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Abstract—We study the probabilistically constrained capacity
of a Gaussian relay channel in terms of the corresponding
outage constrained decode-and-forward (DF) achievable rate and
the cut-set bound (CSB). The probabilistic outage constraint is
necessary due to Rayleigh fading and the absence of channel
state information (CSI) at the transmitting nodes. The DF outage
probability can be calculated in closed form, which allows a direct
optimization of the joint source and relay transmit strategy. In
contrast, the CSB probability can only be calculated in closed
form for noncoherent transmission from the source and relay
to the destination. For coherent transmission, we propose two
upper bounds based on a genie-aided transmission and Markov’s
inequality. The numerical results verify the quality of the bounds.

Index Terms—outage constrained DF rate; CSB probability;
chance-constrained robust relaying; imperfect CSI

I. INTRODUCTION

The capacity of the standard Gaussian relay channel—the
transmission from the source to the destination with the help
of a relay—is only known for special cases. For example, the
decode-and-forward (DF) scheme achieves the capacity if the
relay is close to the source [1]. In general, the capacity can
only be bounded from above and below, e.g., with the cut-set
bound (CSB) and the DF scheme, respectively. These bounds
are important for the physical layer design with multiple
antennas [2]. We use the bounds for a probabilistic physical
layer design with only channel distribution information at the
transmitting nodes, while the receiving nodes are aware of the
channels’ states that are required for reliable decoding.

While the ergodic capacity, i.e., the maximum average
achievable rate, is the most important metric for fast fading
channels, in case of slow fading channels, which is addressed
in this work, the appropriate figure-of-merit is the outage
probability [1]. An outage occurs when the channel is so
poor that no error-free communication from the source to the
destination is possible at the desired rate.

In [1], the minimal outage probability for a given data rate
was described, for phase fading only, via an upper bound
based on DF and a lower bound obtained via the CSB. These
outage probability bounds were also extended to the half-
duplex case by Hgst-Madsen and Zhang [3], who used Monte-
Carlo simulations for their numerical evaluations. Closed-
form solutions for the outage probability of half-duplex DF
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relaying with Rayleigh fading channels between the single-
antenna source, relay(s), and destination were presented in [4],
[5]. Other works considered the low- or high-SNR regime to
derive bounds on the outage probabilities of relay systems
(e.g., see [6]-[10]) and to simplify the analysis.

Instead of minimizing the outage probability for a fixed
rate, we are interested in the inverse problem, i.e., maximizing
the achievable rate at a certain outage probability. Note that
the solution, i.e., the outage capacity, is unknown, even for
Rayleigh fading channels. In this work, we present outage
capacity bounds based on the probabilistically constrained DF
achievable rate and the CSB. These bounds are analyzed via
numerical simulations for a line network.

II. THREE-NODE RELAY MODEL

We consider a standard single-antenna relay scenario, where
the source conveys information to the destination with the help
of a full-duplex operating relay. The capacity of this system
is unknown in general, but can be bounded. Two important
capacity bounds for perfect CSI with similar structure are the
the achievable DF rate and the CSB. The achievable DF rate
with, respectively, source and relay channel inputs Xg and Xgr
and relay and destination outputs Yr and Yp reads as [1], [3]

RDF :p(Hlma;( )Hlln {I(Xs;YR|XR),I(XS7XR;YD)}. (1)
Note that the DF strategy requires that the relay to completely
decodes the received message before sending the re-encoded
data jointly (coherently) with the source to the destination.
The general form of the CSB can be expressed as [1]

CCSB :p{nsax )min {I(Xs, YR, YD‘XR), I(Xs, XR; YD)} (2)

Ts,TR
and only differs in the first mutual information argument from
Rpr, where Ccsp additionally takes into account Yp.

