheme in view of existing time-varying payload limits of
the individual manipulators. In the previous sections, the
payload limits were implicitly incorporated into the allocator
by choosing appropriate weighting coefficients β. Existing
load allocation schemes [9] allow to impose explicit limits on
the allocated manipulator payload. We firstly present a model

1Green is related to compensation terms, blue stands for allocation and
magenta indicates terms that include both allocation and compensation.

for the admissible manipulator payload before proposing a
dynamic load allocation strategy accounting for the time-
varying manipulator capacities.

A. Payload capacity model

For the analysis of the admissible individual manipulator
payload, we assume that each manipulator exhibits 6 degrees
of freedom characterized by the joint angles qi ∈ R6 and
that the joint torque limits are given by the constant vector
τ̄i ∈ R6. In the quasi-static case the admissible end-effector
payload of the individual manipulator is a function of the
configuration according to

h̄i = J−Ti (qi) τ̄i, (14)

wherein Ji is the individual manipulator Jacobian. Moreover,
differentiating (14) leads to additional constraints on the rate
of change of the admissible payload, i.e.

d

dt
{h̄i} = J−Ti (qi)J

−1
i (qi)G

T
i ẋ

d
o (15)

with GTi being the i-th block of the transpose grasp matrix
and ẋdo the desired velocity of the object.
Remark 2: We can model (14) and (15) as state dependent
magnitude and rate saturation limits on the end-effector
wrench. However, since dealing with state-dependent con-
straints is quite involved, in the following we only consider
them as time-varying saturation limits, leaving the extension
to explicit dependency on the state variables to future work.

B. Dynamic allocator

In light of Remark 2, we introduce a suitable dynamic
allocator in the load distribution block in order to deal with
the additional saturation limits. The allocator modifies the
static wrench (12) exploiting the strongly redundant nature
of the cooperative system: indeed, it acts on the wrenches
belonging to the kernel of the grasp matrix, i.e. the wrenches
that are not related to the effective motion of the object. We
only focus here on the case of magnitude saturation, refer
to [9] for more general dynamic allocators involving rate
constraints. Consider the dynamically allocated end-effector
wrench h̃d defined by

h̃d = hd +G⊥w, (16)

wherein G⊥ = (I − G+G) and w is the output of a
proper dynamic allocator. It is straightforward to verify that
GG⊥ = 0 because GG+ = I , thus the additional signal
w acts on the wrenches belonging to the kernel of the grasp
matrix. Therefore, the dynamic allocator remains invisible to
the subsequent blocks of the control scheme and the final
distributed wrench h̃d is such that Gh̃d = Ghd, i.e. the
geometric constraint (1) is still satisfied.
Cost function: Assuming that hd in (16) is a fixed parameter,
define the cost function

V (w) = (h̃d)TU(h̃d, h̄)h̃d, (17)

wherein h̃d is the stacked vector of the desired end-
effector wrench given by (16) and U(h̃d, h̄) represents a



non-constant matrix function taking into account the (time-
varying) magnitude saturation limits (14). Given a small
constant ε ∈ (0, 1), a good selection for the weighting matrix
is given in [9] and corresponds to:

U(h̃d, h̄) = (diag((1 + ε)h̄− abs(sat(h̃d))))−1, (18)

with the vectors h̄, sat(h̃d) ∈ R6N

given by2 h̄ = [h̄T1 , . . . , h̄
T
N ]T and

sat(h̃d) = [sat(h̃d1)T , . . . , sat(h̃dN )T ]T . The saturation
function for each end-effector is defined as

sat(h̃di ) := diag{σ(h̃di1/h̄i1), . . . , σ(h̃di6/h̄i6)}h̄i (19)

and the unit saturation function is defined by
σ(s) := sign(s)min{|s|, 1} ,∀s ∈ R. The weighting
matrix (18) is suitable for our goal since its diagonal
terms increase as the argument approaches the respective
saturation level. Therefore, it allows us adjusting online the
selection of the end-effectors to be promoted or penalized
in order to keep them far from their saturation limits.
Moreover, notice that U(h̃d, h̄) ≥ (diag((1 + ε)h̄)−1, thus
(18) is a uniformly positive definite matrix.
Allocator dynamics: According to [9], we design the dy-
namics of the allocator based on the cost function (17) and
a symmetric positive definite K. The resulting non-linear
dynamic allocator is

