
Fakultät für Elektro- und Informationstechnik

Lehrstuhl für Medientechnik

Visuo-haptic environment perception for

autonomous robotic systems

Nicolas F. Alt

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Eckehard Steinbach

2. Univ.-Prof. Gordon Cheng, Ph.D.

Die Dissertation wurde am 22.04.2015 bei der Technischen Universität München eingereicht und

durch die Fakultät für Elektrotechnik und Informationstechnik am 21.12.2015 angenommen.

Visuo-haptic environment perception for

autonomous robotic systems

Nicolas Alt, M.Sc. (hons)

November 29, 2016

Acknowledgments

This doctoral thesis represents large parts of my research carried out at the Chair of Media

Technology at Technical University of Munich, initially within the DFG excellence initiative

research cluster “Cognition for Technical Systems” (CoTeSys).

I would like to express my deep gratitude to my supervisor Prof. Eckehard Steinbach for

his enduring support and guidance while pursuing my doctorate. The door to his office was

always open for discussions, and he ensured a highly scientific atmosphere at his chair. Also,

I would like to thank Prof. Gordon Cheng and Prof. Andreas Herkersdorf for their work in

the doctoral committee. Furthermore, I am very much obliged to Patrick Rives for inviting

me to his lab at INRIA Sophia Antipolis.

My sincere appreciation goes to my colleagues at the chair for many stimulating discussions,

building up robots together and solving every administrative issue. Especially I would like

to mention Werner Maier, Clemens Schuwerk, Jingyi Xu, Sebastian Hilsenbeck, Robert Huitl

and Florian Schweiger. I would also like to thank my colleagues Martin Lawitzky, Daniel

Althoff, Omiros Kourakos, Matthias Rambow and Alexander Mörtl for setting up workshop

demos in the CoTeSys robotics lab together, often until late into the night. Also, I would like

to acknowledge the work of my students during numerous theses and projects.

Finally, I feel profoundly grateful to my parents for their support and continuous encourage-

ment throughout my years of study and my doctorate, and to my girlfriend Florence Bonnafé

for her support, critical thinking and for proofreading this text.

Thank you!

i

Abstract

Novel autonomous robots – such as domestic robots, service robots or cognitive robots –

operate in so-called unstructured environments, like private homes and offices. An essential

skill for such systems is perception, i.e. the acquisition of comprehensive knowledge about the

scene. Perception systems represent an early stage of intelligence and comprise sensors, signal

processing, model building as well as recognition. Visual perception is essential for modeling of

complex scenes, but it has limitations – for instance in the presence of transparent or reflective

objects. Moreover, the visual modality is insufficient during manipulation, i.e. when a robot

interacts with its environment. Haptic perception –– i.e. sensing of touch, contact and force

– must be integrated as a second modality, using appropriate sensors. Humans serve as a

model for this approach, as they also integrate vision and haptics for manipulation tasks.

This work investigates joint visuo-haptic sensing and modeling, and presents appropriate

task planners. A visuo-haptic sensor is proposed, which is based on a passive, deformable

element mounted on the actuator. Deformations of this element are observed by a camera,

and a force/pressure profile is deduced from the image. The same camera is also used for

visual scene observation, such that visual and haptic data are acquired coherently. Compared

to separate sensor systems, this setup reduces system complexity and costs.

Approaches of joint visuo-haptic modeling are presented for three scenarios, namely navi-

gation in home and office environments, geometry reconstruction as well as classification and

manipulation of deformable objects. First, a model for navigation of mobile platforms is pro-

posed, which represents haptic properties of obstacles on a per-object level. Building on data

acquired by the visuo-haptic sensor, a navigation graph is extended by so-called “manipula-

tion nodes”. These nodes represent obstacles that can be manipulated during navigation, e.g.

in order to reach a blocked area in the room. Second, the reconstruction of geometry models

from objects is considered. A transparency detector is proposed, which searches for geometric

inconsistencies caused by refraction effects. Within transparent regions, geometry cannot be

obtained by vision, and is instead explored haptically, i.e. by touching the object with a sensor

tip mounted on a robot arm. The exploration plan is generated using an uncertainty estima-

tor based on the biharmonic distance. Third, a deformation model is presented for objects

with thin-walled structures, such as plastic bottles. Haptic features for local stiffness are pro-

posed and extracted from a dataset of generated object models during a simulation process.

An object classifier, which discriminates object classes based on these stiffness features, is

trained with the dataset and tested on real objects. Furthermore, a planner is presented that

considers the deformation of objects to find stable grasp configurations.

iii

Contents

Notation viii

1 Introduction 1

1.1 Robots in unstructured environments . 1

1.2 Visuo-haptic perception and manipulation . 3

1.3 Contributions of this work . 6

1.4 Structure of this dissertation . 9

2 Background and related work 11

2.1 Sensors for autonomous robots . 11

2.1.1 Haptic and tactile sensors . 12

2.2 Object models and reconstruction . 14

2.2.1 Visual reconstruction . 14

2.2.2 Transparency detection . 16

2.2.3 Tactile reconstruction . 17

2.2.4 Modeling of elastic materials . 19

2.2.5 The finite element method . 21

2.3 Detection and tracking . 23

2.3.1 Images features . 23

2.3.2 Visual tracking . 24

2.3.3 Homography estimation and decomposition 26

2.3.4 Combined detector and tracker . 28

2.3.5 Visual classification and recognition 29

2.3.6 Mapping and navigation . 30

3 Visuo-haptic sensors 33

3.1 Motivation . 33

3.2 Modeling of the deformable element . 35

3.3 Foam-based sensor for laminar contacts . 39

3.3.1 Tracking of foam deformation . 40

3.3.2 Analysis of measurement accuracy . 42

3.3.3 Fitting of geometric primitives . 45

v

Contents

3.4 Beam-based single point 6D force-torque sensor 46

3.5 Tracking objects and scene . 48

3.6 Experiments . 51

3.6.1 Sensor accuracy . 51

3.6.2 Exploration of objects with a mobile platform 53

3.6.3 Näıve haptic mapping with a mobile platform 54

3.6.4 Grasping with the foam-based sensor 56

3.6.5 Manipulation with the beam-based sensor 57

3.7 Summary . 58

4 Joint planning of navigation and manipulation 61

4.1 Haptic tags . 62

4.2 Graph-based planner . 64

4.2.1 Integration of haptic information . 65

4.3 Local planning . 68

4.3.1 Direct push . 69

4.3.2 Sideward push . 70

4.3.3 Transparent objects . 73

4.3.4 Special operations . 74

4.4 Experiments . 75

4.5 Summary . 77

5 Visuo-haptic geometry fusion 79

5.1 Effects of transparency . 80

5.2 Transparency detector . 81

5.2.1 Local background model . 82

5.2.2 Detection of inconsistent geometry . 84

5.3 Geometry estimation in transparent regions 85

5.3.1 Surface extrapolation . 87

5.4 Haptic exploration of geometry . 88

5.5 Experiments . 90

5.5.1 Transparency reconstruction . 90

5.5.2 Simulation of haptic exploration . 92

5.6 Summary . 95

6 Deformation models for thin-walled objects 97

6.1 Simulation of object deformation . 99

6.1.1 Volumetric object models . 99

6.1.2 Parametric model generation . 100

6.1.3 FEM-based elasticity simulation . 101

vi

Contents

6.1.4 Grasp patterns . 102

6.1.5 Modeling the contents of containers 103

6.1.6 Stiffness maps and features . 105

6.2 Grasp planning for deformable objects . 107

6.3 Haptic object classification using stiffness features 110

6.3.1 Feature selection and exploration planning 110

6.3.2 Scenarios for haptic exploration . 112

6.3.3 A process for visuo-haptic classification 114

6.4 Results and experiments . 116

6.4.1 Simulation-based models . 116

6.4.2 Exploration of real objects . 118

6.5 Summary . 124

7 Conclusion and Outlook 127

7.1 Conclusion . 127

7.2 Outlook . 129

List of Figures 134

List of Tables 137

Publications by the author 139

Bibliography 140

vii

Notation

Abbreviations

2D/3D Two-/Three-dimensional space

CPU Central Processing Unit

DoF Degrees of Freedom

dpi Dots Per Inch

ESM Efficient Second order Minimization (tracker) [67]

ICP Iterative Closest Point [84]

IMU Inertial Measurement Unit

IP Internet Protocol

ISO International Organization for Standardization

FEM Finite Elements Method

GPU Graphics Processing Unit

HD High Definition (Full HD: 1920× 1080 px)

KLT Kanade-Lucas-Tomasi tracker

LWR Lightweight Robot

MSE Mean Squared Error

NCC Normalized Cross-Correlation (coefficient)

PCA Principal Component Analysis

PUR Polyurethane (foam)

RBF Radial basis function

ROS Robot Operating System

SDF Signed Distance Function

SIFT Scale-Invariant Feature Transform [63]

TCP Transmission Control Protocol

UDP User Datagram Protocol

px Pixel (picture element)

RANSAC Random Sample Consensus [28]

USB Universal Serial Bus

Voxel Volumetric pixel – value in a 3D grid

viii

Symbols

A Area

δ Deformation of a soft material

d Distance

E Elastic modulus (Young’s modulus)

F Feature

F Force

K Intrinsic camera matrix

M 2D grid map

n Normal vector

N Neighborhood (within d around x: Nd(x))

P Pressure

σ Standard deviation (of Gaussian)

S Score value

T Transformation in 2D/3D (rotation and translation)

T̃ Coordinate frame associated to a transformation T
u Point in an image with components ux,y

ũ Point in an image, homogeneous coordinates ũ = c · [x, y, 1]T

X, X(F) 3D point in the world with components XX,Y,Z , in frame F

ix

1 Introduction

This chapter starts with an introduction to the context of this work, i.e. autonomous robots

operating in unstructured scenes. Next, a definition of visuo-haptic perception and manipu-

lation is given, together with some examples. Finally, a summary of the contributions of this

work is presented.

1.1 Robots in unstructured environments

Robots have been successfully used in industry for decades. Within these environments, the

primary goals are to perform tasks faster, with greater precision, fewer interruptions and

lower costs than human workers. Some applications require to move heavy loads and to

operate in hazardous environments. Most commercially available robots have been optimized

for these needs, since there is a huge demand of such systems in industrial production. As

a consequence, they are equipped with highly precise sensors for self-monitoring, and their

connection elements or links are built rigidly to avoid deformations. This design ensures

repeatability and high absolute precision of less than 1 mm. Once programmed and calibrated,

these systems reproduce trajectories with great accuracy, even without using any external

sensors. Preprogramming only makes sense in a so-called structured environment, whose

geometry is known up to a low number of well-defined unknowns. For instance, in automation

systems, the structure and dimensions of machine parts are known exactly. Strong constraints

are imposed to workpiece positions and object motions, e.g. from a linear drive, and sensors

are mounted at fixed locations. The type or identity of an object is either known before, or

determined by dedicated technologies, such as RFID or 2D bar codes. Tolerances are kept

low by design. Sensors as simple as a light barrier often suffice for environment perception.

The KUKA Titan is an industrial robot with the highest lifting capabilities on the market

– and still offers a repeatability of ±0.2 mm. Obviously, high requirements on rigidity and

precision, both at the sensor and the mechanical level, go along with considerable costs.

Robots that operate in unstructured environments, on the other hand, require a much

different skill set compared to their ancestors. They represent a new paradigm of robotics,

which has seen tremendous interest in research and has recently also been implemented in some

commercial products. In unstructured scenes, many types of objects are present, without prior

knowledge about their identities and poses (i.e. position and rotation). This also applies to

persons, furniture and the structure of the room. Robots need to observe the scene constantly,

interpret their observations and react accordingly. Only weak prior assumptions can be

1

1 Introduction

(a) Samsung Navibot (b) Bosch Indego

Figure 1.1: Commercial domestic robots are available for specialized tasks, such as vac-
uum cleaning (a) and lawn mowing (b). Many robotic vacuum cleaners rely
already on visuo-haptic perception, since they integrate a camera for mapping
and bumpers for collision detection. Currently, these systems use relatively sim-
ple environment models. Their capabilities could be improved considerably by
richer environment perception. Images: Samsung, Bosch.

made, such as the existence of a floor plane in indoor scenes. Precision and repeatability are

less important than perception and adaptability. Depending on the required skills and the

application, there are various non-exclusive and non-strict classifications of such robots. Skill

sets and complexity of these robots vary greatly, even within one class:

• Domestic robots, which perform various service tasks in private homes

• Cooperative robots, which work together with humans, e.g. in production

• Service robots, which assist humans in various environments

• Autonomous robots, which work autonomously for an extended period of time

• Cognitive robots, which learn and reason about complex scenes

• Humanoid robots, which have a body shape and dexterity similar to humans

Cleaning platforms, such as robotic vacuum cleaners, see Fig. 1.1, can be classified as

domestic, service and autonomous robots. Similar systems are available for other cleaning

tasks or lawn mowing. The first commercially successful models used very simple sensors

and planning methods, while most of the current models perceive their environment with

cameras and contact sensors for planning and mapping. Obstacles in the environment are not

manipulated, but avoided. Cooperative robots enable new concepts in industrial production,

allowing humans and robots to work together in the same working space. A recent report

[98] investigates the possibilities of this approach and presents first case studies and visions

for future joint human-robotic production environments. There is also substantial research in

the area of humanoid service robots, which have very promising applications in households,

in medical applications or in the domain of care for the elderly, see Fig. 1.2. The PR2, see

2

1.2 Visuo-haptic perception and manipulation

(a) Willow Garage PR2 (b) Fraunhofer Care-o-Bot 3 (c) Honda ASIMO [85]

Figure 1.2: Many humanoid robots with wheeled platforms or legs have been presented
for research applications. Typically, they are equipped with a large number of
various sensors. Apart from their high price, the performance of their perception
and manipulation systems is not yet sufficient for practical applications outside
of lab environments. Images: Willow Garage, Fraunhofer IPA/R. Bez, Honda.

Fig. 1.2a, is a “semi-humanoid” research platform, which helped researchers build a large

number of robot demos for different everyday tasks, such as grasping of household objects

[45] or folding of clothes [74].

Lightweight robot arms such as the KUKA lightweight arm (LWR) [14] or the Universal

Robots UR5/10 [97] offer active compliance based on numerous sensors, enabling safe coopera-

tion with humans. The Baxter robot [38] is equipped with two lightweight arms, many sensors

and vision-based planning systems. It takes over dangerous, repetitive or unproductive tasks

from humans, such as (un)loading machines and preparation of tools or components.

In the following, the term “autonomous robot” will be used for any robot, which operates

autonomously in unstructured environments.

1.2 Visuo-haptic perception and manipulation

One of the common core functions of all autonomous robots is the perception of their envi-

ronment – i.e. the acquisition of an adequate level of understanding about persons, objects,

obstacles, scene structure and accessible areas around the robot. Robot perception comprises

sensors (such as cameras, force/touch sensors, microphones, etc.) and subsequent processing

of the provided data in order to obtain an abstract representation of the environment – a

model. Perception systems provide different levels of abstraction, such as – in case of vision

3

1 Introduction

(a) Soft/transparent obstacles in office scene (b) F = 40 N – 7 (c) F = 50 N – 7 (d) F = 60 N – 3

Figure 1.3: Manipulation in unstructured environments requires visuo-haptic perception.
Visuo-haptic models provide a richer representation of “soft” obstacles, such as
vases, boxes and paper bins, facilitating navigation in home or office scenes (a).
Grasp plans must consider the stiffness of objects to avoid extensive deformation
(b) or destruction (c). Rigid objects (d) may require much larger grasping forces.
In both scenarios, haptic data may complement geometry information within
transparent regions.

– images, depth maps, geometric models, geometric primitives, object identity, object class

or other semantic information. This can be compared to perception in humans or animals,

which consists of specialized parts of the brain (“visual intelligence” [43]) dedicated to the

visual, auditory and haptic senses.

In manipulation, perception is a multimodal problem, mainly involving vision and haptics.

As long as objects are not in contact with the robot, information is acquired via cameras

or other vision-based remote sensing methods. Once contact with an object has been es-

tablished, perception is extended to the haptic modality. Haptics consist of the tactile and

kinesthetic sense. The former represents contact events as well as vibrations when sliding over

a surface and exhibits a relatively large spectral range. The latter is connected to (usually

low-frequency) forces applied to an object as well as the physical locations in space. Other

modalities are beyond the scope of this work, even though they may be of high relevance

in certain scenarios: Auditory perception is essential for human-robot interaction, outdoor

environments require temperature or moisture sensing.

Many autonomous robots are designed to cooperate with humans in households, office

spaces or public buildings. One important characteristic of these human environments is

their design according to the needs of humans. Therefore, robots must adapt to the skills and

capabilities of humans to a certain degree in order to operate in these surroundings. Only

general assumptions about these environments can be made by the robot – such as the type

4

1.2 Visuo-haptic perception and manipulation

of the environment, the existence of structures like walls, doors or tables, the navigability

on floors as well as general rules for the location of certain types of objects. Large generic

databases of objects that may be encountered in the environment enable object classification,

see Sec. 2.3.5. However, there is no predefined specific knowledge about the environment

as in industrial robotics, such as locations, poses or identities of specific objects. All this

knowledge must be acquired by the robot itself, using its perception system. Adaptability

and relative accuracy of the end-effector with respect to objects are of relevance, rather than

high absolute accuracy, repeatability and speed. This has important implications for the

hardware and mechanical design of autonomous robots: Absolute accuracy of sensors can be

lower, and connection elements can be built lighter, since high rigidity is not essential.

Navigation is an important skill for mobile autonomous robots. Their perception system

must be able to recognize navigable areas – i.e. unoccupied areas of the floor, as well as relevant

building structures, such as doors, elevators and stairs. Also, systems for object detection

or recognition are needed to identify obstacles or objects that should be manipulated. The

required skill level as well as the required capabilities for environment understanding depend

on the specific tasks a robot performs. Office or indoor scenes exhibit “hard obstacles”, such

as walls or heavy tables, which are easy to observe with a visual sensor and may be modeled

with a binary occupancy map. However, there are also “soft” obstacles as well as objects that

are difficult to observe with visual sensors – such as boxes, paper bins or transparent vases,

see Fig. 1.3a. Multimodal environment models, which also integrate haptic data, represent

the properties of such objects and allow for more advanced navigation schemes. In most

cases, modeling at a relatively low level of detail is sufficient. Additional perception skills are

required for robots navigating in nature, within cities or in other environments. These are

more diverse and less structured than indoor environments – even the detection of navigable

areas becomes more complex. Reliable perception is a prerequisite for any system providing

higher levels of intelligence – such as complex action planning, or anything generally referred

to as artificial intelligence. Yet, these aspects are beyond the scope of this thesis.

Another essential skill for autonomous robots is grasping, which allows for controlled ma-

nipulation of the environment. It is a complex task that requires detailed object models

comprising local geometric, visual and haptic data. Models of visual appearance enable fast

classification and pose estimation, geometric models are essential to find possible grasp points,

and haptic models are important to verify the stability of grasp configurations, as well as to

adjust the grasping force. If an object is detected based on a general model, additional object

states and parameters may need to be determined for reliable manipulation. Some states –

such as the fill level of a glass – change quickly and must be estimated before each interaction

with the object. Haptic parameters are especially important for deformable objects. Fig. 1.3

shows deformable or soft objects that are typical for household environments. If grasping

parameters are chosen incorrectly, manipulation may result in unwanted results – such as

overflow of the bottle’s contents in Fig. 1.3b or even destruction Fig. 1.3c. Different grasping

forces may be required for objects that are similar in geometric and semantic aspects, but

5

1 Introduction

differ in the haptic domain. For instance, the stiff glass in Fig. 1.3d requires a much larger

grasping force than the deformable plastic cups.

Manipulation tasks are based on information provided by perception and are closely cou-

pled with it. Similar to perception, different levels of abstraction are used for manipulation

planning: On a semantic level, a manipulation plan might describe how to bring a certain

type of object, such as a mug, in relation to another object, such as a coffee machine. This

level is associated with semantic scene knowledge acquired by perception. In more detailed

plans, the object identity, approximate locations and trajectories are specified. At the most

detailed level, expected forces and poses are calculated at each time step and compared to

current sensor readings. This includes also grasp patterns while the robot is in contact with

an object. Here, the association between manipulation and perception becomes much closer,

connecting the two systems together in a control loop. Manipulation is controlled based on

data from perception, which in turn depends on the manipulation operation. Perception al-

gorithms used during manipulation must therefore run in realtime. This coupling between

perception and manipulation is a fundamental difference to perception in multimedia appli-

cations, where the input data can be processed offline and does not depend on the results of

the perception system.

1.3 Contributions of this work

This work investigates selected aspects of joint visuo-haptic perception for robotics in un-

structured environments. Joint visuo-haptic processing at the sensor level is considered first.

Typically, robots rely on distinct sensor systems for these two modalities – such as cameras

on the head, near the end-effectors and on other parts of the body, force-torque sensors in the

arm as well as distributed touch and contact sensors on manipulators, see also Sec. 2.1. These

sensors provide two fundamentally different representations of the same physical objects and

of events, which generally provide complementary or non-redundant information. Even in

cases when data from one representation can be transformed into the other, such as for shape

information, accuracy and domain are typically different. For many tasks, data from the two

modalities must be fused in a coherent way. For instance, a grasping system first uses visual

pose estimation to place the gripper accordingly. The event of contact between the gripper

and the object is determined using touch sensors, since visual sensors do not provide ade-

quate accuracy. The touch event goes along with a refinement of the object’s pose estimate.

Next, haptic and visual sensors work together to control the grasping force and determine the

reaction of the object. Synchronization between the two sensors is crucial for stability.

Chapter 3 introduces the concept of visuo-haptic sensors, which use a single camera for both

visual and haptic sensing. Dedicated haptic sensors are replaced by a passive deformable ele-

ment, such as a piece of plastic/rubber foam or a rod of spring steel. This element may also

be an integral part of the robot, such as a link of the arm. Since its deformation characteris-

6

1.3 Contributions of this work

tics are known, force and pressure values can be obtained from deformations tracked by the

camera. This concept provides a number of advantages compared to separate sensor systems:

First of all, visual and haptic data are naturally coherent, since they are acquired from the

same sensor. Furthermore, the deformable element makes the actuator naturally compliant,

i.e. it retracts as soon as a force is applied. Soft components on robots offer advantages for

safety and ease requirements on latency and control rate. Finally, system complexity is re-

duced considerably, since dedicated active sensor models are replaced by passive components.

Sensors are often located at extremal parts of the robot, which goes along with an additional

effort for cabling and maintenance. Cameras offer inherent cost advantages, since they can

be built very small, be placed at beneficial locations and have become very low-cost, driven

by a large consumer market.

Implementations of the visuo-haptic sensor are presented for mobile platforms [3, 5, 6], the

fingers of a gripper [7], as well as for tools attached to robot arms. The mobile platform

uses the sensor to detect collisions with obstacles and acquires “haptic tags,” which are used

for tasks related to navigation. Haptic tags provide a per-object representation of haptic

properties, such as friction force, deformation, object motion and contact shape. Mounted

on a gripper, the visuo-haptic sensor replaces costly laminar tactile sensors and provides

measurements of the current gripper position, grasping forces, pressure profile as well as

deformation characteristics of the object. Finally, an implementation based on a thin metallic

rod, which is mounted between a robot arm and a tool provides up to 6D force-torque values

and replaces corresponding dedicated modules.

Apart from sensing, multimodal perception also requires appropriate object and environ-

ment models. Such models represent visual and haptic object properties in a consistent way.

Visual properties include the geometric shape of the object surface as well as its texture.

Haptic properties include weight, (local) stiffness and surface roughness. Yet, it must be

considered that capabilities of haptic sensors are very diverse, concerning for instance their

spatial resolution as well as the accuracy and range of force measurements. An overly detailed

model, which can neither be acquired nor verified with the available haptic sensors, is useless.

Of course, coarse models can be derived from more accurate object models. It is beneficial to

provide a model adapted to the level of detail required by a given manipulation task.

Three approaches of visuo-haptic object modeling are proposed and discussed in the con-

text of manipulation tasks. First, Chapter 4 investigates joint navigation and manipulation

planning for small mobile platforms with limited haptic sensors [6]. The environment is typ-

ically represented by a 2D map acquired with a laser scanner. Accordingly, the visual object

representation is a 2D shape or footprint. Additional visual features, such as texture, may be

included – but generally, a complete geometric model is not available. Haptic properties are

represented using the haptic tag mentioned above – associated either with the entire object, or

with a low number of contact points on that object. This representation allows for planning of

simple manipulation operations, such as moving an obstacle out of the way or opening a door.

A topological graph is used to represent both the structure of the map, i.e. its skeleton, as well

7

1 Introduction

as manipulable objects in the environment. Indoor environments, see Fig. 1.3a, exhibit many

“soft” obstacles that are manipulable even by small platforms. Using standard path plan-

ners, cost-effective joint navigation and manipulation plans are created. As in existing work,

navigation plans include abstracted navigation instructions, similar to street-level navigation.

In addition, the proposed plans represent the above mentioned manipulation tasks associated

to navigation problems. Costs for navigation and manipulation are considered in a consis-

tent way. Using additional constraints, alternative navigation/manipulation solutions can be

identified – such as pushing an obstacle aside, or taking a detour to drive around it. The rep-

resentation is flexible and also allows for the integration of specific navigation/manipulation

tasks such as utilizing doors or elevators.

Second, an approach to reconstruct object geometry jointly from vision and haptic explo-

ration is presented in Chapter 5. Existing multi-view approaches obtain the surface geometry

of an object based on the premise of Lambertian reflection. This means that brightness and

color of each point on the surface are independent of the viewing direction. Approaches such

as KinectFusion [76] combine several views of an object based on this consistency assumption.

Like that, they create highly accurate geometric models with a noise level below that of the

raw sensor data. The Lambertian model is invalid for transparent and reflective materials,

such that multi-view reconstruction fails in these cases. Transparent objects do not follow

this model and show other complex effects – such as background refraction. This effect is

exploited by the multi-view transparency detector proposed in [4]. It provides a 3D estimate

of transparent regions after a depth camera has been moved around the object. These regions

represent the primary failure cases of visual reconstruction in indoor scenes. Reliable infor-

mation about the object geometry within these regions can be obtained haptically, i.e. by

touching the object. To this end, a haptic exploration planner is presented, which is based on

the available visual geometry as well as the detected transparency region. A surface extrap-

olation method based on radial basis functions [16] is applied to the available geometry. The

certainty of this extrapolated surface decreases with increasing distance to support points.

Furthermore, the density of support points needs to be larger in complex regions of the sur-

face. In order to plan the next exploration point, a score is calculated based on an efficient

mesh distance measure, the biharmonic distance [60]. The surface is refined iteratively by

integration of new “haptic” points in the extrapolation process and subsequent recalculation

of the score. The resulting complete geometric model is essential for accurate grasp planning,

and also allows building and learning of visual object models.

Third, a visuo-haptic object model for grasping and classification of thin-walled deformable

objects is presented in Chapter 6. The object geometry is represented on a detailed level, i.e.

an accurate surface mesh with texture is available or acquired using multi-view approaches.

Such a model allows for visual object recognition using a variety of approaches, see Sec. 2.3.5.

Thin-walled objects, such as bottles, cups and other containers used in human environments

exhibit a strong relation between local stiffness and geometry – e.g. they are soft on flat planer

areas and hard near edges. Additionally, these objects exhibit several challenges for vision-

8

1.4 Structure of this dissertation

based approaches, offering a natural motivation to include the haptic modality: Containers

are often partially transparent, allowing only for the acquisition of partial visual geometry

models. Furthermore, their deformation behavior cannot be predicted solely based on vision,

since they are made of different materials such as plastics of varying elasticity and thickness,

glass or ceramics.

In the proposed approach, volumetric models are built based on a surface mesh as well

as typical parameters for wall thickness and material type. During an offline simulation

phase, the deformation behaviour and local stiffness is determined for generic grasp patterns.

The patterns are applied to every point on the surface, using simulation based on the Fi-

nite Element Method (FEM). This process is repeated for a large dataset of multiple object

classes with variations of several shape parameters within each class. The resulting database

comprises typical containers used for drinks, food, detergents and cosmetic products class [9].

Stiffness maps showing the local stiffness for each point on the surface as well as corresponding

stiffness features are obtained for each object model.

An approach for haptic object classification is proposed, which relies on the results from an

initial visual stage. Visual methods cannot reliably determine material properties, nor subtle

yet important geometric details. Therefore, results from the visual stage are ambiguous –

they may contain multiple different candidate objects as well as objects associated to multiple

haptic models. The haptic recognition stage must resolve these ambiguities based on haptic

properties. Since haptic exploration – i.e. touching the object on several points – is a time-

consuming process, an efficient exploration plan must be generated. The goal is to use as

little touch points as possible and to select them such that they provide the largest possible

information gain at each step. To this end, a decision tree is built based on the selected

candidate objects and their stiffness features from the database. At each node, the value

of a specific feature (a touch point) is acquired. Based on the obtained value, the next

best exploration point is determined. This classification process allows us to determine, for

instance, if a detected cup is made of a solid material or of plastics – and whether the

geometry contains details such as reinforcement structures. Furthermore, a grasp planner is

presented [8], which integrates stiffness information and object geometry to find feasible grasp

points. The location of these grasp points may depend on subtle geometric details, which

are unobservable by vision, as well as on the internal state of the object. A closed bottle, for

instance, is stiffer than an open bottle, due to the counterpressure of the enclosed liquid or

air. Also, liquids in an open bottle spill over if deformations become too large, as depicted in

Fig. 1.3b. The presented grasp planner considers these effects using a deformation model.

1.4 Structure of this dissertation

This dissertation is structured as follows: In the following chapter, related work and relevant

background are reviewed. The concept of visuo-haptic sensors based on plastic foams or thin

9

1 Introduction

metallic rods (“beams”) is introduced in Chapter 3, along with several implementations. In

Chapter 4, the planning scheme for joint navigation and manipulation on mobile platforms is

presented. Chapter 5 presents the transparency detector as well as the method for completion

of geometry by haptic exploration of missing parts. The deformable object models for haptic

object classification and grasping are presented in Chapter 6. The dissertation is concluded

with Chapter 7.

Parts of this dissertation have been published in [4, 5, 6, 7, 8, 9].

10

2 Background and related work

The following sections present an overview of sensor systems on autonomous robots as well as

of the most important methods this work builds upon or relates to. This comprises methods

and algorithms using haptics or vision for modeling, reconstruction, detection and tracking.

For in-depth discussions of specific topics, the reader is referred to the given references.

2.1 Sensors for autonomous robots

Autonomous robots rely on a variety of different sensor systems in order to obtain a rich,

multi-modal representation of the environment. For instance, force-torque sensors measure

all degrees of freedom (3D force and 3D torque) at one point using at least 6 built-in discrete

force sensors. They are a standard component of industrial robotics and offered as integrated

modules with standardized mechanical mountings. Force-torque sensors are used in many

scenarios and usually installed between a robot arm and a tool (the end-effector) in order to

measure the contact forces/torques between the tool and the environment. Their readings

are used in manipulation tasks like grasping, mounting, picking and placing of objects. Also,

gravitational forces and acceleration forces while moving objects can be measured. For artic-

ulated manipulation tasks, such as opening a drawer, constraints imposed by the articulated

object are deduced from the readings of force-torque sensors in order to control the force and

motion of the robot arm accordingly. Finally, trajectory teaching requires the force-torque

imposed to the tool by a human to let the robot arm follow a desired motion.

Touch sensors are haptic sensors, see below, that measure surface forces or contacts and

are used on many parts of a robot. Simple variants use switches to detect contact with an

object or pressure-sensitive resistive elements to obtain a single force value at a single point

of contact. They belong to the kinesthetic or tactile perception system, depending on the

extent and frequency of the measured forces. This work does not consider mid- or high-level

frequency tactile signals, which appear for instance during vibrations, contact events or while

sliding over a surface. Touch sensors are often mounted to extremal parts of the robot, such as

the fingers, the feet or the base. It may even be desired to measure touch on the entire surface

of a robot to allow for natural interaction with humans, or for perception in environments

where objects may collide with the robot at any point.

Sensors are also used extensively within the robot in order to determine its system state. In

a robot arm, each joint has its own (absolute) position or velocity encoder. High requirements

on accuracy are imposed to these encoders, since they are essential to calculate the arm pose

11

2 Background and related work

(a) Sensor module (b) Robot hand (c) Artificial skin sensor

Figure 2.1: Laminar tactile sensors (a) provide 2D contact force profiles and are used for
instance on advanced robotic hands (b). Multimodal sensor modules (c) are
mounted on the body of a robot and linked together to form an “artifical skin”
with tactile sensing. Image sources: [35, 75].

using forward kinematics. Additionally, joints are often also equipped with torque sensors for

teaching applications, improved control and safety reasons. In some cases they can replace

a dedicated force sensor at the end-effector, as implemented on the KUKA LWR arm [14].

Similar sensors may be found in other actuators.

Modern robots are also equipped with active and passive visual sensors. Laser scanners

provide accurate range data and are extensively used to build environment models, such as

2D maps for navigation [36] or 3D point clouds for motion and grasp planning. Cameras in

the visual spectrum are commonly used by computer vision algorithms for tasks like object

classification, visual search or pose estimation. Depth data may be acquired with stereo

camera setups or active sensors, such as the Kinect or Xtion, see e.g. [53]. The advent of

the latter, low-cost sensor has accelerated research on depth data and point cloud processing.

Most vision algorithms can also be applied to images captured in the near-infrared range,

which offers some interesting possibilities, such as active lighting invisible to humans.

2.1.1 Haptic and tactile sensors

Haptic perception mainly relies on various force sensors, which usually either measure a force

(or force-torque) vector at a single point, or a distributed force/pressure over a surface. The

latter type, see Fig. 2.1, is a laminar sensor array that measures a (usually scalar) force

value over a 2D surface. The “tactile images” provided by such sensors are used for complex

grasping tasks or tactile object classification. A review of tactile sensors is given in [101].

The sensor proposed in [35], see Fig. 2.1a, is based on a piezoelectric material and provides a

4 × 7 tactile image. The authors use this sensor on a humanoid human hand, see Fig. 2.1b,

and propose methods for slip detection as well as contact shape classification. Similar devices

are now commercially available. A sensor module designed to cover larger areas, which allows

12

2.1 Sensors for autonomous robots

(a) Fingertip sensor

Camera

Light
Source

Markers

Elastic
Body

(b) GelForce sensor (c) GelForce input device

Figure 2.2: Tactile sensors with optical readout: An integrated camera-like sensor observes
displacements of an elastic structure. Image sources: [48, 57].

humans to interact physically with the “body” of a robot, is presented in [75], see Fig. 2.1c. It

provides multimodal sensing of temperature, proximity, normal force and acceleration. The

touch sensor becomes a distributed areal sensor system, much like the human skin. Each

module is rather complex, since it has its own signal processing system and connects to its

neighbors, building a “peer-to-peer” communication network.

Force sensors that measure contact force profiles or vibrations are categorized as tactile

sensors. On the other hand, grasping and manipulation forces as well as forces measured

in arm joints are kinesthetic data. Even for a single sensor, the distinction is sometimes

not clear, which is why we use the generic term “haptic sensor”. Force sensors have been

proposed based on different principles – such as optical readout, pressure-sensitive resistors

or piezoelectric transducers [54, 96, 102].

A commonly used principle for force sensors is optical tracking of displacements in an elastic

material. In [57], a sensor is proposed that is intended as a fingertip for a robotic hand, see

Fig. 2.2a. It consists of an opaque, dome-shaped elastic material, to which forces are applied

from the outside. Dots are drawn on the inside surface of this dome. These dots are used as

visual features and observed by a specialized camera, which provides 18× 18 pixels at up to

1500 Hz. The camera is located in the inside of the sensor, together with a light source. It

is assumed that only frontal forces are applied, but the setup would also be able to measure

shear forces. The authors measure the strain-stress relation for the dome-shaped structure

and fit a model. An algorithm is presented for low latency detection of a contact event with a

microcontroller. It uses a classification tree based on image statistics. A second algorithm is

presented to calculate a force estimate based on optical flow, running at a much lower frame

rate of about 5 Hz.

The “GelForce” sensor [48] is intended for applications in robotics and human machine

interfaces. First, this sensor may be used as a soft fingertip sensor for robots (Fig. 2.2b).

13

2 Background and related work

Second, the authors suggest to use it as a natural haptic input device (Fig. 2.2c): A user

applies 3D forces over a 2D surface, which may be used for virtual reality and entertainment

applications. The ability to provide a traction field – i.e. a multidimensional force reading

over a surface – is a special feature of this sensor, compared to most other systems. The sensor

consists of a solid block of transparent silicon rubber, with colored markers (small spheres)

embedded near the “sensitive” surface, see Fig. 2.2b. From the other side, a camera with

VGA resolution looks into this transparent block and tracks the markers using their center of

mass in the image. The tracker provides a displacement field of the material as a function over

the surface. In order to obtain 3D displacement data, the authors put markers of different

colors at two different depth levels, e.g. 3/8 mm. They exploit the fact that the amount of

displacement reduces within the material with increasing distance from the surface. Like this,

a direct depth measurement – which would require more complex sensors like stereo cameras

– is not necessary. The traction field is calculated from the displacements measured in the

image based on elasticity theory.

For both sensors, the camera, illumination, processing unit and the elastic material are an

integral part of the device. As a system component, these devices are purely haptic sensors.

The integrated camera only observes the elastic material itself. In contrast, the visuo-haptic

sensor concept presented in this work benefits from a separation of the passive mechanic

and the active components of the sensor. Since the camera is located “outside” the elastic

material, it provides coherent, multimodal measurements from both the sensitive component

and the environment.

In [49], a sensor dubbed “vision-based active antenna” is proposed. It is based on a camera

pointing onto a flexible beam to which a force is applied. This concept is similar to the beam-

based sensor presented in Chapter 3. The authors track the deflected beam in the image

by searching the brightest points along pixel columns. While this approach provides great

accuracy and robustness to occlusions, it is limited to 2D force measurements in structured

environments. The authors argue that the sensor can be used both during a detection and

an approach phase. Yet, since the beam is only detected in front of a black or single-colored

background, the two modes cannot be run simultaneously.