In the corresponding Gaussian relay model, the received

signals at the relay and the destination can be written as

YR = hsrZs + 1R,
Yo = hspxs + hrpZr + 1p,

where g ~ Ng(0,1) and np ~ Ng(0,1) are the additive
white Gaussian noise components and hsg, hsp, and hgrp
are the complex channels between source, relay, and des-
tination. Note that a joint zero-mean circularly symmetric
complex Gaussian signaling with full transmit power at the
source and relay maximizes the DF rate and the CSB, i.e.,



xs ~ Nc(0, Ps), zr ~ Nc(0, PR), and E[zszr*] = 8v/PsPRr.
This result is independent of the realization of the channels
and the actual choice of 3 € C with |3|?> < 1. Therefore, (1)
and (2) can be rewritten as

Rpr(h) = max min{R](DlF)(@h),R](DQF)(@h)} 3)

[812<1
Cesn(h) = max min{Cisy(8,h), Cesp (B, b)) )
where h = [hsgr, hrp, hsp]® comprises the channel coeffi-

cients. The first mutual information expressions inside the
minimum operator of (3) and (4), respectively, read as

RGY (8, ) = logy (1+ (1 — |B]) hs | By), 5)
Céop(B.h) = logy (1+ (1 = [B)(|hsx|* + |hsp|*) Ps). (6)
The second mutual information expressions inside the mini-
mum operator of (3) and (4) are equal [cf. (1) and (2)] and
depicted at the top of the next page [see (7)].
III. CAPACITY BOUNDS FOR PERFECT CSI

For perfect channel state information (CSI), the remaining
optimization in (3) and (4) over 3 = | 3| e/?5 takes into account
the realizations of h. The maximum is obtained by [1]

ej¢5 _ hg])hRD

|hspllhrp|’
with the resulting second DF and CSB expression in (8).
The positive scalar |3| equalizes the rates inside min{-,-} (if
possible), i.e., R](DIF) = R](JzF) and Cégg = C((:Qsig if

9

|hsr|*Ps > |hsp|*Ps + |hrp|* Pk,
|hsr|2Ps > |hrp|* Pr

(10)
Y

for the DF rate (3) and the CSB (4), respectively. Otherwise
noncoherent transmission is optimal, i.e., || = 0.

IV. OUTAGE CONSTRAINED CAPACITY BOUNDS

Now, consider that the channels are slowly Rayleigh-fading
h(y ~ Ne(0,07))

where (-) stands for the indices SR, RD, and SD of the
corresponding channels. Furthermore, let only the statistics of
the channels in (12) be available at the transmitting nodes,
that is, the source has statistical information of hgg and hgp,
the relay has statistical information of hgp, but perfect CSI
for hggr, and the destination has perfect CSI for hgp and hgp.
Then, the transmission from the source to the destination with
the help of a relay might fail if the channels are so poor that
the desired data rate p is not reached—an outage might occur.

For a reliable transmission and in accordance to above
assumption of slow fading, the probability of an outage is
limited to lie below € € (0, 1). Under this condition, we aim at
a maximization of the rate p. In other words, we aim at finding
the outage constrained capacity C°Y which is unfortunately
unknown. Instead, a lower and an upper bound for the outage

12)

constrained capacity are found. For example, we obtain these
bounds via the maximization of the DF rate and CSB, i.e.,

RS = max {p€R:ppr(p.f) >1—c},  (13)
p,1B12L1

Co) = max {peR:pesp(p,f) >1—c}.  (14)
ps1B12L1

The probabilities in (13) and (14) are functions of the joint
transmit parameter 5 and the imposed data rate p and read as

por(p, B) = Pr | min {RQ(8, )} 2 ], (15)
pesa(p. ) = Pr | min{CE(8.)} 2 0|, (16)

respectively, where the randomness in the stochastic constraint
is due to the random channels.

A solution of either of the remaining optimization for the
DF rate and the CSB is a two dimensional search over 5 € C
and p € R. Next, we refine this search and provide a generic
solution approach to analyze the outage constrained capacity
via its upper and lower bounds in the numerical results, i.e.,

(out) (out) (out)
Rpp” < ¢ < CCSB :
V. PROBABILISTIC OPTIMIZATION FOR BOUNDS

We can establish the general procedure via two properties
that hold also for the given formulations in (13) and (14).

