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Abstract

This thesis is devoted to the analysis of two shape optimization problems that are discretized using
�nite elements. First we consider a tracking-type functional subject to an elliptic partial di�erential
equation, then we maximize the di�erence between two eigenvalues of an elliptic partial di�erential
operator corresponding to the transmission problem. Both problems are transformed on a reference
domain and the existence of an optimal solution is shown. The main result for both problems is an
a-priori error estimate for the error between the optimal control and a sequence of optimal controls
to the fully discretized problem.

Zusammenfassung

In dieser Arbeit werde zwei Formoptimierungsprobleme betrachtet, welche mit �niten Elementen
diskretisiert werden. Im ersten Beispiel wird ein tracking-type Funktional mit einer elliptischen par-
tiellen Di�erentialgleichung als Nebenbedingung betrachtet, im zweiten Beispiel wird der Abstand
zweier Eigenwerte des zum Transmission-Problem gehörigen elliptischen partiellen Di�erentialop-
erators maximiert. Beide Probleme werden auf ein Referenzgebiet transformiert und es wird die
Existenz einer optimalen Lösung gezeigt. Das Hauptresultat für beide Beispiele ist eine a-priori
Fehlerabschätzung für den Fehler zwischen der optimalen Kontrolle und einer Folge optimaler Kon-
trollen für das vollständig diskretisierte Problem.
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1. Introduction

This thesis is devoted to a-priori error estimates for �nite element discretizations of shape optimiza-
tion problems. For this purpose we consider shape optimization problems, general optimal control
problems as well as discretization methods including error estimates.
In optimal control of partial di�erential equations one is interested in minimizing a cost functional

depending on a control and a state, where the control and the state are coupled via a partial
di�erential equation, there may be additional constraints on the state and the control. In many
cases, the control is given as a function or functional on the right hand side of a partial di�erential
equation on a �xed domain, whereas the state is the solution to that equation. Within shape
optimization, the control is no longer a functional but the shape of a domain. Some typical shape
optimization problems are �nding the shape of an airfoil that minimizes air resistance or �nding the
shape of a structural component that minimizes deformations induced by stress. Another practical
application of shape optimization is called electrochemical machining and presented in Lu et al. [84].
As the problem of �nding an optimal shape cannot, in general, be solved exactly one has to discretize
the whole problem, i.e. the shape of the domain as well as the partial di�erential equation. The
corresponding discrete solutions only yield approximations to the original solution, hence one is
interested in estimating the induced error.
The main issue of this thesis is to embed shape optimization problems into the standard control

theoretic framework and to rigorously prove existence and regularity results. These results provide
the theoretical background for the a-priori error estimates, which are proven at the end of Chapter 2
and Chapter 3. The cost functionals under consideration are a classical L2-tracking-type functional
and a functional including the di�erence of the two smallest eigenvalues of a partial di�erential
operator corresponding to the transmission problem.

Optimal control of partial di�erential equations is an active area of research, see, e.g., the mono-
graphs by Lions [83] and Tröltzsch [103], for the numerical treatment we refer to Hinze et al. [60].
For an introduction to shape optimization we refer to the monographs by Sokoªowski & Zolé-

sio [101], Delfour & Zolésio [37] and Ito & Kunisch [65], Chapter 11. Eppler [38] gives a short
overview on how to compute shape derivatives. For the existence of optimal shapes in a general
setting we mention Bucur & Buttazzo [21] and Henrot & Pierre [57].
Within this thesis, the unknown part of the boundary is parametrized as the graph of a function.

This approach has already been used in various publications, see, e.g., Haslinger & Mäkinen [52],
Haslinger & Neittaanmäki [53], Kunisch & Peichl [75] and Slawig [100].
Within Chapter 3, a cost functional including eigenvalues of a partial di�erential operator is

being investigated. The relation between the eigenvalues of a partial di�erential operator and the
underlying domain has been studied for a long time, cf. the monograph by Henrot [56] and the
references cited therein. For an overview on stability estimates and sensitivity analysis we would
like to mention Burenkov & Feleqi [22], Barbatis et al. [10] and Dambrine & Kateb [34].
For an introduction to the transmission problem and related regularity results we refer to Escau-

riaza & Mitrea [41], Escauriaza et al. [40], Xiong & Bao [109] and Caloz et. al [23]. Hintermüller
& Laurain [58] showed how a transmission problem can be used within shape optimization in order
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1. Introduction

to detect unknown shapes.
Braess [16] and Groÿman & Roos [50] give a general introduction into the numerical treatment of

partial di�erential equations including the �nite element method, an introduction to �nite elements
in the context of shape optimization can be found in Haslinger & Neittaanmäki [53].
Finally, an introduction to a-priori error estimates for general optimal control problems can be

found in Falk [42], Hinze [59], Adar et al. [7], Casas et al. [26] and Casas & Tröltzsch [29]. There
are just a few publications on error estimation and convergence analysis in shape optimization, cf.
Eppler et al. [39] and Hiptmair & Paganini [61]. Vanmaele & �ení²ek [104] and the survey article by
Bo� [15] give an overview on error estimates for �nite elements in the context of eigenvalue problems.

This thesis is organized as follows.

Chapter 2: A model problem

In this chapter we formulate an abstract shape optimization problem with a tracking-type cost
functional. We transform the problem on a reference domain and prove existence of an optimal
solution of the transformed problem. The transformation approach has also been considered by
Brandenburg et al. [19], Eppler & Harbrecht [39] and Ito et al. [65, 66]. Fumagalli et al. [45] applied
this approach on more di�cult equations. This approach leads to a problem on a �xed domain where
the coe�cients of the partial di�erential operator vary. In a more abstract setting, such types of
problems have also been considered by Casas [25]. Another approach on how to deal with shape
optimization problems is the so-called level set method, where the domain under consideration is
de�ned as the zero level set of a given function. This approach has been considered by Allaire et
al. [2] and Ito [64].
Afterward we derive an optimality system and use the optimality condition of �rst order to prove

higher regularity of the optimal control. Results of this type are common within optimal control, in
the context of shape optimization this idea has already been used by Carlier & Lachand-Robert [24]
and Lamboley et al. [77, 78].
We then discretize the transformed problem using �nite elements, and using a mild assumption

on the coercivity of the second derivative of the reduced cost functional we show a-priori error
estimates of optimal order for the error between the optimal control to the continuous problem and
its fully discretized counterpart. For a possible numerical implementation using Newton's method
we refer the reader to Laumen [80]. In Laumen [79] a general overview on numerical methods in
shape optimization is given.
Some of the results of Chapter 2 are included from the author's Master's thesis [72], a detailed

enumeration of those previously published results is given at the beginning of that chapter on page 5.

Chapter 3: Optimization of eigenvalues

In this chapter we formulate another abstract shape optimization problem where the cost functional
is given as the di�erence of the �rst two Dirichlet eigenvalues for a transmission problem; for an
overview on Neumann and Robin boundary conditions we refer to Girouardo & Polterovich [46].
As the eigenfunctions and eigenvalues of a partial di�erential operator generally depend on the

shape of the underlying domain, it is possible to optimize functionals depending on the eigenvalues
with respect to the shape of the domain. Marc Kac once asked whether it is possible to hear the
shape of a drum, cf. [68]: Given all the eigenvalues of the Laplacian with homogeneous Dirichlet
boundary conditions over some domain, is it possible to reconstruct the domain? Although the set
of eigenvalues contains information such as the area or the diameter of the domain, the original
question itself has a negative answer as has been shown by Gordon et al. [47].
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Some other interesting questions concerning the behavior of the eigenvalues are the question which
domain minimizes the n-th smallest eigenvector among all domains in R2 with a given volume. The
well-known Faber-Krahn inequality states that the unique minimizer (up to sets of capacity zero)
for n = 1 is the ball. As proven by Krahn and Szegö, cf. [74] and [90], for n = 2 the solution
consists of two balls of the same volume. For general n ≥ 3, the optimal domain is not known so
far, cf. Henrot [55]. Furthermore, if additional constraints like connectedness or even convexity are
imposed on the admissible domains, then little is known so far. Numerical approximations to some
of these domains can be found in Antunes & Freitas [6] and Oudet [89].
Using the same approach as in Chapter 2 we transform the problem onto a reference domain,

show the existence of an optimal control and prove higher regularity.
Again we use �nite elements to discretize the problem and then show a-priori error estimates for

the error between the optimal control to the continuous problem and its fully discretized counterpart.
Although the obtained result is very similar to the corresponding result of Chapter 2, the methods
used for its proof di�er signi�cantly.
Beside the Laplacian there is ongoing research concerning the eigenvalues of Schrödinger's oper-

ator, where the eigenfunctions have a physical interpretation as energy levels of quantum particles;
but beside this physical meaning there are also some mathematical questions interesting on its own.
An overview, including further references, can be found in Henrot [56]. In the context of nonlinear
equations we would like to mention the p-Laplacian, cf. Lindqvist [82].

Chapter 4: Conclusion and perspectives

In this chapter we summarize the results from Chapter 2, Chapter 3 and the Appendix and discuss
possible extensions and future work.

Chapter A: Appendix

The �rst part of the appendix contains a collection of various supplementary results like regularity
results for partial di�erential equations and generalizations of the Bramble-Hilbert lemma and
inverse estimates, which will be needed throughout this thesis.
The second part contains a generalization of a result obtained by Bramble & King [17] regarding

�nite element error estimates for a partial di�erential equation posed on a non-polygonal domain,
which will be needed for the error estimation in the context of the discretization of the state and
the transformation within Chapter 2 and Chapter 3.

Chapter B: Nomenclature

The last chapter contains an overview on the notation used throughout in this thesis. For a more
detailed introduction into the topic of Sobolev-, and Hölder spaces we refer to Adams & Fournier [1]
and Grisvard [48].
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2. A model problem

The aim of this chapter is to introduce a general framework suited for the numerical analysis of
shape optimization problems, apply this framework to a model problem and derive error estimates
in the context of a �nite element discretization of that shape optimization problem.
This chapter is organized as follows. In Section 2.1 we formulate an abstract shape optimization

problem with cost functional of tracking type. We introduce a transformation to reformulate the
whole problem on a �xed reference domain and prove existence of an optimal control with higher
regularity. In Section 2.2 we use �nite elements to discretize the control, the state and the trans-
formation. Within Section 2.3 we �rst state some general stability results and then prove a-priori
error estimates for the error between the optimal control to the continuous problem and its fully
discretized counterpart.
As mentioned in the introduction, some of the results of this chapter, i.e. Section 2.1 without

Subsubsection 2.1.3.2, Subsection 2.3.1, Subsubsection 2.3.2.1 and the beginning of Subsection 2.3.4
until and inclusive Lemma 2.3.59, have already been published within the author's Master's the-
sis [72] and are included in order to make this thesis more self-contained.

2.1. The problem

Within this section we are going to investigate a model shape optimization problem where the
underlying shapes will be star-shaped with respect to the origin. The control variable q is an
element of the control space Q = H2

per(I) with I = (0, 2π) and

H2
per(I) = C∞per(I)

‖·‖H2(I) , (2.1)

equipped with the usual H2-norm, where

C∞per(I) =
{
v ∈ C∞(I)

∣∣ v(n)(0) = v(n)(2π) ∀n ∈ N0

}
.

The control q characterizes the domain Ωq through

Ωq =
{

(x, y) ∈ R2
∣∣ r < 1 + q(ϕ), r =

√
x2 + y2, ϕ = arg(x+ iy)

}
,

cf. Figure 2.1. In order to exclude a possible degeneracy of the domain Ωq, we �x ε > 0 and de�ne
the set

Q
ad

= {q ∈ Q| q(ϕ) ≥ −1 + ε for all ϕ ∈ I} . (2.2)

Because of H2(I) ↪→ C1,1/2(I), (2.2) is well-de�ned. For each q ∈ Qad
the domain Ωq is Lipschitz,

which allows for the de�nition of the state variable uq ∈ H1
0 (Ωq) as the weak solution to the state

equation {
−∆uq + uq = f q in Ωq,

uq = 0 on Γq = ∂Ωq.
(2.3)
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2. A model problem

1 + q(ϕ)

ϕ

Γq

Ωq

Figure 2.1.: The domain Ωq

The shape optimization problem is then given as:

Minimize J̃(q, uq) =
1

2

∥∥uq − uqd∥∥2

L2(Ωq)
+
α

2
‖q‖2H2(I) , where q ∈ Qad

and uq ∈ H1
0 (Ωq), (2.4)

subject to (2.3) with f q and uqd being su�ciently regular functions, cf. (2.7), and α > 0 is a �xed
constant.
We de�ne the solution operator Sq : Q

ad → H1
0 (Ωq), which assigns to each q ∈ Q

ad
the unique solu-

tion uq = Sq(q) of (2.3). This allows for the introduction of the reduced cost functional j : Q
ad → R

by
j(q) = J̃(q, Sq(q)). (2.5)

In order to prove the existence of an optimal solution to (2.4) we bound Q
ad

in H2(I).

Lemma 2.1.1. There exists a constant C̃ = C̃(α) > 0 such that the search for a solution to (2.4)
can be restricted to the set

Qad =
{
q ∈ Qad

∣∣∣ ‖q‖H2(I) ≤ C̃
}
. (2.6)

Furthermore it holds that

lim
α→∞

C̃(α) = 0.

Proof. Let q0 = 0 ∈ Qad
, a necessary condition for q ∈ Qad

to be a solution to (2.4) is

j(q) ≤ j(q0),

6



2.1. The problem

which reads as

1

2

∥∥Sq(q)− uqd∥∥2

L2(Ωq)
+
α

2
‖q‖2H2(I) ≤ j(q0),

or equivalently

‖q‖2H2(I) ≤
2

α

(
j(q0)− 1

2

∥∥Sq(q)− uqd∥∥2

L2(Ωq)

)
≤ 2

α
j(q0).

Setting C̃(α) =
√

2
αj(q0) �nishes this proof.

Due to the boundedness of Qad in C1(I) it follows that there exists a bounded so-called holding-
all domain Ω̃ ⊂ R2, such that Ωq ⊂⊂ Ω̃ for all q ∈ Qad. Throughout this chapter we assume for the
data

uqd = ud|Ωq , f
q = f |Ωq , with ud, f ∈ C

2,1(Ω̃). (2.7)

We will therefore just write f and ud instead of f q and uqd, respectively.

2.1.1. Transformation of the problem

The aim of the following subsection is to reformulate the original problem (2.4) on a �xed reference
domain Ω0. This method is called the method of mapping, a short overview can be found in [37]
and [101]. We de�ne Ω0 to be the unit circle and then compute a transformation Tq such that
the domain Ωq is the image of Ω0 under that transformation, Ωq = Tq(Ω0). All the results remain
true if Ω0 is replaced by any other su�ciently smooth domain su�ciently close to Ωq in the sense
of Assumption 2.1.11. In order to compute Tq it is often necessary to solve an additional partial
di�erential equation like the equations of linear elasticity or the Laplace equation. Within this
thesis we will focus on the Laplace equation. Our results remain true as long as Theorem A.1.28
holds for the chosen equation.
If one worked locally near the optimal shape instead of transforming the whole domain, then one

would have to remesh the working domain every step, which is costly. As already mentioned, we
bypass this remeshing at the cost of two additional Laplace equations. The reason why we choose
this approach is the fact that it allows for comparing states corresponding to di�erent shapes, which
is important in the context of error estimation. Furthermore, from a practical point of view, adding
some Laplace equations to the numerical solver is often less complicated than including a remeshing
step.
Let F = (F1, F2)T be the weak solution to the following boundary value problem,{

−∆F = 0 in Ω0,

F = q n on Γ0 = ∂Ω0,
(2.8)

where n is the outer unit normal to Ω0 and the Laplacian shall act on each component separately.
If F = F (q) solves (2.8) for a given q ∈ Q, then de�ne Tq = TF (q) = Id +F (q).

Lemma 2.1.2. For q ∈ Q it holds that F = F (q) as the weak solution to (2.8) possesses the
regularity F ∈ H5/2(Ω0) ↪→ C1,1/2(Ω0). More generally, for s > 1 there holds the estimate

‖F‖Hs+1/2(Ω0) ≤ cs ‖q‖Hs(I) .

7



2. A model problem

Proof. As the outer unit normal n of the unit circle is uniformly bounded in Ck(Γ0) for every �xed
k ∈ N, we get

‖q n‖Hs(Γ0) ≤ c ‖n‖Cdse(Γ0) ‖q‖Hs(I) ≤ cs ‖q‖Hs(I) ,

cf. [48], Theorem 1.4.1.1, and the result follows with Theorem A.1.28.

Let

F =
{
F ∈ H5/2(Ω0)

∣∣∣ ∃q ∈ Q such that F = F (q) solves (2.8)
}
, (2.9)

Fad =
{
F ∈ H5/2(Ω0)

∣∣∣ ∃q ∈ Qad such that F = F (q) solves (2.8)
}
, (2.10)

be the spaces of (admissible) transformations. Note that Fad is a bounded set in H5/2(Ω0) due to
Lemma 2.1.2 and (2.6). In addition, Fad need not be closed in H5/2(Ω0) for the trace operator is
not surjective from Hk+1/2(Ω0) to Hk(Γ0) for k ∈ N0 as mentioned in Theorem A.1.3.
The following functions derived from the transformation

TF = Id +F (2.11)

will be used in the sequel. Some existence and regularity results concerning these functions will be
shown below, some stability results concerning these functions can be found in Section 2.3.

DTF (x, y) = I + DF (x, y) =

(
1 + ∂xF1(x, y) ∂yF1(x, y)
∂xF2(x, y) 1 + ∂yF2(x, y)

)
, (2.12)

γF (x, y) = det (DTF (x, y)) , (2.13)

γ′F,δF =
d

dt
γF+t·δF (x, y)

∣∣∣∣
t=0

, (2.14)

γ′′F,δF,τF =
d

dt
γ′F+t·τF,δF (x, y)

∣∣∣∣
t=0

, (2.15)

AF (x, y) =
(
γF DT−1

F ·DT−TF
)

(x, y), (2.16)

where DT−1
F = (DTF )−1,

A′F,δF (x, y) =
d

dt
AF+t·δF (x, y)

∣∣∣∣
t=0

, (2.17)

A′′F,δF,τF (x, y) =
d

dt
A′F+t·τF,δF (x, y)

∣∣∣∣
t=0

. (2.18)

The following two lemmata will be needed to prove some regularity results concerning these func-
tions.

Lemma 2.1.3. Let Ω ⊂ Rn be open, bounded and Lipschitz. Let v ∈ H1(Ω) and k ∈ N. If there
exists c0 > 0 such that v(x) ≥ c0 for almost every x ∈ Ω, then v−k ∈ H1(Ω).

Proof. We only have to show that

∇
(
v−k

)
=
(
−kv−k−1∇v

)
∈ L2(Ω),

which follows from the generalized Hölder inequality and

v−k−1 ∈ L∞(Ω), ∇v ∈ L2(Ω).

8
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Lemma 2.1.4. Let Ω ⊂ Rn, n ∈ {1, 2}, be open, bounded and Lipschitz. Let s ≥ 0 and v ∈ Hs(Ω).
If there exists c0 > 0 such that v(x) ≥ c0 for almost every x ∈ Ω, then v−1 ∈ Hs(Ω).

Proof. Let s = k+σ with k ∈ N0 and σ ∈ [0, 1). We start with the case k = 0. If in addition σ = 0,
then the result is clear. If σ ∈ (0, 1), then

∣∣v−1
∣∣2
Hs(Ω)

=

∫
Ω

∫
Ω

∣∣v(x)−1 − v(y)−1
∣∣2

|x− y|n+2σ dx dy

=

∫
Ω

∫
Ω

∣∣∣∣ 1

v(x) v(y)

∣∣∣∣2 |v(x)− v(y)|2

|x− y|n+2σ dx dy

≤ 1

c4
0

|v|2Hs(Ω) .

Next we consider the case k = 1, v ∈ H1+σ(Ω). Due to Lemma 2.1.3 it remains to consider
the case σ ∈ (0, 1). As ∇v ∈ Hσ(Ω) and v−3 ∈ H1(Ω) due to Lemma 2.1.3, it follows with
Theorem A.1.5 that −2v−3∇v = ∇

(
v−2
)
∈ Hε(Ω) for ε < σ. Hence, v−2 ∈ H1+ε(Ω), and again

with Theorem A.1.5 it follows that −v−2∇v = ∇
(
v−1
)
∈ Hσ(Ω), and v−1 ∈ H1+σ(Ω).

The next case is s = 2. Due to Lemma 2.1.3 we only have to show that

∇2
(
v−1
)

=
(
2v−3∇v · ∇vT − v−2∇2v

)
∈ L2(Ω),

which follows from v−2, v−3 ∈ L∞(Ω), ∇v ∈ H1(Ω) ↪→ L4(Ω) and ∇2v ∈ L2(Ω).
We �nish the proof with induction. Assume that the statement has been shown for all s < k for

some k ∈ N with k ≥ 2. Let s = k + σ, σ ∈ [0, 1) and v ∈ Hk+σ(Ω). We can further assume that
σ > 0 if k = 2. As v−1 ∈ H(k−1)+σ(Ω) by induction hypothesis, we get v−2 ∈ H(k−1)+σ(Ω) with
Theorem A.1.5. Furthermore, ∇v ∈ H(k−1)+σ(Ω), and again with Theorem A.1.5 we end up with
−v−2∇v = ∇

(
v−1
)
∈ H(k−1)+σ(Ω), which leads to v−1 ∈ Hk+σ(Ω).

Lemma 2.1.5. Let s > 3/2 and q ∈ Hs(I). Then it holds that γF (q), AF (q) ∈ Hs−1/2(Ω0).

Proof. The regularity result for γF (q) follows from (2.13), Lemma 2.1.2 and Theorem A.1.5. Because
of

DT−1
F (q) =

1

γF (q)

(
1 + ∂yF2(q) −∂yF1(q)
−∂xF2(q) 1 + ∂xF1(q)

)
, (2.19)

and DF ∈ Hs−1/2(Ω0), Lemma 2.1.4 yields DT−1
F (q) ∈ Hs−1/2(Ω0), and the regularity for AF (q)

follows with (2.16) and the regularity result for γF (q).

Lemma 2.1.6. Let F ∈ Fad and δF, τF ∈ F . Then the following operators are Fréchet-di�erentiable
with respect to F .

• γF : H5/2(Ω0)→ H3/2(Ω0) with derivative

γ′F,δF = γF trace
(
DT−1

F ·DδF
)

= div
(
γF DT−1

F · δF
)
.

• DT−1
F : H5/2(Ω0)→ H3/2(Ω0) with derivative(

DT−1
F

)′
δF

= −DT−1
F ·DδF ·DT−1

F .

9



2. A model problem

• γ′F,δF : H5/2(Ω0)×H5/2(Ω0)→ H3/2(Ω0) with derivative

γ′′F,δF,τF = γF trace
(
DT−1

F ·DδF
)

trace
(
DT−1

F ·DτF
)
− γF trace

(
DT−1

F ·DτF ·DT−1
F ·DδF

)
= trace (DδF ) trace (DτF )− trace (DδF ·DτF ) .

• AF : H5/2(Ω0)→ H3/2(Ω0) with derivative

A′F,δF = trace
(
DT−1

F ·DδF
)
AF −DT−1

F ·DδF ·AF −AF ·DδF T ·DT−TF . (2.20)

• A′F,δF : H5/2(Ω0)×H5/2(Ω0)→ H3/2(Ω0) with derivative

A′′F,δF,τF

= − trace
(
DT−1

F ·DτF ·DT−1
F ·DδF

)
AF + trace

(
DT−1

F ·DδF
)

trace
(
DT−1

F ·DτF
)
AF

− trace
(
DT−1

F ·DδF
)

DT−1
F ·DτF ·AF − trace

(
DT−1

F ·DτF
)

DT−1
F ·DδF ·AF

− trace
(
DT−1

F ·DδF
)
AF ·DτF T ·DT−TF − trace

(
DT−1

F ·DτF
)
AF ·DδF T ·DT−TF (2.21)

+ DT−1
F ·DδF ·DT−1

F ·DτF ·AF + DT−1
F ·DτF ·DT−1

F ·DδF ·AF
+ DT−1

F ·DδF ·AF ·DτF T ·DT−TF + DT−1
F ·DτF ·AF ·DδF T ·DT−TF

+AF ·DδF T ·DT−TF ·DτF T ·DT−TF +AF ·DτF T ·DT−TF ·DδF T ·DT−TF .

Proof. By a direct calculation it follows that

lim
‖δF‖

H5/2(Ω0)
→0

∥∥γF+δF − γF − γF trace
(
DT−1

F ·DδF
)∥∥
H3/2(Ω0)

‖δF‖H5/2(Ω0)

= lim
‖δF‖

H5/2(Ω0)
→0

‖∂xδF1 ∂yδF2 − ∂yδF1 ∂xδF2‖H3/2(Ω0)

‖δF‖H5/2(Ω0)

≤ c lim
‖δF‖

H5/2(Ω0)
→0

‖δF‖2H5/2(Ω0)

‖δF‖H5/2(Ω0)

= 0,

where in the second step we used Theorem A.1.5 and Theorem A.1.14. The result for DT−1
F follows

from a direct calculation, and the result for γ′F,δF follows from the fact that the trace is linear,
Theorem A.1.11 as well as the �rst two parts of this lemma. The fourth part follows from the
previous two parts, Theorem A.1.11 and Theorem A.1.5, and the result for A′F,δF follows from a
direct calculation and the previous parts.

Remark 2.1.7. For A,B ∈ Rn×n it holds that trace (A ·B) = trace (B ·A), hence the second deriva-
tives A′′F,δF,τF and γ′′F,δF,τF within Lemma 2.1.6 are symmetric with respect to the directions.

Lemma 2.1.8. For ‖q‖H2(I) → 0 it holds that

• TF (q) → Id in H5/2(Ω0) ↪→ C1,1/2(Ω0),

• γF (q) → 1 in H3/2(Ω0) ↪→ C0,1/2(Ω0),

• DT−1
F (q) → I in H3/2(Ω0),

10
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• AF (q) → I in H3/2(Ω0).

Proof. The �rst part follows from (2.11) and Lemma 2.1.2, the second part follows from (2.13),
Lemma 2.1.5 and the �rst part of this lemma. The third part follows from (2.19), Theorem A.1.5
and the �rst two parts of this lemma, and the last part follows from (2.16), the second and the third
part and again Theorem A.1.5.

Lemma 2.1.9. There exist c0 > 0, 0 < c1 < c2 and 0 < c3 < c4 such that for ‖q‖H2(I) < c0

it holds that γF (q) ∈ [c1, c2] and the two eigenvalues of AF (q) are elements of the interval [c3, c4].
Furthermore, for i ∈ {1, 2, 3, 4} it holds that

lim
‖q‖H2(I)→0

ci = 1.

Proof. This lemma follows with Lemma 2.1.8 and the fact that the eigenvalues of a matrix contin-
uously depend on its entries.

As we use the transformation TF (q) to map Ω0 onto Ωq it is desirable that this transformation is
one-to-one.

Lemma 2.1.10. For ‖q‖H2(I) su�ciently small, the transformation TF (q) : Ω0 → Ωq is bijective.

Proof. It holds that Γq = TF (q)(Γ0) by de�nition of F (q). The fact that TF (q)(Ω0) ⊂ Ωq follows
with the maximum principle for harmonic functions, cf. [16], Chapter I, Theorem 2.2, surjectivity
follows by continuity and injectivity follows from Lemma 2.1.8 and [3], Theorem 3.8.

Assumption 2.1.11. We assume that the constant C̃ in (2.6) is chosen su�ciently small such that
Lemma 2.1.9 and Lemma 2.1.10 hold for all q ∈ Qad.

Remark 2.1.12. With Lemma 2.1.1 it follows that Assumption 2.1.11 holds if α is su�ciently large.
Furthermore, within practical applications like computing the optimal shape of an airfoil, a good
approximation of the optimal shape is very often already known a-priori. For these reasons we think
that this assumption is reasonable.

For the ease of notation, for F ∈ Fad and u, v ∈ H1(Ω0) we will use the following (bi)linear forms.

a(F )(u, v) =

∫
Ω0

∇uT ·AF · ∇v + uvγF dx, (2.22)

l(F )(v) =

∫
Ω0

(f ◦ TF )vγF dx. (2.23)

Lemma 2.1.13. The bilinear form a(F )(·, ·) is uniformly continuous and coercive in H1(Ω0), i.e.
there exist c1, c2 > 0, independent of F ∈ Fad, such that for all u, v ∈ H1(Ω0) it holds that

|a(F )(u, v)| ≤ c1 ‖u‖H1(Ω0) ‖v‖H1(Ω0) ,

a(F )(u, u) ≥ c2 ‖u‖2H1(Ω0) .

Furthermore, there exists c3 > 0, independent of F ∈ Fad and p ∈ [1,∞], such that for u ∈W 1,p(Ω0)
and v ∈W 1,q(Ω0) with 1/p+ 1/q = 1 the following Hölder-like inequality holds:

|a(F )(u, v)| ≤ c3 ‖u‖W 1,p(Ω0) ‖v‖W 1,q(Ω0) .

11
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Proof. As the matrix AF is symmetric, this lemma follows with Lemma 2.1.9 and Theorem A.1.7.

Lemma 2.1.14. Let F ∈ Fad. Then there exists a unique u ∈ H1
0 (Ω0) such that

a(F )(u, v) = l(F )(v) ∀v ∈ H1
0 (Ω0), (2.24)

and ‖u‖H1
0 (Ω0) ≤ c ‖f ◦ TF ‖L2(Ω0).

Proof. This lemma is a direct conclusion of the Lax-Milgram theorem, cf. [3], Theorem 4.2, and
Lemma 2.1.13.

Remark 2.1.15. For q1, q2 ∈ Qad and F3 ∈ Fad, let u(q1), u(F2) and u(F3) denote the unique
solutions to (2.24) for F = F (q1), F = F2 = F (q2) and F = F3, respectively.

Lemma 2.1.14 motivates the introduction of another solution operator S : Qad → H1
0 (Ω0), which

assigns to each control q ∈ Qad the �transported� solution, i.e. let S(q) = u(q) ∈ H1
0 (Ω0) be the

solution of (2.24) for F = F (q).

Lemma 2.1.16. Let q ∈ Qad, F = F (q) ∈ Fad and v ∈ L2(Ωq). Then it holds that v ∈ H1(Ωq)
if and only if v ◦ TF ∈ H1(Ω0). Furthermore, the two norms ‖v‖H1(Ωq)

and ‖v ◦ TF ‖H1(Ω0) are

equivalent for v ∈ H1(Ωq).

Proof. Let v ∈ H1(Ωq). We have

‖v‖2H1(Ωq)
=

∫
Ωq

v2 + |∇v|2 dx =

∫
Ω0

(v ◦ TF )2 γF + |∇v ◦ TF |2 γF dx

≤ c
∫

Ω0

(v ◦ TF )2 +
∣∣DT TF · ∇v ◦ TF ∣∣2 dx

= c ‖v ◦ TF ‖2H1(Ω0)

≤ c
∫

Ω0

(v ◦ TF )2 + |∇v ◦ TF |2 dx ≤ c
∫

Ω0

(v ◦ TF )2 γF + |∇v ◦ TF |2 γF dx

= c

∫
Ωq

v2 + |∇v|2 dx = c ‖v‖2H1(Ωq)
,

where we also used Assumption 2.1.11.

Lemma 2.1.17. Let F ∈ Fad, uq ∈ H1
0 (Ωq) and u = uq ◦ TF ∈ H1

0 (Ω0). Then the following two
variational formulations are equivalent.∫

Ωq

(
(∇uq)T · ∇vq + uqvq

)
dx =

∫
Ωq

fvq dx ∀vq ∈ H1
0 (Ωq), (2.25)∫

Ω0

(
∇uT ·AF · ∇v + uvγF

)
dx =

∫
Ω0

(f ◦ TF ) vγF dx ∀v ∈ H1
0 (Ω0). (2.26)

Proof. This lemma can be shown using integration by substitution and Lemma 2.1.16.

We are now able to reformulate problem (2.4) on the reference domain.

min
q∈Qad,u∈H1

0 (Ω0),F∈Fad
J(q, u, F ) =

1

2

∫
Ω0

(u− ud ◦ TF )2 γF dx+
α

2
‖q‖2H2(I) , (2.27)
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subject to{
−∆F = 0 in Ω0,

F = q n on Γ0,
and

{
−div(AF · ∇u) + uγF = f ◦ TFγF in Ω0,

u = 0 on Γ0.

Theorem 2.1.18. Let q ∈ Qad. Then q is an optimal solution to (2.4) if and only if it is an optimal
solution to (2.27).

Proof. This theorem follows with Lemma 2.1.17 and the fact that J̃(q, S̃(q)) = J(q, S(q), F (q))
holds for all q ∈ Qad.

2.1.2. Existence of a solution

Within this subsection we are going to prove that there exists a solution to problem (2.4). The
following proof relies on Assumption 2.1.11 which can be partially omitted as mentioned in Re-
mark 2.1.22. Due to Theorem 2.1.18 it is su�cient to show that (2.27) has a global solution.

Theorem 2.1.19. If the constant C̃ from (2.6) is chosen su�ciently small in the sense of Assump-
tion 2.1.11, then the problem (2.27) has a global solution.

Proof. Let j(q) = J(q, u(q), F (q)) ≥ 0 be the reduced cost functional. There exists a minimizing
sequence (qn, un = u(qn), Fn = F (qn))n∈N with

j = inf
q∈Qad

j(q) = lim
n→∞

j(qn) = lim
n→∞

J(qn, un, Fn).

As Qad is a convex, closed and bounded subset of the Hilbert space H2(I) it is weakly sequentially
compact, hence there exists q ∈ Qad such that, up to extracting a subsequence, it holds that

qn ⇀ q in H2(I),

qn → q in H2−ε(I), for n→∞,

where the second convergence is due to the compact embedding of H2(I) into H2−ε(I), cf. Theo-
rem A.1.4. Let F = F (q) ∈ Fad and u = u(F ). Due to Lemma 2.1.2 it follows that Fn → F in
H5/2−ε(Ω0), hence u(Fn) → u(F ) = u in H1(Ω0) by Lemma 2.3.21. In addition, γFn → γF and
ud ◦ TFn → ud ◦ TF in L∞(Ω0) due to Lemma 2.3.15, which leads to

lim
n→∞

(∫
Ω0

(un − ud ◦ TFn)2 γFn dx

)
=

∫
Ω0

(
u− ud ◦ TF

)2
γF dx. (2.28)

As the squared H2-norm is continuous and convex it is lower semicontinuous,

lim inf
n→∞

‖qn‖2H2(I) ≥ ‖q‖
2
H2(I) , (2.29)

and by adding (2.28) and (2.29) we arrive at

J(q, u, F ) ≤ lim inf
n→∞

J(qn, un, Fn) = j, (2.30)

and conclude that J(q, u, F ) = j. Hence
(
q, u, F

)
is a global solution to (2.27).
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Corollary 2.1.20. Every minimizing sequence (qn)n∈N ⊂ Qad contains a subsequence (qnk)k∈N such
that qnk → q in H2(I) for k →∞, where q is an optimal solution to (2.27).

Proof. In the proof of Theorem 2.1.19 we have already proven the existence of such a subsequence
with qnk ⇀ q inH2(I). As J(qnk , u(qnk), F (qnk))→ J(q, u, F ) it follows that ‖qnk‖H2(I) → ‖q‖H2(I).
As within Hilbert spaces weak convergence plus convergence of the norm implies strong convergence,
cf. [3], U6.5, the result follows.

Remark 2.1.21. Although the state equation (2.24) is linear, the mapping q 7→ u(q) is highly
nonlinear and one cannot expect the reduced cost functional j to be convex. Therefore uniqueness
of an optimal solution cannot be shown.

Remark 2.1.22. Although the proof of Theorem 2.1.19 depends on Assumption 2.1.11, this assump-
tion can be omitted. In [52], Theorem 2.8, the authors show existence of an optimal solution for a
similar shape optimization problem where they just need some sort of compactness of Qad in Q. As
the proof mentioned in the source cited above is more involved than the one presented here, and as
Assumption 2.1.11 is needed throughout this chapter, we decided to include the proof as stated.

2.1.3. The optimality system

Within this subsection it will be shown that the mapping q 7→ u(q) is at least twice continuously
Fréchet-di�erentiable. We will use this fact to derive a boundary expression for the �rst derivative of
the cost functional, and then use this representation to show higher regularity of the optimal control.
This di�erentiability results as well as the regularity results will also be used within Section 2.3 in
order to derive a-priori error estimates.

2.1.3.1. Di�erentiability of the control-to-state mapping and �rst-order optimality conditions

At �rst we investigate the di�erentiability of the control-to-state mapping q 7→ u(q), which will be
shown using the implicit function theorem.

Lemma 2.1.23. The mapping Q 3 q 7→ F (q) ∈ F is at least twice continuously Fréchet-di�erentiable.

Proof. As the mapping q 7→ F (q) is linear, the result follows with Lemma 2.1.2.

Lemma 2.1.24. The mapping int
(
Qad

)
3 q 7→ u(q) ∈ H1

0 (Ω0) is at least twice continuously
Fréchet-di�erentiable.

Proof. We set X = Q, Xad = int
(
Qad

)
, Y = Y ad = H1

0 (Ω0) and Z = H−1(Ω0). Furthermore, let

B : Q×H1
0 (Ω0)→ H−1(Ω0),

B(q, u) = a(F (q))(u, ·)− l(F (q))(·).

Then B is a�ne linear in u and at least twice continuously di�erentiable with respect to q, as follows
from Lemma 2.1.6, Lemma 2.1.23 and (2.7). This lemma now follows with Theorem A.1.6.

In order to be able to use Lemma 2.1.24 to derive optimality conditions, we make the following
assumption.

