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Abstract. The last decade has witnessed impressive progress in terms
of dedicated approaches to formally analyzing security properties of
models. However, related approaches to generating tests generally rely on
purely syntactic test selection criteria. In this paper, we consider models
of protocols and describe an approach to generate tests from security
properties. Security-specific mutation operators are defined and used
to introduce potential security-specific leaks into the model. Then, if
the leak is confirmed by a model analyzer, a test case for the security
property is generated. We present examples for security-relevant mutants
at the model level and show how they correspond to security-flawed
implementations, thus providing evidence that model-level mutants are
indeed useful for doing security testing.
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1 Introduction

One of the main challenges in testing systems is the selection of test cases. Ideally,
test cases unveil potential and actual failures, are cheap to generate and run,
make it easy to track down underlying faults, and make it possible to assess their
quality. Accordingly, there is a plethora of test selection criteria. Among them
random criteria as well as criteria that reflect coverage of the implementation’s or
model’s structure are particularly appealing because they lend themselves to the
automated generation of test cases. Both kinds of criteria usually do not take into
account properties of the system (see Section 3 for a discussion of exceptions).
This situation is not entirely satisfying when it comes to characteristics of a
system that pertain to a system’s performance or security.

Many security properties of protocols can today be formally verified at the
model level. Once a model has been verified w.r.t. confidentiality, integrity,
or availability properties, the natural next step is to derive tests from this
correct model for some implementation. In terms of structural coverage criteria,
one approach to doing so is to pick a set of properties Φ that reflects the
coverage criterion (e.g., it is possible to reach state σ, for all states σ), and use a
model checker to generate a test case per property (that drives the model into
state σ). Unfortunately, this simple approach does not work for non-structural
universal properties like the aforementioned security properties. Let ψ be such



a property. It is then reasonable to assume M |= ψ—the model should satisfy
the property. Using a model checker to verify M |= ¬ψ then yields all traces
of the model as counter examples (test cases); no discrimination between more
or less “interesting” traces takes place. In this paper, we tackle the problem of
automatically generating test cases that are “interesting” when it comes to testing
a specific security property according to potential implementation vulnerabilities.
Indeed, we provide evidence that our generated test cases are correlated to
targeted flaws at the source code level, which is not addressed by related work
that focus on security properties only and leave out the implementation level.

Hence, rather than simply negating the property, we follow a different approach
(that others have followed as well, see Section 3). Intuitively, we modify the model
in a way that the security property is violated in a specific way, related to a
common mistake at the implementation level. More specifically, we describe the
following process. We start from a model, M, of the system in which a specified
property, ϕ, holds: M |= ϕ. Then, we apply mutations to the model in order to
get a new model M′ in which the property doesn’t hold anymore: M′ 6|= ϕ. In
this way, we obtain one or several traces of M′ that are counter-examples for ϕ,
also called attack traces.

An attack trace describes a sequence of messages that an intruder should
be able to play entirely in order to prove the presence of a real flaw at the
implementation level. If an attack trace can be reproduced on the implementation,
then we have found a real security flaw. Moreover, this flaw is related to a
specific security property and a specific vulnerability at the implementation level,
according to the process used to generate these test cases.

In sum, the problem that we tackle is the derivation of test cases for specific
universal security properties. Our solution is based on a set of mutation operators
at the model level that are related to possible errors at the source code level. We
consider our main contribution in providing premature evidence for the correlation
between High Level Protocol Specification Language (HLPSL) mutants and
implementation-level vulnerabilities. We complement the procedure for testing
non-structural universal properties [5,23], in a sense that if a flaw is found, we
can boil it down to a specific vulnerability related to the mutant involved.

In the remainder of this paper, we will focus on mutation operators for models
of protocols described in HLPSL [19]. In Section 2, we present two mutation
operators and explain what kind of real implementation-level security problems
they reflect. In Section 3, we review related work and conclude in Section 5.

2 HLPSL Mutation Operators

The Avispa tool [3] is used for automated validation of Internet security protocols
and applications. It provides a dedicated language for protocol specifications
called High Level Protocol Specification Language (HLPSL) which is used to
specify protocols and their security properties. A model checker checks if the
protocol model satisfies the specified properties. If security properties are violated
the model checker outputs an attack trace that violates the property. To find



attack traces for implementations on the basis of a correct model, we use mutation-
based testing. The selection criterion for such mutants is the positive correlation
with common errors at the implementation level. Before describing the mutant
operators, we give a short description of the HLPSL input language and the
output of the Avispa tool.