This subsection is partly taken from [6].

2.2 Object models and reconstruction

2.2.1 Visual reconstruction

Single view observations from (depth) cameras only show a part of the environment due to

a limited viewing angle and due to occlusion, which is a fundamental property of projection.

Much like the scene memory of the human brain, many processes require a scene represen-

tation that goes beyond the current observation. In order to build a complete geometric

representation of a scene or an object – a 3D model – multiple observation from many differ-

14

2.2 Object models and reconstruction

(a) KinectFusion (b) Octree representation

Figure 2.3: KinectFusion (a) reconstructs small scenes in realtime. The estimated camera
trajectory around the scene is shown in the top left. OctoMap allows for the
reconstruction of large scenes, since it uses octrees (b) for an efficient subdivision
of space. (a) Image source: [76].

ent viewpoints must be fused. State-of-the-art approaches integrate all available views that

can be processed from a single, moving camera, without imposing any constraints on the

camera trajectory. This requires simultaneous camera tracking and model building. Ideally,

models contain every surface visible from any point in “free space” within a given space. This

requires “complete coverage” and a corresponding viewpoint planner. Models should contain

real physical dimensions and optionally color information.

In robotics, such environment or object models enable a great variety of applications:

Physical motions must be planned such that collisions between the robot and the environment

are avoided. Trajectories of robot arms are planned with numerous constraints, which must

consider every moving segment [79]. Navigation of mobile platforms requires finding an

efficient route around obstacles – a problem which is often simplified to planning in a 2D map,

see [86]. Also, grasp planning relies on geometric models to find reliable grasp configurations

[73]. Finally, semantic information – such as the identity or class of objects – is extracted

from 3D models for higher level planning. Typical model scales range from individual objects

or small scenes to entire buildings.

KinectFusion [76] reconstructs 3D models of small scenes based on a hand-held Kinect cam-

era. It uses measurements from the depth sensor and optionally integrates color information.

The system runs in realtime on powerful GPUs (graphics processing units) and works with

arbitrary camera movements, as long as they are not too fast. All measurements from the

Kinect are combined in a global volumetric model, which fuses the views from all perspec-

tives. The global model is a dense, voxel-based representation called signed distance function

(SDF), which shows the distance of each voxel from the closest surface. The fusion process

significantly reduces sensor noise and incorporates data observed from different viewpoints.

Yet, outliers or geometric inconsistencies result in modeling errors, which may lead to track-

15

2 Background and related work

ing problems. To speed up processing, the SDF is truncated, i.e. it is only evaluated close to

surfaces. The KinectFusion method iterates over four major steps:

Measurement Extract vertices and normals from the depth map provided by the Kinect.

Pose Estimation The camera pose is estimated using a multi-scale ICP algorithm, which

aligns the current observation to the surface estimated from the model (see below).

Tracking against a global model avoids the accumulation of drift between frames.

Reconstruction update A local SDF is generated based on the current observation in order

to update the global model. Integration of this SDF to the global SDF is performed

by weighted averaging. The global model accumulates weights from all integrated mea-

surements in a separate storage.

Surface prediction A dense surface representation is extracted from the global model using

ray-casting for the current viewpoint. This surface is used for the next pose estimation

step, resulting in a feedback loop between model estimation and pose estimation.

As long as there are no missing viewpoints, the volumetric model provides a complete 3D

model of the scene, see Fig. 2.3a. Surface meshes can be extracted from the SDF using

for instance the Marching Cubes algorithm [62]. The authors in [76] also present virtual

reality applications, which allow for realistic physics simulations. For robotics, geometrically

accurate object models can be built with KinectFusion.

Dense voxel grids require a lot of memory and are thus limited to small spaces. A volume

of 10003 voxels requires already 1 GB of memory (using only one byte per voxel) – which

must be available on the graphics card for GPU-based implementations. In [44], an approach

called OctoMap is presented, which allows storing voxel-based scene representations of any

scale. The authors present models of individual buildings and of an entire campus. There

are many large regions in such spaces that are free/unoccupied and can be represented in a

compact fashion. (Since depth sensors do not see inside objects, it is not required to model

large regions of occupied space.) The approach is based on a hierarchical partitioning of

space using an octree, which subdivides space into four cubes at each level, see Fig. 2.3b.

Subdivision stops if a cube is completely unoccupied, which means that large unoccupied

areas are represented by “supervoxels”. Otherwise, subdivision is continued up to a certain

maximal resolution. The corresponding tree can be stored in a very compact bitstream. As

a side-effect, the octree-based representation also allows for efficient collision detection.

2.2.2 Transparency detection

The above-mentioned reconstruction methods assume so-called Lambertian surfaces, for which

diffuse reflection dominates. Transparent materials exhibit almost no diffuse reflection, and

require more complex image formation models. Specifically, the background behind a trans-

parent object needs to be considered. A detector for transparent objects with curved surfaces

is proposed in Chapter 5.

16

2.2 Object models and reconstruction

In [65], a detection method for transparent objects with the Kinect sensors is presented. It

takes advantage of the fact that many transparent objects appear as holes in the depth map

(no/invalid data) with this sensor. These holes are considered as candidates for transparent

objects and serve as an initialization for a segmentation algorithm, based on contour extrac-

tion in the RGB image. Objects and their poses are detected in the image by comparing

the region with pre-learned models. Transparent objects appear at least partly as holes in

the depth image because they do not reflect enough light from the Kinect’s IR projector or

disturb the projection too much for successful pattern matching. However, there are also

other causes for holes, such as occlusion boundaries, specularities, surfaces with a very low

albedo, active light sources or depth values beyond the measurement range. These causes

must be detected and rejected.

Other recent approaches for the detection of transparent objects work with transparency

features that model the appearance as an additive combination of patches [30] or rely on

the partial absorption in transparent material, measured from two viewpoints with an active

sensor [55]. In [47], an overview of methods for the reconstruction of specular and transparent

objects using various sensors and setups is given. The presented approaches are classified by

the underlying image formation principle (such as diffuse reflection, refraction, scattering)

and corresponding object types.

The presented approaches all address very specific problems concerning object type, sensor

and setup. A general framework for the perception of objects with non-Lambertian reflection

does not exist.

This subsection is partly taken from [4].

2.2.3 Tactile reconstruction

In tactile reconstruction, the geometry of an object or a scene is acquired by active physical

contact, i.e. by touching objects on their surface with a robotic manipulator. This is a time-

consuming process, since it may take a second or more to acquire a single point. Purely tactile

exploration is therefore either performed with strong spatial constraints (such as on an object

in the hand of a robot), or applied in harsh environments where other sensors fail. Since

the capabilities of manipulators and tactile sensors vary greatly, reconstruction methods are

optimized for specific setups – there are no “all-purpose” approaches.

Generally, tactile reconstruction may be separated into two processes: First, exploration

planning determines the path of exploration, usually based on the available data. This step

is essential, since haptic sensors only measure a single point or a small region of the object.

A dense sampling grid – as provided by visual sensors – cannot be obtained in an acceptable

time. Second, models are fitted to the measured data points. Often, geometric primitives are

used for this process, but it is also possible to use more complex, generic surface models.

In [70], a method for tactile exploration of unknown surfaces is presented, and applied to

the problem of mapping oil wells. A point probe sensor mounted on a robot arm provides

17

2 Background and related work

(a) Tactile mapping (b) Multi-modal exploration

Figure 2.4: (a) Tactile exploration and mapping of unknown geometries with a single con-
tact probe. (b) Joint visuo-haptic exploration based on an occupancy grid map.
White lines show trajectory candidates (probabilistic road map), and one se-
lected trajectory for tactile exploration is drawn in red. Image sources: [15, 70].

the 3D location of a single contact point. It is argued that this approach is more practical

and allows for more accurate fitting of geometric models in the presence of noise, compared

to probing the surface by sliding along lines. The proposed exploration plan is a two-stage

process: Multiple points are acquired within a local neighborhood, until a model can be fitted

with sufficient certainty, see points Pi in Fig. 2.4a. Then, an exploration step is performed

towards the direction of greatest geometric uncertainty. To this end, the largest cone whose

tip is located at the current end-effector position and does not have any data points on its

inside is determined. The axis of this cone is the next exploration direction, see Fig. 2.4a. The

authors argue that this approach is not optimal, but fast and effective. Geometric primitives,

such as spheres, cylinders and planes, are fitted to the explored points. The environment is

modelled using multiple such primitives.

An approach for joint visuo-haptic reconstruction in 2D is presented in [15]. Unknown

regions in scene observations from a visual sensor are haptically explored by a robotic hand

using a probabilistic approach. The authors start with several views of the scene obtained

by a stereo camera mounted on a robot’s head. The depths maps are projected as 3D points

into a common reference frame, segmented into objects and background and subsequently

projected down to a 2D occupancy grid map. This grid map exhibits free, occupied and

unknown cells in areas that were occluded or not seen by any camera view. The state of these

unknown cells is predicted using a Gaussian process, which takes the spatial correlations into

account. A likelihood map is obtained, which shows the occupancy probability and variance,

and serves as the basis for exploration planning.

Tactile exploration planning amounts to planning a trajectory through the scene, which

is expected to provide most information about scene geometry. Exhaustive exploration is

infeasible, since it is too time-consuming. The authors use active learning to select trajectory

points that maximize the information gain. The set of possible trajectories is reduced to

18

2.2 Object models and reconstruction

a manageable size by only considering paths in a so-called probabilistic road map, which

is generated by sampling cells in the likelihood map and connecting them. Multiple utility

functions are proposed, which consider the variance in the likelihood and the distance either

for individual cells or for an entire path. Fig. 2.4b shows the occupancy grid map, the

probabilistic road map, as well as one planned trajectory. Contact with an object is detected

by a sensor matrix on the robot hand, taking into account a noise model of the sensor.

For each measurement along the trajectory, the map is updated using a probabilistic model.

Results are given for simulated and real scenes and compared to spanning tree coverage as

a baseline method. The authors note that in the real world, objects are moved by tactile

exploration and suggest to use visual tracking to determine pose changes.

Knowledge of the internal state (full, empty, open, closed) of a container object is important

for various manipulation tasks. A method to acquire the internal state of deformable bottles is

presented in [20]. The authors extract a 6-dimensional tactile feature vector, which comprises

contact events, grasping duration, compression velocity and ratio. Features are extracted

while grasping objects with a robotic hand with tactile sensor arrays. Additionally, the

authors extract high-frequency features, which were found to be useful in an experiment with

humans. Internal states are distinguished with a trained classifier – there is no explicit object

model. The exploration of internal state is also considered in this work, see Sec. 6.4.2. The

features proposed in [20] are similar to the “haptic tag” presented in Sec. 4.1.

2.2.4 Modeling of elastic materials

All materials deform to some extent when external pressure or forces are applied. Elastic

deformations are non-permanent – the material returns to its initial shape as soon as ex-

ternal forces are removed. With increasing deformation, shape changes become plastic (i.e.

irreversible), and at some point, most materials break (fracture). For robotic manipulation

tasks considered in this work, it is undesired to change the shapes of objects permanently.

Therefore, it must be ensured that deformations remain in the elastic range.

Homogeneous isotropic elastic materials are described by two fundamental material prop-

erties: First, Young’s modulus E is a measure of stiffness and is defined as the ratio of stress

to strain along the same, single axis. Stress is the force per unit area (pressure), and strain is

the dimensionless ratio of deformation over the initial length. Typical values of E are given in

Table 2.1. Second, the dimensionless Poisson’s ratio ν describes the expansion of a material

perpendicular to the compression axis. The two parameters are illustrated and measured

with a simple experiment: A round rod of length l, diameter d and area of cross section A is

loaded with a force f along its longitudinal axis, as in Fig. 2.6. This results in a change of

length ∆l as well as an expansion of the rod along its diameter ∆d given by:

∆l =
l

EA
f, ∆d = −dν∆l

l
(2.1)

19

2 Background and related work

Material E [GPa]

Rubber 0.01 – 0.1
Low density polyethylene (LDPE) 0.11 – 0.45
High density polyethylene (HDPE) 0.8
Polypropylene (PP) 1.5 – 2.0
Polyethylene terephthalate (PET) 2.0 – 2.7
Aluminium 69
Copper 117
Spring Steel (EN 10270-1 DH) 206

Table 2.1: Value of the Young’s modulus E for various materials (1 GPa = 109 N
m2) [99]

There are equivalent material parameters, such as the Lamé parameters λ, µ, which are

used in models of 3D elasticity:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(2.2)

Elasticity in 3D may be modeled by various constitutive material models, such as the

Saint Venant–Kirchhoff model for hyperelastic materials, or the Cauchy-elastic model, see

[92]. First of all, a deformation map φ(X) is defined, which maps from each point in the

reference (undeformed) state to the corresponding point in the deformed state, see Fig. 2.5.

In the following, the deformation gradient tensor F̃ is used, which is the Jacobian of φ, i.e.

F̃ = ∂φ/∂X. For instance, if an object is stretched linearly around the center, φ(X) = γX,

and F̃ = γI. In order to express the “severity” of a given deformation, a strain measure is

derived from F̃ . A commonly used measure is the Green strain tensor Ẽ ∈ R3×3:

Ẽ =
1

2

(
F̃ T F̃ − I

)
(2.3)

The Green strain is zero in the reference configuration (F̃ = I), for rotations (F̃ = R)

and for translations of the entire object. In order to discard the rotational component of the

deformation map, F̃ can be decomposed into a rotational and a non-rigid component. In that

case, the Green strain is derived only from the second component.

Deformation results in the accumulation of potential energy in the deformed object. For

hyperelastic materials, the potential energy e(φ) is a function of the deformation map only,

which means that the path of compression is irrelevant, and that there is no loss of energy.

Since the amount of deformation varies over the object, a local energy density Φ is introduced.

The potential energy e is obtained by integration of Φ over the entire object. In the St.

Venant-Kirchhoff material model Φ is expressed as follows:

Φ = µ tr Ẽ2 +
λ

2
tr2 Ẽ (2.4)

20

2.2 Object models and reconstruction

Figure 2.5: Deformation map φ from the reference configuration (left) to the deformed shape
(right). Image source: [92].

For numerical simulations, all measures are discretized, yielding a discrete potential energy

e(X) per node. Elastic forces at point X are obtained from the derivative of the energy:

f(X) = −∂e(X)

∂X
(2.5)

2.2.5 The finite element method

The Finite Element Method (FEM) is widely used in engineering and physics to calculate

physical properties of complex objects. In this work, it is applied to numerically obtain the

deformation of objects made of elastic materials. The principal idea of FEM is to partition

complex objects into simple, standardized elements, for which the physical relation of interest

can be expressed or approximated. A strain-stress relation is calculated for each element,

the so-called element stiffness matrix. Volumetric objects are represented by a volumetric

mesh, which, in the simplest case, consists of tetrahedron elements (the 3-simplex). Ade-

quate elements and meshing are crucial to obtain physically correct solutions. Elements are

connected and interact with each other only at a finite number of points, the nodes. The

complete object is described by the system stiffness matrix, which is created by combining

all element matrices, considering continuity and equilibrium conditions at the nodes. This

matrix relates forces and displacements at all nodes. A solution of the system provides forces

(stress) and deformations (displacements or strain) for all nodes, given external constraints,

the boundary conditions. These are given for an arbitrary number of nodes and either specify

the displacement or the external force.

A complete introduction to FEM goes beyond the scope of this text, so the interested reader

is referred to the extensive literature in this field [92]. In order to illustrate the principal ideas,

a simplified scenario of a 1D FEM is presented here, according to [24, Ch. 15]. Consider a

21

2 Background and related work

u2, f2u1, f1
a

b

l
uI = 0 fIII = fext

I II III

Figure 2.6: Simplified example for a 1D FEM assembled from rod elements. Node I is fixed,
and an external force fext is applied to node III.

structure consisting of round rod elements of constant cross section. The object is built from

several of these elements. The problem is considered in 1D only, i.e. forces/deformations are

calculated and applied only along the longitudinal direction. Elements are aligned along this

single axis, as depicted in Fig. 2.6.

First, consider a single element e, colored blue in the figure. The element stiffness matrix

Ke relates displacements u1,2 and forces f1,2 at the two nodes of a single element. Dynamic

effects as well as the self-weight are ignored here. For the rod element, the force-displacement

relation can be given directly from Eqn. (2.1):

fe =

[
f1

f2

]
=

[
EA
l −EA

l

−EA
l

EA
l

]
e

[
u1

u2

]
= Keue (2.6)

Entries in this matrix are equivalent to spring stiffness constants. The geometry of the

element e is represented by the length l and area of the cross section A. The only relevant

material property (see Sec. 2.2.4) is E, since ν represents lateral deformations perpendicular

to the considered axis. In the 3D case, the calculation of element stiffness matrices is more

complex. It is based on the 3D elasticity models discussed in Sec. 2.2.4, in particular a

discretized version of the deformation energy, Eqn. (2.4).

The system stiffness matrix is assembled from all element matrices, considering the connec-

tion of elements at the nodes. Element nodes (1, 2) are mapped to system nodes (I, II, III).

At nodes connected to multiple elements, element displacements are identical, e.g. u2,a =

u1,b = uII , and forces are superimposed. The system matrix K is assembled based on this

principle and relates all node displacements and forces. The element matrices from the blue

and red elements are indicated:

f =

 fI

fII

fIII

 =

(
EA
l

)
a

−
(
EA
l

)
a

0

−
(
EA
l

)
a

(
EA
l

)
a

+
(
EA
l

)
b
−
(
EA
l

)
b

0 −
(
EA
l

)
b

(
EA
l

)
b




 uI

uII

uIII

 = Ku (2.7)

For large systems, K is sparse. In order to solve the system, boundary conditions must

be incorporated. To this end, the rows and columns that correspond to fixed displacements

22

2.3 Detection and tracking

(here, uI = 0) are removed from K, and the reduced system is solved. Finally, the removed

forces (here, fI) are calculated.

2.3 Detection and tracking

2.3.1 Images features

Local image features are salient locations in an image, which optionally provide a descriptor or

“fingerprint” of image patches. Good features are descriptive, e.g. specific to a given texture,

but still tolerant to changes of perspective and lighting conditions. One of the most popular

methods for feature detection and description is the Scale-invariant Feature Transform (SIFT)

[63], but numerous other feature types exist. The search for equivalent descriptors between

two images is called feature matching. Matching is usually performed between a current

image, such as a live camera view, and either a model image, a (potentially large) feature

database, an older image or an image taken from another perspective. Successfully matched

features enable pose estimation and object recognition, see Sec. 2.3.5.

Feature detection In a first stage, salient locations robust to changes in perspective and

lighting are identified in the image. This means that a feature should be detected at the same

physical location in two pictures that are taken under different conditions. The survey in [72]

investigates various detectors with respect to this property. One important measure is the

repeatability, which quantifies how many feature locations are recovered in two views of the

same scene. Most feature detectors search for corners (e.g. [40]), blobs or regions.

The SIFT method searches for blobs (dark or bright regions) by convolution of the image

with a difference of Gaussians (DoG). The DoG is an approximation of the Laplacian operator,

which exhibits a high repeatability [72]. The process is robust to image noise and invariant

to global illumination changes. In order to obtain scale-invariance, detection is performed at

different scales by filtering the image with Gaussians of different standard deviations:

σn+1 = kσn = kn+1σ0 (2.8)

The parameter k determines the resolution of the scale space. Scale-invariance is essential

to cope with varying image resolution, camera zoom and distance to the physical structure. In

practice, a scale space representation is created from the input image by repetitive convolution

with a Gaussian. At each scale level, the image is increasingly blurred according to Eqn. (2.8).

Once the image resolution is reduced by half, a new octave is generated by subsampling the

image by a factor of two. This avoids increasing complexity of the convolution, since the

maximal filter size (which depends on σ) remains fixed. The DoG operator

DoG = Gσn+1 −Gσn , with Gσ(x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 (2.9)

23

2 Background and related work

calculates the difference between two adjacent levels in scale space, which allows for efficient

computation. Features are local extrema of the 3D filter output and are represented as

a triplet of image location and scale (x, y, σ). The number of detected features obviously

depends on the image contents. For typical photos, several hundred features are extracted.

Feature description In a second stage, a feature descriptor, which is a characteristic vector

of the texture in a local patch, is calculated. Most approaches calculate descriptors only

at detected feature locations, which results in a sparse representation of the image. This

means that the invariance and repeatability of the detector directly influences the quality

of descriptors. Note, however, that there are also descriptors that are extracted in a dense

fashion from the image or the scale space, such as histogram of oriented gradients (HoG) [22].

This approach is very time-consuming, but it ensures that no image region is “missed”.

The SIFT descriptor is computed within a square patch around the feature location with a

scale-dependant side length of 12σ. The patch is divided into 4×4 subblocks and rotated, such

that it is aligned with the dominant gradient orientation at the feature. For each subblock,

an 8-bin histogram of weighted gradients is generated, where each bin corresponds to a range

of gradient orientations. The bins are concatenated to a 4× 4× 8 = 128 dimensional vector,

which is finally normalized to account for intensity changes. This fingerprint describes the

texture around the feature location and is invariant to intensity changes, scale changes and

in-plane rotations. Small changes in the texture are tolerated, since the gradients in the

subblocks provide some degree of abstraction.

Descriptors are matched by nearest neighbor search using the Euclidean distance in the

128-dimensional feature space. The ratio of the distance from the closest neighbor to the

second closest one is taken as a measure of match quality. Only ratios greater than 0.8 are

accepted as valid matches. Still, incorrect matches are possible and must be tolerated by

subsequent processing steps. Nearest neighbor search is an exhaustive search, which is too

inefficient if a descriptor needs to be compared to many candidates. Instead, the search

space can be discretized using a hierarchic, tree-based approach [77]. Discretized features are

referred to as “visual words” and can be processed by algorithms similar to those used for

search in text documents.

2.3.2 Visual tracking

Template tracking Image registration or template tracking is used to align an image I to

a reference template IR, whereby the image is a warped version of the template. Usually,

the image is a view of the planar template from another perspective, such that the warp is a

homography. The homography represents a 6D transformation up to a scale factor. Tracking

is a local method, which means that I and IR must already be close to each other. This is

usually ensured if a template is tracked in a video sequence, or if an estimate of its pose is

24

2.3 Detection and tracking

available from some other method. Popular tracking methods are the family of Lucas-Kanade

algorithms [11] and efficient second-order minimization (ESM) [67].

The goal of these template trackers is to minimize the sum of squared differences between

the current image I and the reference image IR:

q = argminq

∑
u

[I(wq(u))− IR(u)]2 (2.10)

This sum is calculated over all pixels u in IR. The current image I is warped by w, which is a

homography (or a simpler image transformation) modeled by the parameters q. Minimization

is performed with respect to these parameters. They are updated incrementally based on a

current estimate in an iterative fashion: q← q′+∆q. For the first iteration, q′ is an estimate

from a previous frame or from another method. The expression in Eqn. (2.10) is approximated

by a Taylor series of second order for ESM, or first order for the Lucas-Kanade algorithm:

∆q = argmin∆q

∑
u

[
I(wq′(u)) +∇I ∂w

∂q′
∆q− IR(u)

]2
(2.11)

The image gradient ∇I is given at u in horizontal and vertical direction, and ∂w
∂q′ is the

Jacobian of the warp at u. Minimization of Eqn. (2.11) is a least squares problem, which is

solved by setting its partial derivative to zero:

∆q = Ĥ−1
∑

u

[
∇I ∂w

∂q′

]T
[IR(u)− I(wq′(u))] , Ĥ =

∑
u

[
∇I ∂w

∂q′

]T [
∇I ∂w

∂q′

]
(2.12)

Where Ĥ is the Gauss-Newton approximation of the Hessian matrix. Images ∇I ∂w∂q′ are

referred to as steepest descent images. The expression in Eqn. (2.12) is solved iteratively,

until the parameter update ∆q drops below a certain threshold. The resulting q parametrizes

the homography between I and IR, which can be decomposed into a 6D pose change, see

Sec. 2.3.3. Finally, a convergence test can be performed based on the normalized cross-

correlation coefficient (NCC) between the template and the warped image. For an illustration

of the process including intermediate images, see [11, Fig. 2].

Template tracking is a direct method, i.e. it uses the pixels of an image directly, without

an intermediate feature extraction step. The accuracy of pose estimation with tracking is

higher than with features, since each pixel is considered for registration, allowing even for

sub-pixel accuracy. The search range, however, is limited to a local region (which, however,

can be extended by a scale space). Even though tracking works with dense data, it is faster

than feature based approaches in many scenarios. Moreover, there are approaches to select a

subset of templates or pixels therein that are “good” by an a posteriori measure [89, 12]. This

is in contrast to feature descriptors, which use an a priori assumption about “good” data.

The limitation of tracking to planar templates is impractical in many cases. Therefore,

25

2 Background and related work

extensions of the presented concept for arbitrary geometries have been proposed. The tracker

in [10] tracks/detects the camera pose based on a model, which comprises a set of reference

views and is learned online or offline. In addition to the grayscale image, a depth map is

integrated, which is sometimes referred to as a “2.5D model”. Reference views are selected

automatically from the scene. The initial pose is obtained by an exhaustive, yet fast search

within the model. The method is robust to lighting variations and small scene changes. It

operates in realtime, due to the selection of a subset of informative pixels.

Contour tracking Edges in an image are important features, since they often correspond to

contours of objects, i.e. boundaries between objects. In that case, the contour and everything

inside move consistently, as long as the object is not occluded. Contours are very characteristic

for many objects and are therefore used for tracking and classification. For instance, human

faces are only weakly textured and facial features are thus best described by internal and

external contours. Other objects – such as printed packages – exhibit a strong texture, which

is however much less descriptive than the objects’ contours. In this work, contour tracking is

used to determine the shape of deformable elements, see Sec. 3.2. Locally, edges are much less

informative than texture and only provide a 1D constraint. Therefore, edge trackers usually

rely on a global or semi-global edge description of objects.

Snakes [51] are one popular method of this type, which uses a model of points connected

to a polyline. Points may move in the image to minimize an energy term, which consists

of multiple components: First, there is an image part, which attracts snake points to edge

features. A large spectrum of methods for edge detection exists – from simple high pass filters

like the Sobel operator [23] to complex learning-based approaches, which try to detect natural

boundaries [69]. Second, an internal energy term ensures smoothness of the snake, and third,

a term for external constraints limits the motion of the points and allows for initialization.

The energy term is minimized by local search, enabling tracking of edges as they move. If some

edge points are very weak, the smoothness term ensures that the corresponding points are

“dragged” by their neighbors. Initialization is done manually or by another system, which

has some a priori knowledge of the estimated object position. Many subsequent methods

build on the snakes method, such as the active shape models [21], which learn global shape

deformations and include them in the energy term for more reliable tracking.

This paragraph is partly taken from [6].

2.3.3 Homography estimation and decomposition

In computer vision, a homography is an invertible mapping between two images of the same

real-world plane. Images are projections according to the pinhole camera model with the 3×3

intrinsic camera matrix K. Equivalent points in two images are related by the expression

ũ′ = c · [u, v, 1]T ∝ Hũ, (2.13)

26

2.3 Detection and tracking

with the 3×3 homography matrixH. Here, image coordinates ũ are expressed in homogeneous

coordinates, i.e. ũ = c · [x, y, 1]T , with pixel coordinates [x, y] and an arbitrary scale factor

c 6= 0. For an introduction about camera models projections and homogeneous coordinates,

the reader is referred to [42]. Since scale is irrelevant for the homography matrix, it exhibits

eight degrees of freedom (DoF).

The homography may be composed from a given rigid 3D body transformation T(R,T):

H̃ = R− 1

d
TnT (2.14)

Where R is a 3 × 3 rotation matrix, T is a 3 × 1 translation vector, n is the normal vector

of the plane, and d is its distance to the camera. The obtained homography H̃ is based on a

projection to the unit plane – it is, so to say, expressed in world units. It may be converted

to a homography in the image space expressed in pixel units, as in Eqn. (2.13), using the

camera matrix according to H = KH̃K−1.

A homography can be calculated from 4 or more non-collinear 2D point equivalences

ũ′i ↔ ũi using the direct linear transform (DLT). This process is referred to as homography

estimation. For an overview of other methods for pose estimation from point correspon-

dences, see [39]. Equivalences are for instance provided by feature matching (see Sec. 2.3.1)

or a point/template tracker (if it does not directly provide a homography). For each point,

two equations are obtained from Eqn. (2.13) by division of both the first and second row by

the third row. Rearranging and stacking the equations for each point equivalence yields the

following matrix equation:

Ah =


−x0 −y0 −1 0 0 0 u0x0 u0y0 u0

0 0 0 −x0 −y0 −1 v0x0 v0y0 v0

−x1 −y1 −1 0 0 0 u1x1 u1y1 u1

· · ·

 ·HT [:] = 0 (2.15)

The unknown homography matrix is rearranged into a vector h row by row. Matrix A is

known from the coordinates of the n point equivalences and has 2n rows. The null space of

A is the solution of h for n = 4. For overdetermined cases (n > 4), h is obtained by singular

value decomposition and corresponds to the right-singular vector of the smallest singular

value. To obtain better results in the presence of noise, [42] proposes a normalization scheme.

Point correspondences generally contain outliers from incorrect feature matches. These

errors do not just cancel out – the estimated homography will be significantly wrong. In

order to identify and exclude outliers, the random sample consensus (RANSAC) algorithm is

used [28]. This approach creates subsets of point correspondences by random sampling. Each

subset has a fixed size of e.g. four correspondences. For each subset, a homography (the model)

is fitted, i.e. Eqn. (2.15) is solved with the corresponding subset of row pairs. Next, it is verified

how many of the remaining point correspondences agree to this estimated homography. If the

homography has been estimated with an outlier, only very few correspondences will agree.

27

2 Background and related work

Otherwise, most of the correspondences will agree to the estimated homography within a

certain threshold. A refinement may be performed based on all agreeing correspondences (the

“consensus set”). The optimal parameters of RANSAC (size of subset, number of subsets,

tolerances) depend on estimates of noise and ratio of outliers.

The inverse process of Eqn. (2.14), i.e. the extraction of a rigid body transformation (pose)

from a given homography, is referred to as homography decomposition. This step is commonly

performed after a homography has been estimated from point correspondences in order to

obtain camera or object motion. As discussed, the homography exhibits eight DoF, but there

are nine variables on the right-hand side of Eqn. (2.14). The scale d of the translation in

Eqn. (2.14) cannot be determined, which corresponds to the loss of depth information during

projection. However, for image to model matching, d is usually known from the model,

and a full 6D pose can be given. This result is remarkable for robotics – it means that

full transformations can be obtained from a 2D camera as long as the scale of the model

is known. For a detailed discussion of homography decomposition, the reader is referred to

[27, 66]. Based again on a singular value decomposition, four solutions are found for (R,T).

The physically correct one is determined based on a positive depth constraint.

2.3.4 Combined detector and tracker

A combined tracker/detector based on SIFT (Sec. 2.3.1) and the ESM tracker (Sec. 2.3.2)

is used throughout this work in order to detect objects and obtain their exact 6D pose in

realtime. The system detects/tracks multiple arbitrary planar templates, such as printed

designs or natural photos, simultaneously. A method to select “good” templates for tracking

based on a fast quality estimator has been proposed in [1]. Each template model is initialized

on startup, i.e. SIFT features are extracted, and the tracker performs pre-calculations. Many

artificial objects can be tracked directly using their printed texture as a model. Also, it is

straight-forward to create real objects from template models at the exact scale with a standard

printer. These templates are easily attached anywhere on a robot or an object. They offer

more flexibility, ease of use and a higher tracking quality than 3D models or the predefined

markers from ARtoolkit [52]. Since the real-world size of the template is known from the

resolution (dpi value) stored in the image file, a full 6D pose can be obtained. The tracker

is implemented as a Robot Operating System (ROS) node, allowing for communication with

any other module and with various cameras. In most cases, a high quality USB webcam with

Full HD resolution is used.

The system relies on a GPU implementation of SIFT to search for the template models in

the camera image. This step is too slow for processing at a frame rate of 30 Hz on mid-range

GPUs. Tracking is performed with ESM, which is either initialized from SIFT or from the

respective pose in the previous frame. The latter case is preferred, since it allows skipping

the slow SIFT detection step. Poses provided by ESM are more accurate and less noisy than

from SIFT matches. Tracking is always done with the “original” model, such that there is

28

2.3 Detection and tracking

no drift, even if performed over long periods of time. Processing is split in multiple threads,

running at different rates. Thread A performs SIFT detection and matching, but only if

there is currently any template whose pose is unknown. Matching provides an estimate of the

homography. The ESM runs in thread B at frame rate and tracks all templates, for which

initial poses are available. If required, each tracker may run in a separate thread to reduce

latency on multi-core CPUs. The real-world pose of the template with respect to the camera

is obtained by homography decomposition, given the camera parameters.

2.3.5 Visual classification and recognition

There are countless approaches for visual recognition, optimized for different kinds of objects

and relying on various features. Despite the extensive research in this field, an integrated

method, which works for all kinds of objects does not exist. Rather, a suitable detector for

the relevant types of objects must be chosen. One class of widely used approaches is based on

bag of words or bag of features [77] with features such as SIFT. Objects are represented by

a set of local features or discretized features, which enables accurate recognition of textured

objects in very large databases. Discretized features (words) make it possible to apply efficient

search trees, which enables search in databases with millions of objects within less than a

second. Such a database can contain representations of all mass-produced objects the robot

might encounter. Images of such objects can be retrieved from online shops or other public

databases [88]. Good recognition results are achieved for artificial objects with locally planar

textured surfaces – such as many household objects. However, this representation does not

take shape and contour into account. Local texture features are unstable and unreliable at

or near edges. Also, geometric relations between features are typically not considered.

Contours are bad locations for local texture features, but they do provide descriptive in-

formation for many objects, since they may correspond to their geometric shape. Histograms

of oriented gradients (HOG) [22] mainly encode edge information and have been used as a

feature for recognition and classification. The approach is time-consuming, since the HOG

descriptor is extracted in a dense fashion from the image in scale space. It is however possible

to reduce the search space a posteriori. One such approach based on a novelty detector is

presented in [2]. In a 2D image, outer and inner contours cannot be distinguished from other

edges in the texture, such that the relevant edges/counters must be learned. Combined with

SVM-based learning, HOG has shown to be very effective for class-level detection of objects.

Even objects with large intraclass shape variations can be detected reliably.

As geometry or shape is highly relevant for manipulation, classification based on geometry

or shape features is an obvious approach. Depth information must be acquired with an active

depth sensor or a stereo camera system. The latter solution provides correct depth values

only in textured areas, which is a limitation for many objects. Typically, a shape database

of complete 3D models is built offline. Models are matched to a partial 3D observation (or a

depth map) from a single or a low number of viewpoints. Again, collections of 3D models on

29

2 Background and related work

the web may be utilized to create this database automatically. Matching may be performed

by local 3D features extracted from the models and the depth observation. In [18], local

surface features are calculated at descriptive locations and mapped to a discrete space using

a hash table. Corresponding candidate objects are found using a voting scheme. Finally,

a verification is performed based on iterative closest points (ICP) [84], which aligns point

clouds from the database with the observation. Additionally, ICP provides an accurate pose

estimate of the object. As for the above method, approaches based on local features allow

for scaling when larger databases are used. For simple shapes, however, local features are not

descriptive enough to identify an object. Instead, a global shape feature may be used [95], or

the point clouds can be matched directly using ICP, which is a time-consuming process.

2.3.6 Mapping and navigation

Visual SLAM systems based on laser scanners [86] are commonly used on robots for self-

localization within the scene and for simultaneously building/updating a 2D map of the

environment. Most approaches use a probabilistic occupancy model for the grid cells, which

is continuously updated when new measurements are available. In this way, an entire floor of

a building can be mapped by driving a robot platform around it, even though the coverage

of a single sensor measurement is much smaller. The Karto SLAM system [50] is one such

approach. A method for loop closure [59] should be used in larger scenes, as maps would

become inconsistent otherwise, due to the accumulation of small pose errors. Loops are

detected based on local scan matching and subsequent refinement of an internal pose graph.

To reduce sensor costs, the laser scanner can be replaced with a scan from a single line of the

Kinect depth sensor [78].

Maps can be directly used to perform navigation tasks, i.e. to find a collision-free path

between two points. The state of each cell is set to occupied/free/unknown according to

the highest probability. Costs for free cells are often assigned as discussed in [58], based on

a distance map Md, which shows the proximity of the closest obstacle. A platform with a

circular footprint1 of radius rrob may not come closer to an occupied cell than rrob – any cell

that is closer to an obstacle is thus assigned infinite costs. In proximity to an obstacle – e.g.

forMd ∈ [rrob, 3rrob] – the platform must drive slower and may require correction movements.

Therefore, in these regions costs are (e.g. linearly) decreasing with increasingMd. Any point

Md > 3rrob has constant costs, based on the maximum platform speed. For navigation, each

grid cell is represented as a node in a graph and connected to its neighbors with the above-

calculated weights. Standard path planning algorithms such as A? [41] may then be applied

to this graph. Alternatively, fast-marching approaches [32, 58] may be used – they create a

potential field with a single minimum at a predefined goal position. While the generation

of this field is time-intensive in larger maps, this representation enables to quickly find the

shortest path from any point in the map to the predefined goal.

1For non-circular footprints, see [68]

30

2.3 Detection and tracking

Direct navigation on maps is used for local planning, but unfeasible for large scenes. Global

planning requires more abstract representations. For instance, [25, 94] use a skeleton for

navigation. Skeletons represent the thinned structure of objects and can be created from

a binary map m := (Md < rrob) using the morphological “thinning” operation [90]. The

skeleton exhibits a single path in the middle of each corridor or through each doorway, as well

as intersections, which are placed into central areas. Furthermore, paths span into corners

(stubs) and circle free-standing obstacles, showing that there are alternative ways to drive

around them. The conversion of a skeleton to a topological graph is straight-forward, by

placing a node at each pixel and connecting it with its direct neighbors. Edge weights of this

graph are taken from the cost map discussed above.

