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Wildfires are common in geographic areas where the climate is sufficiently moist for vegetation 

growth but also features extended dry hot periods. Besides climate, human interventions either on 

purpose or by accident also play an important role in the occurrence of wildfires. Although wildfire 

incidents have always accompanied vegetation growth, there is an increase in the severity of 

wildfires during the past three decades with severe impacts on vegetation, animals, crops, human 

lives and properties. Record temperatures occurring during recent summer periods (Southeast 

Australia 2009, Russia 2010, South California 2014) lead to extreme wildfire events that were 

associated with huge socio-economical costs. In addition, scenarios of global warming suggest that 

wildfires will become more frequent and more intense in the future.  

The above stress the need for efficient wildfire risk predictive models to support the planning of 

precautionary, preventive and mitigating measures (e.g. danger communication, evacuation 

preparedness, dead fuel clearing activities, firefighting infrastructure, property insurance). In order 

to quantify wildfire risk, the predictive model must include models for fire occurrence, fire behavior 

and fire effects. Due to the randomness inherent in the wildfire process and because the modeling is 

subject to uncertainty in all three stages (occurrence, behavior, damages), fire risk prediction is 

ideally carried out in a probabilistic format. Available data and expert knowledge should be 

incorporated for parameter learning. Moreover, the applications need to deal with (partly 

incomplete) data from various sources.  

The aim of this thesis is to introduce a daily fire risk prediction model in the meso-scale and to 

produce daily fire risk maps. The modeling is carried out with Bayesian Networks (BN). BN are 

graphical probabilistic models that can effectively represent complex processes with multiple 

random variables, their interdependencies and the associated uncertainties. 

A probabilistic spatio-temporal BN model for fire risk prediction is presented, which predicts 

daily fire risk on houses and vegetated areas in the meso-scale (1 km² spatial resolution). The BN 

model consists of three parts:  

• The fire occurrence model, which involves as predictive variables weather 

conditions (expressed by the Fire Weather Index - FWI), land cover types, 

population and road density. It predicts the probability of a fire occurring daily in 

each 1km² and is based on the results of a Poisson regression analysis 

• The fire size model, triggered by the occurrence model, which includes the influence 

of actual and past weather conditions, fire behavior indices and topography.  

• The damage model, which predicts the expected losses relevant to houses and 

vegetated areas conditional on fire hazard.  

Vulnerability (resistance capacity) and exposure (values at risk) indicators are used to quantify 

the damage, which also depends on the fire suppression efficiency. The final outputs of the model 

are the expected house damage costs (the risk to houses) and the restoration costs for the vegetation 

(the risk to vegetated areas). The BN model is exemplarily established and predictions are made for 

study areas in Greece, Cyprus and France. The conditional probability distributions of the BN 

variables are populated with data for different time periods, regression model results and expert 

knowledge. The BN models are coupled with a GIS for both parameter learning and output 
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mapping. Data from 2010 for Cyprus and from 2003 and 2010 for South France are used as 

verification datasets. The predictions are compared with actual losses for selected fire periods. The 

results are shown in daily maps with 1 km² spatial resolution.  
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Wildfires are common in geographic areas where the climate is sufficiently moist for vegetation 

growth but also features extended dry hot periods. These areas include the Mediterranean basin, 

Southeast Australia, Central and Southern California, or South Africa. Long periods of drought and 

hot temperatures combined with strong winds and unmanaged biomass, make such areas naturally 

fire-prone. Besides climate, human interventions also play an important role in the occurrence of 

wildfires. Humans have used fire for their interests throughout history and the result is observable 

in the mosaic landscapes of the Mediterranean. The regeneration of pastures, land use change, 

suppression of natural vegetation to implement crops, land clearing activities or revenge are all 

human motives that caused and still cause wildfires (Leone et al. 2009).  

Although wildfire incidents have always accompanied vegetation growth, statistical evidence 

suggests an increase in the severity of wildfires during the past three decades (FAO 2001, JRC 

2006). In the Mediterranean, long periods of high above-average temperatures and draught, 

especially in the summer months, have produced large fires with severe impacts on vegetation, 

animals, crops, human lives and properties. Record temperatures occurring during recent summer 

periods (Southeast Australia 2009, Russia 2010) lead to extreme wildfire events that were 

associated with huge socio-economical costs. In addition, scenarios of global warming suggest that 

wildfires will become more frequent and more intense in the future (Wotton et al. 2003;Flannigan 

et al. 2005;MunichRE 2010). 

The prediction of the occurrence and extend of fire incidents and their effects is of great 

importance. Fire risk prediction is essential for the planning of precautionary, preventive and 

mitigating measures. Property insurance as a precautionary measure in high fire risk areas, although 

often not acceptable measure by the residents, who refuse to share fire management costs (e.g. 

Cortner et al. 1990), can reduce monetary fire losses and reinforce the resilience capacity of 

communities. Fuel treatment activities (e.g. thinning, prescribed fires) as preventive measures can 

be effective in modifying fire behavior and as a result fire losses (e.g. Shang et al. 2004;Stephens 

and Moghaddas 2005;Penman et al. 2013a;Penman et al. 2014). Fire danger communication, 

evacuation preparedness, and preparation of residents to defend property as preventive measures 
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can be essential for life and property safety (e.g. Penman et al. 2013b). Finally, fire crew allocation, 

time of response and efficiency to mitigate fire events are critical measures for fire containment and 

life and property safety (e.g. Plucinski et al. 2012). All the above demand effective fire risk 

assessment in order to identify in good time fire danger and location vulnerability. The temporal 

and spatial resolution of the assessment depends on the measure. While insurance, danger 

communication and evacuation measures are implemented in the meso-scale, fuel treatment and 

ground fire crew allocation are measures implemented in the micro-scale (< 1km²). Temporal 

resolution also varies from seasonal (evacuation and fire protection plans) to daily (fire danger 

communication, crew allocation, prescribed burning). 

When modeling wildfires, it is commonly distinguished between the ignition and the behavior 

(including the spread) of the wildfires. Here, the occurrence of wildfires, is defined as the event that 

a fire has ignited and has spread to an extent that it is registered. Therefore, to model the occurrence 

of a fire it is necessary to consider factors leading to ignition as well as its initial spread.  Due to the 

random nature of fire occurrences and behavior and the uncertainties in the influencing factors, such 

a prediction should ideally be probabilistic. Various probabilistic models are proposed in the 

literature concerning fire occurrence and the resulting burnt area, but limited research has been 

reported on modeling possible effects. In addition, research on wildfire occurrence and behavior 

addresses the questions on when, where and why wildfires are triggered and grow. The answer to 

these questions requires understanding of the interrelations among biotic and abiotic factors and 

multidisciplinary approaches are thus needed for modeling fire risk. The interdisciplinary approach 

to natural hazard risk modeling can be supported efficiently by Bayesian networks (BN). Based on 

acyclic graphs, BN enable to model the probabilistic dependence among a large number of variables 

influencing the risk. The causalities expressed by the arcs between the variables make BN not only 

convenient for graphical communication of the interrelations between the influencing factors 

(qualitative part), but also include, through conditional probability tables, a quantitative 

probabilistic model (Jensen and Nielsen 2007). In other words, the graphical representation of the 

dependence structure among stochastic variables makes it easy to understand intuitively and 

facilitates the consistent modeling of complex problems involving many variables. For these 

reasons, BN are increasingly applied for risk assessment of natural hazards, e.g. for rock-fall 

hazards (Straub 2005), avalanches (Grêt-Regamey and Straub 2006), tsunamis (Blaser et al. 2009) 

earthquakes (Bayraktarli et al. 2005;Bensi 2010;Kuehn et al. 2011), landslides (Song et al. 2012), 

volcanoes (Aspinall et al. 2003) and wildfires (Dlamini 2009).  

1.1 Research objectives 

The objective of this thesis is to create a probabilistic tool for the prediction of fire risk in the meso-

scale. In particular, the thesis aims to: 
 

− develop a probabilistic fire occurrence model that includes as influencing variables both 
weather conditions and human involvement to account for ignitions related to humans 
and improve the currently used fire danger models 

− develop a probabilistic fire size model that takes into account weather conditions, 
topography and vegetation types, deals with the problem of non-observable variables and 
gives predictions on the resulting burnt area 
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− develop a fire effects model to houses and vegetation that introduces vulnerability and 
exposure indicators for the quantification of effects in the meso-scale 

− combine the above models to a fire risk model that connects the probability of the 
occurrence of a wildfire hazard with the resulting effects 

− apply the proposed models for study areas in the Mediterranean basin, with real data of 
various sources and expert knowledge 

− couple the BN with a Geographic Information System (GIS) for parameter learning and 
for illustration of the prediction results with maps of high spatial and temporal resolution 

The model of fire occurrences aims to evaluate the probability of fire occurrence and will be part of 

the fire danger model. The latest will also include the fire size model, resulting to the prediction of 

the burnt area, determining thereby the resulting size of the fire. The fire danger model aims to 

represent the probability of occurrence of a fire hazard in the overall fire risk model. The effects 

model aims to model the vulnerability of house portfolios and vegetation types and to quantify the 

exposure of the items at risk. This model quantifies the effects caused by the predicted fire hazard 

event. The application of the model to areas of the Mediterranean basin with similar fire regime 

characteristics allows the calibration of the model for similar areas and the validation of the 

predictions for selected data sets. In order to manage data from various sources and to enable fire 

risk mapping, GIS is utilized, which coupled with the proposed BN serves the purpose of model 

parameter learning and output mapping.     

1.2 Thesis outline 

The thesis consists of nine chapters and four Appendices.  

The second chapter “Fires” introduces the reader into the definition of fire risk, the phenomenon of 

fire, the Canadian Forest Fire Weather Index System (CFFWIS) as widely used in present fire 

danger predictive systems (equations for CFFWIS calculation provided in Appendix I), factors 

influencing damages to houses and vegetation and fires specifically occurring in the Mediterranean 

basin.  

The third chapter “Modelling methods” discusses the methods used in the thesis. It describes the 

concept of Bayesian networks (BN) and the dependencies between the random variables. The 

coupling types between BN and Geographic Information System (GIS) found in the literature are 

introduced and the chosen coupling between GIS and BN is shown in more detail; in this coupling 

the input of the GIS is used for parameter estimation of the BN, and then the output of the BN is 

given as input to the GIS to map the resulting risk. The Poisson regression method, used in this 

thesis to model fire occurrences is introduced, together with the maximum likelihood estimation 

method used to define the coefficients of the regression equation. The Akaike Information Criterion 

and the ROC curves used as diagnostics are described. In addition, the interpolation method of 

weather observations and the specifics of the calculation of the components of the CFFWIS are 

shown.  

The fourth chapter “Study areas” gives a detailed overview on the chosen areas to which the models 

are applied, the data used and their sources. The study areas of this thesis are the islands Rhodes 

(Greece) and Cyprus and South France. This chapter together with Appendix II includes 

preliminary data analysis of fire occurrences, resulting burnt area and registered losses. 
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The fifth chapter “Fire occurrence model” introduces the reader to the models developed to predict 

fire occurrence and their performance. The best model is chosen to make predictions for a 

validation time period of the study areas and the first maps of the predicted fire occurrence rate in 

the meso-scale are demonstrated. 

The sixth chapter “Fire size model” gives an insight to the prediction of the resulting burnt area, 

once a fire has occurred. The proposed model takes under account the initial spread conditions, the 

recent weather conditions and the topography and accounts also for non-observable variables. The 

predictive ability of the model is studied and the results of the predicted burnt area on specific days 

in the study area are shown in maps. 

The seventh chapter “Fire effects model” introduces two models which estimate expected damage 

cost to houses and vegetation respectively, for given fire characteristics. The effect estimation is 

facilitated by BNs, which allow modeling the damage cost of wildfires in the meso-scale with 

respect to different hazard characteristics and include vulnerability and exposure indicators. After 

the application of the model to the study areas expected house damage cost and vegetation damage 

cost maps are presented. 

The eighth chapter “Fire risk model” introduces the fire risk model, which results as a compound of 

the three previously described models (fire occurrence model, fire size model, fire effects model). 

The fire risk model is applied to the study areas and the accumulated daily risk for a verification 

dataset is presented. Fire risk maps of selected days demonstrate the predictions. Sensitivity 

analysis and additional maps are included in Appendix III. 

The ninth chapter “Conclusion” summarizes the main outputs of the thesis, discusses critical issues 

of the modelling process and offers insight for future work. 

Finally, the author’s publications related to and made during the present PhD research work are 

listed in Appendix IV.  
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2.1 Fire risk 

Wildfires cause severe damages to built and natural environment. In order to enhance the resilience 

of the communities threatened by fires, it is essential to develop efficient fire risk predictive 

systems. The quantification of fire risk can support both preventive and mitigating measures for fire 

control. Thus, it is an essential task in order to control fire damages.  

In this work fire risk is estimated as a function of occurrence probability and effects. Wildfire 

effects are a function of vulnerability and exposure of the affected biotic and abiotic systems (e.g. 

human properties, infrastructure, soil and air quality). Vulnerability describes the degree of 

expected damage as a function of hazard intensity (UNDRO 1991;Thywissen 2006). Exposure 

refers to the items at risk, such as house density. Risk is thus the intersection between hazard, 

vulnerability and exposure. The general conceptual framework to quantify disaster risk is shown in 

Figure 2.1. A fire disaster can be expressed by the fire hazard, characterized by the occurrence and 

the hazard severity, the vulnerability of the affected assets (social, economic, environmental) and 

the presence of the assets (e.g. people, houses, infrastructure, public buildings such as schools, 

hospitals). 
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Figure 2.1: The conceptual framework of disaster risk 

 

Risk is the expected consequences of wildfires and can be formulated as a function of the hazard 

H, the resulting damages D and the consequences  C as,  

  
� = E�,
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(2.1) 

E�,� denotes the expected value with respect to H and D. ��D|H� is the probability of damage D 

conditional on the hazard H, i.e. it describes the vulnerability, and C�D, H� is the cost as a function 

of damage and hazard. The inner integral in Eq. (2.1) describes the expected consequences for given 

hazard: 
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Consequences are a thus function of damage and cost: 
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Figure 2.2 shows graphically the risk assessment in the form of a 2D matrix, where the 

horizontal axis refers to the probability of hazard occurrence and the vertical axis to the possible 

consequences. The risk results from the multiplication of the scores of the states of the probability 

of hazard occurrence and of the states of consequences. The risk is then classified in extreme (red), 

high (orange), medium (yellow), low (light green) and very low (dark green) based on the resulting 

scores.  

 

 
 
Figure 2.2: Risk assessment matrix  

 

There are multiple criteria to classify consequences. Consequences can be classified based on 

their ability to be measured by market values as either tangible (e.g. house damage) or intangible 

(e.g. cultural heritage losses). Consequences can furthermore be classified according to whether 

they are direct (e.g. house damage) or indirect (e.g. erosion on slopes following the destruction of a 

stabilizing forest). Tangible direct damages can be measured by the costs of repairing or replacing 

damaged items, whereas intangible direct damages may be measured in terms of number of affected 

items (Paul 2011). 

In the contrary to the above introduced definitions of risk, which will be used throughout this 

thesis, one can find very different approaches concerning fire risk in the literature. Previous studies 

have attempted to quantify fire risk using satellite images and GIS to identify influencing variables 

and then fire risk is given as a linear function of weighted variables (e.g. Jaiswal et al. 2002) or as a 

result of multicriteria evaluation technique (e.g. Chuvieco et al. 2010). Moreover, many 
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publications use the term fire risk to express fire hazard and do not take into account the potential 

consequences (e.g. Beringer 2000, Haight et al. 2004, He et al. 2004, Shang et al. 2004, Amatulli et 

al. 2006, Hernandez-Leal et al. 2006, Moriondo et al. 2006, Carmel et al. 2009, Catry et al. 2009). 

In this thesis the term fire risk will express the result from both the probability of hazard and its 

consequences based on the definitions given above. Fire danger will be expressed indices 

influenced by weather conditions (see later Section 2.3). To give an insight into the problematic of 

the fire hazard and the resulting consequences the paragraphs following will introduce the 

phenomenon and types of fire, the use of weather indices to describe fire danger related to fuel 

moisture and the damages to houses and vegetation. The chapter will end with information on the 

fire phenomenon in the Mediterranean basin, areas of which will be used later on as study areas for 

the application of models (Chapter 4).      

2.2 Fire hazard 

This chapter is based on Van Wagtendonk (2006). Fire hazard is the physical phenomenon of a fire 

occurring and spreading. The severity of a fire hazard can be described by the resulting burnt area, 

the fire spread rate and the fire intensity. Based on the burnt vegetation, fire can be classified in 

different types.  

2.2.1 Fire as a physical process 

Fire is a natural process and in order for combustion to occur, heat, fuel and oxygen must be 

present. These three elements form the so called fire triangle (Figure 2.3) and fire control measures 

aim to break the link among them. To do so, they aim to reduce the fuels or the amount of oxygen 

or lower the temperature of the fuel. 

Figure 2.3: The fire triangle 

 

Fire burns the accumulated debris, when decomposition is unable to keep up with the deposited 

material, and organic debris begins to accumulate. Combustion is an oxidation process, it combines 

materials which contain hydrocarbons with oxygen and produce carbon dioxide, water and energy. 

Heat of combustion is the energy resulting by this reaction. The combustion equation is as follows, 

  

 4������ + 25�! → 18�!� + 24��! + 5,264,729 () (2.4) 

 

Oxygen Heat

Fuel

Fire
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Combustion takes place in three phases: preheating, gaseous and smoldering (Figure 2.4). In the 

preheating phase, fuels ahead of the fire are heated, water evaporates from the fuel, and gases are 

partially distilled. The gaseous phase starts with ignition as gases continue to be destilled, active 

burning begins and an active flaming front develops. Ignition occurs in four stages: contact to 

receptive fuel, moisture in fuel is driven off, temperature of fuel raised to the point of pyrolysis, 

gases heated to ignition temperature. During the smoldering phase, charcoal and other unburned 

material, which remain after the flaming phase, continue to burn leaving a small amount of residual 

ash. 

 

 
Figure 2.4: The three phases of combustion (Van Wagtendonk 2006) 

 

Not every combustion leads to a fire hazard. Whether a combustion will spread to become a fire 

event that needs to be suppressed (fire hazard) or will extinguish on its own, depends on the 

available fuel and the weather conditions. After a fire occurs, fire behaviour is primary determined 

by moisture contained in the proportion of a fuel particle. The interaction of a fuel particle with the 

ambient moisture depends on its size or its depth in the organic layer (duff). The size classes used to 

categorize fuels are the fuel moisture timelag classes (Table 2.1). Timelag is defined as the amount 

of time necessary for a fuel component to reach 63% of its equilibrium moisture content at a given 

temperature and relative humidity. One-hour timelag fuels react to hourly changes in relative 

humidity and include dead herbaceous plants and small branchwood as well as the uppermost litter 

on the forest floor. 10-hour timelag fuels reflect the day-to-day changes in moisture. Moisture 

trends from days to weeks are reflected by 100-hour fuels, whereas 1000-hour fuels reflect seasonal 

changes in moisture.  

 
Table 2.1: Moisture timelag classes and corresponding woody fuel size and duff fuel depth classes (Van Wagtendonk 

2006) 

Timelag class Time period Woody fuel size class 

(cm) 

Duff fuel depth class 

(cm) 

1-hour Hourly 0.00-0.64 0.00-0.64 

10-hour Daily 0.64-2.54 0.64-1.91 

100-hour Weekly 2.54-7.64 1.91-10.16 

1,000-hour Seasonally 7.62-22.86 10.16+ 

Residual Fuel

Soil

Smoldering Gaseous Preheating

Available Fuel
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Apart from fuel moisture, weather conditions are primarily influencing fire behaviour. Fire 

weather conditions include air temperature, atmospheric moisture, wind speed and direction, and 

precipitation. Air temperature influences the amount of heat necessary to evaporate fuel moisture 

and raise fuel temperature. Relative humidity influences the exchange of water vapour between air 

and dead fuels. Relative humidity is defined as the ratio between the actual and the maximum 

amount of humidity at any particular temperature and pressure. The winds carry away the moisture 

in the air, dry the fuels and supply oxygen. Winds also carry embers from torching trees, creating 

new fire hotspots in front of the fire. They can change the direction that a fire moves (flaming front 

turns to fire back and vice versa, see later Section 2.2.3 Fire characteristics) and turbulent wind 

conditions can create fire whirls, making fire difficult to suppress. Precipitation influences directly 

fuel moisture. The influence of weather conditions on fuel moisture and initial fire behaviour will 

be discussed in more detail in Section 2.3. 

2.2.2 Types of fires 

Fires can be classified in different types. The type of fire is defined by the fuel consumption and the 

method of spread (Table 2.2). Ground fires burn the ground fuel and include slow-moving 

smoldering fires. Surface fires burn litter and woody fuels of the surface with an active flaming 

front. Passive crown fires burn fuels of the surface and individual trees. Active crown fires burn in 

the canopies together with surface fires. Independent crown fires burn only in the canopies. In Table 

2.2 fuel types with similar characteristics are grouped into fuel models. Fuel models determine fire 

behaviour. The main fuel models are tree canopy fuels (understory and overstory fuel), shrub fuels, 

low vegetation fuels (grasses, sedges), woody fuels (sound logs, rotten logs, snags, stumps), litter 

fuels and ground fuels. Fire severity, thus the loss or change of organic matter aboveground and 

belowground (Keeley 2009), is higher for active crown fires, since these affect both surface and tree 

canopy fuels.  

 
Table 2.2: Fire types, fuel model and fuel categories (Van Wagtendonk 2006) 

Fire type Fuel model Fuel category 

Ground Ground fuel Duff, peat, basal accumulation, 

animal middens 

 

Surface Litter fuel 

Woody fuel 

Litter, linches, moss 

Sound wood, rotten wood, piles 

and jackpots, stumps 

 

Passive Crown Shrub 

Low vegetation 

Litter fuel 

Woody fuel 

Shrubs, needle drape 

Grasses and sedges, forbs 

Litter, lichens, moss 

sound wood, rotten wood, piles 

and jackpots, stumps 

  

Active Crown Shrub 

Low vegetation 

Tree canopy 

Litter fuel 

Shrubs, needle drape 

Grasses and sedges, forbs 

Canopy, snags, ladders 

Litter, linches, moss 
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Woody fuel Sound wood, rotten wood, piles 

and jackpots, stumps 

 

Independent Crown Shrub 

Low vegetation 

Tree canopy 

Shrubs, needle drape 

Grasses and sedges, forbs 

Canopy, snags, ladders 

 

 

2.2.3 Fire characteristics 

The geometry of a fire can be modelled as an ellipse, whose one side is the flaming front and the 

opposite the fire back. The flaming front is the area at the front of a fire and is described by the 

flame depth (Figure 2.5), fire intensity and fire spread rate. 

Fire intensity describes the physical combustion process of energy release from organic matter 

(Keeley et al. 2012). It is the energy release of the fire front per unit length. Byram’s definition of 

fireline intensity * �(+,-.� used in the literature, is as follows (Byram 1959), 

 

 * = �+� (2.5) 

wherein � is the heat of combustion �kJ kg-.of fuel�, + is the consumed fuel �kgm-!� and � is 

the rate of fire spread �ms-.�. Rate of spread is the speed that the fire front moves forward and is 

defined in measures of distance per unit of time. Often flame length is used to replace fire intensity 

due to their significant relationship in forest and shrubland ecosystems (Keeley et al. 2012). 

 

Figure 2.5: Flame dimensions of the fire front of a fire (Van Wagtendonk 2006) 

Flame depth

Flame height

Flame

length
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2.3 The Canadian Forest Fire Weather Index System 

As already mentioned, weather plays an important role in both the ignition potential but also in the 

spread of fire. High temperatures and low humidity favour the drying of the litter and woody fuels 

of the surface, which can be thus more easily ignited. Strong winds reinforce flame length and fire 

spread rate, accelerate fine fuel drying process and carry burning particles (embers) to long distance 

in front of the active fire front, creating new hot spots. Quantifying fire weather conditions is an 

important step in the quantification of daily fire risk. 

For the quantification of weather influence on fuels, there are several (fire danger rating) 

systems used worldwide, developed based on empirical studies and adapted to local conditions (e.g. 

fuel types, day length). Fire danger rating systems are used to evaluate the influence of the weather 

on fuel moisture and the potential of (initial) fire spread, once an ignition takes place. One of the 

most used fire danger rating systems worldwide is the Canadian Forest Fire Weather Index System 

(CFFWIS) (Lawson and Armitage 2008). CFFWIS is one of the principal subsystems of the 

Canadian Forest Fire Danger Rating System (CFFDRS) (Figure 2.6), which encompasses both 

predictive fire occurrence and fire behavior systems. The overall system (CFFDRS) aims to 

quantify the forest fire danger with input weather conditions, fuel types, topography and ignition 

cause, whether the subsystem (CFFWIS) focuses on the influence of weather conditions on the fuel 

moisture.   

 

 
 

Figure 2.6: Structure of the Canadian Forest Fire Danger Rating System (CFFDRS) (Lawson and Armitage 2008) 
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CFFWIS’s main components are three fuel moisture codes and three fire behavior indices 

(Figure 2.7). These components provide numeric ratings of relative potential for wildland fire. The 

system takes as input easily observed weather elements such as rain accumulated over 24h, 

temperature, wind speed and relative humidity. The latest three weather parameters are measured at 

noon (12 o’clock). 

The Fine Fuel Moisture Code (FFMC) rates the moisture content of litter and other fine fuels. It 

expresses the interaction of the fine fuel particles (nominal depth 1.2 cm) with the ambient moisture 

and is related to 2/3-hour timelag class. FFMC is an indicator of the relative ease of ignition and 

flammability of fine fuels. It takes as input rain, temperature, wind speed, relative humidity and the 

value of the FFMC of the last day.  

The Duff Moisture Code (DMC) rates the moisture content of deep, compact organic layers. It is 

an indicator of seasonal drought effects on forest fuels (nominal depth 7 cm) and the amount of 

smoldering in deep duff layers and large logs (relates to 15-hour timelag class). It takes as input 

rain, temperature, relative humidity and the value of DMC of the last day.  

The Drought Code (DC) rates the moisture content of deep, compact organic layers. It is an 

indicator of seasonal drought effects on forest fuels (nominal depth 18 cm) and the amount of 

smoldering in deep duff layers, and is related to 53-hour timelag class. It takes as input rain and 

temperature and the value of DC of the last day.  

The Initial Spread Index (ISI) rates the expected rate of fire spread. It combines the effect of 

wind speed and FFMC and does not take under account the fuel. It takes as input wind speed and 

FFMC. 

The Buildup Index (BUI) rates the total amount of fuel available for combustion. It combines 

the DMC and the DC.  

The Fire Weather Index (FWI) represents the intensity of a spreading fire as energy output rate 

per length of fire front. It combines ISI and BUI.  
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Figure 2.7: Structure of the Canadian Forest Fire Weather Index System  (Service 1984, Lawson and Armitage 2008) 

 

 

In the calculation of all three fuel moisture codes, first the amount of rain in the past 24 h is 

evaluated and then the appropriate degree of drying is taken under account (Figure 2.8). The 

thresholds of rain are for FFMC, r>0.5mm, for DMC, r>1.5mm and for DC, r > 2.8mm. The 

equations for the calculation of the CFFWIS are given in Appendix I. The starting values for the 

calculation of the three moisture codes are FFMC = 85, DMC = 6 and DC = 15.  The system does 

not allow missing observations, so blank spaces of weather observations must be completed.  
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Figure 2.8: Schematic diagram for calculating the six standard components of the Canadian Forest Fire Weather Index 

System (Lawson and Armitage 2008) (see Appendix for the algorithm of the system)   

 

 

Although created for Canada, the CFFWIS is adopted by many other countries. The Joint 

Research Center of the European Union is using currently the CFFWIS to evaluate fire danger in 

Europe. The system is called European Forest Fire System (EFFIS) and produces daily maps of the 

six components of the CFFWIS with 10 km² spatial resolution. An example of those maps is shown 

in Figure 2.9. Based on the values of the mapped component of the CFFWIS fire danger is 

classified in six classes (Very low, Low, Moderate, High, Very high, Extreme). The countries of the 

Mediterranean basin are the ones, where the highest values of FWI are registered. This 

classification of fire danger, which is the widely used instrument of the European Union, takes into 

account only weather conditions and neglects other fire occurrence and spread influencing 

parameters, such as population, land cover types or topography. It can be therefore assumed, that a 

system taking into account also additional parameters can model fire danger more accurately.  

 
 

Yesterday‘s FFMC

Rain ?

Rain codeRain

FFMC

Temperature

Relative humidity

Wind speed

No Yes

Yesterday‘s DMC

Rain ?

Rain codeRain

DMC

Temperature

Relative humidity

Month

No Yes

Drying 

factor

Yesterday‘s DC

Rain ?

Rain codeRain

DC

Temperature

Month

No Yes

Drying 

factor

BUI ISI

 FWI

 



16 2.4 Fire effects 

 

 

 

Figure 2.9: FWI on the 9th July 2014 in Europe with 10 km² spatial resolution (European Forest Fire Information 

System) (retrieved on 09.07.14) 

 

 

The EFFIS is the official operational fire danger predictive instrument of the EU and as a result 

the system that the local governments of the EU states refer to, to evaluate daily fire danger. It can 

be therefore of great importance to evaluate the predictive ability of the FWI to identify fire danger 

in Europe. Since FWI takes under account only weather conditions and knowing that most fires in 

Europe are ignited by humans (as discussed later in Section 2.5 Fires in the Mediterranean basin) it 

can be assumed that FWI alone cannot accurately predict fire occurrence in Southern Europe and 

that other factors, such as land cover types or population density should be included in the 

prediction. This is further discussed in Chapter 5. Nevertheless, some countries of South Europe use 

additionally other fire danger indicators, which combine daily weather conditions with past recent 

weather. Some of the methods used in France, Italy, Portugal and Spain can be found in Viegas et 

al. (1999).     

2.4 Fire effects 

Fires cause severe damages to the built and natural environment. Among others they cause life 

losses and injuries, house losses, infrastructure damages, agricultural production losses and forest 

biodiversity losses. As an example the damaging fires in Greece in August 2007 resulted in 84 life 

losses, 1000 houses totally destroyed and 2700 km² of burnt forests, olive groves and farmland 

(http://en.wikipedia.org/wiki/2007_Greek_forest_fires). The focus of this work relating to fire 
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effects is the house losses and the damages to vegetated areas (both natural vegetation and 

agricultural areas). These fire effects are influenced by both natural and anthropogenic factors.  

The main factors influencing the resulting house effects are the presence and intensity of fire, 

the flammability of the exposed objects and the suppression effectiveness. Interrelations of the 

influencing factors are present (e.g. fire characteristics and flammability of houses influence the 

result of fire suppression). In more detail, the factors influencing losses are fire characteristics 

(flame length, fire intensity, spread rate, burning ember density), house design and construction 

materials, the surroundings of the house (defensible space, distance from forest, fuel accumulation) 

and fire suppression effectiveness (Blanchi et al. 2010;Gibbons et al. 2012).  

Houses usually either survive a fire or get totally destroyed (Cohen 2000;Blong 2003). Since 

combustion requires all three fire triangle elements (fuel, heat, oxygen) (as shown in Figure 2.3), a 

house will also ignite, if all requirements occur. Fire impact may include direct contact of the 

flames, radiant heat flux from nearby flames and airborne embers/firebrands (Cohen 2000;Koo et 

al. 2010;Mell et al. 2010). Radiant heat from an intense fire can cause house ignitions within a 40m 

distance from the flame or even more (Cohen 2000;Cohen 2004). Gibbons et al. (2012) showed that 

a reduction (from 90% to 5%) of trees and shrubs cover within 40m of houses could potentially 

reduce house loss by an average of 43%. In spot fire phenomena generated firebrand from torching 

trees (sometimes lofted by fire whirls occurring in large-scale forest fires) can be transported by 

strong winds to long distances typically up to 3 km (Albini 1979;Koo et al. 2010) and can result to 

ignitions in landing positions. Moreover, Syphard et al. (2012) proved that property loss is more 

likely to occur when structures were surrounded by wildland vegetation  rather than by urban areas. 

The characteristics of a building structure and its immediate surroundings influence the 

probability of ignition and therefore survival (Cohen 2000). Structure flammability depends on 

exterior construction materials (e.g. roof type and roof material influencing the ignition by 

firebrands (Koo et al. 2010;Gibbons et al. 2012) and construction design (e.g. number, size and 

characteristics of openings)). Homes should not be considered simply as potential victims of 

wildland fire, but also as potential participants in the continuation of the fire in their location 

(Cohen 2000). Therefore, building density is also included in studies of house losses due to 

wildfires (Gibbons et al. 2012). Poor firefighter access may explain why housing clusters with 

fewer roads were more vulnerable. However, it has been documented in numerous cases that homes 

with low ignitability can survive high intensity wildland fires, whereas highly ignitable homes can 

be destroyed during lower intensity fires (Cohen 2000).  

Apart from house damages, also vegetation damages will be addressed in this study. Although 

fires favor the re-sprouting of some fire resistant species (Pausas 1997), when repeated fire events 

occur, the vegetation fails to regenerate naturally due to the enlargement of fire scars on the trees 

that consequently leads to tree loss. Fires burn the outer bark, the inner bark and the wood of the 

bole (Show and Kotok 1924). When no new reopening takes place, the wound will heal completely 

with new wood that comes from the edges of the inner bark and a scar will remain, able to define 

the date of the fire event. A fire can either create scars to the trees or burn them down. When a fire 

occurs and reaches the base of a tree, the tree will burn down if there are previous scars present. For 

e.g. in the California pine forests, the presence of older scars is the primary influential factor of the 

overall loss and the rate of spread, the amount of flammable material, the fire intensity are all 

secondary factors. Thus, the process of damage from a fire gathers momentum with each 

succeeding fire and ends up to the loss of the individual tree or the stand. The oldest trees burn 

down as a result of repeating fire events, which reduces the quality and the volume of a forest. 

