STM 2008

Policy Evolution in Distributed Usage Control

A. Pretschner!, F. Schiitz?, C. Schaefer®, T. Walter?

L Information Security, ETH Zurich, Switzerland
2RUAG Electronics, Berne, Switzerland
3DoCoMo Euro-Labs, Munich, Germany

Abstract

Usage control is a generalization of access control that also addresses how data is handled after it is released.
Controlling the future usage of data includes controlling the future distribution of data. The evolution of
policies upon re-distribution must hence be defined. Intuitively, clients should only strengthen policies
associated with a data item when they re-distribute it. We provide a role-based re-distribution model
for usage control that encompasses strengthening both rights and duties. By introducing orderings for
events and parameter values we show how both rights and duties can be strengthened with the traditional
abstraction of trace inclusion.

1 Introduction

The subject of usage control [13,14] is the handling of data after it has been given
away. Our focus is on usage control in a distributed setting, where processes act in
the roles of data providers and data consumers. Data providers can give sensitive
data to data consumers based on conditions both on the past and the future. The
latter requirements come as obligations such as “don’t re-distribute” and “delete af-
ter thirty days.” Obviously, the roles of consumer and provider change dynamically:
consumers become providers if they re-distribute previously received data. One fun-
damental usage control requirement then relates to restricting the re-distribution of
data. Without special technology in place, in principle, a subject could distribute
the data to itself, thus deleting any usage control requirements. This is obviously
not in the interest of the data provider who issued the policy. These originating
data providers likely want to specify how their data may and may not be used af-
ter re-distribution, and thus formulate distribution requirements. In other words,
they are likely not only to specify a policy for the consumer, but also to specify
policies for all potential future consumers of their data. One impractical solution is
to specify one policy per potential consumer subject. A somewhat more practical
solution consists of role-based policies—one policy per role rather than one pol-
icy per subject. However, this solution must not leave consumers total freedom in
formulating their own policies when they become providers. Intuitively, given the
policy from the originating data provider, they should only be allowed to restrict

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

PRETSCHNER ET AL.

usage rights and increase duties for the next consumer. If rights could be extended
or duties decreased, then a consumer would be able to re-distribute data to himself
with obligations that are weaker than those he received together with the respective
data item.

In this paper, we tackle the problem of policy evolution in usage control when
data is re-distributed. In what precise sense can policies be altered? We provide a
conceptual framework for re-distribution in usage control. Roughly, the originating
data provider states obligations for specific roles in a system, together with a default
policy for all other roles. Whenever data consumers re-distribute data, they may
only strengthen the policy that they received from the originating data provider,
and they may only do this for precisely specified roles. We provide a formalization
of the notion of strengthening—which, as trace inclusion or logical implication, is
straightforward for access control but becomes more complicated when not only
rights can be restricted but duties may also be increased. Our solution relies on
specifying rights and duties as intervals on events and parameters. To the best of
our knowledge, we are the first to investigate the duality of rights and duties in
usage control when it comes to policy refinement, and are the first to provide a
respective formalized framework.

2 Background

Our system model for usage control [8] is based on classes of parameterized events.
The event classes include usage and other, with the latter including notification
events, for instance. Parameters represent attributes. For example, a usage event
must indicate on which data item it is performed, and a signaling event—one that
is sent from the consumer to the outside—must name the recipient of the message.
An event therefore consists of the event name and parameters, represented as a
partial function (+) from names to values. We will describe event parameters as
(name, value) pairs. An example is the event (play, {(object, 0)}), where play is the
name of the event and the parameter object has the value o.

The definition of events in the Z language is shown below. FventName, Param-
Name, and ParamValue define basic types for event names, parameter names, and
parameter values, respectively. In Z, such definitions are made by listing the types
in square brackets. All such basic types are disjoint. EBNF-style definitions are
also possible.

[EventName, ParamName, Param Value]
EventClass ::= usage | other; getclass : EventName — EventClass

Params : ParamName - ParamValue; Event == FEventName X Params

Events are ordered with respect to a refinement relation refinesEv. Event es
refines event e; iff e5 has the same event name as e; and all parameters of e; have
the same value in ey. ey can also have additional parameters specified and hence
the C relation in the definition below. (In such aziomatic definitions, the defined
mathematical object is named and typed above the line and its properties are given
below the line.)

PRETSCHNER ET AL.

| - refinesEv _ : Bvent < Event

‘ Ver, ey : Event o ez refinesEve; < e1.1 = e2.1 A e1.2 C ez.2

The rationale is that when specifying usage control requirements, we do not
want to specify all parameters. For instance, if the event (play,{(object,0)}) is
prohibited, then the event (play, {(object, o), (device, d)}) should also be prohibited.
z.7 identifies the i-th component of a tuple z. « introduces a binary relation. The
event name nil of type EventName is reserved and denotes no event.

