
Exploration of Distributed Automotive Systems
using Compositional Timing Analysis

Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

Abstract This paper presents a design space exploration method for mixed event-
triggered and time-triggered real-time systems in the automotive domain. A design
space exploration model is used that is capable of modeling and optimizing state-of-
the-art automotive systems including the resource allocation, task distribution, mes-
sage routing, and scheduling. The optimization is based on a heuristic approach that
iteratively improves the system design. Within this iterative optimization it is nec-
essary to analyze each system design where one of the major design objectives that
needs to be evaluated is the timing behavior. Since timing analysis is a very com-
plex design task with high computational demands, it might become a bottleneck
within the design space exploration. As a remedy, a clustering strategy is presented
that is capable of reducing the complexity and minimizing the runtime of the timing
analysis. A case study gives evidence of the efficiency of the proposed approach.

1 Introduction

Automotive electronics are constantly becoming more complex due to the innova-
tion pressure in the automotive domain. A vast majority of innovations in the au-

Martin Lukasiewycz
TUM CREATE, Singapore, e-mail: martin.lukasiewycz@tum-create.edu.sg

Michael Glaß
University of Erlangen-Nuremberg, Erlangen, Germany e-mail: glass@cs.fau.de

Jürgen Teich
University of Erlangen-Nuremberg, Erlangen, Germany e-mail: teich@cs.fau.de

Samarjit Chakraorty
TU Munich, Munich, Germany e-mail: samarjit@tum.de

This work was financially supported in part by the Singapore National Research Foundation under its Campus for
Research Excellence And Technological Enterprise (CREATE) programme.

1

2 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

tomotive domain is nowadays driven by embedded systems. In the last years such
innovations were for example adaptive cruise control, pedestrian detection, or in-
telligent parking assist systems. However, these innovations require increasingly
sophisticated system architectures. As a result, top-of-the-range vehicles already
contain up to 100 Electronic Control Units (ECUs) and a multitude of different bus
systems. In case functions have stringent latency and jitter constraints, these systems
often require a complex validation of end-to-end timing behavior, using tools like
Symbolic Timing Analysis for Systems (SymTA/S) [12] or Modular Performance
Analysis (MPA) [2, 4]. This evaluation is a challenging design task and might be-
come a bottleneck within a Design Space Exploration (DSE) where an optimization
of the resource allocation, task mapping, message routing, and scheduling is per-
formed. As a remedy, this paper presents a DSE approach that uses efficient timing
analysis based on a graph-based representation and a fine-grained fixed-point iter-
ation that partitions the problem in case of cyclic dependencies. In the following,
the DSE model is introduced. Based on this model, an approach is presented that
is capable of reducing the runtime of the timing analysis significantly. This is done
by a decomposition of the timing analysis problem and an ordered evaluation. Fi-
nally, a case study is presented that gives evidence of the efficiency of the proposed
approach.

2 Design Space Exploration Model

In the following, the Design Space Exploration (DSE) model is introduced, see [3,
10]. It is based on the optimization approach presented in [9]. This optimization ap-
proach is based on an Evolutionary Algorithm (EA), supporting multiple and non-
linear objectives. For this purpose it becomes necessary to define the model formally
and encode it into a set of linear constraints with binary variables such that a feasi-
ble implementation corresponds to a feasible solution. The remaining optimization,
including load balancing and non-linear constraint satisfaction, is automatically car-
ried out in an iterative search process of the optimization approach. This procedure
significantly reduces the efforts to implement a new optimization approach or define
complex constraints to direct the search towards the optimal implementations.