Direct loss of merchantable timber occurs, since the burned volume includes the clear grades of 

lumber, the highest quality material of the tree. Moreover, direct heat killing occurs, when a fire has 
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reached the crowns of the trees and has burned up the foliage completely, or a surface fire has 

reached such intense heat that the foliage and buds are killed without being consumed. The most 

important factors in heat killing is the amount of inflammable material on the forest floor, such as 

litter and duff and the amount of brush under the timber stand. Topography influences also the 

damage, since fires travel uphill and the upper standing timber bears the burn of the increased fire 

intensity of the flames. Climatic conditions influence the resulting damage to the timber. Dry and 

windy conditions favor fire spread and the consumption of the forest floor. Additionally, in spring 

and early summer, when the forest is actively growing, it is more probable that the timber is 

damaged by a fire, than in late summer or autumn, when the protected winter buds have been 

formed. Lastly the density of the forest stand influences the damage. Dense, closed stand of timber 

with uninterrupted canopy favors the development of crown fires, which lead to higher damages.  

2.5 Fires in the Mediterranean basin  

As discussed above, the ignition and behavior of a fire, as well the resulting effects depend mainly 

on the local conditions (e.g. local vegetation, weather, construction types). On account of this, no 

model can predict at the same time fire risk in European pine forests, the Amazon rainforest and the 

African savannas. Therefore models should be adapted to the characteristics of each biotope and 

human infrastructure. This thesis focuses on areas with Mediterranean type climate regions (MTC) 

and the study areas chosen are located in the Mediterranean basin (Chapter 4).   

MTC regions are fire prone areas and experience fire events every year. These regions have 

climatic conditions similar to the Mediterranean basin (Keeley et al. 2012). The Mediterranean type 

climate is the result of global circulation patterns, that generate a summer high pressure cell of dry 

sinking air that blocks incoming summer storms on the western sides of continents concentrated 

between 32° and 38° N or S latitude. MTC regions are defined by long summer drought and winter 

rainfall with mild temperatures. These landscapes are highly fire prone, because of the fact that wet 

winters favour fuel accumulation and dry summer periods favour fuel drought. There are five MTC 

regions in the world. These are the Mediterranean basin, California, Central Chile, Cape Province in 

South Africa, Southwest and South Australia. The dominant vegetation types in MTC are 

shrublands, which are typically evergreens with broad or small, stiff and sclerophyllous leaves on 

woody stems.  

The Mediterranean basin, which is the largest MTC region, includes portions of the countries 

Portugal, Spain, France, Italy, Greece, Turkey, Morocco, Algeria and Tunisia (Figure 2.10). The 

dominant vegetation types are evergreen broadleaf maquis shrublands, which transit in arid sites to 

a lower growing drought-deciduous spiny formation known as phrygana (Greek) or tomillares 

(Spanish). Shrublands are dominated by evergreen sclerophyllous-leaved shrubs that re-sprout after 

fire. In the northern side of the Basin, forests are dominated by Pinus halepensis, which typically 

burn in high intensity crown fires. In the eastern side of the basin these are replaced by Pinus 

brutia. The long history of human civilization has led to a high landscape fragmentation level in the 

Mediterranean basin and as a result natural pine stands and plantations are often difficult to 

differentiate. 

The fires in the Mediterranean are spread by fire weather winds that occur in the summer period. 

Fire weather winds, thus katabatic foehn (dry downslope) winds flowing from high pressure ridge 

to low pressure have different names in the Mediterranean, such as mistral in France and meltemia 

in Greece. These winds develop from synoptic weather conditions where interior high pressure cells 
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are juxtaposed with low pressure troughs at the coastal side of mountains. These foehn winds are 

related to extreme fire weather due to their ability to produce severe burning conditions known as 

firestorms.  

Fires are ignited both by nature and humans. Lightning is the natural source of fires. However, 

lightning does not correspond to the major fire inducing parameter in the MTC areas, since the 

lightning strikes occur mainly during winter storms that seldom contribute to fires. It is humans that 

mainly cause fire ignitions in MTC regions. Most fires in the Mediterranean basin are started by 

people, either on purpose (e.g. arson) or by accident (e.g. campfire, agricultural activities). The 

reason for this is the high population density of the coastal areas. Current landscapes of the 

Mediterranean are a result of long history land use and comprise mosaics of natural vegetation, 

agricultural land, old fields and urban areas. Fire has been used historically by humans for hunting, 

food gathering, deforestation, agricultural purposes, domestic grazing (pasture improvement) and 

wars (Leone et al. 2009). As a result the Mediterranean landscapes are strongly shaped by humans 

and fire has played an important role on achieving this. Due to the high landscape fragmentation 

burnt areas are relatively small in the Mediterranean compared to other MTC regions. 

Generally - with the exception of natural parks, which allow fires induced by lightning to burn 

naturally (Parsons et al. 1986) - humans aim to prevent and control fire events, thus to conduct fire 

management. Among the preventive fire management measures also applied in the Mediterranean 

basin are fuel clearing, thinning, fire breaks, prescribed burning, monitoring and prediction. Among 

mitigation measures are fire suppression and prescribed burning. Unfortunately, much effort is 

given mainly in mitigation measures (fire suppression equipment) and less in preventive measures, 

which are less expensive and can contribute to successful fire management.      
 

 
 

 

 
Figure 2.10: Active fire map of the Mediterranean basin (11 June 2014) (FIRMS Web Fire Mapper, NASA) (retrieved 

on 11.06.14) 
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Table 2.3 and Table 2.4 show statistics on fire occurrence and resulting burnt area in several 

countries of the Mediterranean basin for 1980-2010. Among the countries Portugal has the highest 

amount of fire occurrences and France the highest resulting burnt area. Figure 2.11 and Figure 2.12 

show the distribution of the fire occurrences and burnt area (ha) respectively among the countries of 

South Europe for 2010.    

 

 
Table 2.3: Number of fires in South Europe (1980-2010) (JRC 2011) 

Number of fires  Portugal Spain  France  Italy Greece Total 

2010 22,026 11,475 3,900 4,884 1,052 43,584 

% of total(1980-2010) 37 % 30 % 10 % 20 % 3 % 100 % 

Average 1980-1989 7,381 9,515 4,910 11,575 1,264 34,645 

Average 1990-1999 22,250 18,152 5,538 11,164 1,748 58,851 

Average 2000-2010 24,684 17,736 4,360 7,043 1,636 55,458 

Average 1980-2010 18,317 15,218 4,917 9,834 1,552 49,838 

Total (1980-2010) 567,831 471,760 152,431 304,861 48,110 1,544,993 

 

 
Table 2.4: Burnt area (ha) in South Europe (1980-2010) (JRC 2011) 

Burnt areas (ha) Portugal Spain France Italy Greece Total 

2010 133,090 54,770 10,300 46,537 8,967 253,664 

% of total(1980-2010) 23 % 37 % 6 % 24 % 10 % 100 % 

Average 1980-1989 73,484 244,788 39,157 147,150 52,417 556,995 

Average 1990-1999 102,203 161,319 22,735 118,573 44,108 448,938 

Average 2000-2010 148,555 118,833 21,247 80,483 45,577 414,695 

Average 1980-2010 109,386 173,169 27,504 114,276 47,309 471,644 

Total (1980-2010) 3,390,976 5,386,227 852,632 3,542,542 1,466,591 14,620,968 
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Figure 2.11: Fire occurrences (%) in South Europe (2010) (JRC 2011) 

  

 

  

 

 
 

 
Figure 2.12: Burnt area (%) in South Europe (2010) (JRC 2011) 
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2.6 Summary 

Chapter 2 introduces the reader into the definition of fire risk, the phenomenon of fire, the Canadian 

Fire Weather Index System, the factors influencing damages and the fires in the Mediterranean 

basin. The fire risk assessment matrix (Section 2.1) shows a simple case of risk calculation, as a 

product of scores between the probability of hazard and the consequences. Combustion is closely 

related to what in common is understood by fire. Combustion is an oxidation process that produces 

among others energy. Combustion takes place in three stages: preheating, gaseous and smoldering. 

In the gaseous stage active burning takes place. The fuels can be categorized with their moisture 

timelag classes, which depends on their size and the depth of the organic layer where they are. Fire 

types can be classified based on the vegetation they burn. Ground fires burn the ground fuel. 

Surface fires burn litter and woody fuels of the surface. Passive crown fires burn on the surface and 

individual trees. Active crown fires burn in the canopies together with surface fires. Independent 

crown fires burn only in the canopies. As a rule of thumb, crown fires are more destructive than 

surface fires. Basic fire characteristics are the flame length, the fire intensity and fire spread.  

In Europe, daily fire danger evaluation is currently done by the Joint Research Center of the 

European Union with the Canadian Forest Fire Weather Index System (CFFWIS). CFFWIS rates 

how weather conditions influence fuel moisture and initial spread. The system consists of six 

components, three fuel moisture codes and three fire behavior indices. Its final product is the Fire 

Weather Index, which represents the intensity of a spreading fire as energy output rate per length of 

fire front. However, this instrument takes into account only weather parameters and neglects other 

influencing factors, such as population, land cover types or topography. The inclusion of additional 

influencing parameters would model more accurately the complexity of the fire occurrence and fire 

behavior phenomenon. The main factors influencing the resulting house losses are the exposure of 

the items to fire effects, the item flammability and the suppression effectiveness. Timber loss is 

influenced by the amount of inflammable material on the forest floor, topography and forest 

density. Mediterranean climate type regions such as the Mediterranean basin are affected every year 

by wildfires. The main characteristic of these areas are the wet mild winters and the long summer 

droughts accompanied by strong winds. Shrubland is the dominant vegetation type, which re-

sprouts after fire. The Mediterranean basin has a mosaic shaped landscape, in which fires result in 

relatively small burnt areas due to its high fragmentation. Fire management measures include fuel 

reduction, fire breaks, prescribed burning and fire suppression. Although fire preventing measures 

could be less expensive and reduce fire risk, most efforts focus on fire suppression and less on 

measures such as fuel reduction, monitoring and prescribed burning.  
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The research on wildfire risk addresses the questions on when, where and why wildfires are 

triggered and how they spread and which are their consequences. Understanding of the 

interrelations among biotic and abiotic factors for the modelling of these mechanisms, the 

employment of various data from different sources and the need for the visualization of the results 

are all reasons for which multidisciplinary approaches are needed for modelling fire risk. The 

interdisciplinary approach to natural hazard risk modelling can be supported efficiently by Bayesian 

networks (BN). Based on acyclic graphs, BN enable to model the probabilistic dependence among a 

large number of variables influencing the risk. The causalities expressed by the arcs between the 

variables make BN not only convenient for graphical communication of the interrelations between 

the influencing factors (qualitative part), but also include, through conditional probability tables, a 

quantitative probabilistic model (Jensen and Nielsen 2007). In other words, the graphical 

representation of the dependence structure among stochastic variables makes it easy to understand 

intuitively and facilitates the consistent modelling of complex problems involving many variables. 

For these reasons, BN are increasingly applied for risk assessment of natural hazards, e.g. for rock-

fall hazards (Straub 2005), avalanches (Grêt-Regamey and Straub 2006), tsunamis (Blaser et al. 

2009) and earthquakes (Bayraktarli et al. 2005;Bensi 2010;Kuehn et al. 2011) and wildfires 

(Dlamini 2009).  

3.1 Modelling with Bayesian Networks 

Bayesian Networks (BN) are directed acyclic graphs and consist of nodes, arcs and probability 

tables attached to the nodes (Jensen and Nielsen 2007). In a discrete BN considered here, each node 

represents a discrete random variable, whose sample space consists of a finite set of mutually 

exclusive states. The arcs describe the assumed dependence structure among the random variables.  

3 Modelling methods 
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A conditional probability table (CPT) is attached to each of the nodes, defining the probability 

distribution of the variable conditional on its parents. If we consider a BN with discrete random 

variables � = [��, … , ��], then the full (joint) probabilistic model of these variables is the joint 

Probability Mass Function (PMF), 
��
 = 
���, … , ��
, which can be specified with the help of the 

chain rule: 


��
 = 
���|����, … , ��

�����|����, … , ��
 … 
���|��

���
 (3.1) 

 

By making use of the independence assumptions encoded in the graphical structure of the BN, 

this chain rule reduces to: 


��
 = � 
���|
����


�

���
 (3.2) 

 

wherein 
����
 are realizations of the parents of ��. In words, the joint probability mass function 

(PMF) of all random variables in the BN is simply the product of the conditional PMFs of each 

individual random variable given its parents. Therefore, the graphical structure of the BN, together 

with the conditional PMFs Pr���|
����

, are sufficient for specifying the full (joint) probabilistic 

model of � = [��, … , ��]. A simple BN with three nodes is shown in Figure 3.1. Based on Eq. 3.1 

the joint PMF of the model is 


��
 = 
���|��, ��

���|�� 

���
 (3.3) 

wherein 
���|��
 reduces to 
���
, since the variables �� and �� are d-separated, meaning that 

knowing the state of variable �� does not influence the probability of �� being in any of its states 

and vice versa. Therefore Eq. 3.3 reduces to: 


��
 = 
���|��, ��

���

���
 (3.4) 

which corresponds to Eq. 3.2. 

 

Inference in the BN model is performed through updating. When one or several variables are 

observed or fixed, this information (evidence �) is propagated through the network and the joint 

prior probability of all nodes is updated to its posterior. The posterior joint probability of a set of 

variables   in the network given the evidence � is:  


� |�
 = 
� , �


��
  (3.5) 

 

In the example of Figure 3.1, when evidence is given on variable �� the joint posterior 

probability of all nodes is:  


��|�� = !
 = 
��, �� = !


��� = !
  (3.6) 

 

which becomes: 


��|�� = !
 = 
��� = !|�

��


��� = !
  (3.7) 

 

with respect to Eq. 3.4:  
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��|�� = !
 = 
��� = !|��, ��

���|��, ��

���

���


��� = !
  (3.8) 

 

and since �� and �� are d-separated: 


��|�� = !
 = 
��� = !|��

���|��, ��

���

���


��� = !
  (3.9) 

 

finally: 


��|�� = !
 = 
��� = !|��

���|��, ��

���

���


��� = !|��

���
 + 
��� = !|��

���
 (3.10) 

 

 

 
 
Figure 3.1: A simple Bayesian Network. X1 and X2 are the parents of X3, and X3 is the child of X1 and X2. 

 

In the context of wildfire risk assessment, the advantage of the BN is not its computational 

effectiveness but that it facilitates the combination of information and models from various sources 

in a single model. This means, that nodes with different data sources (e.g. slope from a Digital 

Elevation Model, precipitation observations from a weather station, population density from census 

data, street density from a street map) and additional expert knowledge (e.g. home roof made of 

wood ignites easier than one out of roof tiles) can be all incorporated in the same model.   

Three BN are constructed in this thesis to model fire risk. The first model describes fire 

occurrence, the second fire size and the third fire consequences. The models are described in detail 

in Chapter 5 – Chapter 7. The fire occurrence model is shown in Figure 3.2. The variables FWI, 

Land cover, population density and street density are the parent nodes of the variable Occurrence 

rate, and some (e.g. FWI) have causal influence on the Occurrence rate. The variable Occurrence 

rate is the child node of these variables. Fire occurrence is the child variable of the node 

Occurrence rate. In BN the arcs can express causality, thus the direction of the arc can show causal 

direction but this is not necessary. Although it is generally advisable to model causality in the BN 

among others for better communication of the model, it is not strictly necessary that the arcs of the 

model follow a causal interpretation (Kjaerulff and Madsen 2013). Later on, in Chapter 6, this 

becomes obvious with the interconnections between non-observable variables and the resulting 

burnt area.   
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Figure 3.2: Bayesian Network modeling fire occurrences 

 

There can be three types of connections between the nodes in a BN: serial, diverging and 

converging connection (Kjaerulff and Madsen 2013). The type of connection influences the flow of 

information in the BN. In a serial connection �� → $ → %
, evidence on � will affect the belief 

about the state of % and vice versa, unless the state of  $ is known. In a diverging connection �� ←
$ → %
, evidence on � will affect the belief about the state of % and vice versa, unless the state of  

$ is known. In a converging connection �� → $ ← %
, information may only be transmitted, when 

the state of $ is known. 

In the example of Figure 3.2, the variables FWI, Land cover, Population density and Street 

density have a converging connection to the variable Occurrence rate. The variables expressing the 

influence of weather conditions, land use type and human presence were chosen to account for 

easily understandable proxies, for which data are readily available. Later on in this thesis, this 

scheme is used for different case studies in the Mediterranean - all three with similar fire occurrence 

rate, although influencing factors usually vary geographically. This assumption serves this study’s 

aim to present a methodology applicable on similar areas without the need for major readjustment.  

Each of these factors has a serial connection to the variable Fire occurrence. This means that 

evidence on one of the variables FWI, Land cover, Population density and Street density will not 

affect the belief about the state of the others, unless evidence is given on Occurrence rate. When 

evidence is given on the variable Occurrence rate, then no evidence can be transmitted from the 

variables FWI, Land cover, Population density and Street density to the variable Fire occurrence. 

The parent nodes FWI, Land cover, Population density and Street density are thus independent from 

the child variable Fire occurrence (i.e. they are d-separated). The parent nodes are then dependent 

to each other (i.e. d-connected), meaning that information may be transmitted, if evidence is given 

to one of it to the other parents. 

If the parent nodes have each two possible states, then for the node Occurrence rate we need to 

specify 2( = 16 conditional probability distributions, one for each combination of possible states of 

the four parent variables. The probability distributions appear in the conditional probability table 

attached to the node Occurrence rate. Assuming the following probability tables: 

 

 

   

FWI

Population

density

Street

density

Land cover

Occurrence rate

Fire occurrence
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FWI (States) Pr (State) 

high 0.8 

low 0.2 

 

Land cover (States) Pr (State) 

urban 0.6 

rural 0.4 

 

Population density [People/km²] (States) Pr (States) 

0-100 0.9 

100-1000 0.1 

 

Street density [km/km²] (States) Pr (States) 

0-5 0.7 

5-15 0.3 

 

Here, the states of the variables and the attached probabilities are fictional and serve the 

demonstration of the application of Total Probability Theorem on the proposed BN structure. When 

such a model is applied on case study areas, the states of continuous variables such as FWI or 

population/street density can be defined by using appropriate discretization methods (e.g. 

Zwirglmaier et al. 2013). 

The (half) conditional probability table of the node Occurrence rate can be as follows: 

 

 

 

 

Occur. 

rate 

FWI: high FWI: low 

Land cover: urban Land cover: rural … 

Pop: 0-100 Pop: 100-1000 Pop: 0-100 Pop: 100-1000 … 

Street: 

0-5 

Street: 

5-15 

Street: 

0-5 

Street: 

5-15 

Street: 

0-5 

Street: 

5-15 

Street: 

0-5 

Street: 

5-15 

… 

low 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 … 

high 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 … 

 

When evidence is given on FWI, Land cover and Population density then the probability of the 

Occurrence rate being in the first state (low) can be calculated as follows: 

 

Pr�+,,. .�/0 = low|456 = high, :�;< ,=>0. = urban, C=
 = 0 − 100

= Pr�+,,. .�/0 = low|456 = high, :�;< ,=>0. = urban, C=

= 0 − 100, F/.00/
= 0 − 5
 ∙ Pr�F/.00/ = 0 − 5
 + Pr�+,,. .�/0 = low|456
= high, :�;< ,=>0. = urban, C=
 = 0 − 100, F/.00/
= 5 − 15
 ∙ Pr �F/.00/ = 5 − 15
 

(3.11) 

 

Pr�+,,. .�/0 = low|456 = high, :�;< ,=>0. = urban, C=
 = 0 − 100

= 0.999 ∙ 0.7 + 0.998 ∙ 0.3 = 0.9987 

(3.12) 

 

and given evidence only on FWI and Land cover, 

 



28 3 Modelling methods 

 

 

Pr�+,,. .�/0 = low|456 = high, :�;<,=>0. = urban

= 0.999 ∙ 0.7 ∙ 0.9 + 0.998 ∙ 0.3 ∙ 0.9 + 0.997 ∙ 0.7 ∙ 0.1 + 0.996 ∙ 0.3
∙ 0.1 = 0.9985 

(3.13) 

 

Now, when fixing the value of Occurrence rate = low, then using Bayes’ rule we can get the 

probability of a cause when its effect is observed (statistical inference), as 

 

Pr�456 = ℎ!Nℎ|+,,. .�/0 = O=P

= Pr �+,,. .�/0 = O=P|456 = ℎ!Nℎ
 ∙ Pr �456 = ℎ!Nℎ


Pr �+,,. .�/0 = O=P
  
(3.14) 

 

The above gave an insight into the concept of BN, the interconnections between the variables 

and the calculation of the prior and posterior joint probability distributions of the model. Efficient 

algorithms for performing these computations exist, which are implemented in software such as 

GeNIe (Decision Systems Laboratory 2013) or Hugin (HUGIN EXPERT 2012).  

3.1.1 EM algorithm 

Constructing a BN model is done, first by defining the structure of the directed acyclic graph and 

then populating the CPTs of the nodes. When the BN model is structured based on expert 

knowledge, it is possible to populate the conditional probability tables of the variables (parameter 

estimation) based on observations. The process is straightforward when all variables are observed, 

as this is achieved as a result of frequency counting.  

In case of missing values, parameter estimation can be performed with the Expectation-

Maximization (EM) algorithm (Kjaerulff and Madsen 2013). Thus, when one of the variables is a 

hidden variable, meaning there are no data for the parameter estimation (i.e. variable is non 

observable), then parameter estimation can be performed by the EM algorithm. This can also be the 

case, when intermediate non observable variables are included in the modeling, with the aim of 

reducing the number of parameters of other variables required to specify, or so that modeled 

causalities can be easier understood and communicated (Chapter 6).  

The EM algorithm is performed by iterating two steps; the expectation E step and the 

maximization M step. In the E step, the expected values of the parameters are computed. In the M 

step, the parameter likelihood is maximized, using the expected values as if they were observed 

values. The iteration is repeated until a criterion is fulfilled. The criterion can be when the 

difference of two consecutive iterations is less than or equal to the numerical value of a log-

likelihood threshold times the log-likelihood. Thus, when the relative difference between the log-

likelihood for two successive iterations becomes less than a tolerance, which must be a positive 

number. Alternatively, an upper limit of the number of iterations can be set.  

For a BN with x the observed values, % the hidden variable and R the parameters of the model, 

the ith iteration of the EM algorithm is (Russell and Norvig 2003), 

 

R��
 = argmaxT U 
V% = WXx, R����
Yln:�R|x, % = W

Z

 (3.15) 
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The E step corresponds to the summation, which is the expectation of the log likelihood of the 

completed data with respect to the posterior over the hidden variables given the data 
�% =
W|�, R(���

. The M step is the maximization of this expected log likelihood. 

3.2 Coupling of Bayesian Networks with GIS 

For BN that involve geographic features, spatial information can be used to define the conditional 

probability tables of the nodes, or the result of BN can be then spatially mapped. Georeferenced 

spatial information is often managed in Geographic Information Systems (GIS). Coupling of the 

BN with the GIS can facilitate the parameter learning and the mapping process. Thus once coupled, 

the GIS can inform the BN and so can the BN inform the GIS (Johnson et al. 2012).  

In published literature there are four types of coupling documented (Figure 3.3). GIS as input in 

the BN (a), GIS as input in the BN and BN result as input in the GIS (b), complex interactions 

between BN and GIS (c) and BN and GIS within a larger framework (d). In the first type (a) the 

GIS layers are used as inputs for some BN nodes. In the second type (b) GIS layers are used as 

inputs for some BN nodes and the spatially referenced output of the BN is visualized in the GIS. In 

the third type (c), the integration approach uses BNs to combine informative layers from the GIS for 

each pixel/area to account for uncertainty. In the fourth type (d), BN and GIS model different 

factors in a larger descriptive system.  

 

 
Figure 3.3: Types of BN and GIS coupling (Johnson et al. 2012) 
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input

BN GIS

input
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In this thesis the coupling resembles the second type (b). It is a loose coupling between the 

systems , where the two components BN and GIS are used together but the modeller has to interact 

with both models (Scherb 2014) (Figure 3.4).  

 

 
Figure 3.4: Loose coupling between GIS and Bayesian network 
 

The parameters of the BN model are trained with information managed in a GIS database 

(Figure 3.5). Thus, the conditional probability tables (CPT) of the random variables are learned 

from the attribute tables of the GIS layers. After the learning process, the BN model can be applied 

to new spatial-temporal datasets for prediction, or model evaluation purpose. The new dataset is 

initiated as evidence on the parentless BN nodes and the target nodes are updated via inference 

based on the trained CPTs as explained in Section 3.1. The output of these calculations is the 

probability of fire occurrence, of resulting burnt area, or of fire risk. The evidence propagation is 

conducted as batch propagation within the BN software shell.  

 

 

 
 

 

 



3.3 Poisson regression 31 

 

 
 

 

Figure 3.5: Batch propagation from dataset from and result input in the Geodatabase 

3.3 Poisson regression 

The task of probabilistic prediction, often breaks down to the task, in which a set of observations of 

random variables is available and the aim is to predict one of the random variables, while knowing 

the value of the others. For solving this task, most studies operate regression analysis. 

Regression is a parametric method aiming to describe the functional relationship between 

dependent variables and an independent variable (McKillup and Dyar 2010). Regression gives an 

equation for a line or surface, which is the best fit through a set of data points.  

The problem of fire occurrence prediction, with the observable influencing variables and the 

lack of physical models, is often approached with regression analysis. Different types of regression 

Bayesian Network

Data (Points, Lines, Polygons, Rasters)
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have been widely used in the literature to model fire occurrences, including Poisson models (e.g. 

Cunningham and Martell 1973;Mandallaz and Ye 1997;Syphard et al. 2008), logistic regression 

(e.g. de Vasconcelos et al. 2001;Preisler et al. 2004;Kalabokidis et al. 2007;Syphard et al. 

2008;Chuvieco 2009;Arndt et al. 2013) and multiple regression (e.g. Sebastián-López et al. 

2008;Oliveira et al. 2012), to name only some. 

Here, fire occurrence events are modeled as a Poisson process and the occurrence modeling is 

made with Poisson regression. Poisson regression assumes that the dependent variable (i.e. fire 

occurrence) follows the Poisson distribution and that the logarithm of its expected value (i.e. the fire 

occurrence rate) can be modeled as linear function of independent variables. In these models 

temporal and spatial discretization is needed. This means that the fires occur in a certain time and 

space step. The fire occurrence rate expresses the number of events per time and space step. 

Poisson distribution assumes independence among events for given rate. Therefore here it is 

assumed that fires occur randomly in space and time. The conditional probability of observing ; 

events given [ is thus 

Pr�\ = ;| [
 = ([]
�

;! exp(−[]
 , ; = 0,1,2, …  (3.16) 

wherein [  is the mean occurrence rate, α is the area and \ ∈ 0,1,2, … is the number of events. 

Observations of \ are used to estimate [ based on Eq. (3.16). 

The response variable is the number of events \, which – following the previous – is a random 

variable described by the Poisson distribution with rate [. This motivates the use of the generalized 

linear model of the Poisson regression for estimating [ (Mandallaz and Ye 1997). The rate [ is 

related to the explanatory variables � = [��; … ; �c] by means of the link function  

log([
 = de + d��� + d��� + ⋯ + dc�c = �gh. (3.17) 

h = [de, … , dc] is the vector of regression coefficients. This link function ensures that [ is a non-

negative real number. The mean occurrence rate is then given as 

[ = exp(�gh
 = exp(de
 exp(d���
 exp(d���
 … exp(dc�c
. (3.18) 

Changing one of the explanatory variables from �� to �� + Δ�, while keeping all other fixed, leads 

to a relative change in [ of  

jΔ[
[ k

�
 = exp(de
 exp(d���
 … exp(d��� + Δ�
 … exp(dc�c
 − exp(�gh


exp(�gh

= exp(d�Δ�
 − 1. (3.19) 

In the numerical investigations, several models are examined, which differ in the selection of the 

explanatory variables �. These are selected from a set of variables describing land cover, human 

population density, road density and components of the CFFWIS.  
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3.3.1 Maximum likelihood estimation 

In order to determine the parameters of a statistical model Maximum likelihood estimation (MLE) 

can be used. Here it is applied to determine the coefficients h. For the Poisson regression model, the 

likelihood function follows from Eq. (3.15) as 

:�h|�
 = � � Pr l\�m = ;�mn[Vh, ��mYo
pq

m��

pr

���
 

= � �
l[Vh, ��mYo�st

;�m! exp l−[Vh, ��mYo .
pq

m��

pr

���
 

(3.20) 

uv is the number of days with observations and uw is the number of spatial units with 

observations. ;�m is the number of fires observed on day ! in area x; ��m are the values of the 

explanatory variables on day ! in area x. 

The MLE is found as the value of h that maximizes :(h|�
: 

hyz{ = argmax :(h|�
. (3.21) 

No analytical solution to this optimization problem exists. Numerical optimization must be 

applied. For this purpose, it is convenient to express the optimization problem in terms of the log-

likelihood instead: 

hyz{ = argmax ln :(h|�
 

           = U U ;�m ln l[Vh, ��mYo − ln(;�m!
 − [Vh, ��mY
pq

m��

pr

���
. 

(3.22) 

In the numerical investigations, the simplex search method and the quasi-Newton method are 

used to solve Eq. (3.22), as implemented in the Matlab functions fminsearch and fminunc.  

3.3.2 Diagnostics 

In order to evaluate the resulting models different diagnostic methods are used; the Akaike 

Information Criterion, used to compare models of different complexity based on their likelihood 

and number of parameters and the receiver operating characteristic (ROC) curves, which evaluate 

graphically the predictive performance of the models. 
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3.3.2.1 Akaike Information Criterion 

To compare different models, the Akaike Information Criterion (AIC) is employed (Akaike 1974). 

The AIC allows to compare models of different complexity. It is defined as 

|6} = −2 ln:�hyz{|�
 + 2(~ + 1
, (3.23) 

where ln:(hyz{|�
 is the maximum log-likelihood and (~ + 1
 is the number of coefficients d� of 

the model. The first term in the AIC accounts for the likelihood of the model, the second term 

punishes the models with more parameters to avoid overfitting. 

An additional comparison between models is performed with a verification data set ��, which is not 

used for estimating hyz{. The log-likelihood of hyz{ calculated with the verification data set ��, 

i.e. ln:(hyz{|��
, provides an indication of model prediction performance. 

3.3.2.2 ROC curves 

The receiver operating characteristic (ROC) curves provide an additional measurement of the 

prediction performance of the models with a binary outcome. In ROC curves it is examined how the 

model predicts real observations. The predictions vary between true positives (i.e. events that model 

predicted correctly), true negatives (i.e. non-occurrence model predicted correctly), false positives 

and false negatives (Table 3.1).  

 

Table 3.1: Confusion matrix (contingency table) of a ROC curve  

 True condition 

Positive Negative 

Predicted 

condition 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

Sensitivity (True positive rate) is the sum of the TPs divided by all occurred events and reflects the 

probability of detection. 1-specificity (False positive rate) is the FPs divided by the all non-

occurring events and reflects the false alarms.  

Sensitivity = ∑ TP
∑ TP + FN (3.24) 

1 − specificity = ∑ FP
∑ FP + TN (3.25) 
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The percentage of true positives (sensitivity) as a function of the complement percentage false 

positives (1-specificity) is then plotted as a ROC curve (Marcot 2012). The area under a ROC curve 

(AUC values) describes the system’s ability to predict correctly the occurrence of an event (Mason 

and Graham 2002). AUC values range [0,1]. 1 denotes no error and 0.5 denotes totally random 

models (Marcot 2012). 

3.4 Weather data interpolation and CFFWIS calculation 

As already mentioned in Section 2.3, the calculation of the components of the CFFWIS, which will 

be used to express the influence of weather on the fuel moisture, requires the input of daily values 

of weather parameters. In the applications, daily weather observations are taken from different local 

weather stations. These are then interpolated to the whole study area using Inverse Distance 

Weighting (IDW) (Shepard 1968). This deterministic interpolation method, which is widely used in 

meteorology due its relative simplicity, was chosen here because of the limited number of weather 

stations with available data for the case study areas. Other (stochastic) geostatistic interpolation 

methods, such as Kriging, might interpolate weather observations more accurately, since they take 

under account also the spatial correlation between the weather stations. Nevertheless, such methods 

require a minimum number of about 30 observations in order to give solid correlations in the 

variogram and therefore are not applied in this thesis. After the interpolation of daily weather 

parameters with IDW, daily values of the CFFWIS components are calculated for each location 

based on the interpolated values. The equations for the calculation of the six parameters of the 

CFFWIS can be found in Appendix I. 

3.4.1 Inverse Distance Weighting 

The Inverse Distance Weighting method is a two dimensional deterministic interpolation method 

and is based on the assumption that the smaller the distance to the points with given values, the 

higher their influence on the interpolated value. The values are therefore weighted according to the 

distance from their location to the location of the unknown value. If ~�, with ! = 1, … ,4, the 

locations with known values W�~�
 and ~e the location to interpolate, then the interpolated value is 

given from Eq. (3.22) and Eq. (3.23) with . the influence of values close to the interpolated point. 