To define usage control requirements, we need a language for usage control.
Its semantics is defined over traces: mappings from abstract points in time—
represented by the natural numbers—to possibly empty sets of events. We cater
for usage events that execute over a time interval, e.g., watching a movie, by distin-
guishing between starting and ongoing events. The data type IndFvent defines such
indexed events. In Z, types can, among other things, be defined by enumeration or
by Cartesian products (x).

Index ::= start | ongoing; IndEvent == Event X Index

The Obligation Specification Language (OSL, formally captured by &%) is a
temporal logic similar to LTL, with additional operators for cardinality (that, in
turn, can be expressed in LTL [9, §3.4.3]). OSL has been defined as part of earlier
work [8]. We will later extend OSL with ordered events and intervals which are
necessary to express distribution requirements. In Z, records can be defined by
stating the name of a constructor and its arguments in angular brackets, and if
there is more than one argument, this is expressed with the Cartesian product.

&+ 1= true | false | By {(Bvent)) | Fy{(Bvent) | not(®+) | and(®+ x B+) | or(@+ x 3+) |
implies (&1 x &) | until (&F x 1Y) | always{(P1) | after(N x &) | within (N x &) |
during (N x @) | repmaz (N x ®T) | replim{(N x N x N x 1) | repuntil (N x &+ x 1)) |

permitonlyevname (P EventName X Params)) |

permiatonlyparam (P ParamValue X ParamName x EventName X Params))

Fig. 1. Syntax of OSL [8]

The syntax of OSL is given in Fig. 1. We distinguish between the start of
an action (syntactically: FEfy; semantically: an indexed event with index start)
and any lasting action (syntactically: E,;; semantically: indexed events with any
index). When specifying events in obligations, by virtue of the refinement rela-
tion, there is an implicit universal quantification over unmentioned parameters.
not, and, or, implies have the usual semantics, and we will use the infix operators
-, A\,V,= as shorthand. wuntil, after, during, and within are temporal operators
with an intuitive meaning that is formalized in Fig. 2.

Cardinality operators restrict the number of occurrences or the duration of an
action. The replim operator specifies lower and upper bounds of time steps within
a fixed time interval in which a given formula holds. The repuntil operator does
the same, but independent of any time interval. Instead, it limits the maximal
number of times a formula holds until another formula holds (e.g., the occurrence
of some event). With the help of repuntil, we can also define repmazx, which defines
the maximal number of times a formula may hold in the indefinite future. These
cardinality operators are also used to express limits on the accumulated usage time.

3

PRETSCHNER ET AL.

We support both the “must” and the “may” modalities. The former is given by
OSL’s LTL-like semantics, and the latter is supported by two designated operators.
The operator permitonlyevname defines the names of the usage events that are
exclusively allowed with a set of given parameters. Similarly, permitonlyparam only
allows specific values for a given parameter of an event. It prohibits all other values
for this parameter. The semantics of ®* is formally defined by the binary relation
I=¢ in Fig. 2. The definition makes use of a shorthand, |=., to relate single indexed
events (rather than traces) to formulae of the form Ey () or Eqy(-). As we will see,
to express the refinement of policies, =, will be almost all we have to adjust.

3 Re-Distribution

To illustrate the problems related to policy distribution, we consider the example
scenario of a movie provider. FairMovies produces all sorts of movies and dis-
tributes them through licensed dealers. These dealers sell the movies to customers.
FairMovies requires all dealers to provide movies to film students and reporters at
no cost. The distribution scheme is depicted in Fig. 3.

FairMovies wants to receive money for each copy of a movie that is transferred to
a private customer. However, FairMovies limits the price range for movies because
a bad price strategy could damage its reputation. FairMovies does not want movies
to be sold before they are shown in theaters. Authorities may request FairMovies to
take measures that ensure that movies are only sold to customers at a proper age.
Thus, FairMovies wants to control distribution based on environmental and subject
attributes (see below). Dealers want to receive payments from their customers for
each copy sold and they want to be able to adjust prices according to their selling
strategy. Film Academia wants its students to learn about camera techniques,
special effects, cutting and the like. To this end, academics must be able to play
and edit the full quality content. Reporters must be able to preview the full movie
to write movie reviews. Customers want to play the movie in full length and quality.
They want to share movies with others. And they want to lend movies to friends
and sell old movies that they don’t watch anymore. Customers want to recover fast
from data loss. Therefore they demand backup capabilities.

The customer requirement to share or trade movies is in conflict with FairMovies
requirement to receive money. As a solution FairMovies allows customers to share
movies for free under the condition that the new copy’s video quality is reduced
by 50% upon each re-distribution. Giving away free copies to academia and media
does not conflict with FairMovies requirements, since this improves publicity. Un-
fortunately, pirated copies often originate from one of these parties. For this reason,
FairMovies wants to apply conditions that restrict reporters and academics. Re-
porters are allowed to watch a movie at most three times. Academics are allowed to
re-distribute (modified) movies to fellow academics only. — Studying the example
scenario, we identify four requirements a system must support.