2.1 Model Description

The used exploration model is defined by a specification that consists of an ap-
plication and an architecture. Mappings represent the relation between the process
tasks from the application to the architecture, indicating which process task can be
implemented on which resource. The application model also supports multi-cast
and multi-hop communication by introducing messages additionally to the process
tasks. A message can be routed on every resource except those where a routing is

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 3

explicitly prohibited. From this specification, various implementations are derived.
The implementation is defined by the allocation of architecture resources from a set
of predefined components, the binding of process tasks to resources and routing of
messages. The Y-chart approach for this model is illustrated in Figure 1.

application architecture

implementation

Design Space Exploration
(1) allocation
(2) binding
(3) routing

Fig. 1 Illustration of the Y-chart approach for the Design Space Exploration (DSE) model. An
application is mapped to an architecture, resulting in an implementation. The DSE performs an
allocation of resources, binding of process tasks, and routing of messages.

The specification consists of an architecture graph GR, an application graph GT ,
and mapping edges EM:

• The architecture is given by a directed graph GR(R,ER). The vertices R represent
resources such as ECUs, gateways, and bus systems. The directed edges ER ⊆
R×R indicate available communication connections between resources.

• The application is given by a directed graph GT (T,ET) with T = P∪C. The
vertices T are either process tasks p ∈ P or messages c ∈ C. Each edge e ∈ ET
connects a vertex in P to one in C, or vice versa. Each process task can have
multiple incoming edges that indicate the data dependencies to communication
information of the predecessor messages. A process task can also have multi-
ple outgoing edges to allow the sending of multiple different messages. On the
other hand, each message has exactly one predecessor process task as the sender.
To allow multi-cast communication, each message can have multiple successor
process tasks.

4 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

p1

c1

p2 p3

c2 c3

p4

(a) GT (T,ET)

re1

r f rre2

rgw

rcanre3

re4

re5

(b) GR(R,ER)

re1 re2

rgw

re4 re3

r f r

re5

rcan

(c) architecture

Fig. 2 Specification with the application graph GT (a) and architecture graph GR
(b) for a given architecture (c). The mapping edges are defined as follows: EM =
{(p1,re1),(p1,re2),(p2,re2),(p3,re2),(p3,re3),(p3,re4),(p4,re5)}.

• The set of mapping edges EM contains the mapping information for the process
tasks. Each mapping edge m=(p,r)∈EM indicates a possible implementation of
the process p ∈ P on the resource r ∈ R. Without loss of generality it is assumed
that messages can be routed on every resource.

A sample specification is given in Figure 2. This specification comprises a Con-
trol Area Network (CAN) bus (rcan), a FlexRay bus (r f r), and a gateway (rgw) that
interconnects the buses. The communication over the buses and the gateway can
only be established by multiple hops.

One implementation consists of the allocation graph Gα that is deduced from
the architecture graph GR and the binding Eβ as a subset of EM that maps the ap-
plication to the allocation. Additionally, for each message c ∈C a sub-graph of the
allocation Gγ,c is determined that fulfills the data dependencies such that the com-
munication is established between each sender process task and the corresponding
receiver process tasks.

• The allocation is a directed graph Gα(α,Eα) that is an induced sub-graph of the
architecture graph GR. The allocation contains all resources that are available in
the current implementation. The edges are induced from the graph GR such that
Gα is aware of all communication connections.

• The binding is performed by a mapping of the tasks to the allocated resources by
deducing Eβ from EM such that the following requirements are fulfilled.
Each process task p ∈ P in the application is bound to exactly one resource:

∀p ∈ P : |{m|m = (p,r) ∈ Eβ}|= 1 (1)

Each task can only be bound to allocated resources:

∀m = (p,r) ∈ Eβ : r ∈ α (2)

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 5

re1 re2

rgw

re4 re3

r f r

rcan

p1 p2

p3 p4

c1

c2

c3

Fig. 3 Implementation for the specification in Figure 2. Illustrated is the allocation Gα , binding
Eβ , and routing Gγ . All routings are performed within multiple hops using the available buses and
the gateway.