 

Ŵ�~e
 = U W�~�

<����

∑ <�e��(���

(

���
 (3.26) 

 

<�e = ���� − �e
� + ��� − �e
� (3.27) 
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Figure 3.6: Inverse Distance Weighting method 

 

Temperature is additionally adjusted to the altitude based on the normal lapse rate 

(0.65°C/100m) (Leemans and Cramer 1991) (Figure 3.7). At each weather station !, the equivalent 

temperature at sea level is computed from the measured noon temperature ��� as �e,� = ��� +
0.0065ℎ��, where ℎ�� = altitude of the weather station in [m]. The IDW interpolation is 

performed using the �e,� values, resulting in a temperature value at sea level �e. The daily noon 

value of temperature in the location C,  �� is then computed as �� = �e − 0.0065ℎ�. Here, ℎ� is 

the altitude at the location C. 

 

 
Figure 3.7: Temperature adjustment based on the normal lapse rate  

 

After the weather observations are interpolated, the daily components of the CFFWIS are 

calculated for each cell of the study area based on the formulation given in Appendix 1. The starting 

values of the fuel moisture codes for the first day (Jan 1) are the ones proposed in (Canadian 

Forestry Service 1984), (Lawson and Armitage 2008) (FFMC=85, DMC=6, DC=15). The starting 

values were reset every year. The calculations were made in Python. 
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3.5 Summary 

Chapter 3 gives an overview of all the methods used in this thesis to model fire risk. The reader is 

introduced to the concept of BN and to the interrelations between the random variables with the 

help of simple examples. BN are useful is modeling phenomena with complicated causalities and 

uncertainties in the values of the variables. In the case of missing values the parameter estimation of 

the model can be performed with the Expectation-Maximization algorithm. The prior distributions 

of the random variables of the network can be defined based on real data. In case of spatial or 

spatio-temporal data managed in a Geographic Information System (GIS), the BN and the GIS can 

be coupled, to facilitate model parameter learning and result mapping. Different types of BN-GIS 

coupling are described and focus is placed on the coupling type used in this thesis. Fire occurrence 

modelling is usually done with regression analysis of empirical data (e.g. Preisler et al. 

2004;Syphard et al. 2008;Oliveira et al. 2012). Poisson regression and the parameter estimation 

method maximum likelihood estimation are here introduced and are both applied later in this thesis. 

The chapter gives also insight in the diagnostics used in this study, thus the Akaike Information 

Criterion and the ROC curves. The Akaike Information Criterion compares the resulting models 

according to their maximum log likelihood and “punishes” the models with the higher number of 

variables.Weather influence on fire risk is expressed in this thesis directly by weather observations 

and indirectly by fuel moisture indices. The latest are components of the CFFWIS. The specifics of 

the calculation of these components and the interpolation method Inverse Distance Weighting 

method are here described. The latter is used to interpolate the weather observations from the 

weather stations to the whole study area. The weather parameters wind speed, relative humidity, 

temperature and precipitation are interpolated according to the inverse distance weighting, where 

the closer the points to a weather station, the higher the influence of its measurements to the 

interpolated value. Temperature is also adapted to the elevation based on the normal lapse rate.  The 

daily values of the parameters of the CFFWIS are then calculated from the noon interpolated 

weather values. 
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In this chapter the study areas where the models are applied and tested are introduced. The collected 
data and their sources are also described. Three study areas (Rhodes, Cyprus and South France) are 
here presented to introduce the reader to the data that will be used in the applications in the next 
chapters and to give an insight to the variable selection made further in the thesis. Preliminary data 
analysis demonstrates the fire occurrence rate and the resulting burnt area in relation to influencing 
factors. All spatial data are edited and processed with ArcGIS 10. The data analysis presented here 
can be found also in Papakosta and Straub (2011), Papakosta and Straub (2013), Papakosta et al. 
(2013), Scherb and Öster (2013) and Papakosta and Straub (2015). 

4.1 Rhodes 

4.1.1 Description 

The Greek Mediterranean island of Rhodes has been chosen as a study area, because it represents 
quite adequately the climate and the mixed land uses of fire-prone Mediterranean regions. Rhodes is 
located in the south eastern part of the Aegean Sea, its area is 1409 km² and in 2001 the number of 
permanent residents was 115.334 (Hellenic Statistical Authority). On the administrative level, the 
island is divided into 43 municipalities. The inner part of the island is mountainous with the highest 
elevation at 1215 m. The climate of Rhodes is a dry summer subtropical climate (Mediterranean) 
with wet winter and long dry summer periods and an annual mean temperature of around 22 °C. 
The natural vegetation consists of evergreen shrubs, genista, pine forests and mixed forests with 
cypresses. The main agricultural activities on the island are the cultivation of olives and vines. 
Wildfires are common on Rhodes; as an example wildfires occurring in September 2008 led to a 
burned area of 122 km² according to recordings of the Greek Fire Service. 

4 Study areas 
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4.1.2 Input data 

Both spatial and temporal data are used. The elevation of the island is taken from the Advanced 
Spaceborne Thermal Emission and Reflection radiometer (ASTER) Global Digital Elevation Model 
(GDEM). ASTER GDEM is a project of the Ministry METI of Japan and NASA. The spatial 
resolution is 15 meters in the horizontal plane. Three GeoTIFF data sets cover the whole area of the 
island (ASTGTM_N35EO27, _N36EO27, _N35EO28).  

To obtain information on land cover, the 2000 version of Corine Land Cover (CLC) is utilized 
(European Environment Agency). CLC provides consistent localized geographical information on 
the land cover of the 12 Member States of the European Community in a scale of 1:100.000. The 
CLC is the result of the combination of information from different sources, including satellite 
images, aerial photographs, topographic maps, thematic land cover maps and ground truth surveys 
(the minimum unit mapping was set at 25 ha (0.25 km²)) and is classified in 44 types. Out of these, 
only 25 are present on the island. A thematic map with the administrative boarders of municipalities 
of the island, provided by Agroland SA, is utilized. Demographic data on the population of each 
municipality in 2001 was obtained from the Hellenic Statistical Authority (Figure 4.1).  

 
Figure 4.1: Administrative borders (Municipalities) and human population density [Nr. Residents/km²] on Rhodes 

 
 
Historical data on the occurrences of fires during the period 2000-2009 were obtained by the 

statistical department of the Greek Fire Service. The data offered information on the date of fire 
occurrence and the municipality that it occurred. Data related to the mean elevation, land cover 
classes and area are then extracted for each of the 43 municipalities. Table 4.1 summarizes the data 
used and their sources.  
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For the calculation of the components of the CFFWIS, weather data on temperature, relative 
humidity, wind speed and precipitation for the years 2000-2009 were obtained from the German 
Weather Service (Deutscher Wetterdienst). The measurements were made at the Greek official 
weather station at the airport of Rhodes (36°24' N, 28°05' E, 11 m). 
 
 
Table 4.1: Data types, resolution and sources for Rhodes 

Data Resolution Source Additional information 

spatial temporal 

Digital Elevation 

Model (DEM) 

15m x 15m  ASTER GDEM  

(Ministry METI Japan & 

NASA) 

3 GeoTIFF data sets 

Land cover 250m x 250m  Corine Land cover 2000  

(European Environmental 

Agency)  

44 land cover types 

1:100,000 (version13) 

Admin. borders municipality  Agroland SA  

Population municipality  Hellenic Statistical Authority census 2001 

Road network   Open Street Map  

Fire Events municipality Date 

2000-2009 

Greek Fire Service  

Temperature 

Wind speed 

Relative humidity 

Precipitation 

Weather Station:  

Rhodes Airport 

3-6hr/Daily 

2000-2009  

 

24hr Daily 

2000-2009     

Deutscher Wetterdienst 

(DWD) 

 

 

 

 

 

4.1.3 Preliminary data analysis 

The lack of the exact location of past fire events, as well as the presence of only one weather station 
in the available data set, limits the preliminary data analysis applied on Rhodes study area to an 
introductory level. Here, only first analysis of the correlation between components of the CFFWIS 
(FFMC) and fire occurrences is shown.  

Temperature, relative humidity and wind speed are recorded in 3-hour intervals. The daily 
values at noon are extracted and used as an input for the FFMC calculations. In the case of missing 
values of relative humidity and wind speed at noon, values from the previous measurement at 09:00 
are utilized. In the case of a missing temperature value, the recorded value of the previous day at 
noon is taken. Since there is only one official weather station on the island, the weather variables at 
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other locations are inferred from the data obtained at this station. For temperature, the value in each 
municipality is estimated based on the normal lapse rate of temperature of 0.65°C/100m. 

FFMC is found to have only slight influence on the occurrence rate, which is estimated as 8.35 ∙
10�	 [Nr.Occurrences/day/km²] for FFMC values in the range of 0 − 40 and 8.59 ∙ 10�	 [Nr. 
Occurrences/day/km²] for FFMC values in the range of 95 − 100. To facilitate the interpretation of 
this result, Figure 4.2 shows calculated FFMC values for year 2000, together with daily 
precipitation and the observed number of fires. The FFMC values are generally high, and the only 
large changes occur during and after rainfall events.  

Figure 4.3 shows histograms of FFMC values calculated for days with zero, one or two recorded 
wildfires. These three conditional histograms and the corresponding conditional means and standard 
deviations exhibit similar trends, i.e. the FFMC mean value is over 80 independently of fire 
occurrence. The distribution of FFMC is shifted to the right for Nr. fire occurrences = 0,1,2.   

 

Figure 4.2: FFMC values at a representative municipality, together with observed precipitation at the weather station 
and total number of wildfire occurrences on Rhodes for year 2000 

 
 
 
 
 
 
 
 
 
 
 
 
 



4.2 Cyprus 43 

 

 
 

 
Figure 4.3: Histograms of FFMC for a representative municipality, conditional on the recorded number of fires 
occurring on Rhodes 

4.2 Cyprus 

4.2.1 Description  

We employ data from the Republic of Cyprus, which is selected due to its representative Eastern 
Mediterranean climate (short cool winters followed by long hot and dry summers), vegetation and 
fire history. The maps and data analysis of this study area can be found in Papakosta and Straub 
(2015). The natural areas on the island are mainly covered by coniferous forests (e.g. Pinus brutia), 
whereas the permanent cultivated areas are dominated by vineyards. The highest peak of the study 
area is Olympus Mountain of the Troodos Massif (1952 m).  

4.2.2 Input data 

Figure 4.4a shows the digital elevation model (DEM) of the whole island of Cyprus (ASTER 
GDEM). The study area is indicated, and the 5 weather stations, whose data is used in the analysis, 
are marked. Fire data representing all fires suppressed by the state forest agency were provided by 
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the Department of Forests of Cyprus for the period 2006-2010. Fires of all sizes were recorded, 
with 10% of recorded fires being less than 0.01 ha.  
Figure 4.4b presents the location of all recorded fires in the study area.  The total number of 
recorded fires in this study is 616, which corresponds to a mean annual number of fire occurrences 
of 123. The mean burnt area [km²] of the fires is 0.17 km² and the standard deviation is 0.92 km². 
The maximum burnt area recorded in 2006-2010 is 13.62 km² (Figure 4.6b). 

Both spatial and temporal data are used. Table 4.2 gives an overview of the utilized data, their 
spatial and temporal resolution and their sources. 

Both spatial and temporal data are managed in a geodatabase. All the spatial and temporal data 
were attached to a 1km² grid covering the whole area of the case study (6447 grid cells). The 
population density in each grid cell (people/km²) is determined from the municipality census data 
(Figure 4.5a). The road density (km/km²) is computed from the actual length of roads in each cell 
(Figure 4.5b). The land cover type assigned to each cell is the one covering the largest area within 
that cell (Figure 4.5c). According to Corine land cover (2006), forests and semi-natural areas 
together with agricultural areas cover the largest part of the study area. The land cover type pastures 
is included into the Urban-Wetland land covers, since it covered only a small area of the case study 
(7 km²). The land cover is also classified in urban/rural (Figure 4.7a) based on the population 
density. This classification influences the types house type, as it will be shown later in Chapter 7. 
The house type is a portfolio of houses present in km². The houses are divided to single houses, row 
houses and apartments. The houses are also characterized by the construction type, i.e. the 
construction materials of the houses. This is also a portfolio of construction types (%) in each km².  

4.2.3 Preliminary data analysis 

Daily weather observations (extracted from 3hr and 6hr observations) are interpolated using Inverse 
Distance Weighting (IDW). Daily values of the CFFWIS components are then calculated for each 
grid cell based on the interpolated values. Temperature is additionally adjusted to the altitude based 
on the normal lapse rate (0.65°C/100m).  

Preliminary analyses of the time series 2006-2010 are shown in Figure 4.9 - Figure 4.16. As 
there are 616 recorded fires, the average occurrence rate of fires in this period is 
 

Nr. Fires

day ∙ km²
=

616

[(365 ∙ 5) + 2] ∙ 6078
= 5.5 ∙ 10�#  

Fires

day ∙ km²
. 

 
 
Figure 4.8 displays daily calculated FWI values, daily precipitation and temperature observed at 

Paphos weather station and the total number of fire occurrences in the entire study area in 2006. 
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Figure 4.4: (a) ASTER Digital Elevation Model (m) showing the highest peak of the Troodos Massif in white (1956 m) 
and the included five weather stations on the Republic of Cyprus (included in grey perimeter). (b) Municipality borders 
of the area of the numerical investigations and registered fire events during 2006-2010 (616 events) 
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Table 4.2: Data types, resolution and sources for Cyprus 

Data Resolution Source Additional information 

spatial temporal 

Digital Elevation 

Model (DEM) 

15m x 15m  ASTER GDEM  

(Ministry METI Japan 

& NASA) 

Six GeoTIFF data sets 

Land cover 250m x 250m  Corine Land cover 2006  

(European 

Environmental Agency)  

44 land cover types 

1:100,000 (version13) 

Admin. borders municipality  Statistical  

Service of Cyprus 

 

Population municipality  Statistical  

Service of Cyprus 

census 2011 

Road network   Open Street Map  

Fire Events X,Y 

burnt area 

Date 

2006-2010 

Department of  

Forests of Cyprus 

 

Temperature 

Wind Speed 

Relative 

Humidity 

Precipitation 

 3-6hr/ Daily 

2006-2010  

 

24hr Daily 

2006-2010     

Deutscher Wetterdienst 

(DWD) 

 

Cyprus Meteorological 

Service 

 

Weather Stations: 

Athalassa,  

Paphos Airport, 

Akrotiri RAF,  

Larnaca Airport,  

Troodos Square 

Fire Stations address  Fire department Cyprus  29 stations 

Houses municipality  Statistical  

Service of Cyprus 

 

House Stock    Statistical  

Service of Cyprus 

single houses 

row houses 

apartments  

% percentage in 1km² 

Construction 

type 

  Statistical  

Service of Cyprus 

traditional house (stone/mud wall) 

single brick wall/flat roof house 

insulated brick/inclined roof 

% percentage in 1km² 
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Figure 4.5: Spatial variables of the study area Cyprus: (a) Population density [Nr. people/km²]; (b) Road density 
[km/km²]; (c) Land cover types 

 
Figure 4.6: (a) Municipalities and (b) Burnt areas [km²] 2006-2010 on Cyprus 
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Figure 4.7: (a) Urban/Rural areas; (b) Distance to next fire station [km]; (c) Land cover types; (d) House density 
[Nr/km²]   

 
Figure 4.9 - Figure 4.12 display histograms of calculated CFFWIS component values 

conditional on the occurrence of fires on the particular day and location. Figure 4.9 shows FFMC 
conditional on days with and without fire. The value of FFMC on days and locations with fire 
occurrences is not significantly different from those without. The FFMC is mainly influenced by 
precipitation, for this reason it stays high during the dry summer period. ISI (Figure 4.10) and BUI 
(Figure 4.11) show higher values on days with fires than on days without fire. The conditional 
histograms in Figure 4.12 show that the FWI on days and locations where fires occurred is higher 
than on those where none occurred. The mean FWI for days and locations with no fire occurrence is 
22.5 and for those with at least one fire occurrence it is 32. These results confirm the potential of 
ISI, BUI and FWI as explanatory variables in a regression model. However, it is also clear from 
these results that the components alone have only limited prediction ability. E.g., fires occurred also 
on days and locations with FWI values close to zero.  
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Figure 4.13 shows the observed mean occurrence rate of fires as a function of the FWI. As 
expected, the fire occurrence rate increases with increasing values of FWI. Figure 4.14 shows the 
observed mean occurrence rate of fires as a function of the population density. There is a clear 
distinction between rural areas (less than 100 people/km²) and urban areas (more than 100 
people/km²). The observed mean occurrence rate of fires for different road density classes is given 
in Figure 4.15.The occurrence rate increases with road density up to a value in the range of 8 
km/km². In areas with road density higher than 8 km/km², the observed rate decreases; these areas 
are urban areas. Observed mean occurrence rates for different land cover types are shown in Figure 
4.16. Among agricultural areas, the highest occurrence rate is found in olive grove areas. Overall, 
urban areas (U) have the lowest fire occurrence rate. In areas classified as water bodies (W), the 
observed mean occurrence rate is high, based on 5 registered fires in a 31 km² area. This is due to 
the approximation introduced by the 1km x 1km grid, which requires assigning a single land cover 
class to each cell. Fires are frequent in shore areas. Figure 4.17 shows the interpolated weather 
parameters on a selected day (8th October 2010) on Cyprus.  

Figure 4.18 shows the calculated values of the components of CFFWIS on the same day on 
Cyprus. 

Figure 4.19 and Figure 4.20 show the burnt area from each event (2006-2010) versus the 
weather parameters temperature and wind speed. The figures can be found in Ederle (2013). The 
scatterplots are shown in both linear and logarithmic scale. Similar plots of relative humidity and 
precipitation and the calculated components of the CFFWIS (FFMC, DMC, DC, ISI, BUI, FWI) are 
included in Appendix II. In all plots there is no linear function that can be used to express the 
relationship between the parameters and the resulting burnt area.  

The damages induced by wildfires are very sparsely documented. No information on the losses 
was found in any administrative level on Cyprus. Nevertheless, the NatCatSERVICE of Munich Re 
is a database documenting losses from natural hazards worldwide. Two fire periods on Cyprus are 
documented together with the resulting losses (Table 4.3).   

 
 
Figure 4.8: Daily values of Fire Weather Index (FWI), precipitation (mm) and noon dry-bulb temperature (° C) at 
Paphos weather station, and total number of fire occurrences in Cyprus in 2006 
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Figure 4.9: Histograms of FFMC (2006-2010) conditional on fire occurrence on Cyprus 

 

 
 
Figure 4.10: Histograms of ISI (2006-2010) conditional on fire occurrence on Cyprus 

 

 
 
Figure 4.11: Histograms of BUI (2006-2010) conditional on fire occurrence on Cyprus 
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Figure 4.12: Histograms of FWI (2006-2010) conditional on fire occurrence on Cyprus 

 

 
Figure 4.13: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on FWI class for 2006-2010 on Cyprus 

  
 
 

 
 
Figure 4.14: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on population density [people/km²] for 
2006-2010 on Cyprus 
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Figure 4.15: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on road density [km/km²] for 2006-2010 
on Cyprus 
 

 
 

 
 
Figure 4.16: Observed mean occurrence rate [Nr. Fires /day x km²] conditional on land cover types for 2006-2010 on 
Cyprus 
 

U: urban areas, A: arable land, V: vineyards, Fr: fruits and berry plantations, Ol: olive groves,  

H: heterogeneous agricultural areas, F: forests, Sh: shrub and/or herbaceous vegetation associations,  

Op: open spaces with little or no vegetation, W: wetlands and water bodies 

 

0-1 1-3 3-8 8-26
0

1

2

3

4

5

6

7

8

9
x 10

-5

Road density [km/km²]

O
cc

u
rr

e
n

ce
 r

at
e

 | 
o

b
se

rv
e

d
 R

o
a

d
 d

e
n

si
ty

[N
r. 

O
cc

u
rr

en
ce

s 
/ 

(d
ay

 ×
 k

m
²)

]

U A V Fr Ol H F Sh Op W

0.8

x 10
−4

O
cc

u
rr

en
ce

 r
at

e 
| o

b
se

rv
ed

 la
n

d
 c

o
ve

r

[N
r. 

O
cc

u
rr

en
ce

s 
/ 

(d
ay

 ×
 k

m
²)

]

Land cover types

1.4

1.2

1

0.6

0.4

0.2

0



4.2 Cyprus 53 

 

 

 
 
Figure 4.17: Interpolated weather parameters, (a) wind speed [km/h]; (b) temperature [° C]; (c) relative humidity [%] on 
the 8th October 2010 on Cyprus 
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Figure 4.18: Components of the CFFWIS on the 8th October 2010 on Cyprus 
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Figure 4.19: Burnt area of fire events (2006-2010) versus Temperature [° C] in linear and logarithmic scale 

 

Figure 4.20: Burnt area of fire events (2006-2010) versus Wind speed  [km/h]  in linear and  logarithmic scale 
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Table 4.3: Fire periods and registered damages on Cyprus (NatCatSERVICE, Munich Re) 
Fire Period Location Damages description House Losses  

 
20 June 2007- 
16 July 2007 

Kalavasos, Asgata Forest fires, high temperatures 
>40°C. Several houses, buildings 
destroyed. Evacuated: 5 villages. 
 

several buildings 

June 2008 West of Larnaka, 
Sina Oros near 
Limassol 

Forest-, brushfires. 5 houses, holiday 
homes destroyed. Farmland affected. 
Injured: 5 firefighters. 

5 houses 

 

4.3 South France 

4.3.1 Description 

South France is chosen for model application due to typical Mediterranean climate and land uses. 
The study area covers two regions, Languedoc-Roussillon and Provence-Alpes-Côte d’Azur.  

Languedoc-Roussillon is divided into five administrative departments and comprises 1545 
municipalities. Its area is 27 376 km² and it has 2 686 054 residents (year 2012). In the last decade 
the region experienced a fast population growth in the largest cities Montpellier, Nîmes and 
Perpignan. The area has two mountain regions, Pyrénées-Orientales in the south (summit Pic Carlit, 
2921m) and Massif Central in the north (summit Mont Lozére, 1699m).  

The climate is characterized by short mild winters (average temperature 8 °C) and long dry hot 
summers (average temperature 24 °C). Due to the varying topography of the area, it can be divided 
in four climate types. The mountainous areas (Pyrénées, Montaignes Noirs, Cévennes), the foothills 
of the mountainous areas with warmer temperatures but various microclimate and land use 
dominated by vineyards, pines and shrubs, the coastal plain characterized by vineyards and urban 
and peri-urban areas (cities Motpellier, Perpignan, Narbonne, Bézier) and the agricultural area in 
the western part beyond Carcassone. The Mistral and the Tramontana winds are strong cool dry 
winds that can reach wind speed over 100 km/hr. Mistral affects mostly the eastearn Gard 
department coming from the north, whereas Tramontana blows in from the sea into the coastal 
plains of Hérault, Aude and Pyrénées-Orientales.  

Provence-Alpes-Côte d’Azur is divided into six departments and comprises 963 municipalities. 
It covers an area of 31 400 km² and has 4 900 000 residents. The topography of the region varies, 
with high-lying summits in the north (summit Bare des Ecrins, 4102m) facing the plane coast where 
major cities (Nice, Cannes, Marseille) are located. Land use is predominantly forest, shrubs and 
agricultural land.   

The climate of the region shows high variability especially in the precipitation due to the 
varying topography. The south encounters wet winters and dry summers with almost no 
precipitation, which makes the coastal plain more susceptible to fires.  
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4.3.2 Input data 

Table 4.4 summarizes the employed data, the resolution and their sources. Figure 4.21 shows the 
digital elevation model, the weather stations, the fire events (2000-2011) and the municipalities of 
both regions. Figure 4.22 shows the fire events (2000-2011) classified based on the resulting burnt 
area. Most of the fires resulted to burnt area < 1km², and two fire events burnt larger areas (27-67 
km²). Figure 4.23 shows the population density [Nr. people/km²], the street density [km/km²] and 
the land cover types in Languedoc-Roussillon and Provence-Alpes-Côte d’Azur.  
 
Table 4.4: Data types, resolution and sources for South France 

 

4.3.3 Preliminary data analysis  

Figure 4.24 shows the observed mean occurrence rate of fires as a function of the population 
density. The mean occurrence rate increases with increasing population density. This is contrary to 
the result in Figure 4.14, where the occurrence rate increases in rural areas with increasing 
population density and for urban areas then decreases. 

Data Resolution Source Additional 
information 

spatial temporal 

Digital Elevation 

Model (DEM) 

15m x 15m  ASTER GDEM  

(Ministry METI Japan & NASA) 

 

Land cover 250m x 250m  Corine Land cover 2006 

(European Environmental 

Agency)  

44 land cover types 

1:100,000 

(version13) 

Admin. borders municipality  ARTICQUE Solutions Group  

Population municipality  Statistical Service of France 

(INSEE) 

census 2009 

Road network   Open Street Map  

Fire Events DFCI 

coordinates 

Date 

2000-2011 

Prométhée Forest Fire Database 

 

 

Temperature 

Wind speed 

Relative humidity 

Precipitation 

 Daily 

2000-2011  

 

24hr Daily 

2000-2011     

Deutscher Wetterdienst (DWD) 

MétéoFrance  

 

35 Weather Stations 
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Figure 4.25 shows the observed mean occurrence rate of fires as a function of the street density. 
The occurrence rate increases for increasing street density in rural areas (street density < 15 
km/km²) and a decrease can be observed for urban areas (street density > 15 km/km²). This result 
agrees with the result shown in Figure 4.15. 

Figure 4.26 shows the observed mean occurrence rate of fires as a function of the land over 
types. Olive groves followed by urban areas (it can be assumed that this is mainly in the wildland 
urban interface buffer zone) show the highest mean occurrence rate. Vineyards, heterogeneous 
agricultural areas and forests follow. As in Figure 4.16, the areas covered by olives have the highest 
mean occurrence rate.  

 
 

 
 

Figure 4.21: (a) DEM and weather stations and (b) fire events (2005-2011) and municipalities for study areas 
Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
 
 

Figure 4.27 shows the interpolated values of the weather parameters on a specific day (25th July 
2009). It can be seen that the temperature (Figure 4.17c) is also adapted to the elevation based on 
the normal lapse rate. 

Figure 4.28 and Figure 4.29 show the calculated values of the CFFWIS components on the 25th 
July 2009. FFMC takes very high values, as expected due to dryness. It is also obvious the 
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influence that temperature (Figure 4.27c) has on this component.  DMC is also influenced by wind 
speed (Figure 4.27a) and DC from temperature. In this map the relation between the components 
ISI and BUI and FWI can also be seen. FWI results from the combination of the ISI and the BUI. 

 
 

 
Figure 4.22: Fire events 2000-2010 in South France classified based on the resulting burnt area [km²]  
 

 
Table 4.5 shows the losses for different fire periods, as they are registered in the 

NatCatSERVICE database of Munich Re.  
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Figure 4.23: (a) Population density [Nr. People/km²], (b) Street density [km/km²] and (c) Land cover types in 
Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
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Figure 4.24: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on population density [Nr. People/km²] 
for 2005-2011 in Languedoc-Roussillon and Provence-Alpes-Côte d’Azur  

 
 
 

 
 
 
Figure 4.25: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on street density [km/km²] for 2005-2010 
in Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
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Figure 4.26: Observed mean occurrence rate [Nr. Fires/day x km²] conditional on land cover types for 2005-2010 in 
Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
 

U: urban areas, A: arable land, V: vineyards, Fr: fruits and berry plantations, Ol: olive groves, P: pastures 

H: heterogeneous agricultural areas, F: forests, Sh: shrub and/or herbaceous vegetation associations,  

Op: open spaces with little or no vegetation, W: wetlands and water bodies 
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Figure 4.27: Interpolated weather parameters (a) wind speed [km/h]; (b) relative humidity [%]; (c) temperature [° C] on 
the 25th July 2009 in Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
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Figure 4.28: Calculated components of the CFFWIS (a) FFMC; (b) DMC; (c) DC on the 25th July 2009 in Languedoc-
Roussillon and Provence-Alpes-Côte d’Azur 
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Figure 4.29: Calculated components of the CFFWIS (a) ISI; (b) BUI; (c) FWI and fire occurrences on the 25th July 
2009 in Languedoc-Roussillon and Provence-Alpes-Côte d’Azur 
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Table 4.5: Selected fire periods and registered damages in South France (NatCatSERVICE, Munich Re) 
Fire Period Location Damages description House Losses  

 
8.-9.10.2011 
 

Languedoc-
Roussillon, 
Herault 
 

Brush fire 
Wind speeds up to 80 km/h 
Structures burnt 

Structures burnt 

21.-23.8.2011 Auvergne, Cantal; 
Languedoc 
Roussillon, 
Lozère;  
Poitou-Charentes, 
Charente 
 

Several forest fires (esp. pine trees) 
>2.6 km² burnt 
Injured: 5 (fire fighters) 

 

22.-23.7.2009 Marseille, Cassis 
 

Forest fires (manmade fire) 
4 houses, farmhouse destroyed 
 

4 houses 

4.-24.7.2007 Provence,  
Alpes-Maritime, 
Mandelieu-la-
Napoule, 
Theoule-sur-mer; 
Cote Azur, Var,  
Ramatuelle 
 

Several forest fires 
 >20 km² of land burnt 
1 house destroyed 
Roads, highways closed 
Injured: 5 
Evacuated: 3,000. 

1 house 

5.7.-8.8.2005 Corce;  
Haute-Provence, 
Manosque, 
Gréoux-les-Bains, 
Saint-Martin-les-
Eaux,  
Saint Raphael, 
Aix-en-Provence 
 

Drought conditions for several weeks 
Intense mistral wind 
>1,500 seats of fire 
10 houses damaged 
>100 km² of brush, forest destroyed 
Power lines cut off 
50,000 households without electricity 
Injured: 5 
Evacuated: 650 
Also affected: Spain, Portugal, Italy 
 

10 houses 
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4.4 Summary 

Chapter 4 introduces the reader in the study areas Rhodes, the Republic of Cyprus and South 
France. The data types, resolution and sources are described. This preliminary data analysis gives 
an overview on the factors influencing fire occurrences and burnt area. The mean occurrence rate of 
fires increases for higher values of population density and street density and decreases in urban 
areas. Olive groves are the areas with the highest mean fire occurrence rate. First maps of the 
interpolated values of the weather parameters are shown as well as maps with the calculated values 
of the CFFWIS components. The results of the components are compared with the observed fire 
occurrences. Among the components of the CFFWIS, ISI, BUI and FWI show a potential in 
predicting fire occurrences, in opposition to FFMC which remains high independently of the fire 
occurrence. Neither weather parameters, nor the components of the CFFWIS show linearity with 
the resulting burnt area. The potential of the CFFWIS componets to predict fire occurrence will be 
studied in depth in Chapter 5. Moreover, their ability to predict fire size (resulting burnt area) will 
be discussed in Chapter 6. Finally, registered losses for selected fire periods from the worldwide 
database NatCatSERVICE (Munich Re) are shown for both Cyprus and South France. The limited 
availability of damage data is also discussed. 
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Accurate fire occurrence prediction is essential for an efficient planning of preventive and 

mitigating measures. Due to the random nature of fire occurrences and uncertainties in the 

influencing factors, such a prediction should ideally be probabilistic. In this chapter, probabilistic 

daily fire prediction models are developed for the Mediterranean at the meso-scale, based on 

Poisson regression, which uses readily available spatial and weather data. Influencing factors 

included in the models are weather conditions, land cover and human presence. The models are 

learned with data from Rhodes from the period 2000-2009 and Cyprus from the period 2006-2010. 

The probabilistic prediction is verified with a test data set and is illustrated with maps for selected 

days. Main part of what is presented here is published in Papakosta and Straub (2015). 

5.1 Introduction 

The prediction of the occurrence and extend of fire incidents is of great importance for the planning 

of precautionary, preventive and mitigating measures (danger communication, evacuation 

preparedness, dead fuel clearing activities, fire-fighting infrastructure, property insurance). Due to 

the random nature of fire occurrences and uncertainties in the influencing factors, such a prediction 

must necessarily be probabilistic. Various probabilistic models are proposed in the literature, 

including Poisson models (e.g. Cunningham and Martell 1973; Mandallaz and Ye 1997; Syphard et 

al. 2008), logistic regression (e.g. de Vasconcelos et al. 2001; Preisler et al. 2004; Kalabokidis et al. 

2007; Syphard et al. 2008; Chuvieco et al. 2009; Arndt et al. 2013), multiple regression (e.g. 

Sebastián-López et al. 2008; Oliveira et al. 2012), neural networks (e.g. de Vasconcelos et al. 2001; 

Vasilakos et al. 2007; Vasilakos et al. 2009) and Bayesian networks (Dlamini 2009). Recently, 

machine learning algorithms have been found to be well suited for modeling and predicting fire 

occurrences, due to their larger flexibility compared with classical regression analysis. In particular, 

the Maxent (maximum entropy) algorithm (Parisien and Moritz 2009) and methods based on 

5 Fire occurrence model 
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decision tree learning, such as the random forest algorithm (Massada et al. 2012; Oliveira et al. 

2012) have been applied. The appropriate model choice depends on the selected influencing factors 

and their spatial and temporal resolution, as well as the purpose of the model prediction. 