Usage Conditions: The originating data provider wants to specify conditions for
individual subjects and/or subject groups. E.g., only customers are allowed to make
backups. Thus, restrictions can be seen as individual usage policies for subjects or
groups of subjects.

PRETSCHNER ET AL.

_ ke -: IndEvent «» ®T
Vie : IndEvent; o : ®T e ie = @0 < Je: Evente
ie.lrefinesEv e A ((¢ = Egsi(€e) A ie.2 = start) V ¢ = Eqy(e))

- EBs - (Trace x N) & &F
Vs: Trace; t:N; ¢: 1 o (5,) p o &
= true V ¢ = By ((nil, @)) V ¢ = Ean((nil, @)
V e : Event \ {(nil, @)}; ie: IndEvent o (p = Ery(e) V o = Eq(e)) A ie € s(t) Aie l=e ¢
V3y: T e o =not(y) A ((s,t) =y ¥)
V3, x: T e o =or(y,x) A((s,t) Er ¥V (s, 1) Fr X)
V3P, x: 0T e o= until(y,X)
/\(Hu:N|t<uo((s,u)):fx/\(Vv:N|t<v<uo(s,v)):fzp))V(Vv:N|t<vo
(5,v) 7)
V3i:N; ¢ @ e = after(i,v) A (s,t+14) =p ¥
V3i:Ny; myn:N; ¢: 3" e: Evente
¢ = replim(i, m,n,¥) A (Y = Egq(e) Vi = Eqye)) A

m < (Z #{ie : IndEvent | ie € s(t +j) Nie|=e P} <n
j=1
Van:N; ¥, x:®"; e: Event o ¢ = repuntil(n, v, x) A (¥ = Efsi(e) V¢ = Eg(e))

/\((Hu:Nl o (s,t+u) = x AN(Vv:Ni|v<ue—((st+v)f=rx)

A (Z #{ie : IndEvent | ie € s(t +7) N ie |Ee ¥}) < n)
j=1

o0
\Y (Z #{ie : IndEvent | ie € s(t +j) N ie e ¥}) < n)
j=1
V Jezx : P EventName; ps : Params e ¢ = permitonlyevname(ez, ps)

AV en : EventName | getclass(en) = usage N\ en ¢ ex e
(t,1) b= always(not(Bau((en, ps))))
V Jex : P ParamValue; pn : ParamName; en : FventName; ps : Params e
¢ = permitonlyparam(ex, pn, en,ps) A pn ¢ dom ps
AV pv : ParamValue | pv ¢ ez e
(t,n) =y always(not(Eqa((en, ps U {(pn, pv)}))))
V = false A (s, 1) k= not(true)
V3P, x: T e o= and(y,x) A (s,t) =5 not(or(not(y), not(x)))
V3, x: T e o= implies(ih, x) A (s,t) =5 or(not(v),x)
V3y:dT e = always(P) A (s,t) =y until(s), false)
V3i:N; ¢ dt e o = within(i,9) A (s, t) =y replim(i,1,4,)
V3i:N; ¢: @ e o= during(i,¥) A (s, t) =5 replim(i, i,1,)
VIn:N; ¢: ®F e ¢ = repmaz(n,¥) A (s,t) ¢ repuntil(n, b, false)

Fig. 2. Semantics of OSL [8]

Distribution Conditions: Data providers want to specify pre- and postconditions
for distribution. An example postcondition is the requirement that dealers must pay
royalties to FairMovies after selling a movie. An exemplary precondition is that
FairMovies does not allow distribution before a movie has been shown in cinema.

Distribution Path: An originating data provider wants to control which subjects
are allowed to get the data. Moreover, he might want to control who can distribute
to whom, thus effectively describing “paths” between subjects along which data and
policies can be sent.

PRETSCHNER ET AL.

FairMovies

D

FilmAcademia Dealer Customers

TS Tp

TR
Reporters

Fig. 3. Fair Movies distribution scheme

Policy Modifications: There are two forms of policy modifications. The explicit
form is what a data provider is allowed to negotiate. The originating data provider
may allow any subsequent data provider to negotiate within certain boundaries. For
example, FairMovies allows dealers to negotiate the price with the customer, but
does not allow the movie to be sold too cheap or too expensive. The second form
of policy modifications is automatic policy evolution: the originating data provider
specifies functions that must be applied to the policy before it is propagated, thus
evolving the policy. An example for this is the request for quality reduction when
distributing movies to others.

3.1 Strengthening Policies

Our notion of strengthening policies assumes without loss of generality the per-
spective of the data provider. A policy is strengthened by reducing the consumer’s
rights (benefits) or by increasing the consumer’s duties.

Rights. We start by assuming that a subject can only strengthen policies upon
re-distribution of a data item. For now, we will only consider rights, as done in
access control. Duties are considered below. Intuitively, one would argue that upon
re-distribution, rights can only be decreased. In formal terms, the set of traces that
satisfy the original policy must become smaller, or, logically speaking, the formula
that corresponds to the new policy must imply the old policy.