Navigation is much faster on such a simplified graph, yet it is not possible to reach the

exact goal position. Modern path planning systems are thus often split into two parts [68],

using a global planner, which works on an abstracted representation of the scene and a local

planner, which utilizes a detailed local map and controls the platform in realtime. Abstract

representations of scenes have also been created using other approaches – for instance, [71]

proposes a method based on map segmentation inspired from image processing. The approach

presented in [103] combines depth data and laser scans to recognize scenes, thus representing

the environment at a semantic level.

This subsection is partly taken from [6].

31

3 Visuo-haptic sensors

Robotic manipulation is based on both visual and haptic/tactile perception. Typically, there

are two separate sensor systems for the two modalities, which results in increased costs and

complexity. In this chapter, the concept of a visuo-haptic sensor is presented, which provides

haptic data from an external standard camera. To this end, a deformable element with

known characteristics – such as a metallic rod or piece of plastic/rubber foam – is mounted

onto a robotic manipulator and observed by the camera. Force, pressure and impression are

calculated from the visual observation, using known stiffness parameters of the deformable

element. The mechanical part is completely passive, low-cost and offers passive compliance.

The camera can be shared with other systems and for instance perform visual tracking or

detection tasks near or at the manipulator. Thereby, multimodal and coherent measurements

are obtained using only a single sensor.

This chapter is partly taken from [5, 6, 7].

3.1 Motivation

As outlined in Sec. 2.1, current intelligent robots rely on many sensor modules for different

modalities located all around the robot. There are a number of problems with such a highly

complex system of diverse and distributed sensors. First of all, distributed components go

along with a high effort during development, production, programming and maintenance of

the robot. Each sensor unit has its own CPU, firmware, hardware revision and interface, which

must be kept compatible during software updates or the exchange of hardware components

– even across different revisions. Interfaces can be simplified by using standardized protocols

based on UDP or TCP/IP – yet the implementation of a network stack drives up power

consumption and software complexity of the sensor modules. Additionally, complex and

costly wiring is required, especially for areal skin-like sensors and for components in the

arm. The installation of a wiring harness for distributed components is a costly process

even in existing production processes, despite the extensive use of network or bus systems.

Robots pose additional challenges for wiring: Space for cables is especially scarce, placing

them through tight holes is time-consuming, and there are high requirements on mechanical

stability of wires in moving parts – such as joints that rotate up to 360◦. All these factors

drive up the infrastructure costs for a sensor module.

From the perspective of signal processing, coherence and synchronization in spatial and

time domain is required between the sensors. This is a precondition both for multimodal data

33

3 Visuo-haptic sensors

fusion as well as for a smooth handover between sensors. To ensure accurate synchronization,

mutual calibration between sensors is required – which becomes increasingly complex as more

and more sensors are involved. Special hardware designs, such as synchronized system clocks,

may be necessary. In case of grasping or manipulation of objects, positioning relies on a

first stage based on (remote) visual tracking, followed by a refinement stage based on tactile

sensors. A handover point between the two sensor systems must be determined, and there

should be no jumps in the pose estimation of the object. Otherwise, the grasp may be

unstable, or the object might get hit and fall.

Cameras play a distinguished role in the design of future sensor systems for intelligent robots

– both concerning their capabilities and system complexity. They are the most versatile sensor

type, provide high resolutions and dense sampling, exhibit high quality measurements at very

low costs, and they are already involved in many robotics tasks. Therefore, efficient and

versatile sensor systems should rely on cameras were possible. Versatility comes from the

fact that computer vision algorithms can extract diverse data from images – potentially even

using only a single sensor. There are algorithms providing the poses, geometries, identities,

types or classes of objects and obstacles. Furthermore, tracking algorithms are important

to identify the motion of objects or humans. Specialized methods exist for detection and

tracking of humans or faces as well as for mapping and navigation, see Sec. 2.3.6. Based on

such algorithms, cameras have the potential to replace many other sensors – with important

implications on the complexity of sensor systems. Commercial systems based on this concept

are now used in the automotive industry [87], replacing radar and other specialized sensors

with a simple camera. Driven by consumer applications in digital cameras and smartphones,

cameras are available at very low costs and in small sizes. Their technical specifications

are constantly improving, providing excellent image quality (i.e. high resolution, frame rate,

dynamic range and low noise level). Current consumer models even provide considerably

higher frame rates (up to 1000 Hz, 240 Hz on many smartphone), which goes along with

reduced processing delays. Even though lighting may limit the use of such extreme frame

rates, such rates are comparable to those of many dedicated tactile or force sensors.

Both the visual and haptic modalities have their specific shortcomings: Visual methods, for

instance, fail for transparent or specular objects. Also, vision does not provide information

about weight or deformability of an object directly. Haptic sensors do not allow for remote

sensing, provide only sparse information about an object and require time-intensive explo-

ration steps. Therefore, many robotic tasks rely on dedicated tactile sensors and on cameras.

For example, grasping or manipulation tasks rely on both visual and haptic sensors, based

on the proximity of an object. Cameras determine the identity and rough pose of an object,

while contact events, forces and potentially a refined pose are obtained from a tactile sensor.

It is therefore feasible to combine these two types of sensors into a single visuo-haptic

system. Cameras allow for remote sensing and are essential for environment mapping, even

on simple platforms. With the proposed sensor design, tactile data and haptic events are

acquired using the same cameras. To this end, a deformable element with known material

34

3.2 Modeling of the deformable element

(a) Mobile platform

C

R B
F

O

D

(b) Robotic gripper

Figure 3.1: (a) Foam-based visuo-haptic sensor on a mobile platform for haptic exploration.
The passive deformable element, a plastic or rubber foam rod (orange), is ob-
served by a camera (blue). It is pushed against the green object, resulting in a
deformation of the foam. The exploration direction is x, the foam deforms along
d(s). (b) The same concept is applied to the two fingers of a robot gripper. (a)
Figure adapted from [6].

characteristics is attached to the robotic actuator, see Fig. 3.1. Its deformation is determined

visually with high precision using an edge-based tracker, and acting forces or pressure can

be derived since the material characteristics are known. For low-end robots this approach

provides visual and haptic information from one integrated system, which reduces costs by

removing additional haptic sensors. More complex systems, on the other hand, profit from

more accurate models of the environment obtained by fusion of visual and haptic data.

3.2 Modeling of the deformable element

Plastic foams The proposed foam-based visuo-haptic sensor uses a piece of deformable

plastic or rubber foam. It is shaped as a rod or bar and represents the deformable element.

Deformation models and properties of such foams have been studied intensively, see e.g. [33].

The vision system relies on these models to calculate pressure profiles from the observed

deformation. The strain-stress relation for these materials is non-linear, typically showing

three regions: A region of approximately linear elasticity for very low strains, a plateau

region showing high sensitivity to stress, and a region of densification when very high stress

is applied, see also Fig. 3.2. Elastomeric materials – such as the widely-used polyurethane

(PUR) foams – exhibit a monotonically increasing strain-stress relation [33, Ch. 5]. This

allows the stress (or force) to be uniquely determined from the observed strain (normalized

deformation). Manufacturers typically guarantee certain production tolerances and measure

the deformation of their materials at several points, according to the ISO 2439 standard.

35

3 Visuo-haptic sensors

To obtain a complete strain-stress curve for a given deformable element, a calibration

procedure is performed: A robot arm pushes a large metal plate slowly onto the foam rod,

increasingly compressing it. The position (i.e. strain) is known with high accuracy from the

arm controller, while the applied force (or pressure, stress) is measured with a JR3 force sensor

mounted on the arm. The process is repeated multiple times to verify repeatability, yielding

the data points shown in Fig. 3.2. Different cross sections of the foam rod have been tested,

but for now, a regular rectangular cross-section is considered. There are some time-dependent

relaxation effects in the material – yet, they are negligible for small manipulation velocities as

used by our system. As expected from literature [33], the data points form a curve with three

different regions. Here, we mainly rely on the plateau region for normalized strains in [0.1, 0.5],

which corresponds to a reasonable range of forces for the application at hand. Additionally,

this region allows for the most accurate measurements, since the sensitivity of the material to

force changes is largest. Note also that the curve exhibits a strong hysteresis effect, depending

on whether forces are increased (red curve) or decreased (blue points). Therefore, we only

measure the displacement while forces are increased.

There are several boundary effects to be considered: Local material stiffness decreases

towards the edges of the foam, since support towards one direction is missing. Yet, note that

only the effective stiffness along the entire side h is relevant, since the foam deforms equally

along w. Dimensions s, w, h are used as in Fig. 3.1a and 3.2e. Calibration is performed on

the foam rod with the final cross-section and therefore accounts for the effective stiffness.

However, stress discontinuities along s (major axis) require special consideration: During

measurement, if the stress applied to the foam is a step function along s (e.g. caused by the

edge of an object), the front contour deforms smoothly beyond the contact area, see also

shape C in Fig. 3.7b. The smoothing is attributed to internal tension in the foam – so to

say, the deformed region pulls in other parts of the foam by lateral forces. As a result, the

effective stiffness of the foam is increased near the borders of the contact region. This effect

is approximated by assuming that the smoothed contour is actually caused by an enlarged

contact area. During calibration there are no such discontinuities, since the metal plate is

larger than the plastic foam rod.

A third-order polynomial mP is fitted to the points obtained from calibration, yielding a

phenomenological model for the strain-stress relationship, which is depicted as a red curve

in Fig. 3.2. The curve fits the datapoints well, except for the densification region, which

corresponds to large forces and eventually the saturation of the sensor. The total contact

force is obtained by integration over the stress (or pressure), using the calibrated model mP ,

sensor width w and height h as well as the deformation δ(s) over s:

F = h

∫ s2

s=s1

mP

(
δ(s)

w

)
ds ≈ h

s2∑
s=s1

mP

(
δ(s)

w

)
sd (3.1)

with mP (x) = [c0, c1, c2, c3] · [1, x, x2, x3]T (3.2)

36

3.2 Modeling of the deformable element

Each object causes one contact region, which is represented by the interval [s1, s2], where

δ(s) > 0. If multiple objects are in contact with the foam, Eqn. (3.2) is evaluated separately

for each contact region. In practice, s is sampled at discrete points spaced sd apart, see points

in Fig. 3.6 (detail, left).

Beams The deformation of beams or rods under load is described by the Euler-Bernoulli

beam theory [37] for small deflections. Here, a force and/or moment perpendicular to the

beam is applied at its frontal end (F), see Fig. 3.5. The other end of the beam (S) is considered

to be fixed (“clamped”). In principle, the beam can be made of any elastic material such

as metal or plastics. Yet, no plastic (i.e. permanent) deformation should occur within the

relevant deformation range. We use a beam made of spring steel with a diameter of about

2 mm and a length of 10− 20 cm.

The deflection curve ωY (x) (usually w in literature) describes the deformation of the beam

perpendicular to the X-axis, whereby the X-axis is aligned to the beam in resting position:

d2

dx2

(
EI

d2ωY
dx2

) ∣∣∣∣
EI=const

= EI
d4ωY
dx4

= q(x) (3.3)

This is the commonly-used approximation for small deflection, which ignores the shortening

of the deformed beam along the X-axis. The values for the elastic modulus E and the second

moment of area I are constants for uniform and homogeneous beams. For a circular cross

section of the beam with radius r, I = π
4 r

4. There is no distributed load, such that q(x) = 0.

Quadruple integration of Eqn. (3.3) yields four integration constants, which are used to fulfill

the boundary conditions. Due to the clamping at x = 0, ωY (0) = ω′Y (0) = 0. The derivatives

of ωY have a distinct physical meaning – specifically the moment is M = −EIω′′Y , and the

shear force is Q = −EIω′′′Y . Therefore, when a force F is applied perpendicularly to the beam

at its end, boundary conditions are:

ω′′′Y |x=L = − F

EI
and ω′′Y |x=L = 0

The force is applied at x = L, where L is the length of the beam. With four boundary

conditions, a unique solution ωY,F can be given for Eqn. (3.3). Similarly, for a moment or

torque M applied at x = L, a solution ωY,M is determined using the boundary conditions:

ω′′′Y |x=L = 0 and ω′′Y |x=L = −M
EI

Since the differential equation is linear, the two solutions can be superimposed. For a force

and moment applied at ξ = 1, with ξ = x
L and clamping at ξ = 0, we obtain:

ωY (ξ) = ωY,F + ωY,M =
FL3

(
3ξ2 − ξ3

)
6EI

+
ML2ξ2

2EI
= −FL

3

6EI
ξ3 +

(
FL3

2EI
+
ML2

2EI

)
ξ2 (3.4)

37

3 Visuo-haptic sensors

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2
·10−2

Normalized Strain

S
tr

es
s

[M
P

a
=

M
N

m
2
]

F’ >0

F’ <0

Model

(a) PUR foam, rectangular

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5
·10−2

Normalized Strain
S
tr

es
s

[M
P

a
=

M
N

m
2
]

F’ >0

F’ <0

Model

(b) Rubber foam

0 0.2 0.4 0.6 0.8
0

2

4

6

8
·10−3

Normalized Strain

S
tr

es
s

[M
P

a
=

M
N

m
2
]

Triangular

Trapezoid

(c) Non-rectangular cross section

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5
·10−2

Normalized Strain

S
tr

es
s

[M
P

a
=

M
N

m
2
]

(d) Non-monotonic foam

w
h

F F F

(e) Cross sections

Figure 3.2: Experimentally determined strain-stress relation for the rectangular PUR foam
(a) and the rubber foam (b). Data points are obtained while increasing (orange)
or decreasing (blue) stress. The red curve shows the polynomial model mP fitted
to the orange points. The stress obtained with different cross sections (c,e) is
related to the same area as in (a) for comparability. Foams with a non-monotonic
strain-stress behaviour (d) are unsuited for the proposed sensor.

38

3.3 Foam-based sensor for laminar contacts

The deflection of the real beam is observed by a camera at one or multiple points of the curve

ωY . Extension of the discussed 2D case to 3D is straight-forward by separation along y and

z, yielding deformation curves ωY , ωZ . Forces along X or moments around the X-axis cause

small deformations that are almost unobservable. They are therefore handled differently, as

outlined in Sec. 3.4.

A model according to Eqn. (3.4) is fitted to the observations and solved for F,M to obtain

the causing force and torque. In the following, it is assumed that ωY and ω′Y are known only

at a single point ξ1 ∈]0, 1]. By rearranging Eqn. (3.4) and the derivative thereof, a linear

expression ω̂ = W · f is obtained in matrix form, with ω̂ = [ωY (ξ1) ω
′
Y (ξ1)]

T and f = [F M]T .

Given an observation ω̂, the acting force/moment f is obtained by inversion of W :

f = W−1 · ω̂, W−1 =
2EI

L2ξ2

[
6
Lξ − 3

L
3(ξ−2)
ξ −(ξ − 3)

] ∣∣∣∣
ξ=1

=
2EI

L2

[
6
L − 3

L

−3 2

]
(3.5)

If multiple observations are available, we obtain an overdetermined system [ω̂|ξ1 ; ω̂|ξ2 ; . . .] =

[W |ξ1 ;W |ξ2 ; . . .] · f , which is solved for f by least-square minimization. From Eqn. (3.5), note

that F is significantly more sensitive to changes in ω̂ than M for the typical case L < 1 m.

Also, there is a strong coupling of the two components.

3.3 Foam-based sensor for laminar contacts

Force or touch sensors for a laminar or linear contact with an object provide pressure and

shape measurements along the contact area. For grippers and mobile platforms, see Fig. 3.1,

elongate contact areas are feasible, which can be considered a linear contact. In the proposed

sensor, plastic or rubber foams are used for the deformable element, whose deformation is

measured visually along the line or curve of one of the visible edges. Using this contour-based

approach, deformation and forces perpendicular to the edge can be measured in a dense

fashion. Force (or pressure) is derived from the deformation using the known deformation

characteristics of the material, see Sec. 3.2. A camera is mounted about 20 cm above the

deformable element and points towards it. It shows the top surface of the foam, the floor and

scene in its direct vicinity as well as a part of the manipulator or platform itself (see Fig. 3.1

and 3.6). Here, a consumer Full HD USB camera with a diagonal field of view of ±40◦ is

used. Such devices exhibit a good image quality and are low-cost due to the large proliferation

of similar devices in smartphones. The focus is fixed by software and set according to the

distance of the foam. This results in a slight blur of the nearby scene.

On our platform the deformable element is a passive foam rod (orange part in Fig. 3.1a),

which is roughly 25 cm long (major axis) and exhibits a cross section of w× h = 2× 1 cm. A

standard PUR (polyurethane) foam is used, which costs only a few cents and can be easily

replaced in case of attrition. It is bent to fit to the round platform. The cross section is

chosen based on the deformability of the material and the desired force range. One of the

39

3 Visuo-haptic sensors

long sides is attached to a rigid part of the robot case, which may be straight or curved,

and the opposing side comes into contact with objects. The direction of exploration, denoted

x in Fig. 3.1a, corresponds to the dominant (forward) motion of the platform on the floor.

Forces act along vectors d(s) and deform the foam rod along its width w. Deformation is

expressed as a scalar function δ(s) of displacement [in m], which is densely sampled along s.

The normalized strain of the material is δ(s)w−1. Sheer forces parallel to the mounting curve

are negligible in this setup and are not measured.

Similarly, the sensor can be used for a grasping system, as depicted in Fig. 3.1b. A two-

finger gripper with a linear drive is equipped with rectangular rods of rubber foam on the

inside of the fingers. When the gripper closes, the foam comes in contact with the object and

deforms depending on the local pressure. Cameras (one for each finger) are mounted above

the gripper, such that they observe the top of the fingers and the top surface of the foam

material. To prevent occlusion of the foam by the object, cameras are placed slightly outside

of the grasping range.

3.3.1 Tracking of foam deformation

The front contour of the foam rod (F) deforms when it comes into contact with an object,

see Fig. 3.1. An edge-based tracker determines the amount of deformation (in meters) along

the contour. Additionally, the back contour (B) between the foam rod and the mounting

plate (e.g. the rigid surface of the platform or the metallic finger of a gripper) is tracked

to obtain a reference contour (see below). The use of image edges is most feasible for the

application at hand, since the foam has no stable inner visual features. Contour detection

based on image edges is stable regardless of lighting conditions, except in complete darkness.

The edge strength varies considerably depending on the visual appearance of objects touching

the sensor, which must be accounted for by the algorithm. In the rare case where brightness,

color and shading values of the foam rod equal those of an object, the edge at the foam’s

contour would disappear. To prevent this case, it is possible to work with a foam material

that changes its color along the major axis.

Edges are tracked using the well-known concept of snakes, see Sec. 2.3.2, which consist of

connected points uk “snapping” to image edges. We track points along the contour of the

foam spaced about sd = 3 mm apart, which allows for an accurate representation of possible

deformations. After initialization, snake points move within a certain local neighborhood to

iteratively minimize an energy term, which consists of several parts, see Eqn. (3.6): First of

all, the negative amount of edge strength ee tries to keep the points on image edges. In order

to avoid snake points snapping to strong internal edges within an object, ee is limited to the

average edge strength/gradient ∇ of all snake points. A smoothness term es accounts for the

fact that the foam contour cannot jump, i.e. the slope of δ(s) is limited. Furthermore, there

are no edges within the foam rod, i.e. in between the inner and outer contour. Therefore,

an energy term ej penalizes points jumping over edges along the path from the point on the

40

3.3 Foam-based sensor for laminar contacts

reference contour urk to uk. Finally, ec constrains point motion to the vector of deformation

d, which is perpendicular to the reference contour of the foam rod. As this is the major

direction of deformation, snake points stay on the same physical point on the foam, and the

sampling density remains constant. The total energy is evaluated and minimized in a local

neighborhood ξu = uk + [δx, δy]T :

e(ξu) = w · [ee, es, ej , ec] , with (3.6)

ee = −min(|∇G ∗ i|,∇),

es = (uk−1 − 2ξu + uk+1)
T (uk−1 − 2ξu + uk+1),

ej =
1

e

∫ ξu

x=urk

|∇G ∗ i|dx,

ec =

{
0, if (ξu − urk)||P−1d(s)

∞, otherwise

Where i – image, ∇ – gradient operator, G – Gaussian blur operator for noise reduction, P –

projection operator, see Eqn. (3.7). Weights w are set such that energy terms are in [−1, 1]

within the search space. A one-dimensional constraint is imposed by ec, keeping each point

on a line through the reference point and along the direction of deformation d. Thus, the

search for the optimum is fast even for large neighborhoods. Processing at frame rate (30 Hz)

poses no problem to a mid-range Intel i5 platform. Note that it is not feasible to integrate

shape priors in the energy term, as in more recent work about snakes. The contour of the

foam is solely determined by the shape of the obstacles, and the correlation of close-by values

of δ(s) is accounted for by es.

In some cases, points on the front contour uk may be pulled onto the object by strong edges

within the object texture. This effect can be avoided by adding an internal contour to the

top surface of the foam. For that purpose, a narrow color stripe is added to the rubber foam

on the gripper, see Fig. 3.9b. The snake points uk now snap to the edge between the black

foam and the green stripe. Since this edge is constant, the localization accuracy of points uk

is improved. The effective width of the foam strip becomes smaller, and w must be adapted

accordingly to account for the changed deformation behavior. Additionally, the color stripe

is used to detect occlusion of the foam by the object. Pixels located directly in front of uk

exhibit the expected (green) color, unless the foam is occluded. The corresponding points uk

are invalid in this case. Pixel colors are classified using a Gaussian mixture model, which is

trained to the observed color stripe during initialization.

The approximate position of the foam rod in the camera image is typically known from a

geometric robot model. Otherwise, it may be located using markers – such as the template

image mounted on the gripper in Fig. 3.9b. First, the inner snake is initialized by adding

points iteratively at a constant distance and having them snap to edge pixels. Points urk on

41

3 Visuo-haptic sensors

γ

Y

ZX

uy

d

d

Figure 3.3: Simplified arrangement of camera and foam, side view: The camera (left) looks
onto the top surface of the foam (right) along the dashed axis. Deformations
along d are projected onto the y-axis of the image, parallel to Y .

the inner snake serve as a reference position of the sensor base, denoted (B) in Fig. 3.1b. On

a gripper, the linear joint moves this reference contour with respect to the reference frame

(R). Yet, even on a static setup, (B) may change slightly due to vibrations and movement

of the mounting plate or the camera. Next, points of the outer snake are initialized slightly

outside of the inner snake. To allow for varying rod widths, these points are pushed away

from the inner snake by an additional energy term until they reach the stable outer edge.

The idle state of the outer snake is used as the zero reference of displacement δ.

Pixel positions on the snake are converted to real-world coordinates using the intrinsic

matrix of the camera K and a coordinate frame T̃ F = (X0, R) at the center of the foam

rod spanned by the exploration vector x and y parallel to the floor. The (bent) major axis

along s and deformation vectors d lie on the x − y plane of this coordinate frame. In a

robotic system, T F is determined from the extrinsic camera parameters and the geometric

robot model. Otherwise, the pose can be determined, as mentioned, by markers. In this

manner, the real amount of deformation can be obtained from 2D information provided by

the camera. The casting operator P projects a point in the image ũ = [x, y, 1]T [in pixel] via

the camera-centered coordinate frame T̃ C to a point X(F) [in meters] on the x − y plane of

the reference frame T̃ F (the sensor plane) with normal n = R:,3:

X(C) =
X0 · n
ũ′ · n

ũ′, ũ′ = K · ũ (3.7)

X(F) = R(X(C) −X0), P : ũ→ X(F)

3.3.2 Analysis of measurement accuracy

Visual measurements of the deformable element are error-prone due to several systematic

and random error sources. The following discusses how accuracy is affected by tracking noise,

sensitivity of the system model, foam cross sections, pose errors and rolling shutter effects.

42

3.3 Foam-based sensor for laminar contacts

In a crisp image, without using approaches based on sub-pixel processing, the certainty

of edge location is limited to ±0.5 px along the x, y-axes of the image. Additionally, edge

locations may be biased by irregular or changing illumination. In some cases, strong intensity

discontinuities on objects close to the sensor may influence edge tracking. Bias effects depend

on the surrounding scene and change with a much lower frequency than image noise. In

practice, the value is influenced by a number of effects, such that a Gaussian noise model is

more appropriate, see Sec. 3.6.1.

In the following, the dependence of the sensor output – i.e. pressure or force – on noise

in the image space is analyzed based on a simplified system model. Assume a simplified

arrangement of camera and foam rod as depicted in Fig. 3.3: The x-axis (“right”) of the

image is parallel to X and to the sensor plane (spanned by s,d), and deformations d are

projected to the y-axis (“down”) of the image, parallel to Y . The camera is parametrized

by its focal length in pixels f , the distance to the edge point d and the angle γ between the

camera axis and the sensor plane. In that case, the projection of a point X(F) on the foam

contour to a point u in the image simplifies to:

uy =
1

d
f sin(γ)X

(F)
Y + C (3.8)

The foam deformation is obtained from the difference of two snake points according to

δ = X
(F)
Y − X

(F),R
Y , corresponding to uk and urk in the image. Thus, the constant offset C

cancels out. It accounts for the point of origin of X(F) in the camera frame and for the

principal point. General camera arrangements can be brought to the form of Eqn. (3.8) by

coordinate transformations. The pressure is obtained as a function over the deformation δ by

plugging the inverse of projection Eqn. (3.8) into the polynomial model mP , see Eqn. (3.1).

Its sensitivity to errors in the image space is expressed by the derivative of mP (δ(uy)):

∂mP

∂uy
=
∂mP

∂δ
· ∂δ
∂uy

=
∂mP

∂δ
· d 1

f
sin−1(γ) (3.9)

This function is plotted over the normalized strain (foam compression) in Fig. 3.4 for a

setup as used on the mobile platform, with camera distance d = 0.3 m, viewing angle γ = 70◦

and focal length f = 1800 px (equal to the diagonal of the image). Foams with different

cross sections are used, see also Sec. 3.2. In case of the standard rectangular cross section,

the derivative of pressure with respect to the deformation value is high for small and large

strains. This corresponds to a low accuracy of pressure – small changes in the image location

have a large influence on the pressure value, and image noise as well as systematic errors get

amplified. The high value of the derivative is problematic for low values of the normalized

strain – especially so for zero strains: Contact can only be detected if the pressure value is

above the noise threshold. Therefore, it is most important to reduce the pressure derivative for

low strain values. At high strain values, the high value of the derivative effectively increases

the measurement range at the expense of accuracy – an acceptable trade-off.

43

3 Visuo-haptic sensors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−4

Normalized Strain

S
en

si
ti

v
it

y
∂
p

∂
u

y

[M
P

a
/
p
x
]

Rectangular

Triangular

Trapezoid

Figure 3.4: Sensitivity of stress measurements to the image (pixel) position for the tested
foam rods, see Fig. 3.2, with a typical camera setup.

Foams with triangular and trapezoid cross sections, see also Fig. 3.2, show a more desirable

sensitivity curve: The former shows an almost constant low pressure derivative for low and

mid-range strains, and for the latter, the “barrier” at zero strain is significantly reduced. The

thinner parts of these rods are less stiff and deform first when a low pressure is applied. While

increasing the pressure, deformation affects more and more of the thicker parts. Consequently,

much lower pressure values are observable, and contact of lighter objects can be detected. At

the same time, the depth of the “valley” at mid-range strains and thus the accuracy in this

range is reduced. In practice, however, this is barely noticeable.

Despite the high accuracy over the entire range of strains, there are some significant draw-

backs of the triangular cross section: First, there is no strong increase of the pressure derivative

for high strains, reducing the usable range of the sensor. Second, the front of this foam rod

tends to bend up or down when it comes into contact with an object. Like that, reliable

measurements are not possible in practice. The trapezoid cross section, on the other hand,

does not show these drawbacks and is thus considered the first choice for a versatile sensor.

Note that the overall level of the derivative and thus the overall range of measurements is

lower for both foam rods, compared to the rectangular rod. This is easily compensated by a

stiffer foam material or by an enlarged cross section.

One pressure sample relies on two snake points, i.e. the two edge locations of the reference

and front snake. The standard deviation of one pressure sample is therefore σmP =
√

2∂mP∂uy
σu,

with Gaussian noise of standard deviation σu in the image space. Since snake points are

spaced several pixels apart, noise is independent. The total force is obtained by summation

over multiple snake points, see Eqn. (3.1). Assuming equal values of σmP , the standard

deviation of force becomes:

σF =
√
NhsdσmP =

√
2Nhsd

∂mP

∂uy
σu, (3.10)

with N – number of contact points, hsd – frontal area of one partial foam element.

44

3.3 Foam-based sensor for laminar contacts

Errors of camera pose – i.e. the extrinsic parameters – may also be investigated using

Eqn. (3.8). Since deformation is measured with respect to the reference contour, any camera

motion parallel to the sensor plane is irrelevant. However, image distortion, if not compen-

sated, results in a slight change of the effective focal length across the image. Deviations

of camera distance d or the inclination angle γ, on the other hand, directly result in an in-

correct scaling of the measured distance. Zeroing, which is performed during initialization,

compensates for this scaling: The maximum width of the foam, without any external forces

applied, is saved as a reference for zero normalized strain. This step also accounts for varying

widths of the foam rod. A normalized strain of 1 is always given by the reference contour.

Consequently, small pose errors can always be compensated, if a zeroing process is feasible.

Most cameras without a mechanical shutter show the so-called “rolling shutter” effect, i.e.

the image rows are exposed and read out sequentially at different points in time. For typical

video cameras, the time delay between two consecutive rows is (rn)−1 for frame rate r and

number of rows n. Therefore, camera motion or shaking – in addition to the above-discussed

effects – result in a time-dependent scaling of the measured deformation δ along the y-axis of

the image. For compensation, the camera motion is determined by tracking of the reference

contour. The relevant component of camera motion is along the direction of deformation,

which is perpendicular to the reference contour. Given the camera motion and the parameters

of exposure, compensation of scaling caused by the rolling shutter is straight-forward.

Finally, inaccuracies in the deformation models result in systematic measurement errors.

For instance, our model does not consider lateral deformation directly, see also Sec. 3.6.1. As

discussed, there is also a strong hysteresis effect when the direction of deformation is changed.

Furthermore, foam stiffness may not be constant, but rather depend on deformation speed,

wear of material, temperature or even humidity. These effects, however, go beyond the scope

of this work. If required, more accurate deformation models may be built based on a more

detailed analysis of foam deformation.

3.3.3 Fitting of geometric primitives

In household or office environments, a robot often grasps or interacts with artificial objects of

relatively simple shapes. The mobile platform encounters walls, boxes, table legs, cylindrical

trash bins or vases, and for grasping, bottles, boxes, glasses or other containers are highly rele-

vant. When an object is in contact with the sensor, the impression in the foam corresponds to

a partial 2D contour of the object. As these artificial objects are aligned perpendicular to the

floor and exhibit symmetry, a 2D “footprint” derived from this contour is often sufficient for

localization, mapping, navigation or evaluation of the grasp quality. The footprint may refine

visual measurements or complement missing data, such as transparent objects. Additionally,

it shows how an object responds to manipulation, i.e. how it deforms when being pushed.

Two-dimensional primitives are fitted to the impression of the foam within the contact

region (points X
(F)
k). They provide a shape estimate of an object beyond the contact re-

45

3 Visuo-haptic sensors

gion. The following primitives, which represent typical objects, are used: Lines (for walls,

large boxes), line segments (small boxes), corners (boxes, table legs) and circles (trash bins,

bottles, glasses, mugs). Line-based primitives are fitted into the point set using least-squares

minimization. A line segment is used if the center points of the deformation lie on a line,

but the end points do not. Corners are described by two lines that intersect at the point of

maximal deformation. Circles are fitted using the algebraic approach described in [81].

Each candidate primitive is tested on how well it fits to the observed points X
(F)
k . A score

is calculated, based on the mean squared distance between observed points and closest model

points as well as the number of points n confirmed by the model:

Sp = exp

(
− 1

N

N∑
k=1

1

σ2
2

d2M (X
(F)
k)

)
· n
N

(3.11)

Where dM – distance of a point from model M , N – number of contact points (deformation

set). The primitive with the highest score and Sp > 0.5 is chosen. It is used for the refinement

of a map, see Sec. 4.3.3, or for purely haptic mapping, see Sec. 3.6.3. Furthermore, with prior

information from vision, the primitive can help to distinguish objects with different shapes

(see Sec. 6.3.3). When an object is grasped, the grasp configuration can be verified and

corrected if needed based on a comparison of the fitted primitive with a reference.

3.4 Beam-based single point 6D force-torque sensor

While the foam-based sensor provides dense force samples along the foam contour, it is limited

to forces acting perpendicularly to that contour. Many applications only require a force

reading at a single point, but in multiple dimensions – ideally as a full 6D force-torque

reading. Typically, such sensors are mounted between the end-effector of a robot arm or

another actuator and a tool – such as a gripper, screwdriver or specialized manipulator.

Upon contact, forces and torques imposed by the tool onto an object (or vice versa) must be

measured in up to six dimensions. Also, a human could guide the arm by imposing forces

onto the tool.

Therefore, another design of a visuo-haptic sensor is proposed, based on a deformable

element made of a metal beam and a spring, which together deform in 6D when a force-

torque is applied. Again, the passive system is measured by an external camera, which also

observes the surrounding scene. It allows measuring forces/torque in multiple dimensions at

a single point – much like commercial force-torque sensor modules, see Sec. 2.1. Note that

the beam theory can be applied to beams of any shape by adaptation of the shape constant

I. Therefore, a soft connection element within the arm – such as the link between the last

two joints – could be used as the deformable element.

The proposed sensor is built according to Fig. 3.5 and consists of a round rod of spring

steel (the beam) between points (S) and (F) as well as a guided spring between (B) and (S).

46

3.4 Beam-based single point 6D force-torque sensor

(B) (S) (F)

FY

MZY

XZ

TR

TBTA

Figure 3.5: Proposed beam-based sensor, based on a round beam made of spring steel (red).
Deflections ωY (x) caused by two different forces/torques are shown by dashed
lines. The spring (orange) is deformed by a force along or a moment around the
X-axis. A camera observes the entire structure and tracks templates TR,A,B.

The sensor base (B) is mounted to the actuator, which is typically a robot arm. The tool is

mounted on the other end (F). A camera observes the entire sensor from (B) to (F), as well

as the scene around it. Forces or moments/torques applied at (F) along or around axes Y, Z

lead to a deflection of the beam as described in Sec. 3.2. The deflections are separable into

ωY and ωZ and then processed as in the 2D case. Note, however, that ωY represents forces

along Y and moments around Z. Due to the guidance along X in point (S), the spring is not

affected by these forces/moments.

Forces or moments along or around X hardly deform the beam, since it is very stiff along

this direction. Instead, a force along X results in a compression of the spring between (B) and

(S) according to Hooke’s law. Similarly, a moment around X results in a torsion of the spring.

The corresponding deformation models are straight-forward, and the stiffness constants are

adjusted independently of the beam. Using this design, in principle, a full 6D force/moment

can be read from the beam/spring deformation.

Observations of the deflection curve of the beam ωY may be obtained in different ways: An

edge tracker, similar to Sec. 3.3.1, may be used to track the two contours along the beam and

provide a dense sampling of ωY . As noted in a similar method [49], this approach provides

a high robustness to occlusion, due to the large number of tracked points. However, point

tracking does not provide any reliable depth information, basically limiting force measure-

ments to 1D. Simple features along the beam – such as colored spheres – would allow for easier

detection, yet still with very limited depth resolution. A template tracker (see Sec. 2.3.2), on

the other hand, provides a full 6D pose, including accurate depth values and the full rotation,

which corresponds to the derivatives ω′Y,Z . Planar textured templates are attached along the

beam at a single fixture point, respectively. They may be integrated into the design of the

robot case. The pose of the beam at the fixture point and the template are related by a

constant rigid transformation determined by the mounting structure. Only a low number of

templates can be attached along the rod, resulting in a limited number of observations of ωY

and ω′Y . The acting force/moment is calculated using Eqn. (3.5) as outlined there.

47

3 Visuo-haptic sensors

As indicated in Fig. 3.5, three templates are attached to the sensor structure. The reference

template TR on the sensor base provides a local reference frame T̃R, in which all sensor-related

transformations are expressed. Like that, the pose of the sensor is not required a priori, and

the camera can move relative to the sensor. In principle, the reference frame may be fixed to

the camera frame, or it may be calculated from a robot model. Yet, errors can be reduced

significantly, if a reference frame is obtained within the image, close to where measurements

are performed. Two templates with corresponding poses TA,B are attached along the beam

at fixed relative positions ξ1,2. Since the templates are not aligned perfectly, and the beam

might exhibit some plastic deformation, a zeroing procedure is performed at startup, with zero

force/moment applied to the sensor. The corresponding resting poses T (R)
A0,B0 are expressed

relative to the frame T̃R.

Measurements of the template poses are performed for each frame and expressed relative

to their (constant) resting poses, which in turn are based on the current (variable) reference

frame T̃R. Thus, the poses T (A0)
A , T (B0)

B are zero as long as the beam is not deformed –

regardless of the current sensor orientation. Since the Y and Z components are processed

separately, the respective translational components of T (?0)
? correspond directly to samples of

ωY,Z . The slope is obtained from the 3D rotation matrix R, projected to the respective 2D

plane, such that ω′Y = R1,0/R0,0 and ω′Z = R2,0/R0,0. Finally, the compression and torsion of

the spring is obtained from the X-component of the translation and the respective rotation

angle. Force and translation – respectively moment and torsion – are related by the spring

stiffness constant.

3.5 Tracking objects and scene

Besides tracking the deformable element, the camera observes the vicinity of the robot plat-

form or actuator – specifically the manipulator itself, the floor or table plane, approaching

obstacles and objects in contact with the sensor. Tracking of the tool is important to obtain

a reference frame close to the manipulated object. In case of an articulated tool, such as a

gripper, the state of the manipulator is determined in addition. Tracking of the environment

allows for accurate estimation of the platform motion. Finally, the object is tracked in order

to determine its reaction during the manipulation process, see also Sec. 4.1. Specifically, ro-

tations or unexpected sudden motion during contact, such as falling over, are of relevance to

detect a failed grasp or push. Besides simple tracking, an object model can be fitted to the

manipulated object. Like this, the exact object pose is determined – albeit at considerably

higher computational costs.