Past probabilistic models of fire occurrence use weather factors, anthropogenic factors or 

combinations thereof as explanatory variables (Plucinski 2012). The effect of climatic factors is 

often represented by components of the Canadian Forest Fire Weather Index System (CFFWIS) 

(Martell et al. 1987; Martell et al. 1989; Wotton et al. 2003). In these studies, the temporal 

resolution is daily, the spatial resolution is regional. Various studies have looked into the combined 

effect of weather and anthropogenic factors (Cardille et al. 2001; Pew and Larsen 2001; Amatulli et 

al. 2006; Kalabokidis et al. 2007; Syphard et al. 2008; Vilar et al. 2010; Padilla and Vega-García 

2011; Miranda et al. 2012; Oliveira et al. 2012; Martínez-Fernández et al. 2013). The temporal 

resolution of these studies is seasonal or yearly, and thus the weather factors include mean, 

minimum and maximum temperatures, as well as cumulative precipitation. Common explanatory 

variables representing anthropogenic influences used are population density, land use, distances to 

human-built infrastructures (e.g. Catry et al. 2009), but many additional variables were studied, e.g. 

distance to campground (Chou et al. 1993), holidays (Mandallaz and Ye 1997), ownership of 

housing (Cardille et al. 2001), proximity to urban areas and roads (Romero-Calcerrada et al. 2008), 

unemployment rate (Oliveira et al. 2012), rural exodus by means of population decrease (Martínez-

Fernández et al. 2013), hiking trail density (Arndt et al. 2013). The spatial resolution in these 

studies varies from cellular (1 km² grid) (e.g. Pew and Larsen 2001) to regional. 

In this chapter a daily probabilistic model for fire occurrences in Mediterranean climates is 

developed, which includes both natural and anthropogenic factors. Such a daily predictive model 

aims to provide better predictions, than models based only on weather conditions, due to human 

influence on fire occurrences in the Mediterranean. The model, which has fine temporal and spatial 

resolution, can eventually be helpful as a fire management tool. In the proposed model, the 

influence of weather conditions is represented by the Canadian Forest Fire Weather Index System 

(CFFWIS) (Van Wagner 1987) (Section 2.3), which – although it was originally developed for 

Canadian climates and vegetation – is commonly used for predicting fire occurrence in the 

Mediterranean Viegas et al. 1999; Camia and Amatulli 2009. This necessitates that the 

interpretation of the CFFWIS indicators to categorize fire danger level (e.g., low, moderate, high) is 

adjusted to the specifics of the Mediterranean climates (Moriondo et al. 2006; Giannakopoulos et 

al. 2011; Dimitrakopoulos et al. 2011).   

In the model proposed and investigated in this chapter, the anthropogenic influence is 

represented through spatial variables such as land cover type and road density, which was found to 

be a relevant indicator of fire occurrence in e.g. (Amatulli et al. 2006; Yang et al. 2007; Syphard et 

al. 2008 and Oliveira et al. 2012). In contrast to previous studies, the proposed model combines a 

high spatial resolution (1km²) with a high temporal resolution (daily) for predicting fire occurrence. 

In addition, the model includes weather conditions (as expressed through the CFFWIS), topography 

and vegetation in combination with anthropogenic factors. The model is based on a Poisson 

regression (Section 3.3). Its results are daily maps of fire occurrence rates.  

A first model with spatial resolution the municipality is introduced and applied to the island of 

Rhodes. The second model is applied to the Republic of Cyprus, where the model parameters are 

learnt from observed fire events (see Chapter 4). The data is separated into a learning set and a 

verifying set, which allows investigating the predictive power of the proposed model. It is found 

that the best prediction can be achieved by combining the natural and anthropogenic factors. The 

main factors describing anthropogenic influences are found to be land cover, population and road 

density.  
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5.2 Probabilistic model for predicting fire occurrence 

Two BN models are here proposed. The first model is shown in Figure 5.1. The model is able to 

estimate wildfire occurrence rates based on temporal and spatial data. Here, the spatial reference of 

the model is the municipality level (administrative unit), to account for the available data (i.e. fire 

records that are available only for a municipality without geo-reference as in Rhodes study area). 

The temporal reference is one day. Therefore, the BN represents the factors influencing wildfire 

occurrence in a municipality (as specified by the corresponding node) during a particular day. 

The nodes of the model represent variables influencing wildfire occurrence. Grey nodes 

represent the variables used for the calculation of the daily fuel moisture and are treated separately 

in the parameter estimation. Every node has a number of discrete mutually exclusive states, 

meaning that continuous random variables (such as Area or Human population density) are 

discretized.  

The nodes Municipality, Area and Human population density can be determined from spatial and 

demographic data. In case of missing data, these nodes could be random. Land cover has labeled 

states that are related to fuel type (e.g. forest, natural grasslands, olive groves, artificial surface, etc.) 

and the probability of occurrence of each fuel type is taken as the proportion of the area covered 

within a municipality.  

The node FFMC (Fine Fuel Moisture Code) represents the continuous variable fuel moisture of 

fine fuels (Section 2.3). The node is a child of the weather variables (Temperature, Wind speed, 

Relative humidity and Precipitation) and the fuel moisture of the previous day. The daily values of 

FFMC are calculated deterministically with the equations given in Appendix.  

The node Occurrence rate represents the mean number of wildfire occurrences per day and km². 

In this model, the rate is a function only of Land cover, Human population density and FFMC, 

which includes all weather related variables. The occurrence rate is not observable and is estimated 

based on historical data with the EM algorithm (Section 3.1.1).  

For given daily rate of occurrence � and area �, the number of wildfires during a day can be 

modeled by a Poisson distribution, assuming independence among fire events for given occurrence 

rate (see Section 3.3). The CPT of the number of occurrences � is therefore obtained as, 
 

Pr�� = �| �, �� = ����


�! exp�−��� , � = 0,1,2, …       (5.1) 

wherein � [day��km��] is the occurrence rate and � [km²] is the area. 
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Figure 5.1: BN for fire occurrences using FFMC at the municipality level 

 

Figure 5.2 summarizes the second proposed probabilistic model by means of a BN. The BN 

models daily fire occurrence in a cell of 1 km², which is the spatial unit. This will be the model 

further used in this thesis to predict fire risk with 1 km² spatial resolution. This includes every 

wildland fire that is registered by the local authorities, independent of the burnt area. Different 

colors indicate different classes of variables. The variables in blue represent the weather conditions; 

the variables in orange are the components of the CFWIS, which result in a FWI value; the 

variables in yellow represent the anthropogenic influence and the vegetation. Finally, the variables 

in white are the predicted Fire occurrence rate and the actual Fire Occurrences. The yellow 

variables change over space but are constant in time, whereas all other variables change both in 

time and space. 

In classical regression analysis, the variables are separated into explanatory and response 

variables (sometimes also referred to as independent and dependent variables) (Section 3.3). In the 

BN framework, no such separation is made. Instead, the causal relations between variables are 

modeled, which is why in Figure 5.2 there are links in-between weather variables and in-between 

white variables. As an example, road density is statistically dependent on the land cover type and 

the human population density. In the application presented in this chapter, there is no difference 

between the BN model and the regression model. In fact, a regression approach is used to estimate 

the parameters of the BN as explained later. However, when using the model for prediction, not all 

explanatory variables may be known with certainty. The BN allows modeling them as random 

variables. As an example, the forecasted weather variables will be uncertain, which can be directly 

implemented in the BN. 
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Figure 5.2: BN for fire occurrence using all the components of the CFFWIS in 1km² spatial resolution 

 

Data is available for all weather variables as well as all yellow variables. All these variables are 

continuous, with the exception of land cover, which has labeled states that are related to fuel type 

(e.g. forest, natural grasslands, olive groves, artificial surface, etc.). The orange variables are 

defined by the CFWIS functions following Appendix I. For given values of the weather variables, 

they are defined deterministically. 

The fire occurrence rate �, which is defined as the mean number of fires per day and km², is 

estimated from the data. In the model, it is a function of land cover, human population density, road 

density and FWI. The variable fire occurrences � ∈ 0,1,2, … is the number of fires in one cell on 

one day. As explained before for a given daily fire occurrence rate �, the number of fires follows a 

Poisson distribution, assuming independence among fire events for given occurrence rate.  

Observations of N are used to estimate λ based on Poisson regression (Section 3.3). 

5.3 Parameter estimation 

The parameters of the model in Figure 5.1 are estimated based on the EM algorithm. The model is 

applied to the study area of Rhodes (see also Chapter 4). The daily values at noon are extracted and 

used as an input for the FFMC calculations (Appendix I). In the case of missing values of relative 

humidity and wind speed at noon, values from the previous measurement at 09:00 are utilized. In 

the case of a missing temperature value, the recorded value of the previous day at noon is taken. 

Since there is only one official weather station on the island, the weather variables at other locations 

are inferred from the data obtained at this station. For temperature, the value in each municipality is 

estimated based on the normal lapse rate. After the data pre-processing and the FFMC calculation, 
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each of the municipality is described by spatial information, daily weather conditions and FFMC for 

the time period 2000-2009, and recorded fire events (2,555 events).  

The model in Figure 5.2 is applied to Cyprus (see also Chapter 4). After the data pre-processing, 

weather interpolation and FWI calculation, each of the 6,447 grid cells is described by spatial 

information, noon daily weather conditions and FWI, and recorded fire events for the period 2006-

2010 (11,768,570 records). Only the records of the period 2006-2009 (9,419,067 records) are used 

for parameter estimation.  

Poisson regression with MLE is employed following Chapter 3. Various candidate models for 

the fire occurrence rate λ were learnt with the data. All models differ only in the selection of 

parameters employed. From these models, five were selected and are presented here. 

5.4 Results 

5.4.1 Rhodes 

The main result of the parameter estimation for the model of Figure 5.1 is the PMF of the 

occurrence rate conditional on the FFMC, the land cover and the human population density. To 

show the influence of each of these three factors individually, we evaluate the BN by fixing only the 

corresponding factor. Because the factors are not d-separated in the BN (they are connected through 

the common node municipality), they are statistically dependent. Therefore, this approach slightly 

overestimates the influence of the individual factors. However, by also fixing the remaining factors, 

this effect was investigated and found to be small. The advantage of fixing only one factor at a time 

is that the results are then averaged over the remaining factors and are thus more representative, 

since they are effectively based on a larger number of underlying data. 

Figure 5.3 shows the mean occurrence rate for different ranges of human population density. The 

occurrence rate increases with increasing values of human population density.  

Figure 5.3: Mean fire occurrence rate and human population density for Rhodes  
 

 

0-10               10-100           100-1000      1000-10000

Human Population Density  
(Nr.people/km²) 

M
e

a
n

 O
cc

u
rr

e
n

ce
 R

a
te

 

(N
r.

O
cc

u
rr

e
n

ce
s 

x 
d

a
y

¯¹
 x

  k
m

¯²
)

- 4
(x10     )

10

  9

  8

  7

  6

  5

  4

  3

  2

  1

  0



5.4 Results 75 

 

A slight influence of the land cover on the mean occurrence rate is observable (Figure 5.4). The 

agricultural areas (arable land, permanent crops of vineyards and olive groves, heterogeneous 

agricultural areas) have higher mean occurrence rates than the natural/semi natural areas (forests, 

scrub/herbaceous vegetation and natural grasslands, open spaces with little or no vegetation). In 

heterogeneous agricultural areas, where complex cultivation patterns and settlements are mixed, the 

occurrence rate is the highest among all land covers.   
 

 
Figure 5.4: Mean fire occurrence rate and land cover types for Rhodes 

 

 

FFMC is found to have only slight influence on the occurrence rate, which is estimated as 8.35 ∙
10�' [Nr.Occurrences x day-1 x km-2] for FFMC values in the range of 0 − 40 and 8.59 ∙ 10�' 

[Nr.Occurrences x day-1 x km-2] for FFMC values in the range of 95 − 100. This is also supported 

by the figures presented in Chapter 4 (Figure 4.2 and Figure 4.3), where FFMC values are generally 

high, and the only large changes occur during and after rainfall events and the corresponding means 

and standard deviations of FFMC conditional on fire occurrences exhibit similar trends. 

5.4.2 Regression analysis 

Alternative candidate models are shown in Table 5.1. Tested variables were the CFFWIS 

components BUI, ISI and FWI. The null model (M_Null) includes only the intercept as an 

explanatory variable. Models M_BUI, M_ISI and M_FWI include as sole variables BUI, ISI and 

FWI respectively. M_BUI_ISI includes both BUI and ISI. 

The models were trained with data from  Cyprus for 2006-2009. The results of the Poisson 

regression are shown in Table 5.1. The table includes the estimated parameters, the AIC score and 

the maximum log-likelihood with respect to the learning set (log-likelihood 2006-2009). M_Null 

has as expected the lowest maximum likelihood score, among the tested models. The model 
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including both BUI and ISI (M_BUI_ISI) performed better than M_BUI and M_ISI, and all three 

models proved to perform worse than M_FWI.  

 

Table 5.1: Alternative models with explanatory variables and estimated parameters (Cyprus 2006-2009) 

Explanatory 

variables 

Parameters Alternative candidate models 

M_Null M_BUI M_ISI M_BUI_ISI M_FWI 

Intercept *+ -9.88 -10.21 -10.43 -10.50 -10.61 

BUI *�  0.0027  0.0016  

ISI *�   0.0637 0.0483  

FWI *,     0.0278 

log-likelihood 

(2006-2009) 

 -5266.8 -5236.2 -5228.2 -5219.9 -5198.4 

AIC (2006-2009)  10536.0 10476.0 10460.0 10446.0 10400.8 

 

Table 5.2 shows the selected models M1 to M5. The models are arranged according to increasing 

number of explanatory variables, starting from M1 that includes FWI as the sole variable (M_FWI), 

to M5 with 12 variables, including FWI, road and population density and land cover types. 

As an example, the predicted rate of fires according to model M5 is, 

� = exp �−10.90 + 0.0329 ∙ FWI + 0.3217 ∙ Road density − 0.0234 ∙ �Road density�2 −
0.0010 ∙ Pop density − 0.9681 ∙ Arable + 0.3235 ∙ Permanent − 0.0760 ∙ Heterogeneous +
0.1057 ∙ Forest + 0.0486 ∙ Shrubs − 0.1882 ∙ OpenSpaces − 1.1863 ∙ Urban/Wet/Pastures) 

(5.2) 

 

In models M2, M3 and M5, road density as well as (road density)² are included as explanatory 

variables, to represent the non-linear effect of road density on the fire occurrence rate observed 

from Figure 4.15 in Chapter 4. It is important to stress that road and population density are highly 

positively correlated, and are also dependent on land cover type. The influence of human presence 

is expressed by all these variables.   

Based on the learning data set, model M5 performs best, as it exhibits the lowest AIC, followed 

by M3 and M4. The estimated parameters of the explanatory variables FWI, road density and 

population density in all models M1-M5 are consistent. In models M4 and M5, the estimated 

parameters of the land cover types take slightly different values. They are higher in M4 due to the 

fact that in M5 the additional terms in the link function describing road and population density on 

average take a value slightly above zero.  



5.4 Results 77 

 

Table 5.2: Selected models with explanatory variables and estimated parameters (Cyprus 2006-2009) 

Explanatory 

variables 

Parameters Selected Models 

M1 M2 M3 M4 M5 

Intercept *+ -10.61 -10.95 -10.92 -10.90 -10.90 

FWI *� 0.0278 0.0282 0.0302 0.0327 0.0329 

Road density 

[km/km²] 

*�  0.3236 0.3198  0.3217 

(Road density)² 

[km/km²] 

*,  -0.0324 -0.0276  -0.0234 

Population dens. 

[people/km²] 

*'   -0.0018  -0.0010 

Arable *E    -0.6501 -0.9681 

Permanent* *F    0.8383 0.3235 

Heterogeneous *G    0.4098 -0.0760 

Forest *H    0.3497 0.1057 

Shrub/Herbaceous *I    0.3279 0.0486 

Open spaces *�+    -0.1310 -0.1882 

Urban-Wet-Past** *��    -0.9556 -1.1863 

log-likelihood 

(2006-2009) 

 -5198.4 -5166.1 -5151.2 -5147.3 -5111.9 

AIC (2006-2009)  10400.8 10340.2 10312.4 10312.6 10247.8 

* Permanent crops include olives, vineyards and fruits 

**  Urban-Wet-Past variable includes Urban areas, Wetlands and Pastures 

 

It is also worthwhile noting that the variables describing road and population density in Model 

M5 are not independent of the land use type. Pearson’s correlation coefficient J between population 

density and urban & wetlands land cover type is 0.48 and between road density and urban & 

wetlands is 0.59. Therefore, the variables population and road density in model M5 partly express 

the fact that fires are less likely in urban areas. In M4, where these variables are not present, this 

effect is fully described by *�� alone. 
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Eq. (3.18) from Chapter 3 is used to compare the sensitivity of the studied models to changes in 

the explanatory variables. Table 5.3 shows the relative change of λ, as predicted by M5, when 

changing one explanatory variable and keeping all others fixed. For FWI, population density and 

road density, the change of the variable is equal to one standard deviation σ, whereas the land cover 

types change from 0 to 1.  

 

 

Table 5.3: Relative change of occurrence rate  
LM
M   with changing explanatory variables of model M5 for Cyprus. For 

continuous variables FWI, population density and road density, the change of the variable is equal to one standard 

deviation σ 

Explanatory variables Δx OΔ�
� P

Q
, Eq. 3.7 

FWI σ=17.7 0.791 

Population density σ=316 -0.271 

Road density  

σ=3.23 0.614 * 

(Road density)² 

Arable 1 -0.620 

Permanent 1 0.382 

Heterogeneous 1 -0.073 

Forest 1 0.111 

Shrub/Herbaceous 1 0.050 

Open spaces 1 -0.172 

Urban-Wet-Past 1 -0.695 

 

* TUV
V WQ = exp [ΔxY*2 + 2 *3Z[\ + *3Δx]],  with Z_` = 2.09 being the mean value of road density. 

 

5.4.3 Prediction 

Daily observations of Cyprus in 2010 are used to verify the predictive ability of the proposed 

models. Table 5.4 shows the log-likelihood as estimated from each model with parameters learned 

from the 2006-2009 dataset for the entire data of 2010. Model M5 predicts the highest log 

likelihood for the 2010 data set. 
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Table 5.4: Predicted log-likelihood values for the entire 2010 data set of Cyprus 

 

 

 

 

 

 

Four days in 2010 with the highest number of fires are selected to investigate and demonstrate 

the prediction of the fire occurrence rate with the model (whose parameters were learnt by data for 

2006-2009).  

Figure 5.5 shows the expected number of fires as predicted by the models on October 8, 2010. 

This is the day with the highest number of fires in 2010 (5 fires). For the weather conditions and the 

components of the CFFWIS of that day see Figure 4.17 and Figure 4.18. The maps of Figure 5.5 

illustrate the increasing model complexity in going from M1 to M5. Model M1 takes into account 

only the influence of FWI, whereas M2 includes also road density. For this reason, the prediction 

with M2 shows a bigger spatial variability than the one with M1. M3 includes additionally 

population density, and due to the high positive correlation between road and population density, 

the resulting map shows little difference to the map of M2. The map created with model M4 shows 

the influence of both FWI and land cover types, whereas the map produced with Model M5 is the 

result of the combination of models M4 and M3, including FWI, road and population density and 

land cover types.  

In Figure 5.6 - Figure 5.8, the equivalent maps are shown for different days. Three fires occurred 

on these days. The resulting maps exhibit similar characteristics with those in Figure 5.5. Urban 

centers are clearly visible in the maps as the areas with permanent low expected fires predicted by 

all models.  

Table 5.5 summarizes the predicted fire occurrence rates for each grid cell with fire occurrence 

on the investigated days. The model with the highest predicted rate is highlighted for each cell. 

Models M4 and M5 generally predict higher occurrence rates than model M1, which includes only 

the influence of FWI.  

To assess the predictive power of the model, it is not sufficient to only focus on the prediction of 

fire occurrences. The prediction in all cells must be compared to account for the predicted 

probability when no fire occurred. It is reminded, that M5 had the best predictive power for the 

whole data set of 2010 as demonstrated in Table 5.4. The probability of the observed fire and no-

fire events, as predicted by the models, in the entire area in 2010 can be compared. This probability 

is equal to the likelihood of the final models computed with the 2010 data.  

Based on the predicted occurrence rate in each cell and day of 2010 in the study area, Table 5.6 

shows the estimates of the log-likelihood of the whole study area with and without the fire cells. For 

example, on October 8 the log-likelihood of model M1 in the 5 cells with fires is −48.52. 

Therefore, the probability of these events according to M1 was exp�−48.52� = 8.5 ∙ 10���. 

Likewise, the probability of not having any fires in the remaining cells is predicted as 

exp�−0.464� = 0.63. 

 

 

 

2010 M_Null M1 M2 M3 M4 M5 

Log-likelihood  -1404.9 -1388.6 -1383.2 -1388.7 -1380.6 -1377.1 
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Figure 5.5: Expected fires predicted by different regression models on 8th October 2010 (day with maximum number of 

fires in 2010).  Black dots represent the registered fires on this day (a – e). The predictions are estimated by the models 

M1, M2, M3, M4, M5 
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Figure 5.6: Expected fires predicted by different regression models on 26th June 2010 (day with second maximum 

number of fires and largest resulted burnt area (3.4 km² = 340 ha) in 2010). Black dots represent the registered fires on 

this day (a – c). The predictions are estimated by the models M1, M2, M3, M4, M5 
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Figure 5.7: Expected fires predicted by different regression models on 28th August 2010 (day with second maximum 

number of fires (3 Fires) in 2010). Black dots represent the registered fires on this day (a – c). The predictions are 

estimated by the models M1, M2, M3, M4, M5 
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Figure 5.8: Expected Fires predicted by different regression models on 10th November 2010 (day with second 

maximum number of fires (3 Fires) in 2010). Black dots represent the registered fires on this day (a – c). The 

predictions are estimated by the models M1, M2, M3, M4, M5 
 
 
 
 
 
 
 
 
 
 



84 5 Fire occurrence model 

 

 

Table 5.5: Predicted fire occurrence rate at the locations of fires shown in Figure 5.5 - Figure 5.8. The highest 

prediction rate in each case is highlighted in grey 

 fire occurrence rate  

( x 10�E d�� km��) 

 Models M1 M2 M3 M4 M5 

Day in 2010 Fire locations      

8 October  a 7.2 7.1 7.8 9.1 9.4 

 b 6.4 4.6 5.1 8.1 6.4 

 c 6.0 4.3 4.8 7.5 5.9 

 d 5.7 6.3 7.0 7.0 8.8 

 e 5.4 4.0 4.4 6.6 5.3 

26 June  a 3.9 5.3 5.8 4.7 5.9 

 b 6.2 8.4 8.6 7.6 10.9 

 c 5.1 8.0 8.0 6.0 10.7 

28 August  a 7.4 6.3 6.9 9.4 8.4 

 b 6.7 8.6 9.5 9.1 10.3 

 c 6.6 8.6 9.7 3.1 4.3 

10 November  a 6.9 5.0 5.6 8.9 7.0 

 b 7.8 6.0 6.5 16.6 10.5 

 c 7.3 7.8 8.4 9.5 10.9 
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Table 5.6: Predicted log-likelihood values for cells with fires on the selected days in 2010 for models M_Null and M1 – 

M5. Values shown in parenthesis are the log-likelihood values for the cells without fire 

Day in 2010 # fires M_Null M1 M2 M3 M4 M5 

8 October 5 -49.4 

(-0.3299) 

-48.52 

(-0.464)   

-49.39 

(-0.432) 

-48.93 

(-0.429) 

-47.42 

(-0.471) 

-47.85 

(-0.485) 

26 June 3 -29.64 

(-0.3299) 

    -29.72 

   (-0.406) 

-28.66 

(-0.380) 

-28.55 

(-0.377) 

-29.17 

(-0.349) 

-28.00 

(-0.378) 

28 August  3 -29.64 

(-0.3299) 

-28.75 

(-0.651)  

-28.39 

(-0.635) 

-28.08 

(-0.658) 

-29.96 

(-0.723) 

-28.62 

(-0.714) 

10 November 3 -29.64 

(-0.3299) 

-28.56 

(-0.461) 

-29.08 

(-0.464) 

-28.82 

(-0.484) 

-27.29 

(-0.509) 

-27.85 

(-0.508) 

Log-likelihood for 

entire data of 2010 

 -1404.9 -1388.6 -1383.2 -1388.7 -1380.6 -1377.1 

 
 

Table 5.5 shows that the best model is not always the one that predicts the highest occurrence 

rate for locations with observed fires, due to an over-prediction of the occurrence rate for locations 

without fires. The best model in each case is the one that best discriminates the locations with fire 

occurrences from those without. This is described by the sum of the likelihood values for all cells 

and all days. When considering the verifying data set 2010, the model M5 has the highest log-

likelihood value, indicating the best prediction performance. Based on the learning data set, models 

M5 and M4 were found to perform best (Table 5.5). It may be therefore concluded that overall 

model M5 provides the best prediction.  

The receiver operating characteristic (ROC) curves provide an additional indicator of the 

prediction performance of the models (Section 3.3.2.2). Figure 5.9 shows the corresponding ROC 

curves for the dataset of 2010 and each Model M1-M5. Model M5 has the largest AUC (Figure 

5.9), i.e. it performs best among the other models, whereas model M1 has the lowest AUC.  

The effect of the influencing variables on the probability of fire occurrence from the BN model 

of Figure 5.2 is shown in Table 5.7. The most influencing states are the higher values of FWI, the 

urban areas (population density 300-4000 People/km²) and the open spaces. The less influencing 

states are low road density (0-5 km/km²), shrubs and heterogeneous cultivation.   

For the study area of South France, Figure 5.10 shows the predicted fire occurrence rate on the 

25th July 2009, from models M1 and M5 (see also Figure 4.27 – Figure 4.29). With black dots the 

corresponding registered fire events (27 fires) on that day, which was the max daily amount of fires 

for 2009. The map results from the application of Eq. 5.2 on South France. The proposed models 

(M1 – M5) were not applied on South France, due to the size of the area and the time series. 

Nevertheless, in the next chapters (Chapter 7 and Chapter 8), applications of the BN models of fire 

effects and fire risk on South France are included.  
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Figure 5.9: ROC curves and AUC values (in brackets) for models M1-M5 

 
 

Table 5.7: Effect of influencing variables on fire occurrence probability 

Variable States Pr(Fire) (x 10�E� 

 

Prior: 9.45 ∙  10�E 

Change in Probability 

[%] 

FWI 0-10  4.50 - 52 

10-30  7.22 - 24 

30-60 16.00 +  70 

60-120 28.20 +199 

Land cover types 1 : Urban/Wetland/Pastures  2.17 - 77 
2: Arable land 2.72 - 71 
3: Permanent crops 13.30 + 40 
4: Heterogeneous agriculture 8.31 - 12 
5: Forests 18.00 + 91 
6: Shrubs/Herb. vegetation 9.34 - 1 
7: Open spaces 22.10 +133 

Population density 0-20 7.81 - 17 

20-300 7.78 - 18 

300-4,000 32.10 +240 

Road density 0-0.5 9.36 - 1 

0.5-2 7.35 - 22 

2-26 11.60 + 23 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
n
si

ti
v
it

y

 

 

M1 (0.6511)

M2 (0.6727)

M3 (0.6604)

M4 (0.6780)

M5 (0.6904)

     (0.5)



5.4 Results 87 

 

 

Figure 5.10: Expected fires predicted by different regression models on 25th July 2009 (day with maximum number of 

fires (27 fires). Black dots represent the registered fires on this day. The predictions are estimated by the models  

M1 (a) and M5 (b) 
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5.5 Summary 

The investigations in Chapter 5 are a step towards an improved prediction of fire occurrence in the 

Mediterranean for fire management purposes. The probabilistic modeling approach selected 

provides a quantitative metric of the ability of different explanatory variables to predict daily fire 

occurrence. Of particular interest is the ability of the FWI, which was developed for Canada, to 

predict fire danger in the Mediterranean. In previous empirical studies, the components of the 

CFFWIS (FFMC - expressing fine fuel moisture, ISI - representing relative fire spread expected 

immediately after ignition and BUI - expressing moisture content of heavier fuels) were found to be 

relevant indicators for predicting people-caused fire occurrence in Canada (Martell et al. 1987; 

Martell et al. 1989; Wotton et al. 2003). As shown in this chapter, the FWI is a good indicator for 

fire danger also in the Eastern Mediterranean. However, it is also demonstrated that the prediction 

ability of FWI alone is limited. The component FFMC shows low prediction ability, due to the high 

values in fire season. A model that additionally includes land cover types, population density and 

road density is found to provide significantly improved predictions. However, care should be taken 

not to introduce redundant variables (e.g. both population and road density are higher in urban 

areas). This dependency must be considered when transferring the model to other regions. Due to 

the randomness of fire occurrence, there is a limitation to any prediction. Therefore, while the 

developed models are able to identify days and locations with higher fire risks, they are not - and 

will not - be able to deterministically predict fire occurrences in advance. Nevertheless, the 

predictions can support the planning of preventive and mitigating measures. Importantly, they also 

improve the understanding of influential factors and provide better predictions than models 

currently used, that take under account only FWI (e.g. European Forest Fire Information System-

EFFIS).  
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Fires occur every year in fire prone areas and the vegetation is partly adjusted to this phenomenon. 

Most of the times the conditions do not favour radical fire spread and fires can be successfully 

contained.  When weather conditions, topography and fuel accumulation favour fire spread, this 

leads to uncontrollable fires resulting to severe damages. Modelling of fire behaviour is an essential 

task for realistic fire risk management tools, in order to account for the specifics of extreme fire 

danger conditions. In this chapter a model representing influencing factors of severe fire events is 

presented and an application to the study area Cyprus is shown. Sensitivity analysis shows the 

influence of the factors on the resulting burnt area. Maps of the predicted burnt area conditional on 

specific days with high burnt areas of the dataset Cyprus 2010 are presented. Main part of what is 

presented here is based on Zwirglmaier et al. (2013).  

6.1 Introduction 

After a fire occurs, it depends on various factors, whether it will spread rapidly resulting to an 

uncontrollable fire with several hot spots. The main factors influencing fire spread are the 

topography of the area (slope and aspect), the weather conditions and the fuels (Rothermel 1983). 

Many studies have investigated and have found critical the influence of the following factors on 

fire behavior; fuel type, structure and density (e.g. Rothermel 1972;Albini 1979;Dimitrakopoulos 

2002;Stephens and Moghaddas 2005), wind and slope (e.g. Rothermel 1972;Rothermel 1983;Cruz 

et al. 2004) and fuel moisture (e.g. Van Wagner 1977;Albini 1979). 

In literature, there are both physics-based and operational models predicting fire behavior (Scott 

2006). Physics-based models are based on combustion chemistry, fluid dynamics and heat transfer 

(e.g. Butler et al. 2004;Cruz et al. 2006a;Cruz et al. 2006b). They demand intensive calculations 

and costly operations, for this they are not widely applied in fire management problems (Scott 

2006;Mitsopoulos and Dimitrakopoulos 2007). Operational models are mathematical models based 

6 Fire size model 
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on observations of unplanned and experimental fires (e.g. Stocks et al. 2004). They have great 

speed of calculations and can be easily used and therefore can be applied at large temporal and 

spatial scales on fire management problems. Although physics-based models can be applied widely, 

operational models can be applied to conditions similar to the ones on which they have been built. 

Also semi-empirical model exist, that are a combination of heat transfer analysis, laboratory 

experiments, computer simulations and heat observations (e.g. Van Wagner 1977) 

(Dimitrakopoulos et al. 2007). Some of the outputs of the above models are flame length, flame 

height, frontal fire intensity, rate of spread, type of fire etc.  

The fire behavior models can also be classified based on the type of fire they predict (Johnston 

et al. 2005) into surface fire behavior models (e.g. Rothermel 1972) and crown fire behavior models 

(e.g. Van Wagner 1993). 

Both deterministic and probabilistic approaches for predicting fire behavior and fire size can be 

found in the literature. Deterministic approaches are semi-physical or semi-empirical models that 

combine physical equations of heat generation and transfer with characteristics of the fuels and are 

calibrated with empirical data (Schaaf et al. 2007). Probabilistic approaches are more recent and use 

e.g. logistic regression techniques to predict crown fires (e.g. Cruz et al. 2003;Cruz et al. 2004) or 

large fire  occurrence (e.g. Preisler et al. 2004;Bradstock et al. 2009;Finney et al. 2011) and cellular 

automaton approaches (e.g. Hargrove et al. 2000;Johnstone et al. 2011). Probabilistic approaches 

have the limitation that they lack physical reasoning (Schaaf et al. 2007).  

For decision making, there are fire management applications, which include one or more models 

or systems and give as output characteristics of the fire (e.g. fire growth simulation, fire spotting) 

and thus support fire management (Cruz and Alexander 2010). In fire simulators fire starts from a 

source, spreads outward growing in size, assuming an elliptical shape with the major axis in the 

direction most favorable to spread (Rothermel 1972). Such applications widely used are the 

Canadian Forest Fire Behavior Prediction System (Forestry Canada 1992), NEXUS (Scott 1999), 

FARSITE (Finney 2004), FlamMap (Finney 2006), BehavePlus (Andrews 2009), PROMETHEUS 

(Tymstra et al. 2010) and PHOENIX RapidFire (Chong et al. 2012). The empirical models of 

Rothermel (1991) and Van Wagner (1993) are incorporated in these applications. 

The Canadian Forest Fire Behavior Prediction System (Forestry Canada 1992) is a subsystem of 

the Canadian Forest Fire Danger Rating System. Its operational models for spread rate and fuel 

consumption were derived from empirical studies. As inputs are used fuel types, the components 

FFMC, ISI and BUI of the CFFWIS, wind speed and direction, topography (percent slope and 

upslope direction), foliar moisture content and the type and duration of the prediction. The system 

gives primary and secondary outputs. Primary outputs are rate of spread, fuel consumption, head 

fire intensity and fire description. Among the secondary outputs are fire area and perimeter and 

head, flank and back fire spread distances.   