Consider an event name play with one parameter for video quality. Video
quality, vg, ranges from 0 to 100. One example event is (play, {(obj, movA), (vg,
75)}), indicating that movA is played with 75% video quality (throughout the pa-
per, we assume that the maximum value is 100). A policy specifying that movA
may only be played with this restricted quality is given by permitonlyparam ({75},
vq, play, {(obj, movA)}). Now, intuitively, the data provider is unlikely to object
to any consumer playing the movie at a quality below 75%. In other words, the
intended policy is probably permitonlyparam({0, ..., 75}, vq, play, {(0bj, movA)}).
Note that the second policy can intuitively be refined to a policy which allows
less quality, while the first policy cannot. Similarly, let us assume a policy
permitonlyevname({edit}, {(obj, movA)}), specifying that movA may be edited both
for sound and video content. It is likely that the data provider would not ob-
ject to the movie also being played, or edited for video content only, or edited
for sound only. The intended policy is hence likely to be permitonlyevname({ edit,
sndedit, vdoedit, play}, {(0bj, movA)}). One possible restriction of this policy would
then allow to edit the movie’s sound track only (and, at the same time, also allow
to play the movie).

Ordered Events and Parameters. In sum, policies tend to formulate per-
missions not for single events or single parameters only. Instead, they assume an

6

PRETSCHNER ET AL.

implicit ordering of events. In order to simplify policies, and in order to provide
a formal framework for strengthening policies, we make these orderings explicit.
Events and parameters will be partially ordered, that is, ordered w.r.t. a rela-
tion that is reflexive, antisymmetric, and transitive. For brevity’s sake, we omit
the straightforward formalization of these concepts. In the following, all orders <,
possibly indexed, are assumed to be partial orders.

As a first step, we define a partial order for event names, which is, in fact,
a bounded lattice. In addition to the order provided by the system designer, we
assume the existence of two special event names T, and |, that are larger, respec-
tively smaller than any other event name. We can then define lattices on event
names, <., and event parameters, <,; the straightforward formalization is again
omitted for brevity’s sake. Fig. 4 shows an example for a partial order of events
(left) and one particular set of parameter values, e.g., video quality.

Ty
/ “ \\ 1
vdoedit sndedit pay send sell backup 99

play e
premew 0

P
Fig. 4. Partially ordered event names (left) and parameter values (right)
In order to use ordered events and ordered parameter values in OSL policies, we
first have to extend the syntax. We introduce ordered events that consist of a pair of
event names and a pair of parameter values, captured by the following definitions.

OrdParams == ParamName + (ParamValue X Param Value)

OrdEventName == FEventName X FventName; OrdEvent == OrdEventName X OrdParams

Intuitively, if an ordered event is allowed to happen, then all events in between
the two event names with all parameter values in between the two boundary param-
eter values are also allowed to happen. Postponing the motivation for the moment,
we stipulate that for each ordered event,

* one of the following is true: (1) the left boundary of the event name is L.; or (2)
the right boundary of the event name is T; or (3) both boundaries are identical;

e and that in addition one of the following also holds for each ordered parameter
value: (1) the left boundary is L,; or (2) the right boundary is T,; or (3) the left
and right boundaries are identical.

Without a respective formalization, we furthermore require the following “sanity”
conditions to hold. Firstly, any ordered event must have valid lower and upper
bounds for the event parameters. This means that the bounds must consist of

7

PRETSCHNER ET AL.

oF u=true| false | Byt (OrdBvent) | Euu((OrdBvent)) |not (®3)) |and (&3 x ®F) |or (&5 x 7)) |
implies (@8 x @) |until (DF x ®F) | always (BT | after (N x ®F) |within (N x &F) |
during (N x ®F) | repmaz (N x ®F) |replim (N x N x N x ®F) | repuntil (N x &% x &) |

permitonlyevname (P OrdEventName x OrdParams)) |

permitonlyparam (P(ParamValue X ParamValue) X ParamName X OrdEventName X OrdParams))

_[E2 _: IndEvent < &}
Vie : IndEvent; ¢ : CIJO+ e je =0 p < Jen, en, eny : EventName; ps : Params; ops : OrdParams e

ie = (en,ps) A ((¢ = Eps(((eng, enu), ops)) A ie.2 = start) V ¢ = Eq;(((eny, enu), ops)))
Aenp <. en A en <. eny, AVpn: ParamName; pv, pv, pvy : ParamValue | (pn, pv) € pse
(pn, (pur, pvu)) € ops = puy <p pv A pv <p poy

-Ef - (Trace x N) < &F
Vs: Trace; t:N; ¢ : ®F o (s,1) |:]‘3 RS
o = true V ¢ = Bgy((nil, 2) V ¢ = Bau((nil, @)
V 3e: Buvent \ {(nil, @)}; ie: IndEvent e (¢ = Ery(e) V o = Eq(e)) Ade € s(t) Ade =g @