Assumption 2.1.25. We assume that the optimal control q under consideration is an element of the
interior of the admissible set, q ∈ int(Qad).
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As a result of Lemma 2.1.24, the operator S as well as the reduced cost functional j are at least
twice continuously Fréchet-di�erentiable. The de�nition of the corresponding derivatives as well as
some stability results can be found in Section 2.3. Due to Assumption 2.1.25 and the di�erentiability
of j there holds a �rst-order optimality condition in q, which reads as

j′(q)(δq) = 0 ∀δq ∈ Q. (2.31)

Our goal is to use (2.31) to show higher regularity of the optimal control q. To do so, we �rst have
to reformulate the transformation equation.

2.1.3.2. A variational formulation for Dirichlet control problems

As the control q enters the equation for the transformation F on the boundary, (2.8) is a Dirichlet
control problem which is known not to be of variational type. In [76] various possibilities on how
to deal with such problems are presented. First we take a closer look at the weak solution u to the
problem {

−∆u = f in Ω,

u = g on Γ,
(2.32)

for an arbitrary Lipschitz domains Ω ⊂ Rn. If f ∈ H−1(Ω) and g ∈ H1/2(Γ), then one can proceed
in a standard way as follows. Let T : H1/2(Γ) → H1(Ω) be an arbitrary right inverse to the trace
operator. The existence of such a T is ensured by Theorem A.1.3. The solution to (2.32) is now
given as u = uΩ + uΓ, where uΓ = Tg and uΩ ∈ H1

0 (Ω) solves

(∇uΩ,∇v) = − (∇uΓ,∇v) + (f, v) ∀v ∈ H1
0 (Ω). (2.33)

The drawback of formulation (2.33) is the fact that one has to split u into the sum of the two
functions uΓ and uΩ. This makes it more di�cult to take the derivative of u with respect to g,
which is crucial in order to derive an optimality system, where we have to take the derivative of (2.8)
with respect to q. One possibility to overcome this di�culty is the use of the very weak formulation,
which can be obtained from the weak formulation of (2.32) by partial integration once more,

− (u,∆v) + 〈g, ∂nv〉 = (f, v) ∀v ∈ H1
0 (Ω) ∩H2(Ω), (2.34)

which even allows for solutions u ∈ L2(Ω) of the boundary value problem. This approach is used
in [27], [36] and [85], a general overview can be found in [48] and [49]. However, it is not clear how
to de�ne a discrete approximation to (2.34), for piecewise linear ansatz functions vh are in general
no element of H2(Ω). We will therefore stick to the approach presented in [13], which includes a
discrete formulation and also coincides with the classical formulation if the input data is su�ciently
regular. In what follows we will present that approach. Let Ω ⊂ R2 be a H3/2+ε-regular domain,
which is ful�lled if Ω is either polygonal or convex. A precise formulation of this statement can be
found in [49], Theorem 2.4.3 and Corollary 2.6.7. Let f ∈ L2(Ω) and g ∈ L2(Γ).

De�nition 2.1.26. Let G : L2(Ω)→ R be de�ned as follows. For arbitrary v ∈ L2(Ω), let z ∈ H1
0 (Ω)

be the solution to

(∇z,∇w) = (v, w) ∀w ∈ H1
0 (Ω).

Now �nd λ ∈ L2(Γ) such that

(∇z,∇ϕ) = (v, ϕ) + 〈λ, ϕ〉 ∀ϕ ∈ H1(Ω),
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and set

G(v) = (f, z)− 〈g, λ〉.

Lemma 2.1.27. There exists a unique u ∈ L2(Ω) as the solutions to

(u, v) = G(v) ∀v ∈ L2(Ω). (2.35)

Proof. This lemma follows from [13], Theorem 4.1.

De�nition 2.1.28. In order to trace the dependency on the boundary values, for Ω = Ω0 we de�ne,
using the same notation as in De�nition 2.1.26,

G(g, v) = −〈g n, λ〉,

where n shall denote the outer unit normal to Γ0.

Lemma 2.1.29. Let f ∈ H−1(Ω) and g ∈ H1/2(Γ). Then u ∈ L2(Ω) is the unique solution of (2.35)
if and only if it is the weak solution to (2.32).

Proof. Let ε > 0 be �xed such that Ω is H3/2+ε-regular, and let

Z =
{
z ∈ H1

0 (Ω) ∩H3/2+ε(Ω)
∣∣∣ ∆z ∈ L2(Ω)

}
.

From the de�nition of H3/2+ε-regularity it follows that −∆: Z → L2(Ω) is bijective. Now let
u ∈ H1(Ω) be the weak solution to (2.32), i.e.{

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω),

u|Γ = g.

As Z ⊂ H1
0 (Ω) it follows that

(∇u,∇z) = (f, z) ∀z ∈ Z,

and partial integration yields

(u,−∆z) + 〈u, ∂nz〉 = (f, z) ∀z ∈ Z.

Now let v = −∆z. From De�nition 2.1.26 and Theorem A.1.3 it follows that λ(v) = ∂nz, and as
u|Γ = g we end up with

(u, v) = (f, z)− 〈g, λ〉 ∀v ∈ L2(Ω),

which shows that u also solves (2.35). As the weak solution as well as the solution to (2.35) are
unique, the result follows.
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2.1.3.3. The Lagrangian

Now we introduce the Lagrangian for problem (2.27) via

L : Qad ×H1
0 (Ω0)×H1

0 (Ω0)×F × L2(Ω0)→ R,
L(q, u, z, F,G) = J(q, u, F ) + l(F )(z)− a(F )(u, z) + (F,G)− G(q,G).

(2.36)

If u = u(q) and F = F (q), then L(q, u, z, F,G) = j(q) for all z ∈ H1
0 (Ω0) and G ∈ L2(Ω0). This

fact is well-known and often exploited in order to obtain an optimality system. In general, one is
looking for a stationary point of L, but in order to ensure that every local minima of (2.27) is also
a stationary point of L one needs some additional regularity which does not hold in general.

Lemma 2.1.30. Let q ∈ Qad, then F (q) ∈ Fad is the unique solution to

L′G(q, u, z, F,G)(δG) = 0 ∀δG ∈ L2(Ω0). (2.37)

Proof. As L is linear in G, it follows that (2.37) just reads as

(F, δG) = G(q, δG) ∀δG ∈ L2(Ω0).

This lemma follows with Lemma 2.1.27 and Lemma 2.1.29.

Lemma 2.1.31. Let q ∈ Qad and F = F (q). Then it holds that u(q) ∈ H1
0 (Ω0) is the unique

solution to

L′z(q, u, z, F,G)(δz) = 0 ∀δz ∈ H1
0 (Ω0). (2.38)

Proof. As l(F )(·) as well as a(F )(u, ·) are linear, it immediately follows that L′z exists. As (2.38)
just reads as

a(F )(u, δz) = l(F )(δz) ∀δz ∈ H1
0 (Ω0),

this lemma follows with Lemma 2.1.14.

Lemma 2.1.32. Let q ∈ Qad, F = F (q) and u = u(q). Then there exists a unique z ∈ H1
0 (Ω0)

such that

L′u(q, u, z, F,G)(δu) = 0 ∀δu ∈ H1
0 (Ω0). (2.39)

Proof. First, equation (2.39) can be written as

a(F )(δu, z) = J ′u(q, u, F )(δu) ∀δu ∈ H1
0 (Ω0),

which reads as

a(F )(δu, z) = ((u− ud ◦ TF )γF , δu) ∀δu ∈ H1
0 (Ω0). (2.40)

As the right hand side in (2.40) is a continuous functional on L2(Ω0), existence and uniqueness
again follow with Lemma 2.1.13 and the Lax-Milgram theorem.

Remark 2.1.33. With z(q), z(F ) or z(u) we will denote the adjoint state z as the solution to (2.39)
for given q, F or u, cf. Remark 2.1.15.

17



2. A model problem

To follow the standard procedure, we are now going to compute the derivative of L with respect to
F , which exists due to Lemma 2.1.6. The goal is to prove the existence of an adjoint transformation
G ∈ L2(Ω0) such that L′F (q, u, z, F,G)(δF ) = 0 for all δF ∈ F . As the transformation F enters L
in a highly nonlinear way, we split the computation. First, it holds that

J ′F (q, u, F )(δF ) =
1

2

∫
Ω0

(u− ud ◦ TF )2 div
(
γF DT−1

F · δF
)

dx

−
∫

Ω0

(u− ud ◦ TF ) (∇ud ◦ TF )T · δFγF dx

=

∫
Γ0

1

2
(u− ud ◦ TF )2 γF δF

T ·DT−TF · n ds

−
∫

Ω0

(u− ud ◦ TF )∇uT ·DT−1
F · δFγF dx,

(2.41)

l′F (F )(δF, z) =

∫
Ω0

f ◦ TF div
(
γF DT−1

F · δF
)
z + (∇f ◦ TF )T · δFγF z dx

= −
∫

Ω0

f ◦ TFγF∇zT ·DT−1
F · δF dx,

(2.42)

a′F (F )(δF, u, z) =

∫
Ω0

∇uT ·A′F,δF · ∇z + uz div
(
γF DT−1

F · δF
)

dx

=

∫
Ω0

∇uT ·A′F,δF · ∇z − (u∇z + z∇u)T ·DT−1
F · δFγF dx,

(2.43)

where we used the divergence theorem, ∇f ◦ TF = DT−TF · ∇ (f ◦ TF ) and the analog formula for
ud as well as the fact that uz ∈ W 1,p

0 (Ω0) for p < 2 due to Theorem A.1.5. By combining (2.41),
(2.42) and (2.43) with the de�nition of the Lagrangian, (2.36), we get

L′F (q, u, z, F,G)(δF ) =

∫
Γ0

1

2
(u− ud ◦ TF )2 γF δF

T ·DT−TF · n ds

−
∫

Ω0

(u− ud ◦ TF )∇uT ·DT−1
F · δFγF dx

−
∫

Ω0

f ◦ TFγF∇zT ·DT−1
F · δF dx

−
∫

Ω0

∇uT ·A′F,δF · ∇z + (u∇z + z∇u)T ·DT−1
F · δFγF dx

+

∫
Ω0

δF G dx.

(2.44)

Lemma 2.1.34. Let q ∈ Qad, u = u(q), z = z(q), F = F (q) and G ∈ L2(Ω0). Then there exists
d ∈ H1(Ω0) such that

L′F (q, u, z, F,G)(δF ) = (−d, δF )H1(Ω0) + (δF,G) ∀δF ∈ H1(Ω0),

i.e. the derivative L′F (q, u, z, F,G) is a continuous linear functional on H1(Ω0).

Proof. Linearity of L′F (q, u, z, F,G)(·) follows from (2.44) and Lemma 2.1.6. With Theorem A.1.31
we get the improved regularity u(q), z(q) ∈ W 1,4

0 (Ω0), and the boundedness of L′F in H1(Ω0) with
respect to δF follows with Lemma 2.3.18 and Theorem A.1.3. The Riesz representation theorem,
[3], Theorem 4.1, now ensures the existence of such an element d ∈ H1(Ω0).
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2.1. The problem

Remark 2.1.35. As u, z ∈ H3/2−ε(Ω0) but in general u, z /∈ H3/2(Ω0) due to Theorem A.1.30,
Theorem A.1.14 and the de�nition of A′F,δF , (2.20), it follows that L′F (q, u, z, F,G) is in general not
a continuous linear functional on L2(Ω0). It follows that the equation

L′F (q, u(q), z(q), F (q), G)(δF ) = 0 ∀δF ∈ H1(Ω0),

need not have a solution G ∈ L2(Ω0) for general q ∈ Qad.

With Remark 2.1.35 it follows that, in order to show the existence of an adjoint transformation
G, it is necessary that the (adjoint) state as well as the transformation have a higher regularity.
This is the case if the corresponding control is more regular.

2.1.3.4. Higher regularity of the optimal solution

Now we are going to prove higher regularity of the optimal control, namely q ∈ H9/2(I). In order
to do so we exploit the �rst-order optimality condition (2.31), which relies on Assumption 2.1.25.

j′(q)(δq) =
d

dt
J (q + t δq, u(q + t δq), F (q + t δq))

∣∣∣∣
t=0

=
d

dt
L (q + t δq, u(q + t δq), z, F (q + t δq), G)

∣∣∣∣
t=0

∀z ∈ H1
0 (Ω0), G ∈ L2(Ω0).

We now choose z = z(q) and G = 0. With (2.31), De�nition 2.3.2 and Lemma 2.1.32 we get

j′(q)(δq) = L′q(q, u(q), z(q), F (q), 0)(δq)

+ L′F (q, u(q), z(q), F (q), 0)(δF ) = 0 ∀δq ∈ Q, δF = F ′(q)(δq) ∈ F .
(2.45)

With Lemma 2.1.34 we can rewrite (2.45) as

α (q, δq)H2(I) − (d, δF )H1(Ω0) = 0 ∀δq ∈ Q, δF = F ′(q)(δq) ∈ F , (2.46)

with some d ∈ H1(Ω0). Using the Cauchy-Schwarz inequality it follows that∣∣∣(d, δF )H1(Ω0)

∣∣∣ ≤ ‖d‖H1(Ω0) ‖δF‖H1(Ω0) .

Furthermore the mapping δq 7→ δF is linear and ‖δF‖H1(Ω0) ≤ c ‖δq‖H1(I), which proves the
existence of d1 ∈ H1(I) with

(d, δF )H1(Ω0) = (d1, δq)H1(I) ∀δq ∈ Q. (2.47)

Inserting (2.47) into (2.46) yields

α (q, δq)H2(I) = (d1, δq)H1(I) ∀δq ∈ Q. (2.48)

To proceed, we need the following lemma.

Lemma 2.1.36. Let λ ∈ H2
per(I) and ψ ∈ H1

per(I) such that

(λ, ϕ)H2(I) = (ψ,ϕ)H1(I) ∀ϕ ∈ C∞per(I). (2.49)

Then it holds that λ ∈ H3
per(I).

19



2. A model problem

Proof. Equation (2.49) just reads as∫ 2π

0
λ′′ϕ′′ + λ′ϕ′ + λϕdx =

∫ 2π

0
ψ′ϕ′ + ψϕdx ∀ϕ ∈ C∞per(I).

Partial integration yields∫ 2π

0

(
λ′′ − λ+ ψ

)
ϕ′′ dx =

∫ 2π

0
(−λ+ ψ)ϕdx ∀ϕ ∈ C∞per(I). (2.50)

As (2.50) is just the de�nition of the second weak derivative and (−λ+ ψ) ∈ H1
per(I), this yields(

λ′′ − λ+ ψ
)
∈ H3

per(I) ⊂ H1
per(I),

and because of λ, ψ ∈ H1
per(I) we end up with λ′′ ∈ H1

per(I), hence λ ∈ H3
per(I).

Applying Lemma 2.1.36 to (2.48) yields q ∈ H3(I), and Theorem A.1.28 proves F ∈ H7/2(Ω0) and
DF ∈ H5/2(Ω0) ↪→ C1,1/2(Ω0). As a result it holds that AF , γF ∈ C1,1/2(Ω0), and Theorem A.1.38
yields u, z ∈W 2,p(Ω0) for p <∞. Theorem A.1.3 now implies ∇u|Γ0

, ∇z|Γ0
∈ W 1−1/p,p(Γ0). Due

to this improved regularity we can further simplify some of the expressions within (2.44). First
recall that

A′
F ,δF

= trace
(

DT−1
F
·DδF

)
AF −DT−1

F
·DδF ·AF −AF ·DδF

T ·DT−T
F

.

For the �rst part it holds that

−
∫

Ω0

∇uT ·AF · ∇z trace
(

DT−1
F
·DδF

)
dx

= −
∫

Ω0

∇uT ·DT−1
F
·DT−T

F
· ∇z div

(
γF DT−1

F
· δF

)
dx

= −
∫

Γ0

(
DT−T

F
· ∇u

)T
·
(

DT−T
F
· ∇z

)
γF δF

T ·DT−T
F
· n ds

+

∫
Ω0

∇
((

DT−T
F
· ∇u

)T
·
(

DT−T
F
· ∇z

))T
·DT−1

F
· δFγF dx.

(2.51)

It also holds that∫
Ω0

∇
((

DT−T
F
· ∇u

)T
·
(

DT−T
F
· ∇z

))T
·DT−1

F
· δFγF dx

+

∫
Ω0

∇uT ·
(

DT−1
F
·DδF ·AF +AF ·DδF

T ·DT−1
F

)
· ∇z dx

=

∫
Ω0

∇uT ·AF · ∇
(
∇zT ·DT−1

F
· δF

)
+∇zT ·AF · ∇

(
∇uT ·DT−1

F
· δF

)
dx

= −
∫

Ω0

div
(
AF · ∇u

)
∇zT ·DT−1

F
· δF − div

(
AF · ∇z

)
∇uT ·DT−1

F
· δF dx

+ 2

∫
Γ0

(
DT−T

F
· ∇u

)T
·
(

DT−T
F
· ∇z

)
γF δF

T ·DT−T
F
· n ds.

(2.52)
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2.1. The problem

If we insert (2.51) and (2.52) into (2.44) we �nally arrive at

L′F (q, u, z, F ,G)(δF )

=

∫
Γ0

1

2

(
u− ud ◦ TF

)2
γF δF

T ·DT−1
F
· n ds

+

∫
Γ0

(
DT−T

F
· ∇u

)T
·
(

DT−T
F
· ∇z

)
γF δF

T ·DT−1
F
· n ds

+

∫
Ω0

(
−div(AF · ∇u) + uγF − f ◦ TFγF

)︸ ︷︷ ︸
=0

(
∇zT ·DT−1

F
· δF

)
dx

+

∫
Ω0

(
−div(AF · ∇z) + zγF − (u− ud ◦ TF )γF

)︸ ︷︷ ︸
=0

(
∇uT ·DT−1

F
· δF

)
dx

+

∫
Ω0

δF G dx

=

∫
Γ0

(
1

2

(
u− ud ◦ TF

)2
+
(

DT−T
F
· ∇u

)T
·
(

DT−T
F
· ∇z

))
γF δF

T ·DT−1
F
· n ds

+

∫
Ω0

δF G dx,

where we used the strong formulation of the (adjoint) state equation, (2.38) and (2.39), which hold
due to the improved regularity of u and z. As in the proof of Lemma 2.1.34 it is now possible to
show that there exists d2 ∈ H1/2(Γ0) such that

L′F (q, u, z, F ,G)(δF ) = −〈d2, δF 〉+ (δF,G) ∀δF ∈ F . (2.53)

We now want to choose G ∈ L2(Ω0) such that (2.53) vanishes. Due to Theorem A.1.3, there exists
H ∈ H1

0 (Ω0) ∩H2(Ω0) with ∂nH = d2. Now de�ne G = ∆H ∈ L2(Ω0), it follows that(
δF,G

)
= (δF,∆H)

= − (∇δF,∇H) + 〈δF, ∂nH〉 = 〈δF, d2〉,
(2.54)

where the �rst term vanishes due to the fact that δF is weakly harmonic and H ∈ H1
0 (Ω0). Insert-

ing (2.54) into (2.53) yields

L′F (q, u, z, F ,G)(δF ) = 0 ∀δF ∈ F ,

and we arrive at

j′(q)(δq) = L′q(q, u, z, F ,G)(δq)

= α (q, δq)H2(I) − G(δq,G) ∀δq ∈ Q.

Using the de�nition of H and G as well as De�nition 2.1.28, it �nally follows that

j′(q)(δq) =

∫
Γ0

(
1

2

(
u− ud ◦ TF

)2
+
(

DT−T
F
· ∇u

)T
·
(

DT−T
F
· ∇z

))
γF δF

T ·DT−1
F
· n ds

+ α (q, δq)H2(I) .

(2.55)
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2. A model problem

Remark 2.1.37. One may note that (2.55) looks similar to shape derivatives obtained by di�erent
methods, as done for example in [65], [73] and [101]. The fact that we end up with a boundary inte-
gral is due to the well-known Hadamard-Zolesio theorem, cf. [101], Theorem 2.27, which states that
the derivative of a cost functional with respect to domain perturbations can always be represented
as an integral over the moving part of the boundary, given su�cient smoothness of all the involved
functions.
Remark 2.1.38. As H ∈ H1

0 (Ω0) ∩H2(Ω0) is only de�ned modulo H2
0 (Ω0), it follows that G need

not be unique. However, it easily follows from De�nition 2.1.26 that for H̃ ∈ H2
0 (Ω0) and G̃ = ∆H̃

it holds that

G(δq, G̃) = 0 ∀δq ∈ Q.

This observation is supported by (2.55), which is independent of H and G.
The following lemma can be proven similar to Lemma 2.1.36.

Lemma 2.1.39. Let λ ∈ H3
per(I) and ψ ∈ H1/2

per (I) such that

(λ, ϕ)H2(I) = (ψ,ϕ)L2(I) ∀ϕ ∈ C∞per(I).

Then it holds that λ ∈ H9/2
per (I).

Lemma 2.1.39 now proves the following theorem.

Theorem 2.1.40. Let q ∈ Qad be an optimal solution to (2.27) in which Assumption 2.1.25 holds.
Then we have the improved regularity q ∈ H9/2(I).

Remark 2.1.41. By using a bootstrap argument it is possible to show an even higher regularity
of q. Using Theorem A.1.28, one can show that q ∈ H7(I), F ∈ H15/2(Ω0), u, z ∈ H5(Ω0) and
G ∈ H9/2−ε(Ω0). A further improvement is not possible in general due to the regularity of f and ud,
cf. (2.7). Any further improvement in the regularity of f and ud would result in a further improved
regularity of q, u, z, F and G. For f, ud ∈ C∞(Ω̂) we get q ∈ C∞per(I) and u, z, F ,G ∈ C∞(Ω0).

2.2. Discretization

Within this section we are going to discretize problem (2.27) using �nite elements for the control,
the state and the transformation.

2.2.1. Discretization of the control

We start by discretizing the control. Let N ∈ N, let 0 = x0 < x1 < · · · < xN−1 < xN = 2π
be a partition of the interval I and let Ij = (xj , xj+1) for j ∈ {0, · · · , N − 1} be the associated
subintervals. The discretization parameter will be denoted with

σ = max
0≤j≤N−1

|Ij | .

Now we de�ne the space of (admissible) discretized controls via

Qσ =
{
qσ ∈ Q| qσ|Ij ∈ P

3(Ij)∀j ∈ {0, · · · , N − 1}
}
, (2.56)

Qad
σ = Qad ∩Qσ, (2.57)

i.e. the discretized controls are piecewise polynomials of degree at most three and globally contin-
uously di�erentiable. Note that it also follows that Qσ ⊂W 2,∞(I).
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2.2. Discretization

De�nition 2.2.1. Let iσ : Q→ Qσ, q 7→ iσq be an interpolation operator which is de�ned as

(iσq) (xj) = q(xj),

(iσq)
′ (xj) = q′(xj),

(2.58)

for all j ∈ {0, · · · , N − 1}. As the elements in Qσ are piecewise polynomials of degree three
and (2.58) gives four conditions on each subinterval Ij , it follows that iσq is well-de�ned.

The following lemma can be shown using the Bramble-Hilbert lemma.

Lemma 2.2.2. Let s ∈ [2, 4] and q ∈ Q ∩Hs(I). Then it holds that

‖iσq‖H2(I) ≤ c ‖q‖H2(I) ,

‖q − iσq‖H2(I) ≤ csσ
s−2 |q|Hs(I) .

The �rst partially discretized problem now reads as

min
qσ∈Qadσ ,u∈H1

0 (Ω0),F∈Fad
J(qσ, u, F ) (2.59)

subject to

(F,G) = G(qσ, G) ∀G ∈ L2(Ω0),

a(F )(u, v) = l(F )(v) ∀v ∈ H1
0 (Ω0).

Theorem 2.2.3. For σ > 0, problem (2.59) has an optimal solution qσ.

Proof. In order to prove this theorem one may proceed as in the proof of Theorem 2.1.19 or use the
fact that dim (Qσ) <∞.

2.2.2. Discretization of the state

In order to discretize the state and the transformation, we �rst have to construct a polygonal approx-
imation to the domain Ω0. For h > 0 su�ciently small, let x0, x1, · · · , xM(h) denote M(h) points
on Γ0 such that the distance between any two consecutive points (modulo M(h)) is bounded from
above by h (possibly up to a given constant factor), and let Ω0,h ⊂ Ω0 be the polygonal and convex
domain with vertices x0, x1, · · · , xM(h). Hence, {Ω0,h}h>0 is a family of domains approximating Ω0.
For �xed h > 0, let πh be an admissible partition of Ω0,h into triangles and/or quadrilaterals in the
sense of De�nition 2.2.4, where the maximal edge length of each triangle or quadrilateral shall be
bounded from above by h. For each K ∈ πh, let hK denote the maximal length of its sides, and let
ρK denote the radius of the biggest inscribed circle.

De�nition 2.2.4. Let h > 0 be �xed. The triangulation πh of Ω0,h is called admissible if the
following three conditions are satis�ed.

• It holds that
Ω0,h =

⋃
K∈πh

K.

• If K1,K2 ∈ πh and K1 ∩K2 = {x} with x ∈ Ω0,h, then x is a vertex of both K1 and K2.
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2. A model problem

• If K1,K2 ∈ πh, K1 6= K2 and ∅ 6= K1 ∩K2 6= {x}, then it holds that K1 ∩K2 = {E}, where
E ⊂ (∂K1 ∩ ∂K2) is an edge of both K1 and K2.

De�nition 2.2.5 (Shape-regularity). The family of triangulations {πh}h>0 is called shape-regular
if there exists κ > 0 such that

hK
ρK
≤ κ,

holds uniformly for all h > 0 and K ∈ πh.

De�nition 2.2.6 (Quasi-uniformity). The family of triangulations {πh}h>0 is called quasi-uniform
if there exists c0 > 0 such that

h ≤ c0hK ,

holds uniformly for all h > 0 and K ∈ πh.

Remark 2.2.7 (Usual regularity assumptions). We will say that a family of admissible triangulations
{πh}h>0 ful�lls the usual regularity assumptions if it is both shape-regular and quasi-uniform in the
sense of De�nition 2.2.5 and De�nition 2.2.6.

Remark 2.2.8. If K ∈ πh is a triangle, then it can be shown that shape-regularity is equivalent to
the fact that the minimal inner angle of K is uniformly bounded from below. Quasi-uniformity is
equivalent to the fact that the ratio of the area of the smallest triangle or quadrilateral to the area
of the biggest triangle or quadrilateral within one �xed triangulation πh is uniformly bounded from
below for all h > 0.

If not stated otherwise we will always assume that {πh}h>0 ful�lls the usual regularity assumptions
in the sense of Remark 2.2.7. The �nite element ansatz spaces are now de�ned as

Vh =
{
vh ∈ H1(Ω0,h)

∣∣ vh|K ∈ R1(K) ∀K ∈ πh
}
, (2.60)

Vh,0 = Vh ∩H1
0 (Ω0,h), (2.61)

where we used the abbreviation

R1(K) =

{
P1(K) if K is a triangle,

Q1(K) if K is a quadrilateral,
(2.62)

where Q1(K) is the space of bilinear polynomials over K. We also have to de�ne approximations
to the (bi)linear forms and the cost functional. As every function v ∈ Vh,0 can be extended by zero
onto the whole domain Ω0, we can regard Vh,0 as a subspace of H1

0 (Ω0).

Jh(q, u, F ) =

∫
Ω0,h

(u− ud ◦ TF )2 γF dx+
α

2
‖q‖2H2(I) , (2.63)

ah(F )(u, v) =

∫
Ω0,h

∇uT ·AF · ∇v + uvγF dx, (2.64)

lh(F )(v) =

∫
Ω0,h

f ◦ TF vγF dx. (2.65)
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2.2. Discretization

Now de�ne the next partially discretized problem as

min
qσ∈Qadσ ,uh∈Vh,0,F∈Fad

Jh(qσ, uh, F ) (2.66)

subject to

(F,G) = G(qσ, G) ∀G ∈ L2(Ω0),

ah(F )(uh, vh) = lh(F )(vh) ∀vh ∈ Vh,0.

The following theorem can be proven similar to Theorem 2.2.3.

Theorem 2.2.9. For σ, h > 0, problem (2.66) has an optimal solution qσ,h.

2.2.3. Discretization of the transformation

The discretization of the transformation is analog to the discretization of the state, as in Subsec-
tion 2.2.2, let {Ω0,k}k>0 be a sequence of polygonal approximation to Ω0 and let {πk}k>0 be a
corresponding family of triangulations ful�lling the usual regularity assumptions. Now let

Vk =
{
vk ∈ H1(Ω0,k)

∣∣ vk|K ∈ R1(K) ∀K ∈ πk
}
, (2.67)

Vk,0 = Vk ∩H1
0 (Ω0,k), (2.68)

Vk,Γ0,k
=
{
gk ∈ L2(Γ0,k)

∣∣∃vk ∈ Vk such that gk = vk|Γ0,k

}
, (2.69)

Mk = {vk ∈ Vk| vk(xi) = 0 for all interior nodes xi of πk} , (2.70)

where R1(K) is de�ned as in (2.62). Furthermore, using the extension as presented at the beginning
of Subsection A.2.3 it is possible to regard Vk as subspace of H1(Ω0). With these de�nitions at
hand we can now formulate the discrete transformation equation, cf. Subsubsection 2.1.3.2.

De�nition 2.2.10. For f ∈ L2(Ω0,k) and g ∈ L2(Γ0,k), let Gk : L2(Ω0,k)→ R be de�ned as follows,
cf. De�nition 2.1.26. For v ∈ L2(Ω0,k), let zk ∈ Vk,0 be the solution to

(∇zk,∇wk)k = (v, wk)k ∀wk ∈ Vk,0.

Now �nd λk ∈ Vk,Γ0,k
such that

(∇zk,∇ϕk)k = (v, ϕk)k + 〈λk, ϕk〉k ∀ϕk ∈Mk,

and set

Gk(v) = (f, zk)k − 〈g, λk〉k.

Lemma 2.2.11. There exist a unique uk ∈ Vk as the solutions to

(uk, vk)k = Gk(vk) ∀vk ∈ Vk.

Moreover it holds that

(∇uk,∇vk)k = (f, vk)k ∀vk ∈ Vk,0,
uk|Γk = Pkg,

where Pkg is the L2-projection of g onto the space Vk,Γ0,k
.

25



2. A model problem

Proof. This lemma follows from [13], Lemma 5.1 and Theorem 5.2.

De�nition 2.2.12. In order to trace the dependency on the boundary values we de�ne, using the
same notation as in De�nition 2.2.10,

Gk(q, v) = −〈Πk(q n), λk〉k,

where n shall denote the outer normal to Γ and Πk : L2(Γ) → Vk,Γk shall denote the orthogonal
projection from Γ onto Γk, followed by a L2-projection on the space of discrete boundary values,
i.e. Πk(·) = Qh(̃·) in the sense of De�nition A.2.12.

We also de�ne the spaces for the discrete transformations.

Fk = {Fk ∈ Vk| ∃qσ ∈ Qσ such that Fk = Fk(q) solves (2.74)} , (2.71)

Fadk =
{
Fk ∈ Vk| ∃qσ ∈ Qad

σ such that Fk = Fk(q) solves (2.74)
}
. (2.72)

Now it is possible to state the fully discretized problem.

min
qσ∈Qadσ ,uh∈Vh,0,Fk∈Fadk

Jh(qσ, uh, Fk) (2.73)

subject to

(Fk, Gk)k = Gk(qσ, Gk) ∀Gk ∈ Vk, (2.74)

ah(Fk)(uh, vh) = lh(Fk)(vh) ∀vh ∈ Vh,0.

The following theorem can be proven similar to Theorem 2.2.3 and Theorem 2.2.9.

Theorem 2.2.13. For σ, h, k > 0, problem (2.73) has an optimal solution qσ,h,k.

As shown in [52] it is possible to prove that every sequence of optimal controls
(
qσ,h,k

)
σ,h,k>0

to (2.73) contains a subsequence which converges to an optimal control to (2.27). Within Subsec-
tion 2.3.5 we will prove kind of an inverse statement, that for every local optimal control to (2.27)
there exists a converging sequence of local optimal controls to (2.73).

2.3. A-priori error estimates

The aim of this section is to derive error estimates for the error between the optimal control to
the continuous problem (2.27) and the optimal control to the fully discretized problem (2.73). The
main result of this section will be the following, the proof can be found on page 63.

Theorem 2.3.1. Let q be an optimal control to (2.27). Then there exists a sequence
(
qσ,h,k

)
σ,h,k>0

of local optimal controls to (2.73) and c > 0 such that∥∥q − qσ,h,k∥∥H2(I)
≤ c

(
σ2 + h2 + k2

)
,

for σ, h, k → 0.

As already indicated in the previous theorem, we will, if not explicitily stated otherwise, always
assume that σ, h and k are chosen su�ciently small. We start by recalling the de�nition of the
state, its (partially) discretized counterparts as well as their derivatives with respect to domain
perturbations.
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De�nition 2.3.2 (The continuous state).

• u = S(q) ∈ H1
0 (Ω0) is the solution of

a(F )(u, v) = l(F )(v) ∀v ∈ H1
0 (Ω0),

where F = F (q).

• δu = S′(q)(δq) ∈ H1
0 (Ω0) is the solution of

a(F )(δu, v) =
(
f ◦ TF , v div

(
γF DT−1

F · δF
))

+
(

(∇f ◦ TF )T · δF, vγF
)

−
(
∇u,A′F,δF · ∇v

)
−
(
u, v div

(
γF DT−1

F · δF
))

∀v ∈ H1
0 (Ω0),

where δF = F ′(q)(δq).

• δτu = S′′(q)(δq, τq) ∈ H1
0 (Ω0) is the solution of

a(F )(δτu, v) = (f ◦ TF , v (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))

+
(
τF T · ∇2f ◦ TF · δF, vγF

)
−
(
∇u,A′′F,δF,τF · ∇v

)
+
(

(∇f ◦ TF )T · δF, v div
(
γF DT−1

F · τF
))

+
(

(∇f ◦ TF )T · τF, v div
(
γF DT−1

F · δF
))

−
(
∇τu,A′F,δF · ∇v

)
−
(
∇δu,A′F,τF · ∇v

)
−
(
τu, v div

(
γF DT−1

F · δF
))
−
(
δu, v div

(
γF DT−1

F · τF
))

− (uv, trace (DδF ) trace (DτF )− trace (DδF ·DτF )) ∀v ∈ H1
0 (Ω0),

where τu = S′(q)(τq) and τF = F ′(q)(τq).

De�nition 2.3.3 (The partially discretized state).

• uh = Sh(q) ∈ Vh,0 is the solution of

ah(F )(uh, vh) = lh(F )(vh) ∀vh ∈ Vh,0,
where F = F (q).

• δuh = S′h(q)(δq) ∈ Vh,0 is the solution of

ah(F )(δuh, vh) =
(
f ◦ TF , vh div

(
γF DT−1

F · δF
))
h

+
(

(∇f ◦ TF )T · δF, vhγF
)
h

−
(
∇uh, A′F,δF · ∇vh

)
h
−
(
uh, vh div

(
γF DT−1

F · δF
))
h

∀vh ∈ Vh,0,

where δF = F ′(q)(δq).

• δτuh = S′′h(q)(δq, τq) ∈ Vh,0 is the solution of

ah(F )(δτuh, vh) = (f ◦ TF , vh (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))h

+
(
τF T · ∇2f ◦ TF · δF, vhγF

)
h
−
(
∇uh, A′′F,δF,τF · ∇vh

)
h

+
(

(∇f ◦ TF )T · δF, vh div
(
γF DT−1

F · τF
))

h

+
(

(∇f ◦ TF )T · τF, vh div
(
γF DT−1

F · δF
))

h

−
(
∇τuh, A′F,δF · ∇vh

)
h
−
(
∇δuh, A′F,τF · ∇vh

)
h

−
(
τuh, vh div

(
γF DT−1

F · δF
))
h
−
(
δuh, vh div

(
γF DT−1

F · τF
))
h

− (uhvh, trace (DδF ) trace (DτF )− trace (DδF ·DτF ))h ∀vh ∈ Vh,0,
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2. A model problem

where τuh = S′h(q)(τq) and τF = F ′(q)(τq).

De�nition 2.3.4 (The fully discretized state).

• uh,k = Sh,k(q) ∈ Vh,0 is the solution of

ah(Fk)(uh,k, vh) = lh(Fk)(vh) ∀vh ∈ Vh,0,

where Fk = Fk(q).

• δuh,k = S′h,k(q)(δq) ∈ Vh,0 is the solution of

ah(Fk)(δuh,k, vh) =
(
f ◦ TFk , vh div

(
γFk DT−1

Fk
· δFk

))
h

+
(

(∇f ◦ TFk)T · δFk, vhγFk
)
h

−
(
∇uh,k, A′Fk,δFk · ∇vh

)
h
−
(
uh,k, vh div

(
γFk DT−1

Fk
· δFk

))
h

∀vh ∈ Vh,0,

where δFk = F ′k(q)(δq).

• δτuh,k = S′′h,k(q)(δq, τq) ∈ Vh,0 is the solution of

ah(Fk)(δτuh,k, vh) = (f ◦ TFk , vh (trace (DδFk) trace (DτFk)− trace (DδFk ·DτFk)))h
+
(
τF Tk · ∇2f ◦ TFk · δFk, vhγFk

)
h
−
(
∇uh,k, A′′Fk,δFk,τFk · ∇vh

)
h

+
(

(∇f ◦ TFk)T · δFk, vh div
(
γFk DT−1

Fk
· τFk

))
h

+
(

(∇f ◦ TFk)T · τFk, vh div
(
γFk DT−1

Fk
· δFk

))
h

−
(
∇τuh,k, A′Fk,δFk · ∇vh

)
h
−
(
∇δuh,k, A′Fk,τFk · ∇vh

)
h

−
(
τuh,k, vh div

(
γFk DT−1

Fk
· δFk

))
h
−
(
δuh,k, vh div

(
γFk DT−1

Fk
· τFk

))
h

− (uh,kvh, trace (DδFk) trace (DτFk)− trace (DδFk ·DτFk))h ∀vh ∈ Vh,0,

where τuh,k = S′h,k(q)(τq) and τFk = F ′k(q)(τq).

For the ease of notation we introduce the following abbreviations for some of the right hand sides
within the previous de�nitions.