FARSITE is a fire area simulator, that produces vector fire perimeters (polygons) at specific 

time intervals (Finney 2004). It incorporates several models of surface and crown fire, point-source 

fire accelerator, spotting and fuel moisture. The vertices of the produced polygons give information 

on the spread rate and the fire intensity. These are interpolated to produce raster maps of fire 

behavior, thus a 2d simulation of fire behavior. The input variables are topography (elevation, 

slope, aspect), fuel model, canopy cover, crown characteristics, temperature, humidity, 

precipitation, wind speed and direction.  

BehavePlus Fire Modeling System (Andrews 2009) is the successor to BEHAVE (Andrews 

1986) and is broadly used for wildland fire prediction. The system models fire behavior and effects. 

It incorporates different mathematical models for fire behavior, fire effects and fire environment 

based on specific fuel and moisture conditions. It gives as output among others rate of spread, flame 
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length, spotting distance, scorch height, tree mortality and fuel moisture. Several input variables are 

required, such as fuel models, fuel load characteristics, fuel surface area-to-volume ratios, fuel heat 

content, P-G (palmetto-gallberry) fuel characteristics, canopy characteristics, fuel moisture 

characteristics, wind speed characteristics, temperature and terrain variables.  

In this chapter a fire behavior model that predicts burnt area in the meso-scale is introduced. 

This model is based on Zwirglmaier et al. (2013), where the structure of different BN models is 

learnt with data and their predictive ability is compared. In contrast to the above described 

prediction systems, this model aims to give expected burnt area of fires in 1 km² spatial resolution 

and does not consider the elliptical form of the fire. The model combined with the previously 

described fire occurrence model (Chapter 5) serves as a fire hazard model. The proposed model 

uses weather conditions, fuel types, fuel moisture and topography as input variables. The model is 

applied to the study area of Cyprus (2006-2009).Year 2010 is used as a verification dataset to make 

predictions. The resulting predictions are shown in maps and diagrams.   

6.2 Probabilistic model for predicting fire size  

The fire size model presented in Figure 6.1 is adapted from Zwirglmaier (2012) and Zwirglmaier et 

al. (2013). The variables are chosen from a wider range of potential variables to represent the 

processes influencing the resulting burnt area of a fire. The variables were selected as a result of BN 

model structure with automatic structure learning algorithms. The process followed to achieve the 

structure of the proposed model and the CPTs of the variables is described later on in Section 6.3. 

As already mentioned above the main factors influencing fire behavior, and as a result fire size 

are the type and accumulation of fuels, the fuel moisture, the weather conditions and the 

topography. Type and accumulation of the fuels are here described by land cover types. The fuel 

moisture is expressed by the components of the CFFWIS. Weather conditions are expressed by the 

variables temperature, relative humidity, wind speed, wind direction and precipitation, which 

influence also fuel moisture. Different time steps are included, which are based on the availability 

of data (21 days, 14 days, 7 days, 3 days, 1 day, actual). Wind and Topography are described by the 

directly observable variables wind speed, wind direction, slope and aspect. The relative direction of 

the wind to the slope is included as the difference between aspect and wind direction. In the fire size 

model, the target/predicted node is Burnt area. Although other variables can express more 

accurately fire behavior (e.g. fire intensity, rate of spread, spotting activity), here due to the 

availability of data fire size will be described by the resulting burnt area.  

In the proposed model, Burnt area is influenced by Fire occurrence, Land cover types, 

Topography, Recent weather conditions, and Fire behavior indices. The latter three are hidden 

variables, meaning that there are no available observations for them and their CPTs are learned via 

the EM algorithm (see also Section 3.1.1). They are included to reduce the number of parents of the 

node Burnt area. Topography combines the influence of the variables Wind Speed [km/h], Slope [°] 

and Aspect Minus Wind Direction [same, opposite, perpendicular]. Recent weather conditions 

summarizes the effect of Relative humidity (RH) [%], Mean RH over the last 3 days [%], Mean RH 

over the last 21 days [%], Accumulated precipitation over the last 21 days [mm], Mean temperature 

of the last day [°C] and Mean temperature over the last 7 days [°C]. Initial fire behavior influences 

the three indices of the CFFWIS, namely Fine Fuel Moisture Code (FFMC), Initial Spread Index 

(ISI) and Βuild-up index (BUI).  
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The BN for fire occurrence (Chapter 5) is included in the BN for fire behavior. The fire 

occurrence model triggers the fire size model. The variable Fires is a parent node of the variable 

Burnt area, so. The variable Land cover, which is used for predicting the Fire occurrence rate, is 

also influencing the Burnt area directly. However, the node LC grouped is introduced to group the 

land cover types grouped in fewer classes. This reduces the number of free parameters of the 

variable Burnt area and facilitates parameter learning with hidden variables (EM algorithm).  

 
 

 

Figure 6.1: Bayesian network for the prediction of Burnt area. Hidden variables are shown in grey. Indices of the 

CFFWIS - FWI: Fire Weather Index, FFMC: Fine Fuel Moisture Code, ISI: Initial Spread Index, BUI: Built-Up Index. 

6.3 Model structure, nodes discretization and parameter 

estimation 

In order to achieve the structure of the BN for burnt area prediction, the first step is to select the 

overall relevant variables to account for the influencing factors on fire size. Among the variables, 

which are indirectly influencing burnt area, it is not clear which of the variables are relevant, non-

informative or redundant. Moreover, it is also not clear how the variables influence each other, so a 

graph representing causal relationships cannot be easily obtained. Since knowledge is unavailable, 

observations can be used to learn automatically the structure of the model. In the case of a large 

amount of variables, structure learning has limitations.  

The structure of a BN can be learned by either a score-based approach, where among several 

generated candidate graphs the one with the highest score (Bayesian Information Criterion, Akaike 

Information Criterion) (Section 3.3.2.1) is selected, or a constraint-based approach, where a graph is 

constructed based on the independence properties derived from the data (Zwirglmaier et al. 2013).  

The proposed model is based on structure learning by constraint-based approach. Two 

algorithms have been used to generate model structure and identify relevant variables. The PC 

algorithm and the NPC algorithm (Necessary Path Condition). Both algorithms generate in the first 

step an undirected graph and in the second step the links between the variables are oriented. They 

perform independence tests on a dataset, thus for each pair of variables a set of nodes is found for 

which these variables are conditionally on this set of nodes independent according to the data. If all 
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the derived independence properties are actual properties of the underlying distribution and not due 

to random noise, then the PC algorithm will give the correct undirected graph. The NPC to 

overcome the problem of random noise checks the independencies for consistency. Based on 

generated conditions for each of the links in the graph, the NPC results to the shortest possible 

necessary path. To orient the links, the converging connections (Section 3.1) are first oriented and 

then the remaining links are oriented in a way that no further converging connections and no 

directed cyclic paths are created.  

The structure learning process is limited, when large amount of variables is involved. Here, 

smaller graph structures are learned and based on the resulting links, the relevant variables are 

identified. Weather conditions are taken in different time steps and their relevance to burnt area is 

investigated E.g. among the variables Accumulated precipitation of the last 21 days, 14 days, 7 

days, 3 days, 1 day and actual, the variable of the last 21 days was identified to be of greater 

importance and was included in the final model. The same time steps were checked for temperature 

and relative humidity and the relevant ones were chosen. The final model is then constructed based 

on relevant variables and phenomenological reasoning.  

The relevant variables are grouped and the dependencies between these groups are modeled with 

the hidden variables Topography, Recent Weather, Fire Behavior Indices (Figure 6.1). The hidden 

variables are not observable and their parameters are learnt with the EM algorithm (Section 3.1.1). 

In this way, the joint influence of a set of variables can be modeled, reducing the number of links to 

the target variable (Straub and Der Kiureghian 2010), and less parameters are needed to specify the 

model. The variable Topography expresses the combination of the influence of the variables Wind 

speed, Slope and AspectMinusWindDirection. In order to model dependencies between the variables 

FFMC, BUI and ISI, which were found relevant, the variable Fire Behavior Indices is introduced as 

a common parent. The variable Recent weather is introduced as a common parent of the relevant 

weather parameters.   

The variable Land cover of the fire occurrence model has 7 states. To reduce the number of 

parameters needed to specify the CPT of the target variable Burnt area, the variable LC grouped is 

introduced, which groups the initial Land cover types into 3 classes (Table 6.1). The three states of 

the LC grouped are defined based on data from Cyprus 2006-2009 related to the mean fire size in 

each Land cover class (Table 6.2). The first class includes urban/wetland/pasture, heterogeneous 

agriculture and shrubs, which had the highest mean fire size. The second class includes arable land, 

forests and permanent crops, whose mean fire size follows. Open spaces are assigned to the third 

class. 

 
Table 6.1: LC grouped with respect to Land cover types 

LC grouped Land cover 

1 1: Urban, wetland, pasture 

4: Heterogeneous agriculture  

6: Shrubs/Herbaceous 

 
2 2: Arable land 

3: Permanent crops 

5: Forests 

 
3 7: Open spaces 
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Table 6.2: Burnt area, number of fires and mean fire size for different land cover types on Cyprus (2006-2009) 

Land cover class Burnt area [km²] No. Fires Mean fire size 

[km²] 

% burnt area 

1.Urban/wetland/pasture 12.39 33 0.38 13.89 

2.Arable land   5.62 53 0.11   6.24 

3.Permanent crops   1.77 34 0.05   1.99 

4.Heterogeneous agric. 33.24 123 0.27 37.28 

5.Forests   5.84 101 0.06   6.55 

6.Shrubs/Herbaceous 30.25 131 0.23 33.92 

7.Open spaces   0.06 5 0.01   0.07 

Sum 89.17 480  100 

 

 

In order to perform inference in the BN model, the continuous random variables which should 

be included in the BN are discretized with the class-attribute interdependence maximization 

measure (CAIM) (Kurgan and Cios 2004). This method maximizes the interdependency between an 

indicator variable and the target variable (here the Burnt area) but does not account for the possible 

interdependencies between indicator and target variables when considered together. Therefore, 

since the variables Wind speed, Slope and AspectMinusWindDirection influence Burnt area jointly, 

they are discretized using equal frequency discretization.  

The variable Burnt area is discretized with exponential binning based on Zwirglmaier et al. 

(2013) and Scherb (2014). The four intervals are chosen with exponential alike character. Table 6.3 

summarizes the exponential binning of the Cyprus data (2006-2009) based on the resulting burnt 

area and the occurring fires. Most of the fires of the dataset resulted to a small burnt area (0 − 0.01 

km²) and only 18 fires ended to bunrt area > 1 km².  The resulting states of all variables are shown 

in Table 6.4. The parameters of the model are then learnt with data from the study area Cyprus 

(2006-2009) (Section 4.2).  

 

 
Table 6.3: Exponential binning of the variable burnt area for Cyprus 2006-2009 (Scherb 2014) 

 Burnt area 2006-2009 [km²] 

[0-0.01] [0.01-0.1] [0.1-1] [1-inf] 

Area [km²] 0.6281 5.8348 17.4915 65.213 

Fire count 274 138 50 18 

Mean area [km²] 0.0023 0.0423 0.3489 3.623 
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Table 6.4: Variables, number of states and state description of the fire size model 

Variable No. states State description 

Burnt area  

[km²] 

 4 0-0.01 

0.01-0.1 

0.1-1 

1-inf 

FFMC 3 0-86.2 

86.2-88.6 

88.6-99 

BUI 3 0-84.1 

84.1-281.8 

281.8-inf 

ISI 3 0-3.9 

3.9-26.6 

26.6-inf 

Fire behavior indices 2 moderate 

low 

Land cover type (LC) grouped 3 1: 1,4,6 

2: 2,3,5 

3: 7 

Sum precipitation 21 days  

[mm] 

3 0-15.2 

15.2-33.2 

33.2-inf 

Relative humidity  

[%] 

4 0-26.3 

26.3-68.4 

68.4-73.2 

73.2-100 

Mean rel. humidity 3days  

[%] 

4 0-50.5 

50.5-61.8 

61.8-67.1 

67.1-100 

Mean rel. humidity 21days  

[%] 

3 0-38.1 

38.1-51.5 

51.5-100 

Mean Temperature 1day  

[°C] 

4 -inf-21.8 

21.8-31.1 

31.1-32 

32-inf 

Mean Temperature 7 days  

[°C] 

3 -inf-21.8 

21.8-30.4 

30.4-inf 

Recent weather  4 dry 

moderate dry 

moderate humid 

humid 

Wind speed  

[km/h] 

4 0-11.6 

11.6-15.1 
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15.1-19.2 

19.2-inf 

Slope  

[°] 

4 0-4 

4-8 

8-15 

15-90 

AspectMinusWindDirection 3 same 

perpendicular 

opposite 

Topography 3 middle 

gradual 

steep 

 

6.4 Results 

The dataset 2010 is used to demonstrate the predictive ability of the model. Figure 6.2 shows the 

pathway of the daily sum of the predicted burnt area over the 6447 cells of the study area. As 

expected the prediction increases during the late spring until autumn. Note that this is the sum of the 

predictions over the study area and that the daily predictions vary a lot between the study area cells. 

Figure 6.3 shows the predicted burnt area per land cover type. The highest values are predicted for 

shrubs/herbaceous vegetation (type 6, burnt area= 18.27 km²), heterogeneous cultivations (type 4, 

burnt area=14.62 km²) and forests (type 5, burnt area=7.93 km²). 
 

 

Figure 6.2: Daily expected sum of burnt area [km²] for the dataset Cyprus 2010 
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Figure 6.3:  Expected burnt area [km²] per land cover type for the dataset Cyprus 2010 

  

 

Table 6.5 shows a confusion matrix and the accuracy values of the model. The confusion matrix 

presents for each combination of predicted interval and observed interval the number of 

corresponding cases. These predictions are conditioned on a fire occurrence. The model predicts 

better the fires of the first interval (0-0.01 km²) and performs worse for higher burnt areas (1-inf 

km²). The overall correctly predicted burnt area for the year 2010, �, can be calculated, by taking 

the mean value of the actual burnt area in the intervals and multiply it with the diagonal values of 

the confusion matrix, thus with the number of correctly predicted burnt areas. For the last interval 

[1 − 
��], the mean value of the recorded burnt area is 3.6229 km². The overall predicted burnt 

area is then, 

 

B = 52 ∙ 0.0023 km² + 14 ∙ 0.0423 km² + 2 ∙ 0.3498 km² + 0 ∙ 3.6229 km²
=  1.41 km²      (6.1) 

 

The actual value of the burnt area for 2010 is 17.5 km² resulting from 131 fires. Four bigger 

fires in the interval [1 − inf] resulted in 10.47 km² and 13 fires in the interval [0.1 − 1] resulted in 

5.47 km². The rest of the fires from the first two intervals ([0 − 0.01] and [0.01 − 0.1]) resulted in 

1.54 km². This shows that the proposed model is rather weak in predicting fires of higher resulting 

burnt area. Nevertheless, the model performs well for fires with small resulting burnt areas. This is 

due to the fact that in the learning dataset of the model (Cyprus 2006-2009) most of the fires 

registered resulted in a burnt area of the first interval [0 − 0.01]. As a result the model performs 

better for this interval.  
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Table 6.5: Confusion matrix and accuracy values of the fire size model for the validation dataset Cyprus 2010 

 Predicted burnt area for 2010 [km²] Accuracy 

Actual burnt 

area [km²] 

[0-0.01] [0.01-0.1] [0.1-1] [1-inf] sum  % Fraction 

[0-0.01] 52 16 3 0 71  0.73 52/71 

[0.01-0.1] 22 14 6 0 42  0.33 14/42 

[0.1-1] 7 4 2 0 13  0.15 2/13 

[1-inf] 2 2 0 0 4  0 0/4 

     130 Overall 0.52 68/130 

 

 

Table 6.6 shows a sensitivity analysis of the model. Evidence is given in each state of the 

variables and the information is propagated in the network. The prior probability of the variable 

Burnt area being > 0.1 km² is updated to the posterior. The most influencing state of the land cover 

type is open spaces. This is due to shortage of available data for this land cover type (i.e. only 5 

fires occurred in open spaces in 2006-2009 resulting to 0.06 km², see also Table 6.2). Steep 

topography increases the probability of having burnt area > 0.1 km² by 69%. Humid recent weather 

lowers the same probability by 34% and dry recent weather increases the probability by 46%. 

 

 
Table 6.6: Influence of variables on burnt area 

Variable States Pr(BurntArea>0.1) 

Prior=1.70·10-5
 

Change in Probability 

[%] 

LCgrouped 1: 1,4,6 1.65·10-5 -3 

2: 2,3,5 1.56·10-5 -8 

3: 7 6.54·10-5 +284 

Topography 1:middle 1.97·10-5 +16 

2:gradual 8.59·10-6 -50 

3:steep  2.88·10-5 +69 

Recent weather 1: dry 2.49·10-5 +46 

2: moderate dry 1.82·10-5 +7 

3: moderate humid 1.28·10-5 -25 

4: humid 1.12·10-5 -34 

Fire behavior indices 1: moderate 1.78·10-5 +4 

2: low 1.35·10-5 -21 

 

 

To demonstrate the coupling of the BN with the GIS, four days of the year 2010 are selected, the 

days with the maximum resulting burnt area. The day with the largest burnt area is the 6th June (4.3 

km²). Large fires occurred also on the 22nd August (1.15 km²) and 14th November (2.22 km²). On 

the 1st January 2010 the model predicts very low burnt area in the whole study area. On the 6th 

June 2010 the values raise mainly on the eastern side of the study area, whereas on the 22nd August 

2010 the highest values of burnt area on individual cells are predicted. The predicted values are 

lower on the 14th November 2010. Table 6.7 summarizes the accumulated predicted burnt area 

[km²] over the study area. The highest value is predicted for the 22nd August 2010. Since these are 

the extreme days of the year 2010, it is expected that the model underestimates the burnt area.  
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When choosing the days with the highest fire occurrences in 2010 (see also Figure 5.5 – Figure 

5.8) the resulting prediction is shown in Figure 6.5. For these days the model predicts values closer 

to the actual resulting burnt area (Table 6.8).  

 

 
Table 6.7: Accumulated predicted expected burnt area, mean and standard deviation [km²] for days of 2010 with 

maximum registered burnt area, together with the actual burnt area. The results are conditional on fire occurrence 

Date Accumulated predicted 

expected  

Burnt area [km²] 

Mean 

[km²] 

Standard 

deviation 

Actual 

Burnt area [km²] 

01.01.2010 0.02   4·10-6   3·10-6 0 

06.06.2010 0.23 36·10-6 31·10-6 4.3 

22.08.2010 0.26 41·10-6 57·10-6 1.15 

14.11.2010 0.21 32·10-6 28·10-6 2.22 

 

 
Table 6.8: Accumulated predicted expected burnt area, mean and standard deviation [km²] for days of 2010 with 

maximum fire occurrences, together with the actual burnt area. The results are conditional on fire occurrence 

Date Accumulated predicted 

expected  

Burnt area [km²] 

Mean 

[km²] 

Standard 

deviation 

Actual 

Burnt area [km²] 

26.06.2010 0.11  17·10-6 29·10-6 3.4 

28.08.2010 0.28 44·10-6 54·10-6 0.0034 

08.10.2010 0.17 27·10-6 31·10-6 0.0005 

10.11.2010 0.20 30·10-6 26·10-6 0.0654 
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Figure 6.4: Predicted burnt area [km²] on days of 2010 with max recorded burnt area (in brackets the real burnt area): 

(a) 1st January (no fire events), (b) 6th June (4.3 km²), (c) 22nd August (1.15 km²), (d) 14th November (2.22 km²) 
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Figure 6.5: Predicted burnt area [km²] on different days of 2010 with max recorded fire occurrences (in brackets the real 

burnt area): (a) 26th June (3.4 km²), (b) 28th August (0.0034 km²), (c) 8th October (0.0005 km²), (d) 10th November  

(0.0654 km²) 
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6.5 Summary 

Chapter 6 introduces a fire size model at the meso-scale that predicts resulting burnt area [km²] is 

introduced. The model takes into account land cover types, initial fire behavior conditions (as 

expressed by ISI and BUI of the CFFWIS), topography (wind speed, slope and aspect minus wind 

direction) and recent weather conditions (e.g. accumulated precipitation over the last 21 days). 

Contrary to fire behavior models, which use fuel models to estimate fuel flammability and fire 

spread potential, the proposed model utilizes land cover types and therefore offers fire size 

predictions. Hidden variables – thus non-observable variables - are implemented in the modeling to 

reduce the dimensions of the CPT of the child variable burnt area and therefore to facilitate the 

learning process. The parameters of the model are learnt with data from Cyprus for 2006-2009 with 

the EM algorithm. As validation dataset is chosen the dataset Cyprus 2010. The daily accumulated 

burnt area over the whole study area for 2010 is calculated. The model predicts higher burnt areas 

during the season spring to autumn, as a result of dryer weather conditions. The model predicts 

better smaller fires (0-0.01 km² burnt area), due to the fact that these fires are highly represented in 

the learning dataset Cyprus 2006-2009. Eight representative days of 2010 (one in the winter period 

with no fires occurring, three with the maximum resulting burnt areas of the year and four with the 

highest number of fire occurrences) are chosen to visualize the prediction ability of the model.  
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Wildfire effects estimation regarding direct losses on structures is sparsely investigated in the 

literature, and often focuses on certain case studies, which do not result in generalized wildfire 

effects predictive models. 

In this chapter, two fire effects models are introduced that quantify the potential damages to 

houses and to vegetated areas in the meso-scale. The parameters of the models are learnt with data 

from Cyprus and Greece. The models predict the expected damage cost [€] under specific hazard 

characteristics, either for known fire events or for hypothesised conditions of the whole study area. 

Data from Cyprus and South France are used to demonstrate the predictive ability of the models. 

The proposed models will be incorporated with the fire occurrence and fire behaviour model to 

quantify fire risk to houses and vegetated areas in Chapter 8.  

7.1 Introduction 

Various investigations in the literature concern the influence of the fires on the vegetation.  

However, research devoted to assessing the effects of wildfires on construction damages is 

relatively limited and the interest on quantitative models has been quite recent. Some studies 

examined the correlation of house losses to weather-related fire danger classification indices (e.g. 

Blanchi et al. 2010;Harris et al. 2012), to their arrangement and location  (e.g.Syphard et al. 2012) 

and to fuel variables and their distance from houses (e.g. Gibbons et al. 2012). Other studies 

assessed the vulnerability of houses in conjunction with ecosystem characteristics (e.g. biodiversity, 

conservation status) (e.g. Chuvieco et al. 2013). The literature in this field also includes a 

significant number of case studies documenting house damages due to wildfires (e.g. Lynch 

2004;Xanthopoulos 2008). However, these case studies do not result in generalized predictive 

7 Fire effects model 
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models that allow performing cost assessments at other sites with similar conditions. Reports on 

community wildfire protection plans use rating systems to assess wildfire occurrence danger and 

effects (Ohlson et al. 2003;OFD 2004;ECONorthwest 2007). Rating systems are also often used to 

evaluate the susceptibility of items at risk and the degree of loss on the basis of expert knowledge 

(Tutsch et al. 2010;Penman et al. 2013). Moreover, empirical research on the subject is hindered by 

incomplete, sporadic and aggregated documentation of effects of past events (Gibbons et al. 2012). 

The above highlight the need for better tools for the prediction of expected effects due to fires to 

support fire management decisions.  

As already described in Section 2.1 (Eq. 2.2), the expected consequences for given hazard 

characteristics (risk) can be expressed as, 

��ℎ� = E��	 | � = ℎ
 = � f��|ℎ�
�

	��, ℎ��� (7.1) 

wherein E�,� denotes the expected value with respect to �. f��|ℎ� describes the vulnerability as 

the probability of damage D conditional on the hazard H, i.e. it, and C��, ℎ� is the cost as a function 

of damage and hazard.  

Here, the expected cost from house losses or from vegetated area losses conditional on fire 

hazard characteristics E� = �	|�
 is estimated. In order to quantify consequences, vulnerability and 

exposure indicators are identified, which are related to the degree of loss and the items at risk. A 

wildfire effects assessment system at the meso-scale is developed, i.e. at a 1km2 spatial resolution. 

Exemplarily, the system focuses on damages to houses and to vegetated areas, expressed in 

monetary values. It is based on a BN model, which includes variables expressing hazard 

characteristics, houses and vegetated areas at risk and their susceptibility. As a case study, the 

proposed BNs are applied to Cyprus. The parameters of the models are learnt with both data and 

expert knowledge. Past wildfire disaster events from the period 2006-2010 are chosen to 

demonstrate the predictive ability of the house damage model. The BNs are coupled with a 

Geographic Information System (GIS) and maps of expected effects with evidence given to hazard 

characteristics are provided to illustrate the results. The predictions are compared with the damages 

registered in the NatCatSERVICE database of the reinsurance company Munich Re.  

7.2 Factors influencing house damage 

Losses due to wildfires are influenced by both natural and anthropogenic factors. The main factors 

influencing fire losses are the presence and intensity of the fire, the flammability of the exposed 

objects and the suppression effectiveness. Interrelations of the influencing factors are present, e.g. 

fire characteristics and flammability of items influence the result of fire suppression. For houses, 

the main factors influencing losses are fire characteristics (flame length, fire intensity, spread rate, 

burning ember density), house design and construction materials, the surroundings of the house 

(defensible space, distance from forest, fuel accumulation) and fire suppression effectiveness 

(Blanchi et al. 2010;Gibbons et al. 2012).  

Houses usually either survive a fire or get totally destroyed (Cohen 2000;Blong 2003). 

Combustion requires all three fire triangle elements (fuel, heat, oxygen) (Figure 2.3), and a house 

will only ignite if all elements are present. Fire impact may include convective heating or direct 

contact of the flames, radiant heat flux from nearby flames and airborne firebrands (Cohen 



7.3 Probabilistic model for predicting house losses 105 

2000;Koo et al. 2010;Mell et al. 2010). Radiant heat from an intense fire can cause house ignitions 

within a 40m distance from the flame (Cohen 2000;Cohen 2004). A reduction of cover (from 90% 

to 5%) of trees and shrubs within 40m of houses could potentially reduce house loss by an average 

of 43% (Gibbons et al. 2012). Embers lifted from a fire (sometimes lifted by fire whirls occurring in 

large-scale forest fires) can be transported by strong winds to long distances up to 3 km (Albini 

1979;Koo et al. 2010) and can result in ignitions at landing positions.  

The characteristics of a building structure and its immediate surroundings influence the 

probability of ignition and therefore survival (Cohen 2000). Structure flammability depends on 

exterior construction materials (e.g. roof type and roof material influence the ignition by firebrands 

(Koo et al. 2010;Gibbons et al. 2012)) and construction design (e.g. number, size and 

characteristics of openings). Fire resistant roof materials include metal, clay tile and asphalt 

shingles (FSBC 2003). Homes should not be considered simply as potential victims of wildland 

fire, but also as potential fuels facilitating the continuation of the fire in their location (Cohen 

2000). Therefore, building density is also included in studies of house losses due to wildfires 

(Gibbons et al. 2012). Poor fire crew access may explain why housing clusters with fewer roads are 

more vulnerable. However, it has been documented in numerous cases that houses with low 

ignitability can survive high intensity fires, whereas houses with high ignitability may be destroyed 

during lower intensity fires (Cohen 2000). 

7.3 Probabilistic model for predicting house losses  

A BN model is introduced here for assessing effects to houses caused by wildfires (Figure 7.1). 

Houses are here defined as independent living units in a building. The model estimates the house 

damage cost, thus the monetary restoration cost from the direct damage of the fire on the houses, to 

be paid by the owners, or as premiums by insurance or state.The model is developed for the 

Mediterranean island of Cyprus and can be applied to areas with similar characteristics. The BN 

includes variables that correspond to hazard, exposure, vulnerability and costs. Connecting arcs 

show the causal relationships among the variables. The BN serves to model the probabilistic 

relation between damage � and cost 	 for given hazard �, allowing the computation of the risk 

��ℎ� for given hazard following Eq. 7.1. 
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Figure 7.1: Bayesian Network for effects to houses caused by wildfires 

 

Wildfire hazard � is characterized by the variables Burnt area, the Fire type and the Fire 

Weather Index (FWI) of the Canadian Forest Fire Weather Index System (Lawson and Armitage 

2008). Fire type distinguishes among a surface fire with flame length <3.5m, a surface fire with 

flame length >3.5m and a crown fire. As a rule more intense wildfires, i.e. those with longer flame 

lengths, are more difficult to extinguish and thus result in larger burnt areas (Rothermel and 

Deeming 1980). Burnt area is here expressing wildfire severity and the variables describing the fire 

hazard are included in the fire occurrence and fire size models (see also Chapter 5 and Chapter 6). 

In the proposed model, the arc connecting Burnt area and Fire type is contrary to this causal 

relationship. Such a contra-causal connection is possible in BN if it is ensured that no other 

independence properties are violated (Straub and Der Kiureghian 2010). It is used here to allow 

extension of the proposed BN to a larger BN that includes a fire size prediction expressed by the 

resulting burnt area as given in Chapter 6. The probability distribution of the Fire type conditional 

on Burnt area is determined based on data.  

Exposure nodes in the BN describe the exposure of the system (items at risk). Urban/Rural 

discriminates urban from rural areas, which influences the House density [house/km²] and the 

House stock. House stock accounts for the house type portfolio in the meso-scale. It describes the 

combination of house types in 1km², which include single houses, semi-detached/row houses, and 

apartments. The House stock classification influences the costs of rebuilding, which is here taken as 

the construction value of the houses in monetary terms. The above variables were chosen to 

represent the exposure of the houses based on their arrangement and surrounding conditions. At the 

applied meso-scale level, the portfolio of the variable House stock is the combination of types in 

percentage in 1 km² and is defined specifically for the test-bed area. The definition of House stock 

can vary, when modelling in different scale and test-bed area. This variable is here adapted to the 
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test-bed area. House stock has two states: 40s_25r_35a, (40% of the houses are single houses, 25 % 

row houses and 35% apartments) and 70s_20r_10a (70% single houses, 20% row houses, 10% 

apartments). In the application on South France, the variable House stock is considered random.  

The nodes influencing the vulnerability variable Fire containment in 24 hrs are based on 

Plucinski et al. (2012), where a logistic regression analysis is performed to determine the effect of 

multiple variables on fire containment (Table 7.1). The probability of Fire Containment in 24 hrs 

can be derived from, 

 

 Pr����� 	� !"� #� !� = $% + $'��(���) + $*+��, � !�#� + $- "�� !�#� (7.2) 

 

In the BN, Fire containment in 24 hrs depends on Vegetation type (forest/shrub/grass), fire 

weather conditions (FWI), Time for ground attack and the air /no air suppression actions. Distance 

to next fire station [km] describes the shortest distance to the next fire station and influences the 

variable Time for ground attack [min]. The later is the travelling time that a vehicle needs to cover 

this distance. The response time of a fire crew is defined as 5 min. The mean vehicle velocity is 

assumed to be 70km/hr. In the BN applied here, FWI influences only the result of the suppression 

effectiveness and not the fire itself (Burnt area, Fire type) as it should and can be found in Chapter 

5. The reason for this is that in this chapter given hazard characteristics are assumed and the hazard 

itself is not modelled. Since the model of Plucinski et al. (2012) contains the equivalent fire danger 

indicator FFDI (Forest Fire Danger Index)/GFDI (Grass Fire Danger Index) used in Australia 

(McArthur 1967), an adaptation of FFDI to FWI values is based on Dowdy et al. (2010). The FWI 

is chosen to represent fire weather conditions because of its ability to represent the influence of 

weather conditions on fire danger in the Mediterranean (Papakosta and Straub 2015). FWI is 

calculated from daily weather conditions (input 12:00 temperature, relative humidity, wind speed 

and 24hr precipitation). Land cover types refer to the Corine 2006 land cover type nomenclature and 

influences the variable Vegetation type. Vegetation type can be grass, forest, shrub and non 

burnable. Air suppression can be either present or absent (yes/no). The above variables are chosen 

to express the suppression result and how it influences the house damages. Construction type 

categorizes the houses based on the construction materials and roof type. It is also a combination of 

constructions in the 1 km² cell, and includes construction materials such as stone/mud, 

single/insulated brick and roof types such as flat concrete or inclined roof with tiles. The definition 

of Construction type can vary, when modelling at different scales and for different areas. 

The vulnerability node House damages represents the degree of damage to the house portfolio in 

the cell. The node House damages is influenced by Fire type, Fire containment in 24 hrs, 

Construction type and House stock. As mentioned before it is assumed that a house is either totally 

damaged or stay intact after a fire. The CPT of House damages is obtained through a normalized 

summation of the individual damage from each influencing variable, as explained in more details in 

the test bed application. The definition of this variable can vary based on the modelling scale and 

the available data set. 

The node House damage cost (HDC) in Figure 7.1 expresses the house damage cost in the 1 km² 

cell as a product of the House damage, the Construction value, the House density and the Burnt 

area. HDC is expressed in monetary terms [€]. 

The BN is coupled with a GIS as explained in Section 3.2. Spatial feature groups, such as 

points, lines and polygons are processed, stored and managed in the GIS database (see also Chapter 

4). The geospatial features are associated with variables in the BN. In each cell (1 km²), a copy of 
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the BN represents the wildfire effect. Spatial dependence is represented through the dependence of 

the observed indicator variables, but not through the BN itself.  

The parameters of the exposure indicators are learned with the attribute data of the geospatial 

features. Thus, the CPTs of the variables Land cover, Urban/Rural, House density, Construction 

type and Distance to next fire station are learned with data from the geodatabase (Figure 4.7). The 

hazard characteristics are fixed, thus the state of the variables Burnt area, Fire type and FWI is 

defined. This evidence is propagated through the network and the posterior marginal distributions 

of each variable are computed. 