HLPSL Input Language. A HLPSL example specification of the NSPK-fix proto-
col1 can be found in Appendix A. A security protocol specified in HLPSL is based
on the A-B notation and is role based. It usually consists of several sections: (1)
basic role specifications for protocol participants (line 1-37), (2) a session section
where multiple participant roles are instantiated (line 40-46), (3) an environment
section where sessions are combined and the intruder knowledge is defined (line
50-63), and (4) a goal section for security properties (line 67-71). In general a
basic role defines transitions (line 10-17,30-36) that usually describe the receipt
of a message and the sending of a reply. To do so it specifies preconditions and
actions that have to be executed when the preconditions are true.

Avispa Tool Output. The Avispa tool defines an output format OF which is
described as follows: The result of the tool is either conclusive or inconclusive
where in the first case either safe or unsafe is reported. If the tool finds an
attack (the tool reports unsafe) parts of the output consists of the name of
the violated security property and an attack trace which shows the exchange of
messages between participants in order to violate the property. For example, in
the NSPK protocol the attack trace looks like as follows:

ATTACK TRACE:

i -> a: start

a -> i: {Na(1).a}_ki

i -> b: {Na(1).a}_kb

b -> i: {Nb(2).Na(1)}_ka

i -> a: {Nb(2).Na(1)}_ka

a -> i: {Nb(2)}_ki

It is a sequence of messages, such that X sends m to Y is represented by:

X -> Y: m

The agent i is a special agent — the intruder — that behaves as defined by
the attacker model. The Avispa tool only defines the Dolev Yao intruder model,
specified as a channel parameter (e.g. line 1 or 21 in Listing 1.1).

2.1 Agent Identifier Mutant

A HLPSL specification specifies a protocol and security properties like secrecy or
authentication. Security flaws are often based on man-in-the-middle attacks where
a message from a session can be used in another session and therefore violate

1 This example comes from http://avispa-project.org/library/NSPK-fix.html
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specific security properties of the protocol. By modifying agent IDs in the HLPSL
specification, one may produce test cases that are related to man-in-the-middle
attacks in particular and the violation of the secrecy property in general.

The HLPSL language supports send and receive statements for messages.
To generate such test cases, we consider variables in receive statements like
the following: RCV ({A.B′}K). It specifies that received messages are encrypted
with key K and consist of two concatenated values A and B. If a message is
received, the primed variable B is bound to the corresponding value in the
message. The non-primed variable A already has been bound to a value and
operates as a selector value. E.g. using the above receive statement at the left side
of a transition, the receive statement is only triggered if the incoming message
matches with the value of variable A. Therefore primed and non-primed variables
can allow or prevent man-in-the-middle attacks at the HLPSL level.

Violation of Authentication and Secrecy. We apply the previous idea to the
first message of the Needham-Schroeder Public-Key (NSPK) protocol. Correctly,
Bob only accepts {Na′.A}Kb from Alice in a session if A corresponds to the
intended sender of that session — due to the unprimed selector variable A
in RCV ({Na′.A}Kb) and the sharing of the agent identifier A when a session
between Alice and Bob is defined. To invalidate this check, the mutant primes
variable A so that A in RCV ({Na′.A′}Kb) now adapts its value to the value
in the received message. This means, an intruder can successfully use message
{Na.A}Kb, originated from a session Alice↔Bob, in a session intruder↔Bob.

Checking the modified model the Avispa tool returns the following attack
trace. An expression X → Y : m means that X sends m to Y . The partial trace
shows that in the third step, the intruder i can forward the message to Bob.
Because Bob doesn’t check the agent ID, it accepts the message in the session
intruder↔Bob and sends back an answer encrypted with key ki, instead of ka.