De�nition 2.3.5. Let

lδ(F, δF, u)(v) =
(
f ◦ TF , v div

(
γF DT−1

F · δF
))

+
(

(∇f ◦ TF )T · δF, vγF
)
−
(
∇u,A′F,δF · ∇v

)
−
(
u, v div

(
γF DT−1

F · δF
))
,

lδh(F, δF, u)(v) =
(
f ◦ TF , v div

(
γF DT−1

F · δF
))
h

+
(

(∇f ◦ TF )T · δF, vγF
)
h
−
(
∇u,A′F,δF · ∇v

)
h

−
(
u, v div

(
γF DT−1

F · δF
))
h
,
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and

lδ,τ (F, δF, τF, u, δu, τu)(v) = (f ◦ TF , v (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))

+
(
τF T · ∇2f ◦ TF · δF, vγF

)
−
(
∇u,A′′F,δF,τF · ∇v

)
+
(

(∇f ◦ TF )T · δF, v div
(
γF DT−1

F · τF
))

+
(

(∇f ◦ TF )T · τF, v div
(
γF DT−1

F · δF
))

−
(
∇τu,A′F,δF · ∇v

)
−
(
∇δu,A′F,τF · ∇v

)
−
(
τu, v div

(
γF DT−1

F · δF
))
−
(
δu, v div

(
γF DT−1

F · τF
))

− (uv, trace (DδF ) trace (DτF )− trace (DδF ·DτF )) ,

lδ,τh (F, δF, τF, u, δu, τu)(v) = (f ◦ TF , v (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))h

+
(
τF T · ∇2f ◦ TF · δF, vγF

)
h
−
(
∇u,A′′F,δF,τF · ∇v

)
h

+
(

(∇f ◦ TF )T · δF, v div
(
γF DT−1

F · τF
))

h

+
(

(∇f ◦ TF )T · τF, v div
(
γF DT−1

F · δF
))

h

−
(
∇τu,A′F,δF · ∇v

)
h
−
(
∇δu,A′F,τF · ∇v

)
h

−
(
τu, v div

(
γF DT−1

F · δF
))
h
−
(
δu, v div

(
γF DT−1

F · τF
))
h

− (uv, trace (DδF ) trace (DτF )− trace (DδF ·DτF ))h .

We also recall the de�nitions of the cost functionals and their derivatives. Within the following
three de�nitions let q ∈ Qad, δq, τq ∈ Q, F = F (q), Fk = Fk(q), δF = F ′(q)(δq), τF = F ′(q)(τq),
δFk = F ′k(q)(δq) and τFk = F ′k(q)(τq).

De�nition 2.3.6 (The continuous cost functional).

j(q) =
1

2
(S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) γF ) +

α

2
‖q‖2H2(I) ,

j′(q)(δq) =
1

2

(
S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) div

(
γF DT−1

F · δF
))

+
(
S′(q)(δq)− (∇ud ◦ TF )T · δF, (S(q)− ud ◦ TF ) γF

)
+ α (q, δq)H2(I) ,

j′′(q)(δq, τq) =
1

2
(S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))

+
(
S′(q)(δq)− (∇ud ◦ TF )T · δF,

(
S′(q)(τq)− (∇ud ◦ TF )T · τF

)
γF

)
+
(
S(q)− ud ◦ TF ,

(
S′(q)(δq)− (∇ud ◦ TF )T · δF

)
div
(
γF DT−1

F · τF
))

+
(
S(q)− ud ◦ TF ,

(
S′(q)(τq)− (∇ud ◦ TF )T · τF

)
div
(
γF DT−1

F · δF
))

+
(
S(q)− ud ◦ TF ,

(
S′′(q)(δq, τq)− τF T · ∇2ud ◦ TF · δF

)
γF
)

+ α (δq, τq)H2(I) .

De�nition 2.3.7 (The partially discretized cost functional).

jh(q) =
1

2
(Sh(q)− ud ◦ TF , (Sh(q)− ud ◦ TF ) γF )h +

α

2
‖q‖2H2(I) ,

j′h(q)(δq) =
1

2

(
Sh(q)− ud ◦ TF , (Sh(q)− ud ◦ TF ) div

(
γF DT−1

F · δF
))
h

+
(
S′h(q)(δq)− (∇ud ◦ TF )T · δF, (Sh(q)− ud ◦ TF ) γF

)
h

+ α (q, δq)H2(I) ,
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j′′h(q)(δq, τq)

=
1

2
(Sh(q)− ud ◦ TF , (Sh(q)− ud ◦ TF ) (trace (DδF ) trace (DτF )− trace (DδF ·DτF )))h

+
(
S′h(q)(δq)− (∇ud ◦ TF )T · δF,

(
S′h(q)(τq)− (∇ud ◦ TF )T · τF

)
γF

)
h

+
(
Sh(q)− ud ◦ TF ,

(
S′h(q)(δq)− (∇ud ◦ TF )T · δF

)
div
(
γF DT−1

F · τF
))

h

+
(
Sh(q)− ud ◦ TF ,

(
S′h(q)(τq)− (∇ud ◦ TF )T · τF

)
div
(
γF DT−1

F · δF
))

h

+
(
Sh(q)− ud ◦ TF ,

(
S′′h(q)(δq, τq)− τF T · ∇2ud ◦ TF · δF

)
γF
)
h

+ α (δq, τq)H2(I) .

De�nition 2.3.8 (The fully discretized cost functional).

jh,k(q) =
1

2
(Sh,k(q)− ud ◦ TFk , (Sh,k(q)− ud ◦ TFk) γFk)h +

α

2
‖q‖2H2(I) ,

j′h,k(q)(δq) =
1

2

(
Sh,k(q)− ud ◦ TFk , (Sh,k(q)− ud ◦ TFk) div

(
γFk DT−1

Fk
· δFk

))
h

+
(
S′h,k(q)(δq)− (∇ud ◦ TFk)T · δFk, (Sh,k(q)− ud ◦ TFk) γFk

)
h

+ α (q, δq)H2(I) ,

j′′h,k(q)(δq, τq)

=
1

2
(Sh,k(q)− ud ◦ TFk , (Sh,k(q)− ud ◦ TFk) (trace (DδFk) trace (DτFk)− trace (DδFk ·DτFk)))h

+
(
S′h,k(q)(δq)− (∇ud ◦ TFk)T · δFk,

(
S′h,k(q)(τq)− (∇ud ◦ TFk)T · τFk

)
γFk

)
h

+
(
Sh,k(q)− ud ◦ TFk ,

(
S′h,k(q)(δq)− (∇ud ◦ TFk)T · δFk

)
div
(
γFk DT−1

Fk
· τFk

))
h

+
(
Sh,k(q)− ud ◦ TFk ,

(
S′h,k(q)(τq)− (∇ud ◦ TFk)T · τFk

)
div
(
γFk DT−1

Fk
· δFk

))
h

+
(
Sh,k(q)− ud ◦ TFk ,

(
S′′h,k(q)(δq, τq)− τF Tk · ∇2ud ◦ TFk · δFk

)
γFk
)
h

+ α (δq, τq)H2(I) .

2.3.1. General stability estimates

This subsection is devoted to some general stability results which will be needed throughout in this
section.

Lemma 2.3.9. For F,E ∈ Fad it holds that

|a(F )(u, v)− a(E)(u, v)| ≤ cε ‖F − E‖H2+ε(Ω0) ‖u‖H1(Ω0) ‖v‖H1(Ω0) ,

|a(F )(u, v)− a(E)(u, v)| ≤ cε ‖F − E‖H3/2+ε(Ω0) ‖u‖W 1,4−ε(Ω0) ‖v‖H1(Ω0) ,

|a(F )(u, v)− a(E)(u, v)| ≤ cε ‖F − E‖H3/2+ε(Ω0) ‖u‖H3/2−ε(Ω0) ‖v‖H1(Ω0) .

Proof. For the �rst part it holds that

|a(F )(u, v)− a(E)(u, v)| ≤ ‖u‖H1(Ω0) ‖v‖H1(Ω0)

(
‖AF −AE‖L∞(Ω0) + ‖γF − γE‖L∞(Ω0)

)
≤ c ‖u‖H1(Ω0) ‖v‖H1(Ω0) ‖F − E‖W 1,∞(Ω0)

≤ cε ‖u‖H1(Ω0) ‖v‖H1(Ω0) ‖F − E‖H2+ε(Ω0) .
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Using the same approach we get

|a(F )(u, v)− a(E)(u, v)| ≤ ‖u‖W 1,4−ε(Ω0) ‖v‖H1(Ω0)

(
‖AF −AE‖

L
8−2ε
2−ε (Ω0)

+ ‖γF − γE‖
L

8−2ε
2−ε (Ω0)

)
≤ c ‖u‖W 1,4−ε(Ω0) ‖v‖H1(Ω0) ‖F − E‖

W
1, 8−2ε

2−ε (Ω0)

≤ cε ‖u‖W 1,4−ε(Ω0) ‖v‖H1(Ω0) ‖F − E‖H3/2+ε(Ω0) ,

where we used the fact that limε→0+
8−2ε
2−ε = 4+. The last assertion follows from the continuous

embedding H3/2−ε1(Ω) ↪→ W 1,4−ε2(Ω), where ε2 = ε2(ε1) > 0 can be made arbitrarily small,
depending on the choice of ε1 > 0.

Remark 2.3.10. We would like to mention that, with a slight abuse of notation, the ε within the
second and third line of the statement of Lemma 2.3.9, need not be the same (even within one line),
but both can be made arbitrarily small.

Lemma 2.3.11. For F ∈ Fad, Fk ∈ Fadk and p ∈ [2, 4] it holds that

|ah(F )(u, v)− ah(Fk)(u, v)| ≤ c ‖F − Fk‖W 1,p(Ω0) ‖u‖
W

1,
2p
p−2 (Ω0,h)

‖v‖H1(Ω0,h) ,

|ah(F )(u, v)− ah(Fk)(u, v)| ≤ cε ‖F − Fk‖W 1,4+ε(Ω0) ‖u‖H3/2−ε(Ω0,h) ‖v‖H1(Ω0,h) ,

|ah(F )(u, v)− ah(Fk)(u, v)| ≤ cε ‖F − Fk‖W 1,4+ε(Ω0) ‖u‖W 1,4−ε(Ω0,h) ‖v‖H1(Ω0,h) .

Proof. The proof is similar to the proof of Lemma 2.3.9.

Lemma 2.3.12. For F,E ∈ Fad and v ∈ L2(Ω0) it holds that

|l(F )(v)− l(E)(v)| ≤ c ‖F − E‖H1(Ω0) ‖v‖L2(Ω0) .

Proof. It holds that

|l(F )(v)− l(E)(v)|

≤ c ‖v‖L2(Ω0)

(
‖f ◦ TF ‖L∞(Ω0) ‖γF − γE‖L2(Ω0) + ‖γE‖L∞(Ω0) ‖f ◦ TF − f ◦ TE‖L2(Ω0)

)
≤ c ‖v‖L2(Ω0) ‖F − E‖H1(Ω0) ,

where in the last step we used the Lipschitz continuity of f and the boundedness of Fad in H5/2(Ω0).

Lemma 2.3.13. For F ∈ Fad and Fk ∈ Fadk it holds that

|lh(F )(v)− lh(Fk)(v)| ≤ c ‖F − Fk‖H1(Ω0) ‖v‖L2(Ω0,h) .

Proof. The proof is similar to the proof of Lemma 2.3.12.

Lemma 2.3.14. For F ∈ Fad it holds that

‖f ◦ TF ‖C1,1/2(Ω0) ≤ c, ‖γF ‖H3/2(Ω0) ≤ c,

‖ud ◦ TF ‖C1,1/2(Ω0) ≤ c,
∥∥DT−1

F

∥∥
H3/2(Ω0)

≤ c,

‖TF ‖H5/2(Ω0) ≤ c.
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Proof. The estimates for f and ud follow from the fact that f, ud ∈ C2(Ω̂) and the fact that Fad
is bounded in H5/2(Ω0) ↪→ C1,1/2(Ω0). This last fact also proves the estimate for TF , which, in
combination with Theorem A.1.5 and Lemma 2.1.4, also proves the remaining two estimates.

Lemma 2.3.15. For F,E ∈ Fad it holds that

‖f ◦ TF − f ◦ TE‖Lp(Ω0) ≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],

‖∇f ◦ TF −∇f ◦ TE‖Lp(Ω0) ≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],∥∥∇2f ◦ TF −∇2f ◦ TE
∥∥
Lp(Ω0)

≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],

‖ud ◦ TF − ud ◦ TE‖Lp(Ω0) ≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],

‖∇ud ◦ TF −∇ud ◦ TE‖Lp(Ω0) ≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],∥∥∇2ud ◦ TF −∇2ud ◦ TE
∥∥
Lp(Ω0)

≤ c ‖F − E‖Lp(Ω0) for p ∈ [1,∞],

‖TF − TE‖Hs(Ω0) = ‖F − E‖Hs(Ω0) for s ≥ 0,

‖DTF −DTE‖Hs(Ω0) ≤ ‖F − E‖Hs+1(Ω0) for s ≥ 0,

‖γF − γE‖Hs(Ω0) ≤ cs ‖F − E‖Hs+1(Ω0) for s ∈ [0, 3/2],∥∥DT−1
F −DT−1

E

∥∥
Hs(Ω0)

≤ cs ‖F − E‖Hs+1(Ω0) for s ∈ [0, 3/2].

Proof. As f is Lipschitz continuous, we get

‖f ◦ TF − f ◦ TE‖pLp(Ω0) =

∫
Ω0

|f ◦ TF − f ◦ TE |p dx

≤ c
∫

Ω0

|TF − TE |p dx

= c ‖F − E‖pLp(Ω0) ,

for p <∞, and it is clear that this statement also holds for p =∞. The proof for the estimates of
the higher derivatives as well as the proof for the estimates related to ud follow in an analog way.
What is left follows from Lemma 2.3.14 and Theorem A.1.5.

Lemma 2.3.16. For F ∈ Fad and δF, τF ∈ F it holds that

‖γF ‖H3/2(Ω0) ≤ c,∥∥γ′F,δF∥∥Hs(Ω0)
≤ cs ‖δF‖Hs+1(Ω0) for s ∈ [0, 3/2] ,∥∥γ′′F,δF,τF∥∥Hs(Ω0)
≤ cs ‖δF‖Hs+1(Ω0) ‖τF‖Hs+1(Ω0) for s > 1.

Proof. The �rst part follows from Lemma 2.3.14, the second and the third part follow from the
representations obtained in Lemma 2.1.6 and Theorem A.1.5.

Lemma 2.3.17. For F,E ∈ Fad and δF, τF ∈ F it holds that

‖γF − γE‖Hs(Ω0) ≤ cs ‖F − E‖Hs+1(Ω0) for s ∈ [0, 3/2] ,∥∥γ′F,δF − γ′E,δF∥∥Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0) ‖δF‖Hs+1(Ω0) for s > 1,

γ′′F,δF,τF = γ′′E,δF,τF .
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Proof. The �rst two parts of this lemma follow from the boundedness of Fad in H5/2(Ω0) and
Theorem A.1.5, the last part follows from the fact that F 7→ γF is a quadratic function.

Lemma 2.3.18. For F ∈ Fad and δF, τF ∈ F it holds that

‖AF ‖H3/2(Ω0) ≤ c,∥∥A′F,δF∥∥Hs(Ω0)
≤ cs ‖δF‖Hs+1(Ω0) for s ∈ [0, 3/2] ,∥∥A′′F,δF,τF∥∥Hs(Ω0)
≤ cs ‖δF‖Hs+1(Ω0) ‖τF‖Hs+1(Ω0) for s ∈ (1, 3/2] .

Proof. The �rst part follows from Lemma 2.3.14 and Theorem A.1.5, the second and the third part
of this lemma follow from the �rst part of this lemma and Lemma 2.1.6.

Lemma 2.3.19. For F,E ∈ Fad and δF, τF ∈ F it holds that

‖AF −AE‖Hs(Ω0) ≤ cs ‖F − E‖Hs+1(Ω0) for s ∈ [0, 3/2] ,∥∥A′F,δF −A′E,δF∥∥Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0) ‖δF‖Hs+1(Ω0) for s ∈ (1, 3/2] ,∥∥A′′F,δF,τF −A′′E,δF,τF∥∥Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0) ‖δF‖Hs+1(Ω0) ‖τF‖Hs+1(Ω0) for s ∈ (1, 3/2] .

Proof. The �rst part of this lemma follows from Lemma 2.3.14, Lemma 2.3.15, Lemma 2.3.18 and
Theorem A.1.5. The second and the third part follow from the �rst part and the references cited
therein.

2.3.2. A-priori error estimates for a general control

Within this subsection we are going to estimate the error between the continuous state and its
(partially) discretized counterparts. Due to the low regularity of the matrix AF for general F ∈ Fad,
these estimates do not yield convergence of optimal order with respect to h and k. However, these
estimates are crucial in order to prove optimality conditions of second order and the existence of
the converging subsequences as stated in Theorem 2.3.1, cf. Subsection 2.3.4 and Subsection 2.3.5.

2.3.2.1. Estimates within the purely continuous case

Lemma 2.3.20. For q ∈ Qad, δq ∈ Q and p ∈ (1,∞) it holds that

‖S(q)‖W 1,p(Ω0) ≤ cp, ‖S(q)‖H3/2−ε(Ω0) ≤ cε,∥∥S′(q)(δq)∥∥
W 1,p(Ω0)

≤ cε,p ‖δq‖H3/2+ε(I) ,
∥∥S′(q)(δq)∥∥

H1
0 (Ω0)

≤ cε ‖δq‖H1+ε(I) ,∥∥S′′(q)(δq, δq)∥∥
W 1,p(Ω0)

≤ cε,p ‖δq‖2H3/2+ε(I) .

Proof. The estimate for S(q) in the W 1,p-norm follows from Theorem A.1.31. Let F = F (q), in
order to estimate S′(q)(δq) in W 1,p note that∣∣(∇S(q), A′F,δF · ∇v

)∣∣ ≤ ‖∇S(q)‖W 1,p(Ω0)

∥∥A′F,δF∥∥L∞(Ω0)
‖∇v‖Lq(Ω0)

≤ cε ‖S(q)‖W 1,p(Ω0)

∥∥A′F,δF∥∥H1+ε(Ω0)
‖v‖W 1,q(Ω0)

≤ cε,p ‖δF‖H2+ε(Ω0) ‖v‖W 1,q(Ω0)

≤ cε,p ‖δq‖H3/2+ε(I) ‖v‖W 1,q(Ω0) ,
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where we used Lemma 2.3.18 and Theorem A.1.28. In the same way it holds that∣∣(∇S′(q)(δq), A′F,δF · ∇v)∣∣ ≤ cε,p ‖δq‖2H3/2+ε(I) ‖v‖W 1,q(Ω0) ,

and ∣∣(∇S(q), A′′F,δF,δF · ∇v
)∣∣ ≤ cε,p ‖δq‖2H3/2+ε(I) ‖v‖W 1,q(Ω0) ,

which proves the estimate for S′′(q)(δq, δq).
As AF ∈ C0,1/2(Ω0) we can apply Theorem A.1.30, which yields

‖S(q)‖H3/2−ε(Ω0) ≤ cε ‖f ◦ TFγF ‖L2(Ω0) ≤ cε.

Using the same theorem, De�nition 2.3.2 and Theorem A.1.28 it holds that

c
∥∥S′(q)(δq)∥∥2

H1
0 (Ω0)

≤ a(F )(S′(q)(δq), S′(q)(δq))

≤ c ‖f ◦ TF ‖L∞(Ω0)

∥∥S′(q)(δq)∥∥
H1

0 (Ω0)

∣∣∣γF DT−1
Fq
· δF

∣∣∣
H1(Ω0)

+ c ‖∇f ◦ TF ‖L∞(Ω0) ‖δF‖L2(Ω0)

∥∥S′(q)(δq)∥∥
H1

0 (Ω0)
‖γF ‖L∞(Ω0)

+ c ‖S(q)‖W 1,4(Ω0)

∥∥A′F,δF∥∥L4(Ω0)

∥∥S′(q)(δq)∥∥
H1

0 (Ω0)

+ c ‖S(q)‖L∞(Ω0)

∥∥S′(q)(δq)∥∥
H1

0 (Ω0)

∣∣∣γF DT−1
Fq
· δF

∣∣∣
H1(Ω0)

≤ c
∥∥S′(q)(δq)∥∥

H1
0 (Ω0)

‖δF‖H3/2(Ω0)

≤ cε
∥∥S′(q)(δq)∥∥

H1
0 (Ω0)

‖δq‖H1+ε(I) .

Lemma 2.3.21. For q, p ∈ Qad it holds that

‖S(q)− S(p)‖H1
0 (Ω0) ≤ cε ‖q − p‖H1+ε(I) ,

‖S(q)− S(p)‖L2(Ω0) ≤ c ‖q − p‖H1/2(I) .

Proof. Let e = (S(q)− S(p)), F = F (q) and E = F (p), then it holds that

c ‖e‖2H1
0 (Ω0) ≤ a(F )(e, e)

= a(F )(e, S(q))− a(E)(e, S(p)) + a(E)(e, S(p))− a(F )(e, S(p))

≤ |l(F )(e)− l(E)(e)|+ |a(E)(e, S(p))− a(F )(e, S(p))|
≤ c ‖F − E‖H1(Ω0) ‖e‖L2(Ω0) + cε ‖F − E‖H3/2+ε(Ω0) ‖S(p)‖H3/2−ε(Ω0) ‖e‖H1

0 (Ω0)

≤ cε ‖F − E‖H3/2+ε(Ω0) ‖e‖H1
0 (Ω0)

≤ cε ‖q − p‖H1+ε(Ω0) ‖e‖H1
0 (Ω0) ,

where we used Lemma 2.3.9, Lemma 2.3.12, Lemma 2.3.20 and Lemma 2.1.2. Now let z ∈ H1
0 (Ω0)

solve

a(F )(v, z) = (e, v) ∀v ∈ H1
0 (Ω0).
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It holds that ‖z‖H3/2−ε(Ω0) ≤ cε ‖e‖L2(Ω0), and we get

‖e‖2L2(Ω0) = a(F )(e, z)

≤ |l(F )(z)− l(E)(z)|+ |a(E)(z, S(p))− a(F )(z, S(p))| .
(2.75)

We are now going to estimate each of the two terms on the right hand side of (2.75) separately.
First we get

|l(F )(z)− l(E)(z)| ≤ c ‖F − E‖H1(Ω0) ‖z‖L2(Ω0)

≤ c ‖q − p‖H1/2(I) ‖e‖L2(Ω0) ,

and for the second term it holds that

|a(E)(z, S(p))− a(F )(z, S(p))| ≤ cε ‖∇z‖L3(Ω0) ‖∇S(p)‖L6(Ω0)

(
‖AF −AE‖L2(Ω0) + ‖γF − γE‖L2(Ω0)

)
.

With Lemma 2.3.17 and Lemma 2.3.19 it follows that

‖AF −AE‖L2(Ω0) + ‖γF − γE‖L2(Ω0) ≤ c ‖F − E‖H1(Ω0)

≤ c ‖q − p‖H1/2(I) ,

and we �nish the proof with Lemma 2.3.20 and the continuous embedding H3/2−ε(Ω0) ↪→W 1,3(Ω0)
for ε ≤ 1/6.

The following technical lemma will be needed in the proof of Lemma 2.3.23.

Lemma 2.3.22. Let q, p ∈ Qad with corresponding transformations F and E, respectively. Let
δq, τq ∈ Q, δF = F ′(q)(δq), τF = F ′(q)(τq) and v ∈ H1

0 (Ω0). Then it holds that∣∣∣lδ (F, δF, S(q)) (v)− lδ (E, δF, S(p)) (v)
∣∣∣ ≤ cε ‖q − p‖H3/2+ε(I) ‖δq‖H3/2+ε(Ω0) ‖v‖H1

0 (Ω0) ,

and∣∣∣lδ,τ (F, δF, τF, S(q), S′(q)(δq), S′(q)(τq)
)

(v)− lδ,τ
(
E, δF, τF, S(p), S′(p)(δq), S′(p)(τq)

)
(v)
∣∣∣

≤ cε ‖q − p‖H3/2+ε(I) ‖δq‖H3/2+ε(I) ‖τq‖H3/2+ε(I) ‖v‖H1
0 (Ω0) .

Proof. With De�nition 2.3.5 it follows that∣∣∣lδ(F, δF, S(q))(v)− lδ(E, δF, S(p))(v)
∣∣∣

≤
∣∣(f ◦ TF , v div

(
γF DT−1

F · δF
))
−
(
f ◦ TE , v div

(
γE DT−1

E · δF
))∣∣

+
∣∣∣((∇f ◦ TF )T · δF, vγF

)
−
(

(∇f ◦ TE)T · δF, vγE
)∣∣∣

+
∣∣(∇S(q), A′F,δF · ∇v

)
−
(
∇S(p), A′E,δF · ∇v

)∣∣
+
∣∣(S(q), v div

(
γF DT−1

F · δF
))
−
(
S(p), v div

(
γE DT−1

E · δF
))∣∣ ,

and the �rst estimate follows using the estimates within Subsection 2.3.1, Lemma 2.3.20 and
Lemma 2.3.21. The second part can be proven using the same references as well as the �rst part of
Lemma 2.3.23.
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Lemma 2.3.23. For q, p ∈ Qad and δq ∈ Q it holds that∥∥S′(q)(δq)− S′(p)(δq)∥∥
H1

0 (Ω0)
≤ cε ‖q − p‖H3/2+ε(I) ‖δq‖H3/2+ε(I) ,∥∥S′′(q)(δq, δq)− S′′(p)(δq, δq)∥∥

H1
0 (Ω0)

≤ cε ‖q − p‖H3/2+ε(I) ‖δq‖
2
H3/2+ε(I) .

Proof. Let F and E be the respective transformations for q and p and let e = (S′(q)(δq)− S′(p)(δq)).
It then holds that

c ‖e‖2H1
0 (Ω0) ≤ a(F )(e, e)

≤
∣∣a(F )(S′(q)(δq), e)− a(E)(S′(p)(δq), e)

∣∣+
∣∣a(E)(S′(p)(δq), e)− a(F )(S′(p)(δq), e)

∣∣ .
With Lemma 2.3.9 and Lemma 2.3.20 we get∣∣a(E)(S′(p)(δq), e)− a(F )(S′(p)(δq), e)

∣∣
≤ cε ‖F − E‖H3/2+ε(I)

∥∥S′(p)(δq)∥∥
W 1,4−ε(Ω0)

‖e‖H1
0 (Ω0)

≤ cε ‖q − p‖H1+ε(I) ‖δq‖H3/2+ε(I) ‖e‖H1
0 (Ω0) .

(2.76)

Due to De�nition 2.3.2 and De�nition 2.3.5 it also holds that∣∣a(F )(S′(q)(δq), e)− a(E)(S′(p)(δq), e)
∣∣ =

∣∣∣lδ(F, δF, S(q))(e)− lδ(E, δF, S(p))(e)
∣∣∣ ,

and the �rst part of this lemma follows with the �rst part of Lemma 2.3.22.
For the second part we de�ne d = (S′′(q)(δq, δq)− S′′(p)(δq, δq)) and get

c ‖d‖2H1
0 (Ω0) ≤ a(F )(d, d)

≤
∣∣a(F )(S′′(q)(δq, δq), d)− a(E)(S′′(p)(δq, δq), d)

∣∣
+
∣∣a(E)(S′′(p)(δq, δq), d)− a(F )(S′′(p)(δq, δq), d)

∣∣ . (2.77)

The second part on the right hand side of (2.77) can be estimates similar to (2.76), and for the �rst
part we can use the second part of Lemma 2.3.22.

Lemma 2.3.24. For q, p ∈ Qad and δq ∈ Q it holds that

|j(q)− j(p)| ≤ c ‖q − p‖H2(I) ,∣∣j′(q)(δq)− j′(p)(δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖H2(I) ,∣∣j′′(q)(δq, δq)− j′′(p)(δq, δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖
2
H2(I) .

Proof. This lemma follows from De�nition 2.3.6, Lemma 2.3.20, Lemma 2.3.21 and Lemma 2.3.23.

2.3.2.2. Estimates between the continuous case and the state-discretized case

Within the following subsubsection we are going to estimate the error induced by the discretization
of the state. If not stated otherwise, we will always assume that h > 0 is chosen su�ciently small.

Lemma 2.3.25. For q ∈ Qad and δq ∈ Q it holds that

‖Sh(q)‖H3/2−ε(Ω0,h) ≤ cε,∥∥S′h(q)(δq)
∥∥
H3/2−ε(Ω0,h)

≤ cε ‖δq‖H3/2+ε(I) ,∥∥S′′h(q)(δq, δq)
∥∥
H3/2−ε(Ω0,h)

≤ cε ‖δq‖2H3/2+ε(I) .
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Proof. The �rst part of this lemma follows from Corollary A.1.25 and Lemma 2.3.20. Let F = F (q)
and δF = F ′(q)(δq), in order to prove the second part let S̃(q, δq) ∈ H1

0 (Ω0) be the solution to

a(F )(S̃(q, δq), v) = lδ(F, δF, Sh(q))(v) ∀v ∈ H1
0 (Ω0). (2.78)

With Corollary A.1.25 it follows that∥∥S′h(q)(δq)
∥∥
H3/2−ε(Ω0,h)

≤ cε
∥∥∥S̃(q, δq)

∥∥∥
H3/2−ε(Ω0)

, (2.79)

and it remains to estimate the right hand side within (2.79). As H1/2−ε
0 (Ω0) = H1/2−ε(Ω0) due

to [48], Theorem 1.4.2.4, it holds that∣∣(∇Sh(q), A′F,δF · ∇v
)∣∣ ≤ ∥∥A′F,δF · ∇Sh(q)

∥∥
H1/2−ε(Ω0)

‖∇v‖H−1/2+ε(Ω0)

≤ cε ‖∇Sh(q)‖H1/2−ε(Ω0)

∥∥A′F,δF∥∥H1+ε(Ω0)
‖v‖H1/2+ε(Ω0)

≤ cε ‖δq‖H3/2+ε(I) ‖v‖H1/2+ε(Ω0) .

(2.80)

Hence the right hand side in (2.78) is an element of H−1/2−ε(Ω0), and the desired estimate for∥∥∥S̃(q, δq)
∥∥∥
H3/2−ε(Ω0)

follows with De�nition 2.3.5 and Theorem A.1.30. In order to estimate the

second derivative one de�nes S̃(q, δq, δq) ∈ H1
0 (Ω0) as the solution to

a(F )(S̃(q, δq, δq), v) = lδ,τ (F, δF, δF, Sh(q), S′h(q)(δq), S′h(q)(δq))(v) ∀v ∈ H1
0 (Ω0),

and then proceeds as in the proof of the second part of this lemma.

Lemma 2.3.26. For q ∈ Qad it holds that

‖S(q)− Sh(q)‖H1(Ω0,h) ≤ cεh
1/2−ε,

‖S(q)− Sh(q)‖L2(Ω0,h) ≤ cεh
1−ε.

Proof. This lemma is a direct consequence of Theorem A.2.23.

Lemma 2.3.27. For q ∈ Qad and δq ∈ Q it holds that∥∥S′(q)(δq)− S′h(q)(δq)
∥∥
H1(Ω0,h)

≤ cεh1/2−ε ‖δq‖H3/2+ε(I) ,∥∥S′′(q)(δq, δq)− S′′h(q)(δq, δq)
∥∥
H1(Ω0,h)

≤ cεh1/2−ε ‖δq‖2H3/2+ε(I) .

Proof. As in the proof of Lemma 2.3.25 we have to introduce an intermediate solution. Let
F = F (q), δF = F ′(q)(δq) and let S̃h(q, δq) ∈ Vh,0 be the solution to

ah(F )(S̃h(q, δq), vh) = lδ(F, δF, S(q))(vh) ∀vh ∈ Vh,0,

i.e. S̃h(q, δq) is the Ritz-projection of S′(q)(δq). Now we split the error∥∥S′(q)(δq)− S′h(q)(δq)
∥∥
H1

0 (Ω0,h)
≤
∥∥∥S′(q)(δq)− S̃h(q, δq)

∥∥∥
H1

0 (Ω0,h)
+
∥∥∥S̃h(q, δq)− S′h(q)(δq)

∥∥∥
H1

0 (Ω0,h)
.

Using an estimate similar to (2.80) shows that we can apply Theorem A.2.23 and obtain∥∥∥S′(q)(δq)− S̃h(q, δq)
∥∥∥
H1

0 (Ω0,h)
≤ cεh1/2−ε ‖δq‖H3/2+ε(I) .

37



2. A model problem

Now let eh =
(
S̃h(q, δq)− S′h(q, δq)

)
, then eh ∈ Vh,0 solves

ah(F )(eh, vh) =
(
∇ (Sh(q)− S(q)) , A′F,δF · ∇vh

)
h

+
(
Sh(q)− S(q), vh div

(
γF DT−1

F · δF
))
h

∀vh ∈ Vh,0,

and Lemma 2.3.26 yields

‖eh‖H1
0 (Ω0,h) ≤ c ‖S(q)− Sh(q)‖H1(Ω0,h)

(∥∥A′F,δF∥∥L∞(Ω0)
+ ‖δF‖H1(Ω0)

)
≤ cεh1/2−ε,

which proves the �rst part of this lemma. The estimate for the second part can be proven using the
same methods.

Lemma 2.3.28. For q ∈ Qad and δq ∈ Q it holds that

|j(q)− jh(q)| ≤ cεh1−ε,∣∣j′(q)(δq)− j′h(q)(δq)
∣∣ ≤ cεh1/2−ε ‖δq‖H2(I) ,∣∣j′′(q)(δq, δq)− j′′h(q)(δq, δq)
∣∣ ≤ cεh1/2−ε ‖δq‖2H2(I) .

Proof. First note that |Ω0\Ω0,h| ≤ ch2, and using Lemma 2.3.26 we get

|j(q)− jh(q)| = 1

2

∣∣∣∣∣
∫

Ω0

(S(q)− ud ◦ TF )2 γF dx−
∫

Ω0,h

(Sh(q)− ud ◦ TF )2 γF dx

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
∫

Ω0\Ω0,h

(S(q)− ud ◦ TF )2 γF dx

∣∣∣∣∣
+

1

2

∣∣∣∣∣
∫

Ω0,h

(
(S(q)− ud ◦ TF )2 − (Sh(q)− ud ◦ TF )2

)
γF dx

∣∣∣∣∣
≤ c

(
h2 + ‖S(q)− Sh(q)‖L1(Ω0,h)

)
≤ cεh1−ε.

The second and the third part of this lemma can be proven in the same way using Lemma 2.3.20
and Lemma 2.3.27.

2.3.2.3. Estimates between the state-discretized case and the fully discretized case

Within this subsubsection we are going to estimate the error induced by the additional discretization
of the transformation F . If not stated otherwise we will always assume that k > 0 is chosen
su�ciently small.

Lemma 2.3.29. For q ∈ Qad, F = F (q), Fk = Fk(q) and p ∈ [4,∞] it holds that

‖F − Fk‖W 1,p(Ω0) ≤ ck
1
2

+ 2
p ‖q‖H2(I) .
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2.3. A-priori error estimates

K

Γ0

Γ0,k

K̃

Figure 2.2.: The boundary triangle K and its extension K̃.

Proof. The case p = 4 is a direct consequence of Theorem A.2.1 and the continuous embedding
H2(I) ↪→W 7/4,4(I).
Now let ik : C(Ω0)→ Vk be the pointwise interpolation operator. With the triangulation πk of

Ω0,k we may associate a triangulation π̃k of Ω0, where all the boundary triangles K are replaced
by their curved extension K̃, cf. Figure 2.2. Due to the smoothness of Ω0 and |Ω0\Ω0,k| ≤ ck2 it
follows that the family {π̃k}k>0 also ful�lls the usual regularity assumptions. Hence we may use an
inverse inequality, it follows that

‖F − Fk‖W 1,∞(Ω0) ≤ ‖F − ikF‖W 1,∞(Ω0) + ‖ikF − Fk‖W 1,∞(Ω0)

≤ ck1/2 ‖F‖W 3/2,∞(Ω0) + ck−1/2 ‖ikF − Fk‖W 1,4(Ω0)

≤ ck1/2 ‖F‖W 3/2,∞(Ω0) + ck−1/2
(
‖F − ikF‖W 1,4(Ω0) + ‖F − Fk‖W 1,4(Ω0)

)
≤ ck1/2 ‖F‖W 3/2,∞(Ω0) + ck−1/2

(
k ‖F‖W 2,4(Ω0) + k ‖q‖H2(I)

)
≤ ck1/2 ‖q‖H2(I) ,

where we used the continuous embeddings H5/2(Ω0) ↪→ W 3/2,∞(Ω0), H5/2(Ω0) ↪→ W 2,4(Ω0) and
the case p = 4. What is left follows with interpolation.

Lemma 2.3.30. For q ∈ Qad and δq ∈ Q it holds that

‖Sh,k(q)‖H1
0 (Ω0,h) ≤ c,∥∥S′h,k(q)(δq)∥∥H1
0 (Ω0,h)

≤ c ‖δq‖H2(I) ,∥∥S′′h,k(q)(δq, δq)∥∥H1
0 (Ω0,h)

≤ c ‖δq‖2H2(I) .

Proof. Let F = F (q) and Fk = Fk(q). From Lemma 2.3.29 it follows that AFk → AF in L∞(Ω0)
for k → 0, hence the matrices

{
AFk(q)

∣∣ q ∈ Qad
}
are uniformly elliptic for k su�ciently small. This

lemma now follows from De�nition 2.3.4.

Lemma 2.3.31. For q ∈ Qad it holds that

‖Sh(q)− Sh,k(q)‖H1(Ω0,h) ≤ ck
1/2.
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Proof. Let F = F (q), Fk = Fk(q) and e = (Sh(q)− Sh,k(q)) ∈ Vh,0. We get

‖e‖2H1(Ω0,h) ≤ ah(F )(e, e)

≤ |lh(F )(e)− lh(Fk)(e)|+ |ah(Fk)(Sh,k(q), e)− ah(F )(Sh,k(q), e)|

≤ c
(
‖F − Fk‖H1(Ω0) ‖e‖L2(Ω0) + ‖Sh,k(q)‖H1(Ω0,h) ‖F − Fk‖W 1,∞(Ω0) ‖e‖H1(Ω0,h)

)
,

and using Lemma 2.3.29 and Lemma 2.3.30 we arrive at

‖e‖H1(Ω0,h) ≤ ck
1/2.