• Each message in c∈C is routed on a tree Gγ,c that is a sub-graph of the allocation
Gα . The routings have to be performed such that all data dependencies given by
the following two conditions are satisfied.
For each message c ∈C, the root of the routing has to equal the binding resource
of the predecessor sender process task p ∈ P:

∀(p,c) ∈ ET ,m = (p,r) ∈ Eβ : |{e|e = (r̃,r) ∈ Gγ,c}|= 0 (3)

Each message c∈C has to be routed on the same resource as the binding resource
of the successive process tasks p ∈ P:

∀(c, p) ∈ ET ,m = (p,r) ∈ Eβ : r ∈ Gγ,c (4)

An implementation is feasible if all requirements on the process task binding
and the routing of the messages, i. e., the data dependencies, are fulfilled. A feasible
implementation for the specification in Figure 2 is given in Figure 3.

2.2 Binary Encoding

In the following, a set of linear constraints with binary variables is defined such that
a solution x ∈ {0,1}n corresponds to a feasible implementation x for the given DSE
problem. The symbolic encoding uses of the following binary variables:

r - binary variable for each resource r ∈ R indicating whether this resource is in
the allocation α (1) or not (0)
m - binary variable for each mapping m ∈ EM indicating whether the mapping
edge is in Eβ (1) or not (0)

6 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

cr - binary variable for each message c ∈ C and the available resources r ∈ R
indicating whether the message is routed on the resource (1) or not (0)
cr,t - binary variable for each message c ∈ C and resource r ∈ R indicating on
which communication step t ∈ T = {1, .., |T |} (messages are propagated in
steps or hops, respectively) a message is routed on the resource

The linear constraints are formulated as follows:
∀p ∈ P :

∑
m=(p,r)∈EM

m = 1 (5)

∀m = (p,r) ∈ EM :
r−m≥ 0 (6)

∀c ∈C,r ∈ R,(c, p) ∈ ET ,m = (p,r) ∈ EM :

cr−m≥ 0 (7)

∀c ∈C :
∑
r∈R

cr,1 = 1 (8)

∀c ∈C,r ∈ R,(p,c) ∈ ET ,m = (p,r) ∈ EM :

m− cr,1 = 0 (9)

∀c ∈C,r ∈ R :
∑

t∈T
cr,t ≤ 1 (10)

∀c ∈C,r ∈ R : (
∑

t∈T
cr,t

)
− cr ≥ 0 (11)

∀c ∈C,r ∈ R, t ∈T :
cr− cr,t ≥ 0 (12)

∀c ∈C,r ∈ R, t = {1, .., |T |} :(
∑

r̃∈R,e=(r̃,r)∈ER

cr̃,t

)
− cr,t+1 ≥ 0 (13)

∀c ∈C,r ∈ R :
r− cr ≥ 0 (14)

∀r ∈ R : (
∑

c∈C∧r∈R
cr

)
+

(
∑

m=(p,r)∈EM

m

)
− r≥ 0 (15)

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 7

The constraints in Equation (5) and (6) fulfill the binding of each task to exactly
one resource and the requirement that tasks are only bound to allocated resources,
respectively, as stated in Equation (1) and (2). A message has to be routed on each
target resource of the successive process task mapping targets as stated in the re-
quirement in Equation (4). This requirement is fulfilled by the constraints in Equa-
tion (7). Analogously, as stated in the requirement in Equation (3), the constraints
in Equation (8) and (9) imply that each message has exactly one root that equals the
target resource of the predecessor mapping. The constraints in Equation (10) ensure
that a message can pass a resource at most once such that cycles are prohibited.
A message has to be existent in one communication step on a resource in order to
be correctly routed on this resource as implied by the constraint in Equation (11)
and (12). The constraints in Equation (13) state that a message may be routed only
between adjacent resources in one communication step. In order ensure that the
routing of each message is a sub-graph of the allocation, each message can be only
routed on allocated resources as stated in the constraints in Equation (14). Addition-
ally, the constraints in Equation (15) ensure that a resource is only allocated if it is
used by at least one process or message such that suboptimal implementations are
removed effectively from the search space. This minimizes the resulting allocation
by redundant resources such that additional unnecessary costs are prohibited.