ATTACK TRACE:

i -> a: start

a -> i: {Na(1).a}_kb

i -> b: {Na(1).a}_kb

b -> i: {Na(1).Nb(2).b}_ki

2.2 Nonce Mutant

In the NSPK protocol both Alice and Bob are creating nonces which are sent
to the other partner. Nonces are generally used to guarantee the freshness of
messages and that an agent is present in a session. Both are security properties
and the latter can be specified with the keyword authentication on together
with (w)request and witness in a HLPSL specification. Therefore modifying
nonces may affect the authentication property. The following mutant modifies the
HLPSL model in such a way that the generated attack trace exactly addresses the
part of the source code that deals with the authentication on security property.



Violation of Authentication. Alice uses the nonce Na in the first message to
verify that Bob participates in the current session. She expects that the first reply
from Bob contains Na too. The mutant in this section replaces RCV (Na.Nb′.B)
by RCV (Na′.Nb′.B) that means that Alice does not check the received nonce
Na anymore. The Avispa tool indeed confirms that the mutant affects the
authentication property of the protocol:

ATTACK TRACE:

i -> a: start

a -> i: {Na(1).a}_kb

i -> a: {x238.x239.b}_ka

a -> i: {x239}_kb

This attack trace for the modified protocol shows that an intruder was able
to finish the protocol with Alice although Alice thinks she is talking to Bob.

2.3 Mutant-Implementation Error-Correspondence

To show that the described mutants reflect common mistakes at source code level
we consider the C implementation given in [11]. The security of the NSPK protocol
is based on different checks. E.g. when Bob receives the first message from Alice,
he has to check if variable A in message {Na.A}Kb is set correctly. Similarly
when Bob replies to Alice, she needs to check if Na in message {Na.Nb.B}Ka is
correct. It’s crucial that these checks are performed at the implementation level
as well. In our implementation Bob performs the above check if the sender ID is
correct with an if statement given as follows:

if(strncmp(alice_msg.id,ALICE_ID,sizeof(ALICE_ID))) {...} else {...}

Similarly, Alice executes the following if statement to check Na:

if(strncmp(alice_msg.nonceA,nonceA,sizeof(nonceA))) {...} else {...}

Therefore applying the above mutants at the HLPSL level corresponds to the
case where the software developer has either (1) forgotten to implement the if
statements, (2) has misplaced the if statements and therefore has made them
ineffective, or (3) has messed up the conditions in the if statements.

3 Related Work

Our work is closely related to mutation testing [7,12]. The goal of mutation
testing is to assess the effectiveness of test suites (or test selection criteria) which
is done by introducing small syntactic changes into a program and then see if
the test suite detects these changes. Two hypotheses underlie the generalizability
of results obtained with mutation testing: the competent programmer hypothesis
(programmers develop programs that are close to the correct version) and the
coupling effect (small syntactic faults correlate with major faults). These assump-
tions have been subject to quite some validation research that is summarized in
[12, Section II.A]. The idea of manually injecting real world faults into systems to



the end of assessing the quality of quality assurance is common practice [20] for
instance in the telecommunication industries; and so is fault-based testing where
systems are checked for the occurrence of specific errors, e.g., stuck-at-1 errors
in circuit designs. Security-related mutation testing has also been successfully
performed at the level of access control policies [13,15,16,17]; we differ in that
we consider protocol models rather than access control policies as a basis.

Test assessment criteria can also be understood as test selection criteria [24].
In our context, this means that mutation testing can also be used to generate
rather than assess tests, an idea that was, among others, successfully applied for
specification-based testing from AutoFocus or SMV models in the security context
[23,1] and in the context of HLPSL [5]. These three papers are, in terms of related
work, closest to our approach. Our work differs from them in that we provide
evidence for the correlation between model-level mutants and implementation-
level faults, instead of just a discussion about why implementations can go
wrong. Model checkers have been used for test case generation since at least
1998 [2], in a variety of contexts that has been surveyed elsewhere [9]. Most of
this work concentrates on generating tests that satisfy structural criteria such as
state coverage, transition coverage, MC/DC coverage, etc., on the model. In this
context, coverage criteria have also been successfully applied to temporal logic
properties [21,8,22]. Our work differs in that we rely on a domain-specific fault
model.

Formal models and model checking for security properties have been used by
others [6,10,18,4,14]. They rely either on dedicated security rules that are used for
test case generation, or are concerned with functional testing of security-critical
subsystems. In contrast, our work is based on a dedicated fault model.