Lemma 2.3.32. For q ∈ Qad and δq ∈ Q it holds that∥∥S′h(q)(δq)− S′h,k(q)(δq)
∥∥
H1(Ω0,h)

≤ ck1/2 ‖δq‖H2(I) ,∥∥S′′h(q)(δq, δq)− S′′h,k(q)(δq, δq)
∥∥
H1(Ω0,h)

≤ ck1/2 ‖δq‖2H2(I) .

Proof. This lemma can be proven analogously to Lemma 2.3.31.

Lemma 2.3.33. For q ∈ Qad and δq ∈ Q it holds that

‖Sh,k(q)‖H3/2−ε(Ω0,h) ≤ cε,∥∥S′h,k(q)(δq)∥∥H3/2−ε(Ω0,h)
≤ cε ‖δq‖H3/2+ε(I) ,∥∥S′′h,k(q)(δq, δq)∥∥H3/2−ε(Ω0,h)
≤ cε ‖δq‖2H3/2+ε(I) .

Proof. This lemma follows with Lemma 2.3.25, Lemma 2.3.31 and Lemma 2.3.32 as well as an
inverse estimate, Theorem A.1.23.

Lemma 2.3.34. For q ∈ Qad and δq ∈ Q it holds that

|jh(q)− jh,k(q)| ≤ ck1/2,∣∣j′h(q)(δq)− j′h,k(q)(δq)
∣∣ ≤ ck1/2 ‖δq‖H2(I) ,∣∣j′′h(q)(δq, δq)− j′′h,k(q)(δq, δq)
∣∣ ≤ ck1/2 ‖δq‖2H2(I) .

Proof. This lemma follows with De�nition 2.3.7, De�nition 2.3.8 and the previous lemmata of this
subsubsection.

Lemma 2.3.35. For q, p ∈ Qad and δq ∈ Q it holds that

‖Sh,k(q)− Sh,k(p)‖H1
0 (Ω0,h) ≤ c ‖p− q‖H2(I) ,∥∥S′h,k(q)(δq)− S′h,k(q)(δq)∥∥H1
0 (Ω0,h)

≤ c ‖p− q‖H2(I) ‖δq‖H2(I) .

Proof. Let Fk = Fk(q), Ek = Fk(p) and e = (Sh,k(q)− Sh,k(p)), then it holds that

c ‖e‖2H1
0 (Ω0,h) ≤ ah(Fk)(e, e)

≤ |lh(Fk)(e)− lh(Ek)(e)|+ |ah(Ek)(Sh,k(p), e)− ah(Fk)(Sh,k(p), e)|

≤ c
(
‖Fk − Ek‖H1(Ω0) ‖e‖L2(Ω0) + ‖Sh,k(p)‖H1(Ω0,h) ‖Fk − Ek‖W 1,∞(Ω0) ‖e‖H1(Ω0,h)

)
.
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As q 7→ Fk(q) is linear, it follows with Lemma 2.3.29 that

‖Fk − Ek‖W 1,∞(Ω0) ≤ c ‖F (q − p)‖W 1,∞(Ω0)

≤ c ‖F (q − p)‖H5/2(Ω0)

≤ c ‖q − p‖H2(I) ,

and the �rst part of this lemma follows. The second part follows in a likewise manner.

The following lemma can be proven by a direct calculation using Lemma 2.3.35.

Lemma 2.3.36. For q, p ∈ Qad and δq ∈ Q it holds that∣∣j′h,k(q)(δq)− j′h,k(p)(δq)∣∣ ≤ c ‖p− q‖H2(I) ‖δq‖H2(I) .

2.3.3. A-priori error estimates for the optimal control

As already mentioned, due to the low regularity of the transformation matrix AF for general q ∈ Qad

it is not possible to generally show convergence rates of optimal order. However, as the optimal
control has some improved regularity, it is possible to show optimal order of convergence in that
case. In what follows let q be a �xed optimal solution to (2.27) with corresponding optimal state
S(q), optimal transformation F = F (q) and optimal discretized transformation F k = Fk(q). We
shortly summarize the known regularity.

Lemma 2.3.37. It holds that q ∈ H4(I), S(q) ∈W 2,∞(Ω0) and F ∈ H9/2(Ω0).

Proof. The regularity for q follows from Theorem 2.1.40, the regularity for F follows with Theo-
rem A.1.28 and the regularity for S(q) follows with [48], Theorem 6.3.2.1 and Remark 6.3.2.4.

Lemma 2.3.38. Let p ∈ (1,∞) and s ∈ [0, 1], then it holds that∥∥F − F k∥∥W s,p(Ω0)
≤ cpk2−s.

Proof. With Lemma 2.3.37 it holds that q ∈ H4(I) ↪→ W 2,∞(I), and this lemma follows with
Theorem A.2.1.

Lemma 2.3.39. For δq ∈ Q it holds that∥∥S′(q)(δq)∥∥
W 2,4(Ω0)

≤ c ‖δq‖H2(I) .

Proof. Let δF = F ′(q)(δq), because of S(q) ∈W 2,∞(Ω0) it holds that

−
(
∇S(q), A′

F ,δF
· ∇v

)
=
(

div
(
A′
F ,δF

· ∇S(q)
)
, v
)

∀v ∈ C∞0 (Ω0).

As a result, the right hand side in De�nition 2.3.2 for S′(q)(δq) is a functional in L4(Ω0), and with
Theorem A.1.38 it follows that∥∥S′(q)(δq)∥∥

W 2,4(Ω0)
≤ c

(∥∥∥f ◦ TF div
(
γF DT−1

F
· δF

)∥∥∥
L4(Ω0)

+
∥∥∥(∇f ◦ TF )T · δFγF∥∥∥

L4(Ω0)

)
+ c

(∥∥∥div
(
A′
F ,δF

· ∇S(q)
)∥∥∥

L4(Ω0)
+
∥∥∥S(q) div

(
γF DT−1

F
· δF

)∥∥∥
L4(Ω0)

)
≤ c ‖δF‖W 2,4(Ω0) ≤ c ‖δF‖H5/2(Ω0)

≤ c ‖δq‖H2(I) .
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2.3.3.1. Optimal estimates between the continuous case and the state-discretized case

Lemma 2.3.40. For δq ∈ Q and s ∈ [0, 1] it holds that

‖S(q)− Sh(q)‖Hs(Ω0) ≤ ch
2−s, (2.81)∥∥S′(q)(δq)− S′h(q)(δq)

∥∥
Hs(Ω0)

≤ ch2−s ‖δq‖H2(I) . (2.82)

Proof. Estimate (2.81) is a direct consequence of Theorem A.2.1. For the second part, (2.82), we
follow an idea presented in [73]. Let δF = F ′(q)(δq) and let S̃h(q, δq) ∈ Vh,0 be the solution to

ah(F )(S̃h(q, δq), vh) = lδh(F , δF, S(q))(vh) ∀vh ∈ Vh,0.

As S̃h(q, δq) is the Ritz-projection of S′(q)(δq), Lemma 2.3.39 implies∥∥∥S′(q)(δq)− S̃h(q, δq)
∥∥∥
Hs(Ω0)

≤ ch2−s ‖δq‖H2(I) ,

for s ∈ [0, 1]. Now let e =
(
S̃h(q, δq)− S′h(q)(δq)

)
∈ Vh,0, then e solves

ah(F )(e, vh) =
(
∇ (Sh(q)− S(q)) , A′

F ,δF
· ∇vh

)
h

+
(
Sh(q)− S(q), vh div

(
γF DT−1

F
· δF

))
h

∀vh ∈ Vh,0,

which yields

‖e‖H1(Ω0) ≤ ‖S(q)− Sh(q)‖H1(Ω0)

(∥∥∥A′F ,δF∥∥∥L∞(Ω0)
+
∥∥∥div

(
γF DT−1

F
· δF

)∥∥∥
L2(Ω0)

)
≤ ch ‖δq‖H2(I) .

It remains to estimate the L2-error. Let z ∈ H1
0 (Ω0) and zh ∈ Vh,0 be the solutions to

a(F )(v, z) = (e, v)h ∀v ∈ H1
0 (Ω0),

ah(F )(vh, zh) = (e, vh)h ∀vh ∈ Vh,0.

We have z ∈ H2(Ω0) and ‖z‖H2(Ω0) ≤ c ‖e‖L2(Ω0), it holds that

‖e‖2L2(Ω0) = ah(F )(e, zh)

=
(
∇ (Sh(q)− S(q)) , A′

F ,δF
· ∇zh

)
h

+
(
Sh(q)− S(q), zh div

(
γF DT−1

F
· δF

))
h

=
(
∇ (Sh(q)− S(q)) , A′

F ,δF
· ∇z

)
h

+
(
Sh(q)− S(q), z div

(
γF DT−1

F
· δF

))
h

+
(
∇ (Sh(q)− S(q)) , A′

F ,δF
· ∇ (zh − z)

)
h

+
(
Sh(q)− S(q), (zh − z) div

(
γF DT−1

F
· δF

))
h
.

(2.83)

The estimate (2.81) and general �nite element error estimates yield∣∣∣(Sh(q)− S(q), z div
(
γF DT−1

F
· δF

))
h

∣∣∣ ≤ ch2 ‖δq‖H2(I) ‖e‖L2(Ω0) ,∣∣∣(∇ (Sh(q)− S(q)) , A′
F ,δF

· ∇ (zh − z)
)
h

∣∣∣ ≤ ch2 ‖δq‖H2(I) ‖e‖L2(Ω0) ,∣∣∣(Sh(q)− S(q), (zh − z) div
(
γF DT−1

F
· δF

))
h

∣∣∣ ≤ ch4 ‖δq‖H2(I) ‖e‖L2(Ω0) ,
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and it remains to estimate the last part on the right hand side of (2.83). Using Theorem A.1.5 and
Theorem A.2.1 it holds that∣∣∣(∇ (Sh(q)− S(q)) , A′

F ,δF
· ∇z

)
h

∣∣∣ =
∣∣∣(Sh(q)− S(q),div

(
A′
F ,δF

· ∇z
))

h

∣∣∣
≤ ‖Sh(q)− S(q)‖L4(Ω0)

∥∥∥A′F ,δF · ∇z∥∥∥W 1,4/3(Ω0)

≤ ‖Sh(q)− S(q)‖L4(Ω0)

∥∥∥A′F ,δF∥∥∥W 1,4(Ω0)
‖∇z‖H1

0 (Ω0)

≤ ch2 ‖δq‖H2(I) ‖e‖L2(Ω0) ,

and the case s ∈ (0, 1) follows with interpolation.

Lemma 2.3.41. For δq ∈ Q it holds that∣∣j′(q)(δq)− j′h(q)(δq)
∣∣ ≤ ch2 ‖δq‖H2(I) .

Proof. The proof for this lemma is similar to the proof of Lemma 2.3.28, the improved order of
convergence is due to Lemma 2.3.40.

2.3.3.2. Optimal estimates between the state-discretized case and the fully discretized case

In what follows we are going to prove a better convergence rate with respect to k, which will be
done using Taylor's theorem.

Lemma 2.3.42. The mappings

γ : W 1,∞(Ω0)→ L∞(Ω0),

γ(F ) = γF ,
and

A : W 1,∞(Ω0)→ L∞(Ω0),

A(F ) = AF ,

are at least three times continuously Fréchet-di�erentiable.

Proof. This lemma follows from Theorem A.1.10, Theorem A.1.11 and Theorem A.1.13.

Lemma 2.3.43. Let p ∈ (1,∞), then it holds that∥∥F − F k∥∥Lp(Γ0,k)
≤ cpk2.

Proof. Let q̃ n be de�ned as in (A.24) and let the operator Qk be de�ned as in (A.34). It holds that∥∥F − F k∥∥Lp(Γ0,k)
≤
∥∥∥F − q̃ n∥∥∥

Lp(Γ0,k)
+
∥∥∥q̃ n− F k∥∥∥

Lp(Γ0,k)
.

As F
∣∣
Γ0

= q n we may use Lemma A.2.3 to obtain∥∥∥F − q̃ n∥∥∥
Lp(Γ0,k)

≤ cpk2.

In addition it holds that F k
∣∣
Γ0,k

= Qk(q̃ n), hence∥∥∥q̃ n− F k∥∥∥
Lp(Γ0,k)

=
∥∥∥q̃ n−Qk(q̃ n)

∥∥∥
Lp(Γ0,k)

,

and the result follows with standard interpolation results.
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Lemma 2.3.44. Let p ∈ (1,∞), then it holds that∥∥F − F k∥∥Lp(Γ0)
≤ cpk2.

Proof. Let x ∈ Γ0 and let xk ∈ Γ0,k be the orthogonal projection of x onto Γ0,k, cf. (A.23). Now it
holds that (

F − F k
)

(x) =
(
F − F k

)
(xk) +

∫ 1

0

(
F − F k

)′
(xk + t (x− xk)) (x− xk) dt.

As |x− xk| ≤ ck2 and
∥∥F − F k∥∥W 1,∞(Ω0)

≤ ck1/2 due to (A.28) and Lemma 2.3.29, this lemma
follows with Lemma 2.3.43 and (A.25).

Lemma 2.3.45. Let p ∈ (1,∞), then it holds that∥∥F − F k∥∥Lp(Γ0,h)
≤ cp

(
h2 + k2

)
.

Proof. The proof for this lemma is similar to the proof of Lemma 2.3.44. Let xh ∈ Γ0,h and let
x ∈ Γ0 such that xh is the orthogonal projection of x onto Γ0,h. It holds that(

F − F k
)

(xh) =
(
F − F k

)
(x) +

∫ 1

0

(
F − F k

)′
(x+ t (xh − x)) (xh − x) dt.

Again we use the fact that |x− xh| ≤ ch2 and
∥∥F − F k∥∥W 1,∞(Ω0)

≤ ck1/2 to obtain∣∣(F − F k) (xh)
∣∣ ≤ ∣∣(F − F k) (x)

∣∣+ ck1/2h2,

and end up with∥∥F − F k∥∥Lp(Γ0,h)
≤ c

(∥∥F − F k∥∥Lp(Γ0)
+ k1/2h2

)
.

The proof is �nished using Lemma 2.3.44 and Young's inequality.

Lemma 2.3.46. Let p ∈ (1,∞) and v ∈W 1,p(Ω0,h), then it holds that∣∣∣(v, γF − γFk)h∣∣∣ ≤ cp (h2 + k2
)
‖v‖W 1,p(Ω0,h) .

Proof. Let F =
(
F 1, F 2

)T
and F k =

(
F k,1, F k,2

)T
, it holds that

γF − γFk = ∂x(F 1 − F k,1) + ∂y(F 2 − F k,2)

+ ∂x(F 1 − F k,1) ∂yF 2 + ∂yF 1 ∂x(F k,2 − F 2)

− ∂x(F 1 − F k,1) ∂y(F 2 − F k,2)− ∂y(F k,1 − F 1) ∂x(F 2 − F k,2)

+ ∂xF 1 ∂y(F 2 − F k,2) + ∂y(F k,1 − F 1) ∂xF 2.

(2.84)

In what follows let q = p/(p−1) ∈ (1,∞) be the conjugate index to p. Now we use Green's theorem
and get∣∣(v, ∂x(F 1 − F k,1)

)
h

∣∣ ≤ ∣∣(∂xv, F 1 − F k,1
)
h

∣∣+
∣∣〈v, (F 1 − F k,1)ny〉h

∣∣
≤ ‖v‖W 1,p(Ω0,h)

∥∥F 1 − F k,1
∥∥
Lq(Ω0,h)

+ c ‖v‖Lp(Γ0,h)

∥∥F 1 − F k,1
∥∥
Lq(Γ0,h)

≤ cp
(
h2 + k2

)
‖v‖W 1,p(Ω0,h) ,

(2.85)
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where we used Lemma 2.3.38, the trace theorem and Lemma 2.3.45. Using the same references we
also get∣∣(v, ∂x(F 1 − F k,1) ∂yF 2

)
h

∣∣ ≤ ∣∣∣(∂xv ∂yF 2 + v∂2
xyF 2, F 1 − F k,1

)
h

∣∣∣
+
∣∣〈v∂yF 2, (F 1 − F k,1)ny〉h

∣∣
≤ c ‖v‖W 1,p(Ω0,h)

∥∥F 2

∥∥
W 2,∞(Ω0,h)

∥∥F 1 − F k,1
∥∥
Lq(Ω0,h)

+ c ‖v‖Lp(Γ0,h)

∥∥F 2

∥∥
W 1,∞(Γ0,h)

∥∥F 1 − F k,1
∥∥
Lq(Γ0,h)

≤ cp
(
h2 + k2

)
‖v‖W 1,p(Ω0,h) ,

(2.86)

where we used F ∈ H9/2(Ωh) ↪→ W 2,∞(Ω0,h). Let q′ = (2p)/(p − 1) ∈ (1,∞), and using Hölder's
inequality we get ∣∣(v, ∂x(F 1 − F k,1) ∂y(F 2 − F k,2)

)
h

∣∣
≤ ‖v‖Lp(Ω0,h)

∥∥F 1 − F k,1
∥∥
W 1,q′ (Ω0,h)

∥∥F 2 − F k,2
∥∥
W 1,q′ (Ω0,h)

≤ c ‖v‖W 1,p(Ω0,h)

∥∥F − F k∥∥2

W 1,q′ (Ω0)

≤ cpk2 ‖v‖W 1,p(Ω0,h) ,

(2.87)

where we again used Lemma 2.3.38.

Lemma 2.3.47. Let v, w ∈ H2(Ω0,h), then it holds that∣∣∣(∇v,(AF −AFk) · ∇w)h∣∣∣ ≤ c (h2 + k2
)
‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h) .

Proof. Let δF =
(
F k − F

)
. With Lemma 2.3.42 and Theorem A.1.12 it follows that(

∇v,
(
AF −AFk

)
· ∇w

)
h

=
(
∇v,

(
A′
F ,δF

+R2(F , δF )
)
· ∇w

)
h
,

where R2(·, ·) is the remainder term from Taylor's theorem. Using the estimate (A.2) for R2(·, ·),
the representation of A′′

F+τ δF ,δF ,δF
as shown in (2.21) and Lemma 2.3.38 we get∣∣(∇v,R2(F , δF ) · ∇w

)
h

∣∣
≤ ‖v‖W 1,4(Ω0,h) ‖w‖W 1,4(Ω0,h)

∥∥R2(F , δF )
∥∥
L2(Ω0,h)

≤ c ‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h)

(∥∥F∥∥5

W 1,14(Ω0,h)
+
∥∥F k∥∥5

W 1,14(Ω0,h)

)∥∥F − F k∥∥2

W 1,14(Ω0,h)

≤ ck2 ‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h) .

From (2.20) we know that

A′
F ,δF

= div
(
γF DT−1

F
· δF

)
DT−1

F
·DT−T

F
−DT−1

F
·DδF ·AF −AF ·DδF

T ·DT−T
F

. (2.88)

Partial integration yields∣∣∣(∇v,div
(
γF DT−1

F
· δF

)
DT−1

F
·DT−T

F
· ∇w

)
h

∣∣∣ ≤ ∣∣∣(γF DT−1
F
· δF ,∇

(
∇vT ·DT−1

F
·DT−T

F
· ∇w

))
h

∣∣∣
+
∣∣∣〈∇vT ·DT−1

F
·DT−T

F
· ∇w, γF δF

T ·DT−T
F
· n〉h

∣∣∣ .
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Now we use DT−1
F
, γF ∈ H7/2(Ω0,h) ↪→ C2(Ω0,h) as well as W 1,4(Ω0,h) ↪→ H2(Ω0,h) and get∣∣∣(∇v,div

(
γF DT−1

F
· δF

)
DT−1

F
·DT−T

F
· ∇w

)
h

∣∣∣ ≤ c∥∥δF∥∥L4(Ω0,h)
‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h)

+ c
∥∥δF∥∥

L3(Γ0,h)
‖∇v‖L3(Γ0,h) ‖∇w‖L3(Γ0,h)

≤ c
(
h2 + k2

)
‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h) ,

where we used Lemma 2.3.38, Lemma 2.3.45 and H1(Ω0,h)
∣∣
Γ0,h

↪→ L3(Γ0,h). For the two remaining
terms within (2.88) we use Green's theorem once more, and using a similar estimate as before we
arrive at ∣∣∣(∇v,(DT−1

F
·DδF ·AF +AF ·DδF

T ·DT−T
F

)
· ∇w

)
h

∣∣∣
≤ c

∣∣∣(D
(
∇vT ·DT−1

F
·AF · ∇w

)
, δF

)
h

∣∣∣
+ c

∣∣∣〈∇vT ·DT−1
F
·AF · ∇w, δF

T · n〉h
∣∣∣

≤ c
(
h2 + k2

)
‖v‖H2(Ω0,h) ‖w‖H2(Ω0,h) .

Lemma 2.3.48. Let s ∈ [0, 1], then it holds that

‖Sh(q)− Sh,k(q)‖Hs(Ω0,h) ≤ c
(
h2−s + k2−s) .

Proof. Let e = (Sh(q)− Sh,k(q)) ∈ Vh,0, using Lemma 2.3.33 and Lemma 2.3.38 it follows that

‖e‖2H1(Ω0,h) ≤ ah(F )(e, e)

≤
∣∣lh(F )(e)− lh(F k)(e)

∣∣+
∣∣ah(F k)(Sh,k(q), e)− ah(F )(Sh,k(q), e)

∣∣
≤ c

(∥∥F − F k∥∥H1(Ω0,h)
‖e‖H1(Ω0,h) +

∥∥F − F k∥∥W 1,6(Ω0,h)
‖Sh,k(q)‖W 1,3(Ω0,h) ‖e‖H1(Ω0,h)

)
≤ ck ‖e‖H1(Ω0,h) ,

which proves the estimate for s = 1.
Now we estimate the L2-error. Let z ∈ H1

0 (Ω0,h) and zh ∈ Vh,0 be the solutions to

ah(F )(v, z) = (e, v)h ∀v ∈ H1
0 (Ω0,h), (2.89)

ah(F )(vh, zh) = (e, vh)h ∀vh ∈ Vh,0. (2.90)

Due to the regularity of AF it holds that z ∈ H2(Ω0,h) and ‖z‖H2(Ω0,h) ≤ c ‖e‖L2(Ω0,h), where the
constant c does not depend on h or Ω0,h, for the H2-estimate just depends on the diameter of the
domain, cf. [51], Theorem 9.1.26, and [69]. Now it holds that

‖e‖2L2(Ω0,h) = ah(F )(e, zh)

= lh(F )(zh)− lh(F k)(zh) + ah(F k)(Sh,k(q), zh)− ah(F )(Sh,k(q), zh)

≤
∣∣lh(F )(z − zh)− lh(F k)(z − zh)

∣∣+
∣∣lh(F )(z)− lh(F k)(z)

∣∣
+
∣∣ah(F )(S(q)− Sh,k(q), zh)− ah(F k)(S(q)− Sh,k(q), zh)

∣∣
+
∣∣ah(F )(S(q), z − zh)− ah(F k)(S(q), z − zh)

∣∣
+
∣∣ah(F )(S(q), z)− ah(F k)(S(q), z)

∣∣ ,
(2.91)
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and we will estimate each of the �ve terms on the right hand side of (2.91) separately. The three
terms including the di�erences (S(q)− Sh,k(q)) and (z − zh) can be estimated in a straightforward
way. Using Lemma 2.3.38 and standard �nite element error estimates if follows that∣∣lh(F )(z − zh)− lh(F k)(z − zh)

∣∣ ≤ c∥∥F − F k∥∥H1(Ω0,h)
‖z − zh‖L2(Ω0,h)

≤ ch2k ‖e‖L2(Ω0,h) ,
(2.92)

and ∣∣ah(F )(S(q)− Sh,k(q), zh)− ah(F k)(S(q)− Sh,k(q), zh)
∣∣

≤ c
∥∥F − F k∥∥W 1,6(Ω0,h)

‖S(q)− Sh,k(q)‖H1(Ω0,h) ‖zh‖W 1,3(Ω0,h)

≤ c(h+ k)k ‖e‖L2(Ω0,h) .

(2.93)

In order to estimate the second factor within (2.93) we used Lemma 2.3.40 and the �rst part of this
lemma, for the last factor we used the estimate

‖zh‖W 1,3(Ω0,h) ≤ c ‖zh‖H4/3(Ω0,h) ≤ c ‖z‖H4/3(Ω0,h) ≤ c ‖z‖H2(Ω0,h) , (2.94)

which is due to Theorem A.1.24. As the triangulations {πh}h>0 are assumed to be quasiuniform
and as Ω0 is su�ciently smooth, the constants within (2.94) do not depend on h. In the same way
it holds that ∣∣ah(F )(S(q), z − zh)− ah(F k)(S(q), z − zh)

∣∣
≤ c

∥∥F − F k∥∥W 1,4(Ω0,h)
‖S(q)‖W 1,4(Ω0,h) ‖z − zh‖H1(Ω0,h)

≤ chk ‖e‖L2(Ω0,h) .

(2.95)

The two remaining parts on the right hand side of (2.91) require more care. First, it holds that∣∣lh(F )(z)− lh(F k)(z)
∣∣ ≤ ∣∣∣(f ◦ TF − f ◦ TFk , zγFk)h∣∣∣+

∣∣∣(f ◦ TF z, γF − γFk)h∣∣∣ , (2.96)

and for the �rst part it holds that∣∣∣(f ◦ TF − f ◦ TFk , zγFk)h∣∣∣ ≤ c(∣∣∣TF − TFk ∣∣∣ , ∣∣∣zγFk ∣∣∣)h
≤ c

∥∥F − F k∥∥L2(Ω0,h)
‖z‖L2(Ω0,h)

∥∥∥γFk∥∥∥L∞(Ω0,h)

≤ ck2 ‖e‖L2(Ω0,h) .

(2.97)

For the second part we use Lemma 2.3.46 and
(
f ◦ TF z

)
∈ H1

0 (Ω0,h) to get∣∣∣(f ◦ TF z, γF − γFk)h∣∣∣ ≤ c (h2 + k2
) ∥∥f ◦ TF z∥∥H1(Ω0,h)

≤ c
(
h2 + k2

)
‖e‖L2(Ω0,h) .

(2.98)

Now we use Lemma 2.3.46, Lemma 2.3.47 and get∣∣ah(F )(S(q), z)− ah(F k)(S(q), z)
∣∣ ≤ ∣∣∣(∇S(q),

(
AF −AFk

)
· ∇z

)
h

∣∣∣+
∣∣∣(S(q)z, γF − γFk

)
h

∣∣∣
≤ c

(
h2 + k2

)
‖S(q)‖H2(Ω0,h) ‖z‖H2(Ω0,h)

≤ c
(
h2 + k2

)
‖e‖L2(Ω0,h) .

Now Young's inequality �nally proves the case s = 0, and what is left follows with interpolation.
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Lemma 2.3.49. For δq ∈ Q and s ∈ [0, 1] it holds that∥∥S′h(q)(δq)− S′h,k(q)(δq)
∥∥
Hs(Ω0,h)

≤ c
(
h2−s + k2−s) ‖δq‖H2(I) .

Proof. The main idea of the following proof is similar to the proof of Lemma 2.3.48 but more
involved due to a more complicated right hand side in the equations for S′h(q)(δq) and S′h,k(q)(δq).

Again, let e =
(
S′h(q)(δq)− S′h,k(q)(δq)

)
∈ Vh,0, δF = F ′(q)(δq) and δFk = F ′k(q)(δq). It holds

that

c ‖e‖2H1(Ω0,h) ≤ ah(F )(e, e)

≤
∣∣∣lδh(F , δF, Sh(q))(e)− lδh(F k, δFk, Sh,k(q))(e)

∣∣∣
+
∣∣ah(F )(S′h,k(q)(δq), e)− ah(F k)(S

′
h,k(q)(δq), e)

∣∣ .
(2.99)

For the second part on the right hand side of (2.99) we use Lemma 2.3.38 and Lemma 2.3.33 to get∣∣ah(F )(S′h,k(q)(δq), e)− ah(F k)(S
′
h,k(q)(δq), e)

∣∣
≤ c

∥∥F − F k∥∥W 1,6(Ω0,h)

∥∥S′h,k(q)(δq)∥∥W 1,3(Ω0,h)
‖e‖H1(Ω0,h)

≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) .

For the �rst part it holds that∣∣∣lδh(F , δF, Sh(q))(e)− lδh(F k, δFk, Sh,k(q))(e)
∣∣∣

≤
∣∣∣(f ◦ TF , ediv

(
γF DT−1

F
· δF

))
h
−
(
f ◦ TFk , ediv

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣ (2.100)

+

∣∣∣∣((∇f ◦ TF )T · δF, eγF)h −
((
∇f ◦ TFk

)T
· δFk, eγFk

)
h

∣∣∣∣ (2.101)

+
∣∣∣(∇Sh(q), A′

F ,δF
· ∇e

)
h
−
(
∇Sh,k(q), A′Fk,δFk · ∇e

)
h

∣∣∣ (2.102)

+
∣∣∣(Sh(q), ediv

(
γF DT−1

F
· δF

))
h
−
(
Sh,k(q), ediv

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣ . (2.103)

The di�erences (2.100) and (2.101) can be estimated through telescoping, we get∣∣∣(f ◦ TF , ediv
(
γF DT−1

F
· δF

))
h
−
(
f ◦ TFk , ediv

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣ ≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) ,∣∣∣∣((∇f ◦ TF )T · δF, eγF)h −
((
∇f ◦ TFk

)T
· δFk, eγFk

)
h

∣∣∣∣ ≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) .

The third part, (2.102), is a bit more complicated. It holds that∣∣∣(∇Sh(q), A′
F ,δF

· ∇e
)
h
−
(
∇Sh,k(q), A′Fk,δFk · ∇e

)
h

∣∣∣
≤
∣∣∣(∇ (Sh(q)− Sh,k(q)) , A′F ,δF · ∇e

)
h

∣∣∣+
∣∣∣(∇Sh,k(q), A′F ,δF−δFk · ∇e)h∣∣∣

+
∣∣∣(∇Sh,k(q),(A′F ,δFk −A′Fk,δFk) · ∇e)h∣∣∣ ,

(2.104)
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with∣∣∣(∇ (Sh(q)− Sh,k(q)) , A′F ,δF · ∇e
)
h

∣∣∣ ≤ ‖Sh(q)− Sh,k(q)‖H1(Ω0,h)

∥∥∥A′F ,δF∥∥∥L∞(Ω0,h)
‖e‖H1(Ω0,h)

≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) ,∣∣∣(∇Sh,k(q), A′F ,δF−δFk · ∇e)h∣∣∣ ≤ ‖Sh,k(q)‖W 1,3(Ω0,h)

∥∥∥A′F ,δF−δFk∥∥∥L6(Ω0,h)
‖e‖H1(Ω0,h)

≤ c ‖δF − δFk‖W 1,6(Ω0,h) ‖e‖H1(Ω0,h)

≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) .

In order to estimate the last part of (2.104) we again use Taylor's theorem. Fix δFk and de�ne

G : W 1,∞(Ω0,h)→ L∞(Ω0,h),

G(F ) = A′F,δFk ,

then G is at least twice continuously di�erentiable due to Lemma 2.3.42. Using Theorem A.1.12 it
follows that

A′
Fk,δFk

−A′
F ,δFk

= A′′
F ,Fk−F ,δFk

+ R̃2(F , F k − F , δFk), (2.105)

and the estimate (A.2) for the remainder term R̃2 reads as∥∥∥R̃2(F , F k − F , δFk)
∥∥∥
L∞(Ω0)

≤ c sup
0<τ<1

∥∥∥A′′′F+τ (Fk−F ),Fk−F ,Fk−F ,δFk

∥∥∥
L∞(Ω0)

≤ c ‖δFk‖W 1,∞(Ω0,h)

∥∥F − F k∥∥2

W 1,∞(Ω0,h)
.

(2.106)

Equation (2.105) yields∣∣∣(∇Sh,k(q),(A′F ,δFk −A′Fk,δFk) · ∇e)h∣∣∣ ≤ ∣∣∣(∇Sh,k(q), A′′F ,δFk,Fk−F · ∇e)h∣∣∣
+
∣∣∣(∇Sh,k(q), R̃2(F , F k − F , δFk) · ∇e

)
h

∣∣∣ ,
with ∣∣∣(∇Sh,k(q), A′′F ,Fk−F ,δFk · ∇e)h∣∣∣ ≤ ‖Sh,k(q)‖W 1,3(Ω0,h)

∥∥∥A′′F ,Fk−F ,δFk∥∥∥L6(Ω0,h)
‖e‖H1(Ω0,h)

≤ c ‖δFk‖W 1,12(Ω0,h)

∥∥F k − F∥∥W 1,12(Ω0,h)
‖e‖H1(Ω0,h)

≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) .

Using the estimate (2.106), the fact that δFk = Fk(δq) and Lemma 2.3.29 we arrive at∣∣∣(∇Sh,k(q), R̃2(F , F k − F , δFk) · ∇e
)
h

∣∣∣ ≤ c ‖Sh,k(q)‖H1(Ω0,h)

∥∥∥R̃2(F , F k − F , δFk)
∥∥∥
L∞(Ω0)

‖e‖H1(Ω0,h)

≤ c ‖δFk‖W 1,∞(Ω0,h)

∥∥F − F k∥∥2

W 1,∞(Ω0,h)
‖e‖H1(Ω0,h)

≤ ck ‖δq‖H2(I) ‖eh‖H1(Ω0,h) .
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The last term within this estimate, (2.103), can again be estimated through telescoping,∣∣∣(Sh(q), ediv
(
γF DT−1

F
· δF

))
h
−
(
Sh,k(q), ediv

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣ ≤ ck ‖δq‖H2(I) ‖e‖H1(Ω0,h) ,

which �nishes the proof for s = 1.
We proceed with the L2-error, which can be proven similarly to the proof of Lemma 2.3.48. Let

again z ∈ H1
0 (Ω0,h) and zh ∈ Vh,0 be the solutions to

ah(F )(v, z) = (e, v)h ∀v ∈ H1
0 (Ω0,h),

ah(F )(vh, zh) = (e, vh)h ∀vh ∈ Vh,0.

Again it holds that z ∈ H2(Ω0,h) with ‖z‖H2(Ω0,h) ≤ c ‖e‖L2(Ω0), where the constant c is independent
of h. With Theorem A.1.27 it follows that

‖z − zh‖Hs(Ω0,h) ≤ ch
2−s ‖e‖L2(Ω0,h) ,

for s ∈ [0, 3/2). We get

‖e‖2L2(Ω0,h) = ah(F )(e, zh) = ah(F )(S′h(q)(δq), zh)− ah(F )(S′h,k(q)(δq), zh)

= lδh(F , δF, Sh(q))(zh)− lδh(F k, δFk, Sh,k(q))(zh)

+ ah(F k)(S
′
h,k(q)(δq), zh)− ah(F )(S′h,k(q)(δq), zh)

≤
∣∣∣lδh(F , δF, Sh(q))(zh − z)− lδh(F k, δFk, Sh,k(q))(zh − z)

∣∣∣ (2.107)

+
∣∣∣lδh(F , δF, Sh(q))(z)− lδh(F k, δFk, Sh,k(q))(z)

∣∣∣ (2.108)

+
∣∣ah(F k)(S

′
h,k(q)(δq)− S′(q)(δq), zh)− ah(F )(S′h,k(q)(δq)− S′(q)(δq), zh)

∣∣ (2.109)

+
∣∣ah(F k)(S

′(q)(δq), zh − z)− ah(F )(S′(q)(δq), zh − z)
∣∣ (2.110)

+
∣∣ah(F k)(S

′(q)(δq), z)− ah(F )(S′(q)(δq), z)
∣∣ . (2.111)

Again we can estimate each term separately. The �rst part, (2.107), can be estimated as in the �rst
part of this proof which yields∣∣∣lδh(F , δF, Sh(q))(zh − z)− lδh(F k, δFk, Sh,k(q))(zh − z)

∣∣∣ ≤ ck ‖δq‖H2(I) ‖z − zh‖H1(Ω0,h)

≤ chk ‖δq‖H2(I) ‖e‖L2(Ω0) .

The following part, (2.108), needs to be split once more, we have∣∣∣lδh(F , δF, Sh(q))(z)− lδh(F k, δFk, Sh,k(q))(z)
∣∣∣

≤
∣∣∣lδh(F , δF, Sh(q))(z)− lδh(F , δF, Sh,k(q))(z)

∣∣∣ (2.112)

+
∣∣∣lδh(F , δF, Sh,k(q)− S(q))(z)− lδh(F k, δFk, Sh,k(q)− S(q))(z)

∣∣∣ (2.113)

+
∣∣∣lδh(F , δF, S(q))(z)− lδh(F k, δFk, S(q))(z)

∣∣∣ . (2.114)

We start with (2.112) and get∣∣∣lδh(F , δF, Sh(q))(z)− lδh(F , δF, Sh,k(q))(z)
∣∣∣ ≤ ∣∣∣(∇ (Sh(q)− Sh,k(q)) , A′F ,δF · ∇z

)
h

∣∣∣
+
∣∣∣(Sh(q)− Sh,k(q), z div

(
γF DT−1

F
· δF

))
h

∣∣∣ ,
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which results in∣∣∣(∇ (Sh(q)− Sh,k(q)) , A′F ,δF · ∇z
)
h

∣∣∣ =
∣∣∣(Sh(q)− Sh,k(q), div

(
A′
F ,δF

· ∇z
))

h

∣∣∣
≤ c ‖Sh(q)− Sh,k(q)‖L2(Ω0,h)

∥∥∥A′F ,δF∥∥∥L∞(Ω0,h)

∥∥∇2z
∥∥
L2(Ω0,h)

+ c ‖Sh(q)− Sh,k(q)‖L2(Ω0,h)

∥∥∥A′F ,δF∥∥∥W 1,4(Ω0,h)
‖∇z‖L4(Ω0,h) .

