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Abstract— In our previous work we derived a task specifi-
cation approach for indirect force controlled robots to assign
force and positioning tasks in joint and Cartesian space and
execute them simultaneously in a hierarchical way. The virtual
set points for an underlying joint space indirect force controller
have been computed according to the specified tasks, supporting
reactive control by generating virtual velocity commands.

In the present work, the virtual set point generation is
extended to inequality tasks by reformulating the problem as a
quadratic program. The resulting control layer does not modify
the underlying indirect force controller, hence the inherent
compliance of the manipulator is preserved.

The new approach is experimentally verified on a 7 degree
of freedom manipulator.

I. M OTIVATION

When operating in unstructured environment, compliance
is an important requirement for a robotic manipulator. A
stable and robust approach to realize compliance is provided
by indirect force controllers (IFC), where the motion and
interaction forces of the physical robot are indirectly con-
trolled by assigning set points to a virtual robot which on
his part is coupled with the real robot via a virtual mechanical
relationship. This control scheme has also nice stability
properties which are independent from the environmental
dynamics as long as it is passive. Due to these advantages,
IFCs are provided often as the only force control interface
for robots forcing application programmers to use this closed
architecture.

Even though this control scheme has been under devel-
opment for decades ([1], [2]), the contributions dealing with
IFC set point selection to achieve desired interaction forces
and positioning of the robot are very sparse. Conventional
trajectory planning approaches are often applied and the IFC
is used to compensate for contact uncertainty and unexpected
collisions.

In [3], we presented a task specification layer to regulate
the positioning and static interaction forces on joint and
Cartesian level for IFC controlled robots based on hierarchi-
cal nullspace projections. The general task variable, which
could either be specified as a Cartesian pose, wrench, joint
position or joint torque, could be regulated to a certain
desired value. Assigning this desired value to a task variable
can also be interpreted as an equality constraint. However,
besides avoiding joint limits, there was no way to specify
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Fig. 1. Experimental setup with root coordinate frame. The task is to reach
the pointpvd

with constant orientationovd
while maintaining a contact

force between 5N and 10N and keeping the joints as far away from their
mechanical limits as possible at the lowest priority level. The inequality
tasks with the highest priority are to keep the joints insidetheir limits and
obey the joint velocity, acceleration and torque constraints.

inequality constraints or tasks like for example limiting the
applied joint torques/velocities or restricting the end-effector
to a certain workspace area. In this paper, we extend the
approach from [3] to general inequality tasks.

There exist a vast number of resolving inequality con-
straints on joint level, e.g. [4], [5], where most of them
treat only joint angle limits. Flacco et. al. introduced an
algorithm to incorporate joint angle, velocity and acceleration
limits and exploit them as good as possible to achieve
a Cartesian task by scaling it appropriately [6]. Specific
inequality constraints, like collision/singularity avoidance,
have been treated in the past via the gradient projection
method [7]. A unified but computational expensive approach
is presented in [8] where general inequality tasks are treated
on every priority level in a stack-of-tasks framework. In
recent contributions quadratic programming (QP) methods
are used to find an optimal solution for the inverse kinematic
problem with a given task hierarchy ([9], [10]). The main
advantage of the QP approach is that it provides a simple and
general formalization of the inverse kinematic problem with
inequality constraints. Most of these schemes are defined on
the kinematic or force level and to our best knowledge there
is no application in the context of indirect force control.

The remainder of this paper is structured as follows. In
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Fig. 2. Motion and interaction forces of the physical manipulator (black)
are controlled indirectly by generating set points for the virtual manipulator
(blue).

Sec. II some theoretic background and our previous work is
recapitulated. The extension to inequality tasks is derived in
Sec. III and the experimental results can be found in Sec.
IV. Sec. V concludes our work.

II. T HEORETICAL BACKGROUND

In this section we cover some fundamental theory and
basic principles on which our work is based. In Sec. II-
A the general concept of indirect force control is briefly
summarized, Sec. II-B is a recapitulation of our previous
work on task specification for IFC controlled robots and in
Sec. II-C the quadratic programming paradigm is treated.

A. Indirect Force Control

An interpretation of IFC schemes is that the motion and
interaction forces of an degree of freedom physical manip-
ulator are controlled indirectly by assigning a joint position
set point qv ∈ R

n to a kinematically equivalent virtual
manipulator. The applied joint torques are derived from a
virtual mechanical relationship, (e.g mechanical impedance,
stiffness) between the virtual and the physical manipulator.
With q ∈ R

n denoting the joint position of the physical
manipulator, the positioning difference between the virtual
and physical manipulator is related to the static interaction
torqueτ ∈ R

n via a positive definiten× n stiffness matrix
K:

τ = K(qv − q) (1)

The dynamic components of the IFC are neglected, since
they firstly, play only a minor role when moving with
comparatively low speed and secondly, we can not control
them directly without knowledge about the environment.
For the continuous case, the desired velocityq̇v is used to
regulateqv. Fig. 2 depicts the basic principle of an IFC.