Given a single solution x of the defined set of linear constraints, a corresponding
implementation x may be deduced as follows: The allocation Gα is deduced from
the variables r and the binding Eβ from the variables m. For each message c ∈ C,
the routing Gγ,c is deduced from the variables cr and cr,t.

3 Compositional Timing Analysis

The previous section defines a DSE model that is used to obtain feasible implemen-
tations x. Additionally, the exploration may also define priorities and schedules for
the tasks and messages, respectively. For each implementation x, a timing analy-
sis has to be performed to discard implementations that do not fulfill the real-time
constraints of applications. In the following, a compositional timing analysis is pro-
posed that is capable of determining end-to-end latencies efficiently in case of cyclic
dependencies. Note that this approach reduces the runtime significantly without in-
troducing any errors or additional over-approximations in the results.

3.1 Timing Model

In the used model it is assumed that the Worst-Case Execution Times (WCETs)
of all tasks and the transmission times of messages are known. Also the periods
of applications are predefined and the priorities of tasks and messages are either
predefined or determined by the DSE.

8 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

The proposed compositional timing analysis approach may take advantage of dif-
ferent analysis techniques. For example, Modular Performance Analysis (MPA) [4]
is used for modeling the FlexRay bus protocol. For analyzing the Control Area Net-
work (CAN) bus, the approach presented by Tindell et al. [16] is applied. Here,
it may be noted that these approaches have different mechanisms for representing
timing properties of message streams. The approach in [16] uses the traditional pe-
riod and jitter event model. On the other hand, MPA uses a more generic event
model based on arrival curves. Further details on arrival curves may be found in [4].
A method to convert arrival curves into standard event models and vice versa is
presented in [7]. Using this method, the proposed compositional timing analysis en-
ables a hybrid approach such that standard event models like periodic, periodic with
jitter, and sporadic might be used as well as arbitrary arrival patterns represented by
appropriate arrival curves.

Though the timing analysis may be performed efficiently with the described
models, cyclic dependencies in the timing analysis require a fixed-point iteration
that may become computationally expensive. Due to the dependencies, the timing
properties have to be calculated iteratively until there are no changes anymore. For
this purpose, different approaches for an efficient fixed-point iteration for timing
analysis are proposed. The model requires a graph-based representation of timing
dependencies where the basic element is the timing entity. A timing entity might,
for example, be the execution of a process on an ECU or a transmission of a mes-
sage on a bus or gateway. The goal of the timing analysis is to determine the timing
properties for each timing entity within a compositional approach, i. e., separately
from other calculations. The timing properties are usually a delay and jitter where
the jitter might be a single real value or an arrival curve known from MPA.

In the following, a common global dependency-based fixed-point iteration as
well as the proposed fine-grained fixed-point iteration approach are presented. The
automotive network in Figure 4 is introduced as an example to illustrate the pro-
posed approaches.

3.2 Dependency-based Fixed-Point Iteration

The determination of the timing properties of a timing entity might depend on the
timing properties of other entities. It is suggested to use a graph-based representa-
tion with Gχ(Vχ ,Eχ) where Vχ is the set of timing entities and Eχ a set of directed
edges that define the dependency between timing entities. An edge (v, ṽ) ∈ Eχ in-
dicates that the determination of the timing properties for ṽ depends on the timing
properties of v. If such a dependency graph Gχ is acyclic, the timing properties may
be determined in the partial order of the graph defined by the directed edges. In case
of cycles in the graph, a fixed-point iteration becomes necessary to determine the
timing properties of all entities. The dependency graph for the automotive network
in Figure 4 is given in Figure 5 (a):

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 9

re1 re2

rgw

re4 re3

r f r

re5

rcan

p1 p2 p3

p4p5p6

c2

c1

c5

c3c4

Fig. 4 A small automotive network consisting of five ECUs ({re1, ...,re5}), a CAN bus (rcan),
a FlexRay bus (r f r), and a gateway (rgw). For the FlexRay bus, the static segment is used. The
function consists of six processes ({p1, ..., p6}) communicating via five messages ({c1, ...,c5}).
The index of the processes and messages represents the priority: A small number implies a high
priority.