Now we use ‖Sh(q)− Sh,k(q)‖L2(Ω0,h) ≤ c
(
h2 + k2

)
due to Lemma 2.3.40 and Lemma 2.3.48, the

continuous embeddings W 1,4(Ω0,h) ↪→ L∞(Ω0,h), H2(Ω0,h) ↪→W 1,4(Ω0,h) and the estimate∥∥∥A′F ,δF∥∥∥W 1,4(Ω0,h)
≤ c ‖δF‖W 2,4(Ω0,h) ≤ c ‖δF‖H5/2(Ω0) ≤ c ‖δq‖H2(I) ,

to obtain∣∣∣(∇ (Sh(q)− Sh,k(q)) , A′F ,δF · ∇z
)
h

∣∣∣ ≤ c (h2 + k2
)
‖δq‖H2(I) ‖z‖H2(Ω0,h)

≤ c
(
h2 + k2

)
‖δq‖H2(I) ‖e‖L2(Ω0,h) .

In addition,∣∣∣(Sh(q)− Sh,k(q), z div
(
γF DT−1

F
· δF

))
h

∣∣∣ ≤ c ‖Sh(q)− Sh,k(q)‖L2(Ω0,h) ‖z‖L∞(Ω0,h) ‖δF‖H1(Ω0,h)

≤ c
(
h2 + k2

)
‖δq‖H2(I) ‖e‖L2(Ω0,h) ,

hence∣∣∣lδh(F , δF, Sh(q))(z)− lδh(F , δF, Sh,k(q))(z)
∣∣∣ ≤ c (h2 + k2

)
‖δq‖H2(I) ‖e‖L2(Ω0,h) .

For the next two estimates we use Theorem A.1.12 and Lemma 2.3.42 and get

A′
F ,δF

−A′
Fk,δFk

= A′
F ,δF−δFk

+A′
F ,δFk

−A′
Fk,δFk

= A′
F ,δF−δFk

+A′′
F ,Fk−F ,δFk

+ R̃2(F , F k − F , δFk),
(2.115)

similar to (2.105). Now we estimate (2.113) via∣∣∣lδh(F , δF, Sh,k(q)− S(q))(z)− lδh(F k, δFk, Sh,k(q)− S(q))(z)
∣∣∣

≤
∣∣∣(f ◦ TF , z div

(
γF DT−1

F
· δF

))
h
−
(
f ◦ TFk , z div

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣
+

∣∣∣∣((∇f ◦ TF )T · δF, zγF)h −
((
∇f ◦ TFk

)T
· δFk, zγFk

)
h

∣∣∣∣
+
∣∣∣(∇ (S(q)− Sh,k(q)) ,

(
A′
F ,δF

−A′
Fk,δFk

)
· ∇z

)
h

∣∣∣
+
∣∣∣((S(q)− Sh,k(q)) z, div

(
γF DT−1

F
· δF − γFk DT−1

Fk
· δFk

))
h

∣∣∣ .

51



2. A model problem

The �rst two expression can be estimated using standard telescoping arguments, for the third line
we use (2.115) to get∣∣∣(∇ (S(q)− Sh,k(q)) ,

(
A′
F ,δF

−A′
Fk,δFk

)
· ∇z

)
h

∣∣∣
≤
∣∣∣(∇ (S(q)− Sh,k(q)) , A′F ,δF−δFk · ∇z

)
h

∣∣∣
+
∣∣∣(∇ (S(q)− Sh,k(q)) , A′′F ,Fk−F ,δFk · ∇z

)
h

∣∣∣
+
∣∣∣(∇ (S(q)− Sh,k(q)) , R̃2(F , F k − F , δFk) · ∇z

)
h

∣∣∣ ,
where it holds that∣∣∣(∇ (S(q)− Sh,k(q)) , A′F ,δF−δFk · ∇z

)
h

∣∣∣
≤ ‖S(q)− Sh,k(q)‖H1(Ω0,h)

∥∥∥A′F ,δF−δFk∥∥∥L4(Ω0,h)
‖z‖W 1,4(Ω0,h)

≤ c (h+ k) ‖δF − δFk‖W 1,4(Ω0,h) ‖z‖W 1,4(Ω0,h)

≤ c (h+ k) k ‖δq‖W 2−1/4,4(I) ‖z‖H2(Ω0,h)

≤ c (h+ k) k ‖δq‖H2(I) ‖e‖L2(Ω0,h) ,

and ∣∣∣(∇ (S(q)− Sh,k(q)) , A′′F ,Fk−F ,δFk · ∇z
)
h

∣∣∣
≤ ‖S(q)− Sh,k(q)‖H1(Ω0,h)

∥∥∥A′′F ,Fk−F ,δFk∥∥∥L4(Ω0,h)
‖z‖W 1,4(Ω0,h)

≤ c (h+ k)
∥∥F − F k∥∥W 1,4(Ω0,h)

‖δFk‖W 1,∞(Ω0,h) ‖z‖H2(Ω0,h)

≤ c (h+ k) k ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

For the last part we use the estimate (2.106) and get∣∣∣(∇ (S(q)− Sh,k(q)) , R̃2(F , F k − F , δFk) · ∇z
)
h

∣∣∣
≤ ‖S(q)− Sh,k(q)‖H1(Ω0,h)

∥∥∥R̃2(F , F k − F , δFk)
∥∥∥
L∞(Ω0,h)

‖z‖H1(Ω0,h)

≤ c (h+ k)
∥∥F − F k∥∥2

W 1,∞(Ω0,h)
‖δFk‖W 1,∞(Ω0,h) ‖z‖H2(Ω0,h)

≤ c (h+ k) k ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

Finally we estimate (2.114),∣∣∣lδh(F , δF, S(q))(z)− lδh(F k, δFk, S(q))(z)
∣∣∣

≤
∣∣∣(f ◦ TF , z div

(
γF DT−1

F
· δF

))
h
−
(
f ◦ TFk , z div

(
γFk DT−1

Fk
· δFk

))
h

∣∣∣ (2.116)

+

∣∣∣∣((∇f ◦ TF )T · δF, zγF)h −
((
∇f ◦ TFk

)T
· δFk, zγFk

)
h

∣∣∣∣ (2.117)

+
∣∣∣(∇S(q),

(
A′
F ,δF

−A′
Fk,δFk

)
· ∇z

)
h

∣∣∣ (2.118)

+
∣∣∣(S(q)z,div

(
γF DT−1

F
· δF − γFk DT−1

Fk
· δFk

))
h

∣∣∣ . (2.119)
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The expressions (2.116) and (2.117) can again be estimated through telescoping, and with (2.115)
one can estimate (2.118) via∣∣∣(∇S(q),

(
A′
F ,δF

−A′
Fk,δFk

)
· ∇z

)
h

∣∣∣ ≤ ∣∣∣(∇S(q), A′
F ,δF−δFk

· ∇z
)
h

∣∣∣+
∣∣∣(∇S(q), A′′

F ,Fk−F ,δFk
· ∇z

)
h

∣∣∣
+
∣∣∣(∇S(q), R̃2(F , F k − F , δFk) · ∇z

)
h

∣∣∣ .
Using the same method as in the proof of Lemma 2.3.47 one can show that∣∣∣(∇S(q), A′

F ,δF−δFk
· ∇z

)
h

∣∣∣ ≤ c (h2 + k2
)
‖δq‖H2(I) ‖e‖L2(Ω0,h) .

It also holds that∣∣∣(∇S(q), A′′
F ,Fk−F ,δFk

· ∇z
)
h

∣∣∣ ≤ ∣∣∣(∇S(q), A′′
F ,Fk−F ,δFk−δF

· ∇z
)
h

∣∣∣+
∣∣∣(∇S(q), A′′

F ,Fk−F ,δF
· ∇z

)
h

∣∣∣
with∣∣∣(∇S(q), A′′

F ,Fk−F ,δFk−δF
· ∇z

)
h

∣∣∣ ≤ ‖S(q)‖W 1,4(Ω0,h)

∥∥∥A′′F ,Fk−F ,δFk−δF∥∥∥L2(Ω0,h)
‖z‖W 1,4(Ω0,h)

≤ c
∥∥F − F k∥∥W 1,4(Ω0,h)

‖δFk − δF‖W 1,4(Ω0,h) ‖z‖W 1,4(Ω0,h)

≤ ck2 ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

The estimate∣∣∣(∇S(q), A′′
F ,Fk−F ,δF

· ∇z
)
h

∣∣∣ ≤ c (h2 + k2
)
‖δq‖H2(I) ‖e‖L2(Ω0,h) ,

can be shown using partial integration similar to the proof of Lemma 2.3.47. Using the representa-
tion (2.106) we get∣∣∣(∇S(q), R̃2(F , F k − F , δFk) · ∇z

)
h

∣∣∣ ≤ ‖S(q)‖W 1,4(Ω0,h)

∥∥∥R̃2(F , F k − F , δFk)
∥∥∥
L2(Ω0,h)

‖z‖W 1,4(Ω0,h)

≤ c
∥∥∥R̃2(F , F k − F , δFk)

∥∥∥
L2(Ω0,h)

‖z‖H2(Ω0,h)

≤ c ‖δFk‖W 1,6(Ω0,h)

∥∥F − F k∥∥2

W 1,6(Ω0,h)
‖z‖H2(Ω0,h)

≤ ck2 ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

The remaining part (2.119) can be estimated via∣∣∣(S(q)z,div
(
γF DT−1

F
· δF − γFk DT−1

Fk
· δFk

))
h

∣∣∣ =
∣∣∣(∇ (S(q)z) , γF DT−1

F
· δF − γFk DT−1

Fk
· δFk

)
h

∣∣∣ ,
and using Lemma 2.3.38 one can proceed with telescoping as in the previous cases, as (S(q)z) ∈ H2(Ω0,h)
one can also use Lemma 2.3.46 and ends up with∣∣∣(S(q)z,div

(
γF DT−1

F
· δF − γFk DT−1

Fk
· δFk

))
h

∣∣∣ ≤ c (h2 + k2
)
‖δq‖H2(I) ‖e‖L2(Ω0,h) .
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2. A model problem

Now we return to the original estimation. For (2.109) it holds that∣∣ah(F k)(S
′
h,k(q)(δq)− S′(q)(δq), zh)− ah(F )(S′h,k(q)(δq)− S′(q)(δq), zh)

∣∣
≤
∣∣∣(∇ (S′h,k(q)(δq)− S′(q)(δq)) ,(AF −AFk) · ∇zh)h∣∣∣

≤
∥∥S′(q)(δq)− S′h,k(q)(δq)∥∥H1(Ω0,h)

∥∥∥AF −AFk∥∥∥L6(Ω0,h)
‖zh‖W 1,3(Ω0,h)

≤ c (h+ k) ‖δq‖H2(I)

∥∥F − F k∥∥W 1,6(Ω0,h)
‖z‖H2(Ω0,h)

≤ c (h+ k) k ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

Expression (2.110) can be estimated as follows,

∣∣ah(F k)(S
′(q)(δq), zh − z)− ah(F )(S′(q)(δq), zh − z)

∣∣
≤
∣∣∣(∇S′(q)(δq),(AF −AFk) · ∇ (z − zh)

)
h

∣∣∣
≤
∥∥S′(q)(δq)∥∥

W 1,4(Ω0,h)

∥∥∥AF −AFk∥∥∥L4(Ω0,h)
‖z − zh‖H1(Ω0,h)

≤ ch ‖δq‖H2(I)

∥∥F − F k∥∥W 1,4(Ω0,h)
‖z‖H2(Ω0,h)

≤ chk ‖δq‖H2(I) ‖e‖L2(Ω0,h) .

The last part, (2.111), can again be estimated using Lemma 2.3.46 and Lemma 2.3.47. We can
apply these lemmata because of S′(q)(δq) ∈ H2(Ω0,h), (z S′(q)(δq)) ∈ H1(Ω0,h), and get∣∣ah(F k)(S

′(q)(δq), z)− ah(F )(S′(q)(δq), z)
∣∣ ≤ c (h2 + k2

) ∥∥S′(q)(δq)∥∥
H2(Ω0,h)

‖z‖H2(Ω0,h)

≤ c
(
h2 + k2

)
‖δq‖H2(I) ‖e‖L2(Ω0,h) ,

which �nishes the L2-estimate, and what is left follows with interpolation.

Lemma 2.3.50. For δq ∈ Q it holds that∣∣j′h(q)(δq)− j′h,k(q)(δq)
∣∣ ≤ c (h2 + k2

)
‖δq‖H2(I) .

Proof. This lemma follows with De�nition 2.3.7, De�nition 2.3.8, Lemma 2.3.48 and Lemma 2.3.49.

2.3.4. Second order optimality conditions

Within this subsection we are going to prove some optimality conditions of second order and some
quadratic-growth conditions which hold in the optimal continuous and discretized solutions. At
�rst we have to make the following assumption regarding the coercivity of the second derivative of
the reduced cost functional.

Assumption 2.3.51. We assume that

j′′(q)(δq, δq) > 0 ∀δq ∈ Q\ {0} .
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2.3. A-priori error estimates

Remark 2.3.52. As j is twice continuously di�erentiable, we know that there holds a necessary
optimality condition of second order,

j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Q. (2.120)

Hence, Assumption 2.3.51 is just slightly stronger than the second order optimality condition (2.120)
and therefore reasonable to assume. In addition, numerical optimization algorithms are more likely
to fail if Assumption 2.3.51 is not satis�ed.

We also recall the �rst order optimality conditions, where qσ, qσ,h and qσ,h,k are arbitrary local
optimal solutions to (2.59), (2.66) and (2.73), respectively.

j′(q)(δq) = 0 ∀δq ∈ Q,
j′(qσ)(δqσ) = 0 ∀δqσ ∈ Qσ,

j′h(qσ,h)(δqσ) = 0 ∀δqσ ∈ Qσ,
j′h,k(qσ,h,k)(δqσ) = 0 ∀δqσ ∈ Qσ.

(2.121)

In what follows we are going to prove that all optimal solutions ful�lling Assumption 2.3.51 also
ful�ll a seemingly stronger form of coercivity. The following lemmata and proofs have been inspired
by [30].

Lemma 2.3.53. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N ⊂ Q. If δqn → δq in H3/2+ε(I), then it holds
that

S′(q)(δqn)→ S′(q)(δq) in H1
0 (Ω0), (2.122)

S′′(q)(δqn, δqn)→ S′′(q)(δq, δq) in H1
0 (Ω0). (2.123)

Proof. Let F = F (q), δF = F ′(q)(δq) and δFn = F ′(q)(δqn). With Lemma 2.1.2 it follows that
δFn → δF in H2+ε(Ω0), and with Theorem A.1.5 it follows that

A′F,δFn → A′F,δF ,

div
(
γF DT−1

F · δFn
)
→ div

(
γF DT−1

F · δF
)
,

in H1+ε(Ω0) ↪→ C(Ω0).

As a result, the right hand side in De�nition 2.3.2 converges in H−1(Ω0), and (2.122) follows with
standard H1-stability results. The second part, (2.123), is proven analogously to the �rst part.
In order to show that the right hand side in De�nition 2.3.2 converges in H−1(Ω0) one has to
use (2.122), Lemma 2.1.6 and the fact that the trace of a matrix, trace : X2×2 → X is continuous
for every Banach space X.

Lemma 2.3.54. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N ⊂ Q with δqn → δq in H3/2+ε(I). Let
m : Qad ×Q→ R and n : Qad ×Q→ R be de�ned via

m(q)(δq) = j′(q)(δq)− α(q, δq)H2(I),

n(q)(δq) = j′′(q)(δq, δq)− α(δq, δq)H2(I).

Then it holds that

m(q)(δqn)→ m(q)(δq),

n(q)(δqn)→ n(q)(δq),
for n→∞.
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2. A model problem

Proof. This lemma is a direct consequence of De�nition 2.3.6 and Lemma 2.3.53.

Lemma 2.3.55. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N ⊂ Q. If δqn ⇀ δq in H2(I) then

j′(q)(δqn)→ j′(q)(δq),

j′′(q)(δq, δq) ≤ lim inf
n→∞

j′′(q)(δqn, δqn).

Proof. As H2(I) is compactly embedded into H3/2+ε(I) for ε < 1/2, we get δqn → δq in H3/2+ε(I).
As (q, δqn)H2(I) → (q, δq)H2(I), the �rst part follows from the �rst part of Lemma 2.3.54. The
squared H2-norm is a continuous and convex functional on H2(I) and therefore weakly lower semi-
continuous, hence ‖δq‖2H2(I) ≤ lim infn→∞ ‖δqn‖2H2(I), and the second part follows from the second
part of Lemma 2.3.54.

Lemma 2.3.56. Let q ∈ Qad, δq ∈ Q, (δqn)n∈N ⊂ Q and δqn ⇀ δq in H2(I). If

lim
n→∞

j′′(q)(δqn, δqn) = j′′(q)(δq, δq),

then

δqn → δq in H2(I).

Proof. Again we get δqn → δq in H3/2+ε(I) for ε < 1/2. With the second part of Lemma 2.3.54 it
follows that ‖δqn‖H2(I) → ‖δq‖H2(I). The result follows from the fact that within Hilbert spaces,
strong convergence is equivalent to weak convergence plus convergence of the norm.

Theorem 2.3.57. Let q ∈ Qad be a solution of (2.27) ful�lling Assumption 2.3.51. Then there
exists β > 0 such that

j′′(q)(δq, δq) ≥ β ‖δq‖2H2(I) ∀δq ∈ Q. (2.124)

Proof. Assume that (2.124) does not hold. Then there exists a sequence (δqn)n∈N ⊂ Q with

‖δqn‖H2(I) = 1

and

j′′(q)(δqn, δqn) <
1

n
.

Possibly after extracting a subsequence we get the existence of an element δq ∈ Q with δqn ⇀ δq
in H2(I). We get

0 ≤ j′′(q)(δq, δq) ≤ lim inf
n→∞

j′′(q)(δqn, δqn) ≤ lim sup
n→∞

j′′(q)(δqn, δqn) ≤ lim sup
n→∞

1

n
= 0. (2.125)

The �rst inequality is just the necessary optimality condition of second order (2.120), and the second
inequality is due to Lemma 2.3.55. Equation (2.125) yields

j′′(q)(δqn, δqn)→ j′′(q)(δq, δq) = 0.

As a result, Assumption 2.3.51 implies δq = 0, whereas Lemma 2.3.56 implies δqn → δq in H2(I),
which contradicts the fact that ‖δqn‖H2(I) = 1.
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Lemma 2.3.58. Let q ∈ Qad. If there exists β > 0 such that

j′′(q)(δq, δq) ≥ β ‖δq‖2H2(I) ∀δq ∈ Q,

then there exists δ > 0 such that for all p ∈ Qad with ‖q − p‖H2(I) ≤ δ it holds that

j′′(p)(δq, δq) ≥ β

2
‖δq‖2H2(I) ∀δq ∈ Q.

Proof. With Lemma 2.3.24 we get the existence of c0 > 0 such that

j′′(p)(δq, δq) = j′′(q)(δq, δq) + j′′(p)(δq, δq)− j′′(q)(δq, δq)
≥ j′′(q)(δq, δq)−

∣∣j′′(p)(δq, δq)− j′′(q)(δq, δq)∣∣
≥ β ‖δq‖2H2(I) − c0 ‖q − p‖H2(I) ‖δq‖

2
H2(I)

=
(
β − c0 ‖q − p‖H2(I)

)
‖δq‖2H2(I) ,

and the result follows for δ ≤ β
2c0

.

Lemma 2.3.59. Let q ∈ Qad be a solution of (2.27). Then the following two statements are
equivalent.

• There exists β1 > 0 such that

j′′(q)(δq, δq) ≥ β1 ‖δq‖2H2(I) ∀δq ∈ Q. (2.126)

• There exist β2, δ > 0 such that

j(p) ≥ j(q) + β2 ‖p− q‖2H2(I) ∀p ∈ Qad : ‖p− q‖H2(I) ≤ δ. (2.127)

Proof. If (2.126) holds, then due to Theorem A.1.12 we have for some t ∈ [0, 1] that

j(p) = j(q) + j′(q)(p− q) +
1

2
j′′(q + t(p− q))(p− q, p− q)

= j(q) +
1

2
j′′(q + t(p− q))(p− q, p− q)

≥ j(q) +
β1

4
‖p− q‖2H2(I) ,

whereas in the second step we used the �rst order optimality condition (2.121), in the third step we
used Lemma 2.3.58.
If the second assertion, (2.127), holds, then q is a solution to

min
q∈Qad

‖q−q‖H2(I)≤δ

(
j(q)− β2 ‖q − q‖2H2(I)

)
,

and the necessary optimality condition of second order yields

j′′(q)(δq, δq)− 2β2 ‖δq‖2H2(I) ≥ 0 ∀δq ∈ Q.
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Lemma 2.3.60. There exists ε > 0 such that for all qσ ∈ Qσ with ‖qσ − qσ‖H2(I) ≤ ε, where qσ is
a local optimal control of (2.59) with ‖qσ − q‖H2(I) ≤ ε, it holds that

j(qσ) ≥ j(qσ) +
β

4
‖qσ − qσ‖

2
H2(I) .

Proof. As in the proof of Lemma 2.3.59 we use a taylor expansion around qσ. There exists t ∈ [0, 1]
such that for ξ = tqσ + (1− t)qσ it holds that

j(qσ) = j(qσ) + j′(qσ)(qσ − qσ) +
1

2
j′′(ξ)(qσ − qσ, qσ − qσ)

= j(qσ) +
1

2
j′′(ξ)(qσ − qσ, qσ − qσ)

≥ j(qσ) +
β

4
‖qσ − qσ‖

2
H2(I) .

In the �rst step we used the �rst order optimality condition (2.121), in the second step we used
Lemma 2.3.58 and the fact that ‖q − ξ‖H2(I) can be made arbitrarily small by a suitable choice of
ε > 0.

We can also prove similar statements regarding the discrete cost functional jh.

Lemma 2.3.61. There exists ε > 0 such that for all p ∈ Qad with ‖q − p‖H2(I) ≤ ε and all h
su�ciently small it holds that

j′′h(p)(δq, δq) ≥ β

4
‖δq‖2H2(I) ∀δq ∈ Q.

Proof. Using Lemma 2.3.28 we get the existence of c0 > 0 such that

j′′h(p)(δq, δq) ≥ j′′(p)(δq, δq)−
∣∣j′′(p)(δq, δq)− j′′h(p)(δq, δq)

∣∣
≥ β

2
‖δq‖2H2(I) − c0h

1/4 ‖δq‖2H2(I)

=

(
β

2
− c0h

1/4

)
‖δq‖2H2(I)

≥ β

4
‖δq‖2H2(I) ,

which holds for

h ≤
(
β

4c0

)4

.

Lemma 2.3.62. There exists ε > 0 such that for all qσ,h ∈ Qσ with
∥∥qσ,h − qσ,h∥∥H2(I)

≤ ε, where

qσ,h is a local optimal control of (2.66) with
∥∥q − qσ,h∥∥H2(I)

≤ ε, it holds that

jh(qσ,h) ≥ jh(qσ,h) +
β

8

∥∥qσ,h − qσ,h∥∥2

H2(I)
.
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Proof. We use a taylor expansion around qσ,h, it holds with ξh = tqσ,h + (1− t)qσ,h for a t ∈ [0, 1]
that

jh(qσ,h) = jh(qσ,h) + j′h(qσ,h)(qσ,h − qσ,h) +
1

2
j′′h(ξh)(qσ,h − qσ,h, qσ,h − qσ,h)

= jh(qσ,h) +
1

2
j′′h(ξh)(qσ,h − qσ,h, qσ,h − qσ,h)

≥ jh(qσ,h) +
β

8

∥∥qσ,h − qσ,h∥∥2

H2(I)
.

In the �rst step we used the �rst order optimality condition (2.121), in the second step we used
Lemma 2.3.61 and the fact that ‖q − ξh‖H2(I) can be made arbitrarily small by a suitable choice of
ε > 0.

Finally we also state the versions for the fully discretized cost functional jh,k.

Lemma 2.3.63. There exists ε > 0 such that for all p ∈ Qad with ‖q − p‖H2(I) ≤ ε and all h, k
su�ciently small it holds that

j′′h,k(p)(δq, δq) ≥
β

8
‖δq‖2H2(I) ∀δq ∈ Q.

Proof. Using Lemma 2.3.34 we get the existence of c0 > 0 such that

j′′h,k(p)(δq, δq) ≥ j′′h(p)(δq, δq)−
∣∣j′′h(p)(δq, δq)− j′′h,k(p)(δq, δq)

∣∣
≥ β

4
‖δq‖2H2(I) − c0k

1/2 ‖δq‖2H2(I)

=

(
β

4
− c0k

1/2

)
‖δq‖2H2(I) .

Hence, for k ≤
(

β
8c0

)2
and h su�ciently small such that Lemma 2.3.61 is applicable it holds that

j′′h,k(p)(δq, δq) ≥
β

8
‖δq‖2H2(I) .

The following lemma can be proven in the same way as Lemma 2.3.60 and Lemma 2.3.62.

Lemma 2.3.64. There exists ε > 0 such that for all qσ,h,k ∈ Qσ with
∥∥qσ,h,k − qσ,h,k∥∥H2(I)

≤ ε,

where qσ,h,k is a local optimal control of (2.73) with
∥∥q − qσ,h,k∥∥H2(I)

≤ ε, it holds that

jh,k(qσ,h,k) ≥ jh,k(qσ,h,k) +
β

16

∥∥qσ,h,k − qσ,h,k∥∥2

H2(I)
.

2.3.5. On the existence of a converging subsequence

In order to prove Theorem 2.3.1 we need to show that for every �xed q there exist sequences of
local optimal controls (qσ)σ>0 ⊂ Qad

σ ,
(
qσ,h

)
σ,h>0

⊂ Qad
σ and

(
qσ,h,k

)
σ,h,k>0

⊂ Qad
σ to the discretized

problems (2.59), (2.66) and (2.73), respectively, that converge to q in H2(I) for σ, h, k → 0. What
follows adapts a method presented in [28]. At �rst we �x q as the solution to the continuous optimal
control problem and let

Qad
σ,ε =

{
qσ ∈ Qad

σ

∣∣ ‖q − qσ‖H2(I) ≤ ε
}
, (2.128)
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2. A model problem

where ε > 0 is chosen su�ciently small such that Lemma 2.3.59, (2.127), holds for all qσ ∈ Qad
σ,ε.

Let iσ : Q → Qσ be the interpolation operator from De�nition 2.2.1, with Lemma 2.2.2 it follows
that Qσ 3 iσq → q in H2(I), hence Qad

σ,ε 6= ∅ for σ = σ(ε) su�ciently small, where we have to
assume that q ∈ int(Qad). Let qσ,ε be the optimal solution to

min
qσ,ε∈Qadσ,ε

j(qσ,ε). (2.129)

Lemma 2.3.65. For σ → 0 it holds that j(qσ,ε)→ j(q).

Proof. We have

j(qσ,ε) ≥ j(q),

due to the de�nition of q, and using Lemma 2.3.24 we get

j(qσ,ε)− j(q) ≤ j(iσq)− j(q) ≤ c ‖iσq − q‖H2(I) → 0 for σ → 0.

Lemma 2.3.66. For σ → 0 it holds that
∥∥qσ,ε − q∥∥H2(I)

→ 0.

Proof. Using Lemma 2.3.59 it follows that

j(qσ,ε)− j(q) ≥
β

2

∥∥qσ,ε − q∥∥2

H2(I)
,

and the proof follows with Lemma 2.3.65.

Lemma 2.3.67. For σ su�ciently small, qσ,ε is a local solution to the partially discretized prob-
lem (2.59).

Proof. We have to show that all elements qσ ∈ Qad
σ which are su�ciently close to qσ,ε are also

elements of Qad
σ,ε. Choose σ such that

∥∥qσ,ε − q∥∥H2(I)
≤ ε

2 . Now, if qσ ∈ Q
ad
σ and

∥∥qσ − qσ,ε∥∥ ≤ ε
2 it

holds that
‖q − qσ‖H2(I) ≤

∥∥q − qσ,ε∥∥H2(I)
+
∥∥qσ,ε − qσ∥∥H2(I)

≤ ε,

which shows that qσ ∈ Qad
σ,ε.

Now �x qσ as a local solution to (2.59), close to q, and de�ne

Qad
σ,h,ε =

{
qσ ∈ Qad

σ

∣∣ ‖qσ − qσ‖H2(I) ≤ ε
}
, (2.130)

where σ and ε have to be chosen su�ciently small such that Lemma 2.3.60 holds in qσ for all
qσ ∈ Qad

σ,h,ε. Now let qσ,h,ε be the optimal solution to

min
qσ,h,ε∈Qadσ,h,ε

jh(qσ,h,ε). (2.131)

Lemma 2.3.68. For h→ 0 it holds that jh(qσ,h,ε)→ j(qσ).
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Proof. It holds that

jh(qσ,h,ε) ≤ jh(qσ),

and Lemma 2.3.28 shows

jh(qσ,h,ε)− j(qσ) ≤ jh(qσ)− j(qσ) ≤ ch1/2.

Because of

j(qσ) ≤ j(qσ,h,ε),

it follows that

jh(qσ,h,ε)− j(qσ) ≥ jh(qσ,h,ε)− j(qσ,h,ε) ≥ −ch1/2.

Lemma 2.3.69. For h→ 0 it holds that j(qσ,h,ε)→ j(qσ).

Proof. It holds that∣∣j(qσ,h,ε)− j(qσ)
∣∣ ≤ ∣∣j(qσ,h,ε)− jh(qσ,h,ε)

∣∣+
∣∣jh(qσ,h,ε)− j(qσ)

∣∣→ 0,

where for the �rst term we used Lemma 2.3.28, for the second term we used Lemma 2.3.68.

Lemma 2.3.70. For h→ 0 it holds that
∥∥qσ,h,ε − qσ∥∥H2(I)

→ 0.

Proof. Using Lemma 2.3.60 it holds that

j(qσ,h,ε)− j(qσ) ≥ β

4

∥∥qσ,h,ε − qσ∥∥2

H2(I)
,

and the proof follows with Lemma 2.3.69.

Lemma 2.3.71. For h su�ciently small, qσ,h,ε is also a local solution to the partially discretized
problem (2.66).

Proof. We have to show that all elements qσ ∈ Qad
σ , which are su�ciently close to qσ,h,ε are also ele-

ments of Qad
σ,h,ε. Choose h such that

∥∥qσ,h,ε − qσ∥∥H2(I)
≤ ε

2 . Now, if qσ ∈ Q
ad
σ and

∥∥qσ − qσ,h,ε∥∥ ≤ ε
2 ,

then it holds that

‖qσ − qσ‖H2(I) ≤
∥∥qσ − qσ,h,ε∥∥H2(I)

+
∥∥qσ,h,ε − qσ∥∥H2(I)

≤ ε,

which gives qσ ∈ Qad
σ,h,ε.

At last, �x qσ,h as a local optimal solution to (2.66) and de�ne

Qad
σ,h,k,ε =

{
qσ ∈ Qad

σ

∣∣ ∥∥qσ − qσ,h∥∥H2(I)
≤ ε
}
, (2.132)

where σ, h and ε are chosen su�ciently small such that Lemma 2.3.62 holds in qσ,h for all qσ ∈ Qad
σ,h,k,ε.

Now let qσ,h,k,ε be the optimal solution to

min
qσ,h,k,ε∈Qadσ,h,k,ε

jh,k(qσ,h,k,ε). (2.133)
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2. A model problem

Lemma 2.3.72. For k → 0 it holds that jh,k(qσ,h,k,ε)→ jh(qσ,h).

Proof. It holds that

jh,k(qσ,h,k,ε) ≤ jh,k(qσ,h),

and using Lemma 2.3.34 we conclude that

jh,k(qσ,h,k,ε)− jh(qσ,h) ≤ jh,k(qσ,h)− jh(qσ,h) ≤ ck1/2.

Because of

jh(qσ,h) ≤ jh(qσ,h,k,ε)

it follows that

jh,k(qσ,h,k,ε)− jh(qσ,h) ≥ jh,k(qσ,h,k,ε)− jh(qσ,h,k,ε) ≥ −ck1/2.

Lemma 2.3.73. For k → 0 it holds that jh(qσ,h,k,ε)→ jh(qσ,h).

Proof. It holds that∣∣jh(qσ,h,k,ε)− jh(qσ,h)
∣∣ ≤ ∣∣jh(qσ,h,k,ε)− jh,k(qσ,h,k,ε)

∣∣+
∣∣jh,k(qσ,h,k,ε)− jh(qσ,h)

∣∣→ 0,

where for the �rst term we used Lemma 2.3.34, for the second term we used Lemma 2.3.72.

Lemma 2.3.74. For k → 0 it holds that
∥∥qσ,h,k,ε − qσ,h∥∥H2(I)

→ 0.

Proof. Using Lemma 2.3.73 it follows that

jh(qσ,h,k,ε)− jh(qσ,h) ≥ β

8

∥∥qσ,h,k,ε − qσ∥∥2

H2(I)
,

and the proof follows with Lemma 2.3.62.

Lemma 2.3.75. For k su�ciently small, qσ,h,k,ε is also a local solution to the fully discretized
problem (2.73).

Proof. We have to show that all elements qσ ∈ Qad
σ , which are su�ciently close to qσ,h,k,ε are

also elements of Qad
σ,h,k,ε. Choose k such that

∥∥qσ,h,k,ε − qσ∥∥H2(I)
≤ ε

2 . Then, for qσ ∈ Qad
σ and∥∥qσ − qσ,h,k,ε∥∥H2(I)

≤ ε
2 it holds that∥∥qσ,h − qσ∥∥H2(I)

≤
∥∥qσ,h − qσ,h,k,ε∥∥H2(I)

+
∥∥qσ,h,k,ε − qσ∥∥H2(I)

≤ ε,

which shows that qσ ∈ Qad
σ,h,k,ε.

Lemma 2.3.76. There exist sequences (qσ)σ>0,
(
qσ,h

)
σ,h>0

and
(
qσ,h,k

)
σ,h,k>0

of local optimal so-
lutions to (2.59), (2.66) and (2.73), respectively, with

lim
σ→0
‖qσ − q‖H2(I) = lim

σ,h→0

∥∥qσ,h − q∥∥H2(I)
= lim

σ,h,k→0

∥∥qσ,h,k − q∥∥H2(I)
= 0.
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Proof. The existence of (qσ)σ>0 follows with Lemma 2.3.66 and Lemma 2.3.67, the existence of(
qσ,h

)
σ,h>0

follows with Lemma 2.3.70, Lemma 2.3.71 and the �rst part of this lemma, and the

existence of
(
qσ,h,k

)
σ,h,k>0

follows with Lemma 2.3.74, Lemma 2.3.75 and the �rst two parts of this
lemma.

No we can �nally �nish the proof of Theorem 2.3.1.

Proof. Let q be an optimal control for (2.27) and let qσ,h,k be an optimal control for (2.73) for σ,
h and k su�ciently small, such that Lemma 2.3.63 holds for qσ,h,k. The existence of such a qσ,h,k
is guaranteed by Lemma 2.3.76. Now there exists t ∈ [0, 1] such that with ξ = tq + (1 − t)qσ,h,k it
holds that

c
∥∥q − qσ,h,k∥∥2

H2(I)
≤ j′′h,k(ξ)(q − qσ,h,k, q − qσ,h,k)

= j′h,k(q)(q − qσ,h,k)− j′h,k(qσ,h,k)(q − qσ,h,k)
= j′h,k(q)(q − qσ,h,k)− j′h,k(qσ,h,k)(q − iσq),

where we used the �rst order optimality condition in qσ,h,k. Using the �rst order optimality condition
in q we get

c
∥∥q − qσ,h,k∥∥2

H2(I)
≤ j′h,k(q)(q − qσ,h,k)− j′(q)(q − qσ,h,k)

+ j′h,k(q)(q − iσq)− j′h,k(qσ,h,k)(q − iσq)
+ j′(q)(q − iσq)− j′h,k(q)(q − iσq),

and using Lemma 2.3.41, Lemma 2.3.50 and Lemma 2.3.36 we arrive at∥∥q − qσ,h,k∥∥2

H2(I)
≤ c

(
h2 + k2

) ∥∥q − qσ,h,k∥∥H2(I)

+ c
∥∥q − qσ,h,k∥∥H2(I)

‖q − iσq‖H2(I)

+ c
(
h2 + k2

)
‖q − iσq‖H2(I) .

With Young's inequality we get the existence of a c1 > 0 such that

∥∥q − qσ,h,k∥∥2

H2(I)
≤ c1

((
h2 + k2

)2
+ ‖q − iσq‖2H2(I)

)
+

1

2

∥∥q − qσ,h,k∥∥2

H2(I)
.

For a, b ≥ 0 it holds that
√
a2 + b2 ≤ a+ b, and using Lemma 2.2.2 we �nally end up with∥∥q − qσ,h,k∥∥H2(I)
≤ c

(
σ2 + h2 + k2

)
.
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3. Optimization of eigenvalues

The aim of this chapter is to apply the framework introduced in Chapter 2 to a shape optimization
problem where the cost functional includes eigenvalues of a partial di�erential operator.
This chapter is organized as follows. In Section 3.1 we present the problem under consideration

and apply the framework presented in Section 2.1 to this problem, i.e. we transform the problem
onto a �xed reference domain, show existence of an optimal solution and prove some regularity
and di�erentiability results. As even normalized eigenfunctions are only de�ned up to their sign,
Section 3.2 deals with estimating the di�erence between two eigenfunctions corresponding to dif-
ferent controls. In Section 3.3 we discretize the original problem using �nite elements similar to
Section 2.2. Finally, in Section 3.4 we prove an a-priori error estimate for the error between the
optimal control and a sequence of local optimal controls to the fully discretized problem.