Lemma 1. The probability p(.(p,3), with py(0,3) = 1
and lim, o p(.)(p, B) = 0, is decreasing in p for fixed 3.
It is continuous if the channels’ probability density functions
(PDFs) are continuous as well.

Lemma 2. The joint transmit parameter 3 can without loss
of optimality be restricted to be real and nonnegative if any of
the channels to the destination, hsp and hgp, has a uniformly
distributed phase in [0, 27).

The proofs are provided in Appendices A and B. The
case with an independent zero-mean Gaussian distributed h
[cf. (12)] is only one example for a fading environment with
channels that have a continuous PDF and uniformly distributed
phase-fading. We remark that Lemma 2 would not hold if both
channels hsp and hgrp were nonzero-mean Gaussian.

From Lemma 1, it follows that the optimizer p* of either
of the optimizations in (13) and (14) satisfies the chance-
constraint—the outage requirement—with equality, i.e.,

POy (", B) =1—¢

Moreover, we can find the optimizer S* for a given rate target
p as (cf. Lemma 2)

a7

B* = argmaxp(, (p, ). (18)

0<B<1
This motivates a two-fold general optimization approach,
where in an outer loop the optimal rate p* is searched via
a bisection. The optimal 5* according to (18) is found in
each bisection step via a line search, e.g., the golden section
method [11], for given p(*). Depending on whether the result-
ing probability p(.)(p(i), B*) is smaller or larger than 1 — ¢,



CEap(8. k) = Rz (8.h) = logy 1+ [hsol*Ps + |heo|* P + 2 Re{ Bhsohi} v/ PsFr) ™

2 hiph 2 hiph _
C& (|»3| \hs;\llxn\’h) = Ry (\m \hs;H}Z?D\’h) = log, (1 + |hsp|*Ps + |hro|* Pr + 2|8| hsp||Pro| v PSPR) ®)

p@, respectively, p(*) serves as a new lower or upper bound
for the uncertainty interval of the maximum rate p* € [Ev ,6}.
The initial lower bound is p = 0 and we may use (37) for the
initial upper bound p, which we obtain via approximation of
the CSB probability in (16) with Markov’s inequality.

Alternatively, the outer bisection and inner optimization may
be reversed. Any of the two versions for the probabilistically
constrained DF rate and CSB maximization requires a large
number of probability computations since the inner problem
has only linear convergence. For an efficient computation, we
require either closed-form formulations for the probabilities or
tight probabilistic constraint approximations that are used if
no closed-form probability expressions exist. We also present
computationally more efficient upper (optimistic) and lower
(conservative) bounds for the DF and CSB version, respec-
tively, for noncoherent transmission, i.e., 5 = 0.

A. Decode-and-Forward Success Probability

Note that the first and the second argument within the
min{-, -} operation in (15) are mutually independent.! There-
fore, this probability can be rewritten as the product

por(p, B) = phi (0, YD (0, B), (19)
where the two multiplied probabilities are defined as
poe(p, B) = Pr [RGL(B, h) = p]. (20)

The stochastic constraint within the probability of p](le) (p, B)
is separable, i.e., the optimization variables p and 8 can be
separated from the stochastic channel by the inequality sign.
Moreover, since 2|hsg|?/o3; is standard y?-distributed with
two degrees of freedom, the first probability is (cf. [12])

2 —(p)
(1) — Py {|hSR| 7(p) } — o T8% P Q1)
Ppr (P: 5) UgR = (1 _ BQ)PSR

where we substituted Psg = PsoZy and y(p) = 27 — 1.

In contrast, the optimization variables in pl()2p) (p,B) are
non-separable from the random channels with respect to the
inequality sign. However, we can rewrite p](j:)(p, B) as

Pi (9, B) = Pr [lwn PAoka + w2 PAokz = 7(p)]  (22)

where w; ~ N (0,1) and Apk,i, ¢ = 1,2 are the eigenvalues
of the positive semidefinite matrix?