V Jez : P OrdEventName; ps : OrdParams e
» =permitonlyevname (ex, ps) A
Y en, eny, en; : BventName; pn : ParamName; puy, pvy, : ParamValue | getclass(en) = usage
A (en, enu) € ez A (eny <e en V en <. eny o (s,t) =7 always (not (Equ((en, ps))))
V ez : P(ParamValue X ParamValue); oen : OrdEventName; ps : OrdParams; pn : ParamName o
» =permitonlyparam (ex, pn, oen,ps) A\ pn € dom ps A
Y pv, puy, pvy : ParamValue | (pvy, pvu) € ez A (pvy <p pv V pv <p pu;) ®
(s,1) = always (not (B ((oen, ps U {(pn, (pv, pv))})))

Fig. 5. Syntax (®F) and semantics (F=f) of OSL with ordered events and parameters

values that are defined for the respective parameters. Secondly, every parameter
name given in an ordered event must be declared for at least one event from the
interval given by the ordered event name. Finally, the values used for the lower and
upper bounds of parameter values must exist for this event parameter. We omit a
concrete formalization of these constraints here. Instead, we adjust the definition
of @ to cater for ordered events and ordered parameter values as defined by ®7 in
Fig. 5. Semantically, we only have to adjust =, to check if an indexed event lies in
the specified interval, and the permission operators. Since |=, is the anchor of every
definition in |=¢, with most operators it suffices to replace events by ordered events.
Essentially, an event satisfies a formula with an ordered event as subformula if the
event name and all parameters are within the given bounds. In addition to =,
only permitonlyevname and permitonlyparam must be redefined in such a way that
not only single events or parameters can be whitelisted, but also whole intervals.
For permitonlyevname this is done by checking for each event whether it falls in
one of the permitted intervals. If it does not, then this single event is forbidden.
permitonlyparam is defined analogously. The formalization is provided in Fig. 5.

As an example, we can specify that a movie movA may
be previewed or played with a quality of at most 75%:
always(not(Eq(((Le, play), {(obj, (movA, movA)), (vq, (76, T,))})))). Note that we
have to use a singleton interval for the 0bj parameter—of course, the implementation

8

PRETSCHNER ET AL.

of our language expands a single parameter to the singleton interval. Among other
things, however, the above allows movA to be edited by anyone, and the intended
policy likely was rather permitonlyevname({(L, play)},{(obj, (movA, movA))}) A
permitonlyparam({(L,, 75)}, vq, (L, play), {(0bj, (movA, movA))}), which specifies
that the exclusively allowed operations on movA are those in between 1, and play
with, if applicable, values in between 1, and 75 for parameter name vq. A possible
restriction of this policy would be to restrict the set of events that can be executed
on object movA, or to reduce the interval for video quality.

Logical Characterization. Intuitively, a formula ¢’ is stronger than a formula
p if every trace satisfying ¢’ does not give more rights and imposes at least as many
duties as every trace that satisfies ¢ (note that we have not discussed the issue of
duties yet, but, as we will see, this will be easy to incorporate). In other words,
if every trace that satisfies ¢’ also satisfies ¢, ¢ is as strong or stronger than ¢.
Semantically, our notion of stronger policies then naturally boils down to trace
inclusion. Having introduced the semantics for formulas with ordered events, we
lift <. and <,, the partial orders for events and parameter values, to OSL formulas
by the following definition.

| -<p - @f o of

‘ Vo,0 i dF o o' <ppe Vs: Trace; t:N e (s,t) =7 implies (o',)

For instance, the intuition that E.;(((play, play),{(obj,(movA, movA)), (vg,
(Lp,50))})) is stronger than Eu;(((play, play),{(obj, (movA, movA), (vgq, (Ly,
100))}))) is met by the formal definition.

Duties. We have seen that usage control policies do not only specify permissions
but also duties. Strengthening policies relates to both aspects. We have seen that
one possibility to strengthen policies is the reduction of rights. Another possibility
is to impose further duties on the consumer. As we will see, this can be coped with
in exactly the same way as the restriction of rights.

Consider a policy that specifies that $1 has to be paid whenever movie
movA is played, formally captured by always(Ef((play, play),{(obj, (movA,
movA))}) = Er((pay, pay), {(amt,(1,1))})). Upon re-distribution of the movie,
the new provider may decide that the new consumer should pay $2 rather than
$1. If the initial policy was always(Eyss((play, play), {(obj, (movA, movA))}) =
Efst((pay, pay),{(amt, (1, Tp))})), this could, again simply by restricting inter-
vals, be strengthened into always(Ey((play, play),{(obj, (movA, movA))}) =
Eto((pay, pay), {(amt, (2, T,))})). This is not possible with the original policy that
specified precisely $1 to be paid.

Interval Boundaries. One way to strengthen policies is hence to shorten
intervals. The reason for requiring either boundaries to be identical or left or right
boundaries to be bottom or top elements of the respective lattices is the following. If
a provider required payments to be in between $1 and $500, then one possibility to
strengthen the policy would be to require a payment in between $1 and $250. While
this clearly reduces the consumer’s number of possibilities to fulfill his duties, it is
not an intuitive strengthening of the duties. Increasing the lower bound, however,
intuitively strengthens the duty. Conversely, it does not seem reasonable for a
provider to grant the right of watching a movie at a quality that is lower than 75%

9

PRETSCHNER ET AL.

but above 25%.