3.1. The problem

Within this chapter we focus on the maximization of the distance between the �rst two eigenvalues
of a partial di�erential operator corresponding to the transmission problem. This choice of the
cost functional may be motivated as follows. Multiple eigenvalues are in general no longer Fréchet-
di�erentiable with respect to domain perturbations, this irregularity is also responsible for some
physical e�ects. In the context of musical instruments, for example, it is possible to hear some
undesired interferences if some of the lower eigenvalues are too close to each other. For a more
detailed investigation onto that topic we refer to [43].
The exact de�nition of the cost functional to be minimized will be given in (3.10), we start with

some preliminaries. In what follows, the notation will be very similar to that in Chapter 2. As in
Section 2.1, let q ∈ Q = H2

per(I) with I = (0, 2π) be the control variable, and let

Ωq =
{

(x, y) ∈ R2
∣∣− 2 < x, y < 2

}
⊂ R2,

be the interior of a square with side length 4, centered at the origin and sides parallel to the axes.
Let Ωq be divided into an inner, star-shaped domain,

Ωq,0 =
{

(x, y) ∈ R2
∣∣ r < 1 + q(ϕ), r =

√
x2 + y2, ϕ = arg(x+ iy)

}
,

and the outer domain,

Ωq,1 = Ωq\Ωq,0,

see Figure 3.1. In order to exclude a possible degeneracy of the domain Ωq,0 we �x ε > 0 and de�ne

Q
ad

=
{
q ∈ Q| q(ϕ) ≥ −1 + ε ∀ϕ ∈ I and Ωq,0 ⊂ Ωq

}
. (3.1)

As H2(I) ↪→ C1,1/2(I), (3.1) is well-de�ned. Now let d > 0 be a constant which shall remain �xed
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Γq,0

Ωq,1

Ωq,0
Γq

Figure 3.1.: The original domain Ωq

Ω0

Ω1

Γ0

Γ

Figure 3.2.: The transformed domain Ω

throughout this chapter and let L̃ : H1
0 (Ωq) → H−1(Ωq) be the partial di�erential operator such

that for u ∈ H1
0 (Ωq) and f ∈ H−1(Ωq) the equation L̃u = f shall be a formulation for u being the

unique weak solution to
−d∆u = f in Ωq,0, −∆u = f in Ωq,1,

[u]q = 0 on Γq,0 = ∂Ωq,0, u = 0 on Γq = ∂Ωq,

d ∂nuq,− = ∂nuq,+ on Γq,0,

(3.2)

where [u]q is de�ned as follows. For x ∈ Γq,0 let

uq,+(x) = lim
y→x
y∈Ωq,1

u(y), uq,−(x) = lim
y→x
y∈Ωq,0

u(y), (3.3)

be the function values when approaching Γq,0 from either Ωq,1 or Ωq,0 in a nontangential way, cf. [40],
and let

[u]q = uq,+ − uq,−,

be the jump of u over Γq,0. It can easily be derived that the weak formulation of (3.2) reads as

(∇u,∇v)Ωq,1
+ d (∇u,∇v)Ωq,0

= (f, v)Ωq
∀v ∈ H1

0 (Ωq). (3.4)

As H1
0 (Ωq) is compactly embedded into L2(Ωq), it follows that L̃−1 is a compact and self-adjoint

operator on L2(Ωq). Hence, for each �xed q ∈ Qad
, the spectral theorem for compact operators,

Theorem A.1.2, yields the existence of a sequence (λi)i∈N ⊂ R+ with 0 < λ1 ≤ λ2 ≤ . . . (counted
with multiplicity) and

lim
i→∞

λi =∞,

and a sequence of eigenfunctions (ui)i∈N ⊂ H1
0 (Ωq) with

L̃ui = λiui ∀i ∈ N, (3.5)

and eigenfunctions to di�erent eigenvalues are orthogonal with respect to the L2-scalar product. In
order to compute the i-th eigenvalue for general i ∈ N one may use the following lemma, a proof
can be found in the survey article [15], Chapter 7.
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Lemma 3.1.1. Let V and H be two real Hilbert spaces with dense and continuous embedding
V ↪→ H. Let a : V × V → R and b : H ×H → R be two symmetric and continuous bilinear forms.
Let a(·, ·) be V -elliptic, i.e. there exists α > 0 such that a(v, v) ≥ α ‖v‖2V for all v ∈ V , and let b(·, ·)
de�ne a scalar product on H. For i ∈ N, let V (i) denote the set of all subspaces of V of dimension
i. Then the i-th eigenvalue corresponding to the equation

a(ui, v) = λi b(ui, v) ∀v ∈ V,

is given via

λi = min
E∈V (i)

max
v∈E

a(v, v)

b(v, v)
, (3.6)

where the minimum with respect to the subspace is attained for E being the subspace spanned by the
�rst i eigenfunctions, and the maximum with respect to the element of that subspace is attained for
v being an eigenfunction to λi.

Now let

µq = 1 + (d− 1)χΩq,0 ,

with χΩq,0 being the characteristic function of Ωq,0, and

aq(u, v) = (∇u, µq∇v)Ωq
, (3.7)

bq(u, v) = (u, v)Ωq
. (3.8)

Then the weak formulation of (3.5), including a normalizing condition, reads as{
aq(ui, v) = λi bq(ui, v) ∀v ∈ H1

0 (Ωq),

bq(ui, ui) = 1.
(3.9)

For the rest of this chapter we consider the variational problem. The problem under consideration
is now given via

min
q∈Qad

j(q) = λ1(q)− λ2(q) +
α

2
‖q‖2H2(I) , (3.10)

subject to (3.6) and (3.9), where α > 0 is a given constant.
Remark 3.1.2. With λi(q) for i ∈ N and q ∈ Qad we will always denote the i-th eigenvalue for a
given control q, which can be computed via (3.6).
In order to prove the existence of a solution to (3.10) we will at �rst show that j is uniformly

bounded from below. This follows from the fact that λ2(q) is uniformly bounded from above for
q ∈ Qad

, which is a direct consequence of the following lemma.

Lemma 3.1.3. Let i ∈ N, then there exists c = c(i) > 0 such that λi(q) ∈ (0, c] for all q ∈ Qad
.

Proof. As all the eigenvalues are known to be positive we just have to prove the upper bound. Let λ̃i
denote the i-th eigenvalue for the Laplacian on Ωq which does not depend on q. Using Lemma 3.1.1
it follows that

λi(q) = min
E∈V (i)

max
v∈E

(∇v, µq∇v)

(v, v)

≤ max {1, d} min
E∈V (i)

max
v∈E

(∇v,∇v)

(v, v)

= max {1, d} λ̃i.
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Remark 3.1.4. The eigenvalues for the Laplacian on a rectangle can be computed exactly. For exam-
ple, on the square D = (−2, 2)×(−2, 2) the set of eigenvalues is given by

{
π2

16

(
m2 + n2

)∣∣∣m,n ∈ N
}
.

Lemma 3.1.3 ensures that

lim
‖q‖H2(I)→∞

j(q) =∞.

It follows that there exists C̃ = C̃(α) such that we can restrict the search for a minimum onto the
set

Qad =
{
q ∈ Q| ‖q‖H2(I) ≤ C̃

}
. (3.11)

As within Subsection 3.1.1 we have to assume that the constant C̃ is su�ciently small, it is reasonable
to assume that Qad ⊂ Qad

, i.e. the elements of Qad are not degenerated in the sense of (3.1). Before
we continue in proving the existence of a solution to (3.10) we will apply a transformation argument
similar to Subsection 2.1.1.

3.1.1. Transformation of the problem

In order to solve (3.10) we will use a transformation TF to transform the equation (3.9) onto a
partitioned reference domain, see Figure 3.2. Let Ω = Ωq, let Ω0 be the open unit circle centered
at the origin and let Ω1 = Ω\Ω0. Let F be the weak solution to

−∆F = 0 in Ωj , j ∈ {0, 1} ,
F = 0 on Γ = ∂Ω,

F = q n on Γ0 = ∂Ω0,

(3.12)

where n shall always denote the outer unit normal with respect to Ω0. Similar to Subsubsec-
tion 2.1.3.2, it is possible to reformulate (3.12) in variational form which then shall be denoted
with

G(q,G) = (F,G) ∀G ∈ L2(Ω), (3.13)

where G : L2(Γ0)× L2(Ω)→ R is bilinear and continuous. Let TF = Id +F be the transformation,
it now holds that

Ωq,j = TF (Ωj),

for j ∈ {0, 1}, where we also have to assume that C̃ from (3.11) is chosen su�ciently small such
that TF is a bijection from Ωq onto Ω for all q ∈ Qad, cf. Assumption 2.1.11 and the lemmata cited
therein.

Remark 3.1.5. With F (q) we will always denote the solution to (3.12) for a given control q ∈ Qad.

Lemma 3.1.6. Let q, p ∈ Qad with corresponding transformations F and E, respectively. Then it
holds that

F0 = F |Ω0
∈ H5/2(Ω0) ↪→W 2,4(Ω0) ↪→ C1,1/2(Ω0), (3.14)

F1 = F |Ω1
∈W 2,4(Ω1) ↪→ C1,1/2(Ω1), (3.15)

F ∈W 1,∞(Ω) = C0,1(Ω), and ‖F‖W 1,∞(Ω) ≤ cε ‖q‖H3/2+ε(I) , (3.16)

‖F − E‖W 1,∞(Ω) ≤ cε ‖q − p‖H3/2+ε(I) . (3.17)
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Proof. The regularity results for F0 and F1, (3.14) and (3.15), follow with Theorem A.1.28, Theo-
rem A.1.38 and Theorem A.1.4. As F0 and F1 are both continuous and coincide on the boundary
Γ0 due to (3.12) it follows that F is continuous on Ω, its regularity can be seen as follows. Let
x, y ∈ Ω. If either x, y ∈ Ω0 or x, y ∈ Ω1, then the regularity result within (3.16) follows from the
regularity of F0 and F1. Now, without loss of generality, let x ∈ Ω0, y ∈ Ω1 and let z ∈ Γ0 be the
intersection of the line segment xy with Γ0, |x− y| = |x− z| + |z − y|. In addition, let L0 and L1

be the Lipschitz constants of F0 and F1, respectively. Then it holds that

|F (x)− F (y)| ≤ |F (x)− F (z)|+ |F (z)− F (y)|
≤ L0 |x− z|+ L1 |z − y|
≤ max {L0, L1} (|x− z|+ |z − y|)
= max {L0, L1} |x− y| .

From the regularity results cited above it follows that q ∈ C1,ε(I) is su�cient for F0 and F1 to be
Lipschitz, and L0 and L1 continuously depend on ‖q‖C1,ε(I). Because of H3/2+ε(I) ↪→ C1,ε(I) we
end up with

|F (x)− F (y)| ≤ cε ‖q‖H3/2+ε(I) |x− y| ,

which proves (3.16). The last assertion, (3.17), follows with (3.16) and the fact that q 7→ F (q) is
linear.

For given q ∈ Qad with F = F (q) and transformation TF it is now possible to transform (3.9)
onto the reference domain, which then reads as{

(∇ui(q), µAF · ∇v) = λi(q) (ui(q), vγF ) ∀v ∈ H1
0 (Ω),

(ui(q), ui(q)γF ) = 1,
(3.18)

with µ = 1 + (d − 1)χΩ0 , where χΩ0 is the characteristic function of Ω0, γF = det (DTF ) and
AF = DT−1

F ·DT−TF γF . Regularity and di�erentiability results concerning these functions can be
proven similar to Lemma 2.1.6. In what follows we will use the following abbreviations,

a(F )(u, v) = (∇u, µAF · ∇v) , (3.19)

b(F )(u, v) = (u, vγF ) , (3.20)

such that (3.18) can be rewritten as{
a(F )(ui(q), v) = λi(q) b(F )(ui(q), v) ∀v ∈ H1

0 (Ω),

b(F )(ui(q), ui(q)) = 1.

Remark 3.1.7. Let ui(q) denote the i-th eigenfunction for given q ∈ Qad and i ∈ N, which can be
computed via (3.18).

The transformed problem now reads as

min
q∈Qad

j(q) = λ1(q)− λ2(q) +
α

2
‖q‖2H2(I) , (3.21)

subject to (3.13), (3.6) and (3.18).
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3.1.2. On the existence of eigenfunctions

Although the existence of real eigenvalues and eigenfunctions for the original equation (3.2) is well-
known, here we give rigorous proofs for their existence in the transformed setting (3.18). The
approach presented within this subsection will also be needed in the context of error estimation
later on.

De�nition 3.1.8. For given q ∈ Qad and F = F (q), let L = Lq : H1
0 (Ω) → H−1(Ω) be the

di�erential operator related to the bilinear form (3.19),

Lu = −div(µAF · ∇u) .

Furthermore, let L−1 : H−1(Ω) → H1
0 (Ω) be the inverse of L with respect to the scalar product

induced by the bilinear form b(F )(·, ·), i.e. u = L−1f is de�ned as the unique solution to

(∇u, µAF · ∇v) = (f, vγF )H−1,H1
0

∀v ∈ H1
0 (Ω). (3.22)

The following spaces will be used in order to simplify notation. The equivalence of the norms
follows from Subsection 3.1.1.

De�nition 3.1.9. For �xed q ∈ Qad and F = F (q), let L2
b(Ω) = L2

b(Ω, q) be the space L2(Ω)
equipped with the scalar product induced by (3.20),

(u, v)L2
b(Ω) = (u, vγF ) .

The L2
b(Ω)-norm is equivalent to the standard L2(Ω)-norm.

De�nition 3.1.10. For �xed q ∈ Qad and F = F (q), let H1
0,a(Ω) = H1

0,a(Ω, q) be the space H
1
0 (Ω)

equipped with the scalar product induced by (3.19),

(u, v)H1
0,a(Ω) = (∇u, µAF · ∇v) .

The H1
0,a(Ω)-norm is equivalent to the standard H1

0 (Ω)-norm.

Lemma 3.1.11. Let q ∈ Qad, then the operator L−1 from De�nition 3.1.8 is compact from L2(Ω)
onto H1

0 (Ω).

Proof. Let L̃−1 be the solution operator for (3.2). From [95], Theorem 5 and Remark 5.1, it
follows that L̃−1 maps L2(Ω) onto H

3/2−ε
0 (Ω) for ε > 0. As H3/2−ε

0 (Ω) is compactly embed-
ded into H1

0 (Ω) for ε < 1/2, it follows that L̃−1 is compact from L2(Ω) onto H1
0 (Ω). Because

L−1(f) =
(
L̃−1(f ◦ T−1

F )
)
◦ TF is the concatenation of linear and compact operators, the result

follows.

As L−1 is selfadjoint and compact over H1
0 (Ω) due to Lemma 3.1.11 and hence also over H1

0,a(Ω),
it follows from Theorem A.1.2 that there exists a sequence of eigenvalues (νi)i∈N ⊂ R+

0 with 0 as
only limit point, and a sequence of eigenfunctions (ui)i∈N ⊂ H1

0,a(Ω) with

L−1ui = νiui.

Taking the H1
0,a(Ω)-scalar product on both sides yields(

∇
(
L−1ui

)
, µAF · ∇v

)
= (∇ (νiui) , µAF · ∇v) ∀v ∈ H1

0,a(Ω).
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Setting λi = ν−1
i and using the de�nition of L−1 we arrive at

(∇ui, µAF · ∇v) = λi (ui, vγF ) ∀v ∈ H1
0,a(Ω).

From

λi (ui, ujγF ) = (∇ui, µAF · ∇uj) = λj (ui, ujγF ) ,

it also follows that the eigenfunctions are mutually orthogonal,

a(F )(ui, uj) = b(F )(ui, uj) = 0, (3.23)

for i 6= j.

3.1.3. Existence of a solution

Within this subsection we are going to prove that the variational problem (3.10) has a solution. As
the original problem is equivalent to the transformed problem (3.21), we will show the existence of
a minimizer just for the transformed one. First we need a continuity result for the eigenvalues, the
following theorem can be found in [56], Theorem 2.3.1.

Theorem 3.1.12. Let T1 and T2 be two self-adjoint, compact and positive operators on a separable
Hilbert space V . Let i ∈ N, and let νi(T1) and νi(T2) be their i-th eigenvalues, respectively. Then it
holds that

|νi(T1)− νi(T2)| ≤ sup
v∈V

(v, (T1 − T2)v)V
‖v‖2V

≤ sup
v∈V

‖(T1 − T2)(v)‖V
‖v‖V

= ‖T1 − T2‖V .

Lemma 3.1.13. Let i ∈ N and let q, p ∈ Qad with corresponding transformations F and E, respec-
tively. Then it holds that

|λi(q)− λi(p)| ≤ c sup
u∈H1

0 (Ω)

|(∇u, µ (AF −AE) · ∇u)|+
∣∣(u2, γF − γE

)∣∣
‖u‖2H1

0 (Ω)

≤ cε ‖q − p‖H3/2+ε(I) .

Proof. This lemma follows from Theorem 3.1.12 and Lemma 3.4.6.

Theorem 3.1.14. Problem (3.21) has a solution.

Proof. Let (qn)n∈N ⊂ Qad be a minimizing sequence with

lim
n→∞

j(qn) = inf
q∈Qad

j(q) = j.

As Qad is a bounded, closed and convex subset of the Hilbert space Q it is weakly sequentially
compact. It follows that there exists q ∈ Qad and a subsequence of (qn)n∈N, denoted in the same
way, with

qn ⇀ q in H2(I),

qn → q in H2−ε(I),
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where the strong convergence follows from the fact that H2(I) is compactly embedded into H2−ε(I).
With Lemma 3.1.13 it follows that λi(qn)→ λi(q) for n→∞ and i ∈ {1, 2}. As the squared norm
is lower semicontinuous it follows that

lim inf
n→∞

‖qn‖2H2(I) ≥ ‖q‖
2
H2(I) ,

hence

lim inf
n→∞

j(qn) ≥ j(q),

and from the de�nition of j it follows that

j(q) = j.

Remark 3.1.15. As q 7→ λi(q) is highly nonlinear, the optimal control q need not be unique.

3.1.4. Regularity of the eigenfunctions

The aim of this subsection is to investigate in the regularity of the eigenfunctions, i.e. the solutions
(ui, λi) to (3.18),

(∇ui, µAF · ∇v) = λi (ui, vγF ) ∀v ∈ H1
0 (Ω),

where it is known that AF ∈ C0,1/2(Ωj) for j ∈ {0, 1}. Here we will prove some general regularity
results for ui, in a later section we will show that the optimal control q possesses some even higher
regularity which will also improve the regularity of the associated optimal eigenfunctions. As we
just focus on the regularity of the eigenfunctions, we omit the normalizing condition in (3.18) within
this subsection.

Lemma 3.1.16. Let q ∈ Qad, i ∈ N and ui = ui(q), then it holds that

‖ui‖H1
0 (Ω) ≤ ci ‖ui‖L2(Ω) .

Proof. Let F = F (q) and λi = λi(q), as all the matrices µAF are uniformly elliptic for q ∈ Qad it
follows that

c ‖ui‖2H1
0 (Ω) ≤ a(F )(ui, ui) = λib(F )(ui, ui)

≤ cλi ‖ui‖2L2(Ω) ,

and the proof follows with Lemma 3.1.3.

Lemma 3.1.17. There exists p ∈ (2,∞) such that for all q ∈ Qad and i ∈ N it holds that
ui(q) ∈W 1,p(Ω) and

‖ui‖W 1,p(Ω) ≤ ci,p ‖ui‖L2(Ω) .

Proof. Let F = F (q) and λi = λi(q). Again we use the fact that for q ∈ Qad the ellipticity constants
of the matrices µAF can be bounded uniformly. The existence of such a p > 2 now follows from
Theorem A.1.32. From the cited theorem it also follows that

‖ui‖W 1,p(Ω) ≤ cp ‖λiuiγF ‖Lp(Ω) ≤ ci,p ‖ui‖Lp(Ω)

≤ ci,p ‖ui‖H1
0 (Ω) ≤ ci,p ‖ui‖L2(Ω) ,

where we used the continuous embedding H1(Ω) ↪→ Lp(Ω) for p < ∞ in dimension n = 2 and
Lemma 3.1.16.
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The following lemma can be proven by a direct calculation.

Lemma 3.1.18. Let f ∈ C1,α(Y,Z) and g ∈ C1,α(X,Y ) for some α ∈ (0, 1] and closed subsets
X,Y and Z of some Banach spaces. Then it holds that f ◦ g ∈ C1,α(X,Z) and

‖f ◦ g‖C1,α(X,Z) ≤ c ‖f‖C1,α(Y,Z) ‖g‖C1,α(X,Y ) .

Lemma 3.1.19. Let q ∈ Qad, F = F (q), j ∈ {0, 1} and K ⊂⊂ Ωj. Then F |K is analytic.

Proof. This lemma is a direct consequence of Weyl's lemma, cf. [108], Lemma 2, and the fact that
F is weakly harmonic in Ωj for j ∈ {0, 1}.

Lemma 3.1.20. Let i ∈ N, q ∈ Qad, ui = ui(q), j ∈ {0, 1} and let K ⊂⊂ Ωj be su�ciently smooth.
Then it holds that ui ∈ C1,1/2(K) for i ∈ N and there exists ci = ci(K) such that

‖ui‖C1,1/2(K) ≤ ci ‖ui‖L2(Ω) .

Proof. Let F = F (q) and K ′ = T−1
F (K). Due to Lemma 3.1.19, F |K is analytic, and as TF

is bijective it follows that K ′ is su�ciently smooth. On K ′ it holds that uq,i = ui ◦ T−1
F solves

−∆uq,i = λ̃uq,i, where λ̃i = λi or λ̃i = λi
d , depending on whether j is either 0 or 1. Us-

ing the results presented in [56], Section 1.2.4 and the references cited therein it follows that
‖ui,q‖W 2,4(K′) ≤ c(i,K) ‖ui,q‖L2(Ωq)

. The regularity result and the estimate for ui|K = ui,q ◦ TF
follow with the continuous embeddingW 2,4(K ′) ↪→ C1,1/2(K ′), Lemma 3.1.18 and Lemma 3.1.6.

Next we are going to prove a result dealing with the regularity of the eigenfunctions up to the
boundary Γ0. The following theorem can be found in [81], Corollary 1.3.

Theorem 3.1.21. Let Ω ⊂ Rn be a bounded domain with C1,α-boundary Γ with α ∈ (0, 1). Let
L ∈ N and for 1 ≤ m ≤ L let Ωm be a subdomain of Ω with C1,α-boundary and Ω =

⋃L
m=1 Ωm.

For 1 ≤ m ≤ L let A(m) ∈ C0,µ(Ωm) with µ ∈ (0, 1] be a symmetric and positive de�nite matrix,
and let the matrix A be de�ned via A|Ωm = A(m). Suppose that 0 < c1 ≤ A ≤ c2 <∞ on Ω in the
sense of symmetric and positive de�nite matrices. In a likewise manner, let h(m) ∈ C0,µ(Ωm) and
h|Ωm = h(m). At last, let f ∈ L∞(Ω) and g ∈ C1,µ(Γ). Then the restriction of the weak solution u
to {

−div(A · ∇u) = f + div(h) in Ω,

u = g on Γ,
(3.24)

onto Ωm belongs to C1,α′(Ωm) for 0 < α′ ≤ min
{
µ, α

(α+1)n

}
and there holds the estimate

max
1≤m≤L

‖u‖C1,α′ (Ωm) ≤ c
(
‖f‖L∞(Ω) + max

1≤m≤L

∥∥∥h(m)
∥∥∥
C0,α′ (Ωm)

+ ‖g‖C1,α′ (Γ)

)
,

with the constant c being independent of f , h(m) and g.

Coming back to our situation, we obtain:

Corollary 3.1.22. Let i ∈ N, q ∈ Qad, ui = ui(q), ε > 0, and let Ωε = {x ∈ Ω|dist(x,Γ) > ε}.
Then it holds that

ui|Ω0
∈ C1,1/6(Ω0),

‖ui‖C1,1/6(Ω0) ≤ ci ‖ui‖L2(Ω) ,
and

ui|Ω1∩Ωε
∈ C1,1/6(Ω1 ∩ Ωε),

‖ui‖C1,1/6(Ω1∩Ωε)
≤ ci,ε ‖ui‖L2(Ω) .
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Proof. Let K ⊂⊂ Ω1 be su�ciently smooth such that ∂Ωε ⊂ K. Lemma 3.1.20 now yields

‖ui‖C1,1/6(∂Ωε)
≤ c ‖ui‖C1,1/2(K) ≤ ci ‖ui‖L2(Ω) .

This corollary now follows with Lemma 3.1.17 which ensures that ui ∈ L∞(Ω) and Theorem 3.1.21.

The following lemmata are proven in order to show H3/2−ε(Ω) ∩W 1,p(Ω)-regularity of ui.

Lemma 3.1.23. Let q ∈ Qad, i ∈ N, ui = ui(q), p ∈ [2,∞) and ε > 0. Then there exists

ui,Γ ∈W 1,p
0 (Ω) ∩W 1+1/p−ε,p(Ω),

such that ui,Γ|Γ0
= ui|Γ0

and

‖ui,Γ‖W 1+1/p−ε,p(Ω) ≤ ci,ε,p ‖ui‖L2(Ω) .

Proof. With Corollary 3.1.22 it follows that ui|Γ0
∈ C1,1/6(Γ0) ↪→ W 7/6,p(Γ0) for all p ≤ ∞. In

addition, for ε > 0 su�ciently small let the annulus K be de�ned as

K = {x ∈ Ω1|dist(x,Γ0) ≤ ε} ⊂ Ω1.

Using Theorem A.1.3 it follows that for p ∈ [6/5,∞) there exists a function ui,Γ ∈ L1(Ω0 ∪K) with
the following properties.

ui,Γ|Ω0
∈W 7/6+1/p,p(Ω0) ↪→ C1,1/6−1/p(Ω0),

ui,Γ|Γ0
= ui|Γ0

,

∂nui,Γ|Γ0
= 0,

‖ui,Γ‖W 7/6+1/p,p(Ω0) ≤ cp ‖ui‖W 7/6,p(Γ0) ,

(3.25)

and

ui,Γ|K ∈W
7/6+1/p,p(K) ↪→ C1,1/6−1/p(K),

ui,Γ|∂K\Γ0
= ∂nui,Γ|∂K\Γ0

= 0,

‖ui,Γ‖W 7/6+1/p,p(K) ≤ cp ‖ui‖W 7/6,p(Γ0) .

(3.26)

As ui,Γ is continuous along Γ0, it follows that

‖ui,Γ‖pW 1,p(K∪Ω0)
= ‖ui,Γ‖pW 1,p(K)

+ ‖ui,Γ‖pW 1,p(Ω0)

≤ cp ‖ui‖pW 7/6,p(Γ0)

≤ cp ‖ui‖pC1,1/6(Ω0)

≤ ci,p ‖ui‖pL2(Ω)
,

(3.27)
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where we used Corollary 3.1.22. From the de�nition of fractional norms (B.1) it now follows that

|ui,Γ|pW 1+1/p−ε,p(K∪Ω0)
=

∫
K∪Ω0

∫
K∪Ω0

|∇ui,Γ(x)−∇ui,Γ(y)|p

|x− y|2+p(1/p−ε) dx dy

≤ cp

((
|ui,Γ|pW 1+1/p−ε,p(K)

+ |ui,Γ|pW 1+1/p−ε,p(Ω0)

)
+

∫
K

∫
Ω0

|∇ui,Γ(x)−∇ui,Γ(y)|p

|x− y|2+p(1/p−ε) dx dy

)

≤ cε,p ‖ui,Γ‖pW 7/6,p(Γ0)
+ max

{
‖ui,Γ‖pC1(K)

, ‖ui,Γ‖pC1(Ω0)

}∫
K

∫
Ω0

1

|x− y|2+p(1/p−ε) dx dy

≤ cε,p
(
‖ui,Γ‖pC1,1/6(Γ0)

+ max
{
‖ui,Γ‖pW 7/6+1/7,7(K)

, ‖ui,Γ‖pW 7/6+1/7,7(Ω0)

}
‖1Ω0‖

p

W 1/p−ε,p(K∪Ω0)

)
≤ cε,p

(
‖ui,Γ‖pC1,1/6(Ω0)

+ ‖ui‖pW 7/6,7(Γ0)
‖1Ω0‖

p

W 1/p−ε,p(K∪Ω0)

)
≤ cε,p ‖ui‖pC1,1/6(Ω0)

(
1 + ‖1Ω0‖

p

W 1/p−ε,p(K∪Ω0)

)
≤ ci,ε,p ‖ui‖pL2(Ω)

,

(3.28)

where we used Corollary 3.1.22 and the fact that the characteristic function of every bounded C1-
domain is an element of W 1/p−ε,p(R2), cf. [101], Proposition 2.1, and [9]. If we extend ui,Γ by
zero to the whole domain Ω, one can repeat the steps undertaken in (3.27) and (3.28) to show
W 1+1/p−ε,p(Ω)-regularity as well as the stability estimate and thus �nish this proof.

Lemma 3.1.24. Let q ∈ Qad, i ∈ N, ui = ui(q) and p <∞. Then it holds that ui ∈W 1,p(Ω) and

‖ui‖W 1,p(Ω) ≤ ci,p ‖ui‖L2(Ω) .

Proof. Let ũ = (ui − ui,Γ) with ui,Γ de�ned as in Lemma 3.1.23. Then ũ is the weak solution to{
−div(µAF · ∇ũ) = λiuiγF + div(µAF · ∇ui,Γ) in Ωj ,

ũ = 0 on ∂Ωj ,
(3.29)

for j ∈ {0, 1}. As µ is constant on Ωj , one can apply Theorem A.1.31 and get ũ ∈ W 1,p
0 (Ωj), as

well as

‖ũ‖W 1,p(Ωj)
≤ cp

(
‖λiuiγF ‖Lp(Ωj)

+ ‖AF · ∇ui,Γ‖Lp(Ωj)

)
≤ ci,p

(
‖ui‖H1(Ωj)

+ ‖AF ‖L∞(Ωj)
‖ui,Γ‖W 1,p(Ωj)

)
≤ ci,p ‖ui‖L2(Ω) ,

where we used Lemma 3.1.16, Lemma 3.1.6 and Lemma 3.1.23. As ũ ∈ W 1,p
0 (Ωj) it also follows

that ũ ∈W 1,p
0 (Ω), and the result follows.

Lemma 3.1.25. Let q ∈ Qad, i ∈ N and ui = ui(q). Then it holds that ui ∈ H3/2−ε(Ω) and

‖ui‖H3/2−ε(Ω) ≤ ci,ε ‖ui‖L2(Ω) .
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Proof. As in the proof of Lemma 3.1.24 let ũ = (ui − ui,Γ), then ũ is the weak solution to (3.29) for
j ∈ {0, 1}. As both subdomains of Ω are Lipschitz, Theorem A.1.30 proves ũ|Ωj ∈ H

3/2−ε(Ωj) and

‖ũ‖H3/2−ε(Ωj)
≤ cε

(
‖λiuiγF ‖L2(Ωj)

+ ‖AF · ∇ui,Γ‖H1/2−ε(Ωj)

)
≤ ci,ε

(
‖ui‖L2(Ω) + ‖AF ‖H3/2(Ωj)

‖ui,Γ‖H3/2−ε(Ωj)

)
≤ ci,ε ‖ui‖L2(Ω) ,

where we used Lemma 3.1.23 and Theorem A.1.5. It remains to prove H3/2−ε(Ω)-regularity. This
can be done in exactly the same way as shown in (3.28) within the proof of Lemma 3.1.23.

3.1.5. Di�erentiability of the eigenvalues

It is well-known that in the case of a su�ciently smooth domain, the eigenvalues with multiplicity
one are Fréchet-di�erentiable with respect to smooth domain perturbations, whereas eigenvalues
with a higher multiplicity are only Gâteaux-di�erentiable, cf. [54]. In the following subsection we
are going to prove di�erentiability of the eigensystem with respect to domain perturbations. In
order to do so we follow the approach presented in [34], where it is proven that eigenvalues are
di�erentiable with respect to a speci�c boundary perturbation and also a representation for the
derivative is given. Although our approach uses a transformation to a reference domain and our
regularity assumptions di�er, their proofs can be adapted to our case.

Assumption 3.1.26. We assume that for all q ∈ Qad, the eigenvalues λ1(q) and λ2(q) have multiplicity
one.

Taking into account the cost functional (3.21) it is reasonable to assume that λ1(q) 6= λ2(q) for
all q su�ciently close to the optimal control q. Another justi�cation is the Krein-Rutman theorem
(cf. [56], Theorem 1.2.5 and Theorem 1.2.6), which states that the �rst eigenvalue for a uniformly
elliptic partial di�erential operator of second order is simple. However, we do have to admit that
we did not �nd theoretical results supporting the claim that λ2(q) 6= λ3(q) for all q ∈ Qad with
‖q − q‖H2(I) su�ciently small.

3.1.5.1. On the existence of the derivatives of λi and ui

The proof of the existence of the derivatives of λi and ui with respect to q relies on the implicit
function theorem and Fredholm's alternative.

Theorem 3.1.27 (Fredholm's alternative). Let X be a Banach Space over K with K = R or K = C.
Let T be a compact operator on X with adjoint T ′, and let λ ∈ K, λ 6= 0. Then exactly one of the
following two possibilities holds true.

• The equation

λx− Tx = 0, (3.30)

has x = 0 as its only solution and

λx− Tx = y, (3.31)

is uniquely solvable for every y ∈ X.
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• There exist n = dim(ker(λ Id−T )) linear independent solutions to (3.30), and the adjoint
equation

λx′ − T ′x′ = 0,

also has n linear independent solutions. Furthermore, there exists a solution to (3.31) if and
only if y ∈ (ker(λ Id−T ′))⊥.

Proof. This theorem can be found in [3], Theorem 10.8.

Lemma 3.1.28. Let q ∈ Qad, F = F (q), i ∈ N, let (ui = ui(q), λi = λi(q)) be an eigenpair to the
simple eigenvalue λi and let g ∈ H−1(Ω). The equation

(∇u, µAF · ∇v) = λi (u, vγF ) + (g, v)H−1,H1
0

∀v ∈ H1
0 (Ω) (3.32)

has a solution u ∈ H1
0 (Ω) if and only if (g, ui)H−1,H1

0
= 0.

Proof. Again, we use the operator L from De�nition 3.1.8. Let h = L−1(g/γF ), then equation (3.32)
can be written as

(u, v)H1
0,a(Ω) = λi

(
L−1u, v

)
H1

0,a(Ω)
+ (h, v)H1

0,a(Ω) ∀v ∈ H1
0,a(Ω),

which can be written as

νiu− L−1u = νih in H1
0,a(Ω),

with νi = λ−1
i . With Theorem 3.1.27 it now follows that (3.32) has a solution if and only if

(h, ui)H1
0,a(Ω) = 0,

which reads as

0 = (∇h, µAF · ∇ui) = (g, ui)H−1,H1
0
.

Theorem 3.1.29. Let q ∈ Qad, δq ∈ Q and i ∈ N such that λi(q) is a simple eigenvalue. Then the
mappings q 7→ λi(q) and q 7→ ui(q) are at least two times continuously Fréchet-di�erentiable.

Proof. Let F = F (q) and let

B : H2(I)×H1
0 (Ω)× R→ H−1(Ω)× R,

B(q, u, λ) =

(
−div(µAF · ∇u)− λuγF∫

Ω u
2γF dx− 1

)
.

The operator B is at least twice continuously di�erentiable, which can be shown similar to the proof
of Lemma 2.1.24, and it follows that B(q, ui, λi) = 0 if and only if ui is a normalized eigenfunction
with eigenvalue λi corresponding to the control q. Taking the derivative of B with respect to u and
λ yields

Du,λB(q, ui, λi)(v, ϑ) =

(
−div(µAF · ∇v)− λivγF − ϑuiγF

2
∫

Ω uivγF dx

)
.
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3. Optimization of eigenvalues

Now we show that Du,λB(q, ui, λi) is bijective, which can be done using Theorem 3.1.27 and
Lemma 3.1.28 as follows. Let (w, τ) ∈ H−1(Ω) × R be arbitrary, we have to show that there
exists (v, ϑ) ∈ H1

0 (Ω)× R such that{
(∇v, µAF · ∇ϕ)− λi (v, ϕγF ) = ϑ (ui, ϕγF ) + (w,ϕ)H−1,H1

0
∀ϕ ∈ H1

0 (Ω),

2 (ui, vγF ) = τ.
(3.33)

If we set

ϑ = − (w, ui)H−1,H1
0
,

then Lemma 3.1.28 yields the existence of v0 ∈ H1
0 (Ω) such that the �rst equation within (3.33) is

ful�lled for v = v0 + cui for all c ∈ R. Setting

c =
τ

2
− (ui, v0γF ) ,

makes v also ful�ll the second equation within (3.33), and this theorem follows with the implicit
function theorem, Theorem A.1.6.

3.1.5.2. Representation of the derivatives λ′i and u
′
i

In this subsubsection we are going to �nd explicit representations for the derivatives of the eigenvalue
and eigenfunction. Let q ∈ Qad, F = F (q), δq ∈ Q, i ∈ N and let λ′i = λ′i(q)(δq), δui = u′i(q)(δq)
and δF = F ′(q)(δq). Due to Theorem 3.1.29 we can di�erentiate (3.18) with respect to q, which
yields 

(∇δui, µAF · ∇v) = λi (δui, vγF ) + λ′i (ui, vγF )

+ λi
(
ui, vγ

′
F,δF

)
−
(
∇ui, µA′F,δF · ∇v

)
∀v ∈ H1

0 (Ω),

2 (δui, uiγF ) +
(
u2
i , γ
′
F,δF

)
= 0.

(3.34)

Remark 3.1.30. From the �rst equation within (3.34) it follows that δui can formally be seen as a
solution to

−div(µAF · ∇δui) = λiδuiγF +
(
λ′iuiγF + λiuiγ

′
F,δF + div

(
µA′F,δF · ∇ui

))
, (3.35)

which is just a �perturbed� eigenvalue equation of the form

Lδui = λiδuiγF + g,

with g = g(λi, ui, q, δq) ∈ H−1(Ω). Solutions to (3.35) are not unique: if δui is a solution, then so is
δui+cui for all c ∈ R. Instead, uniqueness is guaranteed through the second equation within (3.34).

