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ABSTRACT

The presented paper addresses the problem of creating hidden
Markov models for fast speech. The major issues discussed are
robust parameter estimation and reducing within-model
variations. Regarding the first issue, the use of the maximum a
posteriori parameter estimation is discussed. To reduce
within-model variations, a maximum likelihood based vocal
tract length normalization procedure and a statistical approach
to model pronunciation variants are applied.

Experiments with a large vocabulary continuous speech
recognition system were carried out on the German
spontaneous scheduling task (Verbmobil) to prove the
effectiveness of the investigated methods. The results show
that a combination of pronunciation variant modeling and
vocal tract length normalization is most effective. On fast
speech, a relative improvement of 16.3% compared to the
baseline models was achieved. Pronunciation variant modeling
combined with the maximum a posteriori reestimation proved
to be the second best method resulting in a 14.9% relative
improvement. In addition, this combination does not cause any
additional computational load during recognition.

1. INTRODUCTION

A major problem in automatic speech recognition is the
variability of speech signals. Identical phonemes uttered in
different situations and/or by different speakers result in
variable speech signals. These acoustic variations have to be
represented by the parameters of the acoustic models (hidden
Markov models, HMMs) used by the recognition system. A
large amount of training material has to be used for estimating
the parameters of the acoustic models in order to ensure the
recognition process to be speaker and situation independent.
However, the recognition performance for certain speakers and
situations can still be much worse than the average. To solve
this problem, alot of research was done on speaker adaptation
and speaker normalization methods in the last few years.

Apart from speaker specific variations, the speaking rate is
another source of variability which leads to increased error
rates on fast speech using standard speech recognition systems.
This effect was observed on TIMIT and WSJ tasks ([3], [4]).
To counteract the observed degradation in performance several
approaches were investigated: a retraining of the acoustic
models on fast speech ([2], [3] and [4]) and changes in the
transition probabilities of hidden Markov models ([1], [2], [3]
and [4]) proved to be suitable methods to decrease error rates
on fast speech. The reported methods resulted in improvements
of up to 25% relative to the baseline performance. Previous
experiments performed by the authors on the German

spontaneous scheduling task (Verbmobil) showed robust
reestimation techniques and speaker normalization to increase
recognition accuracy on fast speech [5]. In these experiments
the error rate was decreased by 4.3% using robust reestimation
methods. A combination of both, robust reestimation and
speaker normalization, resulted in a 10% improvement. The
objectives of the presented project were to further improve the
accuracy of automatic speech recognition systems on fast
spontaneous speech.

The main focus of this paper is the use of pronunciation
variants for reducing within-model variations especialy for
fast speech. Additionally the combination of robust
reestimation with the reduction of within-model variations is
evaluated.

2. HIDDEN MARKOV MODELSFOR
FAST SPEECH

A maor problem for the estimation of acoustic models
(HMMs) for specific speaking rates is the limited amount of
training data available. In order to retain a sufficient amount of
training data for each category, the number of “speaking rate
categories* has to be limited. Since the utterances of the
different categories show a reduced variability of speaking
rates (the speaking rate is the criterion for splitting the
meateriall), the speaking rate related variations of the speech
signals are reduced within these categories. A limited number
of parameters should hence be sufficient to model the HMM
parameters for each category adequately.

However, the reduced amount of training data per category
results in a reduced variation with respect to other sources of
variability. Although the criterion for the split is the speaking
rate and not the speaker’s identity, the different categories
implicitly contain utterances of different speakers just because
the speaking rate ranges of the speakers differ. Since the
speakers have different characteristics these characteristics are
not sufficiently covered by the reduced training meterial for
each category. If this effect is not taken into consideration
while estimating speech rate specific HMMs, the resulting
models are “less speaker independent”.

Another source of variability is the use of pronunciation
variants. In general, the reduced speech rate specific amount of
training material contains a restricted subset of words with a
restricted subset of pronunciation variants. In standard speech
recognition systems the acoustic variations caused by different
pronunciation variants have to be modeled by the parameters of
the subword HMMs of the canonical pronunciation (during
training and recognition only the canonical transcription of the
words are considered). On the reduced training material, not
al possible variants can be learned adequately by the



parameters of the corresponding subword HMMs. Therefore
the resulting models are “less pronunciation variant
independent”.