In case of the platform sensor, approaching obstacles are detected in order to allow the robot

to slow down before touching them. This requires object and background to be separable.

Here, we consider objects standing on a plane, such as the floor or the tabletop. Detection is

again performed in the same camera image to obtain coherent data in the direct proximity

48

3.5 Tracking objects and scene

Figure 3.6: Visual point features are tracked on the object surface (yellow), as well as on
the floor to measure motion in the respective areas. Here, the object is just
falling, and the track is lost due to motion blur. Foreground areas detected by
the Gaussian mixture model are depicted in red (top). Figure adapted from [6].

of the sensor. Obstacles can be detected based on visual appearance differences or based

on their height – since they are closer to the camera than the floor, they move faster. As

feature tracking of the floor is problematic at higher speeds due to motion blur, we chose

the former approach. An efficient way to model visual appearance is by using Gaussian

mixture models, which are trained based on a set of expected images and detect contradiction

to the trained model. Here, the approach from [104] is used, which handles the training

process automatically and gradually adapts the model to the scene. The detector is trained

automatically and quickly adapts to a change in the environment by learning the new floor

model within a few frames. Obstacles are searched for only in the upper part of the camera

image where they appear first, see Fig. 3.6.

While an object is being pushed, a Kanade-Lucas-Tomasi (KLT) tracker [64] tracks the floor

and the object itself. Floor tracking provides an estimate of ego-motion, complementing the

inertial sensors. The KLT feature extractor searches for corner-like structures in the image,

which are well-localized and thus suitable for tracking. In order to ensure reliable motion

estimates, only stable features are selected for tracking within the appropriate regions of the

image using the scores from [89]. Features for floor tracking are selected within small patches

left and right of the foam. For the object, a mask is created based on the fitted primitive.

Tracks span several frames by matching of features between frames, yielding a sparse motion

field of the floor and the object. These feature tracks are depicted in Fig. 3.6. Since the

pushing distances are rather short, the drift of the tracker remains negligible. Tracking works

well on textured surfaces, but the quality depends on the appearance of the scene. Therefore,

visual features are only used to complement scene knowledge. If tracking fails, the force

measurements from the sensor are still available. Typical failure cases are transparent or

49

3 Visuo-haptic sensors

entirely textureless objects. Floor tracking is more reliable, since household floors are usually

textured, and even plain concrete surfaces, as shown in Fig. 3.6, exhibit features from material

wear or imperfections.

The motion model of the floor is a 2D translation and rotation of the platform on the

(known) floor plane. Its parameters (speed, rotation) are estimated from the feature tracks

to obtain a visual motion estimate, which complements the inertial unit (IMU) of the platform.

Some feature tracks will be incorrect (outliers) and must be removed. Motion parameters are

estimated using RANSAC [28], which finds the majority vote of features and is thus robust to

outliers and local failures. Projection of the motion onto the floor plane yields the real-world

motion of the platform, coherent to the sensor readings.

The object surface is located in the image area just above the foam (see Fig. 3.6). After

foam deformation has reached its maximum, ideally the object, and thus the feature points

on it, no longer move relative to the camera. Otherwise the object movement and especially

its rotation are estimated using the motion of the features. Feature points are projected onto

an estimate of the object surface. It is modeled as a plane that is perpendicular to the floor

and is spanned by a line that approximates the deformation region. Since the exact contact

points are known and due to the small relative object motion, errors from model deviations

remain low. Object motion is determined from feature tracks by homography estimation and

decomposition, see Sec. 2.3.3. Rotation on the floor plane and fall events are most relevant.

Fall of an object usually occurs into the direction of the push and could be detected by fast

rotation around the respective axis. However, tracking will not be able to follow such fast

motion, and instead a sudden loss of track is taken to trigger a fall event.

Alternatively, a template-based tracker/detector, see Sec. 2.3.4, has been used in [3]. The

object pose can be detected with great accuracy in 6D using this approach, and a lost object

can be recovered. However, it is required to obtain a texture-based object model. This

process is performed when the object comes into contact with the sensor. An object mask is

generated using depth information from a Kinect camera. While the tracking and detection

performance of this approach is superior to KLT, the need for model acquisition is infeasible

for some setups. Obviously, a failure during model acquisition renders tracking and detection

impossible. When the object is retrieved from a visual database, however, an accurate texture

model is already available, and model-based trackers should be preferred over KLT.

Obviously a number of additional techniques could be applied to acquire visual scene knowl-

edge. A depth camera would allow for stable extraction of the floor surface using plane fitting,

and the object geometry could be accurately acquired. However, coherence needs to be en-

sured, and sensors like the Kinect exhibit a minimum range of 0.5 m. Furthermore, tracking

could be performed with multiple templates to increase stability and to reduce noise. A

method for the selection of templates based on their estimated tracking performance has

been presented in [1]. The proposed system renounces additional techniques and relies only

on simple feature tracking, which showed to be effective. This also results in a lower compu-

tational load compared to processing of point clouds or depth maps.

50

3.6 Experiments

3.6 Experiments

This section presents several experiments conducted with the proposed sensor mounted on

a mobile platform, a robotic gripper and a robot arm. Results showing the measurement

accuracy of both sensor types are presented in the following subsection.

3.6.1 Sensor accuracy

Foam-based sensor In order to determine the accuracy of the proposed visuo-haptic sensor,

objects are pushed into the foam with increasing forces using a KUKA lightweight robot

arm. The applied force is measured using a commercial, factory-calibrated JR3 force sensor,

which serves as the reference. At the same time forces obtained from the proposed sensor with

0 1 2 3 4 5 6 7 8
0

2

4

6

8

Reference JR3 [N]

P
ro

p
o
se

d
se

n
so

r
[N

]

ideal

A �4cm

A �12cm

B

C 4cm

Samples C 4cm

(a) Sensor accuracy

A B C

(b) Test shapes

Figure 3.7: (a) A comparison of the force measured by the proposed foam-based sensor
against a reference obtained with a JR3 force sensor shows good accuracy. Sam-
ple points are shown for test shape C, using different colors for different runs.
(b) Different shapes (green) are pressed into the foam (orange/red). The sensor
contour does not follow the edge of object C (black dashed line) and instead
shows a smoothed out impression (red). Figure adapted from [6].

51

3 Visuo-haptic sensors

0 0.5 1 1.5 2 2.5

0

1

2

3

Applied Force [N]

M
ea

su
re

d
F

o
rc

e
[N

]
/

M
o
m

en
t

[N
m

]

ideal FY
FY , inc.

FY , dec.

FX
FZ
10MZ

(a) Camera distance: 25 cm

0 0.5 1 1.5 2 2.5

0

1

2

3

Applied Force [N]
M

ea
su

re
d

F
o
rc

e
[N

]
/

M
o
m

en
t

[N
m

]

ideal FY
FY , inc.

FY , dec.

FX
FZ
10MZ

(b) Camera distance: 50 cm

Figure 3.8: The accuracy of the beam-based sensor is tested by applying a force with a
KUKA LWR arm along FY . Error bars indicate the standard deviation and are
scaled by a factor of 5, respectively 2 for FZ , for better visibility.

Eqn. (3.1) are recorded and plotted against the reference force in Fig. 3.7a. The experiment is

repeated with different object shapes as depicted in Fig. 3.7b – two cylinders A with diameters

4 cm and 12 cm, a large plate B as well as one with 4 cm width (C). The pressure applied to

the foam by the small plate has discontinuities at the edges and resembles a step function.

The impression in the foam is smoothed out due to internal tension, see also Sec. 3.2.

A polynomial of order three is fitted through the obtained data points, yielding the char-

acteristic curves in Fig. 3.7a. Ideally, the curves should follow the black dashed line – yet

a small systematic error is observed, which depends on the object shape: Small forces are

underestimated, especially for large objects, which may be attributed to the high slope of

mP for low strains. Large forces are underestimated for all object shapes. This error could

be further reduced by a more accurate foam deformation model. Note that the curve for the

small plate C is close to the ideal line, despite the fact that the foam impression extends

significantly beyond the edges of this object. Thus, the modeling of such boundary effects, as

discussed in Sec. 3.2, proves to be valid.

Individual data points for object C are depicted with a ×-symbol in Fig. 3.7a. The different

colors represent four different experiments and show that the repeatability is within the value

of the noise. The observed standard-deviation for the proposed sensor is σ = 0.075 N along

the entire range. This is lower than the value observed for the JR3 reference, σref = 0.15 N.

However, it must be noted that the JR3 sensor has a sampling rate of up to several kHz and

might have been distorted by vibrations of the robot arm. Since the force in Eqn. (3.1) is

calculated from multiple points in the image, there is an inherent smoothing effect.

52

3.6 Experiments

Beam-based sensor In a similar experiment, which was conducted together with [29], the

accuracy of the beam-based sensor is analyzed. The mechanics of the sensor are built ac-

cording to Fig. 3.5, whereby the spring steel rod between (S) and (F) exhibits a length of

12 cm and a diameter of 1.5 mm. Its material parameters for Eqn. (3.4) are E = 206 GPa, I =
1/4πr4 = 2.48 · 10−13 m4. One template of 4 cm side length is attached to the frame as a

reference, and two more are glued to the rod, each at a single point. The frame is fixed at

point (B), and the LWR arm pushes against the sensor tip (F) along FY . The applied force

is increased stepwise from zero to a maximum value, and then again decreased in the same

fashion. Force and position are recorded using arm sensors as a reference. A webcam with

1600× 896 px observes the templates from above (along −Z) and determines 6D force-torque

values according to Eqn. (3.5).

The obtained results are shown in Fig. 3.8. Since the force is applied only along FY , it is

expected that all other force and torque components remain zero. Indeed, crosstalk to other

components is small. The moment MZ , which is mathematically strongly coupled with FY ,

deviates from zero only for large forces. The force FX exhibits a low level of coupling, since

deformations along Y also shorten the rod along the X-direction. This effect is currently not

modeled. Also, a small systematic error, i.e. a deviation from the ideal line, is observed. This

may be attributed to incorrect material parameters and to the approximations used in beam

theory. A compensation of this error is straight-forward using a calibration process. Contrary

to foam-based sensors, there is no hysteresis effect when increasing/decreasing the force. As

expected, sensor noise increases with increasing camera distance. However, the noise level is

very low, except for the FZ component. In order to increase accuracy for FZ – which should

be done for larger distances – either a depth/stereo camera and tracker could be used, or

observations from two cameras at different locations could be combined.

3.6.2 Exploration of objects with a mobile platform

A mobile platform equipped with the proposed visuo-haptic sensor, see Fig. 3.9a, is driven

towards several different obstacles in a room, such as boxes, bottles, tables, doors and walls.

Contact with an obstacle is detected when the foam rod starts to deform. The speed of the

platform is reduced based on the visual proximity detector to avoid damage to the object.

The movement is stopped completely if one of the following conditions becomes true: (a) The

amount of deformation goes beyond an upper limit, i.e. the strain goes to the densification

region, (b) the total force, see Eqn. (3.1), reaches the pushing capabilities of the robot, (c) the

robot moves for a distance larger than the width of the sensor. In the latter case, a movable

object is observed, and the measured force corresponds to the friction force of the object. In

the other two cases, the explored object is fixed – considering the capabilities of the platform.

For both kinds of objects, fitting of geometric primitives (Sec. 3.3.3) is triggered during the

halt of the platform. Measurements are most stable in the static case and allow for the best

possible fit. Examples of some explored objects are shown in Fig. 3.10, together with the

53

3 Visuo-haptic sensors

(a) Platform sensor (b) Gripper sensor

Figure 3.9: Foam-based visuo-haptic sensors mounted on a mobile platform (a) and a two-
finger gripper (b). A webcam is pointed onto the passive plastic or rubber foam
mounted on the actuator or platform. The respective camera views (depicted)
show the foam and its surrounding. In (b), red lines indicate the locations of
the reference (left) and front (right) contours. Figure adapted from [6, 7].

fitted geometric primitive. The correct primitives are fitted with high accuracy in Fig. 3.10

(a)-(d) and (f). The bottles in (d) and (e) are (partially) transparent and could thus not be

detected by purely visual methods. The fitted circle primitives have the correct size for (d),

but are slightly under- or overestimated for the two bottles in (e). This may be attributed to

an imperfect fit of the primitive at the boundaries of the deformation region.

3.6.3 Näıve haptic mapping with a mobile platform

In this experiment, a map of an office environment is created by haptic exploration with a

mobile platform. Location information is obtained from the robot odometry and an IMU in

the platform. In larger workspaces, cues from a visual localization system should be added

to reduce drift. A näıve exploration strategy is used, having the platform drive along the

circumference of the room: Whenever an obstacle is hit, the robot is stopped, moves back,

rotates counterclockwise to drive in parallel to the obstacle for a while, rotates clockwise and

drives straight again. As described above, it is determined whether the obstacle is movable

or static by pushing it, and its geometric primitive is stored.

Haptic maps showing static and movable objects are generated during exploration and

updated during each contact event. The maps show the confidence score of occupancy, where

−1 corresponds to free space and 1 corresponds to occupied space. At each contact event, the

stored geometric primitive is added to the map as follows: The binary occupancy map mO

is determined for the primitive – e.g. the area inside a circle is marked as occupied (1), and

54

3.6 Experiments

(a) (b) (c)

(d) (e) (f)

Figure 3.10: View from the platform camera while touching different objects. Pictures are
split, showing image gradients in the lower half, and the original image in the
upper half. Additionally, the fitted geometric primitives are depicted: (a) line,
(b) line segment, (c) corner, (d-f) circles. Figure adapted from [6].

the outer parts are marked unoccupied (−1). Beyond the contact points, primitives represent

just predictions of the environment, which become more inaccurate with increasing distance

from the closest contact point. This is modeled as a normalized distance map md ∈ [0, 1],

which shows the confidence of the geometric primitive. Normalization is performed based

on the extent of the contact area. Like that, a primitive – such as a line – can predict a

larger geometry, yet the prediction is quickly updated once a more confident measurement is

available. The current observation is integrated into the global map M as follows:

M← (1− cT (md)) · M+ cT (mOmd) , (3.12)

md(x, y) = exp

(
− 1

D
min
k
||(x, y, 0)−X

(F)
k ||

)
The factor c determines how quickly old measurements are replaced and is set to 0.5 here.

Transformation T aligns the new observation with the map frame, using the current pose of

the platform. The distance map md is calculated from the distance to the closet contact point

X
(F)
k , normalized by the diameter D of the smallest-circle around the contact area.

Results are shown for a small office space in Fig. 3.11, which was explored using 22 contact

events. The structure of the room with the walls, column and door is accurately represented,

even though some shapes extend beyond the room. One of the reachable chair legs appears as

a small blob left of the paper bin. The discovered movable objects (paper bin near the right

wall and two bottles in the left part) are depicted in blue. The bottle in the upper left area

was explored twice and moved in between by the platform. Erroneously, a corner primitive

rather than a circle is fitted, as the object is small. Note that visual mapping systems would

easily overlook this bottle, since it is completely transparent, apart from the cap.

55

3 Visuo-haptic sensors

Figure 3.11: An office scene is mapped by näıve haptic exploration and fitting of geometric
primitives. Occupied areas are depicted in red, free areas in green and movable
objects in blue. Color intensity corresponds to mapping confidence. Figure
adapted from [5].

3.6.4 Grasping with the foam-based sensor

In this experiment, the foam-based sensor is evaluated in a grasping task: A two-finger

gripper equipped with the sensor, see Fig. 3.9b, is mounted to a KUKA LWR arm and grasps

a deformable transparent object. Two rubber foam rods with a cross section of 1.5 × 1 cm

are attached to the fingers, and a single camera is mounted above the gripper to track one of

them. Rubber foam is harder than most PUR foams, providing a force range of up to 100 N,

see also Fig. 3.2. The system relies solely on visual data, therefore the dedicated position and

force sensors in the gripper and in the arm are not used. Initialization is performed using a

picture as a reference template on the gripper.

First, the stiffness and shape of a typical household object, a plastic bottle, is explored, see

Fig. 3.9b. While the gripper is closing around the bottle at half height h2, the deformation and

applied pressure are recorded. Fig. 3.12 shows the deformed shape of the bottle determined

from the foam impression at five different grasping forces. With increasing pressure (left

to right), the entire surface retreats, the curvature decreases slightly and the contact region

increases. The experiment is repeated at different height levels of the bottle by moving the

gripper with the robot arm (haptic exploration). Stiffness of a thin-walled object exhibits a

high dependency on the local geometry, see also Chapter 6. Fig. 3.13a shows that the object

is very stiff near the bottom and the top. These are both convex regions, which provide

most support. However, it can also be seen that there is a knee in the curves for h3,4: Here,

the surface bends to the inside and the support from the convex geometry is suddenly lost.

Stiffness is low and almost linear near the center.

56

3.6 Experiments

0 2 4 6 8

−20

0

20

Deformation [mm]

P
o
si

ti
o
n

s
[m

m
]

h0

h1

h2
h3

h4

Figure 3.12: A transparent bottle (right) with a slight narrowing in the center (at height h2)
is explored by a gripper equipped with the foam-based sensor. The deformation
of the front contour is shown for five instants of time in a fixed coordinate frame
(left). Force increases from left to right. The detected contact area is shown
in red. Figure adapted from [7].

Second, stiffness is measured with different levels of water inside the (closed) bottle. A

closed bottle exhibits a tendency to preserve its volume – on compression, enclosed air applies

an increasing counterpressure onto the inside surface (see also Sec. 6.1.5). Liquids like water

prevent any volume change, such that compression must be compensated by an expansion

in other areas. Fig. 3.13b shows the deformation-stress relations in the center of the contact

region. They are equal for small deformations, since volume preservation is not dominant

here. For large deformations, the bottle with 100% water is the stiffest, since volume changes

are prevented by the liquid.

3.6.5 Manipulation with the beam-based sensor

Opening a crown cap, as used on many beverage bottles, is a good example for a manipulation

operation that relies on joint visuo-haptic perception. For this experiment, a standard bottle

opener is attached to a beam-based sensor according to Fig. 3.5. The sensor is mounted

on the end-effector of a KUKA LWR arm, together with a webcam, see Fig. 3.14. Beam

deformations caused by forces or torques applied to the crown cap are observed using the

template pictures. Furthermore, the same camera observes the scene near the tool in order

to search for the bottle. The visuo-haptic sensor is the only sensor used in this system – the

dedicates force-torque sensors of the robot arm are not used.

Bottles are recognized and tracked using the texture on their crown caps with the detec-

tor/tracker from Sec. 2.3.4. After the user has selected the desired bottle, the robot starts

searching for it within its working space. Once the object has been detected and localized,

the arm moves the tool above the object and rotates it as required for the uncapping opera-

tion, see Fig. 3.14b. The accuracy of this rotation movement is limited by two factors: First,

57

3 Visuo-haptic sensors

0 1 2 3 4

1

2

3
·10−2

Deformation [mm]

S
tr

es
s

[M
P

a
]

h0

h1

h3

h4

(a) Varying height

0 2 4 6
0

1

2

3
·10−2

Deformation [mm]

S
tr

es
s

[M
P

a
]

Open

Water 50%

Water 75%

Water 100%

(b) Varying contents (@h2)

Figure 3.13: The stiffness of the transparent bottle (Fig. 3.12) is measured with the proposed
sensor. Stiffness varies (a) along the height of the object, as well as (b) with
changing counterpressure from varying contents. Figure adapted from [7].

since the wrist joint of the arm is relatively far from the tool, a large motion is required in

the joint space. This goes along with a larger positioning error (which could, however, be

compensated by visual servoing). Second, the tracker has only a limited depth accuracy, such

that the height of the crown cap cannot be determined exactly. Yet, the alignment of the

tool on the crown cap must be very accurate in all three dimensions in order to perform the

uncapping successfully. This level of precision is unattainable using pure vision, especially in

the depth direction. The exact position of the opener is determined haptically, by measuring

the forces or moments with the visuo-haptic sensor. Refinement is performed separately along

the Z-axis (height), the X-axis and the Y -axis. Once the tool is aligned and locked under

the cap, the arm rotates the tool around its center point for uncapping. If the crown cap has

been removed successfully, the tracker/detector no longer detects its texture on top of the

bottle. The control sequence for this experiment is summarized in Table 3.1.

3.7 Summary

In this chapter, a novel concept for visuo-haptic sensors has been presented. It is based on a

passive deformable element with known deformation characteristics that is mounted onto the

actuator or even integrated in the actuator itself. A camera is placed at an arbitrary location

with a good view of the deformable element and measures the deformation of this element

from the image. The camera can be used simultaneously for many additional computer vision

tasks, such as tracking and object detection. For many robot setups, an already existing

camera can be used, such as an in-hand camera or a camera in the robot’s head. Depending

58

3.7 Summary

(a) (b) (c) (d)

X

Y

Z

Figure 3.14: Opening a crown cap with a bottle opener mounted on a beam-based visuo-
haptic sensor, see Table 3.1. The camera is indicated by the red circle in (a)
and observes the tool as well as the bottles. The coordinate system of the
tool is depicted in (d). In (c), the tool is aligned incorrectly along the X-axis,
necessitating a refinement step.

Input Task / Goal Location certainty Dist.
X Y Z

— Initialization ? ? ? < 1m
SIFT features (a) Scanning motion,

SIFT detection
(V) Find object 1 cm 1 cm > 1 cm ca. 20 cm
Template Template tracking
(V) Track object 1 mm 1 mm < 1 cm
— Reorient tool,

approach object
Tool is near object > 1 mm > 1 mm 1 cm > 1 cm

Fz (H) (b) Push down tool (along Z)
Fz > const. 1 mm > 1 mm

My (H) (c) Sidewards correction (along X) 1 mm
My ≈ 0 1 mm

Fy (H) Forward refinement (along Y) < 1 mm 0 mm
Fy > const. < 1 mm

Mx (H) (d) Rotate tool,
open crown cap

Mx > const.
Mx (H) Check for crown cap removal
Template (V) MX ≈ 0, template not on bottle ? ? ? 1 cm

Table 3.1: Sequence of tasks for opening a crown cap, executed from top to bottom. The
location certainty between the tool and the object (the crown cap) is successively
improved while decreasing the distance. Tasks rely either on visual (V) input or
haptic (H) input, i.e. the force F and moment M obtained from the camera-based
sensor. Letters (a) to (d) refer to Fig. 3.14.

59

3 Visuo-haptic sensors

on the shape and characteristics of the deformable element, different force readings can be

calculated from the image. An implementation based on a plastic or rubber foam is presented

for mobile and grippers. It measures a force and contact shape profile along the contour of

the foam material. Furthermore, an implementation based on spring steel is presented, which

measures a 6D force-torque at a single point – such as between a robot arm and a tool. In

experiments, the accuracy of this sensing principle is analyzed.

Compared to existing tactile sensors, this concept offers a number of advantages: The

sensitive element itself is passive, which reduces system complexity and requirements for

cabling on the robot. The passive element is very low-cost, and replacement in case of wear

is straight-forward. A standard consumer webcam is used in the presented implementations.

Due to the large proliferation of such devices, they are low-cost and offer a good image quality.

As visual and haptic measurements come from the same sensor, they are naturally coherent,

i.e. they are synchronous in time and space. Moreover, a failure in one modality can be

compensated by the other one – e.g. a transparent object is not directly seen by cameras, but

can be detected in the haptic modality based on its contact shape. On the other hand, very

light objects do not exert enough force to be detected haptically, but cameras observe their

presence. Multiple sensitive elements, as well as very large areas can be monitored – which

would be very costly with existing active sensors.

Optical readout and camera-like sensors are used on many existing tactile or haptic sensors,

see Sec. 2.1.1. Yet, existing setups integrate the camera into the sensor module, together with

the sensitive element. Like that, those designs do not offer any of the advantages given here.

60

4 Joint planning of navigation and

manipulation

Navigation is an essential skill for mobile robots, which is closely coupled with environment

perception. On an abstract level, robot navigation is modeled similar as in automotive navi-

gation systems: The structure of buildings is represented as a navigation graph, with nodes

corresponding to decision points between different routes, see Sec. 2.3.6. This graph is used

for path finding, even in complex environments, estimation of path costs and topological de-

cisions, such as whether to drive left or right around an obstacle. A path in this “global”

topological graph serves as the goal trajectory for low-level planning, which considers current

sensor observations to avoid collisions. Platform motion commands are generated in realtime,

considering acceleration and speed limits. The local trajectory is matched against the global

plan, allowing for a certain degree of deviation. On both levels, occupancy grid maps are

used to model free and occupied space – yet, for global planning, observations from different

viewpoints are fused.

There are a number of manipulation tasks, which are directly connected to navigation,

such as opening doors, using an elevator or pushing an obstacle aside. These tasks require

haptic models of obstacles as well as haptic perception. Therefore, a method for joint navi-

gation and manipulation planning is proposed here. It combines visually acquired maps from

a depth camera or a laser scanner with haptic data acquired from the sensor proposed in

Chapter 3. The common representation uses a high-level model based on a graph, which ex-

tends navigation graphs provided by vision-based methods. Obstacles that may be removed

by manipulation operations, such as pushing an object aside, are represented as additional

manipulation nodes. Paths via these nodes come with additional costs and require manipu-

lation planning. In a vision-only model, there are blockades at the locations of these nodes.

For instance, a paper bin in front of a doorway is detected as a blockade. With haptic data

about this obstacle, it can be removed if access to the doorway is required. Using standard

approaches for path finding, an integrated navigation and manipulation plan is generated.

Compared to purely visual path planning, shorter paths involving manipulation operations

are possible, and task plans can be generated to access parts of a room that seems inaccessible

using vision-only perception.

This chapter is partly taken from [6].

61

4 Joint planning of navigation and manipulation

4.1 Haptic tags

Modeling detailed haptic properties of objects – such as friction, deformability or roughness

– can be very complex, especially since properties generally change along the surface. Haptic

exploration of an object with a robot arm is a time-intense process (see Chapter 5 and

Chapter 6), which is infeasible for mobile robot platforms as considered here. Instead of an

accurate object model, a robot platform requires a prediction of object behavior for planning

of simple and standardized manipulation tasks. For these tasks, a detailed haptic object

model is not required – it is sufficient to know some global or semi-global object properties.

In case of a simple standardized grasp, these parameters could be weight as well as the local

friction, deformability at the contact region and the contact shape. Planning of more complex

grasp patterns, taking into consideration the local stiffness of objects, is discussed in Sec. 6.2.

For pushing manipulations, which represent the primary use of haptic tags, friction forces,

object stability and potentially inertia are of greatest relevance. To some extent, these values

depend on the actuator, the contact point and the manipulation task at hand. We refer to

these properties as haptic tags.

Haptic tags are acquired using the visuo-haptic sensor presented in Chapter 3 while the

platform slowly moves towards the object, touches and then pushes it a bit, if possible. In

addition to the force profile derived from foam deformation, the camera acquires visual cues

from the scene to determine the ego-motion and the reaction of the object on the pushing

force, see Sec. 3.5. A simplified haptic tag, which does not include motion parameters, is

acquired during grasping processes. The haptic tag consists of the following properties:

• Static friction force HF [N]

• Dynamic friction HF ′ [N]

• Deceleration time HI [s]

• Sidewards drift HS [mm]

• Deformability HD[mm]

• Rotation on the floor plane HR[radm]

• Deformation shape∗

• Fitted geometric primitive∗, see Sec. 3.3.3

• Events Fixed/Fall

• Counters for Exploration/Failure

These properties allow for the planning of manipulation tasks and prediction of object

behaviour during manipulation. Properties marked with a star (∗) can only be acquired with

the foam-based sensor. The manipulability is determined from the events “fixed/fall”, and the

friction force serves as an estimate for the required effort. If the manipulator cannot control

62

4.1 Haptic tags

lateral object motion, drift and rotation pose limits to the possible pushing distance. The

expected reaction of an object is expressed by its static friction, deformability, drift, rotation

and the “fall” event. Furthermore, the deformability allows for an estimate of the material

type, which is important, for instance, to adjust grasping parameters. Simple articulated

objects – e.g. a wing of a door with hinges – are modeled based on rotation and deceleration

time. In the following, the haptic tag is used for planning of pushing operations, see Sec. 4.2.1.

Acquisition of a haptic tag during a pushing manipulation is separated into different phases,

triggered by events: Event contact – phase (a) – event motion – (b) – platform stops – (c).

If an event does not trigger, the corresponding phase is skipped, and some haptic properties

remain undefined. The visuo-haptic sensor measures distances between the robot, object and

the environment (floor), see Sec. 3.5. As soon as the foam starts to deform, i.e. δ increases, the

event contact is triggered. Once the deformation remains constant (or decreases) while the

platform continues to move, the event motion is triggered. Data are stored during exploration

and later processed separately per phase.

Phase (a) — The static friction is the maximum force value measured during this phase.

Furthermore, the object deformation is determined by HD = 1 − foam deformation
platform motion . For rigid

objects, the two distances are equal and HD = 0. Distance and pressure values are taken

when they are largest, and a linear compression model is assumed, thus HD = const. The

relative measure HD may be converted to a stiffness parameter [Nm] by considering the pushing

force H ′F ′ and the absolute deformation. Objects with a negligible static friction force, such

as open wings of doors or balls, trigger the motion event immediately, skipping this phase.

(b) — Dynamic friction, drift and rotation are acquired. The dynamic friction is the

average force while the object is moving. Drift HS is the shift of the central contact point

perpendicular to the pushing vector, normalized by the pushing distance. Object rotations

indicate instability during the manipulation and are estimated using feature points tracked

on the surface, see Sec. 3.5. Rotation on the floor plane is comparable to the drift, while

rotation around the y-axis of the camera image indicates that the object falls over.

(c) — For most household objects friction forces dominate and their inertia cannot be

directly observed. In this case, after the platform stops, the measured force remains constant,

and HI = 0. Only some objects show an observable deceleration behavior and continue

their motion after stopping. The duration of continued motion is taken as an estimate for

deceleration. Object motion is determined from the change of foam deformation and by

feature tracking. For instance, the wing of a door usually continues to move after being

pushed, detaching from the foam to finally stop somewhere in front of the platform, due to

small friction in the door hinge.

Finally, the two counters are used for an estimate of the success probability, when the object

is manipulated several times. A failure is triggered when fast feature motion is detected, e.g.

when the object falls or is destroyed.

Haptic tags are assignable to different visual representations of the object: Most impor-

tantly, they are assigned to the footprint of the object in the map at the contact point of

63

4 Joint planning of navigation and manipulation

(a) Skeleton (red), distance map Md (green) (b) Navigation graph

Figure 4.1: Skeleton, distance map (a) and navigation graph (b) extracted from a map of
several rooms and a hallway. Additional connection nodes are encircled in black.
Regions assigned to a navigation node are depicted in pale colors. The detail
marked by the dashed white box is used in following figures. Figure adapted
from [6]. Map adapted from [46].

exploration. This means that haptic tags stick to objects as long as they are not moved, even

when the robot is in a different part of the building. Furthermore, haptic tags can be associ-

ated to object identities in an object database used for visual search with feature descriptors,

see Sec. 2.3.5. That way, if a known and explored object is recognized visually anywhere in

the room, its haptic tag can be used for manipulation planning without further exploration.

This idea can be extended such that haptic tags are loosely associated to visual classes of

objects, such as “bottles”. When an object instance is detected, the haptic tag allows for an

estimate of its manipulation properties – see also Sec. 6.3.3.

4.2 Graph-based planner

Topological navigation graphs model navigable space within buildings for a mobile platform

in a very efficient way. Edges represent all path segments that are accessible by the platform,

such as hallways, doors and any free space between obstacles. Nodes are decision points that

connect these segments, but they can also be seen as a representative for a certain region

in the map. Modeling is limited to 2D planes for (piece-wise) planar indoor scenes, even

though topological graphs could also represent height. In the following, it is described how a

navigation graph is obtained from an occupancy map, making use of established techniques,

which are reviewed in Sec. 2.3.6. The platform exhibits a laser scanner, which scans a range

of 240◦ in a plane parallel to the floor. The Karto Visual SLAM system [50] fuses range data

to build a 2D map of the entire operation space and localize the robot therein. Additionally,

an inertial unit (IMU) provides a motion prior. A graph-based representation is obtained

from the occupancy grid map using the following steps: (a) Determination of a trivalent

64

4.2 Graph-based planner

state (occupied/free/unknown) for each cell; (b) generation of a distance mapMd that shows

the distance to the nearest occupied cell (green in Fig. 4.1a); (c) calculation of a cost map

Mc that penalizes proximity to obstacles, see below; (d) thinning of the reachable map area,

i.e. Mc < ∞, yields a skeleton (red paths in Fig. 4.1a); (e) conversion of the skeleton to a

graph with edge costs d · Mc, edge length d. The costs Mc of cells represent the inverse of

the possible speed of the platform and are infinite for unreachable cells:

Mc =


∞ Md < rrob

v−1max Md > 3rrob

[v−1min . . . v
−1
max] otherwise

(4.1)

The obtained topological graph depicts the structure of the room and is further simplified:

Short stub paths introduced by the skeleton are removed. Nodes with exactly two edges are

connection nodes that can be deleted, except in cases where their removal would also remove

a loop. Corresponding edges are merged together, summing their costs. The remaining nodes

are located on the intersection points of the skeleton, see Fig. 4.1b. For visualization purposes,

some connection nodes are kept at regular intervals, such as 1 m. The edge costs are based

on skeleton segments in the center of the room and are thus in general overestimated. The

platform motion is fastest and most reliable along such paths, yet there will be shorter paths

in most cases. For a global planner, however, this approximation is feasible. The graph is a

much more efficient representation than a grid map, since it only exhibits one node for each

choice around obstacles.

A mapping between occupancy grid cells and nodes of the graph (and vice versa) is required

to map a path in the graph to regions in the grid map. The assignment should be based on

the shortest path between grid cells and nodes. It must take the cost map Mc into account

and especially the fact that obstacles may block access to free space from a close-by node.

Each node is considered a representative of its assigned map segment, as depicted in Fig. 4.1b.

The assignment is performed with Algorithm 1. A fast-marching approach [32] with multiple

start positions is utilized. The start positions correspond to the node locations and represent

multiple minima in the potential field MP . Furthermore, a segment map MR is obtained,

which assigns each grid cell to a node id (pale colors in Fig. 4.1b).

The potential map MP also allows for fast shortest-path planning from any point in the

map to the closest node, simply by iteratively moving to the neighbor cell with the lowest

potential. This path is used by the local planner to reach the final goal.

4.2.1 Integration of haptic information

Occupancy grid maps and the extracted graph are solely based on visual data. Any visible

obstacle is considered to definitely block platform movement, regardless of its weight and

shape. Using haptic knowledge about obstacles – specifically whether an object is movable

65

4 Joint planning of navigation and manipulation

Algorithm 1: Region assignment based on the fast marching method

Data: Navigation graph G, cost map Mc

Result: Map of region assignments MR, potential map MP

1 Initialize: MP ←∞,MR ← 0, U ← ∅;
2 for i ∈ nodes(G) do
3 MP (xi)← 0 ; // xi: Location of node i
4 MR(xi)← i;
5 U ← U ∪ {xi}; // Update set

6 repeat
7 for u ∈ U do
8 U ← U \ u;
9 for n ∈ N (u); // Neighbour cells of u

10 do
11 q =MP (u) +Mc(n) · d(n, u);
12 if q <MP (n) then
13 MP (n)← q;
14 MR(n)←MR(u);
15 U ← U ∪ {n};

16 until U = ∅;
17 return MR,MP

by the robot platform – additional paths involving manipulation of obstacles may become

available. For instance, a toy ball or lightweight paper bin blocking a passageway can be

easily pushed away. Such movable obstacles are represented as a new type of nodes, the “ma-

nipulation nodes”, associated with a manipulation operation and connected to neighboring

nodes. Haptic tags (Sec. 4.1) are stored in these nodes to estimate manipulation parameters.

The visual navigation graph is extended but not modified to keep a consistent representation.

Now, a path in the extended visuo-haptic graph translates to both navigation and manipu-

lation tasks, which are mainly pushing operations on a mobile platform, see Sec. 4.3. This

extended graph represents the environment on a more semantic level.

For the following process, a list of explored objects with haptic tags is assumed to be known

together with an assigned region in the map, see Fig. 4.2a. Sec. 4.1 discusses the properties

in the haptic tag. The list of haptic tags is acquired as discussed in Sec. 4.4, which presents

an exploration plan for obstacles. The visual graph is extended to a semantic visuo-haptic

graph as follows:

1. Set the occupied grid cells of the explored object oe to “free” in the original map

2. Using the updated map, recalculate the cost map Mc in the vicinity of oe according to

Eqn. (4.1)

3. Add a node ne to the navigation graph G, located at the center of obstacle region oe

66

4.2 Graph-based planner

4. In region mapMR, assign all unassigned cells connected to ne and withMc <∞ to ne

(yellow in Fig. 4.2b)

5. Determine all neighbor regions of ne in MR and add edges between the corresponding

nodes and ne

6. Calculate edge costs between node ne and its neighboring nodes based on the updated

cost map Mc

7. Remove those edges again that do not significantly reduce any path costs

The extended graph provide a time estimate for navigation operations. The costs for a

manipulation operation tmani are expressed consistently, taking into account the following

components:

(a) Platform-specific constant setup/finishing time,

(b) manipulability given the current plan,

(c) duration of object motion tpush based on the required effort and push length,

(d) penalty for possible manipulation failures tfail.

The calculation of costs is based on the haptic tag. The manipulability (b) is a binary

decision based on events “fixed/fall” and lateral motion. The latter depends on the required

push length and the estimated drift (HS ·push length) and must not exceed a certain threshold.

Failure probabilities are derived from the exploration counter in the haptic tag if the object

was explored several times. The pushing speed and length yield tpush. Speed is adapted to

the required effort determined by the friction force and depends on the platform capabilities.