• All tasks or messages have an influence on the successive tasks or messages,
respectively.

• Each process task on an ECU may delay the lower priority tasks on the same
ECU (p2 and p3).

• Each message on the CAN bus may delay lower priority messages on the same
CAN bus (c3,c4, and c5).

• All messages on the FlexRay bus do not influence each other directly since they
are routed on the static segment using Time Division Multiple Access (TDMA)
(c1 and c2).

An algorithm for a dependency-based fixed-point iteration is given in Algo-
rithm 1: The algorithm determines a fixed point for a subset V ⊆ Vχ of all timing

Algorithm 1 Dependency-based fixed-point iteration that is applied on a subset
V ⊆Vχ of timing entities.
1: Va =V
2: while Va 6= {} do
3: v ∈Va
4: Va =Va \{v}
5: if ti(v) 6= ti−1(v) then
6: Va =Va∪ ({ṽ|(v, ṽ) ∈ Eχ}∩V)
7: end if
8: end while

entities. The set Va contains all timing entities that shall be evaluated, i. e., starting
with V (line 1). The iterative algorithm proceeds until the set Va is empty (line 2).

10 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

t
r

task

resource

key:

A

B

p3
re2

c2
r f r

p1
re1

c1
r f r

p2
re2

c5
r f r

c5
rgw

c5
rcan

p5
re4

c4
rcan

p6
re5

p4
re3

c3
rcan

(a) Gχ (Vχ ,Eχ)

⇒

A

c5
r f r

c5
rgw

B

p6
re5

p4
re3

c3
rcan

(b) Gψ (Vψ ,Eψ)

Fig. 5 Dependency graph Gχ (a) and acyclic dependency graph Gψ (b) with merged states
A= {(p1,re1),(p2,re2),(p3,re2),(c1,r f r),(c2,r f r)} and B= {(p5,re4),(c4,rcan),(c5,rcan)} for the
automotive network in Figure 4.

In each iteration, one element from Va is selected and removed (line 3,4). If the de-
termined timing properties for v do not equal the previous value (line 5), all direct
successive timing entities in Gχ that are also in V have to be re-evaluated (line 6).
Note that the initial timing t0(v) for each entity, i. e., the initial jitter and delay, is 0
or is determined by initial timing approximations like presented in [13, 6].

Applying the Algorithm 1 to all timing entities, i. e., V = Vχ , results a global
dependency-based fixed-point iteration. Apparently, this approach is more efficient
than a plain global fixed-point iteration that calculates the timing properties for all
timing entities in each iteration until no value is changed. However, as shown in the
following, this approach can be further improved by a fine-grained approach.

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 11

3.3 Fine-grained Fixed-Point Iteration

In the the following, a fixed-point iteration approach that is based on the stepwise
calculation of timing entities is proposed. For the fine-grained fixed-point iteration,
an acyclic graph Gψ(Vψ ,Eψ) is deduced from Gχ . The vertices of the graph Gψ

are subsets of timing entities such that for each subset V ∈ Vψ it holds V ⊆ Vχ .
Furthermore, each timing entity is included in exactly one vertex:⋃

V∈Vψ

V =Vχ (16)

∀ V,Ṽ ∈Vψ with V 6= Ṽ : V ∩Ṽ = {} (17)

Based on the partial order in Gψ , a fixed-point iteration is applied to each node
V ∈ Vψ , i. e., the set of timing entities in V . These local fixed-point iterations are
performed with the efficient dependency-based fixed-point iteration approach in Al-
gorithm 1. Thus, a potentially inefficient global fixed-point iteration over all timing
entities in Vχ is avoided. The acyclic dependency graph for the automotive network
in Figure 4 is given in Figure 5 (b).