As it turns out, rights usually have L. or L, as left boundary, and duties have
Te or T, as right boundary. In other words, requiring lower bounds to be L., L,
or upper bounds to be T, T, amounts to specifying mazimum rights and mininum
duties. Assuming that there are no composite events that combine both rights and
duties, any event can hence be classified as right or duty by simply regarding the
interval boundaries. This obviously also gives rise to a slightly different syntax:
upon policy specification, we could classify events into rights and duties and omit
either left or right boundaries for both names and parameter values. These missing
boundaries could then automatically be filled in.

One might argue that it is not always clear if an event denotes a permission or
a duty. For instance, a play event may relate to both playing a movie (right) and
playing a commercial (duty). However, it seems that events can be assigned a clear
status of being either a right (playMovie) or a duty (playCommercial). Furthermore,
one might be concerned that negating a duty leads to a right and that negating a
right leads to a duty. This can indeed be the case but need not necessarily: the
negation of “pay $5 or more” would be “do not pay $5 or more”, and this is not a
right in the intuitive sense (“you may pay less than $4”). Either way, not labeling
events as rights or duties but rather classifying them implicitly on the grounds
of interval boundaries avoids any confusion. For this reason, we stick to explicit
boundaries in this paper.

Note that there is a noteworthy asymmetry. Restricting rights can, in principle,
also mean to increase the lower bound. The interpretation is then that consumers
are restricted in their freedom to choose, even though in the example of increasing
the minimum quality, this may appear odd. In other words, one can argue that
reducing rights can happen at both sides of the spectrum. On the other hands, this
does not seem too reasonable for duties, as explained above. In fact, we decided
to fix lower boundaries for rights to be L, or L. only on the grounds of symmetry
considerations.

Finally, note that our notion of strengthening policies defined by logical implica-
tion “automatically” caters for strengthening along the temporal dimension: having
to do something within 5 time steps can be strengthened to doing it within 3 steps.

3.2 Variables

Our policy language for distribution also includes a few variables, the most impor-
tant ones being %SENDER and %RECEIVER. At runtime, these are bound to
the provider and the consumer of the last distribution step. With these variables
it is, for instance, possible to state that money must be paid to the last provider
but not necessarily the originating data provider. Similarly, variables can relate to
the current state of a system—which assumes that this local or global state can be
accessed. A possible extension is the introduction of variables that allows to express
requirements such as “quality to be halved upon every distribution step”, which we

illustrate below.
10

PRETSCHNER ET AL.

3.8 Role-Based Distribution

We are now ready to define a role-based distribution schema. We assume that
the initial policy is defined by the originating data provider. The originating data
provider defines one policy per role and possibly per subject. We will assume that
a subject’s policy has priority over a role’s policy. A subject can be in multiple
roles, and in case of conflict, we assume some further conflict resolution mechanism
to exist. In case a data item is sent to a subject for which neither a dedicated
(subject) policy nor a policy for the subject’s role is defined, a default rule applies.
This default rule must be provided by the original data provider.

Whenever data items are re-distributed, the provider can at most strengthen
the (originating policy provider’s) policy. Any distribution component must hence
be able to decide if p; <y ps holds for policies p; and ps.

However, it may be that the originating data provider does not want future
providers to be able to strengthen the policies of all roles. To this end, we introduce
a partial order on roles, <,. A potential data provider in role r; may only strengthen
the originating data provider’s policies for all those roles r where r <, r; (that is,
a “larger” role may only change the policies of "lower” roles). Note that this is a
distribution hierarchy only; we do not require that if (sub-)policies p; and py are
associated with roles r1 and ry with r1 <, 9, then also p; <y ps.

3.4 Ezxample: FairMouvies

We now present the formal policy for our running example. For brevity’s sake, we
will only discuss the most interesting requirements.

Usage Conditions: First, FairMovies must come up with usage conditions for
each party. A dealer can sell a movie to customers or send it for free to reporters
and academics (these potential receivers are specified below). Customers can play
a movie, back it up for fast recovery, and re-distribute it under specific conditions.
Reporters may play a movie up to three times. Academics can play and edit a
movie. Furthermore they can send it to other academics.

{(dealer, permitonlyevname({(Le, sell), (L¢, send)}, (obj, (movA, movA))})),
(customer, permitonlyevname({(Le, play), (Le, backup), (Le, send)}, {(obj, (movA, movA))})),

(reporter, and(permitonlyevname({(Le, play)}, {(obj, (movA, movA))}),

repmaz (3, By ((play, play), {(0bj, (movA, movA))}))),
(academia, permitonlyevname({(Le, edit), (L, send)}, {(obj, (movA, movA))})),
(default, permitonlyevname({(Le, preview)}, {(obj, (movA, movA))}))}.

