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System Model

We wish to transmit a message m ∈M over the time-discrete
memoryless additive white Gaussian noise channel using the channel
n times:

encoder + decoder
m Xk

Zk

Yk M̂(Y)

Yk−1 or ?

?

Sk ∼ Ber(ρ)
where at time-k

Xk is the channel input,
Zk ∼ N (0, σ2) is i.i.d. Gaussian noise,
Yk is the channel output.

The transmitter receives intermittent feedback in the sense that Yk
is revealed to it strictly causally if, and only if, Sk = 1 with
Pr(Sk = 1) = 1− Pr(Sk = 0) = ρ for all k. The receiver has no
information about S = (S1, . . . ,Sn). We impose the average power
constraint for some P > 0

E
[ n∑

k=1
Xk(m)2

]
≤ nP, m ∈M,

and assume that all messages are equiprobable.

Question
What is the asymptotically optimal error probability for
communication via the AWGN channel with intermittent feedback?

Answer
If the probability of having feedback at any time is greater than one
half, the error probability is doubly exponential in the block length
for sufficiently small rates. Otherwise, it is exponential.

AWGN Channel with Feedback

No feedback (Shannon [1])
Exponential in the block length:

P(n)
e = e−n(ENoFB+o(1))

Perfect feedback (e.g., Pinsker [2])
For noiseless feedback, the optimal error probability decreases
essentially arbitrarily fast:

P(n)
e = exp(− exp ◦ · · · ◦ exp(n(EFB + o(1)))

Intermittent feedback with cognizant receiver [3]
Consider the system model above, but suppose that S is revealed to
the receiver. For M = {0, 1},

P(n)
e = exp(−en(− log(1−ρ)+o(1))).

Let |M| = enR and C be the capacity of the forward channel. Then,

P(n)
e = exp(−en(EItFB+o(1))), for R ∈ (0, ρC),

P(n)
e = e−n(ẼItFB+o(1)), for R ∈ (ρC ,C).

Boosted Retransmission for Perfect Feedback

Two messages:

· · ·nP

enP/2

exp
(
enP/2) Exploit average power constraint:

use high power conditioned
on high noise
Power increase by one exponential
order per feedback symbol

Positive Rates:

C

failure alarm

C′ C′′
· · ·

C: power ≈ nP
C′: power ≈ enE1(P)

C′′: power ≈ exp(enE2(P))
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Direct Part Two Messages

Theorem 1
Let M = {0, 1}. For any P > 0 and any ρ ∈ (1/2, 1):

lim inf
n→∞

1
n log

(
− log P(n)

e

)
≥ max

α∈(0,1)
αD

1
2

∥∥∥∥∥ρ
1− Q

√ P
ασ2

,
where D(a‖b) = a log a

b + (1− a) log 1−a
1−b and the maximization is

subject to the constraint Q
(√

P/(ασ2)
)
< ρ−1/2

ρ .

The optimal error probability for two messages decays
double-exponentially in n. The second-order error exponent is upper
bounded by − log(1− ρ) [3].

Sketch of the Scheme

Let M = 0. Use a binary repetition code C with hard decision
decoding until time-αn, then save power until time-(n − 1).

x ≈
√

P/α

C (αn channel uses)

x = 0

If TX sees more than αn/2 correct symbols, C cannot fail
Otherwise: boosted retransmission at time-n

Boosted Retransmission
For a single symbol,

Pr
( feedback

& Yk positive
)︸ ︷︷ ︸

:=ps

= ρ

(
1− Q

(√
P/(ασ2)

))
.

Taking α small enough to satisfy ps > 1/2, we can use Sanov’s
theorem (large deviations on i.i.d. Bernoulli trials) to see that

Pr(retransmission) = e−αnD(1/2‖ps)+o(n),

and the transmitter sends

xn = e
αn
2 D(1/2‖ps)+o(n),

if less than αn/2 positive symbols are fed back in the first phase
and xn = 0 otherwise.

What does the decoder do?
If it detects no retransmission → hard decision decoding of the
first αn symbols:

M̂ = 0

Otherwise → sign of the last symbol:

M̂ = 0

Hence, the decoder only errs with large noise at time-n:

xn

ynM̂ = 1

and thus
Pr(error) ≤ Q

( 1
2σ2 e

αn
2 D(1/2‖ps)+o(n)

)
.