C’:[ Prop 5\/PRDPSD]
Bv Psp Prp Psp ’

IThis is in contrast to the outage capacity upper bound based on CSB,
where both arguments of the min{-, -} operation depend on hgp.

>The matrix C can be seen as the joint source and relay transmit covariance
matrix of an equivalent system with i.i.d. channels with variance 1.

(23)

with the substitutes Prp = Progp and Psp = Psody. If
we had 8 = 0 for example, A\pr,1 and Apr2 would be the
maximum and the minimum, respectively, of the two effective
powers Prp and Psp for the transmission to the destination.

Note that Apg,; and Apg 2, respectively, are increasing and
decreasing in 8 and Apg,1 + App,2 = Prp + Psp is independent
of 3.3 Furthermore, |w1|?Apr1 + |wa|?ApE 2 is the (weighted)
sum of two independent standard x?2-distributed random vari-
ables with degree 2 if Apgr1 > Apr2 and X2-distributed with
degree 4 if Apr,1 = Apg,2. With the corresponding PDFs that
are provided in [13], or with (41) and (44) from Appendix C,
the probability in (22) may be formulated as

£ (p,2pE,1) = f (0, ApE,2) :
p](DQF) (5. 8) = { /\DFﬁl)_/\?F<2 . if Apr1 > Apr2, (24)
(1+ %)% if Apr,1 = ApF,2,
Y (p)

where we substituted the function f(p, App;) = Appse *Pri.

With the closed-form probability expressions in (21)
and (24), we may calculate the DF success probability in (19)
for many values S (and p) to find Rg’;l). However, a closer
analysis of the formulations in (21) and (24) leads us to
the observation that noncoherent transmission is optimal for
reasonable scenarios when employing the DF scheme and the

channels are Rayleigh fading as in (12).

Observation 1. Noncoherent transmission, i.e., S = 0, max-
imizes the probabilistically constrained DF achievable rate
RS}?O in (13) if the outage probability e is sufficiently small.

To confirm Observation 1, we remark that [cf. (17) and (19)]

Pop (P BIPSE (0" ) =1 — ¢

holds at the optimum of (13). Therefore, 5 = 0 is optimal if

it maximizes both probabilities, ng) (p*,B) and pl()QF) (p*, B).

Since ng)(p*,ﬁ) in (21) is decreasing in 3, 5 = 0
maximizes this probability. To show a similar behavior for

the latter probability, we assume the outage threshold es for

p(D2F)(p*76) =1- €2.

Note that €2 < € due to (25). Inserting (22), we can equiva-
lently rewrite (26) into the following equality condition for a
generic cumulative distribution function (CDF):

(25)

(26)

F(y") =Pr|lwiPA+ w1 -N) <" =2 2D
where we substituted y* = P:])(i*lst and
A A
_ DF1 DF2 28)
Frp + Psp Frp + Psp

3Here, we assume without loss of generality that App,1 > ADpF,2
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Figure 1. CDF F(y*) of the weighted x?2-distributed random variable

|w1 |2\ + Jwa]?(1 — A\) with complex normal w; ~ Ng(0,1), 4 =1,2.

and where we note that A is increasing in § as it iS Apf,1.
This generic CDF is that of a positively weighted sum of i.i.d.
x2-distributed variables with degree two, where the weights
sum up to one. The closed form of F(v*) reads as [cf. (24)]

o'kl ot
1— Ae” A —(1-N)e I-X

o if A > 0.5,

1-(1+%)e if A=0.5

F(v*) = (29)

and is plotted for various parameters A € [0.5,1] in Fig. 1.
For the figure, we varied v* in steps of 0.01 and A in steps of
0.1. Note that the restriction to A € [0.5, 1] is without loss of
generality since the CDF is symmetric to A = 0.5, that is, we
obtain the same CDF curves for A = 0.5+ and A = 0.5 —z.