Distribution Path: FairMovies must control distribution paths. In that way,
dealers are allowed to distribute to customers, reporters and film students. Aca-
demics may only distribute to other academics. Customers may distribute to their
peers. Reporters are not allowed to distribute at all. In the following, we assume
that the send event has a parameter recv that designates the receiver’s role.
{(dealer, permitonlyparam({(academia, academia), (reporter, reporter), (customer, customer)},

recv, (send, send), {(0bj, (movA, movA))})),

(academia, permitonlyparam ({(academia, academia)}, recv, (send, send), {(obj, (movA, movA))})),
(customer, permitonlyparam ({(customer, customer)}, recv, (send, send), {(obj, (movA, movA))}))}.

Distribution conditions: Dealers are allowed to sell copies to customers at an

11

PRETSCHNER ET AL.

increased price. Whenever doing so, the dealer must pay royalties to FairMovies.
{(dealer, always(Eyst ((sell, sell), {(obj, (movA, movA))}) = Er((pay, pay), {(amt, (10, T;)),

(rev, (FairMovies, FairMovies))})))}.

Policy Modification: Customers may distribute to others, but then the qual-
ity of the content must automatically be reduced by 50%. Therefore we in-
troduce a local variable %QUALITY as proposed in §3.2. The resulting policy
is then {(default, permitoniyparam({(Ly, %QUALITY /2), vq, (play, play), {(0bj, (movA, movA))H)},
where we omit a formal definition of the syntax for halving the quality.

Strengthening: We have seen several examples for strengthening by decreasing
intervals. Assume now that a film student gets a movie from a dealer. The applicable
subpolicy is that for Academia that results from combining the above aspects.
and(permitonlyevname({(Le, edit), (send, send)}, {(0bj, (movA, movA))}),
permiatonlyparam ({(academia, academia)}, recv, (send, send), {(obs, (movA, movA))})).

The student edits the movie and introduces some special effects. He then
sends the modified content to his supervisor. However, he does not want
his supervisor to alter anything and also wants him to not send it to anyone
else. To prevent his supervisor from showing it to too many people, he also
limits the number of times the movie can be played to once. Therefore he
strengthens the Academic’s sub-policy as follows (which he can do because he
has the same role as his supervisor), and leaves the other policies as they are:
and(permitonlyevname({(Le, play)}, {(obj, (movA, movA))}), repmaz (1, Ezy ((play, play), {(obj, (movA,
movA))}))). It is easy to see that this new policy is stronger in the above sense, since
every event that satisfies the new policy also satisfies the original one.

3.5 Checking Policy Entailment

Policy entailment can be checked automatically with a model checker. To this end,
policies are simply translated into a dialect of LTL. This is, however, not the subject
of this paper [16].

4 Related Work

Usage control has been discussed by several authors [13,3,2,7,14]. The issue of re-
distribution, the subject of this paper, is not discussed in these approaches, in some
cases because of the centralized perspective on usage control. Related to our work
are approaches to policy and rights delegation or propagation for access control.
These approaches enable a user to delegate certain access rights to other users (see,
among others, [6] for references). In discretionary access control, for instance, a
subject may override the system’s policy under specific circumstances (e.g., [4]).
Our work differs in that we also take into account duties, and that we impose
precise constraints on the discretionary modification of policies (strengthening).
The audit logic of Cederquist et al. [6] includes a notion of refinement of ad-
ministrative policies that is also based on logical implication. It does not take into
account intervals though, which means that it is difficult to express that “pay $6” is
stronger than “pay $5.” Furthermore, this framework does not include obligations,
even though the authors state that they would be straightforward to implement.
SecPAL [1] is a powerful formal authorization language that includes constructs

12

PRETSCHNER ET AL.

for stating facts about delegation. Usage control is not considered, however. Sec-
PAL policies are static, that is, there is no way to modify (strengthen) policies at
runtime, and as a consequence, there is no support for expressing that policies may
be strengthened. Given the formal semantics, however, it seems possible to include
this into SecPAL.

Park et al. [12] present policies that require recipients to gain an originator’s
approval for the distribution of data. The distribution process itself only concerns
access control requirements. This means that the policies only specify whether the
objects can be accessed by others. Park et al. present several approaches how these
policies can be integrated in different usage control settings.

Other work on delegation policies and models [15,2] was published. This is
similar to the work discussed above. Several authors [5,11,10] discuss the problem
of delegation in distributed system. However, they sketch problems rather than
solutions. If solutions are discussed, these are very application specific.

5 Conclusions

In this paper, we have introduced a framework for re-distribution of data objects in
distributed usage control. Essentially, given a data object that is to be distributed,
the originating data provider specifies a policy for each role in a system. Upon
re-distribution, these sub-policies can only be strengthened by roles that have the
right to do so; this is regulated by a partial ordering of roles. These roles reflect a
re-distribution hierarchy and not necessarily a hierarchy of rights and duties.