Direct Part Positive Rates

For sufficiently small rates, the optimal error probability is also
doubly exponential in n.

Theorem 2
Let |M| = enR . For any P > 0 and ρ ∈ (1/2, 1), there exists an
R0 > 0 such that for all 0 < R < R0:

lim inf
n→∞

1
n log

(
− log P(n)

e (R)
)
> 0 .

Sketch of the scheme of block length n = n′ + 1 + n′′:
Use q-ary non-feedback code C with minimum distance δn′

Transmission of code word via pulse-amplitude modulation
TX performs symbol-wise hard decisions on feedback
Boosted failure alarm and retransmission with code C′ if
transmitter sees less than (1− δ/2)n′ correct symbols
Varying q,R, n′, we can choose any δ ∈ (0, 1), hence
Pr(retransmission) = e−O(n).
Failure alarm and C′ use power growing exponentially in n
→ error probability is doubly exponential in n.

C

n′

failure
alarm

1

C′

n′′

Converse Two Messages

Theorem 3
Let M = {0, 1}. For any ρ ∈ (0, 1/2) and any P > 0,

lim sup
n→∞

− 1
n log P(n)

e ≤
2
(√

ρP + σ2/2 +
√

(1− ρ)P
)2

σ2 .

The optimal error probability decreases exponentially in n if feedback
occurs with a probability smaller than one half. Note that for
ρ↗ 1/2, the upper bound does not grow to infinity, although the
first order error exponent is infinite for any ρ > 1/2 by Theorem 1.

Heuristics for ρ < 1/2

Consider the binary repitition code:

What the transmitter sees (with high probability):

What the receiver sees (with exponentially decreasing probability):

Most of Y looks similar to the wrong code word but the transmitter
sees none of the bad symbols

Intuition
Boosted retransmission is necessary in all cases with less than 50%
feedback. For ρ < 1/2, the probability of this event tends to one and
a boosted retransmission is not possible due to the power constraint.

Proof of Converse

1. Write error probability as

Pr(error) = 1
2

∑
s∈{0,1}n

Pr(S = s)
∫

y∈D1
p0(y|s)dy

+ 1
2

∑
s′∈{0,1}n

Pr(S′ = s′)
∫

y∈D0
p1(y|s′)dy

2. Define sets of
Strongly typical feedback patterns
G = {s : approx. (ρ± δ)n feedback symbols}, δ > 0
Energy limited output sequences
Ty =

{
y : ‖y‖2 < nα2}, α > 0

Output sequences that yield energy limited channel inputs
Tm(s) =

{
y : ‖xm‖2 < nβ2}, β > 0

3. Note that

Pr(error) ≥ 1
2
∑
s∈G

Pr(S = s)
∫

y∈D1∩Ty∩T0(s)
p0(y|s)dy

+ 1
2
∑
s′∈G

Pr(S′ = s′)
∫

y∈D0∩Ty∩T1(s′)
p1(y|s′)dy

4. Lower bound output density conditioned on s and s′:

p0(y|s) ≥ q(y|s, s′)e−n (α+β)2

2σ2 ,

p1(y|s′) ≥ q(y|s, s′)e−n (α+β)2

2σ2 .

yr ∼ N (0, σ2)ys ∼ p0(ys|s) ys′ ∼ p1(ys′ |s′)

Under q(y|s, s′)
≈ ρn symbols ∼ p0(.|s)
≈ ρn symbols ∼ p1(.|s′)
≈ (1− 2ρ)n symbols noise
s, s′ have no symbol in common (this fails for ρ > 1/2)

5. Combine terms for m = 0 and m = 1:∫
y∈D1∩Ty∩T0(s)∩T1(s′)

q(y|s, s′)dy +
∫

y∈D0∩Ty∩T0(s)∩T1(s′)
q(y|s, s′)dy

=
∫

y∈Ty∩T0(s)∩T1(s′)
q(y|s, s′)dy

6. Define new joint probability measure Q and use Markov’s
inequality with suitable choices for α and β:

Pr(error)

≥ 1
2e−n (α+β)2

2σ2 P(S ∈ F)Q(Y ∈ Ty ∩ T0(S) ∩ T1(S′))

≥ 1
2ε e−n

4
(√

(ρP+(1+2δ)σ2/2+
√

(1−ρ)P
)2

2σ2(1−ε)2
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