 

 
Table 7.1: Fire Containment in 24hrs: regression parameters (Plucinski 2012;Plucinski et al. 2012) 

  $% $' $* $- 

Vegetation 

Type 

Suppression intercept F/G FDI ground time air time 

grass ground 2.41124 −0.02454 −0.51708  

forest ground 1.168703 −0.024632 −0.20104  

shrub ground 1.664122 −0.019558 −0.282204  

grass ground & air 4.80436 −0.042789 −0.66977 −0.3253 

forest ground & air 3.83561 −0.05031 −0.29845 −0.34783 

shrub ground & air 3.75257 −0.03704 −0.3184 −0.08101 

 

7.4 Probabilistic model for predicting vegetated area losses 

Figure 7.2 introduces the BN for the effects to vegetated areas induced by wildfires. The model 

estimates the vegetation damage cost, thus the monetary restoration cost from the direct damage of 

the fire on the vegetation, to be paid by the owners or the state. In this model the definition of the 

Hazard is identical with the previous model on house damage. The exposure indicators are different 

to represent the vegetated areas. The variable Land Cover type is the parent of the variable Corine 

vegetation. The latest summarizes all the land cover types with vegetation (e.g. permanent crops, 

forests, natural grasslands) of the Corine nomenclature. Restoration cost and Restoration time are 

defined conditional on Corine vegetation. Restoration cost here is the amount of money paid either 

as premium from the EU Rural Development Programs (forest, transitional woodland) or as given 

from JRC (Oehler et al. 2012).  Restoration time [yrs] is the average time needed for the vegetated 

area to achieve its former condition.  
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Figure 7.2: Bayesian Network for effects to vegetation by wildfires 

 

The vulnerability node Vegetation damage represents the degree of damage, i.e. the 

vulnerability of the vegetation in the cell. The vulnerability is influenced by Fire type and Fire 

containment in 24 hrs. It is expressed as percentage of vegetation totally damaged in 1 km². The 

CPT of Vegetation damage is assumed conditional on the variable Fire type. This variable is 

introduced to represent vulnerability of the vegetation in the meso-scale. Here damage accounts for 

total damage. The definition of this variable can vary based on the modelling scale and the available 

data set. 

The node Vegetation damage cost (VDC) in Figure 7.2 expresses the vegetation damage cost in 

monetary terms [€] in the 1 km² cell as a product of the Vegetation damage, the Burnt area, the 

Restoration cost and the Restoration time as, 

 

9�+�!"!��  �"#"+� 	�:!
= 9�+�!"!��  �"#"+� ∙ <,� ! "��" ∙ ��:!��"!��  =�:!
∙ �1 + ��>?@ABCDAEBF AEG?

 

(7.3) 

      wherein � is the discount rate 3%. The model predicts the vegetation damage cost [€] in a 1 km² 

spatial resolution. The final product of the model is the utility node “Vegetation damage cost”.  
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7.5 Variable definition and parameter estimation 

The parameters of the model are learnt with data from the test-bed area Cyprus (2006-2009) (see 

also Section 4.2). Fires occur with an annual mean occurrence rate of 5.5 ∙ 10HI JEC?@
KDL∙MG² (Section 

4.2.3). The average burnt area in the 2006-2010 period was 21 km²/year (Cyprus Forest Service).  

Table 7.2 summarizes the modeling of the BNs variables for the test-bed area. The definitions of 

the discrete states of the variables are provided as well as the sources for the conditional 

probabilities defining the variables. It is reminded that the spatial resolution of the model is 1 km², 

which is of relevance for the definition of the variables. 

The variable Fire type and its CPT on Burnt area need to be defined based on data. Such data 

are not available for Cyprus so a data set is used that includes the Fire type, the resulting Burnt area 

and the House damages of 196 fire events that took place in the Wildland Urban Interface (WUI) in 

Greece in the 1993-2003 period (Hellenic Agricultural Organization Demeter). Wildfire conditions 

in Greece are generally considered similar to those in Cyprus as the two countries have 

Mediterranean climate and similar forest vegetation. Figure 7.3 shows a boxplot of the fire type 

versus the resulting burnt area for Greece. The data set is used to learn the CPT of the variable Fire 

type.  

 

 

 
 
Figure 7.3: Boxplot of Burnt area [km²] versus Fire type 

1: surface fire (flame length<3.5m), 2: surface fire (flame length>3.5m), 3: crown fire 
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Table 7.2: Description of BN variables and data sources for the definition of the conditional probability tables 
Variable # states States Source of probability distribution and additional information 

Fire type 3 1 

2 

3 

1: surface fire with flame length < 3.5m 

2: surface fire with flame length >3.5m 

3: crown fire 

 

Classification based on fire events in WUI Greece 1993-2003 

Burnt area 

[km²] 

 

 

 

7 

 

 

0 - 10-12    

10 - 12-0.01 

0.01 - 0.1 

0.1 - 1 

1 - 3 

3 - 10 

10 - 30 

 

Historical fire events (2006-2010)  

 

 

Data source: 

Department of Forest, Ministry of Agriculture Cyprus 

Distance to next fire 

station [km]  

3 0 - 5    

5 - 10 

10 - 30 

 

Edited from fire station locations 

 

Data source: 

Cyprus Fire Service 

 

Time for ground attack 

[min] 

4 5 - 10 

10 - 15 

15 - 20 

20 - 25 

Ground troop response time assumed to be 5 min. 

Conditional on distance to next fire station.  

Vehicle travel velocity assumed 70 km/h 

 

 

FWI 4 0 - 10 

10 - 30 

30 - 60 

60 - 120 

FWI calculated from interpolated weather data from 5 weather stations 

Source: Deutscher Wetterdienst (DWD), Cyprus Meteorological Service 

(Papakosta and Straub 2015) 

Land cover 7 1 

2 

3 

4 

5 

6 

7 

 

1: Urban/Wetland/Pastures 

2: Arable land 

3: Permanent crops 

4: Heterogeneous agriculture 

5: Forests 

6: Shrubs/Herbaceous vegetation 

7: Open spaces 

 

 

Edited from Corine Land Cover map (version 13) 

Data source: European Environmental Agency 

 

Vegetation type 4 Grass 

Forest 

Shrub 

No burn 

 

 

Conditional on Land cover types 

 

 

Edited from Corine Land Cover map (version 13) 

Data source: European Environmental Agency 

Air suppression 2 no 

yes 

no: 50% 

yes: 50% 

 

Probabilities assumed  

 

Fire Containment in 

24 hrs 

 yes 

no 

Conditional on Vegetation type, FWI, Air suppression, Time for ground 

attack 

 

 Probabilities calculated based on regression models from Plucinski et al. 

2012 

Urban/Rural 

 

 

2 

 

 

      Urban 

      Rural 

Classified based on population density values 

Urban >120 residents/km² 

Rural <120 residents/km² 

 

House Stock  

 

 

2 

 

40s_25r_35a 

70s_20r_10a 

s: single houses   

r: row houses 

a: apartments 

(% percentage)  

 

Probabilities from data from Service 2010 
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Construction Type 2 5t_15s_80i 

10t_25s_65i 

t: traditional house, stone/mud wall 

s: single brick wall/flat roof house 

i: insulated brick/inclined roof 

(% percentage) 

 

Edited from Service 2012 

Florides et al. 2001 p. 228 

Nemry and Uihlein 2008, p.A147 

Probabilities from data (Service 2010) 

 

House density 

[Nr. Houses/ 

km²] 

6 0 - 3 

3 - 10 

10 - 30 

30 - 100 

100 - 300 

300 - 1,000 

1,000 - 3,000 

 

Based on Nr. dwellings (houses) statistics and municipality borders  

 

Data source: 

Statistical Service Cyprus 

 

 

Construction value  
[x 10³ €] 

4 0 - 10 

10 - 50 

50 - 100 

100 - 500 

Customized to House stock based on mean value and range for each 

building type, data from: 

 

Service 2010, p. 160 (Table 14: Building permits authorized by type of 

project 2010) 

 

House damages 2 no damage 

minor 

major 

 

minor: <20% 

major: >20% 

 

Conditional on fire type based on fire events in WUI Greece 1993-2003 

 

Conditional on fire containment assumed 60% minor, 40% major 

 

Conditional on construction type based on scores from: 

OFD 2004, p.11-12 

ECONorthwest 2007,  Appendix C, page C-8 

 

Conditional on house stock (defensible space) based on scores: 

OFD 2004, p.11-12 

 

 

Corine Vegetation 15 211 

212 

221 

222 

223 

241 

242 

243 

311 

312 

321 

323 

324 

No Vegetation 

 

211: Non-irrigated Arable 

212: Permanent Irrigated Land 

221: Vineyards 

222: Fruit Trees 

223: Olives 

241: Annual Crops Permanent 

242: Complex Cultivation Patterns 

243: Land Occupied Agriculture 

311: Broad Leaved Forest 

312: Coniferous Forest 

321: Natural Grasslands 

323: Sclerophyllous Vegetation 

324: Transitional Woodland-Shrub 

 

Data source: 

Corine Land Cover map (version 13) 

European Environmental Agency 

 

Restoration cost 

[x 10² €] 

4 0 - 300 

300 – 1,000 

1,000 - 3,000 

3,000 – 10,000 

Conditional on Corine Vegetation, based on the afforestation premiums  

paid through the EU Rural Development Programs 

(Oehler et al. 2012) see also Table 7.3 

Restoration time 

[yrs] 

3 1 

5 

15 

Conditional on Corine Vegetation, based on expert knowledge as given 

in  

(Oehler et al. 2012) see also Table 7.3 
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Vegetation damage 3 no damage 

minor 

major 

 

minor: <20% 

major: >20% 

 

Conditional on fire type assumed 

Fire type 1: 90% minor, 10% major 

Fire type 2: 60% minor, 40% major 

Fire type 3: 20% minor, 80% major 

 

 

The CPT of House damages results as a normalized summation of the individual contributions 

to the damage from each of the influencing variables. The influence of Fire type on House damages 

is quantified using the Greek dataset. The failure of Fire containment in 24hrs is assumed to lead to 

minor House damages with 60% probability and major House damages with 40% probability. The 

Construction type of houses in Cyprus includes mainly three types of structures. Traditional houses, 

mostly built in the period prior to 1945 with stone or mud walls and roofs with wood parts (Nemry 

and Uihlein 2008), are considered the most vulnerable. The vulnerability of houses built with single 

brick walls and flat reinforced concrete roofs in the period 1946 − 1970 (Nemry and Uihlein 2008) 

is considered to be low, and newer houses with insulated brick walls and inclined roofs with 

ceramic tiles are the most fire resistant. The vulnerability of House stock classes (single houses, row 

houses, apartments) based on the possible flammability of their surroundings is considered to be 

high for single houses, medium for row houses and low for apartments (Long and Randall 2004; 

OFD 2004).  

Table 7.3 summarizes the restoration cost and the restoration time as given in Oehler et al. 

(2012). The highest restoration costs have the forested areas, followed by transitional woodland 

shrubs and permanent agriculture areas.  
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Table 7.3: Average restoration cost [€/ha] and average restoration period [yrs] for different Corine land cover types in 

Europe (Oehler et al. 2012) 

CORINE class average restoration cost in Europe 

[€/ha] 

average restoration period 

[yrs] 

211: Nonirrigated Arable 868 1 

212: Permanent Irrigated Land 868 1 

221: Vineyards 3271 5 

222: FruitTrees 3111 5 

223: Olives 3351 15 

241: Annual Crops Permanent 668 1 

242: Complex Cultivation Patterns 

 

758 1 

243: Land Occupied Agriculture 

 

509 1 

311: Broad Leaved Forest 

 

9339 15 

312: Coniferous Forest 

 

6618 15 

321: Natural Grasslands 

 

254 1 

323: Sclerophyllous Vegetation 

 

254 1 

324: Transitional Woodland-Shrub 

 

5364 5 
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7.6 Results 

7.6.1 House Damage Cost 

Figure 7.4 illustrates the BN estimate of the House Damage Cost (HDC) conditional on a fire with 

the mildest hazard conditions, i.e. with Burnt area < 0.01 km² and Fire type 1 (surface fire with 

flame length < 3.5m). FWI is not fixed, thus the variable FWI is considered random.  For each node 

in the BN, the posterior marginal distribution of the variable is shown together with the expected 

house damage cost, given the corresponding state. In this example, even variables that are known 

for each cell are considered as random, such as Land use. The results are therefore representative 

for a randomly selected cell in the test-bed area. The expected HDC for a randomly selected cell of 

the test-bed area is 331 € for the assumed hazard conditions. For different Land Cover types, the 

expected HDC varies from 0 (for urban areas and wetlands) to 588 € (for forested areas).  

In Figure 7.4 cells with higher House density are expected to have higher HDC. The same 

applies to cells with higher construction values. Areas with forests (Land cover type: 5) as the 

dominant land use are expected to have the highest house damage cost, followed by shrubs (Land 

cover type: 6) and permanent crops (Land cover type: 3). Furthermore, the higher the FWI, 

expressing the fire danger due to weather conditions, the higher the expected HDC.  

Figure 7.5, Table 7.4 and Figure 7.6 show the computed expected HDC in an average cell, 

where one of the variables is varied.  

Figure 7.5 shows the HDC as a function of the Burnt area. As expected, the cost increases with 

increasing Burnt area. Burnt area > 1 [km²] exceeds the area of the cell, and in these cases the cost 

in an average cell is overestimated. The neighboring cells are then assumed to have similar 

characteristics as the cell where fire occurs. 

Table 7.4 shows expected HDC conditional on Fire type. As expected the HDC for crown fires 

is highest.  
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Figure 7.4: Expected house damage cost [€] for average cell, estimated for burnt area < 0.01 [km²] and fire type 1 

(screenshot from HUGIN) 
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Figure 7.5: Expected house damage cost [€] conditional on burnt area [km²]  

  

 

 
Table 7.4: Expected house damage cost [€] conditional on Fire type. Fire types 1 and 2 correspond to surface fires with 

different flame lengths (1: flame length < 3.5m, 2: flame length > 3.5 m) and fire type 3 corresponds to crown fires. 

Fire type 1 2 3 

House damage cost [€] 189 ∙ 10- 237 ∙ 10- 565 ∙ 10- 

 

 

Figure 7.6 shows expected HDC conditional on House density. Cells with higher House density 

(urban areas) are expected to register higher HDC when affected by wildfires. In this model, the 

influence of House density on the characteristics of the fire itself is neglected. This dependence is 

included when combining the BN with the hazard model (Chapter 8). 
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Figure 7.6: Expected house damage cost [€] conditional on house density [Nr.Houses/km²] 
 

         

Table 7.5 shows the influence of the variables on the resulting HDC. The highest influence on 

HDC have the variables (in decreasing order) House density, Fire containment in 24 hrs, 

Urban/rural, Burnt area, Construction value, Land cover, Air suppression and Fire type. The 

influence of the variable Vegetation type on the HDC is identical to the influence of the Land cover 

type. The influence of the variable House stock on the HDC is identical to the influence with the 

variable Urban/rural. This is due to the deterministic connection that these variables have with their 

parents. The prior expected HDC for an average cell of the study area is 372 ∙ 10- €. As an 

example, when there is evidence that the resulting Burnt area is in the interval 10 − 30 km², the 

expected HDC for an average cell becomes 1�6, thus increases by 168.74 %.  
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Table 7.5: Effect of influencing variables on house damage cost  

Variable Possible States of 

the Variable 

House damage cost without 

setting an initial variable value [€] 

Prior: 372107 

Change in % relative 

to the average 

Burnt area 0 0 -100.00 

≤0.01 327 -99.91 

0.01 - 0.1 3,606 -99.03 

0.1 - 1 36,178 -90.28 

1 - 3 132,109 -64.50 

3 - 10 430,013 +15.56 

10 - 30 1,000,000 +168.74 

Fire type 1 189,346 -49.12 

2 236,698 -36.39 

3 564,797 +51.78 

Construction type 5t_15s_80i 300,138 -19.34 

10t_25s_65i 380,281 +2.20 

Urban/Rural urban 2,000,000 +437.48 

rural 124,350 -66.58 

House stock 40s_25r_35a 2,000,000 +437.48 

70s_20r_10a 124,350 -66.58 

Construction 

value 

0 - 10,000 27,012 -92.74 

10,000 - 50,000 147,407 -60.39 

50,000 - 100,000 269,023 -27.70 

100,000 - 500,000 1,000,000 +168.74 

House density 0 - 3 10,283 -97.24 

3 - 10 44,560 -88.03 

10 - 30 137,108 -63.15 

30 - 100 394,046 +5.90 

100 - 300 1,000,000 +168.74 

300 - 1000 3,000,000 +706.22 

1,000 - 3,000 10,000,000 +2,587.40 

House damage no damage 0 -100 

minor 3,000,000 +706.22 

major 10,000,000 +2,587.40 

FWI 0 - 10 317,951 -14.55 

10 - 30 356,196 -4.28 

30 - 60 430,156 +15.60 

60 - 120 652,301 +75.30 

Distance to next 

fire station 

0-5 359,457 -3.40 

5-10 372,086 -0.01 

10-30 385,139 +3.50 

Time for ground 

attack 

5 - 10 359,457 -3.40 

10 - 15 367,806 -1.15 

15 - 20 376,365 +1.16 

20 - 25 385,139 +3.50 

Air suppression no 644,701 +73.26 

yes 99,513 -73.26 

Fire Containment  

in 24 hrs 

yes 0 -100 

no 4,000,000 +974.96 

Land cover 1 0 -100 

2 259,325 -30.31 
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3 361,066 -2.97 

4 259,325 -30.31 

5 661,341 +77.72 

6 462,807 +24.38 

7 0 -100 

Vegetation type Grass 259,325 -30.31 

Forest 661,341 +77.72 

Shrub 462,807 +24.38 

No vegetation 0 -100 

 

Two examples of past fire periods are selected to demonstrate the BN-GIS coupling and 

illustrate the estimated HDC for each of the observed fire events (Figure 7.7 and Figure 7.8). Based 

on the hazard characteristics (Burnt area and FWI) and the exposure and vulnerability indicators, 

the model estimates the expected HDC for each cell (1 km²) in which a fire occurred. The results 

vary from 0 to 570 ∙ 10- €. Table 7.6 compares the estimated expected HDC with the losses 

registered in the NatCatSERVICE database (Munich Re). The aggregated expected house damage 

cost from all fire events for the period is also given. The NatCatSERVICE database gives 

information on the number of houses damaged, and not on the resulting house damage cost, which 

hinders a direct validation of the BN results. It is also noted that the BN model provides expected 

values, which do not necessarily have to coincide with the actual observed losses for a single event. 

Nevertheless, the comparison of Table 7.6 shows that the BN model gives results that are in 

agreement with actual recorded losses. 

 

Figure 7.7: Expected house damage cost [€] for fires in the period 20. June 2007-16. July 2007 on Cyprus 
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Figure 7.8: Expected house damage cost [€] for fires in June 2008 on Cyprus 

 

Table 7.6: Aggregated Expected HDC compared to registered losses for two past fire periods 

Fire Period Aggregated 

Burnt Area 

[km²] 

Aggregated estimated 

expected HD cost  

[€] 

Losses as recorded in 

NatCatSERVICE 

Estimated Losses 

[€] * 

20 June 2007- 

16 July 2007 

34 1110 ∙ 10- several buildings  

June 2008 19.54 760 ∙ 10- 5 houses 725 ∙ 10- 
* Estimated Losses= NatCatSERVICE x Mean House construction value (145 ∙ 10- €) 

 

The proposed model is also applied on the test-bed area of South France for one fire period. Fire 

season 05.07.2005 – 08.08.2005 is chosen to demonstrate the predictive ability of the model (see 

also Table 4.5). Evidence is given on the variables Burnt area, Land cover types and FWI. All the 

other exposure and vulnerability variables are assumed random. The model estimates the expected 

HDC for each cell in which a fire occurred. The results vary from 0 to 5821 ∙ 10- (Figure 7.9). The 

NatCatSERVICE database gives information on the number of houses damaged. The comparison 

between the predicted HDC and the actual recorded losses is shown in Table 7.7. The estimated 

losses are again multiplied with the mean house construction value on Cyprus, to agree with the 

distribution of the construction value used in the model, which is derived from data of Cyprus. The 

estimated losses are at the magnitude of 165 ∙ 10I€. According to the data from NatCatSERVICE, 

during this fire period, only 10 houses were damaged, which leads to a cost of 145 ∙ 10R €. The 

model predicts much higher losses. Other sources reported (08.08.2005) fires due to high 

temperatures and worst drought in six decades and the evacuation of some 3200 residents and 

tourists at Pradet in the Var (http://globaldisasterwatch.blogspot.de/p/2005-disasters-from-july-

december.html)(retrieved 13.03.15). No other data was available for estimation control. 
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Figure 7.9: Expected house damage cost [€] for fires in the period 5. July 2005-8. August 2005 on South France 

 

 

 

Table 7.7: Aggregated Expected HDC compared to registered losses for one fire period (South France) 

Fire Period Aggregated 

Burnt Area 

[km²] 

Aggregated estimated 

expected HD cost  

[€] 

Losses as recorded in 

NatCatSERVICE 

Estimated Losses 

[€] * 

5 July 2005- 

8 August 2005 

65.42 164 ∙ 10I 10 houses 145 ∙ 10R 

* Estimated Losses= NatCatSERVICE x Mean House construction value (145 ∙ 10- €) 

 

Figure 7.10 and Figure 7.11 show the estimated HDC for the entire test-bed area of Cyprus 

conditional on a specific fire occurring throughout the island. The maps result from the BN-GIS 

coupling. Figure 7.10 shows the expected HDC conditional on Burnt area < 0.01 km², Fire type =
1, once with random FWI values and once with fixed FWI = 60. For FWI= 60, which denotes 

dryer vegetation conditions, the expected HDC rises in the whole area, except for the urban areas. 

Urban areas have the lowest HDC, due to the lack of flammable vegetation and higher probability 

of fire containment. The peri-urban areas (WUI) represent the coexistence of residential areas and 

natural vegetation and have the highest expected HDC values. 

Figure 7.11 shows expected HDC conditional on Burnt area = 10 − 30 km² and Fire type = 3, 

once with random FWI values and once with fixed FWI = 60. The highest values are again 

estimated in the peri-urban areas, followed by forested areas. The forested areas have higher 

expected HDC, since these are the areas affected by crown fires (Fire type = 3). The effect of 

neighboring forested areas is neglected in this model. The WUI cells are still the most threatened 

for house damage. 

Figure 7.12 and Figure 7.13 show the estimated HDC for the test-bed area South France 

conditional on a specific fire occurring throughout the area. The expected HDC is conditional on the 

same hazard conditions as in Figure 7.10 and Figure 7.11. Again for FWI=60, which denotes dryer 

vegetation conditions, the expected HDC rises in the whole area, except for the urban areas. Urban 
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areas have the lowest HDC and the peri-urban areas (Wildland-Urban Interface, WUI) have the 

highest expected HDC values. Figure 7.13 shows expected HDC conditional on Burnt area = 0 −
30 S#² and Fire type = 3, once with random FWI values and once with fixed FWI = 60. The 

highest values are again estimated in the peri-urban areas, followed by forested areas (see also 

Figure 4.26). 
 

 

 
Figure 7.10: Expected house damage cost [€] conditional on burnt area = 10-12 - 0.01 km², fire type = 1, random FWI (a) 

and FWI=60 (b) on Cyprus 
  

 

The results agree with other studies, which claim that the WUI is expected to have higher 

damages (e.g. Mozumder et al. 2009; Gibbons et al. 2012; Syphard et al. 2012). Moreover, the 

influence of higher fire danger conditions (FWI= 60) on the expected house losses agrees with 

previous studies, showing that the majority of losses occur on days with intensive fire weather 

conditions (e.g. Blanchi et al. 2010).   
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Figure 7.11: Expected house damage cost [€] conditional on burnt area = 10 - 30 km², fire type = 3, random FWI (a)  

and FWI=60 (b) on Cyprus 
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Figure 7.12: Expected house damage cost [€] conditional on burnt area = 10-12 - 0.01 km², fire type = 1, random FWI (a) 

and FWI=60 (b) on South France 
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Figure 7.13: Expected house damage cost [€] conditional on burnt area = 10 - 30 km², fire type = 3, random FWI (a)  

and FWI=60 (b) on South France 
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7.6.2 Vegetation Damage Cost 

Figure 7.14 illustrates the BN estimate of the Vegetation Damage Cost (VDC) conditional on a fire 

with the lowest hazard conditions, i.e. with Burnt area < 0.01 km² and Fire type 1 (surface fire 

with flame length < 3.5 m). FWI is not fixed.  In each node, the posterior marginal distribution of 

the variable is shown together with the expected vegetation damage cost, given the corresponding 

state. Again in this example, even variables that are known for a given location are considered as 

random, such as land use. The results are therefore representative for a randomly selected cell in the 

test-bed area. The expected VDC for a randomly selected cell of the test-bed area is 241 €. For 

different Land Cover types, the expected HDC varies from 0 (for urban areas and wetlands) to 803 

€ (for forested areas).  
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Figure 7.14: Expected vegetation damage cost [€] for average cell, estimated for burnt area 0.01 - 0.1 [km²] and fire type 1 

(screenshot from HUGIN)  
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Areas with forests (Land cover type: 5) as the dominant land cover type are expected to have the 

highest VDC, followed by transitional woodland shrubs (Land cover type: 6) and permanent crops 

(Land cover type: 3, Corine land cover: vineyards, fruit trees, olives). Furthermore, the higher the 

FWI, expressing the fire danger due to weather conditions, the higher the expected VDC.  

Figure 7.15, Figure 7.16 and Table 7.8 show the computed expected VDC in an average cell, 

where one of the variables is varied. Figure 7.15 shows the VDC as a function of the Burnt area. 

Burnt area > 1 [km²] exceeds the area of the cell, and in these cases the cost in an average cell is 

overestimated. The neighboring cells are then assumed to have similar characteristics with the cell 

where fire occurs. 

Table 7.8 shows expected VDC conditional on fire type. As expected the HDC for crown fires is 

highest.  
 
 

 

 
Figure 7.15: Expected vegetation damage cost [€] conditional on burnt area [km²] 

 

 

 

 
Table 7.8: Expected vegetation damage cost [€] conditional on Fire type 

Fire type 1 2 3 

Vegetation damage cost 

[€] 
11 ∙ 10- 24 ∙ 10- 86 ∙ 10- 

 

 

Figure 7.16 shows expected VDC conditional on Corine vegetation type. Cells with forests (311 

and 312) are expected to register the highest VDC when affected by wildfires, followed by 

transitional woodland shrubs (324) and permanent crops (221, 222, 223).  
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Figure 7.16: Expected vegetation damage cost [€] conditional on Corine Vegetation type (see also Table 7.3) 

 
  

 
 

Table 7.9 shows the influence of the variables on the resulting VDC. The highest influence on 

VDC have the variables (in decreasing order) Fire containment in 24 hrs, Corine vegetation types, 

Burnt area, Restoration time, Restoration cost and Air suppression. The influence of the variable 

Vegetation type on VDC is identical to the influence of the variable land cover type. This is due to 

the deterministic connection between them. The prior expected VDC for an average cell of the 

study area is 49 ∙ 10- €. As an example, when there is evidence that the resulting Burnt area is in 

the interval 10 − 30 km², the expected VDC for an average cell becomes 181 ∙ 10- €, thus 

increases by 271 %.  

 
  

 
Table 7.9: Effect of influencing variables on vegetation damage cost 

Variable Possible States of the 

Variable 

Vegetation damage cost 

without setting an initial 

variable value [€] 

Prior: 48917 

Change in % relative to 

the average 

Burnt area 

[km²] 

0 0 -100 

≤0.01 31 -99.94 

0.01 - 0.1 371 -99.24 

0.1 - 1 3,937 -91.95 

1 - 3 15,582 -68.15 

3 - 10 53,254 +8.87 

10 - 30 181,363 +270.76 
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Fire type 1 11,156 -77.19 

2 24,104 -50.72 

3 85,781 +75.36 

Corine Vegetation 211 7,078 -85.53 

212 7,078 -85.53 

221 30,439 -37.77 

222 30,439 -37.77 

223 30,800 -37.04 

241 7,078 -85.53 

242 7,078 -85.53 

243 7,078 -85.53 

311 183,345 +274.81 

312 183,345 +274.81 

321 2,915 -94.04 

323 2,915 -94.04 

324 126,802 +159.22 

No Vegetation 0 -100 

Restoration cost 

[x 10² €] 

0 - 300 1,913 -96.09 

300 - 1000 7,078 -85.53 

1000 - 3000 30,495 -37.66 

3000 - 10000 173,938 +255.58 

Restoration time 

[yrs] 

1 4,688 -91.42 

5 82,879 +69.43 

15 178,809 +265.54 

Vegetation 

damage 

no damage 0 -100 

minor 138,537 +183.21 

major 875,505 +1,689.8 

FWI 0 - 10 41,856 -14.43 

10 - 30 46,857 -4.21 

30 - 60 56,487 +15.47 

60 - 120 85,224 +74.22 

Distance to next 

fire station 

0 - 5 47,763 -2.36 

5 - 10 48,919 0 

10 - 30 50,098 +2.41 

Time for ground 

attack 

5 - 10 47,763 -2.36 

10 - 15 48,529 -0.79 

15 - 20 49,308 +0.80 

20 - 25 50,098 +2.41 

Air suppression no 85,403 +74.59 

yes 12,430 -74.59 

Fire Containment  

in 24 hrs 

yes 0 -100 

no 526,670 +976.66 

Land cover 1 0 -100 

2 7,078 -85.53 

3 30,495 -37.66 

4 7,078 -85.53 

5 183,345 +274.81 

6 23,445 -52.07 

7 0 -100 

Vegetation type Grass 7,859 -83.93 
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Forest 183,345 +274.81 

Shrub 24,632 -49.65 

No vegetation 0 -100 

 

Figure 7.17 and Figure 7.18 show the estimated VDC for the test-bed area of Cyprus conditional 

on a specific fire occurring throughout the island. Figure 7.17 shows the expected VDC conditional 

on Burnt area < 0.01 km², Fire type = 1, once with random FWI values and once with fixed 

FWI = 60. For FWI = 60, which denotes dryer vegetation conditions, the expected VDC rises in 

the forested areas (see also Figure 4.5).  

Figure 7.18 shows expected VDC conditional on Burnt area = 10 − 30 S#² and Fire type = 3, 

once with random FWI values and once with fixed FWI = 60. The urban areas are expected to have 

0 € of VDC. The highest values are estimated in the forested areas. 

Figure 7.19 and Figure 7.20 show the estimated VDC for the test-bed area South France 

conditional on a specific fire occurring throughout the area. The expected VDC is conditional on the 

same hazard characteristics as in Figure 7.17 and Figure 7.18 respectively. For FWI = 60 the 

expected VDC rises in the forested areas (see also Figure 4.23c). The urban areas are expected to 

have 0 € of VDC. The highest values are estimated in the forested areas.  
 

 
 

 

Figure 7.17: Expected vegetation damage cost [€] conditional on burnt area = 10-12 - 0.01 km², fire type = 1, random 

FWI (a) and FWI=60 (b) on Cyprus 
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Figure 7.18: Expected vegetation damage cost [€] conditional on burnt area = 10 - 30 km², fire type = 3, random FWI 

(a) and FWI=60 (b) on Cyprus 
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Figure 7.19: Expected vegetation damage cost [€] conditional on burnt area = 10-12 - 0.01 km², fire type = 1, random 

FWI (a) and FWI=60 (b) on South France 
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Figure 7.20: Expected vegetation damage cost [€] conditional on burnt area = 10 - 30 km², fire type = 3, random FWI 

(a)  and FWI=60 (b) on South France 
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7.7 Summary  

Predictive models for wildfire effects that provide monetary estimates of effects to houses and 

vegetation are an important component of risk assessment. Such a model can be used to support 

preparedness measures (e.g. fire crew allocation, fuel reduction). In Chapter 7 two models are 

introduced that estimate expected damage cost to houses and vegetation for given fire 

characteristics. The effect estimation is here facilitated by BNs, which allow modeling the damage 

cost of wildfires in the meso-scale with respect to different hazard characteristics and include 

vulnerability and exposure indicators. The model is applied to the Mediterranean island of Cyprus 

and to South France. First expected house damage cost maps are presented. The results show that 

larger house damage cost can be expected for higher burnt areas and house densities, and more 

hazardous fires. WUI are expected to experience the highest damages, a result which agrees with 

previous studies (e.g. Mozumder et al. 2009;Gibbons et al. 2012;Syphard et al. 2012). The highest 

vegetation damage cost are expected for forested areas, followed by shrubs and permanent crops. 

The estimated damage for specific fire periods on Cyprus and in South France is examined. The 

model gives realistic estimations of the damages. However, the available data on recorded damages 

for the verification of results are sparse. More and exact data on the fire damages would support 

model validation.  
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In this chapter the fire risk predictive model is presented, which integrates the probabilistic models 

of fire hazard (presented in Chapter 5 and Chapter 6) and fire effects (presented in Chapter 7) in one 

model. Due to the randomness inherent in the wildfire process and because the modeling is subject 

to uncertainty in all three stages (occurrence, behavior/size, damages), fire risk prediction is ideally 

carried out in a probabilistic format. In the previous chapters (Chapter 5 – Chapter 7) it is shown 

how fire occurrences are influenced by weather conditions, human presence and vegetation types. 

Fire size is influenced mainly by local weather conditions (e.g. wind speed), topography and fuels. 