B. General Task Specification for Indirect Force Controlled
Robots

In [3] we generalized force and positioning tasks using
a uniform task variableσ ∈ R

m with the desired valueσd.
The task could be any quantity which is related toqv with
a m× n task Jacobian

A =
∂σ

∂qv

,

TABLE I

SPECIFICATIONS OF THE FOUR BASIC TASK TYPES

type σ A

cart. pose xv Jv

joint position qv In

wrench h JT+K

joint torque τ K

which is the linearized relation betweenσ andqv, so that

σ̇ = Aq̇v (2)

We derivedA for the four basic task types
• virtual joint positionqv

• virtual Cartesian end effector posexv

• static joint torqueτ
• static end effector wrenchh,

which can be found in table I, whereJ(q) = ∂x
∂q

denotes
the physical manipulators base Jacobian andJv = J(qv)
the virtual manipulators base Jacobian. Notice again that we
consider only the static interaction torques and forces, due
to the stiffness relation (1) and regulate only the position
of the virtual manipulator. See [3] for details on this. The
basic tasks from table I can also be expressed in a certain
subspaceS ⊆ R

m which enlarges the manipulators nullspace
with respect to that task. This subspace is characterized bya
set of orthonormal vectors, which are the columns of a matrix
S. The task JacobianA has to be modified according to

Â = STA,

which is A expressed inS. The ˆ will be dropped in the
rest of the paper for the sake of better readability.

The classical approach for task level control was imposed

σ̇d = Λ(σd − σ),

whereΛ is usually a diagonal, positive definitem×m gain
matrix that tunes the convergence speed of the task error
components to0. With (2), the equality task

σ̇d = Aq̇v

was stated and a hierarchical controller was derived using
nullspace projection methods to enforce a strict task hierar-
chy among a set ofk subtasks[σ1 . . .σk].

C. Quadratic Programming Problem Formulation

The classic QP problem statement is to find a vectorx,
that minimizes a quadratic cost function, subject to linear
equality and inequality constraints:

min.
1

2
xTHx+ aTx

s.t. Cx ≤ b

Ex = d,

whereH,C andE are matrices anda, b andd are vectors
of appropriate size.
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Fig. 3. To keep the task variableσ inside its bounds[σmin, σmax], the
velocity σ̇ is limited to the range[σ̇m, σ̇M ].

In robot control, we are usually imposing lower and upper
bounds on the task variables. Therefor it is easier to state the
inequality constraints as box constraints

bm ≤ Cx ≤ bM ,

wherebm is the lower andbM the upper bound onCx. By
settingbm = bM , one can also capture equality constraints
with this formulation. Also, most QP solvers take lower and
upper bounds (xm andxM ) on x directly instead of having
to formulate them as inequality constraints. With this, we
can state the equivalent problem

min.
1

2
xTHx+ aTx

s.t. bm ≤ Cx ≤ bM (3)

xm ≤ x ≤ xM

This corresponds also to the format, which is accepted by
the QP solver we have used in our implementation [11].

III. I NEQUALITY TASK SPECIFICATION

Instead of having one desired value for the task variable
σd, we specify lower and upper bounds (σmin andσmax) as
a desired range forσ what can be defined as an inequality
task

σmin ≤ σ ≤ σmax.

As stated in II-C, if we have a certain desired value or
equality taskσd, we setσmin = σmax = σd.

To keepσ inside, respectively make it converge into the
range[σmin, σmax], we apply the method proposed originally
in [12] for obstacle avoidance by inducing lower and upper
bounds onσ̇ denoted by

σ̇m = Λ(σmin − σ) (4)

σ̇M = Λ(σmax− σ) (5)

depending on the distance ofσ to σmin respectivelyσmax

and the convergence rateΛ. Figure 3 depicts this approach.

A. QP Problem for one Inequality Task

Suppose we have one inequality task denoted byσ0min,
σ0max, convergence rateΛ0 and task JacobianA0 = ∂σ0

∂q
v

.
The lower and upper boundṡσ0m and σ̇0M for σ̇ are
computed with (4) and (5). Also assume the control input
q̇v is restricted to certain velocity limitṡqvm

and q̇vM
. A

possible QP problem to find a properq̇v, which corresponds
to (3) could be stated as

min.
1

2
sTs

s.t. σ̇0m ≤ A0q̇v − s ≤ σ̇0M

q̇vm
≤ q̇v ≤ q̇vM

with s ∈ R
m as a vector of slack variables, which allow

violations of the task inequality constraints in case the tasks
are unfeasible.