From Fig. 1, we see that the CDF curves are increasing in
A in the lower left and the CDF curves are decreasing in A in
the upper right area of the figure. Therefore, pgp)(p*, B) =
1 — F(v*) is decreasing in 8 for a sufficiently small ~*,
respectively, a sufficiently small p*. Hence, given a small p*,
the probability p](fF) (p*, B) is maximized for 8 = 0.

Similarly, we may have given a certain e5 and now search
for the maximum p* with respect to S, i.e.,

pr=max{peRy i (p,f) =1 e, 0< <1} (30)

This optimization formulation is equivalent to the problem
where we search for the maximum achievable v* such that
F(y*) = €. Graphically, we find this solution as the rightmost
point of the ez-quantiles of the CDF curves in Fig 1, ie.,
4* = F~!(ey). In other words, we cut the plots in Fig. 1
parallel to the vy*-axis at €5 and search the rightmost v* along
this cut. This rightmost point is defined by the minimum
achievable A, which corresponds to 8 = 0, if €5 is sufficiently
small because the CDF curves are increasing in A in this case.
This confirms the observation as a small ¢ implies a small €.

B. Cut-Set Bound Probability

The CSB probability has a different structure than the DF
rate probability. The terms C’éls%(@h) and Céig(ﬁ,h) are
correlated due to their dependence on hgp [see (6) and (7)]

and the probability calculation requires a numerical integration
when we generally allow for a coherent transmission of the
relay and source to the destination. Therefore, we cannot
extend the observation of the DF scheme to the CSB. However,
a restriction to noncoherent transmission may fail to provide
an upper bound for the outage constrained capacity. For these
reasons, we present bounds for the outage constrained CSB
optimization. First, we use a genie-aided approximation for
the CSB and calculate the resulting probability. Alternatively,
we upper bound the CSB probability with Markov’s inequality.
Genie-Aided Upper Bound: For the first bound, we approx-
imate Re{Bhsphip} < Blhsp||hrp|- This approach is genie-
aided in the sense that the same approximation is obtained
if el®5 were designed according to perfect CSI [see (9)].
Besides maximizing Cg}g(b’?h) which is shown in (8), this
approximation allows an outage probability computation with
a single numerical integration. To this end, we rewrite the CSB
probability in (16) as the sum of three probabilities

héphrp ) (1) (2) (3)

PcsB <P7 B hsollhwol ) = Pess + Pesp + Pesp- GD

The probabilities p(CiS)B, i =1,2,3 correspond to three disjoint
2
ranges for zsp = I};%” € [0,00), that are identified for
SD
satisfying Ccsp (8, h) > p. Namely,

7(p)
Zsp 2 (1= 8°)Pep (32a)

(p) 7(p)
Po =S T- )R 2
Zsp < ZD(SPJ (32¢)

With (32a), Clgp(B.h) > p and Clap(B,h) > p hold

2
independent of the realizations of zsg = “;%l € [0,00) and
SR

wol® ¢ [0, 00). In case of (32b),

ZRD
Psgzsr > v(p) — Pspzsp

is additionally required to fulfill C’éls)B(B,h) > p, and for
event (32¢), we need moreover

2 2 2
Prpzrp > (\/V(P) — (1 - Z2-)Pspasp — \/%PSDZSD)
to satisfy Cgs%a(ﬁ ,h) > p. The first two probabilities read as

(p)
1) _ —Ta 5
pesgp=e (T,
-1
p@ P
CSB =~ H—1 1
Psp — Peg

(33a)

v (p)B2

_a) v(p)
(e Psp  (1-B2)Psg

—e (=8P ) , (33b)

and the third probability expression is given at the top of
the next page. The computation of p(C%)B requires a numerical
integration to the best of our knowledge.



P;D (\/7(p)_(1_¥)PSDZSD—\/%Psnzsn) 2

(3) Psp _9(p)—(1-82)Pspzsp 1
P& = / e~ o (1-57) Py e dzsp (28¢)
0
Markov Based Upper Bound: Another upper bound approx- » dsp = 1 >
imation is obtained when non-conservatively approximating @
the probabilistic constraint of (14) with Markov’s inequality, Fe > >
1 . dsr = drp=1-4d
1—e<pcss(p,B) < ;fﬁ% {E [O((ZZS)B(/Ba h)]} (34)
. ’. . . Figure 2. Line network model for the Gaussian relay channel with channel
where the second inequality additionally exploits variances according to the path loss.