Any path via a manipulation node includes two edges connected to this node, so costs 1
2 tmani

are added to all its edges. The time for approaching and leaving the movable object is already

expressed in the edge costs calculated in step 6.

A path in the extended graph GH between the current position and a goal position can be

planned as usual, e.g. by the A? algorithm [41]. Alternative paths can be determined based on

task-specific side conditions, such as most information gain about the scene, most reliable path

or avoidance of manipulation tasks. Each navigation node within a path represents a high-

level navigation task, e.g. “go left/right around obstacle” or “enter hallway”. A corresponding

initialization is given to the local planner, which searches a feasible and short path within the

regions associated to the nodes inMR. Each manipulation node represents a task to push an

object out of the way. The local planner for this task is described in Sec. 4.3.1 and attempts

to move the obstacle such that it no longer blocks the robot. After the manipulation the scene

map is updated, and GH must be adapted to that change by converting the manipulation node

to a navigation node and removing costs 1
2 tmani from the associated edges. From time to time,

when the robot rests, the full process for graph generation is restarted. Local planners may

fail – especially for the manipulation tasks – necessitating replanning on the global level, with

costs set to ∞ for edges associated to the failure.

67

4 Joint planning of navigation and manipulation

(a) (b)

Figure 4.2: (a) Four movable obstacles (brown/�-symbol) are added to the map. The two
on the right block access to passages – note how the connectivity in the graph is
reduced compared to Fig. 4.1b. (b) The extended visuo-haptic semantic graph
has additional manipulation nodes (blue circles) with corresponding regions as-
signed (yellow). Access to the hallways is again possible through these nodes.
Figure adapted from [6].

The benefit of a new manipulation node ni is determined by the maximum reduction of

path costs between any of the adjacent nodes N (ni). This value is used to determine the

order of exploration, see Sec. 4.4:

∆t = max {costsGH (nk, nl)− costsG(nk, nl) ∀nk, nl|nk, nl ∈ N (ni)} (4.2)

4.3 Local planning

Local planners perform low-level platform control for a specific task. Usually, they must fulfill

realtime constraints (e.g. to generate motion commands at a rate of 50 Hz) and therefore

exhibit only a limited level of intelligence. Generally, they ignore topology or other global

information and instead rely on current sensor readings, potentially a local costmap, as well

as information provided by the global planner. Each node in the navigation and manipulation

graph is associated with a local planner. The planner is activated, configured, cancelled and

stopped by the global planner as soon as the robot gets into the region associated with the

node. The result of the local task – which is success, failure or timeout – is returned to the

global planner. The local planner must provide a rough estimate of execution time to the

global planner. Navigation tasks are performed by a standard local planner [68]. This section

discusses local planners for manipulation tasks.

68

4.3 Local planning

Figure 4.3: To search for valid push goals y, paths encircling potential goal positions (blue +)
are searched for collisions (red ×/blue ·). Only the position in the door frame
(bottom right) introduces a blockade, since it exhibits 2 occupied subpaths (red).
All possible goal points according to the mapMg are shown by a green overlay.
Figure adapted from [6].

4.3.1 Direct push

The direct push planner moves obstacles that block a desired path. Its goal is to determine

an adequate and reachable goal position as well as a push trajectory. The global planner

provides the obstacle to be pushed as well as the map and the desired path in the vicinity

of the obstacle. The latter information is required to find a goal position that unblocks the

desired path as well as an effective contact point. Task plans are defined by the parameters

contact point x, pushing path v and push goal y, which are determined here based on the

object’s footprint in the map. One solution is selected and sent to the platform controller. If

a haptic tag is acquired during manipulation, the process described in Sec. 4.1 is started.

Possible contact points between the robot and the obstacle must fulfill multiple conditions

– solutions x (a) lie on a path encircling the object, similar to the path π discussed below,

(b) are “free”, i.e. Md(x) > rrob, (c) can be reached by the robot, i.e. the path planner finds

a path to x, and (d) allow for stable manipulation. The latter condition depends on the

end-effector used. In the presented system, v should go through the connecting line between

the object’s center of mass and the floor, since the object would otherwise start to rotate. It

is most stable if the normal of the object’s footprint at the contact point is parallel to v, thus

the platform should approach the surface in a perpendicular fashion. The center of mass is

assumed to be in the center of the footprint. If this assumption is wrong, the contact point

can be corrected after the first exploration using HD and HR from the haptic tag.

The push goal point y must be chosen such that the new location is reachable, unblocks

the blocked path and does not introduce any new blockades. The shortest path π on which

an object can be encircled is defined by all points, which are rrob from the closest point of

69

4 Joint planning of navigation and manipulation

the object’s footprint. If, for a potential object location y on the map, each point on π

has Md(π) > rrob, there is also no other obstacle that blocks the platform, and y is a valid

goal point. However, there are more solutions, such as pushing the object close to a wall or

another static obstacle, which is very feasible in practice. To find these solutions, π is split

into subpath πi at points ξ ∈ π where Md(ξ) = 0 ∧ δ
δξMd(ξ) 6= 0. In case y is close to

only a single obstacle, there is exactly one subpath for which Md(πi) < rrob. If multiple of

such subpaths exist, location y is close to two or more obstacles and would thus introduce a

blockade of possible trajectories. A map of all possible goal points is generated for a local

neighborhood within the manipulation radius rmani:

Mg(y) =Md(y) > robj ∧ |{πi|Md(ξ) < rrob ∀ξ ∈ πi}| ≤ 1 (4.3)

Fig. 4.3 shows this map and also exemplifies points on π for several goal points y located

in free space, close to walls or corners and in a narrow doorway. Note the different detected

subpath πi for these goals. For simplicity of illustration, the footprint is approximated by the

smallest enclosing circle, such that π is a circle as well. It is not required to test the costs of

any points between π and y if robj ≥ rrob.
A set of path primitives – such as curves of different radii used in a local planner – is used

for pushing path candidates. Their validity is verified by checking Md at all points along a

path, and for the remaining paths it is checked whether they establish connections between

pairs of contact points and goal points. The resulting triples (contact point, path, goal point)

are possible solutions for the manipulation problem. However, since the presented platform

does not provide any lateral stability when pushing an object, only a straight pushing path

ensures reliable manipulation. The straight line connects between contact point, center of

mass and goal point. Such a feasible push plan is typically found if there is enough free space

on opposite sides of the object.

4.3.2 Sideward push

While the direct push planner accurately controls the trajectory and goal of an obstacle, it is a

time-consuming process. Apart from the slow speed during the push, the platform interrupts

its navigation trajectory and needs to reorient. In some cases, a more efficient manipulation of

obstacles may be performed, which is even integrable with the navigation trajectory: Instead

of approaching the obstacle frontally, it is rather touched by the side of the (round) mobile

platform, resulting in forward and sideward force components towards the movable obstacle.

The latter component increases while the object slides along the curved side of the platform,

resulting in a curved trajectory towards the left/right side of the platform.

The task plan is parametrized by a starting/contact point, an end point and a connecting

trajectory, the motion of the platform. Contrary to the above planner, however, the relation

between the platform and the object is not fixed and must be simulated before the task

70

4.3 Local planning

(a) Scene 1 (b) Success (c) Failure

(d) Scene 2 (e) Success (f) Failure

Figure 4.4: Planning of the sideward push manipulation to unblock a path in two scenes (a),
(d) with static obstacles (gray), movable objects (initial pose in orange) and the
mobile platform (blue). Unsuccessful candidate plans are depicted with a dotted
line, successful ones with a green line. The remaining figures show simulation
results for one robot trajectory highlighted in blue. Object trajectories and their
final poses are shown in red. The plan in (c) fails since the round object is still
in contact with the robot when it reaches its goal, and in (f), the object collides
with the gray wall.

71

4 Joint planning of navigation and manipulation

Algorithm 2: Local planner for sideward push

Data: Platform trajectory; object o with centroid o0x, orientation o0α, contour oj , mass
om, moment of inertia oi; environment e; contact range dc

Result: Feasibility of plan (boolean); Object trajectory okx, o
k
α

1 contact← 0; k ← 1;
2 for x ∈ trajectory do
3 (d, j)← minj(||oj − x|| − rrob); // oj : Closest contour point
4 if d < dc then
5 contact← 1;
6 n← normal(oj); // Surface normal at contact point

7 f ← −
(

1− d
dc

)
· n; // Pseudo-force perpendicular to surface (no

friction)
8 f ← scale(f); // Scale for adequate step-width
9 okx ← ok−1x + fo−1m ;

10 ω ← (oi × f)o−1i ;
11 okα ← ok−1α + ωz;
12 if collision(o, e) then
13 return Failure: collision;

14 else if contact then
15 return Success; // Robot and object no longer in contact
16 k + +;

17 return Failure; // Robot and object still in contact

is performed. For successful completion, the object must loose contact with the platform

(“drop point”) before the end point is reached and without hitting any other obstacle along

the way. Feasible contact points are located at a distance rrob away from the obstacle, within

the region in front of the manipulation node (seen from the current position of the platform).

Similarly, end points are located within the region(s) behind the manipulation node. The

distance of those points to the manipulation node corresponds to the maximal acceptable

sliding distance. Here, we use a value of 1 m, which corresponds to about 6rrob. Larger values

are infeasible, since prediction of sliding (see below) becomes increasingly unreliable. Sets of

starting and end points are generated by regular sampling of points on the map that fulfill the

aforementioned conditions. Candidate plans are obtained by generating all possible tuples of

starting points, end points and path primitives. Paths that reach inaccessible areas of the

map are immediately rejected. Note that one end point is reached by different combinations

of start points/path primitives. The associated trajectories exhibit only slight differences.

Therefore, it is sufficient to use the straight line as the only path primitive. Additional

primitives (curves) only need to be checked if all straight lines fail.

Each candidate plan is evaluated by simulation of the corresponding object trajectory. The

simulation, see Algorithm 2 and Fig. 4.4, determines the object trajectory based on the given

path of the platform, the shape of the object, as well as other obstacles like walls. The

72

4.3 Local planning

algorithm iterates over the points of the robot trajectory and calculates a pseudo collision

impulse on contact with objects. For details about modeling rigid body dynamics, see [100].

Here, a friction coefficient between the platform and the object of zero is assumed, and

the impulse is perpendicular to the surface at the contact point. The simulation is quasi-

static, i.e. objects are assumed to be static on contact. The collision impulse results in a

translational and rotational pose update, which depends on mass and moment of inertia

of the object. Dynamic effects are negligible for the considered speed range. The inertial

moment is still required for separation of translation/rotation and is calculated assuming an

equal mass distribution. By keeping the number of task candidates small (e.g. lower than 30),

the complexity of the simulation is very low. It is sufficient to use a low sampling density for

the contact/end points, since corrections in the low cm-range may still be performed during

manipulation (see below). The quasi-static 2D motion simulation (line 9 ff.) is simple, and

a sampling density of about 2 cm is sufficient. Furthermore, many plans are rejected quickly

because of an inadequate contact point or an early collision with another obstacle.

Costs of feasible plans are determined by a constant setup time similar to the direct push

planner and the duration of the navigation operation, considering a lower velocity limit than in

free space. The cheapest feasible plan is selected and executed. The push trajectory remains

near the ideal navigation path, and there is no additional pause after the manipulation ended.

Therefore, the costs of a successful sideward push are considerably lower than for the direct

push. During manipulation, object motion is compared to simulation by tracking the center

of the contact region. Deviations may be caused by inaccurate modeling of friction or inertia

and are compensated by slight corrections of the platform trajectory. (Typically, this is only

required if the object is closer to the front of the platform than predicted, since an earlier

drop point poses no problem.) Large deviations or unforeseen collisions with other objects

result in a manipulation failure.

4.3.3 Transparent objects

Transparent objects in a room – such as windows, glass doors, tables or vases – result in

inconsistent, missing or incorrect range values from a laser scanner. Similar to the Kinect

(Sec. 5.1), there may be missing data (“shadows”), refraction effects, shine-through of the

background and jumping range values1 Since Visual SLAM methods rely on consistent mea-

surements for successful integration, transparent objects may show up as distorted data or are

eventually removed from the map. Even if they are successfully inserted into the map, new

data may result in their deletion. Still, transparent objects may be detected by other means:

The platform might randomly hit transparent objects and detect their shape and position

using the tactile contact shape from the sensor described in Chapter 3. Also, a transparency

detector as described in Sec. 5.2.2 could detect a transparent object using the Kinect or even

1Note that some high-end laser scanners detect multiple reflections, which may result from transparent
objects. Multi-reflection is not considered here, due to the high costs of such scanners.

73

4 Joint planning of navigation and manipulation

the laser scanner. Unlike data from the laser scanner, however, detection results come as

irregular events.

If a transparency detection result is available, the transparent object is stored by adding a

transparency node to the navigation graph. A safety region associated with this node is added

to the region map MR, replacing existing regions at the same location. Unless the global

planner specifically decides to do so, the safety region is not entered by the platform, avoiding

collisions with the transparent object. Like that, there is no need to represent or integrate the

object in the visually acquired map. Additionally, Md is updated around the transparency

node in order to avoid high platform velocities in its vicinity. Haptic exploration can be

used to learn more about a visually detected transparent object. In case a haptic tag for

the transparent object becomes available, the transparency node is treated as a manipulation

node. If an assumed obstacle is not confirmed by haptic exploration, the transparency node is

removed. In case the node was created based on a visual detector, a negative visual detection

– e.g. a negative result form the transparency detector – also triggers removal.

4.3.4 Special operations

The navigation and manipulation graph offers great versatility by extending it with additional

node types and local planners for specific tasks relevant during navigation of mobile platforms.

For instance, door wings are common obstacles, which require specialized manipulation. The

corresponding task is represented by an appropriate manipulation node. Detection of doors

in the visual domain may be based on door frames and handles, see [83]. This approach also

detects doors with a transparent wing, as long as there is an opaque frame. While pushing

against a rotating door wing, in the haptic domain, a descriptive contact shape pattern is

observed: The haptic tag shows a constant rotational component (HR), a constant motion

of the contact center as well as a planar shape primitive. This pattern may be used both

for detection of a door wing and for state estimation during the manipulation task. Local

planning for opening a door is fairly straight-forward with this state estimate: The door

wing is pushed open far enough to allow the platform to fit through. If it does not move,

it is blocked, and the manipulation task fails. Contrary to visual approaches, haptic state

estimation also works on transparent doors.

Elevators, hallways in public buildings and production halls often exhibit automatic sliding,

potentially transparent doors. In order to navigate through such doors, the state of their

wings must be determined. Again, in case of transparent doors, this may require haptic

exploration of the door wing. In case the door is closed, a trigger must be activated, such

as pressing a button, moving in front of a motion detector or sending a wireless command

to a building automation system. Obviously, some manipulation steps related to doors or

elevators go beyond the capabilities of simple mobile platforms. A robotic arm is required in

order to push down a door handle, press the button of an elevator or pull a door wing. If an

appropriate arm is not available, the capabilities of a mobile platform is limited to pushing

74

4.4 Experiments

Feature P
C

to
w
er

St
oo

l

C
us

hi
on
∗

P
ap

er
bi

n

+
co

nt
en

t

Tab
le

D
oo

r
∗

V
as

e

+
wat

er

C
le
an

er
∗

Force [N] 15.3 8.1 19.4 1.5 6.5 15.9 2.8 0.6 0.9 1.3
Dyn. Friction [N] – 7.5 – 1.4 6.1 15.9 – 0.6 0.9 –
Deformability 0 0.08 0.2 0 0 0 – 0 0 –
Deceleration [s] – – – – – – 0.6 – – 0.7
Drift – 3e-2 – 3e-2 3e-2 3e-2 1e-1 3e-1 1e-1 –
Fixed/Fall y/- -/- y/- -/- -/- -/- -/- -/- -/- -/y

In Fig. 4.5a (α) (β) (β) (γ) (γ) (δ) (ζ) (ε) (ε) Fig. 3.6

∗ Door: Push against the open wing of a door, which continues its motion due to its inertia.
Cushion: Softer top of the (fixed) stool.

Table 4.1: Haptic tags of various objects obtained during the experiments

δ γ
ε

β

(a) Office scene (b) Foam-based sensor, object ε

Figure 4.5: The proposed exploration system is tested in an office scene (a) with multiple
movable objects (Greek letters). The foam-based sensor obtains haptic data
even from transparent objects (b). Figure adapted from [6].

door wings that are not snapped – a common scenario in public hallways. In other cases, the

platform needs to wait for external help from a human or another robot. For instance, the

platform could wait in front of an elevator until someone enters or exits.

4.4 Experiments

The proposed navigation and manipulation scheme is implemented on a robotic platform,

integrating the proposed approaches, i.e. mapping, acquisition of haptic tags, generation of

the joint navigation/manipulation graph and local task planning. At first, the platform is

driven manually around the scene to have the Visual SLAM system acquire a map2 as outlined

2Of course, the map can also be loaded from a previous exploration

75

4 Joint planning of navigation and manipulation

1m

(ζ)

(δ)

(γ)

(β)

(α)

(a) Scene map (b) Navigation planning (c) Joint planning

Figure 4.6: (a) Map of the office scene showing candidate objects for exploration (orange),
feasible direct push plans (red) and the location of the photo in Fig. 4.5a (blue
triangle). (b) Navigation graph built from the vision-based map. The shortest
path between two nodes is shown in green/black and involves a long detour. (c)
Manipulation nodes are added to the graph (blue) and allow for a much shorter
and faster path. Figure adapted from [6].

in Sec. 2.3.6. For autonomous mapping, an automatic approach for exploration planning

would be required, e.g. based on the detection of unexplored scene parts [32].

Next, the map is searched for explorable objects, i.e. objects that look like they could be

movable by the platform. They are selected based on a simple scheme using the 2D map:

First, connected regions corresponding to the footprints of objects are extracted. Since the

visual map does not necessarily show the complete footprint, the convex hull is calculated.

The main selection criteria is the size sx,y of the footprint: Large objects are usually heavy and

cannot be pushed by small platforms, while small objects either fall when they are pushed,

or belong to larger structures, such as tables. Only regions with sx,y ∈ [0.1 m, 0.7 m] are kept

and explored by the platform one by one based on proximity and the possible cost benefit

according to Eqn. (4.2). Fig. 4.6a shows the filtered regions in orange.

Haptic tags are obtained according to Sec. 4.1 for the selected objects, see Table 4.1. The

following important object properties can be obtained from the tag: Fixed objects (PC) are

too heavy to be moved by the platform; falling objects (cleaner) react in a sudden movement

when pushed and can thus not be reliably manipulated; deformable materials retreat when

pushed by the foam (here, the back of the cushion is fixed to apply a large force). The

remaining objects are movable, but require significantly different efforts. Note how a larger

weight of the same object (paper bin, vase) results in an increased friction force. The door

exhibits a large drift, since it rotates around its hinge and continues its motion after the

76

4.5 Summary

platform stops. Finally, a large drift is observed during the first exploration of the vase: Its

rectangular footprint was touched at a corner, such that the object rotated during the push.

Haptic tags are associated to the map, such that the acquired haptic knowledge is stored and

can be refined over time by additional explorations.

After haptic exploration, the visuo-haptic graph is generated according to Sec. 4.2.1. The

navigation graph built directly from the map, see Fig. 4.6b, shows that there is no direct

connection between nodes/regions in the lower left part of the room – due to a blockade

by the stool (β). A path between nodes that are close-by in the map is thus quite long

(depicted in green/black). Next, manipulation nodes are added to the graph (blue, Fig. 4.6c)

for all the candidate objects, with node costs determined from the haptic tag. As the stool is

detected to be movable during exploration, it is connected to other nodes with costs tmani =

7 s. The push plan obtained for this object is depicted by a red line in Fig. 4.6a. Now,

a much shorter and less costly path is found between the same two nodes (green/back in

Fig. 4.6c). The lengths for the two paths are 6.0 m for pure (visual) navigation or 1.8 m

for the combined navigation/manipulation plan. Navigation costs are determined based on

a maximum platform speed of vmax = 0.3ms . Manipulation is performed at a lower speed

of about vmani = 0.05ms and also requires constant costs of 4 s, which is typically needed to

position the platform correctly.

In the top right of the room there are two detached nodes (Fig. 4.6b) because of a blockade

by object (δ). One of the feasible push plans (red in Fig. 4.6a) can remove the obstacle and

enable access to that part of the room. Note that the manipulation nodes for object (γ, α)

exhibit a high connectivity to neighbors – yet, due to the manipulation costs, the associated

edges would not be chosen by a path planner.

Visual processing for the proposed sensor runs at 30 Hz camera frame rate even on larger

images (1600 × 896 pixels) using an Intel i7 platform. This is due to the fact that tracking

relies on individual interesting points (such as the foam contour or the object region), instead

of using the entire image. The high-level graph-based planning algorithms are implemented in

MATLAB and require a few seconds for processing on larger maps as presented in Fig. 4.1b.

Note, however, that there are no strict realtime requirements for high-level planning.

4.5 Summary

Indoor navigation of robots is typically based on occupancy grid maps, which represent space

as “free” or “occupied” in 2D. Maps are generated using visual sensors, such as laser scanners.

Graph-based representations can be derived from these maps and allow for path planning even

in complex buildings. An abstract plan is extracted from the navigation graph, while platform

commands are generated by a local planner that considers current sensor readings.

In this chapter, an extension of navigation graphs built from vision with haptic information

about obstacles is proposed. Obstacles like glass doors that are invisible to a laser scanner as

77

4 Joint planning of navigation and manipulation

well as movable obstacles that can be pushed away are integrated in the navigation graph as

manipulation nodes. From the extended navigation/manipulation graph, a plan is generated,

which integrates navigation and manipulation operations that are related to navigation. This

representation avoids collisions with invisible objects, allows for shorter paths by moving an

obstacle instead of taking a detour and enables access to areas that are otherwise blocked

by a movable obstacle. Local planners are presented to control platform motions during

manipulation operations.

78

5 Visuo-haptic geometry fusion

The acquisition or reconstruction of models from real objects is an important problem in

robotics and other fields like augmented reality or gaming. Multi-view methods, such as

KinectFusion or OctoMap, see Sec. 2.2.1, create a full geometric surface model of an object

based on data acquired with a depth sensor from many views around the object. Accurate

object models are important for robotic tasks like detection, manipulation and semantic

planning. GraspIt [73], for instance, relies on accurate object models to find stable grasp

configurations. In Chapter 6, object models are used to obtain local stiffness by simulation.

For many methods, it is essential that the geometry is correct on the entire object – holes or

large errors cannot be tolerated.

Multi-view reconstruction methods build high-quality 3D models by fusing measurements,

thus reducing sensor noise and extending the observed space. One basic assumption in the

fusion process is consistency of the observed 3D structure. This means that objects in the

scene must not move and exhibit diffuse (Lambertian) reflection for all viewpoints. Only

small deviations, e.g. a small component of specular reflectance, can be accepted. Transparent

objects, however, cannot be reconstructed with such methods, since their image formation

model is more complex than for diffuse reflection. Regardless of whether an active visual 3D

sensing technique or a passive stereo camera is used – the appearance of transparent objects

depends on multiple factors such as the background behind the object, viewing angle, object

geometry and local reflectance.

Transparent regions cause errors or gaps (holes) in the reconstruction process, which must

be detected in order to obtain complete and correct object models. To this end, an algorithm

for transparency detection is proposed, which searches depth maps for geometric inconsistency

effects caused by transparency. Consistent scene parts are filtered out. The detection result

represents a rough indicator for transparent regions – it can at best reconstruct the convex

hull of such regions. Similar to the above reconstruction methods, the scene must be acquired

from multiple views by moving the camera along a trajectory. Detected inconsistencies are

accumulated in a 3D volume. The proposed method detects objects with a smooth, curved

surface exhibiting dominant refractive effects and, with limitations, surfaces with specular re-

flection. The following discussion focuses on transparency effects – with according arguments

for reflective objects.

In order to obtain details about the geometric structure within transparent regions, i.e. to

“fill holes” of geometric models, a haptic exploration scheme is proposed. Points from the

object surface are acquired by touch with a single point contact probe mounted on a robot

79

5 Visuo-haptic geometry fusion

arm. It is assumed that at least a partial visual object model is available, i.e. the object has

some non-transparent areas. The result of transparency detection serves as an initialization,

providing a region in which to conduct haptic exploration. Haptic exploration steps consist

of moving the probe along a line, until contact with the object is detected. These steps are

planned such that they provide most information gain about the object surface, according to

an estimator. A surface is reconstructed using radial basis functions (RBF), a method for

fitting and extrapolation of surfaces. Fitting is based on a set of so-called support points.

Initially, this set consists only of valid points from the available visual model, which are

located at the edges of the hole. There are no data points within the region of the hole,

such that initial extrapolation results are inaccurate. Subsequently, additional “haptic” (i.e.

haptically explored) points within this region are added to the set of support points by each

exploration step. Extrapolation is refined by new points in an iterative fashion. The certainty

of the reconstructed surface is estimated with a distance measure, based on the proximity to

support points. Haptic exploration is then performed within the most uncertain region, i.e.

along a line through the surface point with the largest distance to any support point. Finally,

a complete object model is obtained from the visual model together with mesh extrapolated

from haptic points.

This chapter is party taken from [4].

5.1 Effects of transparency

Image formation for transparent objects is based on a multitude of effects, as discussed in [47].

In this work we mainly exploit the “lens effect” caused by refraction of light passing through

a curved transparent object. This is the dominant effect for clear, smooth materials hit by

light rays with a non-acute incident angle. Looking at a transparent object, an image of the

background is observed, which is distorted by refraction of the light ray as it passes through

the air-surface boundaries of the transparent object. In this distorted image, depth estimation

methods see a “virtual object” whose depth is shifted from the real depth of the background,

see Fig. 5.1. The depth distortion depends on a multitude of variables, such as the real depth

of the background, angle and position of the refracting surfaces (i.e. pose and geometry of

the transparent object), camera position, refraction index and thickness of the material. As

the main purpose of our approach is to find unknown transparent objects, only very weak

assumptions about their geometry can be made. Therefore, it is impossible to predict or

model the expected background distortion. For instance, even a simple bottle refracts a light

ray four times on its inner and outer surfaces. Due to these considerations, we do not attempt

to model the expected distortion, but rather focus on detecting any background distortion.

This approach is also more robust when incorrect or no depth data are measured, and it can

deal with additional depth distortion effects like specular reflection.

For active sensors, such as the Kinect, refraction on the object does not only occur for

80

5.2 Transparency detector

Figure 5.1: A partly transparent bottle in front of a wall is observed by a Kinect/Xtion
sensor (left). The corresponding point cloud (center, rendered above the view-
point of the real camera) is correct around the label, whereas the transparent
bottleneck is missing. Instead, this part of the object distorts the background
by refraction, clearly visible in the top view (right). Figure adapted from [4].

incoming light rays (traveling towards the camera), but also for outgoing light rays (from the

projector). Like that, a partly distorted pattern is projected onto the background. Depending

on camera-projector baseline and scene geometry, refraction at the transparent object may

affect the measurement in three ways: Distortion of incoming rays, of outgoing rays or of

rays in both directions. In addition, due to the strength of the projected rays, a significant

portion is reflected on the transparent surface, leading to specularities in the IR image.

The Kinect sensor requires the projected pattern to be intact in a certain local neighborhood

for successful matching. This is the case if refraction along a smooth surface is the dominant

effect. However, if the pattern is distorted by too many effects – such as diffuse reflectance,

attenuation or sub-surface scattering – pattern matching will fail, yielding an invalid depth

(or hole in the depth map). Objects exhibit different dominant effects in different regions

of the surface and depending on the camera pose. In a single view, the depth image of the

transparent object is often “sparse”, i.e. (distorted) depth data are only available in some

areas. Thus, measurements from multiple viewpoints must be combined.

5.2 Transparency detector

The detection method is based on a search for geometry distortions caused by transpar-

ent objects. These distortions are geometrically inconsistent from different viewpoints, as

they depend on multiple variables discussed above. In contrast to [65], which also detects

81

5 Visuo-haptic geometry fusion

Trajectory

T : v? → v0

vi

vj

Gap

Local
model

Current
view v0

Figure 5.2: Proposed setup: While the sensor is moving around a transparent object (blue)
in the scene, a background model is generated and compared to the current
observation. Figure adapted from [4].

transparency with a Kinect, see Sec. 2.2.2, the presented method processes seemingly “valid”

measurements from the sensor. It is therefore not required to provide geometric models of

the transparent objects. The sensor is moved along a trajectory, which should ensure a broad

coverage of viewpoints onto the relevant scene parts (space of interest, Fig. 5.2). On a robot,

this step could be performed during navigation or while positioning the arm. Camera poses

are determined by a visual tracker, see Sec. 2.3.2. During the movement, the expected, stable

scene geometry is predicted from past measurements (background model) and compared to

the current observation.

5.2.1 Local background model

A local scene model, yielding a geometry estimate along with a reliability measure, is built

based on depth maps taken from multiple viewpoints. These viewpoints are located on the

sensor trajectory, close to the current observation both in time and space. We work with

eight views roughly 0.02 m apart along a distance of 0.2 m. Compared to a global model,

this approach offers several advantages: The model is generated online, there is no need for a

separate, time-consuming exploration step, as changes in the scene cause only local distortions

and there is no need for global geometric consistency.

The model must deal with a number of error sources. First of all, the Kinect sensor exhibits

a certain noise level over time and space. Under ideal conditions (e.g. a bright matt planar

surface), as shown in [53], the noise can be modeled by a Gaussian with standard deviation

σk dependant on depth z (in meters). Furthermore, there are small tracking and calibration

82

5.2 Transparency detector

errors, which are modeled by a Gaussian with σt. Together, these components determine

the standard deviation of the expected minimum sensor noise σs, with σs from [53] and σt

measured from experiments:

σs(z) =
√
σ2
k + σ2

t =

√(
1

2
2.9 · 10−3z2

)2

+ 0.012 (5.1)

On the other hand, scene parts such as edges, fine structures or certain material types

exhibit a much higher noise level. For instance, depth edges are depicted frazzled and flicker

between background and foreground over time due to the matching neighborhood used by the

sensor. In other cases, the sensor yields mostly invalid data. This is the case for surfaces hit

by the projected rays with a very acute angle, some active light sources, surfaces with a very

low albedo, scene parts which are beyond the measurement range as well as for transparent

materials. Even though the (few) valid observations of these scene regions might be consistent,

their reliability is low. Finally, errors may be caused by jumps in the estimated pose or losses-

of-track, which temporarily invalidate all measurements.

A model for each current viewpoint c = v0 is built from depth maps taken at nearby poses

vi, . . . vj with j > i, i > 0. Depth maps are projected into the view c, see Fig. 5.2, using poses

obtained by the tracker [10]. Hence, (j − i + 1) measurements are available for each depth

pixel whereof some provide invalid data, leaving a lower number n of valid measurements.

Assuming a Gaussian distribution, a mean depth D(c) and a standard deviation σ̂(c) can be

estimated with a maximum likelihood estimator. The estimation bias of σ̂(c) is corrected by

σ(c) =
√

n
n−1 σ̂

(c). As n is quite low, it is infeasible to estimate more complex models – such

as a Gaussian mixture model – even though they might be more realistic.

The observed Gaussian distribution Nσ(c) is compared to the expected error model Nσs
given by Eqn. (5.1). Reliable regions in the scene exhibit a standard deviation σ(c), which

is lower or equal to the expected error. The reliability is quantified with a score determined

by comparison of the two distributions using the squared Hellinger distance. This distance is

commonly used to quantify the similarity between two probability distributions, see [80]. For

two Gaussians with equal mean, it is calculated according to:

H2 = 1 −

√
2σ1σ2
σ2
1 + σ2

2

(5.2)

The reliability score is evaluated per pixel as follows:

S(c)r = `
(
1− wH2

)
= `

[
1− w

(
1−

√
2σsσ(c)′

σ2
s +

(
σ(c)′

)2
)]

if n ≥ 3 (5.3)

with σ(c)′ = max
(
σ(c), σs

)

83

5 Visuo-haptic geometry fusion

(a) Model depth D(c) (b) Reliability S(c)
r (c) Error S(c)

E

Figure 5.3: Local background model and error score/image for a view c = v0 of the scene
with object “Bottle-G”, see also Fig. 5.6a. The model is generated from past
views taken right of v0, leaving a region of low reliability that appears as a
shadow left of the object. Figure adapted from [4].

The value of the score is 1 for reliable regions where σ(c) ≤ σs and 0 for n < 3 or very

unreliable regions. The weight w is chosen such that S(c)r drops to 0 for σ(c) ≈ 4σs. Function

` clamps the lower bound of the score value to 0 in case of large errors. An erosion operation

is applied to the reliability image S(c)r in order to add a margin to the unstable regions.

The views vi, . . . vj are taken in a dense fashion from the recent sensor trajectory. A gap

of about 16 cm is maintained between the closest view vi and the current view v0 in order to

avoid model distortions in the same image area as in the current observation, caused by the

transparent object itself. For instance, assume the camera turns around the space of interest,

as depicted in Fig. 5.2. The most recent views are distorted by the transparent object in

almost the same image area as where the object is currently seen. Older views, on the other

hand, provide a valid estimate of the current background, as the distortion from a transparent

object is projected to other image regions, see the “shadow” in Fig. 5.3b.

The model for the current view, see Fig. 5.3, consists of
(
D(c), σ(c)′,S(c)r

)
, which is a straight-

forward and sufficient representation of the expected scene geometry at the current viewpoint,

merging information from past views vi, . . . vj . It can be directly compared to the depth map

at c = v0. Processing of depth maps is fast, especially compared to operations on volumetric

or point-based data. While many scene reconstruction methods try to find the best guess

in noisy data, the proposed method suppresses any unstable regions, in order to allow for a

reliable rating of the current observation.

5.2.2 Detection of inconsistent geometry

Transparency is detected by comparing the current depth observation z to the scene model

while moving the sensor around the space of interest. The comparison is performed at regular

intervals (such as 2 cm) and should be carried out over a preferably large range of different

84

5.3 Geometry estimation in transparent regions

viewpoints. Given the model
(
D(c), σ(c)′,S(c)r

)
and the observation z′ =

∣∣∣z −D(c)
∣∣∣, an error

score is derived from the probability p (|Z ∼ Nσ(c)′ | > z′) = 1− erf
(

z′√
2σ(c)′

)
, which identifies

observations that contradict with the model. Noise is suppressed and stability is increased

by only considering high probabilities, using a mapping of p ∈ [θ, 1.0]→ [0, 1] and p < θ → 0

with θ = 0.9. Together with the model reliability S(c)r this yields the error score/image:

S(c)E = O · S(c)r · `
{

1

1− θ

[
1− erf

(
z′√

2σ(c)′

)
− θ
]}

(5.4)

The Boolean term O determines whether the observed 3D point was already in the field

of view during model generation. Like that, an object that suddenly comes into view of the

camera does not trigger an error. A large error signal identifies geometric inconsistency caused

by transparent objects, see Fig. 5.3c: The model predicts the depth D(c) of the bottleneck with

a high certainty S(c)r at the background, which is not confirmed by the current observation.

Thus, this region triggers a large error signal S(c)E . The error signal does not trigger on

inconsistent regions caused by static effect other than transparency or specular reflection,

as those regions are assigned a low reliability value S(c)r during model generation. Moving

objects, however, would result in a large value of S(c)E . Yet, there is some tolerance to this

case, as the error will not concentrate in a certain region of space. In general, however, static

scenes are assumed.

If a large error signal is found, no assumptions can be made about the real depth at

the affected pixel. Each pixel corresponds to a ray in space, and all we know is that there is

something unreliable along that ray. Therefore, using the known intrinsic and extrinsic camera

parameters, the 2D error signal is reverse-projected into a 3D “transparency volume,” which

covers the space of interest. While the camera moves along its trajectory, error rays with

S(c)E > 0 are cast into this volume, accumulating at voxels in or near the unreliable space,

i.e. near the transparent object. If enough viewpoints are integrated, ideally, the convex hull

of the object is regenerated within the transparency volume. For a good location and rough

shape estimate of the object, the viewing angles of the space of interest should cover 90◦ or

more. Measurements with large erroneous regions are ignored, as they are typically caused

by scene movements or temporary tracking errors.

Clusters of high values in the transparency volume correspond to a single object or a

connected transparent part within that object. The outer voxels of a cluster form a point

cloud that shows the rough shape of the object.

5.3 Geometry estimation in transparent regions

As discussed, transparency poses a major problem to visual geometry reconstruction methods,

such as KinectFusion or OctoMap [44, 76]. Fig. 5.4 shows reconstruction results of a partly

transparent bottle, subsequently referred to as “visual geometry”: Transparent regions mostly

85

5 Visuo-haptic geometry fusion

(a) Object “Bottle-G” (b) OctoMap (c) KinectFusion

Figure 5.4: Geometry reconstruction of a partly transparent bottle (a) with OctoMap (b) or
KinectFusion (c) results in an incomplete model (red), with holes in transparent
regions. Additional objects were placed on the table for KinectFusion to ensure
correct tracking. Note the errors from refraction effects behind the object in
(c). In (b), the result of transparency detection is shown in yellow. (b) Figure
adapted from [4].

do not show up in the reconstructed geometry, since they do not represent consistent geometry.

In some cases, there may be erroneous reconstructions, caused by effects described in Sec. 5.1.

Multi-view reconstruction and transparency detection are run in parallel in order to obtain

registered results. This is possible since both approaches rely on the same input data, i.e.

depth data acquired along a free camera trajectory.

Results from geometry and transparency reconstruction can be combined at two levels:

First, processing can be performed on individual views, effectively filtering out invalid depth

values from each depth map before casting them into the reconstruction volume. Detected

transparent pixels in the error score, see Fig. 5.3c, would just be removed from the depth

maps. However, it must be ensured that (almost) all invalid depth values are removed reliably.

Otherwise, reconstruction quality might even deteriorate, since individual incorrect values are

no longer contradicted by other measurements and thus become part of the reconstruction.