Now using ui as a test function in (3.18), we get

(∇ui, µAF · ∇ui) = λi
(
u2
i , γF

)
,

and di�erentiation yields

2 (∇ui, µAF · ∇δui) +
(
∇ui, µA′F,δF · ∇ui

)
= λ′i

(
u2
i , γF

)
+ 2λi (uiδui, γF ) + λi

(
u2
i , γ
′
F,δF

)
. (3.36)
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As δui ∈ H1
0 (Ω) it holds that

(∇ui, µAF · ∇δui) = λi (ui, δuiγF ) . (3.37)

Inserting (3.37) and the normalizing condition
(
u2
i , γF

)
= 1 into (3.36) yields

λ′i(q)(δq) =
(
∇ui, µA′F,δF · ∇ui

)
− λi

(
u2
i , γ
′
F,δF

)
. (3.38)

It can be seen that the computation of δui is not necessary in order to compute λ′i. Expression (3.38)
may be rewritten as a boundary integral, but in order to do so we need more regularity of the involved
functions in order to justify partial integration. This will be shown in the next subsection.

3.1.6. Higher regularity of the optimal control

Our proof of the higher regularity of the optimal control exploits some �rst order optimality condi-
tions, we therefore have to make the following assumption.

Assumption 3.1.31. We assume that the optimal control q under consideration is an element of the
interior of Qad.

Due to Assumption 3.1.31, the �rst order optimality condition reads as

j′(q)(δq) = 0 ∀δq ∈ Q, (3.39)

which is

λ′1(q)(δq)− λ′2(q)(δq) + α (q, δq)H2(I) = 0 ∀δq ∈ Q. (3.40)

Lemma 3.1.32. For every q ∈ Qad there exists pi = pi(q) ∈ H1(I) such that

λ′i(q)(δq) = (pi, δq)H1(I) ∀δq ∈ Q.

Proof. Let F = F (q), δq ∈ Q and δF = F ′(q)(δq). With (3.38) it holds that

λ′i(q)(δq) =
(
∇ui, µA′F,δF · ∇ui

)
− λi

(
u2
i , γ
′
F,δF

)
=
(
∇ui, µA′F,δF · ∇ui

)
Ω0

+
(
∇ui, µA′F,δF · ∇ui

)
Ω1

− λi
(
u2
i , γ
′
F,δF

)
Ω0
− λi

(
u2
i , γ
′
F,δF

)
Ω1
.

(3.41)

Using Lemma 3.1.24 and the normalizing condition for ui we can estimate the right hand side
within (3.41) via(

u2
i , γ
′
F,δF

)
Ωj
≤ ‖ui‖2L4(Ωj)

∥∥γ′F,δF∥∥L2(Ωj)
≤ c ‖ui‖2H1

0 (Ωj)

∥∥γF DT−1
F · δF

∥∥
H1(Ωj)

≤ c ‖ui‖2H1
0 (Ωj)

‖δF‖H1(Ωj)
≤ ci ‖δF‖H1(Ω)

≤ ci ‖δq‖H1(I) ,

and in a similar way it holds that(
∇ui, µA′F,δF · ∇ui

)
Ωj
≤ c ‖ui‖2W 1,4(Ω)

∥∥A′F,δF∥∥L2(Ωj)

≤ c ‖δq‖H1(I) ,

for j ∈ {0, 1}. As δq 7→ λ′i(q)(δq) is linear, the existence of such a pi follows with the Riesz
representation theorem.
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3. Optimization of eigenvalues

Lemma 3.1.33. The optimal control q ∈ Qad has the higher regularity q ∈ H3(I).

Proof. This lemma follows from (3.40), Lemma 3.1.32 and Lemma 2.1.36.

Lemma 3.1.34. For F = F (q) and j ∈ {0, 1} it holds that F
∣∣
Ωj
∈W 2,∞(Ωj).

Proof. As q ∈ H3(I) due to Lemma 3.1.33, Theorem A.1.28 yields F
∣∣
Ω0
∈ H7/2(Ω0) ↪→W 2,∞(Ω0).

The regularity of F on Ω1 follows with Theorem A.1.29.

In order to derive higher regularity of ui = ui(q) we will need some regularity results concerning
spaces with bounded mean oscillation.

De�nition 3.1.35 (Campanato-John-Nirenberg space). Let Ω ⊂ Rn be a bounded domain with
diameter d and let ψ : [0, d]→ R be a nonnegativ continuous function satisfying r ≤ cψ(r) for some
positive constant c. A function f ∈ L2(Ω) is said to be an element of BMOΨ(Ω), the space of
bounded mean oscillation, if

|f |BMOψ(Ω) = sup
x0∈Ω

0<ρ≤d

1

ψ(ρ)

(∫
Ω(x0,ρ)

∣∣∣f(x)− (f)Ω(x0,ρ)

∣∣∣2 dx

)1/2

<∞,

where Ω(x0, ρ) = Ω∩Qρ(x0) with Qρ(x0) being a cube with center x0, sides parallel to the axis and
side length equal to 2ρ. Furthermore,

(f)D =
1

|D|

∫
D
f dx,

shall denote the mean value of f on D.

In what follows we will focus on the case where ψ(ρ) = ρα with α > 0 su�ciently small. As
mentioned in [109], the resulting spaces are called Campanato spaces. Furthermore, in that case it
even holds that

BMOψ(Ω) = C0,α(Ω),

cf. [102], Example 1.

De�nition 3.1.36 (Domains of class Ck,BMOψ). Let Ω ⊂ Rn be a bounded domain. We say
that ∂Ω ∈ Ck,BMOψ for k ∈ N if for any x0 ∈ ∂Ω there exists a Ck−1,1-transformation T and a
neighborhood Nx0 of x0 such that

T : Nx0 ∩ Ω→ B+
1 (0),

where B+
1 (0) is the unit ball with positive last coordinate, is one to one and onto with

T (Nx0 ∩ ∂Ω) = B+
1 (0) ∩ {xn = 0} .

Moreover, the norms of T , T −1 and their derivatives DνT , Dν
(
T −1

)
are uniformly bounded in L∞

and BMOψ for |ν| ≤ k.

From [37], Remark 3.2, it follows that domains which are locally the epigraph of a Ck,α function
for k ≥ 1 are of class Ck,α. Furthermore, from the same source, De�nition 3.1, it follows that if Ω
is a domain of class Ck,α, then it is also in Ck,BMOψ for ψ(ρ) = ρα.
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3.1. The problem

Theorem 3.1.37. Let Ω ⊂ Rn be a bounded domain containing L ∈ N disjoint subdomains
Ωm ⊂⊂ Ω for 1 ≤ m ≤ L, and let ΩL+1 = Ω\

⋃L
m=1 Ωm. We consider weak solutions u ∈ H1(Ω) to

the equation
− div(A · ∇u) = −div(f) , (3.42)

where the matrix A is uniformly elliptic. Suppose that ∂Ωm ∈ Ck+1,BMOψ with k ≥ 1,

A|Ωm , f |Ωm ∈ C
k−1,1(Ωm) and DkA

∣∣∣
Ωm

, Dkf
∣∣∣
Ωm
∈ BMOψ(Ωm).

Then for any Ω′ ⊂⊂ Ω it holds for the solution u to (3.42) that

u|Ωm ∈ C
k(Ωm ∩ Ω′) and Dk+1u ∈ BMOψ(Ω′ ∩ Ωm).

Proof. This theorem can be found in [109], Theorem 2.3, where it is assumed that the function ψ
ful�lls some additional assumptions. In [63], Remark 2.2, it is shown that these assumptions hold
true for ψ(ρ) = ρα with α > 0 su�ciently small.

Lemma 3.1.38. For i ∈ N, ui = ui(q) and j ∈ {0, 1} it holds that ui|Ωj ∈W
2,∞(Ωj).

Proof. With Theorem 3.1.37 it follows that ui ∈ C2,α(Ω0) ↪→ W 2,∞(Ω0). Now let F = F (q) and
ui,q = ui ◦ T−1

F
be an eigenfunction on the untransformed domain. As

uq,i|Ωq,1 ∈ H
3/2−ε(Ωq,1) ↪→ L∞(Ωq,1)

as shown in the proof of Lemma 3.1.11, it follows with Theorem A.1.38 that

uq,i|Ωq,1 ∈W
2,p(Ωq,1) ↪→ C1,α(Ωq,1)

for all p <∞ and α = 1− 2/p > 0. With Theorem A.1.29 it now follows that

uq,1|Ωq,1 ∈W
2,∞(Ωq,1).

Due to the regularity of TF on Ω1, cf. Lemma 3.1.34, it follows that

ui|Ω1
= uq,1 ◦ T−1

F

∣∣∣
Ω1

∈W 2,∞(Ω1).

3.1.6.1. A representation of λ′ as a boundary integral

Due to the higher regularity of the optimal eigenfunctions ui, equation (3.18) also holds in strong
form (at least on each of the subdomains Ω0 and Ω1), therefore it is possible to rewrite expres-
sion (3.38) from above, the goal is to compute λ

′
i(q)(δq) as a boundary integral over Γ0. Let

δF = F ′(q)(δq), using the same approach as in Subsubsection 2.1.3.4 one can show that(
∇ui, µA′F ,δF · ∇ui

)
= 2

(
div
(
µAF · ∇ui

)
,∇uTi ·DT−1

F
· δF

)
Ω0

+ 2
(

div
(
µAF · ∇ui

)
,∇uTi ·DT−1

F
· δF

)
Ω1

− d
∫

Γ0

∣∣∣DT−T
F−
· ∇ui,−

∣∣∣2 γF−δF T ·DT−TF− · n ds

+

∫
Γ0

∣∣∣DT−T
F+
· ∇ui,+

∣∣∣2 γF+
δF T ·DT−T

F+
· n ds,

(3.43)
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3. Optimization of eigenvalues

where ui,− and ui,+ shall denote ui approaching Γ0 from the inside of Ω0 and Ω1 respectively,
cf. (3.3), and the same for F− and F+. It holds that

2
(

div
(
µAF · ∇ui

)
,∇uTi ·DT−1

F
· δF

)
Ωj

= −2λi

(
uiγF ,∇u

T
i ·DT−1

F
· δF

)
Ωj

= −λi
(
∇
(
u2
i

)
, γF DT−1

F
· δF

)
Ωj
,

(3.44)

for j ∈ {0, 1}, and

− λi
(
u2
i , γ
′
F ,δF

)
= −λi

(
u2
i ,div

(
γF DT−1

F
· δF

))
Ω0

− λi
(
u2
i ,div

(
γF DT−1

F
· δF

))
Ω1

. (3.45)

Summing up (3.44) and (3.45) yields

1∑
j=0

(
2
(

div
(
µAF · ∇ui

)
,∇uTi ·DT−1

F
· δF

)
Ωj
− λi

(
u2
i , γ
′
F ,δF

)
Ωj

)
= −λi

∫
Ω0

div
(
u2
i γF DT−1

F
· δF

)
dx− λi

∫
Ω1

div
(
u2
i γF DT−1

F
· δF

)
dx

= −λi
∫

Γ0

u2
i γF−δF

T ·DT−T
F−
· n ds+ λi

∫
Γ0

u2
i γF+

δF T ·DT−T
F+
· n ds

− λi
∫

Γ
u2
i γF δF

T ·DT−T
F
· n ds,

(3.46)

where the last term vanishes due to ui ∈ H1
0 (Ω). Inserting (3.46) back into (3.43) �nally yields

λ
′
i(q)(δq) = −

∫
Γ0

(
d
∣∣∣DT−T

F−
· ∇ui,−

∣∣∣2 + λiu
2
i

)
γF−δF

T ·DT−T
F−
· n ds

+

∫
Γ0

(∣∣∣DT
F
−T
+
· ∇ui,+

∣∣∣2 + λiu
2
i

)
γF+

δF T ·DT−T
F+
· n ds.

(3.47)

Remark 3.1.39. As δF |Γ0
= δq n, it is not necessary to compute δF in order to compute λ

′
i(q)(δq)

via (3.47).

Lemma 3.1.40. The optimal control q ∈ Qad has the higher regularity q ∈ H4(I).

Proof. As δF |Γ0
= δq n and using the higher regularity of ui and F as shown in Lemma 3.1.38 and

Lemma 3.1.34, it follows similar to the proof of Lemma 3.1.32 that there exists pi = pi(q) ∈ L2(I)
with

λ
′
i(q)(δq) = (pi, δq)L2(I) ∀δq ∈ Q,

and this lemma follows similar to Lemma 3.1.33.

3.1.7. The second derivative

Within this subsection we are going to compute the second derivative of ui = ui(q) and λi = λi(q)
with respect to perturbations in q, which exist due to Theorem 3.1.29. These explicit representations
will be needed to prove error estimates within Section 3.4.
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Taking the second derivative of the �rst equation of (3.18) with respect to q yields the equation
for δτui = u′′i (q)(δq, τq),

(∇δτui, µAF · ∇v) = λi (δτui, vγF ) + λ′′i,δq,τq (ui, vγF ) + λ′i,δq (τui, vγF ) + λ′i,δq
(
ui, vγ

′
F,τF

)
+ λ′i,τq (δui, vγF ) + λ′i,τq

(
ui, vγ

′
F,δF

)
+ λi

(
δui, vγ

′
F,τF

)
+ λi

(
τui, vγ

′
F,δF

)
+ λi

(
ui, vγ

′′
F,δF,τF

)
−
(
∇δui, µA′F,τF · ∇v

)
−
(
∇τui, µA′F,δF · ∇v

)
−
(
∇ui, µA′′F,δF,τF · ∇v

)
∀v ∈ H1

0 (Ω);

(3.48)

the abbreviations used are λi = λi(q), λ′i,δq = λ′i(q)(δq), λ
′
i,τq = λ′i(q)(τq), λ

′′
i,δq,τq = λ′′i (q)(δq, τq),

δui = u′i(q)(δq) and τui = u′i(q)(τq). Note that (3.48) can again be regarded as a �perturbed�
eigenfunction equation.
Using ui itself as a test function within (3.18) and then taking the second derivative with respect

to q yields

2 (∇τui, µAF · ∇δui) + 2
(
∇ui, µA′F,τF · ∇δui

)
+ 2 (∇ui, µAF · ∇δτui)

+ 2
(
∇ui, µA′F,δF · ∇τui

)
+
(
∇ui, µA′′F,δF,τF · ∇ui

)
= λ′′i,δq,τq

(
u2
i , γF

)
+ 2λ′i,δq (ui, τuiγF ) + λ′i,δq

(
u2
i , γ
′
F,τF

)
+ 2λ′i,τq (ui, δuiγF )

+ 2λi (δui, τuiγF ) + 2λi (ui, δτuiγF ) + 2λi
(
ui, δuiγ

′
F,τF

)
+ λ′i,τq

(
u2
i , γ
′
F,δF

)
+ 2λi

(
ui, τuiγ

′
F,δF

)
+ λi

(
u2
i , γ
′′
F,δF,τF

)
.

(3.49)

Using τui as a test function in (3.34), and vice versa for δui in the equation for τui, yields

(∇τui, µAF · ∇δui) +
(
∇ui, µA′F,δF · ∇τui

)
= λ′i,δq (ui, τuiγF )

+ λi (τui, δuiγF ) + λi
(
ui, τuiγ

′
F,δF

)
,

(3.50)

(∇δui, µAF · ∇τui) +
(
∇ui, µA′F,τF · ∇δui

)
= λ′i,τq (ui, δuiγF )

+ λi (δui, τuiγF ) + λi
(
ui, δuiγ

′
F,τF

)
.

(3.51)

The second derivative of the normalizing condition within (3.18) with respect to q reads as

2 (δui, τuiγF ) + 2 (ui, δτuiγF ) + 2
(
ui, δuiγ

′
F,τF

)
+ 2

(
ui, τuiγ

′
F,δF

)
+
(
u2
i , γ
′′
F,δF,τF

)
= 0. (3.52)

Now subtracting (3.50) and (3.51) twice from (3.49) �nally yields

λ′′i,δq,τq =
(
∇ui, µA′′F,δF,τF · ∇ui

)
− 2 (∇τui, µAF · ∇δui)

− λ′i,δq
(
u2
i , γ
′
F,δF

)
− λ′i,τq

(
u2
i , γ
′
F,τF

)
+ 2λi (δui, τuiγF )− λi

(
u2
i , γ
′′
F,δF,τF

)
.

(3.53)

3.2. Stability estimates for eigenvalues and eigenfunctions

In order to estimate the error between eigenfunctions and their discretized counterparts, the appli-
cation of the �standard� techniques as done in Chapter 2 is not possible, this is due to the fact that
eigenfunctions appear on the left-, as well as on the right hand side of the corresponding equation,
cf. (3.18). Hence we have to deal with di�erent concepts which will be presented in this section.
The results of Subsection 3.2.1 will be needed to estimate terms like ‖ui(q)− ui(p)‖ for q, p ∈ Qad,

whereas the results of Subsection 3.2.2 will be needed to estimate terms like ‖u′i(q)(δq)− u′i(p)(δq)‖
for q, p ∈ Qad and δq ∈ Q.
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3. Optimization of eigenvalues

3.2.1. Gap between operators

If u is an eigenfunction of a linear partial di�erential operator L, then for arbitrary c ∈ R\ {0}, cu
is also an eigenfunction. Due to this fact it is not clear how to estimate the di�erence ‖u1,i − u2,i‖
between the i-th eigenfunctions u1,i and u2,i corresponding to di�erent di�erential operators L1 and
L2, for even normalized eigenfunctions are only unique up to their sign. In order to deal with this
di�culty we will have a closer look at the concept of the so-called gap between operators. What
follows is mainly based on [10] and [22].

De�nition 3.2.1. Let M and N be linear subspaces of a normed space Z. The gap from M to N
is de�ned via

δ(M,N) = sup
u∈M
‖u‖Z=1

dist(u,N),

where for u ∈ Z we have

dist(u,N) = inf
v∈N
‖u− v‖Z .

Furthermore, the gap between M and N is de�ned via

δ̂(M,N) = max {δ(M,N), δ(N,M)} .

Lemma 3.2.2. Let M and N be linear subspaces of a Hilbert space Z, and let P and Q be the
orthogonal projections onto the closures of M and N , respectively. Then it holds that

δ(M,N) = ‖(1−Q)P‖Z ,
δ̂(M,N) = ‖P −Q‖Z .

Proof. This lemma can be found in [22], Theorem 2.2.

De�nition 3.2.3. Let T : D(T ) ⊂ X → Y be a linear operator whose domain D(T ) is a subset of
the Hilbert space X and maps onto the Hilbert space Y . The graph G of the operator T is de�ned
as

G(T ) = {(u, Tu)| u ∈ D(T )} .

De�nition 3.2.4. Let X and Y be Hilbert spaces and let

S : D(S) ⊂ X → Y,

T : D(T ) ⊂ X → Y,

be linear operators mapping subsets of X onto Y . The gap from S to T is de�ned by

δ(S, T ) = δ(G(S), G(T )),

whereas the gap between S and T is de�ned by

δ̂(S, T ) = δ̂(G(S), G(T )).

More explicitly,

δ(S, T ) = sup
u∈D(S)

‖u‖2X+‖Su‖2Y =1

inf
v∈D(T )

(
‖u− v‖2X + ‖Su− Tv‖2Y

)1/2
. (3.54)
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Lemma 3.2.5. Let X be a Hilbert space and let S and T be selfadjoint on X. Then it holds that

δ(S, T ) = δ(T, S) = δ̂(S, T ).

Proof. This lemma can be found in [22], Corollary 2.6.

Theorem 3.2.6. Let Ω ⊂ Rn be a bounded open set, let T be a selfadjoint operator over L2(Ω)
with compact resolvent bounded from below and let i ∈ N such that the i-th eigenvalue λi of T is
simple. Then there exist c0, δ0 > 0 such that for each selfadjoint operator S over L2(Ω) whose
compact resolvent is bounded from below, for which δ(S, T ) < δ0 and normalized eigenfunction
ũi corresponding to the i-th eigenvalue λ̃i of S, there exists a normalized eigenfunction ui of T ,
corresponding to λi, such that

‖ui − ũi‖L2(Ω) ≤ c0δ(S, T ).

Proof. This theorem can be found in [22], Theorem 2.14.

3.2.2. Stability estimates for a�ne eigenvectors

In what follows let X be a Hilbert space over R with scalar product (·, ·)X , norm ‖u‖X =
√

(u, u)X ,
and let L be a compact linear operator over X. The ordered eigenvalues of L shall be denoted with
(νi)i∈N, where limi→∞ νi = 0. The eigenspace corresponding to νi will be denoted with Ni(L), its
orthogonal complement Ni(L)⊥ has to be understood with respect to the X-scalar product. From
Theorem 3.1.27 it follows that for g ∈ X and i ∈ N there exists a solution u ∈ X to

Lu = νiu+ g, (3.55)

if and only if g ∈ Ni(L)⊥. This solution, if it exists, is not unique. If u solves (3.55), so does u+ cui
for all ui ∈ Ni(L) and c ∈ R. In what follows we are going to prove that there exists ci > 0 such
that for all g ∈ Ni(L)⊥ there exists a solution to (3.55) with ‖u‖X ≤ ci ‖g‖X .

Lemma 3.2.7. The subspace Ni(L)⊥ is closed in X.

Proof. With Theorem A.1.2 it follows that Ni(L) ⊂ X is of �nite dimension and closed. From [3],
Lemma 7.17, it follows that X = Ni(L) ⊕ Ni(L)⊥. As Ni(L) is closed, there exists a continuous
orthogonal projection P onto Ni(L) with Ni(L)⊥ = N (P ), and this lemma follows with the closed
complement theorem, cf. [3], Theorem 7.15.

Lemma 3.2.8. Let g ∈ Ni(L)⊥ and let ug be a solution to (3.55). Then ug minimizes the X-norm
among all solutions of (3.55) if and only if ug ∈ Ni(L)⊥.

Proof. Let ug be a solution to (3.55). Then ug has minimal X-norm if and only if for all ui ∈ Ni(L),
the solution to

arg min
t∈R
‖ug + tui‖2X , (3.56)

is t = 0. The proof now follows by taking the �rst and second derivative of the squared norm
within (3.56) with respect to t.

Lemma 3.2.9. Let g ∈ Ni(L)⊥. Then there exists exactly one solution ug to (3.55) that minimizes
the X-norm among all solutions to (3.55).
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3. Optimization of eigenvalues

Proof. Let ug,1 and ug,2 be two solutions to (3.55) with minimal X-norm, and let ug = ug,1 − ug,2.
With Lemma 3.2.8 it follows that ug ∈ Ni(L)⊥. As L is linear we get Lug = νiug, hence ug ∈ Ni(L).
It follows that ug ∈ Ni(L) ∩Ni(L)⊥ = {0}, and the result follows.

Corollary 3.2.10. Let g ∈ Ni(L)⊥, let ug be an arbitrary solution to (3.55) and let
{
u1
ν , . . . , u

N
ν

}
be an orthogonal basis for Ni(L). Then the solution ug of (3.55) with minimal X-norm is given via

ug = ug −
N∑
i=1

(
ug, u

i
ν

)
X

‖uiν‖
2
X

uiν .

Proof. By de�nition of ug it follows that
(
ug, u

i
ν

)
X

= 0 for all i ∈ {1, . . . , N} and the result follows
with Lemma 3.2.8.

De�nition 3.2.11. For i ∈ N let T = Ti : Ni(L)⊥ ⊂ X → X, Tg = ug such that ug is a solution
to (3.55) corresponding to g with minimal X-norm, i.e. for all solutions ũg to (3.55) with ug 6= ũg
it holds that ‖ug‖X < ‖ũg‖X .

Remark 3.2.12. The fact that the operator T from De�nition 3.2.11 is well-de�ned follows with
Theorem 3.1.27 and Lemma 3.2.9.

Lemma 3.2.13. The operator T from De�nition 3.2.11 is linear.

Proof. Let g, h ∈ Ni(L)⊥, let ug and uh be arbitrary solutions to the corresponding perturbed
eigenvalue equations (3.55), let

{
u1
ν , . . . , u

N
ν

}
be an orthogonal basis for Ni(L) and let α ∈ R. As

L(αug) = αLug = α(νiug + g) = νi (αug) + αg,

it follows with Corollary 3.2.10 that

T (αg) = αug −
N∑
i=1

(
αug, u

i
ν

)
X

‖uiν‖
2
X

uiν = α

(
ug −

N∑
i=1

(
ug, u

i
ν

)
X

‖uiν‖
2
X

uiν

)
= αT (g).

Furthermore,

L(ug + uh) = Lug + Luh = (νiug + g) + (νiuh + h) = νi (ug + uh) + (g + h),

and again we use Corollary 3.2.10 to get

T (g + h) = (ug + uh)−
N∑
i=1

(
(ug + uh) , uiν

)
X

‖uiν‖
2
X

uiν

=

(
ug −

N∑
i=1

(
ug, u

i
ν

)
X

‖uiν‖
2
X

uiν

)
+

(
uh −

N∑
i=1

(
uh, u

i
ν

)
X

‖uiν‖
2
X

uiν

)
= T (g) + T (h).

Lemma 3.2.14. Let T be as in De�nition 3.2.11 and let G(T ) =
{

(g, Tg)| g ∈ Ni(L)⊥
}
⊂ (X ×X)

be the graph of T . Then G(T ) is closed.
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Proof. Let (gn)n∈N ⊂ Ni(L)⊥, un = T (gn) with gn → g and un → u in X for some elements
g, u ∈ X. We have to show that g ∈ Ni(L)⊥ and u = Tg. From Lemma 3.2.8 it follows that
(un)n∈N ⊂ Ni(L)⊥. As Ni(L)⊥ is closed due to Lemma 3.2.7 it follows that u, g ∈ Ni(L)⊥. As L is
compact it follows that

Lu← Lun = νiun + gn → νiu+ g,

hence u = Tg.

Lemma 3.2.15. The operator T from De�nition 3.2.11 is bounded.

Proof. As T is a linear operator with closed graph due to Lemma 3.2.13 and Lemma 3.2.14, this
lemma follows with the closed graph theorem, cf. [3], Theorem 5.9.

Corollary 3.2.16. There exists ci > 0, independent of g ∈ Ni(L)⊥, such that

‖Tg‖X ≤ ci ‖g‖X ,

for all g ∈ Ni(L)⊥.

3.3. Discretization

Within this section we are using �nite elements in order to discretize problem (3.21) with respect to
the control, the state and the transformation. Most of what follows is similar to Section 2.2, where
the original modelproblem has been discretized.

3.3.1. Discretization of the control

We split the interval I = (0, 2π) into N ∈ N subintervals Ij for j ∈ {0, . . . , N − 1} with maximal
length σ, and introduce the space of (admissible) discretized controls as

Qσ =
{
qσ ∈ Q| qσ|Ij ∈ P

3(Ij)∀j ∈ {0, . . . , N − 1}
}
,

Qad
σ = Qσ ∩Qad,

where P3(I) shall denote the set of all polynomials of degree at most 3 over the interval I. The
�rst partially discretized problem now reads as

min
qσ∈Qadσ

j(qσ) = λ1(qσ)− λ2(qσ) +
α

2
‖qσ‖2H2(I) . (3.57)

subject to 
G(qσ, G) = (F,G) ∀G ∈ L2(Ω),

a(F )(ui, v) = λi b(F )(ui, v) ∀v ∈ H1
0 (Ω),

b(F )(ui, ui) = 1,

where i ∈ {1, 2} and λi is the i-th eigenvalue given via (3.6).
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3. Optimization of eigenvalues

3.3.2. Discretization of the state

For h > 0 let Ω0,h ⊂ Ω0 be a polygonal approximation of Ω0 where we assume that all the vertices
of Γ0,h = ∂Ω0,h lie on Γ0. In addition, let Ω1,h = Ω\Ω0,h ⊃ Ω1 be a polygonal approximation of
Ω1. Let {πh}h>0 be a family of admissible triangulations of Ω using triangles or quadrilaterals with
maximal diameter h, ful�lling the usual regularity assumptions in the sense of De�nition 2.2.4 and
Remark 2.2.7. In addition we assume that each member of this family can be represented as the
union of a triangulation of Ω0,h with a triangulation of Ω1,h. We de�ne the usual (bi)linear �nite
elements,

Vh =
{
vh ∈ H1(Ω)

∣∣ vh|Kh ∈ R1(Kh) ∀Kh ∈ πh
}
,

Vh,0 = Vh ∩H1
0 (Ω),

(3.58)

where R1(Kh) is de�ned as in (2.62). Now let

µh = 1 + (d− 1)χΩ0,h
,

ah(F )(u, v) = (∇u, µhAF · ∇v) , (3.59)

with χΩ0,h
being the characteristic function of Ω0,h. The following de�nition is similar to De�ni-

tion 3.1.10.

De�nition 3.3.1. For given q ∈ Qad, F = F (q) and h su�ciently small, let H1
0,ah

(Ω) be the space
H1

0 (Ω) equipped with the scalar product

(u, v)H1
0,ah

(Ω) = (∇u, µhAF · ∇v) .

The H1
0,ah

(Ω)-norm is equivalent to the H1
0 (Ω)-norm due to Lemma 3.4.37.

De�nition 3.3.2. For given q ∈ Qad with F = F (q) let Πh : H1
0 (Ω) → Vh,0 be de�ned as the

projection with respect to ah(F )(·, ·), i.e. for u ∈ H1
0 (Ω) it holds that

ah(F )(u−Πhu, vh) = 0 ∀vh ∈ Vh,0.

De�nition 3.3.3. For the optimal control q ∈ Qad with F = F (q) let Πo
h : H1

0 (Ω)→ Vh,0 be de�ned
as the projection with respect to a(F )(·, ·), i.e. for u ∈ H1

0 (Ω) it holds that

a(F )(u−Πo
hu, vh) = 0 ∀vh ∈ Vh,0.

In addition, let λi,h(q) be the i-th eigenvalue with respect to the bilinear forms ah(F )(·, ·) and
b(F )(·, ·) which can be computed via (3.6). The second partially discretized problem, where we
additionally discretize the state, now reads as

min
qσ∈Qadσ

jh(qσ) = λ1,h(qσ)− λ2,h(qσ) +
α

2
‖qσ‖2H2(I) , (3.60)

subject to 
G(qσ, G) = (F,G) ∀G ∈ L2(Ω),

ah(F )(ui,h, vh) = λi,h b(F )(ui,h, vh) ∀vh ∈ Vh,0,
b(F )(ui,h, ui,h) = 1,

with i ∈ {1, 2}.
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3.3.3. Discretization of the transformation

As in Subsection 3.3.2, let Ω0,k ⊂ Ω0 be a polygonal approximation to Ω0, let Γ0,k = ∂Ω0,k, let
Ω1,k = Ω\Ω0,k ⊃ Ω1 be a polygonal approximation to Ω1 and let {πk}k>0 be a family of admissible
triangulations of Ω using triangles or quadrilaterals with maximal diameter k, and ful�lling the usual
regularity assumptions in the sense of De�nition 2.2.4 and Remark 2.2.7. Again we assume that
every triangulation πk can be considered as the union of a triangulation of Ω0,k with a triangulation
of Ω1,k. Similar to (3.58) let

Vk =
{
vk ∈ H1(Ω)

∣∣ vk|Kk ∈ R1(Kk) ∀Kk ∈ πk
}
. (3.61)

In order to discretize the transformation we will use a discrete approximation Gk to the operator G,
de�ned similarly as in Subsection 2.2.3, cf. [13], Section 5. If Fk = Fk(q) denotes the discrete
transformation corresponding to the control q, then the fully discretized i-th eigenvalue λi,h,k is
given via (3.6) using the forms ah(Fk)(·, ·) and b(Fk)(·, ·). The following two de�nitions are similar
to De�nition 3.1.9 and De�nition 3.1.10

De�nition 3.3.4. For �xed q ∈ Qad, Fk = Fk(q) and k su�ciently small let L2
b,k(Ω) be the space

L2(Ω) equipped with the scalar product

(u, v)L2
b,k(Ω) = (u, vγFk) .

The L2
b,k(Ω)-norm is equivalent to the L2(Ω)-norm due to Assumption 3.4.58.

De�nition 3.3.5. For �xed q ∈ Qad, Fk = Fk(q) and h, k su�ciently small let H1
0,ah,k

(Ω) be the
space H1

0 (Ω) equipped with the scalar product

(u, v)H1
0,ah,k

(Ω) = (∇u, µhAFk · ∇v) .

The H1
0,ah,k

(Ω)-norm is equivalent to the H1
0 (Ω)-norm due to Lemma 3.4.37 and Assumption 3.4.58.

De�nition 3.3.6. For given q ∈ Qad, F = F (q) and Fk = Fk(q) let Πk : H1
0 (Ω)→ Vh,0 be de�ned

as

ah(Fk)(Πku, vh) = a(F )(u, vh) ∀vh ∈ Vh,0.

Finally, the fully discretized problem, where also the transformation is being discretized, reads as

min
qσ∈Qadσ

jh,k(qσ) = λ1,h,k(qσ)− λ2,h,k(qσ) +
α

2
‖qσ‖2H2(I) , (3.62)

subject to 
Gk(qσ, Gk) = (Fk, Gk) ∀Gk ∈ Vk,

ah(Fk)(ui,h, vh) = λi,h,k b(Fk)(ui,h, vh) ∀vh ∈ Vh,0,
b(Fk)(ui,h, ui,h) = 1,

where again i ∈ {1, 2}.

Theorem 3.3.7. For σ, h, k > 0 the problems (3.57), (3.60) and (3.62) possess optimal solutions
qσ, qσ,h and qσ,h,k, respectively.

Proof. This theorem can be proven similar to Theorem 2.2.3, Theorem 2.2.9 and Theorem 2.2.13.
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3. Optimization of eigenvalues

3.4. A-priori error estimates

The goal of this section is to prove error estimates for the H2-error between the optimal control q
for (3.21) and a sequence of optimal controls

(
qσ,h,k

)
σ,h,k>0

for the fully discretized �nite-element
approximation (3.62). The main result of this section is the following theorem, the proof can be
found on page 143.

Theorem 3.4.1. Let q ∈ Qad be a local optimal control to (3.21). Then there exists a sequence(
qσ,h,k

)
σ,h,k>0

of local optimal controls to the fully discretized problem (3.62) such that for σ, h, k > 0

su�ciently small it holds that∥∥q − qσ,h,k∥∥H2(I)
≤ c

(
σ2 + |lnh|3/4 h3/2 + |ln k|3/4 k3/2

)
.

Although Theorem 3.4.1 is of similar structure as the main result of Section 2.3, Theorem 2.3.1,
there are some major di�erences in the methods used for its proof which are due to the speci�c
structure of the eigenvalue equation. Again, if not explicitly stated otherwise, we wil always assume
that σ, h and k are chosen su�ciently small. First we will restate the de�nitions of the (discretized)
eigenpairs and their derivatives and we will also deal with the fact that, as already mentioned at
the beginning of Subsection 3.2.1, even normalized eigenfunctions are only de�ned up to their sign.
Within the following three de�nitions, let q ∈ Qad and let δq, τq ∈ Q be arbitrary.

De�nition 3.4.2 (The continuous eigenpair).

• Let V (i) be the set of all subspaces of H1
0 (Ω) with dimension i and let F = F (q). It holds

that

λi(q) = min
E∈V (i)

max
u∈E

a(F )(u, u)

b(F )(u, u)
. (3.63)

• ui = Si(q) is a solution of{
(∇ui, µAF · ∇v) = λi(q) (ui, vγF ) ∀v ∈ H1

0 (Ω),(
u2
i , γF

)
= 1.

(3.64)

For q = 0 we �x one of the two solutions of (3.64) as Si(0). For q ∈ Qad\ {0} with ‖q‖H2(I)

su�ciently small let Si(q) be a solution to (3.64) such that Lemma 3.4.19 is applicable.

• It holds that
λ′i(q)(δq) =

(
∇ui, µA′F,δF · ∇ui

)
− λi(q)

(
u2
i , γ
′
F,δF

)
, (3.65)

where δF = F ′(q)(δq).

• δui = S′i(q)(δq) is the solution of
(∇δui, µAF · ∇v) = λi(q) (δui, vγF ) + λ′i(q)(δq) (ui, vγF )

+ λi(q)
(
ui, vγ

′
F,δF

)
−
(
∇ui, µA′F,δF · ∇v

)
∀v ∈ H1

0 (Ω),

2 (δui, uiγF ) +
(
u2
i , γ
′
F,δF

)
= 0.

(3.66)
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3.4. A-priori error estimates

• It holds that

λ′′i (q)(δq, τq) =
(
∇ui, µA′′F,δF,τF · ∇ui

)
− 2 (∇τui, µAF · ∇δui)

− λ′i(q)(δq)
(
u2
i , γ
′
F,τF

)
− λ′i(q)(τq)

(
u2
i , γ
′
F,δF

)
+ 2λi(q) (δui, τuiγF )− λi(q)

(
u2
i , γ
′′
F,δF,τF

)
,

(3.67)

with τF = F ′(q)(τq) and τui = S′i(q)(τq).

De�nition 3.4.3 (The partially discretized eigenpair).

• Let V (i)
h,0 be the set of all subspaces of Vh,0 with dimension i and let F = F (q). It holds that

λi,h(q) = min
Eh∈V

(i)
h,0

max
uh∈Eh

ah(F )(uh, uh)

b(F )(uh, uh)
. (3.68)

• ui,h = Si,h(q) is a solution of
(∇ui,h, µhAF · ∇vh) = λi,h(q) (ui,h, vhγF ) ∀vh ∈ Vh,0,(

u2
i,h, γF

)
= 1,

b(F )(ΠhSi(q), Si,h(q)) ≥ 0,

(3.69)

where Πh is de�ned as in De�nition 3.3.2.

• It holds that

λ′i,h(q)(δq) =
(
∇ui,h, µhA′F,δF · ∇ui,h

)
− λi,h(q)

(
u2
i,h, γ

′
F,δF

)
, (3.70)

where δF = F ′(q)(δq).