E[min{x, y}] < min{E[z], E[y]}. Therewith, the probabilistic
measure is transformed to an average rate, where § = 0 is
optimal due to the uniformly distributed phase of hsphgp [1].
The resulting average rate expressions are given by

_logy(e) g(Psr) — g(Psp)

(1)

E[CCSB (07 h)} - PSRPSD Pstl _ Psil (35)
2) _ logy(e) g(Pro) — 9(Psp)

E[CCSB (07 h)} - PRDPSD Pstl o PI;Dl (36)

where g(z) = zer Ey (L) and E;(-) is the exponential
integral function [14]. This result also leads to a closed-form
solution for the approximated probabilistic CSB problem, i.e.,
. ()
p= mlnl:l,Q{?[CCSB(Ovh)]}‘ (37)
—€
C. Noncoherent Cut-Set Bound Probability

While we were able to observe that noncoherent
transmission—no cooperation between the source and the
relay—is optimal for maximizing the DF based lower bound
on the outage constrained relay capacity, a restriction to non-
coherent transmission for the CSB may fail to provide a true
upper bound for the outage constrained capacity. Nevertheless,
we provide the noncoherent CSB for bounding the theoreti-
cally achievable outage constrained rate with only separately
transmitting relay and source. This is anyway preferred for
practical implemented wireless systems because it avoids the
synchronization overhead of the relay and source, which would
have been required to set up the joint transmission.

Moreover, there are still arguments which indicate that
£ = 0 might be optimizer for the outage based CSB in some
scenarios and otherwise provide a good approximation:

1) Besides the outage constrained achievable DF rate, 5 =
0 also maximizes (6).

2) It also maximizes the ergodic DF rate [1] and the ergodic
CSB (cf. Section V-B).

3) The probability that 8 > 0 is harmful or helpful, (7) is
reduced or increased, for a realization of the uniformly
phase fading channels is exactly 1/2.

4) From the perfect CSI case, it is known that 8 > 0 only
improves the the CSB for cases where (11) is satisfied.

5) Finally, also if 5 # 0 were optimal for some outage
requirements, its value would be small due to the
previous reasons and due to the continuity of the CSB
expressions (6) and (7) in 3.

2 | a
—— CSB Markov —e— CSB genie
DF optimized -+ - CSB noncoherent
0
0 0.2 0.4 0.6 0.8 1

d

Figure 3. Outage constrained capacity bounds for a line network with zero-
mean Gaussian channels, with variances agD =1, agR =d~ %, and O'I%D =
(1—=d)~®, a =3, and powers Ps = Pr = 10dB.

The CSB probability can be calculated in closed form for
B=0and Py # P! + Py - It reads as

1 L) e Py — Psg ~ PrD
( 0) _ (PSR + PRD) ¢ Psp €
bese\p, V) = L 1 1
Psg Prp Psp

Similar to the DF case, it only remains to find the p that
satisfies pcsg(p,0) = 1 — €. Even though 5 = 0 generally
lower bounds the CSB, i.e.,

ngg) 2 Q(:Osul;) — max {peR:pcsp(p,0) > 1 — €}, (38)

this solution serves as an indication on the accuracy of the
CSB upper bound approximations in Section V-B.

VI. NUMERICAL RESULTS

The simulation setup consists of the three-node line net-
work in Fig. 2, where the relay’s location is between the
source and the destination. The source destination distance
is normalized to one and the source relay distance is d. The
channels are independent zero-mean complex Gaussian with
variances according to the path loss, ie., hsp ~ N(0,1),
hsg ~ N (0,d™%), and hgp ~ N (0, (1 — d)~*), with a = 3.