2.1 Robust Parameter Estimation

211 MaximumA Posteriori Estimation (MAP)

The first approach discussed is the use of a parameter
estimation algorithm which is more robust than the
conventional maximum likelihood (ML) estimation. Since not
all sources of variability are sufficiently represented within the
speech rate specific categories, the use of ML training on the
speech rate specific material alone will result in an
overadaptation to the training data, which increases error rates
during recognition.

An alternative procedure is the combination of general models
(which are representative with respect to several sources of
variability) with speech rate specific models, which are
reestimated on speech rate specific speech material. This
approach is comparable to speaker adaptation, where “large”
speaker independent models are reestimated using the limited
training material available for a certain speaker. In speaker
adaptation maximum a posteriori (MAP) related approaches
are frequently used ([7] and [8]).

The following MAP equations ([9]) are used to reestimate the
means, the diagonal covariance matrices and the mixture
weights of the context independent phoneme HMMs on the
category “very fast” of the training material:
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The indices i and k refer to the k-th mixture of the i-th state
and p equals the dimension of the feature vector. Similar to
other applications of the MAP approach ([7], [9]) a fixed
common prior parameter t is used to make the reestimation of
the HMM-parameters more robust. The other prior parameters
(or, B @and v) can be computed from the t values [9]. The HMM
transition probabilities, which are not critical to estimate, are
reestimated using standard ML equations.

2.2 Reducing Within-Model Variations

The use of the restricted MAP approach (one common prior
parameter 1) for reestimating the HMM parameters on the
speech rate specific material is suboptimal, as the variable
sensitivity of the distributions with respect to speech rate is not
considered. On the other hand the unrestricted MAP approach
requires individual prior parameters for each distribution of the
HMMs which are difficult to determine.

If the HMMs are freed from modeling variations caused by
other sources of variability, as presented in an aternative
approach, it is no longer important whether or not these
variations are sufficiently represented in the speech rate
specific training material. As aresult the model parameters can
fully “concentrate” on modeling the speech rate relevant
variations which can be optimized in an additiona
reestimation step.

Two sources of variability are taken into consideration:
e thelength of the vocal tract,
e theuse of pronunciation variants.

2.2.1 Vocal Tract Length Normalization (VTLN)

One major speaker specific source of variability of speech
signals is the length of the vocal tract. The main effect is the
shifting of formant frequencies in vowel regions which are
shifted down for longer vocal tract lengths and shifted up for
shorter ones. Several approaches for vocal tract length
normalization for continuous speech recognition have been
published ([10], [11], [12] and [13]).

In this study a ML based vocal tract length normalization
procedure (comparable to [11]) was used during training and

recognition.
2.2.2  Pronunciation Variant Modeling (PROVAR)

A second important source of variability is the use of different
pronunciation variants for one word in different “situations’. In
the following, the approach applied for pronunciation variant
modeling is described in detail.

Transcriptions and hidden Markov models:

For the creation of pronunciation variant based phonemic
transcriptions a training dictionary with an average number of
2.35 pronunciation variants per word was used. This dictionary
contains up to 70 variants per word and is described in detail
in[14].

Based on the dictionary and the trandliterations of the
utterances, the pronunciation variants of each word were
included as parallel paths in pronunciation graphs. After the
creation of preliminary “sharp” HMMs on a limited amount of
manually transcribed data, a Viterbi segmentation procedure
was performed on the whole training material using these
pronunciation graphs. In a second step the resulting phonetic
transcriptions were used to estimate new HMMs with an
increased number of parameters. The training material was
divided into two equal parts with the average log probability of
the Viterbi segmentation process as a splitting criterion. Only
those utterances which resemble the preliminary models
closely (i.e. show a high log probability) were used for the
creation of the new models in the second step. With the second
step models, another Viterbi segmentation process was per-
formed along the graphs. With these resulting fina
transcriptions several iterations of Viterbi training were carried
out to estimate the fina HMM parameters on the whole
training set.