This requirement is not fulfilled by the presented transparency detector, since individual

error images are often sparse and only show parts of the transparency region. It would be

necessary to grow the regions in the error images, for instance by filling surrounding holes

and by combining results from multiple views.

Instead, it is favored to combine the final reconstruction results in 3D. Like this, by inte-

gration of many different views, geometry reconstruction removes already many inconsistent

regions, and the transparency detection process creates a dense volumetric representation.

Fig. 5.4b shows how the two detection results complement each other. The transparency

region may be considered a failure indicator of geometry reconstruction as well as a rough

estimator of the object geometry with in this failure region. Yet, there is a gap between the

86

5.3 Geometry estimation in transparent regions

two regions, which must be considered in further processing. Additionally, a small misalign-

ment is observed due to shadowing effects of the projector-camera system. This bias vanishes

if views from all around the object are considered.

5.3.1 Surface extrapolation

Extrapolation is a straight-forward way to fill holes in surface models based on nearby or

sparse samples of the surface. The underlying assumption is that the surface extends smoothly

beyond the known parts, and higher-order parameters – such as curvature – are preserved.

Yet, it is obviously impossible to predict features within the region of the hole, which do not

extend beyond it. Here, radial basis functions (RBF) are used for surface extrapolation, as

proposed in [16]. This method enables surface smoothing and extrapolation, even over large

gaps. Also, it exhibits robustness to noise. RBFs would allow representing the entire object

in a single model, including both visually and haptically obtained parts. Yet, this would go

along with high computational costs, so instead, RBF is just used to fill regions of holes.

Extrapolation based on RBF is a three-stage process:

1. Definition of a set of so-called “support points” with normals Xs, which lie on the

searched surface. RBF does not impose constraints on the sampling of these points.

For smoothing applications, point sets are very dense, while extrapolation usually goes

along with sparse point sets.

2. Extension of the support set by off-surface points Xs′ , which are located along the

normals at a given distance d from the original support points.

3. Fitting of the RBF r to the extended support set. RBFs represent an implicit surface

by a signed distance function, i.e. r(Xs)
!

= 0 for the support points, and r(Xs′)
!

= d for

the off-surface points.

4. Extraction of the isosurface (zero-crossing) of the RBF. The surface is generated with

Marching Cubes [62], which creates a mesh for implicit functions in an efficient way.

Based on the function values sampled at the corners of a cube, a triangular mesh element

is created using interpolation and a lookup table. This process is repeated for all cubes

in a regular grid, within a region obtained by growing the detected transparency region.

The RBF functions have the general form

r(X) = p(X) +

N∑
i=1

λiφ (|X−Xi|) , (5.5)

where p – low-degree polynomial, Xi – support points and φ – basic function. Several choices

exist for φ(x), such as the thin-plate spline x2 log(x), the Gaussian exp(−cx2), the biharmonic

spline φ(x) = x and the triharmonic spline x3, which is used here. Fitting RBFs to a set of

87

5 Visuo-haptic geometry fusion

support points (step 3) may be considered a training process. The coefficients in Eqn. (5.5)

are obtained by solving a linear system, which respects certain side conditions, see [16].

Support points Xs are taken from the known part of the visual model, i.e. from non-

transparent areas. It is sufficient to select only those parts of the geometry, which are in the

vicinity of the hole – far-away structures are typically not relevant for extrapolation. Also,

the size of the support set should not exceed 1000 points, in order to allow reasonable training

times of a few seconds. To this end, the set of support points is chosen as a “band” on the

known geometry around the hole. The geometry of this band is extended into the hole, so to

speak, but it cannot be expected to reconstruct geometric details that do not show up clearly

outside the hole. Note that the transparency region is typically a bit smaller than the visual

object model. In order to find the support points near the hole, the transparency region must

be enlarged until it touches the visual model. This can be achieved by locally growing the

transparency region until it overlaps with known points.

5.4 Haptic exploration of geometry

Missing regions (holes) of geometry models obtained by visual measurements are comple-

mented by points that are acquired haptically, i.e. by touch. In most cases, touch allows the

acquisition of data in regions where vision failed. Haptic exploration is the process of plan-

ning where to touch the object. Here, single point contacts are considered, i.e. a robot arm

with a sensor tip is moved until contact with the object is detected. In order to obtain a sur-

face, points from haptic exploration XH are used as support points for surface extrapolation

according to Sec. 5.3.1.

Extrapolation is incapable to predict geometric details without any additional data. Even

though the predicted surface may be correct in simple cases, in general, the certainty of the

extrapolated surface decreases with increasing distance to support points. We seek to obtain

an estimator of uncertainty for the extrapolated surface, assuming that the surface is locally

smooth, and certainty decreases with increasing distance from support points. Also, it is

assumed that “simple” surface areas (such as planes) have greater range of certainty than

complex (e.g. highly curved) areas. If these assumptions are invalid for a given object, the

exploration is not performed in an optimal way. It might require a few more iterations, but

coverage of the entire surface of the object is still ensured.

The estimator is based on a distance measure, which models the proximity of a surface point

X to any support point Xs. Here, a measure is required, which is fast to compute for many

point pairs and considers the global shape as well as the connectivity of the mesh. Several

distance measures for meshes have been proposed, see e.g. [60]. The geodesic distance measure

is based on the shortest path between two points on the surface. Despite its simplicity, this

approach has some drawbacks: Distances are not smooth and they are sensitive to small

changes, since only a single path is considered. Moreover, computation for many point pairs

88

5.4 Haptic exploration of geometry

is complex. Other popular measures consider the entire connectivity between any two points,

not just a single path: The diffusion distance is based on a heat diffusion process, and

the commute-time distance is based on the round-trip-time of a random walker. Diffusion

processes have a time parameter, which allows emphasising either local or global properties.

Finally, the biharmonic distance [60] is related to the latter two measures and represents both

local and global features in a balanced way. It is used here due to its beneficial properties

and its ability to provide distances for all point pairs in an efficient way. In the continuous

case, the biharmonic distance is expressed as follows:

db(X1,X2) =

∞∑
k=1

φk(X1)− φk(X2)

λk
(5.6)

Where φ, λ are the eigenvectors and eigenvalues of the Lapace-Beltrami operator. We calculate

the uncertainty score from the biharmonic distance as follows:

SU (X) = min {db(X,Xs) ∀Xs ∈ support points} (5.7)

The score is evaluated on the entire extrapolated mesh. Since the biharmonic distance is

evaluated for all point pairs of the mesh, there is hardly any performance degradation for

larger support sets.

Haptic exploration is performed by moving a single point probe along a straight line with a

robot arm until an obstacle is detected. The exploration process is parametrized by a starting

point, a line of exploration and a constant motion velocity. These parameters are determined

by the maximum position of the uncertainty score Eqn. (5.7). The maximum corresponds to

the “least supported” surface point, which is expected to provide most information about the

real object surface. The line of exploration is chosen such that it goes through this maximum

argmaxX SU (X) and intersects the estimated central height axis of the object perpendicularly.

This way, exploration is limited to a plane parallel to the floor. The starting point is chosen

at a “safe” distance away from the extrapolated mesh, e.g. a distance equal to the estimated

radius. Contact with the object is determined by a conventional force sensor – or by the

beam-based visuo-haptic sensor presented in Chapter 3. The position of the sensor tip at the

contact event corresponds to a haptically acquired surface point X
(h)
H . After transformation

to the visual coordinate frame, X
(v)
H is added to the set of support points. The transformation

T (v)
(h) between the haptic and visual coordinate frames must be known with great accuracy,

i.e. the two frames must be registered. A tracker such as Sec. 2.3.4 may provide T (v)
(h) by

simultaneously tracking templates on the object and the manipulator. It also compensates

for motions of the object caused by haptic interaction.

Exploration planning for multi-point contacts, such as humanoid hands, requires more

sophisticated approaches, due to the complexity of grasp patterns. Yet, the proposed scheme

can be extended to multi-point contacts in an efficient way using a greedy search: Initially,

89

5 Visuo-haptic geometry fusion

Figure 5.5: Office scene used for the evaluation of transparency detection. Transparent
objects are placed on the table, and the tripod with an Xtion depth sensor
(right) is then moved around the table.

the starting point for the first finger is planned as discussed. This imposes constraints on the

configuration of other fingers, i.e. the reach of each other finger is limited. An updated score

S ′U is calculated, which considers the influence of the first contact point. It is not required to

recalculate the score – instead, the point is just added to the support set. Next, the starting

point for the neighboring finger is determined by finding the maximum value of the updated

score within the reach of this finger. The process is repeated until starting points are found

for all fingers.

5.5 Experiments

This section presents results of transparency detection for several objects in a real-world scene.

Haptic exploration and surface extrapolation are analysed in a simulation environment, using

a large database of object models.

5.5.1 Transparency reconstruction

The method for transparency detection is evaluated in a cluttered office scene, see Fig. 5.5.

Different transparent objects made of glass or plastic are placed onto the table, and depth

maps are acquired with an Xtion/Kinect camera along a circular trajectory around the scene.

The space of interest covers the space on and above the table and is set to 1 m3. The camera

pose is estimated continuously using the tracker from [10]. As the tracker offers an online

learning mode, it is not required to build any model of the scene beforehand.

Reconstruction results are shown in Fig. 5.6. The detected transparent regions are depicted

as yellow “transparency” point clouds, together with a registered colored point cloud obtained

directly from the Kinect. The bottles “Bottle-G” and ”Bottle-B” exhibit non-transparent sur-

face areas with Lambertian reflection at the printed label, which are measured correctly by

90

5.5 Experiments

(a) Bottle-G (b) View: top (c) View: left (d) Beer glass (e) View: right (90◦)

(f) Bottle-B (g) View: slight right (h) Cups (i) View: right

(j) Wine glass (k) View: right (l) Mirror (m) View: top left

Figure 5.6: The proposed transparency detector is tested in a cluttered scene with six differ-
ent objects, see camera images in (a, d, f, h, j, l). Remaining pictures visualize
the detected transparent parts as yellow point clouds, together with the colored
raw point clouds from the sensor. The rendered viewpoints are shifted as in-
dicated compared to the physical camera position, resulting in unknown areas
that appear in black. Figure adapted from [4].

91

5 Visuo-haptic geometry fusion

the Kinect, see Fig. 5.6c and 5.6g. The upper transparent parts, however, are measured incor-

rectly and distort the background (see area near the plant in Fig. 5.6c). The proposed method

accurately detects these regions as transparent parts. The objects “Bottle-B” in Fig. 5.6f and

“Wine glass” in Fig. 5.6j exhibit relatively fine transparent structures at the bottle neck and

the stem, respectively. These are too small for detection – only the larger transparent parts

are reconstructed. Furthermore, an example of specular reflection (“Mirror”) is shown in

Fig. 5.6m. Here, the sensor measures the depth of the scene shown in the mirror, i.e. the wall

behind the camera, shown in bright blue. This is a geometric inconsistency as well, appearing

as a moving hole in the wall. As expected, this reflection is detected as well.

Finally, Fig. 5.4b shows the reconstruction result of object “Bottle-G” with OctoMap [44]

as a red point cloud. This approach combines multiple views to reconstruct Lambertian

scenes in a compact volumetric representation. Here, a voxel resolution of 5 mm is used,

and the camera pose is taken from the above-mentioned tracker. The scene is accurately

reconstructed, including the opaque label of the bottle. However, the transparent part of the

bottle is missing in the reconstruction. Transparency detected by the proposed method is

shown as a yellow point cloud and complements the 3D model of the scene.

Our approach is implemented in C++ using the ROS framework [82] and tested on a current

Intel i7 machine with 4 physical cores. Eqn. (5.3) and (5.4) are approximated by a quadratic

polynomial for faster processing. The measured runtime for model generation and detection

is 180 ms for 8 model views and 250 ms on average for processing of the transparency volume

running in a parallel thread. Using the suggested frame distance of 2 cm, realtime processing

is possible for a motion speed of approximately 8 cm
s . The tracker [10] runs in parallel at

camera frame rate, partly using the GPU.

5.5.2 Simulation of haptic exploration

The proposed scheme for geometry estimation by haptic exploration is evaluated in a simu-

lation environment. This experiment was partly conducted together with [31]. A dataset of

700 artificial object models is generated using the same approach as described in Sec. 6.1.2.

These models comprise variants of bottles with round, elliptic and partially planar shapes.

They are assembled from several “rings” with varying heights and curvatures. Fig. 5.7 shows

some of them in the first column. These complete models serve as the “reference geometry”.

Next, a large part in the center of each model is cut out to simulate a transparent region

(hole). The remaining geometry (upper and lower parts) represents the “visual model” and

is depicted in gray in Fig. 5.7.

Extrapolation according to Sec. 5.3.1 is applied to fill the hole. The support points are

sampled from regions in the “visual model” that are close to the hole. Results are depicted

in the second column of Fig. 5.7, with support points shown in blue. The extrapolated

mesh (yellow) complements the visual model and looks “smooth” – yet, significant errors are

observed: The geometry is too small for object A, and too large for object B. For object C,

92

5.5 Experiments

Object A Visual extrapolation Iteration 2 Iteration 6 Score SU (it. 2)

Object B Visual extrapolation Iteration 5 Iteration 10 Iteration 30

Object C Visual extrapolation Iteration 3 Iteration 19 Iteration 30

Figure 5.7: Simulation results of haptic exploration for three artificial objects. The com-
plete geometry is shown on the left, whereof the central part is subsequently
removed and estimated by extrapolation. The remaining pictures show interme-
diate extrapolation results (yellow – extrapolated surface, blue – visual support
points, red – haptic support points). The uncertainty score is shown on the top
right (orange – support points, red – detected maximum).

93

5 Visuo-haptic geometry fusion

0 5 10 15 20 25 30

10−5

10−4

10−3

Iteration

M
S
E

Score Eqn. (5.7)

Random

Object A

Object B

Object C

Figure 5.8: Error of the extrapolated geometry obtained by simulated haptic exploration.
The blue curve shows the average for the entire dataset.

the extrapolated geometry is entirely wrong. These problems may be attributed to wrongful

hints in the support region, i.e. the geometry does not continue as in the support region.

Next, haptic exploration is performed as discussed in Sec. 5.4. The uncertainty score SU is

evaluated for the extrapolated mesh as presented in Eqn. (5.7). A haptic exploration step is

planned based on the location of the maximum uncertainty score. Exploration is performed

along a line and yields one point on the object surface from the reference geometry. This

point is added to the set of support points. Surface extrapolation is repeated with the updated

support set. “Haptic” support points are shown in red in Fig. 5.7. The process is iterated,

each time improving accuracy of the extrapolated mesh by one additional support point.

Fig. 5.7 (top right) shows the uncertainty score obtained after two exploration steps. The

current location of the maximum (red point) determines the third exploration step.

Considerable improvements of the extrapolated mesh are obtained already by the first

few exploration steps. Geometric details of the three objects become visible after 6/10/3

exploration steps, respectively. An extrapolation error is observed in iteration 19 for object

C, probably due to a numerical instability. This problem disappears in the next iteration.

Finally, the quality of the extrapolated mesh is evaluated. To this end, the distances be-

tween the reference geometry and the extrapolated surface are calculated at regularly sampled

locations. Distances are squared and averaged within the extrapolation domain to obtain the

mean squared error (MSE). The MSE is plotted in Fig. 5.8 over the number of iterations.

Curves are shown for the three objects of Fig. 5.7 as well as for the average of the entire

dataset of 700 objects. On average, an improvement of one order of magnitude is observed

after 10 single point exploration steps. For the three exemplary objects, the MSE drops

94

5.6 Summary

rapidly for A, C, and for B, there is a continuous improvement. Also, note the peak for

object C at iteration 19. These observations are consistent with the images in Fig. 5.7. For

comparison, the average MSE is also given for random exploration, i.e. exploration steps are

performed along random directions. The exploration planner performs considerably better,

rapidly improving the geometry in the beginning and further refining it in higher iterations.

5.6 Summary

Existing methods for geometry reconstruction, such as [44, 76], cannot cope with transparency.

A detector for transparency is presented, which detects the rough position and shape of fully

or partially transparent objects. It is based on a search for geometric inconsistencies between

the current observation and a local background model. These inconsistencies stem from re-

fraction effects, which are observed on any curved transparent surface. Data are acquired with

the same setup as for the above reconstruction methods, by moving a depth sensor along a

trajectory around the scene. Experiments are presented, showing reconstruction results for

various bottles and glasses made of different materials like plastics or glass. Existing meth-

ods for transparency detection are either based on pre-learned models, specularity features,

structured scenes and lighting, or they rely on specialized sensors, which for instance scan

the object at different wavelengths [47].

In order to obtain a complete geometry model of an object, a haptic exploration scheme

is presented. The model uses visual geometry where available, and fills holes by surface

extrapolation with radial basis functions (RBF). Haptic exploration is performed with a

robot arm, which moves a single point probe along a line until a touch event is detected by a

force sensor. Exploration is planned in such a way that the respective “most uncertain” point

of the surface is touched. Surface extrapolation uses the explored points as support points,

together with visual support points at the edges of the hole. Like that, arbitrary surfaces

can be estimated. Certainty is expressed based on the so-called biharmonic distance between

extrapolated points and existing support points.

The proposed scheme is verified in an extensive simulation-based experiment. It works

with dense and sparse point set and is thus used for both visually and haptically acquired

points. The idea of fitting surfaces to points acquired haptically is a common principle, used

e.g. in [70]. Yet, most existing methods do not work with generic surface models, but rather

fit simple surface primitives such as planes, curves or spheres.

95

6 Deformation models for thin-walled objects

Deformable objects change their shape when a force is applied to them during a manipula-

tion process. This behavior must be considered for planning of manipulation tasks, such as

grasping. In this chapter, an object model for thin-walled objects is proposed, which inte-

grates deformation and stiffness characteristics with surface-based object representations as

used for visual reconstruction and object classification/recognition. These “haptic” models,

see Fig. 6.1, are developed for and demonstrated in two applications: Sec. 6.2 presents an

approach to obtain stable grasp configurations, and Sec. 6.3 introduces a method for object

classification based on haptic exploration, both applied to plastic bottles and similar objects.

Haptic classification is considered as a subsequent process following vision-based recognition

and typically discriminates between a low number of model candidates. A robot explores

haptic features such as the local stiffness on a real object and compares them to simulated

data. The presented models are especially suited for objects with varying local stiffness

along their surface. This applies to thin-walled objects, such as plastic bottles, cups or other

containers, which exhibit deformation characteristics that are strongly correlated with their

surface geometry. Objects made of soft homogeneous materials, on the other hand, exhibit a

more uniform surface stiffness that is determined by the inner structure.

Deformation characteristics of an object are obtained by elasticity simulation based on

the Finite Elements Method (FEM). The simulation is performed offline for a large object

database, or during a training phase for individual objects. A set of representative grasp

patterns is applied to the surface of each object. Simulation provides deformation shapes, i.e.

the changed geometry resulting from a given force or grasp pattern. So-called local stiffness

maps as well as stiffness features are derived from a set of deformation shapes.

Elasticity is a volumetric property, necessitating the generation of volumetric object mod-

els. It is not possible to directly acquire complete volumetric models from an object in an

automated fashion with sensors that could be mounted on a (humanoid) autonomous robot.

Instead, volumetric models are created from artificial surface models, using simplified assump-

tions about the volumetric structure, such as homogeneous contents or predefined volumetric

structures like thin walls. The training of a classifier for haptic object recognition requires

multiple variants of such models in order to avoid overfitting. Such variants are created by

parametric object models.

Parts of this chapter have been published in [8, 9].

97

6 Deformation models for thin-walled objects

Elasticity simula-
tion (FEM)

6.1.3

Boundary con-
ditions (forces),
×NG

Grasp pattern
generator

6.1.4

Object database,
×NO

Volumetric
meshing

6.1.1

Material / struc-
tural parameters

Parametric sur-
face models

6.1.2

Deformation
shapes, ×NG ·NO

Stiffness maps,
×NO

6.1.6

Stiffness features,
×NO

6.1.6

Grasp planner

6.2

Prior (from visual
detector)

6.3.3

Feature selection

6.3.1

Haptic object
classification

6.3.2

Modules

Data

Figure 6.1: Overview of object classification and grasp planning with deformable objects
models. During training, NO object models are generated, and their deformation
is analyzed at NG grasp points. References to the respective sections are given.

98

6.1 Simulation of object deformation

6.1 Simulation of object deformation

This section discusses the generation of artificial object models, their use in an FEM-based

simulation, generic grasp patterns as well as the modeling of liquids in containers. Further-

more, the proposed stiffness features and stiffness maps are presented.

6.1.1 Volumetric object models

Simulation of deformation is performed with the Finite Element method (FEM) and requires

volumetric object models. Such models represent surface geometry and inner structure as

well as elasticity parameters of the material, see also Sec. 2.2.4. In computer vision (as

well as in computer graphics), object models usually represent only the surface geometry

using triangular meshes, which are optionally textured. Surface models are used in numerous

manual and automatic modeling processes as well as for visual recognition and classification.

Automatic reconstruction systems such as [76] build accurate surface models even from a

handheld moving depth camera, see also Sec. 2.2.1. In order to benefit from this exiting

infrastructure and from existing object databases, volumetric models are built here based on

surface models. This process relies on additional information or assumptions about objects,

which may be available from priors, scene context, object databases or, to some extent, from

measurements. These assumptions are ambiguous, such that several volumetric models may

be derived from a single surface model.

In very simple cases, a volumetric representation may be obtained by filling the inside of a

surface model homogeneously. Yet, most artificial objects have an inner structure that is more

complicated. In this work, we consider deformable containers or packages – such as plastic

containers, bottles, bowls or cups for food, drinks, cleaning agents and other liquids. These

objects are highly relevant for autonomous robots that perform manipulation operations in

household and office scenes. They exhibit thin outer walls (or “shells”) and are often produced

by injection molding. This technique leads to relatively homogeneous materials within the

walls and allows for a great variety of shapes – which results in a large variety of deformation

behavior. Additionally, the overall stiffness varies within a large range, based on material

type and wall structure.

The material within the walls (the “contents”) is typically homogeneous and consists of

air or liquids. It must be distinguished between a gas or liquid that is enclosed inside the

container (“closed”) and an “open” container, from which gas can escape. These different

states have a considerable influence on deformation behavior and can be modeled in a simple

way: The content exerts a pressure to the inner surface of the shell caused by a volume

reduction of the gas, see Sec. 6.1.5. This inner pressure can be fed into the FEM simulation

as a boundary condition. Thus, as long as dynamic behavior is not of interest, additional

mesh elements are not required to model the contents. Solid structures inside of containers,

on the other hand, cannot be modeled in such a simple way.

99

6 Deformation models for thin-walled objects

Object models may be generated artificially, i.e. with a construction program, or measured

from a real object. The typical FEM workflow relies on the former type with accurate (noise-

free) geometry as well as complete knowledge of the inner structure and material parameters.

For objects in household and office environments such models are usually not available. In-

stead, however, surface models are often available, for instance from online databases, see e.g.

[56]. Volumetric models are therefore built here from surface models, extended by a descrip-

tion of the wall structure, material properties, etc. These parameters are specified manually

during the training process, obtained from priors (e.g. semantic information), assumptions or

from haptic exploration of real objects. Generally, there are multiple options for structural or

material parameters, such that multiple volumetric models are built from one surface model.

The container models are built from parametric models, see Sec. 6.1.2, which allow for the

generation of numerous object variations. In order to ensure accurate results from FEM sim-

ulations, volumetric meshes must obey certain quality criteria. There are established tools

that refine meshes accordingly – such as [91] for tetrahedral meshes.

Alternatively, volumetric models could be generated from a visually acquired surface mesh.

This approach, however, has a number of drawbacks. Multi-view methods for model genera-

tion apply smoothing in order to create “nice-looking” surfaces, which results in the removal

of sharp structures or edges. This can be tolerated for many applications in computer graph-

ics, as inaccuracies may be compensated by texture information. Yet, deformation behavior

changes considerably if such sharp structures are removed. On the other hand, if no smooth-

ing is applied, surfaces become rough or noisy, which also distorts deformation characteristics.

Furthermore, multi-view modeling approaches are time-consuming, making it unfeasible to

create large object databases. Multiple variants of each object would be required and be

scanned separately.

6.1.2 Parametric model generation

Parametric models generate volumetric object models based on geometric parameters, struc-

tural parameters and material parameters. The geometric parameters control sections or

control points of a parametrized object model. By sampling of this parameter space, many

variants of an object can be created. These variants are needed for several reasons: De-

formation behavior shows a great variability depending on the extent of certain structures

and on basic object parameters. Even for visually similar objects, geometric details or small

structures may have a large impact on deformation characteristics. Furthermore, training

processes used in machine learning approaches require a large number of variations to obtain

realistic representations of a certain object class and to avoid overfitting.

In this work, a dataset of artificial parametric surface models for typical containers and

bottles is created manually. Objects are built on a base area, which is an ellipse, a “flattened”

ellipse or a circle (resulting in a solid of revolution). The side walls consist of multiple

sections of splines, which are either straight, bent to the inside or bent to the outside. The

100

6.1 Simulation of object deformation

(a) No rim (b) Top rim (c) Stiffness map

Figure 6.2: Simulated deformation shapes of two models obtained from a force stimulus by
the indicated grasp pattern. There is a reinforcement structure (cap/rim) on
the top of object (b), which is missing in (a). In (c), the local stiffness map of
the object in (b) is shown (blue – soft, red – hard). (c) Figure adapted from [9].

parametric model generator used here is illustrated in Fig. 6.3a. Generating geometries from

such simple primitives makes it easy to create a large number of object variations by changing

the relations of the fundamental dimensions, the positions of salient points or turning points,

local curvature as well as the extent of convexities or concavities.

Despite their simplicity, the generated models show great variations in deformation behav-

ior. Accurate and regularly sampled surface geometries can be generated from parametric

models – a clear advantage compared to models obtained from visual observation. The thin-

walled structure is built with a second surface (the inner surface of the shell), which is created

by pushing all vertices to the inside by the amount of the wall thickness along the surface

normal. Additionally, to ensure realistic representations, typical structures of containers are

modeled – such as bottle caps, dents or reinforcement rings (rim). The latter structure is an

essential feature for grasp planning often found at the top end of bottlenecks or plastic cups.

Additional object instances are generated, exhibiting variations of these structures.

6.1.3 FEM-based elasticity simulation

An FEM model is built from the volumetric object models as discussed in Sec. 2.2.5. First,

a stiffness matrix is built for each tetrahedral element based on an elasticity model that

relates force and deformation (displacement). The system matrix assembled from element

matrices relates forces and displacements for all nodes of the object. A solver determines the

deformation shape for a given configuration of boundary conditions. Boundary conditions

are specified on surface points of the volumetric mesh. Displacements or deformations δ

101

6 Deformation models for thin-walled objects

represent Dirichlet boundary conditions, forces F represent Neumann (second type) boundary

conditions. The object must be fixed at some points, so for all vertices of the base plate,

δx,y,z = 0. (Without this fixture, a physics simulator would be needed to calculate object

motion.) For points on the outside surface of the wall, Fx,y,z = 0, except on points where a

grasp is applied to. The time scale for time-dependent deformations is small compared to the

duration of the grasping process. Therefore a steady-state simulation is performed, yielding

the new rest configuration of the object when a constant force is applied at certain points.

The goal of deformation simulation is to obtain a versatile representation of object defor-

mations for all feasible grasp configurations. Therefore, in an offline process, a deformation

database is built by applying an exhaustive number of grasp configurations to the outer object

surface, see Sec. 6.1.4. The object’s reaction, i.e. the displacement of all nodes, or deforma-

tion shape, is obtained for each grasp configuration. The surface near the grasp points moves

towards the inside, whereby the extent of the affected area depends on support structures

and object geometry, see Fig. 6.2. Spatially distant areas typically do not deform much, or

they are even slightly displaced to the outside. Even though linear elasticity models are used,

deformation behavior of the object may be non-linear. For instance, a large change in geom-

etry may lead to the weakening of certain support structures. To account for this effect, each

grasp pattern is simulated with multiple force values. Results from all deformation shapes

are subsequently integrated in a stiffness map, see Sec. 6.1.6.

6.1.4 Grasp patterns

Generic grasp patterns are used during simulation to generate boundary conditions for the

FEM. These patterns are applied to the surface either in a dense fashion to obtain a complete

stiffness map, or only to the feature locations (see below) to allow for faster simulation during

online processing. The simplest realistic grasp configuration that provides a stable grasp is

represented by two single points of contact on opposing sides of the object, such as shown by

the green arrows in Fig. 6.2. The line connecting these two points goes through the central

height axis of the object. The forces at the two contact points are directed in opposing

directions and thus result in a zero global force. Fig. 6.3b visualizes a feasible set of such

grasp patterns, see below. These patterns can easily be applied to real objects by using a

parallel two-finger gripper with short rods or “finger tips”.

Other than a simpler single point contact, this dual-tip configuration represents realistic

grasps: Due to the counterforce applied on the opposing point, the object does not globally

deform “away from” the contact point. Like that, a characteristic local deformation and

stiffness is observed. Grasp patterns with more complex grippers or hands require more so-

phisticated models and are not evaluated in this work. Still, the dual-tip configuration is

representative for more complex grasps: The counterforce could be applied by any number of

fingers or even a laminar contact on the back side, without significantly changing the local

stiffness at the frontal contact. Any grasp requires a balance of forces, which is already a

102

6.1 Simulation of object deformation

h1

hnrn

δy

c1
flat

flat

ca
p

h

r1r2

rim

h2c2

cn

(a) Model generator (b) Feature locations

Figure 6.3: (a) Parametric model generator: The red curve is rotated along the ellip-
tic/flattened (flat) base to create the object surface. It consists of sections
with height/curvature hi, ci and base/neck radii r1,2,n. Special structures, such
as cap, rim or a non-symmetric shift δy may be added to the geometry. (b)
Locations of stiffness features on the object, with a sampling pattern of 4× 10.
Opposing arrows (e.g. x+10 and x−10) correspond to one dual-tip grasp pattern.
(a) Figure adapted from [9].

fundamental property of the dual-tip configuration. Local stiffness, on the other hand, would

change considerably if an additional finger is pushed onto the surface within a certain neigh-

borhood around the first finger. The extent and shape of this neighborhood depends on the

object geometry and could be represented by a coupling matrix. There is no coupling between

two opposing contact points. Also, to represent more complex grasps with multiple contact

points, the deformation shapes from multiple dual-tip configuration can be superimposed.

In simulation, one grasp pattern corresponds to two point stimuli applied to two opposing

nodes on the outer surface of the object. The Neumann boundary conditions for these points

become nonzero. Forces are applied to the selected point X on the outer surface and its

opposing point X′, see Fig. 6.2a. The line XX′ intersects the central height axis of the

object in a perpendicular fashion. Forces are applied along XX′, according to the dual-tip

grasp pattern. The simulation is repeated for all points on the outer surface, yielding one

deformation shape for each point X and each grasping force value.

6.1.5 Modeling the contents of containers

The contents within containers or bottles is not considered by the volumetric modeling intro-

duced above. Instead of explicit modeling, the properties of the contents my be represented

103

6 Deformation models for thin-walled objects

by additional boundary conditions. Changes of the inner volume caused by deformation result

in a pressure, if the contents is enclosed and consists of gases or liquids. Pressure is isotropic

and results in a force on each node of the inside wall. Note that in fluid mechanics, FEM

is frequently used to simulate flow and pressure, yet this requires different types of finite

elements. The following models are used to model contents of containers:

Air, non-enclosed If there is an opening in the container, the air inside escapes when the

object is compressed. This is the case for empty bottles if the closure or cap is open. In

steady state, pressure on the inside wall equals the pressure on the outside wall, thus

Fx,y,z = 0 on the inside wall. The ambient air pressure is not of interest, since it is

exerted to all surfaces equally.

Air, enclosed In this case, pressure obeys the Boyle-Mariotte law P · V = const – i.e. it

increases with decreasing volume. In rest configuration, the volume enclosed by the

inner wall is V0, and the inside pressure is assumed to be equal to the ambient pressure

of P0 = 105 Pa. The inner pressure PI = V0
V1
P0 is obtained for the deformed object with

inner volume V1. Due to isotropy, this pressure acts everywhere on the inside surface.

The force applied onto a triangle of the inside wall with area Atri and normal ntri is

Ftri = (PI − P0)Atrintri. (6.1)

Since boundary conditions must be applied to vertices, the force is split equally to the

vertices of the triangle. Contributions from different triangles are summed up.

Deformation shape and inside pressure are mutually dependent. Thus, Eqn. (6.1) could

be integrated into the FEM system matrix Eqn. (2.7). Yet, this would break its sparsity,

and also FEM solvers are usually integrated as “black box” systems. Instead, Eqn. (6.1)

is integrated as boundary conditions that are updated in an iterative fashion. In order

to avoid oscillations, a damping factor c is introduced:

PI [t] = c · P (V1) + (1− c) · PI [t− 1]. (6.2)

Iteration stops when the amount of volume change drops below a predefined threshold.

Liquids Water and similar liquids are almost incompressible, i.e. they preserve their volume,

but not their shape. Typically, there is always some amount of air inside the container

in addition to the liquid. The pressure within the volume of the enclosed gas behaves

as discussed above, with updated volume terms:

PG =
V0 − VL
V1 − VL

P0, (6.3)

with the constant volume of the liquid VL. For the non-enclosed case, PG = 0.

104

6.1 Simulation of object deformation

Within the liquid, the pressure increases slightly with depth d due to gravity, yielding

P (d) = PG+1000 kg
m3 ·9.81m

s2
·d. Thus, the forces applied to the inner vertices (see above)

depend on the object height. Yet, the gravitational effect is low for small objects, such

that it is neglected here. One exception to this are containers with thin, unstable walls,

such as plastic bags.

6.1.6 Stiffness maps and features

The deformation behavior of a single point on the surface, without considering any deforma-

tion beyond that point, is referred to as local stiffness. This value is an important property

for grasp planning and haptic classification of deformable objects. For a given point XA,

local stiffness is obtained from the deformation of this point when a force is applied to the

same point – i.e. only a single displacement is extracted from the deformation shape that

corresponds to the grasp at XA (and its opposing point). The grasp pattern also determines

the direction of the force, which is roughly perpendicular to the surface. Deformations along

other directions can be neglected for the objects considered here. For linear elasticity models,

the local stiffness has the unit N/m and is used as in Hooke’s law. A dense representation of

the local stiffness is created for all points on the object surface. This so-called (local) stiffness

map, see Fig. 6.2c, allows predicting the deformation of each surface point, given the applied

force (or vice versa).

Higher-order elasticity models are feasible to represent objects in a more realistic manner.

Multiple deformation-force pairs are obtained by running the simulation for each grasp pattern

with multiple grasping force values. This results in a deformation-force curve for each surface

point, which does not necessarily follow a linear elasticity model. Higher-order models are

required especially in case of large deformations or for objects with a counter-pressure from

the inside, see Sec. 6.1.5. A linear and a quadratic model are fitted to the observed curve.

Fitting is performed both for the full range and for a reduced range of deformation of up

to 3 mm. Stiffness may vary greatly between these ranges, which are adapted to different

application scenarios. Three coefficients are obtained from the fitting process for each point

of the stiffness map:

1. Linear elasticity coefficient, low deformation (i)

2. Linear elasticity coefficient, full deformation (I)

3. Quadratic elasticity coefficient (normalized), full deformation (II)

The quadratic coefficient is normalized by a typical nominal grasping force and deformation

of (50 N, 1 cm) for numerical reasons.

The stiffness map is a detailed haptic representation of an object, yet its calculation is

time-consuming, and a direct acquisition from the real object is infeasible. Therefore, a

lower-dimensional (sparse) representation of stiffness is required, the stiffness features F .

105

6 Deformation models for thin-walled objects

They are determined by sampling of the stiffness map at descriptive locations, capturing

extremal points of the stiffness map. Sampling points must be aligned with the peaks/valleys

of the stiffness map. A fixed pattern of feature locations is required, which fulfills these criteria

and is adequate for all of the investigated objects. Elliptic objects exhibit two valleys and two

peaks around their circumference, which results in a minimum of four sampling points. These

points must be aligned with the extremal points, i.e. with the axes of the ellipses. Along the

height axis, 16 sampling points are chosen in order to obtain an accurate representation of

the stiffness profile. Thus, the feature vector F consists of 16 × 4 × 3 elements, with three

elasticity coefficients (F i,F I ,F II) for each point. Feature locations correspond to the grasp

patterns, see Sec. 6.1.4 and Fig. 6.3b.

Features are normalized for scale-invariance, which generally improves the performance of

detectors. Normalization parameters are stored alongside the feature vector. This allows for

the identification of the best fitting database object after classification. First, a straight-

forward normalization scheme is applied to the linear coefficient (i) as follows:

F̂ i =
F ′

||F ′||
, with F ′ = F i −median(F) (6.4)

The same normalization is applied to the coefficients for the full deformation to obtain F̂ I .
However, the calculation of the norm and the median is infeasible during exploration, since it

requires the full feature vector. Therefore, a second normalization scheme is proposed, based

on an estimate derived from a low number of feature points, which can be measured from the

real object within a reasonable time:

F̃ i =
F i

F i(x+8 , x
−
8 , y

+
8 , y

−
8 ,)

− 1 (6.5)

The four normalization features are taken from the center of the object (feature index 8 out of

16) on opposing sides with two grasp patterns. Third, an even simpler normalization scheme

based only on a single location x+8 is applied to obtain the feature F̃ i,(1).

Simulation and exploration of real objects are brought together at the level of stiffness

features: Features are measured directly from real objects using a robotic arm, see also

experiments in Sec. 6.4.2. Two opposing single point tips are attached to the two fingers of a

gripper and touch the object according to the grasping pattern on two opposing points (dual-

tip) as discussed in Sec. 6.1.4 and depicted in Fig. 6.3b. The number of force-deformation

samples is much larger than during simulation, which allows for the compensation of sensor

noise and other perturbing effects. Features are extracted in the same manner as discussed,

by fitting linear/quadratic models to the obtained curve. The manipulator is moved one by

one to the locations of the feature sampling points to obtain the full feature vector. The entire

process is referred to as “haptic exploration” of an object and takes several seconds for each

pair of features. Therefore, a full exploration of the object is only feasible during training.