ẇ = −KGT⊥ U(h̃d, h̄) h̃d (20a)

h̃d = hd +G⊥w (20b)

In our case the magnitude saturation limits are not constant.
However, due to the limited rate of change of the maximal
payload represented by (15), we can consider h̄i(t) in (20)
as slowly time-varying parameters. The extended load dis-
tribution block with both static and dynamic load allocation
is depicted in Fig. 3.
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Fig. 3. Illustration of the load allocation block scheme.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

The experimental setup involving two anthropomorphic ma-
nipulators with 7 degrees of freedom each, with both end-
effectors rigidly grasping a metal beam with a length of 1m
and a quadratic profile of 1.5mm is depicted in Fig.4.
The object coordinate frame coincides with the center of
mass of the beam and the end-effector grasping points are

2For notational convenience we do not explicitly indicate the time
dependency of the saturation limits.

Fig. 4. Experimental setup with two robotic manipulators.

r1 = (0,−0.4, 0)Tm, r2 = (0,+0.4, 0)Tm. The overall
mass of the object is mo = 3.405kg; with the gravity
constant g = 9.81ms2 . The desired wrench for holding
the object at rest is ho = (0, 0,mog, 0, 0, 0)T . Each arm
is equipped with a JR3 67M25 6-dimentional force/torque
sensor to measure the actual end-effector wrench.

B. Comparison between different load distributions

In the experimental study we compare three load distribu-
tion strategies obtained from different combinations of the
nominal and compensation weights in (12) for holding the
object at rest. Thus, only the z-component of the resulting
force and the torque about the x-axis is relevant. The end-
effector wrenches for a uniform (equal) load distribution, i.e.
βi = λi = 0.5, i = 1, 2 are plotted in Fig. 5.
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Fig. 5. Desired and measured end-effector force/torque for
(β1, β2) = (0.5, 0.5), (λ1, λ2) = (0.5, 0.5).

The manipulators exert approximately the same force in
the z-direction. Since the choice of the weighting factors
implies ∆ = 0, the torque component is close to zero.
The gap between real and desired values of the end-effector
torque is explained by a limited calibration accuracy of
the arm kinematics and a resulting (static) error in the
compensation of the end-effector mass. The variation of the



force/torque signals is due to the interaction of the rigidly
coupled, impedance-controlled end-effectors. In summary,
the load distribution in Fig. 5 is considered appropriate for
homogeneous manipulators with equal payload capacities.
The manipulator wrenches for a heterogeneous load distri-
bution strategy with β1 = λ1 = 0.7 and β2 = λ2 = 0.3
are depicted in Fig. 6.
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Fig. 6. Desired and measured end-effector force/torque for
β1 = λ1 = 0.7 and β2 = λ2 = 0.3.

The measured force and torque signals agree with the desired
wrenches while the majority of the load is carried by
manipulator 1. The choice of the weighting factors implies
∆ 6= 0 which according to (8) gives rise to a torque acting on
the object. This is compensated by the additional (non-zero)
torques at the end-effectors. Given the specific selection of
the weights λi, manipulator 2 applies a lower compensation
torque than manipulator 1.
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Fig. 7. End-effector desired and measured force/torque for
(β1, β2) = (0.7, 0.3), (λ1, λ2) = (1, 0).

The effect of heterogeneous compensation weights for
λ1 = 1, λ2 = 0 and again β1 = 0.7 and β2 = 0.3

is illustrated in Fig. 7. Similar to case C in Table I, the
undesired torque due to ∆ 6= 0 is now entirely compensated
by manipulator 1, as expected.
Discussion: The presented experimental study clearly high-
lights the relevance of our findings for static load allocation.
The impact of different load strategies is illustrated best
while keeping the object at rest, although the extension to
arbitrary motions is straightforward. Note that the approach
is also suitable for dynamic load allocation, its experimental
evaluation is not presented here because of space constraints.

VI. CONCLUSION AND OUTLOOK

In this paper we present a novel approach to the load dis-
tribution in cooperative multi-robot manipulation tasks. We
present a load allocation strategy addressing heterogeneous
payload capacities of the manipulators in case of constant
or slowly time-varying load constraints. The relevance of
our findings is evaluated in an experiment study involving
two anthropomorphic manipulators. Future work includes a
thorough analysis of the physically consistent degrees of
freedom for the load distribution in terms of their connection
with internal forces and an extended stability study.
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