Finaly these HMMs were reestimated on the speech rate
specific training material applying MAP reestimation to derive
speech rate specific pronunciation variant HMMs.

Test dictionary:

In general, multiple pronunciation variants per word result in
increased confusions in the search space, as the pronunciation
variants of different words become more similar. Several
approaches for the creation of pronunciation variant test
dictionaries of reasonable size can be found in literature ([15],
[16]). The strategy presented in this paper is simple and
similar to [14]: only those variants were integrated in the test
dictionary which occur at least once in the final transcriptions
of the training set. Therefore the average number of
pronunciation variants per word was reduced from 2.35 to 1.8
(9608 variants for 5329 words) and the maximum number of
variants per word was 38.




The confusion during recognition was further reduced by
weighting the variants in the test dictionary. Therefore the a
posteriori probabilities of each variant given the word were
needed. The variant weights were normalized to sum up to 1.0
for all variant weights of a word. During recognition the
logarithm of this weight was multiplied with a predefined
pronunciation factor and then added to the score of the Viterbi
path whenever the end of a variant was reached. This strategy
resembles the integration of the language model score into the
score of the Viterbi path.

3. RESULTS

3.1 Experimental Conditions

The experiments described were performed on the evaluation
set 1996 of the German spontaneous scheduling task with a
total number of 343 sentences of different speech rates
including 53 “very fast” sentences. The adaptation strategy
used for different speaking rates is “explicit adaptation”, i.e. a
switching between speech rate specific models, which were
estimated on the speech rate specific training material in
advance. Test and training material were split into different
speech rate specific categories under the assumption of an
ideal speech rate detector. The speech rates of the utterances
were determined as described in [5]. The five speech rate
categories “very slow”, “slow”, “average”, “fast” and “very
fast” were defined.

Baseline System (BASELINE)

The baseline recognition system was a HMM-based Viterbi
recognizer using 52 context-independent continuous density
HMMs for 44 single phonemes (including noise and silence
models) and 8 phoneme combinations. The probability density
functions of the HMM states were modeled by Gaussian
mixture densities with diagonal covariance matrices and were
estimated with standard Viterbi ML estimation. The pre-
processing unit provided loudness based values for each of 20
acoustic channels on the Bark scale up to 8 kHz. These values
were computed every 10 ms over a Hamming window of 16 ms
length. This first data set was completed by energy and
zerocrossing rate and contained 22 features. First and second
order derivatives of this first data set were added to form the
66-dimension final feature vector. The search engine used a
tree shaped canonical dictionary with 5329 words and a bigram
language model.

Pronunciation Variant Based System (PROVAR)

For the pronunciation variant based recognizer the phoneme set
was reduced to 44 phonemes by removing the phoneme
combinations. The acoustic preprocessing, the methods for
modeling and estimating the probability density functions and
the language model were not altered, but the pronunciation
variant based test dictionary of section 1.1.2 was used.

Normalized Systems (VTLN and PROVAR-VTLN)

A VTLN version of the BASELINE and of the PROVAR
system are created using the ML based VTLN approach.
Speech Rate Specific Systems (MAP and PROVAR-MAP)

The HMM-parameters of the BASELINE system and the
PROVAR system are reestimated on the “very fast” training
material with MAP estimation.

3.2 Word Error Rates

To be able to compare the proposed methods, word error rates
(WER), substitutions (sub.), insertions (ins.) and deletions
(del.) on the complete test set and on the speech rate specific
categories are presented. The relative improvement in percent
compared to the BASELINE system is given in the last column
of Table 2 to Table 6. For the PROVAR derived systems
(PROVAR-MAP and PROVAR-VTLN) the performance is
compared to the original PROVAR system additionally (Table
4 and Table 6).

test set WER sub. del. ins.
total 36.5 25.6 5.6 5.3
very slow 284 18.3 23 7.8
slow 36.6 254 46 6.6
middle 35.2 24.8 5.3 5.1
fast 37.4 26.7 6.7 4.0
very fast 47.0 338 10.1 31