As discussed in [9], the optimization problem can become
ill conditioned if some task becomes infeasible with respect
to higher priority ones. This can be overcome by balancing
the cost of the slack variable with the norm of the resulting
solution q̇v by minimizing

1

2
sTs+

1

2
ρq̇T

v q̇v

instead, whereρ ∈ R
+ is a regularization factor which has

to be tuned manually.
To comply with (3) we define a new optimization variable

w = [q̇v s]T and formulate the according QP problem

min.
1

2
wTHw

s.t. σ̇0m ≤ [A0 −Im]w ≤ σ̇0M

wm ≤ w ≤ wM

whereIm is them×m identity matrix and

H =

[

ρIn 0

0 Im

]

wm =

[

q̇vm

−∞

]

wM =

[

q̇vM

∞

]

.

By solving this problem, we obtain the optimal solution

w∗
0 =

[

q̇∗
v0

s∗0

]

.

B. QP Problem for a Second Inequality Task

Suppose we have a second task, which should be executed
as good as possible without violating the first one. The QP
problem for this task is similar to the first one, besides that
we have to add another inequality, assuring that the first task
is not altered. This inequality is a hard constraint which is
not relaxed by the slack variable.

min.
1

2
wTHw

s.t. σ̇1m ≤ [A1 −Im]w ≤ σ̇1M

σ̇0m + s∗0 ≤ A0q̇v ≤ σ̇0M + s∗0

wm ≤ w ≤ wM



Again, this problem can be reformulated to comply with
(3):

min.
1

2
wTHw

s.t. b1m ≤ C1w ≤ b1M

wm ≤ w ≤ wM

with

b1m =

[

σ̇m1

σ̇m0
+ s∗0

]

b1M =

[

σ̇M1

σ̇M0
+ s∗0

]

C1 =

[

A1 −Im

A0 0

]

.

C. General Recursive QP Problem Formulation

Finally, with the initial values

Ā0 = 01×n

b̄m0
= 0

b̄M0
= 0

we can state a recursive formulation for an arbitrary set of
k subtasks. Fori = 1 . . . k

min.
1

2
wTHw

s.t. bim ≤ Ciw ≤ biM

wm ≤ w ≤ wM

with

bim =

[

σ̇mi

b̄mi−1

]

biM =

[

σ̇Mi

b̄Mi−1

]

Ci =

[

Ai −Im

Āi−1 0

]

For the next iteration

b̄im =

[

σ̇mi−1
+ s∗i−1

b̄mi−1

]

b̄iM =

[

σ̇Mi−1
+ s∗i−1

b̄Mi−1

]

Āi =

[

Ai

Āi−1

]

Apparently, having many equality tasks could result in
a significant increase in the corresponding slack variables,
especially during ill-conditioned cases. However, proper
task specification which avoids obviously contradicting tasks
should prevent these cases.

D. Capturing Joint Space Limits

The joints of every physical manipulator are usually re-
stricted to certain constraints regarding their angle, velocity,
acceleration and torque so that

qmin ≤ qv ≤ qmax

−vmax ≤ q̇v ≤ vmax

−amax ≤ q̈v ≤ amax

−τmax ≤ τ ≤ τmax.

A conventional approach is to use finite differences, shaping
the joint velocity bounds to keep joint position, velocity
and acceleration constraints. We adapt this method to add
static torque constraints by expressing them as additional
joint limits. Using the static relation (1) we can state

τmax = K(qvmax − q)

−τmax = K(qvmin − q)

and solve for the joint limits due to maximum torque:

qvmax = K−1τmax+ q

qvmin = −K−1τmax+ q

With this the dynamic joint limits can be obtained with

q̂min = max{−K−1τmax+ q, qmin}

q̂max = min{K−1τmax+ q, qmax, }

where min{•} and max{•} is the component-wise minimum,
respectively maximum of the input vectors. The velocity
bounds, observing joint angle, velocity, acceleration and
static torque limits are

q̇vm
= max{ q̂min−q

T
, −vmax, −

√

2amax(q − q̂min)}

q̇vM
= min{ q̂max−q

T
, vmax,

√

2amax(q̂max− q), }

whereT is the time interval of the discrete controller. See
for example [6] for more details. These velocity bounds can
be used to bound the optimization variable in the QP, serving
as the highest priority joint-level safety bounds.