Given a dependency graph Gχ , an acyclic dependency graph Gψ fulfilling the
requirements in Equation (16) and (17) might be derived. To enable the best possible
benefit from the introduced fine-grained fixed-point iteration, the optimal graph Gψ

shall contain a maximal number of vertices. A high number of vertices in Gψ results
in a high number of separate fine-grained fixed-point iteration steps and, thus, a more
efficient approach is enabled.

In order to define the optimal graph Gψ , the following reachability analysis is
required. The function r : Vχ → 2Vχ determines the set of reachable nodes in the
graph Gχ from a node v and is defined recursively as follows:

r(v) = {ṽ∪ r(ṽ)|(v, ṽ) ∈ Eχ} (18)

In a correct and optimal graph Gψ , all timing entities with the same reachability are
merged in the same vertex:

(∃V ∈Vψ : v, ṽ ∈V)⇔ r(v) = r(ṽ) (19)

The graph Gψ is defined as optimal if only vertices with the same reachability are
merged, i. e., the number of vertices in Gψ is maximal. On the other hand, Equa-
tion (19) ensures that a graph Gψ contains no cycles, i. e., it is correct.

An efficient approach that merges the vertices with the same reachability from Gχ

to the vertices in Gψ can be done in O(n2) with n = |Vψ | as presented in the follow-
ing: Correspondingly to the forward-reachability from Equation (18), the backward-
reachability is defined by r : Vχ → 2Vχ in the following recursive formulation:

r(v) = {ṽ∪ r(ṽ)|(ṽ,v) ∈ Eχ} (20)

12 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

For any v ∈Vχ , the operation

V = r(v)∩ r(v) (21)

determines a vertex V ∈ Vψ containing all vertices on a cycle that contains v in
Gχ . As a result, all vertices ṽ ∈ V have the same reachability r(v) corresponding
to Equation (19). Since Equation (21) corresponds to the definition of a strongly
connected component, efficient algorithms from literature [1, 5, 14, 15] might be
applied such that the complexity to remove all cycles becomes linear.

For small problems, this reduction of complexity may not be significant, in par-
ticular because the timing analysis is done once at design time. However, an efficient
fixed-point iteration approach becomes highly important if one or more of the fol-
lowing attributes hold:

• Analysis of large real-world examples with hundreds of components resulting in
a high number of timing entities.

• Detailed modeling of also different (software) layers resulting in a high number
of timing entities.

• Timing analysis is applied within a DSE resulting in a high number of indepen-
dent timing analysis calculations.

In this case, the presented approach significantly outperforms known global fixed-
point iteration approaches. An evidence of the benefits of the fine-grained fixed-
point iteration is given in the experimental results in the following section.

4 Experimental Results

In order to give evidence of the efficiency of the proposed approach, a case study
is presented. All following experiments were carried out on an Intel Core 2 Quad
2.66 GHz machine with 3 GB RAM.

4.1 Automotive Case Study

We consider an automotive network exploration case study. The network architec-
ture consists of 15 ECUs, connected via 2 CAN buses, 1 FlexRay bus, and a central
gateway. The 9 sensors, and 5 actuators are connected via LIN buses to the ECUs.
An application consisting of four functions, an adaptive cruise control (ACC), a
brake-by-wire (BW), an air conditioning function (C1), and a multimedia control
(C2), with 46 processes and 42 messages in total, is mapped to the given architec-
ture. The functions and their real-time end-to-end constraints are listed in Table 1.