In Fig. 3, we depict the discussed outage constrained ca-
pacity bounds for € = 0.25, and Ps = Pr = 10dB. Markov’s
inequality gives only a loose upper bound for the CSB. The



genie-aided approximation gives a tighter upper bound than
the CSB with Markov’s inequality. It meets the CSB bound
for noncoherent transmission if d ~ 1, i.e., when the relay is
close to the destination, because /3 = 0 in this case. However,
when the relay is close to the source, 5 > 0 is optimal for the
genie-aided bound, which results in a gap of about 1.5 bits to
the achievable DF rate curve. The gap between the genie-aided
CSB and the DF rate reduces to around 1 bit for d ~ 0.5 and
increases again when d approaches 1.

We remark that noncoherent transmission, ie., 3 = 0,
maximized the DF achievable rate for all values of d € [0, 1]
that were used for the plot. This is a consequence of the
sufficiently small e = 0.25 (cf. Fig. 1). Therefore, the CSB
noncoherent bound directly meets the DF bounds for small
d. The gap between the DF curve and the noncoherent CSB
curve, which increases with d, is due to the necessity of the
relay in the DF scheme to perfectly decode the complete
message before forwarding it to the destination.

VII. CONCLUSION

We studied the achievable DF lower bound and the CSB for
the probabilistically constrained capacity of a Gaussian relay
channel with Rayleigh fading. For the chance constrained DF
lower bound, we were able to calculate a closed form for
the DF outage probability. We observed from the study of
this probability that noncoherent transmission maximizes the
outage constrained DF rate if the outage requirement is small.
For the CSB, the genie-aided approximation provided the best
upper bound for the chance-constrained capacity.

APPENDIX
A. Proof of Lemma 1

The probability bounds for p = 0 and p — 0o are obvious
as the rate expressions Rl()l:(ﬁ7 h) and CCSB(ﬁ, h) are strictly
positive and logarithmically increasing with the channels’
absolute values. Moreover, R](Dlz(ﬁ ,h) and C’CSB(B ,h) are
continuous in h. Therefore, also p(.)(p, 3) is continuous and
monotonic in p if the channels’ PDF are continuous.

B. Proof of Lemma 2

The value of the mutual information terms in (5) and (6)
are independent of the phase ¢g of §. In contrast, the value
of (7) depends on ¢g (cf. Section III), but its distribution
does not if at least one of the channels hsp and hgp has a
uniformly distributed phase in [0, 27). Assume the phase of
hsp is uniformly distributed in [0, 27), then

RS (8, k) = RS (18], [hsk, hro, @97 hsp] ") =~ R$ (18], h)
as hsp ~ el hgp, and, hence, p()(p, 8) = p(.)(p,|B|). The
proof with a uniformly distributed phase for hgrp is equivalent.
C. Calculation ofpl(le) (p,B) and p( )( e)

The PDF of the x2-distributed z = |w|?, w ~ N¢(0,1), is
f.(z) = e % and the probability of z exceeding ¢ reads as
(39)

Pr[z > ] :/ e Fdz=e".
t

The probability ng) (p, B) in (21) directly follows from (39).
If the weighted sum of two independent Y?2-distributed
random variables az; + bzy of degree 2, with z; = |w;|? and
w; ~ Ng(0,1), ¢ = 1,2, and a # b, shall exceed ¢, we can
write the probability for this event as
Prlazy + bzy > t] =Prlaz; >t 40)
+ Prlaz; <tAbzg >t —az].

The previous of the right-hand-side probabilities is [cf. (39)]

t _t
12*}26“
a

and the latter can be calculated as

t
t—az o e
Z 71] = / / e *2 dZQ le
b t—tblzl

= a_b(e*%—e*%). 42)

The sum of (41) and (42) can be rewritten as

Pr [z (41)

t
PI‘[21<*/\22
a

i _t
ae” @ —be” v

a—>b

In contrast, if a = b, above sum is a central XQ—distributed
variable with degree 4, and the probability of exceeding ¢ is
obtained with [14, Chapter 26] as

t ¢
Prla(z1 + 22) > t] = (7 + 1) e .
a
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