We have introduced intervals for events and parameters. For rights, the left
boundary usually is the minimum value (_L); for duties, the right boundary usually is
the maximum value (T). This means that we specify maximum rights and minimum
duties; upon re-distribution, rights can be decreased and duties can be increased.
Formally, we have shown that this notion of strengthening policies amounts to
logical implication. For rights, such a formal notion is intuitive; for duties, it is less
so, and the main contribution of this paper is a common formal framework that
encompasses both rights and duties in a uniform manner.

Whether or not sub-policies are indeed strengthened must be checked upon
re-distribution. Our approach allows for syntactic checking in many cases (add
conjuncts, move interval boundaries in the appropriate direction). In other cases,
this can be performed automatically, for instance on the grounds of model checkers,
which has been done but is not described in this paper [16]. This requires of
course the existence of a respective infrastructure: any distribution request must be
intercepted at the potential provider’s device and routed through a policy checking
mechanism. This device must also take care of policy transformation of the kind of
halving the quality (§3.4).

Policy transformations w.r.t. the current consumer’s state deserve more atten-
tion. For instance, if an originating data provider wants the policy to be distributed
only three times and the first consumer has distributed it already once, then the
next consumer should be allowed to only distribute it once more. This also points
at another problem: does “distribute no more than n times” mean that the overall
number of copies in the system should be n or that every consumer can distribute

13

PRETSCHNER ET AL.

it » times? Similarly, if a resource usage is allowed for two hours, and the first con-
sumer has already spent one hour using it, then every subsequent policy may have
to restrict the usage to only one more hour. Essentially, we may need to distinguish
between this kind of “global” policies and the “local” policies we used in this paper.

We have deliberately not discussed the consumer-side enforcement of policies.
We are, however, of course aware that this is a crucial ingredient of any implemen-
tation of distributed usage control concepts. Moreover, the management of policies
obviously is a particularly challenging task in distributed settings.

We have assumed that objects do not change when distributed. Consequently,
future work is bound to the problem of rights delegation in those cases where a data
item is modified (e.g., a color image is transformed into black and white), or where
different objects are merged (e.g., by aggregating data in the form of statistics).
Furthermore, the decision that the lattice of roles is a re-distribution rather than
a rights hierarchy deserves some further considerations. In this vein, we will also
have to find out if the default rule should be required to be stronger than all other
sub-policies.

References
[1] M. Becker, C. Fournet, and A. Gordon. Design and semantics of a decentralized authorization language.
pages 3—15, 2007.

[2] E. Bertino, C. Bettini, and P. Samarati. A temporal authorization model. In Proc. CCS, pages 126-135,
1994.

[3] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and obligations in policy rule
management. J. Network and System Mgmt., 11(3):351-372, 2003.

[4] M. Bishop. Introduction to Computer Security. Addison Wesley, 2005.

[5] O. Canovas and A. F. Gomez. Delegation in distributed systems: Challenges and open issues. In Proc.
14th Intl. Workshop on Database and Expert Systems Applications, page 499, 2003.

[6] J. Cederquist, R. Corin, M. Dekker, S. Etalle, J. den Hartog, and G. Lenzini. Audit-based compliance
control. Int. J. Inf. Secur., 6:133-151, 2007.

[7] M. Hilty, D. Basin, and A. Pretschner. On obligations. In Proc. ESORICS, Springer LNCS 3679, pages
98-117, 2005.

[8] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A Policy Language for Distributed
Usage Control. In Proc. ESORICS, pages 531-546, 2007.

[9] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Enforcement for Usage Control: A System Model
and a Policy Language for Distributed Usage Control. Technical Report I-ST-20, DoCoMo EuroLabs,
December 2006.

[10] L. Kagal, T. Finin, and A. Joshi. Trust-based security in pervasive computing environments. IEEE
Computer, 34(12):154-157, 2001.

[11] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environment. In Proc.
POLICY, pages 63-74, 2003.

[12] J. Park and R. Sandhu. Originator control in usage control. In POLICY ’02: Proceedings of the 3rd

International Workshop on Policies for Distributed Systems and Networks (POLICY’02), page 60,
Washington, DC, USA, 2002. IEEE Computer Society.

[13] J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM Transactions on Information
and Systems Security, 7:128-174, 2004.

[14] A. Pretschner, M. Hilty, and D. Basin. Distributed Usage Control. CACM, 49(9):39-44, September
2006.

[15] C. Ruan, V. Varadharajan, and Y. Zhang. Logic-based reasoning on delegatable authorizations. In
Proc. 13th Intl. Symp. on Foundations of Intelligent Systems, pages 185-193, 2002.

[16] J. Riesch. Model Checking Usage Control Policies, 2008. Master’s Thesis, Department of Computer
Science, ETH Ziirich.

14

	Introduction
	Background
	Re-Distribution
	Strengthening Policies
	Variables
	Role-Based Distribution
	Example: FairMovies
	Checking Policy Entailment

	Related Work
	Conclusions
	References