Fire damages depend to a large extent on fire severity and the vulnerability of assets.   

8.1 Risk model for house damage and vegetation damage 

Figure 8.1 introduces the fire risk model. The model integrates the three previously presented 

models (Chapter 5 – Chapter 7). It consists of:   

(1) The fire occurrence model (yellow color), which includes as predictive variables weather 

conditions (expressed by the Fire Weather Index - FWI of the Canadian Forest Fire Weather Index 

System - CFFWIS), land cover types, population and road density, and predicts the probability of a 

fire occurring in each spatial-temporal unit, i.e. daily and per 1km². The node Fire N can be in two 

states, either no fire occurrence or fire occurrence. The probability of fire occurrence summarizes 

the probability of Fire N > 0 as derived by the Poisson distribution (Section 5.2). The CPT of Fire 

occurrence rate � is based data from the calculation of � for each cell of Cyprus study area based 

on Model 5 (Section 5.4.2). 

(2) The fire size model (orange color), triggered by the occurrence model (Fire N), and is 

influenced by the actual and past weather conditions (Recent weather), the Fire Behavior indices of 

the CFFWIS (FFMC, ISI, BUI) and Topography (Wind speed, Slope, AspectMinusWindDirection).  

8 Fire risk model 
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(3) The effects model (green color), which predicts the expected losses related to houses and 

vegetated areas conditional on fire hazard. The fire hazard is characterized by the resulting Burnt 

area [km²] and Fire type. Vulnerability (resistance capacity) and exposure (values at risk) indicators 

are used to quantify the damage. The latest depends also on the fire suppression efficiency (see also 

Chapter 7). Variables representing vulnerability are Construction type, Air suppression, Distance to 

next fire station, Time for ground attack, Fire containment in 24hrs, House damage, Vegetation 

damage. Variables representing exposure are Urban/Rural, House density, House stock, 

Construction value, Corine vegetation, Restoration cost, Restoration time.   

The final results of the combined model are the risk to houses (expected house damage cost [€]) 

and the risk to vegetation (expected vegetation damage cost [€]). As already shown in Eq. 2.1 

(Section 2.1) the risk can be formulated as, 

  
� = E�,
��
 = � ���� � ���|�����, ����

 
 
��

�
 

(8.1) 

wherein � is the hazard, � the resulting damages and � the consequences (i.e. effects). In the 

presented model, hazard � is expressed by Burnt area (detailed) and Fire type. The damages �, i.e. 

the vulnerability, is expressed by the variables House damage and Vegetation damage, the variable 

Fire Containment in 24 hrs and its parent nodes. The effects nodes House damage cost and 

Vegetation damage cost are a function of the hazard variable Burnt area detailed, the vulnerability 

variables House damage and Vegetation damage respectively and the exposure variables.  

The node Burnt area is identical to the node Burnt area of the Fire size model (Chapter 6) and 

the node BurntAreaDetailed is identical to the node Burnt area of the fire effects model (Chapter 

7). The latest has more intervals in the range of 1 − 30 km². The reason for this choice in the 

modelling, is made to restrict the number of states and thus the CPT of the variable Burnt area in 

the size model (Chapter 6) and as a result to allow parameter learning with the limited fire data set 

of Cyprus 2006-2009. The node Burnt area detailed is a child of the node Burnt area with more 

intervals in the range of 1 − 30 km², in order to give more precise estimations of the expected cost 

for large fires. The CPT of the node Burnt area detailed is learnt with the same fire data set of 

Cyprus 2006-2009. 
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Figure 8.1: Fire risk model. The model includes the three models presented in Chapter 5 – Chapter 7. The fire 

occurrence model (yellow), the fire size model (orange) and the fire effects model (green). 
 

 

8.2 BN computations 

As already explained in Chapter 5 – Chapter 7, the parameters of the model are learnt with data 

from the study area Cyprus (2006-2009). The model is then applied on Cyprus 2010 and South 

France 2003 and 2010. The variables, their states and data sources are identical with those shown in 

Table 6.3 and Table 7.2. A description of the variables, which are not included in those tables is 

given in Table 8.1. 
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Table 8.1: Description of BN variables and data sources for the definition of the conditional probability tables of the fire 

risk model 
Variable #states States Source of probability distribution and additional information 

Population 

density 

[People/km²] 

3 0 - 20 

20 - 300 

300 - inf 

Source: 

Statistical Service Cyprus (census 2011) 

Road density 

[km/km²] 

3 0 - 0.5 

0.5 - 2 

2 - inf 

Source: 

Open Street Map  

Fire 

occurrence 

rate � 

� �����
�� ∙ "#²% 

19 0 - 10-9 

10-9 - 10-8 

10-8 - 10-7 

10-7 - 10-6 

10-6 - 5·10-6 

5·10-6 - 10-5 

10-5 - 2·10-5 

… 

8·10-5 - 9·10-5 

9·10-5 - 0.0001 

0.0001 - 0.0005 

0.0005 - 0.001 

0.001 - 0.01 

0.01 - 0.1 

 

Based on Equation 5.2 (Fire occurrence  Model 5 in Chapter 5)  

Fire N 2 

 

1 

0 
Based on Equation 5.1 with & = 1 "#² 

Burnt area 

[km²] 

5 0 - 10-12 

10-12 - 0.01 

0.01 - 0.1 

0.1 - 1 

1 - inf 

Historical fire events (2006-2010)  

 

 

Data source: 

Department of Forest, Ministry of Agriculture Cyprus 

 

Burnt area 

detailed 

[km²] 

 

7 

 

 

0 - 10-12    

10-12 - 0.01 

0.01 - 0.1 

0.1 - 1 

1 - 3 

3 - 10 

10 - inf 

 

Historical fire events (2006-2010)  

 

 

Data source: 

Department of Forest, Ministry of Agriculture Cyprus 

Fire type 4 0 

1 

2 

3 

0: no fire 

1: surface fire with flame length < 3.5m 

2: surface fire with flame length >3.5m 

3: crown fire 

 

Classification based on fire events in WUI Greece 1993-2003 

 

 

Figure 8.2 and Figure 8.3 both show screenshots of the risk model for different conditions. The 

figures are here given to demonstrate the prediction made by the model with and without given 

evidence. In Figure 8.2 no evidence is given for the cell showing the risk to houses and vegetation 

for an average cell in an average day. In Figure 8.3 evidence is given on the weather (FWI and 

Accumulated precipitation 21 days) and cell characteristics (Land cover, Slope).  
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Figure 8.2: Expected house damage cost [€] and vegetation damage cost [€] for average cell, without evidence given 

(screenshot from HUGIN) 
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Figure 8.3: Expected house damage cost [€] and vegetation damage cost [€] with evidence given on weather (FWI, 

Accumulated precipitation 21 days) and cell characteristics (Land cover, Slope) (screenshot from HUGIN) 
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8.3 Results 

8.3.1 Sensitivity analysis 

In order to show the influence of the variables on the risk to houses and vegetation, the variance of 

risk for each variable is calculated (Table 8.2). The prior risk to houses for an average cell of the 

study area is 3 €. The intermediate results for each state of the variables are shown in Table AIII-1 

(Appendix III). Table 8.2 gives the variables in decreasing order of their influence on the risk to 

houses. The highest influence on risk to houses have the variables Burnt Area, Vegetation damage, 

House damage, Fire type, Fires, House density Fire occurrence rate, Fire containment in 24 hrs, 

Urban/Rural. The variable Vegetation type has identical influence with the variable Land cover 

type. The variable House stock has identical influence with the variable Urban/rural. This is due to 

the deterministic connection that these variables have with their parent variables in the BN. Table 

AIII-1 (Appendix III) also includes the relative increase of the risk to houses, when evidence is 

given in each state of the variables. As an example, when there is evidence that the resulting Burnt 

area is in the interval 10 − inf km², the risk to houses for an average cell becomes 2 ∙ 10+, thus 

increases by +6.66 ∙ 10/ %.  

The prior expected vegetation damage cost for an average cell of the study area is 0.4 €. Table 

8.3 summarizes the influence of the variables on risk to vegetation. The detailed intermediate results 

can be found in Table AIII-2 (Appendix III). The highest influence on risk to vegetation have the 

variables (in decreasing order) Burnt area, Vegetation damage, House damage, Fire type, Fires, 

Fire occurrence rate, Fire containment in 24hrs, Urban/Rural. As an example, when there is 

evidence that the land cover type is forest (type 5), the expected vegetation damage cost for an 

average cell becomes 2 €, thus increases by +400 %.  

 
Table 8.2: Variable influence on house risk [€] 

Variable V Variance 

Var4�Risk
 = 

 

8�Risk�9� − Risk�² ∙ ��v� 

Burnt area 2,605,708.59 

Vegetation damage 802,008.91 

House damage 356,008.91 

Fire type 162,031.91 

Fires 83,208.91 

House density 3,964.62 

Fire occur. rate  664.00 

Fire Containment in 24hrs 78.75 

Urban/Rural 20.32 

House stock 20.32 

Construction value 7.60 

FWI 4.99 

Land cover 4.61 

Restoration cost 3.77 

Pop. density 3.45 

Restoration time 2.68 

Recent Weather 0.73 

Road density 0.64 

Topography 0.21 

Fire behavior indices 0.17 

Construction type 0 
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Table 8.3: Variable influence on vegetation risk [€] 
Variable V Variance 

Var4�Risk
 = 

 

8�Risk�9� − Risk�² ∙ ��v� 

Burnt area 38,036.86 

Vegetation damage 25,314.16 

House damage 8,183.04 

Fire type 4,326.18 

Fires 1,606.16 

Fire occur. rate  42.40 

Fire Containment in 24hrs 1.32 

Restoration time 0.69 

Land cover 0.61 

Pop. density 0.20 

Restoration cost 0.19 

FWI 0.09 

Recent Weather 0.01 

Road density 0 

Topography 0 

Fire behavior indices 0 

Construction type 0 

Urban/Rural 0 

House stock 0 

Construction value 0 

House density 0 

8.3.2 Cyprus 

The fire risk model is applied on Cyprus 2010. Figure 8.4 - Figure 8.6 show timelines for Cyprus 

2010 of the predicted daily fire risk to houses (Figure 8.4), vegetation (Figure 8.5) and both (Figure 

8.6). As expected, the risk to houses increases gradually between April (day 91) and August (day 

240), and decreases gradually from September (day 241) to December (day 370) (Figure 8.4). The 

highest value is predicted on the 25.August (32,995 €). The same trend can be observed for the 

predicted fire risk to vegetation (Figure 8.5). The maximum value predicted is on the 26. August 

(5,396 €). For the overall risk the highest value is 36,740 € (Figure 8.6). In all three figures, fire risk 

increases from April to August. This is due to the weather conditions in spring-summer that lead to 

dryer vegetation (low precipitation, high temperature, high wind speed) (see also Figure 4.2 and 

Figure 4.8). As shown in Figure 8.1 in the proposed model weather variables and CFFWIS 

components influence Fire occurrence rate, Burnt area and Fire containment in 24hrs, and so 

during the spring-summer period they favor fire occurrence and fire spread (burnt area) and hinder 

fire containment, leading as a result to higher risk on those days. 
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Figure 8.4: Daily predicted fire risk to houses [€] for Cyprus 2010 

 

 

 
Figure 8.5: Daily predicted fire risk to vegetation [€] for Cyprus 2010 

 

 

 
Figure 8.6: Daily predicted fire risk to houses and vegetation [€] for Cyprus 2010  
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Four days in 2010 are chosen to demonstrate the predictions of the risk model in maps; a day in 

winter (01.01.2010), in which low risk values are expected, and 3 days with the highest recorded 

burnt area in 2010. As expected, FWI takes low values in winter days and higher values in summer 

days (Figure 8.7). The highest risk to houses over the whole area is predicted on 06.06.10 (21,735 

€) (Figure 8.8) and the highest risk to vegetation over the whole area is predicted on 22.08.10 

(2,768 €) (Figure 8.9). In areas with higher FWI, risk to houses and vegetation is higher. Moreover, 

the WUI areas are the ones, where the highest risk to houses is predicted (Figure 8.8), which is in 

agreement with previous studies (Beringer 2000;Cohen 2000;Haight et al. 2004;Mozumder et al. 

2009;Mell et al. 2010) (see also Chapter 7). On the other hand, regarding the risk to vegetation 

(Figure 8.9), forested areas on Cyprus have the highest risk to vegetation due to fuel availability and 

high restoration cost and time (Table 7.3).  
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Figure 8.7: FWI and fire events on different days of 2010 (in brackets the total burnt area):  

(a) 11th January (no fire events), (b) 6th June (4.3 km²), (c) 22 August (1.15 km²), (d) 14th November (2.22 km²) 
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Figure 8.8: Predicted fire risk to houses [€] on different days of 2010 (in brackets the accumulated risk over the entire 

area): (a) 1st January (1,268 €), (b) 6th June (21,735 €), (c) 22 August (19,379 €), (d) 14th November (13,880 €) 

 
 

  

 

 

¯0 10 Km

(a)

(b)

(c)

(d)

01.01.2010

06.06.2010

22.08.2010

14.11.2010

Fires

Risk to houses [€]

0 - 3

3 - 10

10 - 30

30 - 100

100 - 300

  

 



8.3 Results 149 

 

 

 
Figure 8.9: Predicted fire risk to vegetation [€] on different days of 2010 (in brackets the accumulated risk over the 

entire area): (a) 1st January (198 €), (b) 6th June (2,718 €), (c) 22 August (2,768 €), (d) 14th November (2,353 €) 
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8.3.3 South France 

The proposed fire risk model is also applied to South France for 2003 and 2010. In 2003 a very 

destructive fire season with 1937 occurring fires and 306.68 km² burnt resulted in several structures 

damaged and thousands of people evacuated from their houses 

(http://news.bbc.co.uk/2/hi/europe/3105339.stm). Year 2010 with 802 fires occurred and 54.92 km² 

burnt area is the last available year of the data set and the same year as for Cyprus. 

Figure 8.10 and Figure 8.11 show the daily predicted risk to houses and vegetation respectively 

for years 2003 and 2010 over the whole area. In 2003 the predicted risk to houses and to vegetation 

is higher than during 2010. However, the highest daily risk is predicted for 2010. The same trend 

can be seen as expected for the overall risk for these years (Figure 8.12). Daily risk increases during 

the fire period April (day 120) to August (day 240) and decreases later on. The trend is similar to 

the results shown for Cyprus 2010 (Figure 8.6). The peak of the predicted fire risk occurs in 2003 in 

July (day 210), earlier than in 2010 (August, day 240). Particularly destructive fires occurred indeed 

earlier in 2003 (29.07.2003, Source: http://news.bbc.co.uk/2/hi/europe/3105339.stm) than in 2010 

(31.08.2010, Source: http://www.english.rfi.fr/france/20100901-fires-ravage-southern-france). This 

supports the reliability of the prediction of the fire risk model.  

To demonstrate the prediction of risk in maps, four days have been chosen for 2003 (Figure 8.10 

- Figure 8.12). These are the days in which the highest burnt areas of the year were recorded.  

As previously for Cyprus, the risk is higher in the peri-urban areas and in areas with permanent 

crops (rural areas with available fuels and structures) (see also land cover types in Figure 4.31(c)). 

Figure 8.15 shows the predicted fire risk to vegetation [€] for the same days. It should be noticed, 

that a lower classification of the risk is here chosen, in order to differentiate between lower risk 

values. Here, forested and agricultural areas have higher vegetation risk values.  

Predictions of risk for respective days in 2010 for South France are included in Appendix III 

(Figure AIII-1 – Figure AIII-3). The maps show similar distribution of the risk as in the days of 

2003. 
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Figure 8.10: Daily predicted fire risk to houses [€] for South France 2003 and 2010 

 

 

Figure 8.11: Daily predicted fire risk to vegetation [€] for South France 2003 and 2010 

 

 

 

Figure 8.12: Daily predicted fire risk to houses and vegetation [€] for South France 2003 and 2010 
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 Figure 8.13: FWI and fire events on different days of 2003 in South France (in brackets the burnt area): 

 (a) 1st January (no fire events), (b) 17th July (67.44 km²), (c) 28th July (56.46 km²), (d) 31st August (27.26 km²) 
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Figure 8.14: Predicted fire risk to houses [€] on different days of 2003 in South France (in brackets the accumulated risk 

over the whole area): (a) 1st January (51,240 €), (b) 17th July (534,075 €), (c) 28th July (460,916 €), (d) 31st August 

(440,192 €) 
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Figure 8.15: Predicted fire risk to vegetation [€] on different days of 2003 in South France (in brackets the accumulated 

risk over the whole area): (a) 1st January (4,231 €), (b) 17th July (46,864 €), (c) 28th July (35,248 €), (d) 31st August 

(37,838 €) 
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8.4 Summary 

Chapter 8 gives an insight into the final fire risk model. The proposed BN model results from the 

combination of the three previously presented models. The fire occurrence model (Chapter 5), the 

fire size model (Chapter 6) and the fire effects model (Chapter 7). The CPTs of the model are 

learned with data from Cyprus 2006-2009. The model is applied on data from Cyprus 2010 and 

from South France 2003 and 2010. The time series for these years show that the risk to houses and 

vegetation increases from April to August and decreases from September to December. Certain 

days with historic fires resulting to large burnt areas are chosen to map the predicted risk to houses 

and vegetation on the study areas. The peri-urban areas (WUI), thus the areas with coexisting 

structures and vegetation have the highest predicted risk to houses. The forested and agricultural 

areas have the highest fire risk to vegetation. For South France the pick of the predictions agrees 

with the destructive fires that occurred in these years, with several damaged houses, thousands of 

peoples evacuated from their houses and hundreds of km² of vegetated areas burnt.    
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9.1 Summary 

 
Fires are common during summer periods in the Mediterranean. Mild wet winters and extended dry 
hot summers form fire prone environments; strong katabatic foehn winds intensify occurring fires, 
making fire suppression a demanding, dangerous and time/resource consuming task. Although 
weather favours fire spread, it is mainly humans responsible for fire ignitions in the Mediterranean. 
Most fires are started by people, either on purpose (e.g. arson) or by accident (e.g. campfire, 
agricultural activities). Record temperatures in the past (e.g. Greece 2007, Russia 2010) dried the 
accumulated fuels and facilitated the rapid spread of occurred fire events with enormous effects on 
humans and the environment. Such extreme conditions are expected to be more often in the future 
according to future climate change scenarios. Effective wildfire risk prediction in high temporal and 
spatial resolution can therefore prove an important tool to support fire management. Both 
preventive and mitigating measures can benefit from it. From risk accounting of endangered areas 
in the insurance industry, to decision making in suppression crew allocation, fire risk quantification 
can be a valuable tool for the private and the public sector.   

Fire risk can be estimated as a function of hazard occurrence probability and consequences. The 

hazard is characterized by the occurrence and severity. Consequences can be direct/indirect, or 

tangible/intangible. Consequences are a function of vulnerability and exposure of the affected items 

(e.g. human lives, properties, infrastructure and vegetation). Vulnerability describes the degree of 

expected damage as a function of hazard intensity. Exposure refers to the items at risk, such as 

house density. Risk is thus expressed by hazard, vulnerability and exposure (Figure 2.1). Indicators, 

thus measurable variables are used to quantify vulnerability and exposure. Due to the randomness 

inherent in the wildfire process and because the modeling is subject to uncertainty in all three stages 

(occurrence, behavior, damages), fire risk prediction is ideally carried out in a probabilistic format. 

9  Conclusion 
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Available data and expert knowledge should be incorporated for parameter learning. Moreover, the 

applications need to deal with (partly incomplete) data from various sources.  

This thesis aims to provide a methodology for fire risk modeling and introduce a daily fire risk 

prediction model in the meso-scale for Mediterranean areas. The model results in daily fire risk 

estimations demonstrated in maps.  

The modeling is carried out with Bayesian Networks (BN), due to their capability to model 

complex processes with random variables and the associated uncertainties. Three BNs are 

introduced to account for the three stages of the wildfire process (occurrence, behavior, 

consequences) as shown in Chapter 5, Chapter 6 and Chapter 7 respectively. The fire occurrence 

model is based on the results of a Poisson regression (Chapter 5). The models include variables 

expressing weather conditions, fuel moisture, topography, land cover, construction characteristics, 

human presence, and infrastructure and suppression efficiency. The composition of the three models 

results to the wildfire risk model, which predicts daily wildfire risk to houses and vegetated areas in 

1km² spatial resolution (Chapter 8). The BN is coupled with a Geographic Information System 

(GIS), to enable estimation of the model parameters (Conditional Probability Tables (CPT) of the 

variables) and risk mapping (Section 3.2).  The models are applied on three study areas of the 

Mediterranean (Rhodes, Cyprus, South France). 

9.2 Discussion  

The selected probabilistic modeling approach in Chapter 5 provides a quantitative metric of the 

ability of different explanatory variables to predict daily fire occurrence. The weather influence on 

fire occurrence is expressed by the fire danger indicator “Fire Weather Index” (FWI) developed 

originally for Canada. FWI proved to have better fire occurrence predictive ability than the 

intermediated components of the CFFWIS. The observed FWI values in the Mediterranean case 

study areas are mostly in a limited range only (see also Figure 4.12), which limits the ability of the 

FWI alone to discriminate days and locations with high fire danger from those with low fire danger. 

This indicates that there might be potential in adjusting the definition of the FWI to local conditions 

in agreement with Dimitrakopoulos et al. (2011). It may also be investigated if selected weather 

parameters should be included as explanatory variables in addition to the FWI. Moreover, in 

agreement with previous studies, it is found that including anthropogenic factors as explanatory 

variables can significantly improve the prediction of fire occurrence. The comparison of different 

models showed that a model with land cover types, population and road density (all readily 

available data) has a significantly better predictive ability than one based on FWI alone, which is in 

operation in present by the EU as the European Forest Fire Information System (EFFIS) (Figure 

2.10). Since such data is readily available, it is straightforward to include it in forecasting systems. 

However, including additional variables in the modeling should be done with caution to avoid 

redundant variables and the interdependencies should be taken into account. Already the three 

included explanatory variables (land cover type, population and road density) are partly redundant 

and inter-dependent, e.g. both population and road density are higher in urban areas. Moreover, due 

to the randomness of fire occurrence, there is a limitation to any prediction. While the developed 

models are able to identify days and locations with higher fire risks, they are not - and will not - be 

able to deterministically predict fire occurrences in advance. Nevertheless, the predictions can 

support the planning of fire preventive and mitigating measures, such as fuel reduction and fire 
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crew allocation. Importantly, they also improve the understanding of influential factors on fire 

occurrence. 

The fire size model of Chapter 6 predicts resulting burnt area [km²] in the meso-scale and does 

not consider the elliptical form of the fire. Furthermore, this model does not result to characteristics 

of a fire usually predicted by fire behavior systems, such as fire intensity, flame length or spread 

rate. This is due to lack of data of these variables for the study areas concerned. In case of data 

availability, an extension of the presented model including also the relevant variables is possible 

and should be considered. The model takes into account land cover types, initial fire behavior 

conditions (as expressed by components of the Canadian Forest Fire Weather Index System 

(CFFWIS)), topography (wind speed, slope, aspect minus wind direction) and recent weather 

conditions (e.g. accumulated precipitation over the last 21 days) (Figure 6.1). The proposed model 

is based on structure learning by constraint-based approach and phenomenological reasoning and 

includes hidden (i.e. non-observable) variables. The model predicts higher burnt areas from spring 

to autumn, as a result of dryer weather conditions. The model is able to predict accurately small 

fires (0-0.01 km²), due to the fact that these fires are highly represented in the learning dataset 

Cyprus 2006-2009. Additional data on fires resulting to large burnt area could be used to update the 

CPT of the variable Burnt area and therefore improve the predicting ability of the model for bigger 

fires. 

In the fire effects model of Chapter 7 hazard characteristics are expressed by Burnt area [km²], 

Fire type and FWI. The model accounts for fire suppression effectiveness. House damage cost is 

based on the construction value of houses. Vegetation damage cost is based on the premiums paid 

for vegetation restoration by the EU. The meso-scale modeling requires that the indicators are 

representative for a 1 km² spatial unit. This makes the modeling more demanding, as it is necessary 

to identify representative states not of individual houses, but rather of portfolios of houses, e.g. 

house stock, construction type. This introduces uncertainties in house damage estimation at the 

meso-scale. The results show that higher house damage cost can be expected for bigger burnt areas 

and house densities, and more hazardous fires. The WUI is expected to experience the highest 

house damages. The highest vegetation damages are expected for forested areas, followed by shrubs 

and permanent crops. This is due to the higher mean occurrence rate in these areas (Figure 4.16 and 

Figure 4.26) and the higher cost and time of restoration (Table 7.3). 

The overall fire risk model, which results from the combination of the three previously 

presented models, is described in Chapter 8. Yearly, the predicted risk to houses and vegetation 

increases from April to August and decreases from September to December. The peri-urban areas 

(WUI), thus the areas with coexisting structures and vegetation, show the highest predicted risk to 

houses. The forested and agricultural areas have the highest fire risk to vegetation. This agrees with 

previous studies, which stress the high fire risk in WUI areas (e.g.Beringer 2000;Cohen 

2000;Haight et al. 2004;Mozumder et al. 2009;Mell et al. 2010). In the proposed model, this is due 

to the higher mean occurrence rate in these areas (Figure 4.16 and Figure 4.26) and the higher cost 

and time of restoration (Table 7.3). Yearly, the risk rises from spring to the end of summer and 

decreases gradually during autumn. For South France the year 2003 is expected to have higher fire 

risk than 2010. This prediction agrees with the destructive fires that occurred in South France in 

2003, with several damaged houses, thousands of peoples evacuated from their houses and 

hundreds of km² of vegetated areas burnt. The proposed fire risk model is flexible and can be easily 

extended to include other variables or get updated with additional information on the existing 

variables. This allows the modeling of other types of fire induced losses (e.g. human safety) or of 

the fire hazard in higher complexity. Finally, it is demonstrated that the presented model can be 
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used in its current state in areas with similar characteristics to the ones used for model calibration, 

to predict daily fire risk to houses and vegetation in the meso-scale.    

9.3 Main contributions of the thesis 

The proposed fire occurrence model contributed to the first research objective of this thesis 

(Chapter 1.1), thus to develop a probabilistic fire occurrence model that includes as influencing 

variables both weather conditions and human involvement to account for ignitions related to 

humans, and improve the currently used fire danger models. After data analysis for the 

identification of variables influencing the fire hazard phenomenon, Poisson regression with forward 

selection of explanatory variables was realized to predict fire occurrence probability with 

incorporation in the model of both environmental (FWI) and anthropogenic  (e.g. population 

density) influencing factors. BNs were employed for the modeling of fire occurrence and fire size 

with random variables representing the main driving factors of the fire phenomenon. The fire 

occurrence and fire size model predict the fire hazard per day (temporal resolution) and km² (spatial 

resolution). The fire size model is a result of automatic structure learning with convenient 

algorithms and phenomenological reasoning, which predicts the resulting burnt area [km²] in the 

meso-scale; the model incorporates both observable and non-observable variables. Direct and 

tangible fire effects on houses and vegetation are quantified in monetary terms [€] with 

vulnerability and exposure indicators. The latest are included in the BNs as random variables. 

Sensitivity analysis of the models identified the influence of the variables on the expected fire 

damage cost and the fire risk. To support parameter learning, predictions and result visualization the 

BNs area coupled with a GIS. Parameter learning is done with readily available data of three study 

areas of the Mediterranean region and incorporation of expert knowledge. Results include 

predictions of fire occurrence rate ���.�����
	
²∙
���, burnt area [km²] and expected damage cost [€] on 

houses and vegetation for verification data sets and daily maps with 1 km² spatial resolution for 

Cyprus and South France. Overall, the present thesis presents a novel fire risk predicting model, 

which is flexible and can be easily extended to include other variables or get updated with 

additional information on the existing variables. In this way other types of fire induced losses or the 

fire hazard in more complexity can be modelled. The presented model can be used in its current 

state in areas with similar characteristics to predict daily fire risk to houses and vegetation in the 

meso-scale. 

9.4 Outlook  

This thesis presented a novel probabilistic fire risk model to be used for areas with climatic and 

anthropogenic conditions similar to those of the Mediterranean countries. Even so, there are 

limitations that have been identified during the realization of this thesis as discussed above and 

aspects that should be addressed in future works.  

In the fire occurrence model, further explanatory variables describing anthropogenic factors 

(e.g. power line networks, campsites) may be included in the analysis. However, care should be 

taken not to introduce redundant variables. Already the three included explanatory variables (land 

cover type, population and road density) are partly redundant and inter-dependent. E.g., both 
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population and road density are higher in urban areas. This dependency must be considered when 

transferring the model to other regions. The predictive ability of other fuel moisture indicators can 

be additionally studied and if relevant, they can be included in the model. Fuel types, could be an 

additional variable in the model; in this case the dependency to land cover types should be 

represented.  

In the fire size model, the data set of fires from Cyprus (2006-2009) included mainly small burnt 

areas (< 0.01 �m�). As a result the model predicts smaller fires with higher accuracy than bigger 

fire events. The predictive ability of the model can be improved, when additional data sets of fires 

with bigger resulting burnt areas are employed for model updating. Fuel moisture indicators other 

than of the CFFWIS should be studied and when relevant included in the model. The proposed 

model predicts burnt area and neglects other important fire characteristics; fire intensity, spread rate 

and flame length are essential predicted variables for model application regarding fire crew 

allocation. To achieve the prediction of fire characteristics and the probability of transition of a fire 

from surface to crown, fuel models should be incorporated. As a result the model will be a fire 

behavior model, rather than a fire size model.  

In the fire effects model, additional influencing variables can be added to increase model 

accuracy. These include (i) the adjacent vegetation influencing house damages, (ii) evacuation 

status and permanent/non-permanent house use to account for the suppression attempts of the 

resident, (iii) the existence of fire protection plans in the community level to account for the 

residents preparedness of protecting their houses from fire and (iv) the existence of house insurance 

against fire, which also influences the residents behaviour in case of fire. The BN model is flexible, 

and these (and other) variables can be included by adding them as nodes, together with the 

appropriate links. Their inclusion does however require that quantitative models of their influence 

on the house damage, or on other variables of the BN, are available. In this thesis limited data on 

real damages are used for model validation. Additional available data on actual house and 

vegetation damages and fire characteristics can be valuable for the parameter learning and the 

model validation. The above can increase model accuracy and lead to better estimations. 

In the fire risk model, additional data sets of other study areas should be used to update the 

probability distributions of the random variables and thus raise the predictive ability of the model. 

The loose coupling of BN-GIS chosen proved to be of limited flexibility and high calculation time, 

especially for larger study areas (e.g. South France). A more flexible and user friendly database for 

this data set will improve data management, querying and analysis. It will also enable model 

updating and increase model performance. A more complex coupling of the BN-GIS requiring little 

user intervention and offering a more user-friendly application for non GIS experts in fire 

management should be considered. Actions could include a flexible interface (e.g. a dialog box), for 

defining the input data to the BN (e.g. daily weather prediction), the execution of the evidence 

propagation in the BN software with a plug-in module in the GIS environment with call-back 

functions, the output of the beliefs of the BN and the direct visualization in the GIS (e.g. Yassemi et 

al. 2008;Jolma et al. 2011).  

Future work towards better predictive models can include the above proposed methods and/or 

incorporate in the BNs external models already in operation. Predicting, adapting, extending, 

replacing, predicting, adapting…The work towards reliable tools to model fire phenomena and 

expected losses is continuous; nevertheless, understanding and improvements are nowadays fast, 

among others due to data availability and powerful visualization and modelling tools. The present 

work aimed to contribute towards better fire risk predictive models to support fire prevention and 

mitigation measures for the protection of human life and property in the Mediterranean and aspires 

the presented models to be adapted, further investigated, extended and eventually replaced in the 

perpetual work in progress of science. 
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Equations of the  

Canadian Forest Fire Weather Index System  
 

The following equations and notations are taken from Van Wagner and Pickett (1985)  

 

Weather  

 � - noon temperature , °C � - noon relative humidity, % �  -  noon wind speed, km/h �� -  rainfall in open, measured once daily at noon, mm �� -  effective rainfall, FFMC 

�� - effective rainfall, DMC �� - effective rainfall, DC 

 

 

Fine Fuel Moisture Code (FFMC) 

 	� - fine fuel moisture content from previous day 	
 - fine fuel moisture content after rain 	  -  fine fuel moisture content after drying �� -  fine fuel EMC for drying �� -  fine fuel EMC for weting 
� - intermediate step in calculation of 
� 
� - log drying rate, FFMC, �����	/��� 
� - intermediate step in calculation of 
� 
� - log wetting rate, �����	/��� ��  -  previous day’s FFMC � -  FFMC 

 

 

 

Duff Moisture Code (DMC) 

 �� - duff moisture content from previous day �
 - duff moisture content after rain �  -  duff moisture content after drying � -  log drying rate in DMC, �����	/��� �� -  effective day length in DMC, hours � - slope variable in DMC rain effect �� - previous day’s DMC �
 - DMC after rain  � - DMC 
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Drought Code (DC) 

 � - moisture equivalent of DC, units of 0.254 mm �� - moisture equivalent of previous day’s DC �
  -  moisture equivalent after rain � -  potential evapotranspiration, units of 0.254 mm water/day �� -  day length adjustment in DC 

�� - previous day’s DC �
 - DC after rain  � - DC  

 

 

Fire Behavior Indexes (ISI, BUI, FWI) 

  (�) - wind function  (�) - fine fuel moisture function  (�) -  duff moisture function # -  Initial Spread Index (ISI) $ -  Buildup Index (BUI) % - FWI (intermediate form) & - FWI (final form) 

 

 

Severity Rating 

 �&# - Daily Severity Rating 
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Fine Fuel Moisture Code (FFMC)  

 

	� = 147.2 (101 − ��)/(59.5 + ��) (1) 

�� = �� − 0.5,        �� > 0.5 (2) 

	
 = 	� + 42.5�� 567 ���89�7:;< 51 − 67=.>?
@ <,              	� ≤ 150 (3a) 

	
 = 	� + 42.5�� 567 ���89�7:;< 51 − 67=.>?
@ < + 0.0015(	� − 150)8���.9,          	� > 150 (3b) 

�� = 0.942��.=B> + 116(C7���)/�� + 0.18(21.1 − �)(1 − 67�.��9C) (4) 

�� = 0.618��.B9? + 116(C7���)/�� + 0.18(21.1 − �)(1 − 67�.��9C) (5) 


� = 0.424 F1 − G �
100H�.BI + 0.0694��.9[1 − G �

100HK] (6a) 


� = 
� ∙ 0.5816�.�?=9N (6b) 


� = 0.424 F1 − G100 − �
100 H�.BI + 0.0694��.9[1 − G100 − �

100 HK] (7a) 
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1. Previous day’s � becomes �� . 

 

2. Calculate 	� by Equation (1). 

 

3. a. If �� > 0.5, calculate �� by Equation 2. 

b. Calculate 	
 from �� and 	�  

    i. If 	� ≤ 150, use Equation 3a. 

   ii. If 	� > 150, use Equation 3b. 

c. 	
 becomes the new 	�.  