In practice, security testing is today usually performed with penetration
testing tools (e.g., http://sectools.org/). These tools are different in that
they do not rely on protocol models to perform the tests, and do not use model
checking technology for the generation of tests.
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5 Conclusion

We describe mutants at the HLPSL level that are closely related to implementation-
level security faults. Actually, we showed on a C implementation which lines
of code are addressed by the described mutants. One drawback of generating
mutants at a higher-level language like HLPSL is that the number of generated
mutants is rather small (see for example the experimental results in [5]). We are
currently working on producing mutants at a lower-level intermediate language
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(i.e., Intermediate Format (IF)) in order to introduce more subtle changes that
cannot be described at a higher level.

To be consistent with practices in security testing, we must facilitate the
use of our test cases in a penetration testing tool. We are currently working on
translating our test cases as exploits in Metasploit (http://metasploit.com).
The main difficulties for this translation are: intercepting exchanged messages,
filtering those that are relevant to the attack trace, building and sending messages
from the intruder that are accepted by the honest agents.
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A HLPSL model for the corrected version of
Needham-Schroeder Public-Key authentication
protocol

1 r o l e a l i c e (A, B: agent , Ka , Kb: pub l i c key , SND, RCV: channel ( dy ) )
2 played by A def=
3 l o c a l State : nat ,
4 Na , Nb: t ex t
5

6 i n i t State := 0
7

8 t r a n s i t i o n
9

10 0 . State = 0 /\ RCV( s t a r t ) =|>
11 State ’ := 2 /\ Na ’ := new ( ) /\ SND({Na ’ . A} Kb)
12 /\ s e c r e t (Na ’ , na ,{A,B})
13 /\ witnes s (A,B, bob a l i c e na , Na ’ )
14

15 2 . State = 2 /\ RCV({Na .Nb ’ . B} Ka ) =|>
16 State ’ := 4 /\ SND({Nb’} Kb)
17 /\ r eque s t (A,B, a l i c e bob nb ,Nb’ )
18 end r o l e
19

20

21 r o l e bob (A, B: agent , Ka , Kb: pub l i c key , SND, RCV: channel ( dy ) )
22 played by B de f=
23 l o c a l State : nat ,
24 Na , Nb: t ex t
25

26 i n i t State := 1
27

http://www.avispa-project.org/package/user-manual.pdf
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28 t r a n s i t i o n
29

30 1 . State = 1 /\ RCV({Na ’ . A} Kb) =|>
31 State ’ := 3 /\ Nb’ := new ( ) /\ SND({Na ’ . Nb ’ . B} Ka )
32 /\ s e c r e t (Nb’ , nb ,{A,B})
33 /\ witnes s (B,A, a l i c e bob nb ,Nb’ )
34

35 3 . State = 3 /\ RCV({Nb} Kb) =|>
36 State ’ := 5 /\ r eque s t (B,A, bob a l i c e na , Na)
37 end r o l e
38

39

40 r o l e s e s s i o n (A, B: agent , Ka , Kb: pub l i c key ) de f=
41 l o c a l SA, RA, SB, RB: channel ( dy )
42

43 compos i t ion
44 a l i c e (A,B, Ka,Kb,SA,RA)
45 /\ bob (A,B, Ka,Kb, SB,RB)
46 end r o l e
47

48

49

50 r o l e environment ( ) de f=
51 const a , b : agent ,
52 ka , kb , k i : pub l i c key ,
53 na , nb ,
54 a l i c e bob nb ,
55 b o b a l i c e n a : p r o t o c o l i d
56

57 in t ruder knowledge = {a , b , ka , kb , ki , inv ( k i )}
58

59 compos i t ion
60 s e s s i o n ( a , b , ka , kb )
61 /\ s e s s i o n ( a , i , ka , k i )
62 /\ s e s s i o n ( i , b , ki , kb )
63 end r o l e
64

65

66

67 goa l
68 s e c r e c y o f na , nb
69 authen t i c a t i on on a l i c e b o b n b
70 authen t i c a t i on on b o b a l i c e n a
71 end goa l
72

73

74 environment ( )

Listing 1.1. HLPSL model of NSPK-fix
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