Table 1: Recognition performance (in percent) on the
completetest set and on the different speech rate specific
categories using the BASELINE system.

test set WER | sub. del. ins. rel. imp. to
BASELINE
total 33.8 231 45 6.2 7.4
veryslow | 26.2 16.8 1.0 84 1.7
slow 341 21.9 4.8 7.4 6.8
middle 325 222 38 6.5 1.7
fast 36.0 26.3 52 45 3.9
very fast 424 30.4 8.7 33 9.8

Table 2: Recognition performance (in percent) on the
completetest set and on the different speech rate specific
categoriesusing the VTLN system.

test set WER | sub. del. ins. rel. imp. to
BASELINE
total 35.2 23.6 8.1 815 3.6
veryslow | 23.1 13.9 2.7 6.5 18.7
slow 35.1 24.0 5.4 5.7 41
middle 34.0 24.0 5.6 44 34
fast 385 27.7 55 5.3 -2.9
very fast 41.8 29.8 9.8 22 111

Table 3: Recognition performance (in percent) on the
completetest set and on the different speech rate specific
categories using the PROVAR system.

test set WER| sub. | del. | ins. |rel.imp. to| rel. imp. to
PROVAR | BASELINE
total 336|225 | 6.3 | 48 45 7.9
veryslow | 226 | 152 | 23 | 5.1 22 20.4
slow 346|225| 6.6 | 55 14 55
middle 327|222 | 52 |53 3.8 7.1
fast 366|250 7.7 | 39 49 21
veryfast | 39.3 | 26.3 |11.3| 1.7 6.0 16.3

Table 4: Recognition performance (in percent) on the
completetest set and on the different speech rate specific
categories using the PROVAR-VTLN system.




WER sub. del. ins. rel. imp. to
BASELINE
44.3 31.3 104 26 5.7

Table 5: Recognition performance (in percent) on the “very
fast” subset using the M AP system.

WER | sub. | del. ins. |rel.imp.to|rel. imp.to
PROVAR |BASELINE
400 | 269 | 11.7 | 14 45 14.9

Table 6: Recognition performance (in percent) on the“very
fast” subset using the PROVAR-MAP system.

4. DISCUSSION

Comparing the BASELINE and the PROVAR system (Table 1
and Table 3) it is evident that the use of pronunciation
variants, which reduces the within-model variability of the
HMM parameters, is suitable to reduce error rates for extreme
speech rates. The highest relative improvements can be
observed for the extreme categories “very slow” and “very
fast”.

For the VTLN system (Table 2) the highest relative
improvement of 9.8% is obtained in the category “very fast”.
When comparing the word error rates of the PROVAR and the
PROVAR-VTLN system (Table 3 and Table 4) again the
highest relative improvement of 6.0% can be found in the
category “very fast” resulting in an overall improvement of
16.3% compared to the BASELINE system.

Regarding the MAP retraining on the category “very fast”, a
slightly worse relative improvement of 4.5% (Table 6) is
achieved when using the PROVAR models instead of the
canonical models for which a 5.7% relative improvement was
obtained (Table 5). When evaluating this result the very low
error rate of 41.8% for the baseline PROVAR system must be
considered. The best result with the MAP approach achieved
an overal improvement of 14.9% using the PROVAR-MAP
system which presents the second highest improvement of the
proposed methods. An advantage of this method compared to
the best method (PROVAR-VTLN) is, that no additional
computational load is caused during recognition.

No further improvements are observed after application of a
MAP retraining to the VTLN based models (VTLN and
PROVAR-VTLN). Additional investigations have to be made
to dlarify the cause for this effect.

With regard to the pronunciation variant modeling individual
speech rate specific variant weights instead of the speech rate
independent weights are expected to result in further
improvements. These individual weights would allow to take
speech rate specific pronunciation variants into consideration.
However, the problem of this approach is to ensure a robust
estimation of the weights on the limited amount of speech rate
specific training material.
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