106

6.2 Grasp planning for deformable objects

During the classification stage, feature selection is used to extract the relevant features from

the object, see Sec. 6.3.1.

Furthermore, a speed-up is possible at the expense of accuracy by an alternative exploration

scheme: Since the feature locations are arranged along two pairs of lines, the full feature

vector for linear elasticity may be acquired by exploration along a curve or line on the object

surface. For that purpose, the robot arm moves along an appropriate trajectory, sliding the

contact points along the surface. At the same time, the gripper is in force control mode

and pushes onto the object with a force Fp, adapting to the shape of the object. Curve-

based exploration offers substantial speed benefits, since the arm is constantly moving and

repositioning movements are avoided. The sliding speed must be chosen low enough to avoid

dynamic effects from inertia and surface roughness. Friction between the single point contact

and the object must be low – i.e. by using a smooth metal or wooden surface on the contact

point. In order to avoid motion of the object during the exploration, it is explored from top

to bottom while being fixed on the ground. Calculation of linear stiffness features requires

at least two pairs of force/deformation per sampling location. Since the resting shape of the

object (which corresponds to a force of zero) is assumed to be unknown, the curve-based

exploration must be performed twice with two different values for the force Fp. Alternatively,

a low-frequency offset can be added to Fp: Like that, deformation values for different forces

are obtained for neighboring points on the surface during a single run. Stiffness estimation is

based on the assumption that local stiffness remains almost equal within a close neighborhood.

6.2 Grasp planning for deformable objects

The goal of grasp planning is to find “stable” grasp configurations for a given object and

gripper. The object pose is determinate and remains fixed with respect to the gripper during

the grasping process. Grasp forces must be chosen large enough to avoid slipping or tilting

of the object. To this end, surface friction, weight and center of mass of the object must be

considered. At the same time, forces must be small enough to avoid the destruction of the

object. Most importantly, the deformability of objects must be considered: The chosen grasp

configuration must ensure that the deformation stays below a maximum value.

Here, a grasp planner for deformable objects is presented, which determines feasible grasp-

ing points based on the presented stiffness maps. Additionally, it integrates simple local

geometry features to find stable grasp points.

Candidates of grasp configurations correspond to the two-finger grasp primitives on the

entire surface, as introduced in Sec. 6.1.4. Note that these primitives ensure that forces are

balanced and directed towards the major object axis. There is exactly one grasp configuration

per surface point. The feasibility of each configuration is determined by a score SG. It

is evaluated for each surface point X and consists of four components listed below. Each

component has an associated coefficient w?:

107

6 Deformation models for thin-walled objects

(a) SG, cleaner (b) Sn (c) Sd (d) SG, cup (e) SG, cup-rim

0

0.2

0.4

0.6

0.8

1

Figure 6.4: Grasping scores for a complex bottle (“cleaner”) and a plastic cup with/without
reinforcement ring (“rim”) on top. Feasible grasp patterns are located at max-
ima of the grasp score and are indicated by arrows. Figure adapted from [8].

Contact A preferably perpendicular object-gripper contact is desired to ensure a determinate

object pose. The object surface normal n(X) and the direction of the applied force F

should be preferably parallel. Otherwise, lateral forces would cause object rotations and

slipping of the fingers on the surface. If there is a laminar contact between the finger

and the surface, the finger surface normal should be parallel to F. The contact score

Sn considers a neighborhood N of points within d around the current surface point X:

Sn(X) =
wn

||Nd(X)||
∑

ξ∈Nd(X)

(
1−

√
||ξ −X||d−1

)
F · n(ξ) (6.6)

Furthermore, a merely partial overlap between the finger and the object is penalized –

as visible near the very top of the object in Fig. 6.4e.

Curvature Similarly, grasps on points within a locally flat or concave surface area are less

susceptible to slipping. The curvature score Sc is calculated for each surface point X

using the following steps:

• Select points within a neighborhood around X

• Rotate this point set, such that the normal nX is oriented along the Z-axis

• Fit a second-order polynomial surface (z = p20x
2 +p02y

2 +p11xy+ . . .) to the point

set, using least-square minimization

• The curvature score is derived from the quadratic components of this polynomial:

Sc = 1 + wc min {p20, p02}

108

6.2 Grasp planning for deformable objects

If both coefficients are non-negative, the surface is flat or concave, and Sc is clamped

(see below) to 1.

Height bias An object may tilt around the grasp axis while it is grasped due to a torque

around this axis. Grasp configurations with two contact points, as used here, are espe-

cially susceptible to this problem. Static or dynamic torque may occur while the robot

arm moves a grasped object. An uncontrollable tilting of the object is easily avoided,

if the grasp point lies above the centroid of mass. A height bias Sh favors grasp points

that lie closer to the top of the object:

Sh(X) = (1− wh) + wh
Xz

max(Xz)
(6.7)

Deformation The object model provides a maximal acceptable deformation δmax and a re-

quired grasping force FG, see below. Based on the stiffness features F̃ i, it is straight-

forward to obtain the expected deformation for each point. It must be ensured that

deformation remains below a given upper threshold. A score is calculated as follows:

Sd(X) = −1

2
tanh

[
wd

(
1

F̃ i(X)
· FG · δ−1max − 1

)]
+

1

2
(6.8)

The score is 1 for small deformations, and 0 for large ones. A soft transition is ensured

by the tanh function, whereby the transition width is adjusted by wd.

In the above equations, the surface point density is assumed to be constant. Coefficients w?

are chosen according to the physical capabilities of the gripper. For instance, a finger with a

soft laminar rubber surface has a very high friction and thus tolerates relatively large lateral

forces, while a metallic tip hardly offers any lateral stability. The size of the neighborhood

around the contact point Nd(X) is adjustable, primarily based on the alignment accuracy that

the grasping system provides. Here, we use wd = 5.0, wn = 1.0, wc = 5.0, wh = 0.5, δmax =

5 mm and d = 1 cm for the neighborhood size. The final grasp score is obtained according to:

SG =
∏

S∈{Sn,Sc,Sh,Sd}

` (S) (6.9)

The individual scores are clamped to the range [0; 1] by the `-function. During manipulation

of a real object, the score is calculated online from the stiffness map and the geometry, after

the correct object model has been identified, see Sec. 6.3. Typically, multiple feasible grasp

configurations with a large enough score (e.g. SG > 0.5) exist. These configurations represent

the set of possible goals for the arm controller. To find the optimal grasp configuration, the

corresponding costs of the arm trajectory are considered.

The required grasping force FG as well as the acceptable deformation δmax are not deter-

mined by the planner itself. Instead, these values are specified semi-automatically as param-

109

6 Deformation models for thin-walled objects

eters of the object model. To determine FG, first of all, the friction coefficient µ between the

gripper and the object surface must be considered. Its value depends on the materials that

come into contact as well as their surface roughness. For a contact steel-polyethylene, µ = 0.2,

while contacts of many materials with rubber exhibit µ ≈ 1.0. If the contact point is located

below the center of mass, in addition, the friction torque must be considered to avoid tilting

of the object. Second, the weight of the object must be estimated, based on the volumetric

model, the density of the material as well as the contents within the container objects, which

is most significant for plastic containers. An upper limit of the weight of the contents is cal-

culated based on its density and the volume of the container. Feasible values of the grasping

force can be calculated automatically during training of the generation of the object database.

Yet, additional assumptions are necessary – such as the typical surface roughness of materials,

the fill level of liquids in containers and correspondingly, the acceptable deformation δmax.

Such prior values are given manually per object class.

In the presented grasp planner, object geometry is considered based on simple geometry

features. This simplification is applied in order to demonstrate the effects of integrating

deformation models in a straight-forward way. Even though the grasp planner works with the

presented objects, in general, more aspects of object geometry must be considered. Complex

grasp patterns – such as those from a humanoid hand – require more sophisticated models.

Grasp planning is an active field of research, even for rigid objects, and many approaches have

been presented for different scenarios. GraspIt [73] – a state-of-the-art system applicable to

many kinds of objects – determines stable grasps by a Monte Carlo simulation: Numerous

grasp configurations are generated randomly, and a physics simulator is used to verify their

stability. It is not the goal of this work to propose a new, versatile grasp planner. Instead, the

proposed score based on the stiffness maps could be integrated into these existing methods.

6.3 Haptic object classification using stiffness features

Object classification is a second application of the proposed stiffness features. In this section,

a method for feature selection, online exploration planning and classification based on classi-

fication trees is presented. Following, relevant scenarios for haptic classification are discussed,

and a process for joint visuo-haptic classification is outlined.

6.3.1 Feature selection and exploration planning

Feature selection methods are widely used in machine learning – mainly in order to speed up

processing with complex detectors, see e.g. [19], sometimes also to improve the classification

performance. They are based on various principles, such as the mutual correlation of features

with the predicted variable, correlation between features, subspace methods or information

gain. One straight-forward approach is to apply subspace decomposition with principal com-

ponent analysis (PCA) to the feature space. In [1], a method for a greedy feature search based

110

6.3 Haptic object classification using stiffness features

on the a posteriori detection accuracy is proposed. Neighboring features are often highly cor-

related, such that one “representative” for each neighborhood of features is sufficient. The

stiffness features clearly show that property, see also Fig. 6.7a. Feature statistics rely on data

available during the training process, which is why a large number of representative samples

are required. Many approaches require the full feature vector as an input, i.e. each element

must be known before the selection process.

In point-based haptic exploration, one is faced with the situation that each element of

the feature vector needs to be obtained individually by touching the object at its respective

location. It is not possible to simply circumvent this limitation by a multi-contact sensor,

since local stiffness is influenced by nearby touch points. The acquisition of each element of

the feature vector comes with costs of several seconds, and therefore, it is the goal of feature

selection to identify a possibly low number of features (e.g. less than 10 elements), which are

sufficient for reliable classification. On the other hand, the speedup of classification or other

computational processes is of lower interest: There is enough time for computations while the

robot is moving, and the dimensionality of the stiffness feature is small anyway.

Classification trees have been identified as a favorable approach for haptic classification,

which simultaneously provides feature selection, exploration planning as well as classification.

They are trained rapidly online, given a subset of classes from a previous detector that provides

a prior, see Sec. 6.3.3. Feature selection is performed even twice: First, during the generation

of the tree (training phase), a subset of features is identified, which is sufficient for accurate

distinction of all given class candidates. Consequently, with a lower number of classes due to a

stronger prior, the number of required features is reduced. Second, during classification, only

those feature elements are acquired, which lie along the chosen path through the tree. If an

object is clearly distinguished by a single feature, only a single exploration step is performed.

It should be noted, however, that other methods for classification, such as SVM [17], exhibit

a better classification performance than classification trees.

In the notation of classification trees, each object type is a class of which several observa-

tions exist, corresponding here to variations of material, geometric details, etc. The goal is

to predict the class based on prediction variables, which are elements of the feature vector.

Here, we use the MATLAB implementation of binary classification trees, which is based on

the CART method. (For an introduction, see [61].) Binary trees split the data into two

subsets at each level, based on the comparison of a single predictor variable with a threshold.

The construction of the tree from training data is performed as follows:

1. Start at the root node with all observations.

2. Find a split between the observation set, which minimizes the sum of the impurities

of the two child nodes. The split is based on comparison of a single element k of the

feature vector with a scalar θk. Both the scalar and the element index are obtained by

optimization, minimizing the impurity. Intuitively, the two subsets in the child nodes

represent the two most dissimilar subsets of observations.

111

6 Deformation models for thin-walled objects

3. Repeat the above step recursively for each child node. Stop splitting once a stopping

criterion is reached, e.g. all observations in a node belong to the same class. Leaf nodes

are associated with a class.

4. Prune the tree to a smaller size by minimization of the misclassification error. An

estimate of the error is obtained by cross-validation.

The impurity of a node is determined by Gini’s Diversity Index gdi = 1 −
∑

c p
2(c), were

the sum is performed over classes c that reach the node and their respective probability p (i.e.

share of observations) at the node. A node with only a single class exhibits the minimal gdi

of 0. The split parameters (k, θk) are determined by optimization:

(k, θk) = argmin
k′∈F , θ∈R

∑
n∈n1,n2

1−
∑

c∈cn(k′,θ)

p2(c)

 (6.10)

Where n1,2 are the two child nodes and cn is the set of classes that arrives at node n, which

depends on the split parameters.

For classification, the tree is traversed from the root node until a leave with an associated

class is reached. At each node, one element from the feature vector must be measured. This

is the element that provides most information gain, given the existing knowledge. Its value is

compared to the learned threshold and determines whether to continue to the left or right child

node. The classification uncertainty is reduced, and the next most relevant feature element is

obtained. Due to these properties, the classification tree also serves as an exploration planner.

Each node is associated to one feature location (one element of the feature vector) such that

the path through the classification tree determines the exploration strategy of the object.

All knowledge from previously acquired features is integrated at any location within a path.

Feature elements are only measured as they are “requested” by a node, while all irrelevant

features (i.e. those that are not on the chosen path) are ignored. Note that there may also be

decisions based on a previously acquired feature with a different threshold. The exploration

step can be skipped in such cases. In [26], a method is presented that deliberately prefers

already acquired features to reduce classification time.

6.3.2 Scenarios for haptic exploration

Haptic exploration provides additional object knowledge in the context of (visuo-)haptic clas-

sification and detection. In the following, some scenarios are presented, in which it is feasible

to obtain information relevant for manipulation by haptic exploration.

Object variants There are numerous variants of objects that cannot be distinguished by

visual detection due to a similar appearance or unspecific visual models. These variants

include different materials, wall thicknesses, reinforcement structures, dents or other

geometric details. Each variant is represented by one or several haptic models. For

112

6.3 Haptic object classification using stiffness features

instance, reinforcement rings/rims on the top of cups or bottles result in significant

differences of local stiffness and consequently in different grasp plans, see Sec. 6.2.

Models are distinguished by haptic exploration as outlined in Sec. 6.3.1. In many cases,

a low number of features suffices for discrimination.

Object state For a given object identity, there may exist multiple internal discrete or non-

discrete object states. In case of a bottle, states may refer to the cap (open/closed)

and the fill-level of the contents. State changes result in changing haptic properties,

such that haptic exploration can be used to identify the state value. The relations

between states and haptic properties are either predicted by models, see Sec. 6.1.5,

or they are learned from the real object. Since properties may only differ for large

deformations, exploration speed should be lowered and the number of exploration steps

should be as low as possible. Therefore, the object state is determined subsequent to

class-level recognition. Also, a (visual) verification method might have to be used to

avoid destruction of the object.

From the detected object state, certain limitation for grasping and manipulation plans

may be derived. For example, depending on the state of a bottle, the following con-

straints must be considered:

• A closed bottle filled with water is relatively stiff and heavy. The grasping force can

be larger than required, ensuring a stable grasp. The grasping point is determined

based on geometry and does not need to be very accurate. There are no constraints

on the trajectory, and fast manipulation is possible.

• Grasp plans for open bottles filled with liquids require additional considerations.

If such objects are grasped at points of low stiffness, the resulting deformation

might cause an overflow of the contained liquid. Safe grasping configurations are

thus limited to stiff regions of the object. Also, to avoid shaking, the grasp and the

subsequent motion trajectory should be executed with a lower speed. Furthermore,

the bottle must always point up, imposing further constraints on the trajectory.

• An empty bottle is much lighter and is thus grasped with a relatively small force.

The resulting deformation remains low on most parts of the surface, such that

there are fewer constraints on the grasp points.

Model refinement Simulation-based models typically do not represent all details of a real

object. A new, more accurate model may be derived from a generic object model by

refining model parameters, geometry and local stiffness. More accurate models im-

prove the performance of grasp planning and object classification. First, for parametric

models, the continuous parameters – such as wall thickness and elastic modulus – are

optimized to improve the fit between simulation results and observation. Also, linear

combinations of models may be created. Second, simulation-based models are refined

by integrating sparse measurements from real objects. To this end, local stiffness values

113

6 Deformation models for thin-walled objects

are measured at predefined or critical locations on the object. The simulation-based

stiffness map is corrected at the respective locations. In between the sparse samples, an

interpolation scheme is applied.

Haptic object classification with prior As discussed in Sec. 6.3.3, vision-based object clas-

sification should precede haptic classification or recognition. Results from vision serve

as a prior, which generally exhibits uncertainty and comprises several possible object

classes (candidates). Furthermore, one “visual” class may correspond to multiple haptic

models. Robots require a higher classification certainty than other applications, since

incorrect decisions may result in destruction of objects. The correct model is determined

by haptic exploration, see the experiment in Sec. 6.4.2. A haptic exploration plan must

be created, which allows for the optimal discrimination between the candidates. The

classification result can be used, for instance, to find feasible grasp configurations, or as

an input to a semantic planner.

6.3.3 A process for visuo-haptic classification

In this section, a process for joint visuo-haptic classification or recognition feasible for robotic

applications is presented. It consists of three stages: The first stage relies on data collected

using “passive” vision-based methods, which work remotely from the current perspective or

trajectory. This allows for parallel recognition of many objects in a room or scene, and often

one major constraint is the acceptable runtime of classification algorithms. Next, an optional

“active” visual exploration stage is started, which actively controls the robot trajectory to

acquire information about an object. One example for active exploration is driving around

an object to build a complete 3D model. Finally, the robot explores the object in the haptic

modality – i.e. it collects data by touching or manipulating the object. Active exploration

methods, both in vision and haptics, require the robot to focus on a single object or a small

group of nearby objects. The duration of data acquisition itself poses a major constraint.

Therefore, it is essential to consider the information acquired in the earlier, less costly stages

for the planning of subsequent stages with higher effort. Haptic exploration should be mini-

mized as much as possible (e.g. by reducing the number of touch points), or even skipped when

possible. A purely haptic exploration system is infeasible, except in extreme environments,

such as in muddy water, or in very small workspaces.

Visual recognition (for specific objects) or classification (on a class level) is based on one

of the methods discussed in Sec. 2.3.5. There are significant differences in the result charac-

teristics of these methods, with strong implications for the haptic classification process:

• Using local texture features, objects of completely different shapes and functionality (se-

mantics) may be confused due to common design patterns or logos. While these objects

are visually similar by some measure, they might require entirely different manipulation

114

6.3 Haptic object classification using stiffness features

and grasping strategies. If an object does not exist in the database, the match with the

closest texture features may yield a completely unrelated object.

• Contour-based or other class-level recognition approaches do not provide the specific

geometry, shape or size of an object. This is done by construction, since the detector is

generated and trained for generalization. Training is performed with multiple variations

of size and shape, such that a classification of a previously unseen object is also possible.

Consequently, a visual class may correspond to multiple different haptic models, which

usually belong to the same semantic class though.

• Geometry-based classification typically yields objects with a similar shape, regardless

of the object class. Similar shapes may still imply different haptic properties – for

instance due to the material: There are cups built from ceramics, glass, thin steel

sheets, plastics or paper. The latter materials result in a much softer and lighter object,

due to considerably lower elasticity moduli. Furthermore, stiffness depends on the wall

thickness, which is hard to detect by vision. Reconstruction methods fail, since the

inner surface is hard to observe, and depth noise is often higher then the wall thickness.

Finally, subtle geometric detail, such as dents or reinforcement structures, are hard to

see, but result in considerable changes in local stiffness. Note that these effects occur

with almost any visual detector, if there is no additional knowledge about an object.

In general, haptic classification may rely on prior information from vision, which reduces

the number of possible object candidates considerably. The remaining candidates, however,

may be very diverse concerning their haptic properties. Obviously, the distinction of large

differences in stiffness or even shape is relatively simple in the haptic modality and requires

only a low number of measurements. For more subtle differences, more precise and conse-

quently more time-consuming measurements may be required. However, two objects with a

high “haptic similarity” will also be manipulated in a similar way.

Information about objects is stored in various databases. First, a global object database

contains representations of thousands of objects and provides the basis for classification. It is

created by a central instance to provide generic capabilities of object classification to robots.

The required object models depend on the application area of the robot (such as household,

industrial production, service, outdoor) and should allow both for class-level recognition as

well as for the detection of specific objects. In case of a household robot, the database consists

for instance of the products available in the national supermarkets. Feature extraction and

training can be performed by the creators of the database. In order to construct features for

various visual detectors, object models must comprise geometry and texture. Besides visual

representations, haptic models are associated to each object. These models include stiffness

maps, stiffness features (Sec. 6.1.6), or – for less detailed models – haptic tags (see Sec. 4.1).

Haptic properties are obtained by physics and FEM simulation from the geometric model as

outlined Sec. 6.1. Specific visual object representations for recognition are associated with one

specific haptic model. Note, however, that multiple results may be provided by the detector

115

6 Deformation models for thin-walled objects

in the first stage. Representations on class-level are associated with a set of haptic models,

as discusses for the different cups.

Second, a robot builds local databases, which store visual and haptic knowledge of objects

in a specific scene and accumulate local scene knowledge over time. It comprises of objects

that are not present in the global database, additional or more specific information as well

as context information from the environment, such as the last known position of an object.

Building new object models is a time-consuming process: For the visual modality, a complete

geometric and texture-based model is acquired by driving around the object. Haptic proper-

ties must be determined by touching the object at many points. Depending on the application,

simplified models may be used, as presented in Chapter 4. Once a model comprising visual

and haptic information has been built, however, rapid recognition of the respective object is

possible. For instance, visual recognition can be performed based on local texture features

extracted from the texture model. The haptic model or haptic tag is loaded together with the

visual model, rendering the haptic classification stage unnecessary in case of unique classifi-

cations. Ambiguous classifications are less likely than for the huge global database, and they

could even be resolved using the scene context. That way, the classification time is reduced,

and the robot becomes faster in familiar scenes. New objects may eventually be shared with

the global database, if they are of general interest.

6.4 Results and experiments

This section presents results and experiments for the proposed methods. First, the simulation-

based process of object model generation, feature extraction and classifier training is outlined.

Next, stiffness data are acquired from various real objects and used for testing of the trained

classifiers. Finally, the grasp planner is demonstrated on real objects.

6.4.1 Simulation-based models

An object database is created based on artificial, parametric object models as outlined in

Sec. 6.1.2. The database includes various bottles, plastic cups and other containers. Ge-

ometries and stiffness maps of the most important classes are shown in Fig. 6.5. Object

variants are generated automatically by variation of several object parameters, such as di-

ameter, height as well as the curvature and height of object sections, see also Fig. 6.3a. For

instance, the object shown in Fig. 6.5a and Fig. 6.5d consists of three sections stacked upon

each other. Other variations include the wall thickness, material parameters as well as hidden

geometric structures or details. There are 50–100 variants within each class.

Stiffness maps and features are calculated as outlined in Sec. 6.1.6 with FEM simulation

based on the VegaFEM library [93]. It can be seen that local surface curvature has a strong

influence on local stiffness, see e.g. Fig. 6.5a. Strong “support structures” in areas with a

high curvature result in a high stiffness, while large, flat areas are rather soft. Rotational

116

6.4 Results and experiments

(a) Cleaner (b) Bottle (c) Elliptic (d) Smoothie (e) Cup, no rim (f) Cup, rim

2.0e+03

4.0e+03

6.0e+03

8.0e+03

1.0e+04

1.5e+04

Figure 6.5: Stiffness maps of exemplary models in the database (with unit N
m). Figure

adapted from [8, 9].

solids like the cup in Fig. 6.5e are expected to show a local stiffness that gradually changes as

a function of height. The bottom part is most stable, since it is supported by the base plate.

Adding a stiff structure on top of this object – such as a small reinforcement ring (“rim”)

– results in a significant increase of local stiffness on the upper part, see Fig. 6.5f. Note,

however, that the stiffness map is not completely rotationally symmetric. This error, which is

also observed in Fig. 6.5b, is caused by inaccuracies of the FEM simulation. The tetrahedral

elements are relatively ill-conditioned due the low wall thickness. At the same time, the mesh

resolution cannot be increased significantly due to memory limitations. Improvements can be

expected with different types of finite elements, which would require another library, or the

use of surface-based models, such as thin shell models [13]. The latter approach, however,

would limit the object types that can be modeled.

Normalized stiffness features F̃ i are extracted from the stiffness maps. In order to verify

their distinctiveness, features of all classes are cross-correlated using NCC in Fig. 6.6. Most

features exhibit a small mutual correlation coefficient, indicating that they are relatively

distinct. It can be expected that objects can be well distinguished based on these features.

However, the feature vectors of elliptic bottles (bottom right in the figure) show a high

mutual correlation. Even though these objects do exhibit characteristic differences in their

stiffness maps, see Fig. 6.5a and Fig. 6.5c, the features show great similarities. A cross-

validation within the database showed that it is still possible to distinguish these features –

yet transferability to real objects is critical, see below.

Classifier training Next, the generation of the classification tree, see Sec. 6.3.1 is analyzed.

In Fig. 6.7a, features F̃ i, see Eqn. (6.5), are shown for four different object classes. The

intraclass variability of the feature vector is indicated by error bars. It is evident that some

117

6 Deformation models for thin-walled objects

bo
tt
le cu

p

cu
p-

rim

sm
oo

th
ie

el
lip

tic

isa
na ci

en

cl
ea

ne
r

bottle

cup

cup-rim

smoothie

elliptic

isana

cien

cleaner

0

0.5

1

Figure 6.6: Correlation between simulation-based feature vectors F̃ i of different classes

elements of the feature vector allow for a good distinction of objects, namely those with a large

separation gap between classes. On the other hand, elements with almost identical values for

different classes are unsuited to discriminate different classes. The classification tree obtained

for this case is depicted in Fig. 6.7b. Obtained split parameters (k, θk), see Eqn. (6.10), are

marked in the plot. The selected features allow for good discrimination of object classes. The

first selected feature x+14 already separates “cup” from other classes, based on its low stiffness

on the top. The second selected feature y−2 lies near the blue curve and thus splits the bottle

class in two. This is why “bottle” appears in both subtrees derived from this feature node.

Additional classification trees are trained for combinations of two or three classes, see

Table 6.1. As expected, only a very low number of features is needed for discrimination. This

kind of classification task is relevant for instance when an object geometry has been identified

with high certainty by a preceding classifier, but there are still two or three candidates,

representing different geometric details, such as “cup/cup-rim”. Also, a classifier is trained

based on all classes from the database, which results in a larger tree with 9 feature elements.

The obtained trees are used for classification of real objects, see below.

6.4.2 Exploration of real objects

In order to explore real objects, a haptic exploration system is built with a two-finger Schunk

gripper mounted onto a KUKA LWR robot arm. Each finger is equipped with force sensors

and a wooden tip, see Fig. 6.8. Like that, it is ensured that objects are touched at two single

points with low lateral friction. The gripper is opened, positioned around the object and then

slowly closed, until a maximal force is reached. Contact with the object is detected by an

increasing force value. The position and force readings acquired during the closing process

118

6.4 Results and experiments

x+1 x+5 x+9 x+13 y+1 y+5 y+9 y+13
−1

0

1

2

3
bottle
cup

cup-rim

elliptic

Tree nodes

(a) Features F̃ i from simulation

bottle elliptic

cup-rim bottle

x+14

cup y−2

y+3 x+14

elliptic x+5

(b) Decision tree

Figure 6.7: (a) Simulation-based stiffness features for four relatively distinct classes. Error
bars show the standard deviation of features to indicate the intraclass variability.
(b) Decision tree trained for this subset of classes. Its nodes (i.e. the feature
indexes and decision thresholds) are also marked in the plot (a) with a ×-symbol.
(Features on x−/y− are mapped to x+/y+.)

Figure 6.8: The haptic exploration system with a KUKA LWR arm and a two-finger gripper.
Objects are touched/pressed with an increasing force by two sensor tips from
opposing directions at the feature locations, see Fig. 6.3b.

119

6 Deformation models for thin-walled objects

Classes Feature Loss Selected features k [Threshold θk]

1 cup, cup-rim F̃ i 0.0% x+12 [-0.28]

2 bottle, elliptic F̃ i 0.0% y+3 [0.01]; x+5 [0.34]

3 F̃ i,(1) 2.9% y+3 [-0.12]; y−3 [-0.36]; x+2 [0.21]

4 bottle, cup, elliptic F̃ i 0.5% x+14; y
+
3 ; x+5

5 F̃ i,(1) 2.7% x+10; y
+
3 ; y−3 ; x+2

6 bottle, cup, cup-rim, F̂ i 2.9% 7 nodes, 7 features

7 elliptic, smoothie F̃ i 1.2% 7 nodes, 6 features

8 F̃ i,(1) 3.7% 11 nodes, 9 features

9 cien, isana, cleaner F̃ i 0.8% x+2 [1.15]; x+16 [3.45]

Table 6.1: Decision trees trained with different subsets of classes from the object database

(a) Bottle, smoothie (b) Cut-bottle, cup-rim, cup (c) Cien, isana, palmo, cleaner

Figure 6.9: Real objects used in the experiments for haptic exploration and classification.
Four plastic cups in (b) were put into each other, since the force sensor was not
sensitive enough for a single one. The cut bottle also belongs to the “cup” class.
Bottles in (c) all belong to the “elliptic” class. Figure adapted from [9].

provide the deformation-force curve for the respective point on the surface, see Fig. 6.10b. In

our system, force/position readings are acquired with about 30 Hz, and the fingers move with

a closing speed of 5mm/s. Data from both fingers are measured independently, but a roughly

symmetric force on the object is ensured. To this end, the position of the gripper is corrected

such that both fingers touch the surface roughly at the same time. The process is repeated for

all feature points, see Fig. 6.3b, to obtain the full feature vector F̃ i as in simulation. Curves

for a pair of opposing points are acquired simultaneously by the two fingers of the gripper.

Stiffness features are calculated from the measured deformation-force curve as outlined in

Sec. 6.1.6. Fig. 6.10a shows the stiffness map obtained from the “cien” bottle in Fig. 6.9c.

In this setup, object poses are pre-known. Objects are fixed on their bottom side to prevent

motion during the exploration process, see Fig. 6.8. This approach ensures more consistent

measurements and allows measuring non-symmetric object stiffness. In realistic scenarios,

120

6.4 Results and experiments

4.0

6.3

10.0

15.8

25.1

(a) Stiffness map [N/mm]

0 2 4 6 8 10 12 14
0

20

40

60

Deformation [mm]

F
o
rc

e
[N

]

Open, x−4
Open, y+5
Enclosed, x−4
Enclosed, y+5

F̃ i on y+5

FII on y+5

(b) Measured deformation-force curve for two points

Figure 6.10: Exploration results of the “cien” plastic bottle, sampled at feature locations
according to Fig. 6.3b. The strain-stress curve is given for two points on the
curved right side (x+) and the flat frontal side (y+) of the object. Note the
pronounced differences of stiffness. If the bottle is closed, enclosing the air
inside, the object becomes much stiffer for large deformations.

fixtures cannot be used. Yet, object motion would still be limited, due to a lower number of

touch points and the symmetric grasp pattern. Moreover, the object pose should be tracked,

for instance with ICP, in order to refine the location of touch points. Note that only stiffness

features are considered in the following experiments. Additional haptic features as considered

in the “haptic tag” – such as geometry, shape or contact events – may improve performance.

Classification Haptic object classification is performed based on measured stiffness features

and the trained trees. First the two feature pairs used for feature scaling according to

Eqn. (6.5) are obtained. The following exploration steps are determined by the classifica-

tion tree – for instance, with the tree shown in Fig. 6.7b, a cup with a soft top could be

distinguished from the other objects based only on feature x+14. Otherwise, exploration con-

tinues according to the right sub-tree. The structure of the trained tree depends on the class

candidates selected by the prior. Wrong priors result in incorrect classifications, since there

is no “other” class in the decision trees.

Table 6.2 shows the classification results for all objects depicted in Fig. 6.9 with different

trees from Table 6.1. Tree 7 is based on the largest training set and shows a good classifi-

cation performance. The elliptic bottles are all detected as the “elliptic” class, showing that

generalization of features works well. Only the smoothie object is not detected correctly, de-

spite its characteristic stiffness map. Tree 9, which is trained to distinguish different elliptic

121

6 Deformation models for thin-walled objects

Object Classification tree/feature type

4/F̃ i 5/F̃ i,(1) 6/F̂ i 7/F̃ i 8/F̃ i,(1) 9/F̃ i
cup X X X X X –
cup-rim – – X X X –
cut-bottle × × X X X –
bottle X × X X × –
smoothie – – × × × –
isana* X × X (X) × (X)
cien* X × X X X ×
cleaner* X × X X × X
palmo* X X X X X –

–: Classifier not trained for object; ×: Detection failed;
X: Detection successful; (X): Detection successful in 2 out of 3 experiments

Table 6.2: Classification results of haptic exploration on real objects with six decision trees
from Table 6.1. Objects marked with a star (*) are of class “elliptic”.

cien
isana

palmo
smoothie

(a) Real objects

cien
isana

palmo
smoothie

0

1

2

3

(b) Simulation

Figure 6.11: The values of the quadratic feature F II are compared for the same object in the
two states “open” (o) and “closed” (c) (with air enclosed inside). The depicted
difference F IIc −F IIo is expected to be positive on most feature locations. Values
are shown within [0, 3], whereby any value ≤ 0 is shown in red.

bottles, shows a weak performance. Obviously, objects with more subtle differences cannot

be distinguish with the proposed features, as already inferred from Fig. 6.6.

Additionally, the proposed schemes for feature normalization are compared: Feature F̃ i

using simplified normalization (tree 7, Eqn. (6.5)) performs similarly well as feature F̂ i (tree

6, Eqn. (6.4)), which requires the full feature vector for normalization and thus cannot be

used with sequential exploration planning. Normalization based only on a single value (F̃ i,(1)),
however, results in an insufficient classification performance (tree 8). The training process

already unveils the weakness of this feature, see Table 6.1: The loss is consistently higher,

even though a larger number of features is selected.

Object state Next, deformation behavior is analyzed when the content inside of the bottles

is considered1. In principle, the quadratic feature could just be added to the feature selection

process, yet for practical reasons, a separation is feasible. Here, two different object states

1This experiment was conducted together with Jingyi Xu

122

6.4 Results and experiments

“open” and “closed” are compared, whereby in the latter case, counterpressure from the

compressed air enclosed inside the object is considered, see Sec. 6.1.5. In an opened bottle,

air can escape, such that there is no pressure to the inside wall. The resulting difference

is seen from the plot in Fig. 6.10b, which depicts the measured deformation curve for both

states on two surface points. The curve of the (softer) point y+5 shows a stronger quadratic

component for the closed state (violet) than for the opened state (red). Additionally, the

fitted models for features F̃ i and F II are shown. The (harder) point x−4 shows a difference

between the two states (yellow/blue) in the linear component. Since the difference is smaller,

a robust distinction of the states is infeasible at this point. Obviously, the counter-pressure

from compressed air has a much stronger effect on large and flat surface areas.

The behavior of the quadratic feature components is analyzed for multiple real and sim-

ulated objects. Fig. 6.11a shows the difference of the F II feature for the two object states

within the relevant y+ region. In general, it is expected that a significant difference is ob-

served within soft areas, i.e. in the mid/lower region of y+. The observation of the “isana”

and “palmo” objects adhere to this expectation, while for the “cien” object, the difference

is largest within the upper part. The high difference towards the top is attributed to a sec-

ondary effect, i.e. the stronger support of a closed lid. For the “smoothie” object, other effects

seem to dominate within the lower region, which is also quite stiff. In Fig. 6.11b, the same

comparison is shown based on simulated data. While simulation confirms the general trend

of a larger quadratic feature value, it is incapable to identify optimal feature locations. Also,

the magnitude of difference determined by simulation is much smaller. Thus, unless a more

realistic modeling is available, the optimal feature location for discrimination of the two object

states should be determined by training on the real object. An approach for discriminating

object states with a trained classifier based on a 6D tactile feature has been proposed in [20].

Grasping Finally, a grasping experiment, see Fig. 6.12, is conducted with objects “cleaner”,

“cup-rim” and “cup”, for which predicted grasp scores and plans are shown in Fig. 6.4. The

two predicted grasp configurations for the (open) cleaner, near the lid and on the side, work

successfully, see Fig. 6.12a. The grasp on the side, however, is sensitive to alignment errors,

as can be seen from the low curvature score Sc. A grasp with 20 N at the (soft and flat) center

of the object on the other hand, see Fig. 6.12b, results in an overflow of the liquid contents

and in falling over of the object. For “cup-rim”, the predicted grasp on top also succeeds, see

Fig. 6.12c. Fig. 6.12d illustrates that a grasp with the same force in the center results in a

large, permanent deformation of the cup. Without the rim on top (Fig. 6.12e), a force of only

5 N results in a large deformation, and the object slips out of the gripper, even if it is empty.

Contrary to classification problems, correct scaling is essential for grasp planning. If grasp-

ing is performed after classification as outlined above, the correct model must be identified

from the set of models in the detected class. The best model can be selected based on fea-

ture elements used for scaling or any other “stable” feature. Note that the same two-finger

gripper with two tips as in the previous experiments is used. Other finger designs – such as

123

6 Deformation models for thin-walled objects

(a) Cleaner (30 N, top/side) – 3 (b) Cleaner (20 N, center) – spills over, falls over – 7

(c) Cup-rim (10 N, top) – 3 (d) Cup-rim (10 N, center) – 7 (e) Cup (5 N, top) – 7

Figure 6.12: Grasp configurations calculated by the proposed grasp planner are verified in
an experiment, see also Fig. 6.4. Predictions of stable and unstable locations
are confirmed. Figure adapted from [8].

fingers with a soft laminar material – might work better with the presented object. Yet, note

that each mechanical design has its own strengths and limitations, which must be considered

accordingly by parameters in the planning process.

6.5 Summary

In this chapter, a model for thin-walled deformable objects is presented and used in the context

of haptic object classification and grasp planning. This haptic object model represents the

local stiffness of the object surface (local stiffness map) and is obtained by simulation. To

this end, generic grasp patterns are applied to the object in an exhaustive fashion, and the

deformation is determined by the Finite Element Method (FEM). Pronounced locations in

the stiffness map, which can also be measured on real objects, are referred to as stiffness

features. Many variants of an object are generated in an automated fashion from surface

geometry models in order to generate large object databases as required by machine learning

methods. These variants include variations of surface geometry, material parameters, subtle

124

6.5 Summary

geometric details as well as the contents within objects, such as enclosed air. The approach

is especially suited for objects with a distinct stiffness profile on their surface, such as plastic

bottles, cups and other containers.