 

4. Calculate �� by Equation 4. 

 

5. a. If 	� > �� calculate 
�by Equations 6a and 6b. 

b. Calculate 	 by Equation 8. 

 

6. If m� < ER calculate ES  by Equation 5. 

 

7. a. If 	� < �� calculate 
�  by Equations 7a and 7b. 

b. Calculate 	 by Equation 9. 

 

 


� = 
� ∙ 0.5816�.�?=9N (7b) 

	 = �� + (	� − ��) ∙ 107TU  (8) 

	 = �� − (�� − 	�) ∙ 107TV (9) 

� = 59.5(250 − 	)/(147.2 + 	) (10) 

�� = 0.92�� − 1.27,      �� > 1.5 (11) 
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8. If ER ≥ m� ≥ ES let m = m�. 

9. Calculate � from 	 by Equation 10. This is today’s FFMC. 

 

Restrictions:  

1) When �� ≥ 0.5		, the rainfall routine (Equations 3a and 3b) must be omitted.  

2) When 	
 > 250, let 	
 = 250. 
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Duff  Moisture Code (DMC) 

 

�� = 10 + 6(9.=?XK7 Y;X?.X?)
 (12) 

� = 100/(0.5 + 0.3��),       �� ≤ 33 (13a) 

� = 14 − 13�[��,       33 < �� ≤ 65 (13b) 

� = 6.2�[�� − 17.2, �� > 65 (13c) 

�
 = �� + 1000��/(48.77 + ���) (14) 

�
 = 244.72 − 43.43ln (�
 − 20) (15) 

� = 1.894(� + 1.1)(100 − �)��107= (16) 

� = ��(�� �
) + 100� (17) 
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1. Previous day’s � becomes ��. 

 

2. a. If �� > 1.5, calculate �� by Equation 11. 

b. Calculate �� from ��by Equation 12. 

c. Calculate � by Equation 13a, 13b or 13c. 

d. Calculate �
by Equation 14. 

e. Convert �
 to �
 by Equation 15. �
 becomes new ��. 

 

3. Take L_ (effective day length) from Table below. 

 

Month J F M A M J J A S O N D �� 6.5 7.5 9.0 12.8 13.9 13.9 12.4 10.9 9.4 8.0 7.0 6.0 

 

4. Calculate K by Equation 16. 

 

5. Calculate � from �� by Equation 17. This is today’s DMC 

 

Restrictions:  

1) If �� < 1.5, the rainfall routine (Equations 11 to 15) must be omitted.  

2) Negative values of �
 resulting from Equation 15 must be raised to zero.  

3) If � < −1.1 use � = −1.1. 
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Drought Code (DC) 

 

 

 

1. Previous day’s � becomes ��. 

 

2. a. If ��>2.8, calculate �� by Equation 18. 

b. Calculate �� from �� by Equation 19. 

c. Calculate �
 by Equation 20. 

d. Convert �
 to �
 by Equation 21. �
 becomes new ��. 

 

3. Take �� (Daylength factor) from Table below. 

 

Month J F M A M J J A S O N D �� -1.6 -1.6 -1.6 0.9 3.8 5.8 6.4 5.0 2.4 0.4 -1.6 -1.6 

 

4. Calculate V by Equation 22. 

5. Calculate � from �� (or �
) by Equation 23. This is today’s DC. 

�� = 0.83�� − 1.27,    � > 2.8 (18) 

�� = 80067b;X��  (19) 

�
 = �� + 3.937�� (20) 

�
 = 400ln (800
�
 ) (21) 

� = 0.36(� + 2.8) + �� (22) 

� = ��(�� �
) + 0.5� (23) 
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Restrictions:  

1) If �� < 2.8 the rainfall routine (Equations 18 to 21) must be omitted.  

2) If �
 < 0, take �
 = 0.  

3) If � < −2.8 use in Equation 22 � = −2.8.  

4) If � < 0 by Equation 22, let � = 0.  
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Initial Spread Index (ISI)  

 

 

 

Buildup Index 

 

 (�) = 6�.�9�?>c (24) 

 (�) = 91.967�.�?K=:[1 + 	9.?�
4.93 ∙ 10B] (25) 

# = 0.208 (�) (�) (26) 

$ = 0.8��
� + 0.4� ,       � ≤ 0.4� (27a) 

$ = � − d1 − 0.8�
� + 0.4�e [0.92 + (0.0114�)�.B],       � > 0.4� (27b) 

 

Fire Weather Index 
 

 (�) = 0.626$�.K�> + 2,      $ ≤ 80 (28a) 

 (�) = 1000
25 + 108.6467�.�8?f ,      $ > 80 (28b) 

% = 0.1# (�) (29) 
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1. Calculate  (�) and  (�) by Equations 24 and 25. 

 

2. Calculate # by Equation 26. This is today’s ISI. 

 

3. Calculate $ by Equation 27a or Equation 27b. 

 

4. Calculate  (�) by Equation 28a or Equation 28b. 

 

5. Calculate %by Equation 29. 

 

6. Calculate & by Equation 30a or Equation 30b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�[& = 2.72(0.434�[%)�.=XB,    B >  1 (30a) 

& = %,                                          % ≤ 1 (30b) 
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Figure AII-1: Burnt area of fire events (2006-2010) versus Relative humidity [%] in linear and logarithmic scale 
 

 
Figure AII-2: Burnt area of fire events (2006-2010) versus Precipitation [mm] in linear and logarithmic scale 
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Figure AII-3: Burnt area of fire events (2006-2010) versus FFMC in linear and logarithmic scale 
 

Figure AII-4: Burnt area of fire events (2006-2010) versus DMC in linear and logarithmic scale 
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Figure AII-5: Burnt area of fire events (2006-2010) versus DC in linear and logarithmic scale 

Figure AII-6: Burnt area of fire events (2006-2010) versus ISI in linear and logarithmic scale 
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Figure AII-7: Burnt area of fire events (2006-2010) versus BUI in linear and logarithmic scale 

Figure AII-8: Burnt area of fire events (2006-2010) versus FWI in linear and logarithmic scale 
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Table AIII-1: Effect of influencing variables on house risk [€] 
Variable  
� 

Possible States 
of the Variable 

Risk to houses 
without 
setting an 
initial variable 
value [€] 
 
Risk(�) 
 
 
Prior risk:  
Risk = 3 

Probability 
of Variable 
being in the 
state 
 
 
 


(v) 

Change in % relative to 
the average 
 
 
 
Risk(�) − Risk

Risk ∙ 100 

 
 
 
 
 
�
= (Risk(�)
− Risk)² ∙ 
(v) 

Variance 
 
 
 
 

�� 

FWI 0-10 1 0.36 -66.66 1.44 4.99 
10-30 2 0.31 -33.33 0.31 
30-60 5 0.31 +66.66 1.24 
60-inf 13 0.02 +333.33 2 

Land cover 1 0 0.09 -100 0.81 4.61 
2 4·10-1 0.19 -86.66 1.28 
3 3 0.04 0 0 
4 2 0.19 -33.33 0.19 
5 6 0.21 +100 1.89 
6 4 0.26 +33.33 0.26 
7 0 0.02 -100 0.18 

Pop. density 
[People/km²] 

0-20 2 0.47 -33.33 0.47 3.45 
20-300 2 0.46 -33.33 0.46 
300-inf 9 0.07 +200 2.52 

Road density 
[km/km²] 

0-0.5 3 0.36 0 0 0.64 
0.5-2 2 0.32 -33.33 0.32 
2-inf 4 0.32 +33.33 0.32 

Fire occur. rate � 
 

� �����
��� ∙ ��²

� 
 
 
 
 
 
 
 
 

0-10-9 10-5 3·10-4 -99.99 0 664.00 
10-9-10-8 10-4 4·10-4 -99.99 0 
10-8-10-7 8·10-4 6·10-4 -99.97 0.01 
10-7-10-6 4·10-3 10-3 -99.86 0.01 
10-6-5·10-6 3·10-2 9·10-3 -99 0.08 
5·10-6-10-5 6·10-2 0.07 -98 0.61 
10-5-2·10-5 2·10-1 0.14 -93.33 1.10 
2·10-5-3·10-5 5·10-1 0.16 -83.33 1 
3·10-5-4·10-5 8·10-1 0.13 -73.33 0.63 
4·10-5-5·10-5 1 0.1 -66.66 0.4 
5·10-5-6·10-5 2 0.08 -33.33 0.08 
6·10-5-7·10-5 2 0.06 -33.33 0.06 
7·10-5-8·10-5 2 0.05 -33.33 0.05 
8·10-5-9·10-5 3 0.04 0 0 
9·10-5-0.0001 3 0.03 0 0 
0.0001-0.0005 11 0.14 +266.66 8.96 
0.0005-0.001 31 9·10-4 +933.33 0.71 
0.001-0.01 155 3·10-4 +5,066.7 6.93 
0.01-0.1 1,467 3·10-4 +4.88·10-4 642.99 

Fires yes 30,420 9·10-5 +1.01·10-6 83,400 83,208.91 
no 0 0.99 -100 8.91 

Topography middle 3 0.38 0 0 0.21 
gradual 3 0.41 0 0 
steep 4 0.21 +33.33 0.21 

Recent Weather dry 4 0.27 +33.33 0.27 0.73 
moderate dry 3 0.27 0 0 
moderate 
humid 

2 0.26 -33.33 0.26 

humid 2 0.20 -33.33 0.20 
Fire behavior 
indices 

moderate 3 0.83 0 0 0.17 
low 4 0.17 +33.33 0.17 

Burnt area 
detailed 

0 0 0.99 -100 8.91 2,605,708.6 
≤0.01 461 5·10-5 +1.53·10-4 10.49 
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[km²] 0.01-0.1 4,796 3·10-5 +1.60000 689.19 
0.1-1 47,400 10-5 +158,000,000 220,000 
1-3 152,401 4·10-6 +506,000,000 930,000 
3-10 496,062 2·10-6 +1,653,000,000 4,900,000 
10-inf 2,000,000 5·10-7 +666,000,000 2,000,000 

Fire type 0 0 0.99 -100 8.91 162,031.91 
1 16,163 2·10-5 +53,900,000 5,223 
2 18,884 5·10-5 +62,900,000 1,780,000 
3 83,328 2·10-5 +277,000,000 13,900,000 

Construction type 5t_15s_80i 3 0.23 0 0 0 
10t_25s_65i 3 0.77 0 0 

Urban/Rural urban 13 0.17 +333.33 17 20.32 
rural 1 0.83 -66.66 3.32 

House stock 40s_25r_35a 13 0.17 +333.33 17 20.32 
70s_20r_10a 1 0.83 -66.66 3.32 

Construction 
value 
[€] 

0-10,000 2·10-1 0.10 -93.33 0.78 7.60 
10,000-50,000 1 0.29 -66.66 1.16 
50,000-100,000 2 0.41 -33.33 0.41 
100,000-
500,000 

8 0.21 +166.66 5.25 

House density 
[Houses/km²] 

0-3 8·10-2 0.15 -97.33 1.28 3,964.62 
3-10 3·10-1 0.25 -90 1.82 
10-30 1 0.34 -66.66 1.36 
30-100 3 0.18 0 0 
100-300 8 0.04 +166.66 1 
300-1,000 26 0.04 +766.66 21.16 
1,000-3,000 78 7·10-1 +2500 3938 

House damage no damage 0 0.99 -100 8.91 356,008.91 
minor 205,439 4·10-6 +685,000,000 16,900,000 
major 788,617 3·10-6 +2,630,000,000 18,700,000 

Fire Containment  
in 24 hrs 

yes 0 0.91 -100 8.19 78.75 
no 31 0.09 +933.33 70.56 

Vegetation 
damage 

no damage 0 0.99 -100 8.91 802,008.91 
minor 173,440 7·10-6 +578,000,000 21,100,000 
major 343,797 5·10-6 +1,140,000,000 59,100,000 

Restoration cost 
[€] 

0-30,000 3 0.33 0 0 3.77 
30,000-100,000 1 0.38 -66.66 1.52 
100,000-
300,000 

3 0.04 0 0 

300,000-
1,000,000 

6 0.25 +100 2.25 
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Table AIII-2: Effect of influencing variables on vegetation risk 
Variable  
� 

Possible States 
of the Variable 

Risk to 
Vegetation 
without 
setting an 
initial variable 
value [€] 
 
Risk(�) 
 
 
Prior risk:  
 
Risk
= 4� − 1 
 
 

Probability 
of Variable 
being in the 
state 
 
 
 


(v) 

Change in % relative to 
the average 
 
 
 
 
 
 
 
Risk(�) − Risk

Risk ∙ 100 

 
 
 
 
 
 
 
 
�
= (Risk(�)
− Risk)² ∙ 
(v) 

Variance 
 
 
 
 
 
 
 

�� 

FWI 0-10 2·10-1 0.36 -50 0.01 0.09 
10-30 3·10-1 0.31 -25 0 
30-60 7·10-1 0.31 +75 0.03 
60-inf 2 0.02 +400 0.05 

Land cover 1 0 0.09 -100 0.01 0.61 
2 10-2 0.19 -97.50 0.03 
3 2·10-1 0.04 -50 0 
4 5·10-2 0.19 -87.50 0.02 
5 2 0.21 +400 0.54 
6 2·10-1 0.26 -50 0.01 
7 0 0.02 -100 0 

Pop. density 
[People/km²] 

0-20 3·10-1 0.47 -25 0.01 0.20 
20-300 3·10-1 0.46 -25 0.01 
300-inf 2 0.07 +400 0.18 

Road density 
[km/km²] 

0-0.5 5·10-1 0.36 +25 0 0 
0.5-2 3·10-1 0.32 -25 0 
2-inf 4·10-1 0.32 0 0 

Fire occur. rate � 
 

� �����
��� ∙ ��²

� 
 
 
 
 
 
 
 
 

0-10-9 3·10-6 3·10-4 -99.99 0 42.40 
10-9-10-8 3·10-5 4·10-4 -99.99 0 
10-8-10-7 2·10-4 6·10-4 -99.95 0 
10-7-10-6 10-3 10-3 -99.75 0 
10-6-5·10-6 2·10-3 9·10-3 -99.50 0 
5·10-6-10-5 2·10-3 0.07 -99.50 0.01 
10-5-2·10-5 9·10-3 0.14 -97.75 0.02 
2·10-5-3·10-5 5·10-2 0.16 -87.50 0.02 
3·10-5-4·10-5 8·10-2 0.13 -80 0.01 
4·10-5-5·10-5 10-1 0.1 -75 0.01 
5·10-5-6·10-5 2·10-1 0.08 -50 0 
6·10-5-7·10-5 2·10-1 0.06 -50 0 
7·10-5-8·10-5 2·10-1 0.05 -50 0 
8·10-5-9·10-5 3·10-1 0.04 -25 0 
9·10-5-0.0001 3·10-1 0.03 -25 0 
0.0001-0.0005 1 0.14 +150 0.05 
0.0005-0.001 5 9·10-4 +1150 0.02 
0.001-0.01 38 3·10-4 +9,400 0.42 
0.01-0.1 374 3·10-4 +9,340,000 41.87 

Fires yes 4225 9·10-5 +105,600,000 1,606 1,606.16 
no 0 0.99 -100 0.16 

Topography middle 3·10-1 0.38 -25 0 0 
gradual 4·10-1 0.41 0 0 
steep 5·10-1 0.21 +25 0 

Recent Weather dry 6·10-1 0.27 +50 0.01 0.01 
moderate dry 3·10-1 0.27 -25 0 
moderate 
humid 

3·10-1 0.26 -25 0 
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humid 5·10-1 0.20 +25 0 
Fire behavior 
indices 

moderate 4·10-1 0.83 0 0 0 
low 5·10-1 0.17 +25 0 

Burnt area 
detailed 
[km²] 

0 0 0.99 -100 0.16 38,036.86 
≤0.01 63 5·10-5 +1,560,000 0.20 
0.01-0.1 634 3·10-5 +15,800,000 12.04 
0.1-1 6368 10-5 +159,000,000 405.46 
1-3 19885 4·10-6 +497,000,000 1,582 
3-10 67960 2·10-6 +1,700,000,000 9,237 
10-inf 231448 5·10-7 +5,790,000,000 2,680,000 

Fire type 0 0 0.99 -100 0.16 4,326.18 
1 1109 2·10-5 +27,700,000 24.58 
2 2225 5·10-5 +55,600,000 247.44 
3 14238 2·10-5 +356,000,000 4,054 

Construction type 5t_15s_80i 4·10-1 0.23 0 0 0 
10t_25s_65i 4·10-1 0.77 0 0 

Urban/Rural urban 4·10-1 0.17 0 0 0 
rural 4·10-1 0.83 0 0 

House stock 40s_25r_35a 4·10-1 0.17 0 0 0 
70s_20r_10a 4·10-1 0.83 0 0 

Construction 
value 
[€] 

0-10,000 4·10-1 0.10 0 0 0 
10,000-50,000 4·10-1 0.29 0 0 
50,000-100,000 4·10-1 0.41 0 0 
100,000-
500,000 

4·10-1 0.21 0 0 

House density 
[Houses/km²] 

0-3 4·10-1 0.15 0 0 0 
3-10 4·10-1 0.25 0 0 
10-30 4·10-1 0.34 0 0 
30-100 4·10-1 0.18 0 0 
100-300 4·10-1 0.04 0 0 
300-1,000 4·10-1 0.04 0 0 
1,000-3,000 4·10-1 7·10-1 0 0 

House damage no damage 2·10-1 0.99 -50 0.04 8,183.04 
minor 34,598 4·10-6 +865,000,000 4,788 
major 33,638 3·10-6 +841,000,000 3,395 

Fire Containment  
in 24 hrs 

yes 0 0.91 -100 0.15 1.32 
no 4 0.09 +900 1.17 

Vegetation 
damage 

no damage 0 0.99 -100 0.16 25,314.16 
minor 9,115 7·10-6 +228,000,000 582 
major 70,331 5·10-6 +1,760,000,000 247,320,000 

Restoration cost 
[€] 

0-30,000 2·10-2 0.33 -95 0.05 0.19 
30,000-100,000 3·10-2 0.38 -92.50 0.05 
100,000-
300,000 

2·10-1 0.04 -50 0 

300,000-
1,000,000 

1 0.25 +150 0.09 

Restoration time 
[yrs] 

1 2·10-2 0.70 -95 0.10 0.69 
5 6·10-1 0.08 +50 0.03 
15 2 0.22 +400 0.56 
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Figure AIII-1: FWI and fire events on different days of 2010 in South France (in brackets the burnt area):  
(a) 1st January (no fire events), (b) 24th July (9.15 km²), (c) 29th July (2.25 km²), (d) 30th August (29.51 km²) 
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Figure AIII-2: Predicted fire risk to houses [€] on different days of 2010 in South France (in brackets the accumulated 
risk over the whole area): (a) 1st January (56,377 €), (b) 24th July (462,885 €), (c) 29th July (50,428 €), (d) 30th August 
(712,487 €) 
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Figure AIII-3: Predicted fire risk to vegetation [€] on different days of 2010 in South France (in brackets the 
accumulated risk over the whole area): (a) 1st January (4,539 €), (b) 24th July (32,926 €), (c) 29th July (44,596 €), (d) 
30th August (82,124 €) 
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The following publications of the author are directly related to and were published during the 
present PhD research work: 
 
 
Papakosta P and Straub D (2011). Effect of Weather Conditions, Geography and Human 
Involvement on Wildfire Ignition: A Bayesian Network Model Applications of Statistics and 
Probability in Civil Engineering, ICASP11. K. Faber, Nishijima. Zurich, CRC. 
 
Papakosta P, Klein F, König S, Peters S and Straub D (2012) Linking spatio-temporal data to the 
Fire Weather Index to estimate the probability of wildfire in the Mediterranean. EGU General 
Assembly Conference Abstracts. Vienna. 14. 
 
Papakosta P, Öster J, Scherb A and Straub D (2013). Fire occurrence prediction in the 
Mediterranean: Application to Southern France. EGU General Assembly Conference 
Abstracts.Vienna. 15. 
 
Papakosta P and Straub D (2013). A Bayesian network approach to assessing wildfire consequences 
Proceedings of the 11th International Conference on Structural Safety & Reliability. G. Deodatis, B. 
R. Ellingwood and D. M. Frangopol. New York, USA, CRC Press. 
 
Papakosta P, Scherb A, Zwirglmaier K and Straub D (2014) Estimating daily fire risk in the 
mesoscale by means of a Bayesian network model and a coupled GIS. In 'Advances in forest fire 
research'. I. d. U. d. Coimbra. Coimbra, Portugal: 725-735. 
 
Papakosta P and Straub D (2015) "Probabilistic prediction of daily fire occurrence in the 
Mediterranean with readily available spatio-temporal data." iForest (in review). 
 
Papakosta P, Xanthopoulos G and Straub D (2015) "Probabilistic prediction of wildfire 
vulnerability and damages to houses in the meso-scale with Bayesian network." International 
Journal of Wildland Fire (in review). 
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The following definitions of wildfire related terms found in this thesis are taken from USDA (2016) 

and NWCG (2014):  

 

 

  

  

Air attack The deployment of fixed-wing or rotary aircraft on a wildland fire, to drop 

retardant or extinguishing agents, shuttle and deploy crews and supplies, or 

perform aerial reconnaissance of the overall fire situation.  

 

Arson At common law, the malicious and willful burning of another’s dwelling, 

outhouse or parcel; by most modern statutes, the intentional and wrongful burning 

of someone else's, or one's own, property. Frequently requires proof of malicious 

or wrongful intent 

 

Aspect Cardinal direction toward which a slope faces 

 

Average  The expected amount of annual rainfall 

annual 

precipitation 
 

Behave A system of interactive computer programs for modeling fuel and fire behavior  

 

Buildup Index  A relative measure of the cumulative effect of daily drying factors and 

precipitation on fuels with a ten-day timelag 

 

Burn severity A qualitative assessment of the heat pulse directed toward the ground during a 

fire. Burn severity relates to soil heating, large fuel and duff consumption, 

consumption of the litter and organic layer beneath trees and isolated shrubs, and 

mortality of buried plant parts 

 

Campfire A fire that was started for cooking or warming that spreads sufficiently from its 

source to require action by a fire control agency 

Terminology 
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Canopy The stratum containing the crowns of the tallest vegetation present (living or 

dead) 

 

Climate The prevalent or characteristic meteorological conditions of any place or region, 

and their extremes 

 

Combustion The rapid oxidation of fuel in which heat and usually flame are produced. 

Combustion can be divided into four phases: pre-ignition, flaming, smoldering, 

and glowing 

 

Conduction Heat transfer through a material from a region of higher temperature to a region of 

lower temperature 

 

Containment The status of a wildfire suppression action signifying that a control line has been 

completed around the fire, and any associated spot fires, which can reasonably be 

expected to stop the fire’s spread 

 

Cover type The designation of a vegetation complex described by dominant species, age, and 

form  

 

Crown fire The movement of fire through the crowns of trees or shrubs more or less 

independently of the surface fire 

 

Dead fuels Fuels with no living tissue in which moisture content is governed almost entirely 

by atmospheric moisture (relative humidity and precipitation), dry-bulb 

temperature, and solar radiation 

 

Defensible  An area either natural or manmade where material capable of causing a fire to  

space spread has been treated, cleared, reduced, or changed to act as a barrier between 

an advancing wildland fire and the loss to life, property, or resources. In practice, 

"defensible space" is defined as an area a minimum of 30 feet (9.14 meters) 

around a structure that is cleared of flammable brush or vegetation 

 

Detection The act or system of discovering and locating fires 

 

Digital  A set of points which defines the terrain as numbers for computer applications.  

Elevation This data may be used to draw contours, make orthophotos, slope maps, and      

Model drive fire models       

 

Drought index A number representing the net effect of evaporation, transpiration and 

precipitation in producing cumulative moisture depletion in deep duff or upper 

soil layers 

 

Dry bulb The temperature of the air measured in the shade 4-8 feet (1.22-2.44 meters)  

temperature above the ground 

 

Duff The layer of decomposing organic materials lying below the litter layer of freshly 

fallen twigs, needles, and leaves and immediately above the mineral soil 



Terminology   193 

Evacuation  An organized, phased, and supervised withdrawal, dispersal, or removal of 

civilians from dangerous or potentially dangerous areas, and their reception and 

care in safe areas 

 

Exposure  Property that may be endangered by a fire burning in another structure or by a 

wildfire (item at risk) 

 

Fine fuels Fast-drying fuels, generally with a comparatively high surface area-to-volume 

ratio, which are less than 1/4-inch in diameter and have a timelag of one hour or 

less. These fuels readily ignite and are rapidly consumed by fire when dry 

 

Fire  Rapid oxidation, usually with the evolution of heat and light; heat, fuel, oxygen 

and interaction of the three 

 

Fire behavior The manner in which a fire reacts to the influences of fuel, weather and 

topography 

 

Fire  A system that uses mathematical equations to predict certain aspects of fire 

behavior behavior in wildland fuels when provided with data on fuel and environmental  

 prediction conditions 

system 

   

Fire cause  Source of fire’s ignition. For statistical purposes fires are grouped into broad 

cause classes. The nine general causes (used in the U.S.) are lightning, campfire, 

smoking, debris burning, incendiary, machine use (equipment), railroad, children, 

and miscellaneous 

  

Fire crew An organized group of firefighters under the leadership of a crew leader or other 

designated official 

 

Fire effects  The physical, biological, and ecological impacts of fire on the environment 

 

Fire front The part of a fire within which continuous flaming combustion is taking place. 

Unless otherwise specified the fire front is assumed to be the leading edge of the 

fire perimeter. In ground fires, the fire front may be mainly smoldering 

combustion 

 

Fire intensity A general term relating to the heat energy released by a fire 

 

Fire perimeter The entire outer edge or boundary of a fire 

 

Fire season 1) Period(s) of the year during which wildland fires are likely to occur, spread, 

and affect resource values sufficient to warrant organized fire management 

activities. 2) A legally enacted time during which burning activities are regulated 

by state or local authority 
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Fire triangle Instructional aid in which the sides of a triangle are used to represent the three 

factors (oxygen, heat, fuel) necessary for combustion and flame production; 

removal of any of the three factors causes flame production to cease 

 

Fire weather Weather conditions that influence fire ignition, behavior and suppression 

 

Flame height The average maximum vertical extension of flames at the leading edge of the fire 

front. Occasional flashes that rise above the general level of flames are not 

considered. This distance is less than the flame length if flames are tilted due to 

wind or slope 

 

Flame length The distance between the flame tip and the midpoint of the flame depth at the base 

of the flame (generally the ground surface); an indicator of fire intensity 

 

Fuel Combustible material. Includes, vegetation, such as grass, leaves, ground litter, 

plants, shrubs and trees, that feed a fire 

 

Fuel bed An array of fuels usually constructed with specific loading, depth and particle size 

to meet experimental requirements; also, commonly used to describe the fuel 

composition in natural settings 

 

Fuel model Simulated fuel complex (or combination of vegetation types) for which all fuel 

descriptors required for the solution of a mathematical rate of spread model have 

been specified 

 

Fuel moisture The quantity of moisture in fuel expressed as a percentage of the weight when 

thoroughly dried at 212 degrees Fahrenheit (104.44 degrees Celsius) 

 

Fuel reduction Manipulation, including combustion, or removal of fuels to reduce the likelihood 

of ignition and/or to lessen potential damage and resistance to control 

 

Fuel type An identifiable association of fuel elements of a distinctive plant species, form, 

size, arrangement, or other characteristics that will cause a predictable rate of fire 

spread or difficulty of control under specified weather conditions 

 

Ground fuel All combustible materials below the surface litter, including duff, tree or shrub 

roots, punchy wood, peat, and sawdust that normally support a glowing 

combustion without flame 

 

"Fire# Hazard The physical phenomenon of a fire occurring and spreading 

 

Hazard Any treatment of a hazard that reduces the threat of ignition and fire intensity  

reduction  or rate of spread  

 

Head of fire The side of the fire having the fastest rate of spread 

 

Initial attack The actions taken by the first resources to arrive at a wildfire to protect lives and 

property, and prevent further extension of the fire 
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Keech  Commonly-used drought index adapted for fire management applications, with a  

Byram numerical range from 0 (no moisture deficiency) to 800 (maximum drought) 

Drought   

 Index  
 

Litter Top layer of the forest, scrubland, or grassland floor, directly above the 

fermentation layer, composed of loose debris of dead sticks, branches, twigs, and 

recently fallen leaves or needles, little altered in structure by decomposition 

 

Live fuels Living plants, such as trees, grasses, and shrubs, in which the seasonal moisture 

content cycle is controlled largely by internal physiological mechanisms, rather 

than by external weather influences 

 

National A uniform fire danger rating system that focuses on the environmental factors that  

Fire control the moisture content of fuels 

Danger   

Rating  

Systems 
 

Preparedness Condition or degree of being ready to cope with a potential fire situation 

 

Prescribed fire Any fire ignited by management actions under certain, predetermined conditions 

to meet specific objectives related to hazardous fuels or habitat improvement 

 

Prevention Activities directed at reducing the incidence of fires, including public education, 

law enforcement, personal contact, and reduction of fuel hazards 

 

Rate of spread The relative activity of a fire in extending its horizontal dimensions. It is 

expressed as a rate of increase of the total perimeter of the fire, as rate of forward 

spread of the fire front, or as rate of increase in area, depending on the intended 

use of the information.  

 

Relative The ratio of the amount of moisture in the air, to the maximum amount of 

humidity  moisture that air would contain if it were saturated. The ratio of actual pressure to 

 the saturated vapor pressure 

 

Ressources 1) Personnel, equipment, services and supplies available, or potentially available, 

for assignment to incidents. 2) The natural resources of an area, such as timber, 

crass, watershed values, recreation values, and wildlife habitat 

 

Risk The combination of the probability of an event and its negative consequences 

(UNISDR Terminology); the expected consequences (effects) of an event  

 

Smoldering fire A fire burning without flame and barely spreading 

 

Spot fire A fire ignited outside the perimeter of the main fire by flying sparks or embers 
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Spotting Behavior of a fire producing sparks or embers that are carried by the wind and 

start new fires beyond the zone of direct ignition by the main fire 

 

Supression All the work of extinguishing or containing a fire, beginning with its discovery 

Timelag Time needed under specified conditions for a fuel particle to lose about 63 percent 

of the difference between its initial moisture content and its equilibrium moisture 

content. If conditions remain unchanged, a fuel will reach 95 percent of its 

equilibrium moisture content after four timelag periods 

 

Uncontrolled  Any fire which threatens to destroy life, property, or natural resources 

fire 
 

Vulnerability The degree of expected damage as a function of hazard intensity  

 

Wildland fire Any non-structure fire, other than prescribed fire, that occurs in the wildland (aka 

wildfire) 

 

Wildland The line, area or zone where structures and other human development meet or  

Urban intermingle with undeveloped wildland or vegetative fuels 

Interface   
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The following abbreviations are found in this thesis:  
 
AIC  - Akaike Information Criterion 
API  - Application Programming Interface 
AUC  - Area Under Curve 
BN  - Bayesian Network 
BUI  - Buildup Index 
CAIM  - Class-Attribute Interdependence Maximization (measure) 
CFFDRS -  Canadian Forest Fire Danger Rating System 
CFFWIS  -  Canadian Forest Fire Weather Index System 
CPT  - Conditional Probability Table 
DC  - Drought Code 
DMC  - Duff Moisture Code 
EFFIS  - European Forest Fire Information System 
FFDI  - Forest Fire Danger Index 
FFMC  -  Fine Fuel Moisture Code 
GFDI  - Grass Fire Danger Index 
HDC  - House Damage Cost 
EM  - Expectation – Maximization (algorithm) 
FWI   -  Fire Weather Index 
GIS  - Geographic Information System 
ID  - Identification    
IDW   -  Inverse Distance Weighting 
ISI  - Initial Spread Index 
MLE  - Maximum Likelihood Estimation 
MTC  -  Mediterranean Type Climate 
NPC  - Necessary Path Condition (algorithm) 
PMF  -  Probability Mass Function 
ROC  - Receiver Operating Characteristic (curve) 
VDC  - Vegetation Damage Cost 
WUI  - Wildland-Urban Interface 
 
 

Abbreviations 
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