Data Networking in Precision Livestock Farming
for Improved Calf Rearing

CIGR World Congress 2006
September 3-7, 2006
Bonn, Germany

Viktoria Spreng
Matthias Rothmund
Hermann Auernhammer

Weihenstephan Center of Life and Food Sciences
Department of Life Science Engineering
Agricultural Systems Engineering
Structure

1. Introduction and objectives
2. Experimental setup
3. Utilized technology
4. Data networking
5. Recorded parameters
6. Conclusion and outlook
1. Introduction and objectives

Precision Livestock Farming

Information Technology in Livestock Farming

- Creates better management information for animal production by networking electronic process control systems.

Electronic systems

- Provide information about food intake, animal behavior, animal health and other parameters.

→ Data have to be acquired, validated, processed and fed back to control of the overall system.

→ Unusual or critical situations can be detected as early as possible.

But: Many proprietary solutions of different manufacturers available.
1. Introduction and objectives

Data networking in process control – calf rearing

- Milk feeding robot
- Concentrate feeding robot
- Drinking water robot
- Roughage weighing trough
- Animal weighing machine
- Temperature measuring system

Control

Data networking / Data management

- Milk feeding management
- Fore stomach development
- Weaning date
- First calving age
- Health management
- Early illness detection

Calf rearing
1. Introduction and objectives

Aims and method

Aims of the research project:
• Estimation of technical and informational requirements
• Deduction of the potential of complex networked systems in calf rearing

Method:
• Implementation of a comprehensive feeding and monitoring system for calves
• Linkage of all - up to now available - technical components
• Acquisition of highly resolved process parameters
 (individual milk, water and feed intake, body weight, body temperature)
2. Experimental setup

Technical setup for controlled calf feeding

Site: Experiment farm 'Hirschau', Technische Universitaet Muenchen

- **Littered lying area**
- **Agricultural Systems Engineering**
- **CIGR 2006**
- **A Roughage weighing trough**
- **B Milk feeding robot**
- **C Seesaw**
- **D Animal weighing machine**
- **E Temperature measuring system**
- **F Concentrate feeding robot**
- **G Drinking water robot**

![Diagram of technical setup](image)
3. Utilized technology

Technical setup - Hirschau

- **Concentrate feeding robot**
 - Mechanical flap for scanning whether drinking calf is empty or filled
 - Delivers defined amount of water
 - Amount and concentration of milk can be defined by operator for each calf

- **Automatic roughage weighing trough**
 - Trough weight is measured when entering and leaving the station
 - System accuracy of 33 g with a resolution of 10 g
 - One control unit for each trough
 - Plates avoid RFID interferences
 - Forefoot weight extrapolated to an overall weight by using a system internal calibration factor

- **Automatic tongue temperature measuring system**
 - Sucker with two separated compartments: upper one implies milk, lower one an inserted temperature sensor
 - Sensor measures tongue temperature during suckling

- **Drinking water robot**
 - Records drinking water intake of each calf
 - Dispenses defined amount of water (50–500 ml per filling quantity)

- **Automatic animal weighing system**
 - Forefoot weighing machine in front of the milk feeding station
 - Forefoot weight extrapolated to an overall weight by using a system internal calibration factor

- **Milk feeding robot**
 - Main unit of process control
 - Amount and concentration of milk can be defined by operator for each calf

- **Moveable seesaw**
 - Avoids push away of a drinking calf
 - Inhibits multiple suckling during drinking

- **Concentrate feeding robot**
 - Mechanical flap for scanning whether drinking calf is empty or filled
 - Delivers defined amount of water
 - Amount and concentration of milk can be defined by operator for each calf

- **Automatic roughage weighing trough**
 - Trough weight is measured when entering and leaving the station
 - System accuracy of 33 g with a resolution of 10 g
 - One control unit for each trough
 - Plates avoid RFID interferences
 - Forefoot weight extrapolated to an overall weight by using a system internal calibration factor

- **RFID**
 - Calves tagged with a RFID transponder
 - Individual drinking and feeding

- **Automatic roughage weighing trough**
 - Trough weight is measured when entering and leaving the station
 - System accuracy of 33 g with a resolution of 10 g
 - One control unit for each trough
 - Plates avoid RFID interferences
 - Forefoot weight extrapolated to an overall weight by using a system internal calibration factor
5. Recorded parameters

Calf individual recorded parameters

Milk feeding robot
- Retrieved amount of milk [ml]
- Number of break-offs
- Suckling speed [l/s]
- Number of visits at the station

Temperature measurement system
- Tongue temperature [°C]

Animal weighing machine
- Body weight [kg]

Concentrate feeding robot
- Retrieved amount of concentrate [g]
- Number of visits at the station

Drinking water robot
- Retrieved amount of water [ml]

Roughage weighing trough
- Retrieved amount of hay [g]
- Number of visits at the station

Database
5. Recorded parameters

Calf individual recorded parameters

Milk feeding robot
- Retrieved amount of milk [ml]
- Number of break-offs
- Suckling speed [l/s]
- Number of visits at the station

Temperature measurement system
- Tongue temperature [°C]

Animal weighing machine
- Body weight [kg]

Concentrate feeding robot
- Retrieved amount of concentrate [g]
- Number of visits at the station

Drinking water robot
- Retrieved amount of water [ml]

Roughage weighing trough
- Retrieved amount of hay [g]
- Number of visits at the station

Database
5. Recorded parameters

Example – data of calf no. 817

- Amount of concentrate [kg/d]
- Amount of roughage [kg/d]
- Amount of milk [l/d]
- Amount of water [l/d]
- Body weight [kg]
- Body temperature [°C]
6. Conclusion and outlook

System validation using control parameters

Technical parameters

- Amount of milk
- Amount of concentrate
- Amount of water
- Amount of roughage
- Body weight
- Tongue temperature

Control parameters

- Clinical examination
- Carcass
- Rectal temperature
- Animal watching
- Weighing for control
- Blood analyses

Validation

- Fore stomach development
- Early illness detection
6. Conclusion and outlook

Conclusion

• The established calf feeding and monitoring system allows to get individual, highly resolved data.

• By networking, the data of the single technologies can be fed into one common database.

• Control measurements are necessary to validate the technical acquired data.

→ Early illness is detectable and fore stomach growth can be estimated.

After further processing and data networking, algorithms have to be developed for the implementation within a knowledge-based decision support system.
Thanks for your attention!

Thanks for supporting this research project to:

- **Foerster-Technik GmbH**
 (Engen, Germany)

- **DeLaval GmbH**
 (Glinde, Germany)

- **Bavarian State Research Centre for Agriculture (LfL)**
 (Freising, Germany)

Contact:
viktoria.spreng@wzw.tum.de