A grasp planner is presented, which considers the deformation in order to determine valid

grasp points. It calculates a grasp score for the object surface, based on the stiffness map

as well as stability criteria of the local geometry. Current approaches, such as [73], focus on

complex object geometries and grippers, but they do not consider deformable objects. The

feasibility of the detected grasp points is demonstrated, and the need of considering stiffness

during grasping is illustrated.

Furthermore, haptic object classification is considered as a subsequent step after a vision-

based classifier. In order to feasibly extract stiffness features from a real object, a low number

of relevant features must be determined. This feature selection process is performed by

classification trees, which are at the same time used to create an exploration plan and to

detect the object class. Experiments are presented, demonstrating the performance of the

proposed classification scheme. Multiple small sets of object classes are distinguished by a low

number of local stiffness features. An adapted and reliable manipulation or grasping plan can

be determined from the object class. However, the detector is incapable to distinguish objects

with similar stiffness profiles. This is mainly due to the limited accuracy of simulation-based

features compared to data from real objects.

125

7 Conclusion and Outlook

7.1 Conclusion

Autonomous robots that operate in environments built for humans require multimodal sensing

skills and rely on multimodal environment models for task planning. For the interaction with

objects, the visual and haptic modality are of the greatest relevance. In Chapter 3, a visuo-

haptic sensor has been presented, which uses a standard camera to obtain haptic data, i.e.

force, pressure and contact shape during manipulation operations. The camera measures a

deformable element, which is part of the robotic actuator. The deformation of this element

is converted to a force/pressure profile based on its known deformation model. This concept

is demonstrated with deformable elements made of plastic or rubber foam, which exhibit a

laminar contact with objects, as well as with a beam-based structure, which provides a full 6D

force-torque vector at a single contact point. Visual observations from the object, the scene

or the components of the robot may be acquired by the same camera and are thus naturally

coherent with haptic data. This is an important advantage over existing haptic sensors with

optical readout, which rely on an optical sensor inside of a deformable structure. Dedicated

sensor systems are replaced by a low-cost camera, which may be co-used by other tasks,

reducing costs and system complexity. Integration of visual data is important to observe the

reaction of an object during manipulation, and also to verify the state of the manipulator

itself. Experiments are presented for grasping applications with the sensor mounted on a

two-finger gripper as well as for haptic mapping with a mobile platform. The accuracy of

the sensor is shown to be good, by comparison with an industrial force sensor. One major

limitation of the presented concept is that the deformable element must not be occluded.

Depending on the camera position, this results in constraints of the end-effector pose and

of acceptable object geometries. Furthermore, the measurement frequency is limited by the

camera frame rate and by the damping characteristics of the deformable element.

Perception also includes the process of fitting high-level models to raw sensor data. Data

and level of detail provided by a model must be adapted to the available sensors and the

intended applications. A graph-based environment model for navigation tasks is presented

in Chapter 4. Established techniques for navigation in buildings are based on 2D occupancy

grid maps, which are acquired with range sensors. These maps show the free space as well

as obstacles such as wall, doors or furniture and can be represented in a more abstract

way as topological graphs. The proposed environment model is based on such a topological

graph and extends it with haptic information acquired by a visuo-haptic sensor attached to

127

7 Conclusion and Outlook

a mobile platform. Haptic object properties relevant for manipulation, such as friction or

lateral motion, are represented on a per-object basis. The resulting graph represents possible

choices for navigation, such as turning left/right, as well as potential manipulation tasks

that are linked to navigation, such as pushing obstacles aside. Manipulation nodes represent

manipulable objects and are associated to specific tasks, properties and semantics. This

allows for the representation of, for instance, transparent obstacles, doors or elevators. A

path in that graph is an abstract joint navigation/manipulation plan. Alternative routes to

reach a goal can be determined, involving for instance either a push operation or a detour.

Parts of the map that are otherwise inaccessible can be reached, if manipulation operations

are considered. The presented model represents objects based on a single or a low number of

“haptic tags” and is thus inadequate for objects with complex geometries or locally changing

haptic properties. Moreover, object properties must be known before path planning, i.e.

obstacles must have been previously explored.

Chapter 5 presents an approach for joint visuo-haptic geometry acquisition of objects that

cannot be fully reconstructed with visual methods. Established methods for 3D visual re-

construction typically assume surfaces with Lambertian reflection. A major cause of recon-

struction failures or geometric inconsistencies in static scenes are specular reflections and

transparent materials, which exhibit a substantially different image formation model. First, a

method is presented that detects transparent regions of an object by searching for geometric

inconsistencies using a multi-view setup. In parallel, geometry reconstruction is performed,

assuming that objects are only partially transparent. The estimated transparency region is

used to find missing or erroneous parts of the reconstructed geometry. Within this region,

geometry is initially estimated using surface extrapolation with radial basis functions (RBF),

which are fitted to surrounding reliable points (support points). Second, a method is pre-

sented for haptic geometry exploration within the missing regions using a single point probe.

The certainty of the extrapolated geometry is estimated based on the biharmonic distance

to the support points. Exploration steps are planned based on the surface point with the

largest distance, respectively. Explored touch points are subsequently added as new support

points, refining the estimated surface iteratively. An accurate estimate of the complete object

geometry is obtained once there are enough points from haptic exploration. The obtained

geometric model can be used for tasks like classification, grasp planning or learning. The

presented approach is limited to visual errors or holes caused by transparency or, to some

degree, reflection. Moreover, transparent objects must be curved, exhibit dominant refrac-

tion or specular reflection effects, and the camera must move around them along a trajectory.

The exploration scheme only considers single point contacts, which results in rather long

exploration times compared to laminar contacts or multi-point contacts.

In Chapter 6, a model for deformable thin-walled objects, such as bottles and other contain-

ers, is presented. At first, a large database of volumetric object models with many variations

of each object is created. Based on these models, object deformations are simulated with the

Finite Elements Method (FEM). A generic grasp pattern is applied to all points of the surface

128

7.2 Outlook

in a dense fashion, yielding a so-called stiffness map, which represents first- and second-order

stiffness coefficients. The local stiffness varies considerably along the surface of thin-walled

objects, depending on their geometry. Two applications for these models are demonstrated:

First, a grasp planner is presented, which considers stiffness as well as geometry to determine

stable grasp points. Second, an object detector based on haptic exploration is presented. It

allows for the distinction of object classes, variants or states, which are indistinguishable using

other (e.g. visual) methods. For instance, a visual detector might not be able to discriminate

between a thin plastic cup, a paper cup with a reinforcement ring or an indeformable ceramic

mug. A tree-based detector is trained based on results from simulation, whereby the object

variations in the database ensure generalizability. The exploration scheme selects the point

on the object with the largest information gain at each step, ensuring a low number of contact

points. One limitation of the presented model is that only stiffness features are considered.

The integration of other relevant haptic properties, such as geometry or contact points, may

improve the performance of object classification. For grasp planning, friction and weight are

very important and must be given as predefined parameters. Furthermore, the presented

approach is currently limited to two-finger grippers.

7.2 Outlook

Visuo-haptic sensor The concept of visuo-haptic sensors allows for great freedom in sensor

design by adaptation of the deformable element. The major requirements are the observability

of deformation as well as a unique and known mapping from deformation to pressure. Even

structural parts of the robot could be used as deformable elements, if they are built with

corresponding materials. Additionally, such a design allows for lightweight low-cost robots

with increased passive safety.

On a realistic implementation of a soft robot, complex models may be required for the

deformable elements. For instance, the “skeleton” of an arm may be modeled as a beam,

but an additional deformation of a soft surface (the “skin”) may need to be considered. In

order to obtain the applied pressure, different types of trackers should be combined, such as

trackers based on edges, (deformable) templates and depth data. Redundant tracking data

improve accuracy and offer increased robustness. Trackers for deformable templates provide

3D deformation maps of textured soft surfaces and thus allow for the detection of lateral

forces. With such extensive tracking data, it is a natural extension to also track the joint

positions of a robotic arm based on image data. This yields an accurate estimate on the real

end-effector pose, and even allows substituting data from dedicated joint sensors.

Finally, the application range of the sensor can be extended by a further integration of visual

observations. Similar to the idea outlined above, deformations of an object can be tracked

with a stereo or depth camera during grasping. This allows obtaining deformation shapes

and learning the deformation characteristics of objects, see also Chapter 6. Additionally,

129

7 Conclusion and Outlook

unexpected reactions of the object during manipulation can be detected, potentially avoiding

damage. Within the contact region, the deformed object shape is known both from haptic

and visual perception, allowing for geometry refinement and consistency checks.

Environment models The joint geometry models in Chapter 5 rely on the detection of visual

modeling errors. A transparency detector is proposed and used as an error detector. There are

many other reasons for a partially incomplete object geometry, such as surfaces with a very

low reflectivity, active light sources, limited sensor range, incomplete coverage of viewpoints

as well as transparent or reflective regions, which are not detected by the proposed detector.

The presented detector fails for flat surfaces (such as windows), rough surfaces as well as for

materials that do not exhibit dominant refraction effects, such as opal glass. In principle,

specific detectors may be developed for each case. However, since this approach results in

high computational load, it may be more feasible to rely on additional consistency checks,

semantic guesses, or to derive uncertainty scores directly from the reconstructed 3D model.

Any detected uncertainty region may be fed into the presented haptic exploration planner. In

order to speed up haptic exploration, multi-point contacts – for instance, using a humanoid

hand – should be considered, as outlined in Sec. 5.4. There may still be undetected visual

reconstruction errors, such that a haptic verification scheme may be feasible.

The deformation models presented in Chapter 6 use so-called deformation shapes during

the simulation process. They are obtained for each grasp configuration and currently com-

bined into a single stiffness map. In future work, these shapes could be used for matching

of simulation results and real observations: While a real object is being grasped, the cor-

responding deformation shape can be retrieved from the database and matched against the

visual observation of the deformed object. Approaches such as ICP [84] allow for aligning

and matching of (partial) point clouds. By checking for deviations between the expected and

observed shape, grasp errors can be detected early, potentially avoiding the destruction of ob-

jects. Furthermore, if there are multiple model candidates, the correct one can by identified

faster by checking deformation shapes.

The presented model can be extended to multi-point grasp configurations, if the relevant

forces remain approximately perpendicular to the surface and if grasp configurations are

roughly symmetric. The interaction between several contact points may be modeled by a

matrix of coupling coefficients. Generally, if contact points are close-by, they excite almost

the same deformation pattern, and their forces add up. Deformation shapes of far-away

contact points may be superimposed, which allows for fast prediction of the deformation for

a complex grasp configuration. The obtained deformations may be integrated in a grasp

planning system, such as GraspIt [73].

Finally, the approach has been applied to thin-walled objects because of their pronounced

relation between shape and deformation, making visuo-haptic perception especially beneficial.

By modeling thin-walled objects as 2D surfaces, more efficient simulations are possible using

so-called thin shell models [13]. Furthermore, results may be more accurate, since tetrahedral

130

7.2 Outlook

meshing of thin walls either yield very large models, or tetrahedra with a bad conditioning1.

Here, FEM has been used since it also enables to model volumetric structures, such as rein-

forcements. It can be applied to any object with (hyper)elastic deformation, including simpler

objects that are filled homogeneously in their interior.

Versatile object models should consider additional properties, such as surface roughness,

dynamic effects and vibrations after contact events, see [20]. These effects are also part

of haptic perception, but not considered in this work. Many materials have a characteristic

surface structure, which causes vibrations when sliding over their surface. These tactile signals

have a relatively large frequency spectrum (e.g. 500 Hz for human perception) and depend also

on the contact pressure and the mechanical properties of the sensor. They have been used for

object classification tasks, such as the distinction of floor materials [34]. For grasping tasks,

surface properties can be used to estimate friction and the required grasping force. In this

work, the required force is a parameter of the object models. Also, dynamic object behaviour

is not considered by the presented object models. Autonomous robots in human environments

move slowly in order to avoid injury of persons, such that dynamic properties do not need to

be modeled in detail for many applications. Yet, a simplified model of dynamics as part of

the “haptic tag” would improve the understanding of object reactions, such as falling over.

The environment and object models proposed in Chapters 4–6 represent different haptic

properties and are targeted to the needs of specific applications. It is an obvious extension to

develop a single common object representation that covers the presented as well as additional

relevant object properties in a generic way. Such a versatile visuo-haptic representation should

address the following aspects:

Multiple domains/levels Versatile object representations are inherently multimodal, since

they represent visual and various haptic properties, such as stiffness, surface friction and

mass density. Many of these properties are represented by a map on the same domain,

facilitating a common representation. For instance, scalar maps over the object surface

may be used to represent or approximate visual texture, stiffness as well as friction, and

can be acquired by surface exploration. Properties on a volumetric domain, such as the

mass density or the elastic modulus, may be derived from artificial object models, but

cannot be directly explored on an object. Only indirect effects are observable, such as

inertial behavior or deformation shapes. Such properties describe an object on a global

level and cannot be assigned to specific locations.

Partial information In contrast to visual models, there is not one particular process to acquire

all relevant haptic data of an object. Rather, distinct exploration processes may be

needed to obtain a complete, generic object representation. Additionally, the dense

acquisition of haptic properties is very time-consuming. Versatile object models must

thus deal with partial information. Missing data should be explored as needed, or

1The conditioning of a tetrahedron is often represented by the ratio between its shortest edge and the radius
of the circumscribed sphere.

131

7 Conclusion and Outlook

estimated if possible. A “complete” object representation can be provided by a database,

or be obtained on a robot with complex manipulators by time-consuming exploration.

Sensors Different sensor sources must be registered and aligned before the provided data

are fused in a common model. Retrospective refinements are necessary, if alignment

parameters are corrected during exploration. Moreover, the haptic appearance of an

object depends on the sensor or actuator used during the manipulation process. This

is especially important for tactile data, such as surface vibrations or friction as well as

for grasping contacts (e.g. single point versus laminar contact). A transformation of the

“object views” from one type of sensor to another is possible, if model data are detailed

enough and the sensor models are known. Versatile models should allow generating

these views on request.

The models in Chapters 5 and 6 both represent complementary surface properties of ob-

jects and may thus be combined in a straight-forward manner. Geometry and stiffness data of

an object can be acquired simultaneously by exploration. The deformation model, however,

can only be obtained after the complete object geometry is known, i.e. after the geometry

model has been built. Additionally, it requires a volumetric object representation or volu-

metric parameters from a priori data or from a semantic database. Integration of the navi-

gation/manipulation models (Chapter 4) is less straight-forward, since they represent various

object properties on a different domain/level. One feasible approach is to introduce interme-

diate object representations, such as part-based models with individual haptic properties for

each part. This would allow for the prediction of object reactions to manipulation operations

based on physical models, as presented in Sec. 4.3.2, rather than on simple extrapolation of

observed behavior. The motion of more complex objects, such as chairs or tables, could be

predicted reliably with such representations. More powerful models, however, go along with

a more complex and time-consuming exploration scheme.

132

List of Figures

1.1 Commercial domestic robots for vacuum cleaning and lawn mowing 2

1.2 Humanoid robots with wheeled platforms or legs 3

1.3 Manipulation in unstructured environments requires visuo-haptic perception . 4

2.1 Laminar tactile sensors for robotic hands and bodies 12

2.2 Tactile sensors with optical readout . 13

2.3 Scene reconstruction with KinectFusion and OctoMap 15

2.4 Tactile exploration and reconstruction, joint visuo-haptic exploration 18

2.5 Deformation map from reference configuration to deformed shape 21

2.6 Simplified example for a 1D FEM assembled from rod elements 22

3.1 Foam-based visuo-haptic sensor for a platform and a gripper 35

3.2 Experimentally determined strain-stress relations for PUR/rubber foams . . . 38

3.3 Simplified arrangement of camera and foam 42

3.4 Sensitivity of stress measurements to the image position 44

3.5 Proposed beam-based sensor . 47

3.6 Visual point features tracked on the object surface and the floor 49

3.7 Comparison of force measured by the proposed sensor against a reference . . 51

3.8 Accuracy of the beam-based sensor . 52

3.9 Foam-based sensors mounted on a mobile platform and a gripper 54

3.10 View from the platform camera while touching different objects 55

3.11 Office scene mapped by näıve haptic exploration 56

3.12 Transparent bottle explored by a gripper equipped with the foam-based sensor 57

3.13 Stiffness of the transparent bottle measured with the proposed sensor 58

3.14 Opening a crown cap with the beam-based visuo-haptic sensor 59

4.1 Skeleton, distance map and navigation graph extracted from a map 64

4.2 Movable obstacles are added to the map . 68

4.3 Search for valid push goals . 69

4.4 Planning of the sideward push manipulation 71

4.5 Proposed exploration system tested in an office scene 75

4.6 Map and navigation graphs for the office scene 76

134

List of Figures

5.1 A partly transparent bottle observed by the Kinect 81

5.2 Proposed setup: The depth sensor moves around the scene 82

5.3 Local background model and error score . 84

5.4 Geometry reconstruction of a partly transparent bottle 86

5.5 Office scene used for evaluation of transparency detection 90

5.6 Results of transparency detection in a cluttered scene 91

5.7 Simulation results of haptic exploration for artificial objects 93

5.8 Error of the extrapolated geometry obtained by simulated haptic exploration 94

6.1 Overview of classification and grasp planning with deformable object models 98

6.2 Simulated deformation shapes, stiffness map 101

6.3 Parametric model generator, locations of stiffness features 103

6.4 Grasping scores for various objects . 108

6.5 Stiffness maps of exemplary models in the database 117

6.6 Correlation between feature vectors of different classes 118

6.7 Stiffness features for four classes, trained decision tree 119

6.8 Exploration system with a KUKA LWR arm and a two-finger gripper 119

6.9 Real objects used in experiments for haptic exploration and classification . . 120

6.10 Exploration results of the “cien” plastic bottle 121

6.11 Quadratic feature values F II compared for two different object states 122

6.12 Grasping experiments with real objects . 124

135

List of Tables

2.1 Value of the Young’s modulus E for various materials 20

3.1 Sequence of tasks for opening a crown cap . 59

4.1 Haptic tags of various objects obtained during the experiments 75

6.1 Decision trees trained with different subsets of classes 120

6.2 Detection results of haptic exploration on real objects 122

137

Publications by the author

[1] N. Alt, S. Hinterstoisser, and N. Navab. Rapid selection of reliable templates for visual
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
San Fransisco, USA, June 2010. DOI: 10.1109/CVPR.2010.5539812.

[2] N. Alt, W. Maier, Q. Rao, and E. Steinbach. Semantic interpretation of novelty in images
using histograms of oriented gradients. In C.-Y. Su, S. Rakheja, and H. Liu, editors, Intel-
ligent Robotics and Applications (ICIRA), Lecture Notes in Computer Science, Montreal,
Canada, Oct. 2012. DOI: 10.1007/978-3-642-33503-7 42.

[3] N. Alt, Q. Rao, and E. Steinbach. Haptic exploration for navigation tasks using a visuo-
haptic sensor. In Interactive Perception (ICRA Workshop), Karlsruhe, Germany, May
2013.

[4] N. Alt, P. Rives, and E. Steinbach. Reconstruction of transparent objects in unstructured
scenes with a depth camera. In IEEE International Conference on Image Processing
(ICIP), Melbourne, Australia, Sept. 2013. DOI: 10.1109/ICIP.2013.6738851.

[5] N. Alt and E. Steinbach. Visuo-haptic sensor for force measurement and contact shape
estimation. In Haptic Audio-Visual Environments and Games (HAVE), Istanbul, Turkey,
Oct. 2013. DOI: 10.1109/HAVE.2013.6679605.

[6] N. Alt and E. Steinbach. Navigation and manipulation planning using a visuo-haptic
sensor on a mobile platform. IEEE Transactions on Instrumentation and Measurement,
63(11), Nov. 2014. Early access: May 2014. DOI: 10.1109/TIM.2014.2315734.

[7] N. Alt and E. Steinbach. A visuo-haptic sensor for the exploration of deformable objects.
In Autonomous Grasping and Manipulation (ICRA Workshop), Hong Kong, China, May
2014.

[8] N. Alt, J. Xu, and E. Steinbach. Grasp planning for thin-walled deformable objects. In
Robotic Hands, Grasping, and Manipulation (ICRA Workshop), Seattle, WA, USA, May
2015.

[9] N. Alt, J. Xu, and E. Steinbach. A dataset of thin-walled deformable objects for manipu-
lation planning. In Grasping and Manipulation Datasets (ICRA Workshop), Stockholm,
Sweden, May 2016.

© IEEE, reprinted and adapted, with permission [4, 5, 6]. Reprinted and adapted [7, 8, 9].

139

http://doi.org/10.1109/CVPR.2010.5539812
http://doi.org/10.1007/978-3-642-33503-7_42
http://doi.org/10.1109/ICIP.2013.6738851
http://doi.org/10.1109/HAVE.2013.6679605
http://doi.org/10.1109/TIM.2014.2315734

Bibliography

[10] C. Audras, A. I. Comport, M. Meilland, and P. Rives. Real-time dense appearance-
based SLAM for RGB-d sensors. In Australian Conference on Robotics and Automation,
Melbourne, Australia, Dec. 2011.

[11] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. Interna-
tional Journal of Computer Vision, 56(3):221–255, Feb. 2004.

[12] S. Benhimane, A. Ladikos, V. Lepetit, and N. Navab. Linear and quadratic subsets
for template-based tracking. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Minneapolis, MN, USA, June 2007.

[13] M. Bernadou. Finite Element Methods for Thin Shell Problems. Wiley, Chichester,
1996.

[14] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer, A. Beyer,
O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirzinger. The KUKA-
DLR lightweight robot arm - a new reference platform for robotics research and manu-
facturing. In Robotics (ISR), International Symposium on and German Conference on
Robotics (ROBOTIK), Munich, Germany, June 2010.

[15] J. Bohg, M. Johnson-Roberson, M. Bjor̈kman, and D. Kragic. Strategies for multi-
modal scene exploration. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Taipei, Taiwan, Oct. 2010.

[16] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-
lum, and T. R. Evans. Reconstruction and representation of 3D objects with radial
basis functions. In Annual conference on Computer graphics and interactive techniques
(SIGGRAPH), Los Angeles, CA, USA, Aug. 2001.

[17] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3), Apr. 2011. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[18] H. Chen and B. Bhanu. 3D free-form object recognition in range images using local
surface patches. Pattern Recognition Letters, 28(10):1252–1262, July 2007.

[19] Y.-W. Chen and C.-J. Lin. Combining SVMs with various feature selection strategies.
In I. Guyon, M. Nikravesh, S. Gunn, and L. Zadeh, editors, Feature Extraction, volume
207 of Studies in Fuzziness and Soft Computing, pages 315–324. Springer, Berlin /
Heidelberg, 2006.

[20] S. Chitta, J. Sturm, M. Piccoli, and W. Burgard. Tactile sensing for mobile manipula-
tion. IEEE Transactions on Robotics, 27(3):558–568, May 2011.

140

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography

[21] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, and others. Active shape models-
their training and application. Computer Vision and Image Understanding, 61(1):38–59,
Jan. 1995.

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego,
CA, USA, June 2005.

[23] P. Danielsson and O. Seger. Generalized and separable sobel operators. In Freeman, H.,
editor, Machine Vision for Three-Dimensional Scenes, pages 347–379. Academic Press,
San Diego, 1990.

[24] J. Dankert and H. Dankert. Technische Mechanik. Springer Vieweg, Wiesbaden, 2013.

[25] J. de Oliveira and R. Romero. Image skeletonization method applied to generation of
topological maps. In Latin American Robotics Symposium (LARS), Valparaiso, Chile,
Oct. 2009.

[26] H. Deng and G. Runger. Feature selection via regularized trees. In International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia, June 2012.

[27] O. Faugeras and F. Lustman. Motion and structure from motion in a piecewise planar
environment. International Journal of Pattern Recognition and Artificial Intelligence,
2(3):485–508, Sept. 1988.

[28] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, June 1981.

[29] M. Freundl. A visuo-haptic sensor for a screw driver tool on a robot arm. Student
research project (Forschungspraxis), Institute for Media Technology, Technische Uni-
versität München, Munich, Germany, Mar. 2015.

[30] M. Fritz, M. Black, G. Bradski, S. Karayev, and T. Darrell. An additive latent feature
model for transparent object recognition. In Advances in Neural Information Processing
Systems (NIPS), Vancouver, Canada, Dec. 2009.

[31] S. Gabl and F. Walch. Visuo-haptic data fusion for accurate geometry reconstruction.
Student research project (IDP), Institute for Media Technology, Technische Universität
München, Munich, Germany, Sept. 2015.

[32] S. Garrido, L. Moreno, and D. Blanco. Exploration and mapping using the VFM motion
planner. IEEE Transactions on Instrumentation and Measurement, 58(8):2880–2892,
Aug. 2009.

[33] L. J. Gibson and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge
solid state science series. Cambridge University Press, Cambridge, 2nd edition, 1999.

[34] P. Giguere and G. Dudek. Surface identification using simple contact dynamics for
mobile robots. In IEEE International Conference on Robotics and Automation (ICRA),
Kobe, Japan, May 2009.

141

Bibliography

[35] D. Goger, N. Gorges, and H. Worn. Tactile sensing for an anthropomorphic robotic
hand: Hardware and signal processing. In IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan, May 2009.

[36] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, Feb.
2007.

[37] D. Gross, W. Hauger, J. Schröder, and W. A. Wall. Technische Mechanik 2. Springer-
Lehrbuch. Springer Vieweg, Berlin / Heidelberg, 2014.

[38] E. Guizzo. How rethink robotics built its new baxter robot worker. IEEE Spectrum,
Sept. 2012.

[39] R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim. Pose estimation
from corresponding point data. IEEE Transactions on Systems, Man and Cybernetics,
19(6):1426–1446, Nov. 1989.

[40] C. Harris and M. Stephens. A combined corner and edge detector. In Fourth Alvey
Vision Conference, pages 147–151, Manchester, UK, Aug. 1988.

[41] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–
107, July 1968.

[42] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge, 2003.

[43] D. D. Hoffman. Visual Intelligence: How We Create What We See. Norton, New York,
Feb. 2000.

[44] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap:
an efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots,
34(3):189–206, Feb. 2013.

[45] K. Hsiao, S. Chitta, M. Ciocarlie, and E. Jones. Contact-reactive grasping of objects
with partial shape information. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, Oct. 2010.

[46] R. Huitl, G. Schroth, S. Hilsenbeck, F. Schweiger, and E. Steinbach. TUMindoor: An
extensive image and point cloud dataset for visual indoor localization and mapping. In
IEEE International Conference on Image Processing (ICIP), Orlando, FL, USA, Sept.
2012.

[47] I. Ihrke, K. N. Kutulakos, H. P. A. Lensch, M. Magnor, and W. Heidrich. Transparent
and specular object reconstruction. Computer Graphics Forum, 29(8):2400–2426, Nov.
2010.

[48] K. Kamiyama, K. Vlack, T. Mizota, H. Kajimoto, N. Kawakami, and S. Tachi. Vision-
based sensor for real-time measuring of surface traction fields. IEEE Computer Graphics
and Applications, 25(1):68–75, Jan. 2005.

142

Bibliography

[49] M. Kaneko, N. Nanayama, and T. Tsuji. Vision-based active sensor using a flexible
beam. IEEE/ASME Transactions on Mechatronics, 6(1):7–16, Mar. 2001.

[50] Karto Robotics. KARTO open libraries 2.0, 2010. http://kartorobotics.com/products/.
Retrieved Mar. 2015.

[51] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International
Journal of Computer Vision, 1(4):321–331, Jan. 1988.

[52] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-based
augmented reality conferencing system. In IEEE and ACM International Workshop on
Augmented Reality, San Francisco, CA, USA, Oct. 1999.

[53] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors, 12(2):1437–1454, Feb. 2012.

[54] A. Kimoto and Y. Matsue. A new multifunctional tactile sensor for detection of material
hardness. IEEE Transactions on Instrumentation and Measurement, 60(4):1334–1339,
Mar. 2011.

[55] U. Klank, D. Carton, and M. Beetz. Transparent object detection and reconstruction
on a mobile platform. In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 2011.

[56] U. Klank, M. Zia, and M. Beetz. 3D model selection from an internet database for
robotic vision. In IEEE International Conference on Robotics and Automation (ICRA),
Kobe, Japan, May 2009.

[57] E. Knoop and J. Rossiter. Dual-mode compliant optical tactile sensor. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May
2013.

[58] K. Konolige. A gradient method for realtime robot control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Takamatsu, Japan, Oct. 2000.

[59] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent. Ef-
ficient sparse pose adjustment for 2D mapping. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct. 2010.

[60] Y. Lipman, R. M. Rustamov, and T. A. Funkhouser. Biharmonic distance. ACM
Transactions on Graphics (TOG), 29(3), July 2010.

[61] W.-Y. Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(1):14–23, Jan. 2011.

[62] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface con-
struction algorithm. In ACM Computer Graphics (SIGGRAPH), Anaheim, CA, USA,
July 1987.

[63] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, Nov. 2004.

143

http://kartorobotics.com/products/

Bibliography

[64] B. D. Lucas and T. Kanade. An iterative image registration technique with an ap-
plication to stereo vision. In International Joint Conference on Artificial Intelligence
(IJCAI), Vancouver, Canada, Aug. 1981.

[65] I. Lysenkov, V. Eruhimov, and G. Bradski. Recognition and pose estimation of rigid
transparent objects with a kinect sensor. In Robotics: Science and Systems, Sydney,
Australia, July 2012.

[66] Y. Ma. An Invitation to 3-D Vision: From Images to Geometric Models. Springer, New
York, 2004.

[67] E. Malis. Improving vision-based control using efficient second-order minimization tech-
niques. In IEEE International Conference on Robotics and Automation (ICRA), New
Orleans, LA, USA, Apr. 2004.

[68] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The office
marathon: Robust navigation in an indoor office environment. In IEEE International
Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, May 2010.

[69] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using
local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):530–549, May 2004.

[70] F. Mazzini, D. Kettler, J. Guerrero, and S. Dubowsky. Tactile robotic mapping of
unknown surfaces, with application to oil wells. IEEE Transactions on Instrumentation
and Measurement, 60(2):420–429, Feb. 2011.

[71] B. Merhy, P. Payeur, and E. Petriu. Application of segmented 2-d probabilistic occu-
pancy maps for robot sensing and navigation. IEEE Transactions on Instrumentation
and Measurement, 57(12):2827–2837, Dec. 2008.

[72] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. Inter-
national Journal of Computer Vision, 60(1):63–86, Oct. 2004.

[73] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE
Robotics & Automation Magazine, 11(4):110–122, Dec. 2004.

[74] S. Miller, J. v. d. Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel. A geometric
approach to robotic laundry folding. The International Journal of Robotics Research,
31(2):249–267, Feb. 2012.

[75] P. Mittendorfer, E. Dean, and G. Cheng. 3D spatial self-organization of a modular
artificial skin. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Chicago, USA, Sept. 2014.

[76] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-time dense surface
mapping and tracking. In IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 127–136, Basel, Switzerland, Oct. 2011.

144

Bibliography

[77] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY,
USA, June 2006.

[78] OSR Foundation. TurtleBot 2, 2013. http://www.turtlebot.com/. Retrieved Mar. 2015.

[79] J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision
and proximity queries. In IEEE International Conference on Robotics and Automa-
tion (ICRA), Saint Paul, MN, USA, May 2012.

[80] D. Pollard. A User’s Guide to Measure Theoretic Probability. Cambridge University
Press, Cambridge, 2001.

[81] V. Pratt. Direct least-squares fitting of algebraic surfaces. In ACM Computer Graphics
(SIGGRAPH), Anaheim, CA, USA, July 1987.

[82] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In Open Source Software
(ICRA Workshop), Kobe, Japan, May 2009.

[83] T. Ruhr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers. A generalized frame-
work for opening doors and drawers in kitchen environments. In IEEE International
Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, May 2012.

[84] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third Inter-
national Conference on 3-D Digital Imaging and Modeling, Quebec City, Canada, May
2001.

[85] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura.
The intelligent ASIMO: system overview and integration. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Lausanne, Switzerland, Sept.
2002.

[86] J. M. Santos, D. Portugal, and R. P. Rocha. An evaluation of 2D SLAM techniques
available in robot operating system. In IEEE International Symposium on Safety, Se-
curity, and Rescue Robotics (SSRR), Linköping, Sweden, Oct. 2013.

[87] D. G. Schneider, D. A. Seewald, and S. Heinrichs-Bartscher. “All-in-one” – video-based
driver assistance systems. ATZ worldwide eMagazine, 113(3):26–29, Feb. 2011.

[88] F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from the web.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):754–766, Apr.
2011.

[89] J. Shi and C. Tomasi. Good features to track. Technical Report TR-93-1399, Cornell
University, Nov. 1993.

[90] F. Y. Shih. Image Processing and Mathematical Morphology: Fundamentals and Appli-
cations. CRC Press, Boca Raton, Nov. 2009.

145

http://www.turtlebot.com/

Bibliography

[91] H. Si. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions
on Mathematical Software (TOMS), 41(2), Feb. 2015.

[92] E. Sifakis and J. Barbic. FEM simulation of 3D deformable solids: a practitioner’s
guide to theory, discretization and model reduction. In ACM SIGGRAPH Courses, Los
Angeles, CA, USA, Aug. 2012.

[93] F. S. Sin, D. Schroeder, and J. Barbič. Vega: Non-linear FEM deformable object
simulator. Computer Graphics Forum, 32(1):36–48, Feb. 2013.

[94] R. Szabo. Topological navigation of simulated robots using occupancy grid. Interna-
tional Journal of Advanced Robotic Systems, 1(3):201–206, Sept. 2004.

[95] J. W. H. Tangelder and R. C. Veltkamp. A survey of content based 3D shape retrieval
methods. Multimedia Tools and Applications, 39(3):441–471, Sept. 2008.

[96] S. Tsuji, A. Kimoto, and E. Takahashi. A multifunction tactile and proximity sensing
method by optical and electrical simultaneous measurement. IEEE Transactions on
Instrumentation and Measurement, 61(12):3312–3317, Dec. 2012.

[97] Universal Robots. Collaborative robot solutions, flexible robot arms, 2009. http://
www.universal-robots.com/GB/Products.aspx. Retrieved Mar. 2015.

[98] Various Authors. Breakthrough factories. MIT Technology Review, Nov. 2014.

[99] Wikipedia. Young’s modulus, 2015. https://en.wikipedia.org/wiki/Young’s modulus.
Retrieved Mar. 2015.

[100] A. Witkin, D. Baraff, and A. Kass. Physically based modeling. In ACM SIGGRAPH
Courses, Los Angeles, CA, USA, Aug. 2001.

[101] H. Yousef, M. Boukallel, and K. Althoefer. Tactile sensing for dexterous in-hand ma-
nipulation in robotics—a review. Sensors and Actuators A: Physical, 167(2):171–187,
June 2011.

[102] J.-i. Yuji and K. Shida. A new multifunctional tactile sensing technique by selective data
processing. IEEE Transactions on Instrumentation and Measurement, 49(5):1091–1094,
Oct. 2000.

[103] Y. Zhuang, N. Jiang, H. Hu, and F. Yan. 3-d-laser-based scene measurement and place
recognition for mobile robots in dynamic indoor environments. IEEE Transactions on
Instrumentation and Measurement, 62(2):438–450, Feb. 2013.

[104] Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image
pixel for the task of background subtraction. Pattern Recognition Letters, 27(7):773–
780, May 2006.

146

http://www.universal-robots.com/GB/Products.aspx
http://www.universal-robots.com/GB/Products.aspx
https://en.wikipedia.org/wiki/Young's_modulus

	Notation
	Introduction
	Robots in unstructured environments
	Visuo-haptic perception and manipulation
	Contributions of this work
	Structure of this dissertation

	Background and related work
	Sensors for autonomous robots
	Haptic and tactile sensors

	Object models and reconstruction
	Visual reconstruction
	Transparency detection
	Tactile reconstruction
	Modeling of elastic materials
	The finite element method

	Detection and tracking
	Images features
	Visual tracking
	Homography estimation and decomposition
	Combined detector and tracker
	Visual classification and recognition
	Mapping and navigation

	Visuo-haptic sensors
	Motivation
	Modeling of the deformable element
	Foam-based sensor for laminar contacts
	Tracking of foam deformation
	Analysis of measurement accuracy
	Fitting of geometric primitives

	Beam-based single point 6D force-torque sensor
	Tracking objects and scene
	Experiments
	Sensor accuracy
	Exploration of objects with a mobile platform
	Naïve haptic mapping with a mobile platform
	Grasping with the foam-based sensor
	Manipulation with the beam-based sensor

	Summary

	Joint planning of navigation and manipulation
	Haptic tags
	Graph-based planner
	Integration of haptic information

	Local planning
	Direct push
	Sideward push
	Transparent objects
	Special operations

	Experiments
	Summary

	Visuo-haptic geometry fusion
	Effects of transparency
	Transparency detector
	Local background model
	Detection of inconsistent geometry

	Geometry estimation in transparent regions
	Surface extrapolation

	Haptic exploration of geometry
	Experiments
	Transparency reconstruction
	Simulation of haptic exploration

	Summary

	Deformation models for thin-walled objects
	Simulation of object deformation
	Volumetric object models
	Parametric model generation
	FEM-based elasticity simulation
	Grasp patterns
	Modeling the contents of containers
	Stiffness maps and features

	Grasp planning for deformable objects
	Haptic object classification using stiffness features
	Feature selection and exploration planning
	Scenarios for haptic exploration
	A process for visuo-haptic classification

	Results and experiments
	Simulation-based models
	Exploration of real objects

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	Publications by the author
	Bibliography