The functions are distributed according to state-of-the-art real-world networks
where the ACC is implemented in the FlexRay sub-network, BW and C1 are imple-
mented in one of the CAN sub-networks, and C2 is implemented over both CAN

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 13

function #processes (|P|) #messages (|C|) max. latency [ms]
ACC 18 17 100
BW 8 7 50
C1 9 8 250
C2 10 9 150

Table 1 Detailed information about the functions of the used case study in terms of numbers of
processes and messages as well as the maximal latency of each function.

sub-networks. This is regarded as the reference implementation. The reference im-
plementation has the hardware cost of 216.80 e and an energy consumption of
11745 mA and fulfills all real-time constraints. Additionally, several mapping and
resource alternatives are added to enable an effective DSE.

4.2 Design Space Exploration Results

To illustrate the advantages of the DSE and the presented timing analysis, the auto-
motive network is optimized in terms of the hardware cost in Euro (e) and energy
consumption in milliamperes (mA). The hardware costs are approximated by a linear
function based on the cost per resource whiles additional costs for wiring, etc. are
neglected. The energy consumption is approximated by a non-linear energy model
based on the average utilization of the ECUs. The timing constraints are not lin-
earizable and have to be handled by the EA separately such that implementations
that do not fulfill these constraints are discarded. The DSE includes a concurrent op-
timization of parameters such as the priorities of the processes and messages as well
as the scheduling of the messages on the static or dynamic segment of the FlexRay
bus.

The optimization required 3511 seconds, using the fine-grained fixed point iter-
ation. Within the optimization process, the EA obtained 5075 implementations that
required a timing analysis. Note that an exploration with the dependency-based ap-
proach requires 3 hours and 120 seconds, leading to a significant speed-up already
for the presented small case study. The plain global fixed point iteration requires
more than one day (after which it was aborted). The results of the optimization are
illustrated in Figure 6. Four non-dominated high quality implementations are found
improving the reference implementation in both objectives, hardware cost and en-
ergy consumption. The found implementations decrease the hardware cost by 11.8%
to 15% while the energy consumption is decreased by about 3.6% to 8.7% at the
same time.

14 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

190 200 210 220

11000

11500

xd

xc
xb xa

xr

fcosts(x) [e]

f e
ne

rg
y(

x)
[m

A
]

Optimized implementation
Reference implementation

Fig. 6 The two dimensional plot of the optimization results and reference implementation of the
automotive exploration case study.

4.3 Timing Analysis Results

In the following, we want to focus on the reference implementation and just vary
the priorities and schedules to illustrate the strongly varying runtimes of the timing
analysis approaches even for a small case study. Here, 100 different configurations
are evaluated. A comparison to the plain global fixed point iteration is omitted due
to the long runtimes of this method. The runtime of the global dependency-based
approach is 192 seconds. The fine-grained approach including the generation of the
acyclic dependency graphs requires only 70 seconds and, thus, improves the runtime
of a single evaluation by a factor of approximately 2.75 on average. The runtimes
for all 100 evaluations are illustrated in Figure 7. The plot shows that in many cases
the runtime is approximately improved by a factor of two to four. On the other hand,
the fine-grained fixed point iteration is also more than 8 times faster for some test
cases even for this small case study.

The presented case study is rather small compared to real-world systems. For
instance, in the automotive area, state-of-the-art architectures consist of up to 100
ECUs connected via several buses with hundreds of tasks and messages. Using the
fine-grained fixed point iteration for such large systems shall improve the runtime
of the timing analysis even more significantly. Moreover, the growing amount of
computationally expensive timing analysis for some components that are based on
Integer Linear Programming (ILP) [11] or model checking [8] require an efficient
fixed point iteration approach in case of cyclic dependencies.

Exploration of Distributed Automotive Systems using Compositional Timing Analysis 15

0 1 2 3 4
0

1

2

3

4

y > x

dependency-based (x) [s]

fin
e-

gr
ai

ne
d

(y
)[

s]

runtime of fixed-point iteration approaches

x
8 > y

x
4 > y

x
2 > y

x > y

Fig. 7 Runtime comparison of different fixed point iteration approaches for 100 different priority-
configurations for the reference implementation. Each dot specifies the runtime of the respective
methods to determine the timing properties for a given implementation.