E. New Task Specification

Our previous task specification is extended by providing
upper and lower bounds for the desired task variable. Hence
a subtask is defined by

• the task type (or task JacobianA)
• lower and upper boundsσmin andσmax

• convergence rateΛ
• Subspace matrixS

IV. EXPERIMENTAL RESULTS

A. Implementation Details and Hardware

The experiments have been carried out on our KUKA
LBR-IV lightweight arm. The manipulator was running a
joint space impedance controller, which details can be found
in [13]. The rate of the discrete controller was500Hz and the
stiffnessK = 200I7Nm/rad. The task convergence factors
Λ and the regularization factorρ = 0.01 where chosen



TABLE II

SET OF SUBTASKS FOR CONSTRAINED POINT TO POINT MOTION

prio type σmin σmax Λ S

1 wrench 5N 10N 100 [1 0 0 0 0 0]T

2 cart. pose oinit oinit 3I3

[

03

I3

]

3 cart. pose pvd
=





0.8
0
0.3



m pvd
=





0.8
0
0.3



m 3I3

[

I3

03

]

4 joint position 0 0 0.3I7 I7

TABLE III

SET OF SUBTASKS FOR CUP HOLDING
prio type σmin σmax Λ S

1 cart. pose oinit oinit 3I3

[

03

I3

]

2 cart. pose pvm
=





0.2
0.2
0.4



m pvM
=





0.5
0.5
0.7



m 3I3

[

I3

03

]

3 joint torque 0 0 100I7 I7

heuristically. The C++ QP library qpOASES [11] was used
to carry out the optimization.

The task is to execute a point-to-point motion, where the
goal is located inside an obstacle. The experimental setup is
depicted in Fig. I. Highest priority is given to the joint level
inequalities for joint range, velocity, acceleration and torques
with the following symmetric limits

−120◦ ≤ qjv ≤ 120◦

−20◦ 1
s
≤ q̇jv ≤ 20◦ 1

s

−1000◦ 1
s2

≤ q̈jv ≤ 1000◦ 1
s2

−15Nm ≤ τj ≤ 15Nm,

with j = 1 . . . n. For a second run the torque limits were
lowered to

−5Nm ≤ τj ≤ 5Nm

without changing the other parameters.
The rest of the task is specified in table II. The tasks are a

force range inx-direction, keeping the orientationov ∈ R
3

of the end effector constant, bring the end effector position
pv ∈ R

3 to a desired point and keep the joints away from
their limits.

Table III shows also the task specification for a constrained
cup balancing task. The orientation of the end-effector is
kept constant while minimizing the joint torques. In addition
the end effector should not leave a certain box in the
workspace defined by lower and upper bounds onpv. The
video accompanying this paper shows the execution of the
described tasks.

B. Results

Figure 4 shows the evolution of the different subtasks.
While the highest joint level safety bounds are always
obeyed, the other subtasks converge respecting their priority
order. Figure 5 shows the effect of the regularization param-
eterρ. As the force and the positioning tasks are conflicting,
setting ρ = 0 results in unstable solutions. Removing the
constraint on thex-component of the positioning decouples
the conflicting subtasks and results in a stable solution.

An additional potential problem arises if force tasks are
included and the robot is driven to singularity. Close to a
singular configuration the applied wrench is not correctly
computed due to the bad conditioning of the Jacobian. When
designing the subtasks it should be avoided to drive the
manipulator close to a singular configuration, which also
could be added as an additional inequality task.

V. CONCLUSION

We enhanced our previous task specification approach
for indirect force controlled robots to support hierarchical
inequality tasks. Every subtask is formulated as a quadratic
program with inequality constraints, which restrict the possi-
ble solutions to a set, which does not affect the higher priority
tasks. Enabling inequality tasks enhances the descriptive
power of the existing framework significantly as it is now
easily possible to assign safety limits for certain tasks or
relax task constraints by assigning a desired range insteadof
a desired value. These task relaxations on their part increase
the solution space for lower priority tasks.

The proposed regulation approach does not require mod-
ification of the underlying indirect force controller, which
makes this method suitable for closed control architectures,
which are often provided for commercial robots.
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Fig. 4. Evolution of the main subtasks. The dotted lines denote the task bounds, respectively the desired task value. The Cartesian position error
p̃v = pvd

− pv and the normalized joint positionsqnorm ∈ [−1, 1] are plotted for better compactness.
Left: the high gain in the positioning task leads quickly to saturation of the joint velocitieṡqv and also tofx violating its bounds. At approximately
t = 3.5s, joint 4 (turquoise) reaches its limit and the rest of the taskis completed without this joint. Note that thex-component ofpvd

does not converge
to its goal position, since the higher priority force task ispreventing it from penetrating further into the table.
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Fig. 5. Constrained point to point motion with regularization ρ = 0.
Left: without the regularization the solution can become instable if tasks are conflicting.
Right: when removing the positioning constraint inx-direction the solution is stable.