5 Concluding Remarks

This paper presents an efficient Design Space Exploration (DSE) using a fast timing
analysis method. For the timing analysis, a timing entity graph is constructed and
partitioned to achieve a fine-grained fixed point analysis. In future work, the pro-
posed approach shall be combined with more complex timing analysis approaches
that rely on ILP approaches or model checking. In this case, a fast timing analysis
becomes inevitable if cyclic dependencies exist to significantly minimize the run-
time of a DSE.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms (1983)
2. Anssi, S., Albers, K., Dörfel, M., Gérard, S.: ChronVAL/ChronSIM: A Tool Suite for Timing

Analysis of Automotive Applications. In: Proceedings of the Conference on Embedded Real-
time Software and Systems (ERTS 2012) (2012)

3. Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algorithms. De-
sign Automation for Embedded Systems 3(1), 23–58 (1998)

4. Chakraborty, S., Kunzli, S., Thiele, L.: A General Framework for Analysing System Properties
in Platform-based Embedded System Designs. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2003), pp. 190–195 (2003)

5. Cheriyan, J., Mehlhorn, K.: Algorithms for Dense Graphs and Networks on the Random Ac-
cess Computer. Algorithmica 15(6), 521–549 (1996)

16 Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Samarjit Chakraborty

6. Jonsson, B., Perathoner, S., Thiele, L., Yi, W.: Cyclic Dependencies in Modular Performance
Analysis. In: Proceedings of the 8th ACM International Conference on Embedded software
(EMSOFT 2008), pp. 179–188 (2008)

7. Künzli, S., Hamann, A., Ernst, R., Thiele, L.: Combined Approach to System Level Perfor-
mance Analysis of Embedded Systems. In: Proceedings of the 5th IEEE/ACM International
Conference on Hardware/software Codesign and System Synthesis (CODES+ISSS 2007), pp.
63–68 (2007)

8. Lampka, K., Perathoner, S., Thiele, L.: Analytic Real-time Analysis and Timed Automata: A
Hybrid Method for Analyzing Embedded Real-time Systems. In: Proceedings of the 9th ACM
International Conference on Embedded software (EMSOFT 2009), pp. 107–116 (2009)

9. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: SAT-Decoding in Evolutionary Algorithms
for Discrete Constrained Optimization Problems. In: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2007), pp. 935–942 (2007)

10. Lukasiewycz, M., Streubühr, M., Glaß, M., Haubelt, C., Teich, J.: Combined System Synthesis
and Communication Architecture Exploration for MPSoCs. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2009), pp. 472–477 (2009)

11. Pop, T., Pop, P., Eles, P., Peng, Z., Andrei, A.: Timing Analysis of the FlexRay Communication
Protocol. Real-Time Systems 39(1), 205–235 (2008)

12. Richter, K., Ziegenbein, D., Jersak, M., Ernst, R.: Model Composition for Scheduling Analysis
in Platform Design. In: Proceedings of the 39th Conference on Design Automation (DAC
2002), pp. 287–292 (2002)

13. Schioler, H., Jessen, J., Nielsen, J.D., Larsen, K.G.: Network Calculus for Real Time Analysis
of Embedded Systems with Cyclic Task Dependencies. In: Proceedings of the 20th Interna-
tional Conference on Computers and Their Applications (CATA 2005), pp. 326–332 (2005)

14. Sedgewick, R.: Algorithms in C, Part 5: Graph Algorithms. Addison-Wesley (2002)
15. Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing

1(2), 146–160 (1972)
16. Tindell, K., Burns, A., Wellings, A.: Calculating Controller Area Network (CAN) Message

Response Times. Control Engineering Practice 3, 1163–1169 (1995)