• δui,h = S′i,h(q)(δq) is the solution to
(∇δui,h, µhAF · ∇vh) = λi,h(q) (δui,h, vhγF ) + λ′i,h(q)(δq) (ui,h, vhγF )

+ λi,h(q)
(
ui,h, vhγ

′
F,δF

)
−
(
∇ui,h, µhA′F,δF · ∇vh

)
∀vh ∈ Vh,0,

2 (δui,h, ui,hγF ) +
(
u2
i,h, γ

′
F,δF

)
= 0.

(3.71)

• It holds that

λ′′i,h(q)(δq, τq) =
(
∇ui,h, µhA′′F,δF,τF · ∇ui,h

)
− 2 (∇τui,h, µhAF · ∇δui,h)

− λ′i,h(q)(δq)
(
u2
i,h, γ

′
F,τF

)
− λ′i,h(q)(τq)

(
u2
i,h, γ

′
F,δF

)
+ 2λi,h(q) (δui,h, τui,hγF )− λi,h(q)

(
u2
i,h, γ

′′
F,δF,τF

)
,

(3.72)

with τF = F ′(q)(τq) and τui,h = S′i,h(q)(τq).
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3. Optimization of eigenvalues

De�nition 3.4.4 (The fully discretized eigenpair).

• Let V (i)
h,0 be the set of all subspaces of Vh,0 with dimension i and let Fk = Fk(q). It holds that

λi,h,k(q) = min
Eh∈V

(i)
h,0

max
uh∈Eh

ah(Fk)(uh, uh)

b(Fk)(uh, uh)
. (3.73)

• ui,h,k = Si,h,k(q) is a solution to
(∇ui,h,k, µhAFk · ∇vh) = λi,h,k (ui,h,k, vhγFk) ∀vh ∈ Vh,0,(

u2
i,h,k, γFk

)
= 1,

b(Fk)(Si,h(q), Si,h,k(q)) ≥ 0.

(3.74)

• It holds that

λ′i,h,k(q)(δq) =
(
∇ui,h,k, µhA′Fk,δFk · ∇ui,h,k

)
− λi,h,k(q)

(
u2
i,h,k, γ

′
Fk,δFk

)
, (3.75)

where δFk = F ′k(q)(δq).

• δui,h,k = S′i,h,k(q)(δq) is the solution to
(∇δui,h,k, µhAFk · ∇vh) = λi,h,k (δui,h,k, vhγFk) + λ′i,h,k (ui,h,k, vhγFk)

+ λi,h,k
(
ui,h,k, vhγ

′
Fk,δFk

)
−
(
∇ui,h,k, µhA′Fk,δFk · ∇vh

)
∀vh ∈ Vh,0,

2 (δui,h,k, ui,hγFk) +
(
u2
i,h,k, γ

′
Fk,δFk

)
= 0.

(3.76)

• It holds that

λ′′i,h,k(q)(δq, τq) =
(
∇ui,h,k, µhA′′Fk,δFk,τFk · ∇ui,h,k

)
− 2 (∇τui,h,k, µhAFk · ∇δui,h,k)

− λ′i,h,k(q)(δq)
(
u2
i,h,k, γ

′
Fk,τFk

)
− λ′i,h,k(q)(τq)

(
u2
i,h,k, γ

′
Fk,δFk

)
+ 2λi,h,k (δui,h,k, τui,h,kγFk)− λi,h,k

(
u2
i,h,k, γ

′′
Fk,δFk,τFk

)
,

(3.77)

with τFk = F ′k(q)(τq) and τui,h,k = S′i,h,k(q)(τq).

For the ease of notation we introduce the following functionals which appear in the equations for
the derivative of the (discrete) eigenfunctions.

De�nition 3.4.5. For q ∈ Qad, δq ∈ Q and i ∈ N let

gi = gi(q, δq), gi,h = gi,h(q, δq), gi,h,k = gi,h,k(q, δq) ∈ H−1(Ω),

be de�ned via

(gi, v)H−1,H1
0

= λ′i(q)(δq) (ui, vγF ) + λi(q)
(
ui, vγ

′
F,δF

)
−
(
∇ui, µA′F,δF · ∇v

)
,

(gi,h, v)H−1,H1
0

= λ′i,h(q)(δq) (ui,h, vγF ) + λi,h(q)
(
ui,h, vγ

′
F,δF

)
−
(
∇ui,h, µhA′F,δF · ∇v

)
,

(gi,h,k, v)H−1,H1
0

= λ′i,h,k(q)(δq) (ui,h,k, vγFk) + λi,h,k(q)
(
ui,h,k, vγ

′
Fk,δFk

)
−
(
∇ui,h,k, µhA′Fk,δFk · ∇v

)
,

where F = F (q), Fk = Fk(q), δF = F ′(q)(δq) and δFk = F ′k(q)(δq).
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3.4. A-priori error estimates

As within Subsection 2.3.1 we need some general regularity and stability results for AF and γF as
well as their derivatives. The following lemma can be proven similar to Lemma 2.3.16, Lemma 2.3.17,
Lemma 2.3.18 and Lemma 2.3.19, cf. Lemma 3.1.6.

Lemma 3.4.6. Let q, p ∈ Qad with transformations F and E, respectively. Let δq, τq ∈ Q,
δF = F ′(q)(δq), τF = F ′(q)(τq) and let j ∈ {0, 1}. Then it holds that

‖AF ‖L∞(Ω) ≤ c, ‖γF ‖L∞(Ω) ≤ c,∥∥A′F,δF∥∥L∞(Ωj)
≤ c ‖δq‖H2(I) ,

∥∥γ′F,δF∥∥L∞(Ωj)
≤ c ‖δq‖H2(I) ,∥∥A′′F,δF,τF∥∥L∞(Ωj)

≤ c ‖δq‖H2(I) ‖τq‖H2(I) ,
∥∥γ′′F,δF,τF∥∥L∞(Ωj)

≤ c ‖δq‖H2(I) ‖τq‖H2(I) ,

and

‖AF −AE‖L∞(Ω) ≤ c ‖q − p‖H2(I) ,∥∥A′F,δF −A′E,δF∥∥L∞(Ωj)
≤ c ‖q − p‖H2(I) ‖δq‖H2(I) ,∥∥A′′F,δF,τF −A′′E,δF,τF∥∥L∞(Ωj)
≤ c ‖q − p‖H2(I) ‖δq‖H2(I) ‖τq‖H2(I) ,

‖γF − γE‖L∞(Ω) ≤ c ‖q − p‖H2(I) ,∥∥γ′F,δF − γ′E,δF∥∥L∞(Ωj)
≤ c ‖q − p‖H2(I) ‖δq‖H2(I) ,

γ′′F,δF,τF
∣∣
Ωj

= γ′′E,δF,τF
∣∣
Ωj
.

The following theorem can be found in [3], Theorem 7.7.

Theorem 3.4.7. Let X be a Hilbert space over R or C with dim(X) ∈ N ∪ {∞} and let (ei)1≤i≤dim(X)

be an orthonormal basis for X. For all x ∈ X it then holds that

x =

dim(X)∑
i=1

(x, ei)X ei, and ‖x‖2X =

dim(X)∑
i=1

|(x, ei)X |
2 .

Corollary 3.4.8. Let q ∈ Qad, F = F (q), v ∈ L2(Ω) and w ∈ H1
0 (Ω). Then it holds that

v =

∞∑
i=1

(b(F )(v, Si(q))Si(q)) and ‖v‖2L2
b(Ω) =

∞∑
i=1

b(F )(v, Si(q))
2,

w =

∞∑
i=1

(
1

λi(q)
a(F )(w, Si(q))Si(q)

)
and ‖w‖2H1

0,a(Ω) =

∞∑
i=1

(
1

λi(q)
a(F )(w, Si(q))

2

)
,

and a similar statement holds for vh ∈ Vh,0 and the orthonormal bases (Si,h)i and (Si,h,k)i.

Lemma 3.4.9. Let g ∈ H−1(Ω) and q ∈ Qad. Then, up to norm equivalence, it holds that

‖g‖2H−1(Ω) =
∞∑
i=1

(
1

λi(q)
(g, Si(q))

2
H−1,H1

0

)
.

Proof. Let again F = F (q) and h = L−1(g/γF ) with L−1 as in De�nition 3.1.8. Then it holds that

‖g‖2H−1(Ω) = sup
v∈H1

0 (Ω)

(g, v)2
H−1,H1

0

‖v‖2H1
0 (Ω)

= sup
v∈H1

0 (Ω)

a(F )(h, v)2

‖v‖2H1
0 (Ω)

= ‖h‖2H1
0,a(Ω) =

∞∑
i=1

(
1

λi(q)
a(F )(h, Si(q))

2

)
=
∞∑
i=1

(
1

λi(q)
(g, Si(q))

2
H−1,H1

0

)
.
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3. Optimization of eigenvalues

Corollary 3.4.10. Let q ∈ Qad, g ∈ H−1(Ω) and u ∈ H1
0 (Ω). Then it holds that

‖u‖2H1
0 (Ω) ≥

dim(Vh,0)∑
i=1

(
1

λi,h(q)
ah(F )(u, Si,h(q))2

)
, (3.78)

‖g‖2H−1(Ω) ≥
dim(Vh,0)∑

i=1

(
1

λi,h(q)
(g, Si,h(q))2

H−1,H1
0

)
. (3.79)

If u ∈ Vh,0, then equality holds within (3.78). The statements (3.78) and (3.79) remain true if
λi,h(q) and Si,h(q) are replaced with λi,h,k(q) and Si,h,k(q).

The following lemma will be needed in order to use duality arguments later on.

Lemma 3.4.11. Let q ∈ Qad, F = F (q), f ∈ L2(Ω) and let u ∈ H1
0 (Ω) be the solution to

a(F )(u, v) = b(F )(f, v) ∀v ∈ H1
0 (Ω).

Then it holds that u ∈ H3/2−ε(Ω) and

‖u‖H3/2−ε(Ω) ≤ cε ‖f‖L2(Ω) .

Proof. Let T−1
F be the inverse transformation for TF , T−1

F ◦TF = TF ◦T−1
F = Id, and let ũ = u◦T−1

F .
Then ũ is the solution to

aq(ũ, ṽ) = bq(f ◦ T−1
F , ṽ) ∀ṽ ∈ H1

0 (Ωq),

cf. (3.7) and (3.8). With [95], Theorem 5 and Remark 5.1 it follows that ũ ∈ H3/2−ε(Ωq) and

‖ũ‖H3/2−ε(Ωq)
≤ cε

∥∥f ◦ T−1
F

∥∥
L2(Ωq)

.

As q ∈ Qad, it follows that ‖F (q)‖W 1,∞(Ω) is su�ciently small, hence there exist c0, c1 > 0 such that

c0 |x̃− ỹ| ≤ |TF (x̃)− TF (ỹ)| ≤ c1 |x̃− ỹ| ∀x̃, ỹ ∈ Ω.

As TF is also a bijection, let x, y ∈ Ω be arbitrary and let x̃ = T−1
F (x), ỹ = T−1

F (y). We get

c−1
1 |x− y| ≤

∣∣T−1
F (x)− T−1

F (y)
∣∣ ≤ c−1

0 |x− y| ∀x, y ∈ Ω. (3.80)

With (3.80) it follows that det
(
D
(
T−1
F

))
is uniformly bounded from above. Now it holds that

|u|2H3/2−ε(Ω) = |ũ ◦ TF |2H3/2−ε(Ω) =

∫
Ω

∫
Ω

|∇ (ũ ◦ TF ) (x)−∇ (ũ ◦ TF ) (y)|2

|x− y|2+2(1/2−ε) dx dy

=

∫
Ω

∫
Ω

|∇ũ(x)−∇ũ(y)|2∣∣T−1
F (x)− T−1

F (y)
∣∣2+2(1/2−ε) det

(
D
(
T−1
F (x)

))
det
(
D
(
T−1
F (y)

))
dx dy

=

∫
Ω

∫
Ω

|∇ũ(x)−∇ũ(y)|2

|x− y|2+2(1/2−ε)
|x− y|2+2(1/2−ε)∣∣T−1

F (x)− T−1
F (y)

∣∣2+2(1/2−ε) det
(
D
(
T−1
F (x)

))
det
(
D
(
T−1
F (y)

))
dx dy,
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3.4. A-priori error estimates

and again using (3.80) we arrive at

|u|2H3/2−ε(Ω) ≤ c
∫

Ω

∫
Ω

|∇ũ(x)−∇ũ(y)|2

|x− y|2+2(1/2−ε) dx dy = c |ũ|2H3/2−ε(Ω) .

It also holds that∥∥f ◦ T−1
F

∥∥2

L2(Ωq)
=

∫
Ωq

(
f ◦ T−1

F

)2
dx =

∫
Ω
f2γF dx

≤ c
∫

Ω
f2 dx = c ‖f‖2L2(Ω) ,

and the result follows.

3.4.1. A-priori error estimates for a general control

As within Section 2.3 we start with error estimates for a general control q ∈ Qad, within Subsec-
tion 3.4.2 we will prove error estimates for the optimal control q which possesses a higher regularity
and thus allows for higher convergence rates.

3.4.1.1. Estimates within the purely continuous case

Within this subsubsection we are going to investigate the error induced by the discretization of the
control.

Lemma 3.4.12. Let q ∈ Qad, p ∈ [1,∞) and i ∈ N. Then it holds that Si(q) ∈W 1,p(Ω) ∩H3/2−ε(Ω)
and

‖Si(q)‖W 1,p(Ω)∩H3/2−ε(Ω) ≤ ci,ε,p.

Proof. This lemma is a direct consequence of Lemma 3.1.24, Lemma 3.1.25 and the normalizing
condition within (3.64).

Lemma 3.4.13. For q, p ∈ Qad and i ∈ N it holds that

|λi(q)− λi(p)| ≤ c ‖q − p‖H2(I) .

Proof. Let F and E be the transformations for q and p, respectively. Using Lemma 3.1.13 and
Lemma 3.4.6 it follows that

|λi(q)− λi(p)| ≤ c
(
‖AF −AE‖L∞(Ω) + ‖γF − γE‖L2(Ω)

)
≤ c ‖q − p‖H2(I) .

De�nition 3.4.14. For q ∈ Qad and F = F (q) let Lq : D(Lq) ⊂ L2(Ω)→ L2(Ω) be the self-adjoint
operator corresponding to a(F )(·, ·), i.e.

Lq(u) = −div(µAF · ∇u) ,

with domain

D(Lq) =
{
u ∈ H1

0 (Ω)
∣∣ Lq(u) ∈ L2(Ω)

}
.
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3. Optimization of eigenvalues

In what follows we are going to estimate the gap δ(Lq, Lp), cf. De�nition 3.2.4, for q, p ∈ Qad.

Lemma 3.4.15. Let q, p ∈ Qad with corresponding transformations F and E, respectively, and let
u ∈ D(Lq). Then there exists v = v(u) ∈ D(Lp) and c1, c2 > 0, independent of p, q, u and v, such
that the following conditions are simultaneously satis�ed.

−div(µAE · ∇v) = −div(µAF · ∇u) in L2(Ω), (3.81)

‖v‖H1
0 (Ω) ≤ c1 ‖u‖H1

0 (Ω) , (3.82)

‖u− v‖H1
0 (Ω) ≤ c2 ‖u‖H1

0 (Ω) ‖q − p‖H2(I) . (3.83)

Proof. Let v ∈ H1
0 (Ω) be the solution to

(∇v, µAE · ∇ϕ) = (∇u, µAF · ∇ϕ) ∀ϕ ∈ H1
0 (Ω). (3.84)

Due to the properties of the bilinear form related to Lq̃ for arbitrary q̃ ∈ Qad it follows that such
a v ∈ H1

0 (Ω) actually exists and ‖v‖H1
0 (Ω) ≤ c ‖u‖H1

0 (Ω), which shows (3.82). Furthermore, as
u ∈ D(Lq), the right hand side of (3.84) can be extended to a linear functional over L2(Ω). Hence,
also the left-hand side can be de�ned for test functions in L2(Ω), which proves (3.81). At last it
holds that

c ‖∇ (u− v)‖2L2(Ω) ≤ (∇ (u− v) , µAF · ∇ (u− v))

= (∇u, µAF · ∇ (u− v))− (∇v, µAF · ∇ (u− v))

= (∇v, µ (AE −AF ) · ∇ (u− v))

≤ c ‖v‖H1
0 (Ω) ‖AF −AE‖L∞(Ω) ‖∇ (u− v)‖L2(Ω) ,

and hence

‖∇ (u− v)‖L2(Ω) ≤ c ‖u‖H1
0 (Ω) ‖q − p‖H2(I) .

Lemma 3.4.16. Let q ∈ Qad and F = F (q). There exists c > 0, independent of q, such that

sup
u∈D(Lq)

‖u‖2
L2(Ω)

+‖div(µAF ·∇u)‖2
L2(Ω)

=1

‖u‖H1
0 (Ω) ≤ c.

Proof. For u ∈ D(Lq) it holds that

c ‖u‖2H1
0 (Ω) ≤ (∇u, µAF · ∇u) = − (div(µAF · ∇u) , u)

≤ ‖div(µAF · ∇u)‖L2(Ω) ‖u‖L2(Ω) ,

and using Young's inequality we end up with

‖u‖H1
0 (Ω) ≤ c

√
‖u‖2L2(Ω) + ‖div(µAF · ∇u)‖2L2(Ω).

Lemma 3.4.17. There exists c > 0 such that for all q, p ∈ Qad it holds that

δ(Lq, Lp) ≤ c ‖q − p‖H2(I) .
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3.4. A-priori error estimates

Proof. Let again F and E be the transformations related to q and p, respectively. Using De�ni-
tion 3.2.4 it follows that

δ(Lq, Lp)

= sup
u∈D(Lq)

‖u‖2
L2(Ω)

+‖div(µAF ·∇u)‖2
L2(Ω)

=1

inf
v∈D(Lp)

(
‖u− v‖2L2(Ω) + ‖div(µAF · ∇u)− div(µAE · ∇v)‖2L2(Ω)

)1/2
.

Let v = v(u) be de�ned as in Lemma 3.4.15, we get

δ(Lq, Lp) ≤ c ‖q − p‖H2(I) sup
u∈D(Lq)

‖u‖2
L2(Ω)

+‖div(µAF ·∇u)‖2
L2(Ω)

=1

‖u‖H1
0 (Ω) ,

and �nish the proof with Lemma 3.4.16.

Corollary 3.4.18. For q, p ∈ Qad it holds that

δ̂(Lq, Lp) ≤ c ‖q − p‖H2(I) .

Lemma 3.4.19. Let q, p ∈ Qad and i ∈ N, then it holds that

‖Si(q)− Si(p)‖L2(Ω) ≤ ci ‖q − p‖H2(I) .

Proof. Let vi(q) and vi(p) be normalized i-th eigenfunctions in the sense of L2(Ω) for Lq and Lp,
i.e. {

Lqvi(q) = λi(q) vi(q),

‖vi(q)‖L2(Ω) = 1,
and

{
Lpvi(p) = λi(p) vi(p),

‖vi(p)‖L2(Ω) = 1,

satisfying Theorem 3.2.6, i.e.

‖vi(q)− vi(p)‖L2(Ω) ≤ ciδ(Lq, Lp) ≤ ci ‖q − p‖H2(I) , (3.85)

where the second inequality is due to Lemma 3.4.17. Let F and E be the transformations for q and
p, respectively, and let

βi,q =
(
vi(q)

2, γF
)−1/2

and βi,p =
(
vi(p)

2, γE
)−1/2

.

Then it holds that

Si(q) = βi,qvi(q) and Si(p) = βi,pvi(p),

and we have

‖Si(q)− Si(p)‖L2(Ω) ≤ βi,q ‖vi(q)− vi(p)‖L2(Ω) + |βi,q − βi,p| ‖vi(p)‖L2(Ω) . (3.86)
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As γF is uniformly bounded from below and above for q ∈ Qad, so is βi,q. This allows to estimate
the �rst part in (3.86) through (3.85), and it remains to estimate |βi,q − βi,p|. Using the uniform
boundedness of βi,q and βi,p once again we get

|βi,q − βi,p| ≤ c
βi,q + βi,p
β2
i,q β

2
i,p

|βi,q − βi,p| = c
∣∣∣β−2
i,p − β

−2
i,q

∣∣∣
= c

∣∣(vi(q)2, γF
)
−
(
vi(p)

2, γE
)∣∣

≤ c ‖vi(q)‖2L2(Ω) ‖γF − γE‖L∞(Ω)

+ c ‖vi(q) + vi(p)‖L2(Ω) ‖vi(q)− vi(p)‖L2(Ω) ‖γE‖L∞(Ω) ,

and the second part can also be estimated using Lemma 3.4.6 and (3.85).

Lemma 3.4.20. For q, p ∈ Qad and i ∈ N it holds that

‖Si(q)− Si(p)‖H1
0 (Ω) ≤ ci ‖q − p‖H2(I) .

Proof. Let again F and E be the transformation for q and p, we get

c ‖Si(q)− Si(p)‖2H1
0 (Ω) ≤ (∇ (Si(q)− Si(p)) , µAF · ∇ (Si(q)− Si(p)))

= (∇Si(q), µAF · ∇ (Si(q)− Si(p)))− (∇Si(p), µAF · ∇ (Si(q)− Si(p)))
= λi(q) (Si(q)− Si(p), Si(q)γF )− λi(p) (Si(q)− Si(p), Si(p)γE)

+ (∇Si(p), µ (AE −AF ) · ∇ (Si(q)− Si(p)))
≤ ‖Si(q)− Si(p)‖L2(Ω) ‖λi(q)Si(q)γF − λi(p)Si(p)γE‖L2(Ω)

+ c ‖Si(p)‖H1
0 (Ω) ‖AF −AE‖L∞(Ω) ‖Si(q)− Si(p)‖H1

0 (Ω) ,

and the result follows with Lemma 3.4.19, Lemma 3.4.13 and Lemma 3.4.6.

Lemma 3.4.21. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′i(q)(δq)∣∣ ≤ ci ‖δq‖H2(I) .

Proof. This lemma follows from (3.65) and Lemma 3.4.6.

Lemma 3.4.22. For q, p ∈ Qad, δq ∈ Q and i ∈ N it holds that∣∣λ′i(q)(δq)− λ′i(p)(δq)∣∣ ≤ ci ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. Let F and E be the transformations corresponding to q and p, respectively. In addition, let
δF = F ′(q)(δq) = F ′(p)(δq), then it holds that∣∣λ′i(q)(δq)− λ′i(p)(δq)∣∣ =

∣∣(∇Si(q), µA′F,δF · ∇Si(q))− (∇Si(p), µA′E,δF · ∇Si(p))∣∣
+
∣∣λi(q) (Si(q)2, γ′F,δF

)
− λi(p)

(
Si(p)

2, γ′E,δF
)∣∣ ,

and the result follows with Lemma 3.4.13, Lemma 3.4.20 and Lemma 3.4.6.

Lemma 3.4.23. Let q ∈ Qad, δq ∈ Q and i ∈ N, then it holds that

‖gi(q, δq)‖H−1(Ω) ≤ ci ‖δq‖H2(I) .
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Proof. Let F = F (q) and δF = F ′(q)(δq), then De�nition 3.4.5, Lemma 3.4.6 and Lemma 3.4.21
yield

‖gi(q, δq)‖H−1(Ω) ≤
∥∥λ′i(q)Si(q)γF∥∥L2(Ω)

+
∥∥λi(q)Si(q)γ′F,δF∥∥L2(Ω)

+
∥∥div

(
µA′F,δF · ∇Si(q)

)∥∥
H−1(Ω)

≤ ci ‖δq‖H2(I) .

Lemma 3.4.24. Let q, p ∈ Qad, δq ∈ Q and i ∈ N, then it holds that

‖gi(q, δq)− gi(p, δq)‖H−1(Ω) ≤ ci ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. This lemma can be proven in a similar way to Lemma 3.4.23, we additionally have to use
Lemma 3.4.22 and Lemma 3.4.20.

The following lemmata will be needed to estimate the error between the derivative of the eigen-
functions with respect to the control variable.

Lemma 3.4.25. Let q ∈ Qad, F = F (q), i ∈ N and g ∈ H−1(Ω) with (g, Si(q))H−1,H1
0

= 0. Then

there exists a solution S̃i ∈ H1
0 (Ω) to(

∇S̃i, µAF · ∇v
)

= λi

(
S̃i, vγF

)
+ (g, v)H−1,H1

0
∀v ∈ H1

0 (Ω), (3.87)

with ∥∥∥S̃i∥∥∥
H1

0 (Ω)
≤ ci ‖g‖H−1(Ω) , (3.88)

where ci is independent of g. In addition it holds that(
S̃i, Si(q)γF

)
= 0. (3.89)

Proof. Let H1
0,a(Ω) be as in De�nition 3.1.10 and let L−1 be the compact operator from De�ni-

tion 3.1.8. Setting h = L−1(g/γF ) ∈ H1
0,a(Ω) it follows that (h, Si(q))H1

0,a(Ω) = 0. It follows from

Corollary 3.2.16 that there exists S̃i ∈ H1
0,a(Ω) as the solution to (3.87) with∥∥∥S̃i∥∥∥
H1

0,a(Ω)
≤ ci ‖h‖H1

0,a(Ω) .

As the norms of H1
0,a(Ω) and H1

0 (Ω) are equivalent, (3.88) follows using standard stability estimates
for L−1. The orthogonality condition (3.89) follows from Subsection 3.2.2.

Lemma 3.4.26. Let q ∈ Qad, δq ∈ Q, i ∈ N and p ∈ [1,∞). Then there exists a solution
S′i,0(q)(δq) ∈W 1,p

0 (Ω) ∩H3/2−ε(Ω) to the �rst equation within (3.66) with∥∥S′i,0(q)(δq)
∥∥
W 1,p(Ω)∩H3/2−ε(Ω)

≤ ci,ε,p ‖δq‖H2(I) .

Proof. Let gi ∈ H−1(Ω) be as in De�nition 3.4.5. With (3.38) it follows that (gi, Si(q))H−1,H1
0

= 0.
Lemma 3.4.25 now yields the existence of such a S′i,0(q)(δq) ∈ H1

0 (Ω) with∥∥S′i,0(q)(δq)
∥∥
H1

0 (Ω)
≤ ci ‖gi‖H−1(Ω) ≤ ci ‖δq‖H2(I) ,

where the last inequality is due to Lemma 3.4.23. In order to prove higher regularity of S′i,0(q)(δq)
we refer to Subsection 3.1.6, where an analog result is proven for Si(q), cf. Lemma 3.4.12. This
lemma can be proven following the same steps.
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Lemma 3.4.27. Let q ∈ Qad, δq ∈ Q, i ∈ N and p ∈ [1,∞). Then it holds that∥∥S′i(q)(δq)∥∥W 1,p(Ω)∩H3/2−ε(Ω)
≤ ci,ε,p ‖δq‖H2(I) .

Proof. Let F = F (q), δF = F ′(q)(δq) and let S′i,0(q)(δq) be as in Lemma 3.4.26. In order to ful�ll the
normalizing condition within (3.66) we have to �nd t ∈ R such that S′i(q)(δq) = S′i,0(q)(δq) + t Si(q)
solves

2
(
S′i(q)(δq), Si(q)γF

)
+
(
Si(q)

2, γ′F,δF
)

= 0,

and because of
(
S′i,0(q)(δq), Si(q)γF

)
= 0 due to Lemma 3.4.25 and Lemma 3.4.26 we have to set

t = −1

2

(
Si(q)

2, γ′F,δF
)
,

with

|t| ≤ c ‖δq‖H2(I) .

As a result,∥∥S′i(q)(δq)∥∥W 1,p(Ω)∩H3/2−ε(Ω)
=
∥∥S′i,0(q)(δq) + t Si(q)

∥∥
W 1,p(Ω)∩H3/2−ε(Ω)

≤
∥∥S′i,0(q)(δq)

∥∥
W 1,p(Ω)∩H3/2−ε(Ω)

+ |t| ‖Si(q)‖W 1,p(Ω)∩H3/2−ε(Ω)

≤ ci,ε,p ‖δq‖H2(I) ,

where we used Lemma 3.4.12 and Lemma 3.4.26.

Lemma 3.4.28. Let q, p ∈ Qad, δq ∈ Q and i ∈ {1, 2}. Let S′i,0(q)(δq), S′i,0(p)(δq) ∈ H1
0 (Ω) be

de�ned as in Lemma 3.4.26, then it holds that∥∥S′i,0(q)(δq)− S′i,0(p)(δq)
∥∥
L2(Ω)

≤ c ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. First note that due to Assumption 3.1.26 the expression |λi(q)− λj(q)| is uniformly bounded
from below for i, j ∈ {1, 2} and i 6= j. Let the transformations for q and p be denoted with F and
E, respectively. Using De�nition 3.1.9 and Corollary 3.4.8 it follows that∥∥S′i,0(q)(δq)− S′i,0(p)(δq)

∥∥2

L2
b(Ω)

=
∑
j∈N

(
S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)

)2
L2
b(Ω)

=
∑

j∈N\{i}

(
S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)

)2
L2
b(Ω)

(3.90)

+
(
S′i,0(p)(δq), Si(q)

)2
L2
b(Ω)

, (3.91)

where we again used the fact that
(
S′i,0(q)(δq), Si(q)

)
L2
b(Ω)

= 0. We start by estimating (3.91), we

get (
S′i,0(p)(δq), Si(q)

)2
L2
b(Ω)

=
(
S′i,0(p)(δq), Si(q)− Si(p)

)2
L2
b(Ω)

≤
∥∥S′i,0(p)(δq)

∥∥2

L2
b(Ω)
‖Si(q)− Si(p)‖2L2

b(Ω)

≤ c ‖q − p‖2H2(I) ‖δq‖
2
H2(I) ,

(3.92)
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where we used Lemma 3.4.19 and Lemma 3.4.26. Now we estimate (3.90), the de�nition of Sj(q)
yields

a(F )(S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)) = λj(q) b(F )(S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)), (3.93)

whereas using the de�nition of S′i,0(q)(δq) and S′i,0(p)(δq) yields

a(F )(S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q))

= a(F )(S′i,0(q)(δq), Sj(q))− a(E)(S′i,0(p)(δq), Sj(q)) +
(
∇S′i,0(p)(δq), µ (AE −AF ) · ∇Sj(q)

)
= λi(q) b(F )(S′i,0(q)(δq), Sj(q)) + (gi(q, δq), Sj(q))H−1,H1

0
− λi(p) b(E)(S′i,0(p)(δq), Sj(q))

− (gi(p, δq), Sj(q))H−1,H1
0

+
(
∇S′i,0(p)(δq), µ (AE −AF ) · ∇Sj(q)

)
= λi(q) b(F )(S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q))

+ (λi(q)− λi(p)) b(F )(S′i,0(p)(δq), Sj(q)) + λi(p)
(
S′i,0(p)(δq), Sj(q) (γF − γE)

)
+ (gi(q, δq)− gi(p, δq), Sj(q))H−1,H1

0
+
(
∇S′i,0(p)(δq), µ (AE −AF ) · ∇Sj(q)

)
.

(3.94)

Combining (3.93) and (3.94) yields(
S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)

)
L2
b(Ω)

=
λi(q)− λi(p)
λj(q)− λi(q)

(
S′i,0(p)(δq), Sj(q)

)
L2
b(Ω)

+
λi(p)

λj(q)− λi(q)
(
S′i,0(p)(δq), Sj(q) (γF − γE)

)
+

1

λj(q)− λi(q)
(gi(q, δq)− gi(p, δq), Sj(q))H−1,H1

0

+
1

λj(q)− λi(q)
(
∇S′i,0(p)(δq), µ (AE −AF ) · ∇Sj(q)

)
.

Now let v ∈ H1
0 (Ω) be the unique solution to

(∇v, µAF · ∇ϕ) =
(
∇S′i,0(p)(δq), µ (AE −AF ) · ∇ϕ

)
∀ϕ ∈ H1

0 (Ω),

hence

‖v‖H1
0 (Ω) ≤ c

∥∥S′i,0(p)(δq)
∥∥
H1

0 (Ω)
‖AE −AF ‖L∞(Ω) . (3.95)

As |λi(q)− λj(q)| is uniformly bounded from below for j 6= i we get(
S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)

)2
L2
b(Ω)

≤ ci

(
|λi(q)− λi(p)|2

(
S′i,0(p)(δq), Sj(q)

)2
L2
b(Ω)

+

(
S′i,0(p)(δq)

γF − γE
γF

, Sj(q)

)2

L2
b(Ω)

)

+ ci

(
1

λj(q)
(gi(q, δq)− gi(p, δq), Sj(q))2

H−1,H1
0

+
1

λj(q)
(∇v, µAF · ∇Sj(q))2

)
.

Summing up these terms and using Corollary 3.4.8 and Lemma 3.4.9 yields∑
j∈N\{i}

(
S′i,0(q)(δq)− S′i,0(p)(δq), Sj(q)

)2
L2
b(Ω)

≤ |λi(q)− λi(p)|2
∥∥S′i,0(p)(δq)

∥∥2

H1
0 (Ω)

+
∥∥S′i,0(p)(δq)

∥∥2

L2(Ω)
‖γF − γE‖2L∞(Ω)

+ ‖gi(q, δq)− gi(p, δq)‖2H−1(Ω) + ‖v‖2H1
0 (Ω) ,
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which, together with the estimates from the previous lemmata, (3.95) and (3.92), proves the result.

Lemma 3.4.29. Let q, p ∈ Qad, δq ∈ Q and i ∈ {1, 2}. Then it holds that∥∥S′i,0(q)(δq)− S′i,0(p)(δq)
∥∥
H1

0 (Ω)
≤ c ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. Let F and E denote the corresponding transformations to q and p, respectively. It then
holds that

c
∥∥S′i,0(q)(δq)− S′i,0(p)(δq)

∥∥2

H1
0 (Ω)

≤
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µAF · ∇

(
S′i,0(q)(δq)− S′i,0(p)(δq)

))
≤
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µAF · ∇S′i,0(q)(δq)

)
−
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µAE · ∇S′i,0(p)(δq)

)
−
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µ (AF −AE) · ∇S′i,0(p)(δq)

)
= λi(q)

(
S′i,0(q)(δq)− S′i,0(p)(δq), S′i,0(q)(δq)γF

)
+
(
gi(q, δq), S

′
i,0(q)(δq)− S′i,0(p)(δq)

)
H−1,H1

0

− λi(p)
(
S′i,0(q)(δq)− S′i,0(p)(δq), S′i,0(p)(δq)γE

)
−
(
gi(p, δq), S

′
i,0(q)(δq)− S′i,0(p)(δq)

)
H−1,H1

0

−
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µ (AF −AE) · ∇S′i,0(p)(δq)

)
=
(
λi(q)S

′
i,0(q)(δq)γF − λi(p)S′i,0(p)(δq)γE , S

′
i,0(q)(δq)− S′i,0(p)(δq)

)
+
(
gi(q, δq)− gi(p, δq), S′i,0(q)(δq)− S′i,0(p)(δq)

)
H−1,H1

0

−
(
∇
(
S′i,0(q)(δq)− S′i,0(p)(δq)

)
, µ (AF −AE) · ∇S′i,0(p)(δq)

)
≤ c

(
|λi(q)− λi(p)|+

∥∥S′i,0(q)(δq)− S′i,0(p)(δq)
∥∥
L2(Ω)

+ ‖γF − γE‖L2(Ω)

)∥∥S′i,0(q)(δq)− S′i,0(p)(δq)
∥∥
L2(Ω)

+ ‖gi(q, δq)− gi(p, δq)‖H−1(Ω)

∥∥S′i,0(q)(δq)− S′i,0(p)(δq)
∥∥
H1

0 (Ω)

+ c
∥∥S′i,0(q)(δq)− S′i,0(p)(δq)

∥∥
H1

0 (Ω)
‖AF −AE‖L∞(Ω)

∥∥S′i,0(p)(δq)
∥∥
H1

0 (Ω)
,

and the result follows with Lemma 3.4.28, Lemma 3.4.13, Lemma 3.4.24, Lemma 3.4.26, Lemma 3.4.6
and Young's inequality.

Lemma 3.4.30. Let q, p ∈ Qad, δq ∈ Q and i ∈ {1, 2}. Then it holds that∥∥S′i(q)(δq)− S′i(p)(δq)∥∥H1
0 (Ω)
≤ c ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. Let F and E be the transformations corresponding to q and p, respectively, with derivative
δF = F ′(q)(δq) = F ′(p)(δq). As in the proof of Lemma 3.4.27, let

tq = −1

2

(
Si(q)

2, γ′F,δF
)

and tp = −1

2

(
Si(p)

2, γ′E,δF
)
,

such that

S′i(q)(δq) = S′i,0(q)(δq) + tq Si(q) and S′i(p)(δq) = S′i,0(p)(δq) + tp Si(p).

We use Lemma 3.4.20, Lemma 3.4.29 and Lemma 3.4.6 and get∥∥S′i(q)(δq)− S′i(p)(δq)∥∥H1
0 (Ω)
≤
∥∥S′i,0(q)(δq)− S′i,0(p)(δq)

∥∥
H1

0 (Ω)

+ |tq − tp| ‖Si(q)‖H1
0 (Ω) + |tp| ‖Si(q)− Si(p)‖H1

0 (Ω)

≤ c ‖q − p‖H2(I) ‖δq‖H2(I) .
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Lemma 3.4.31. For q, p ∈ Qad, δq ∈ Q and i ∈ {1, 2} it holds that∣∣λ′′i (q)(δq, δq)− λ′′i (p)(δq, δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖
2
H2(I) .

Proof. This lemma follows with representation (3.67) and the previous lemmata.

Lemma 3.4.32. For q, p ∈ Qad and δq ∈ Q it holds that∣∣j′(q)(δq)− j′(p)(δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖H2(I) ,∣∣j′′(q)(δq, δq)− j′′(p)(δq, δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖
2
H2(I) .

Proof. This lemma is a direct conclusion of Lemma 3.4.22 and Lemma 3.4.31.

3.4.1.2. Estimates between the continuous case and the state-discretized case

Within this subsubsection we are going to estimate the error induced by the discretization of the
state. We start with general results concerning the �nite element approximation of eigenvalues and
eigenfunctions, some of them are based on ideas presented in the survey article [15]. If not stated
otherwise we will always assume that the discretization parameter h is chosen su�ciently small.
One possible de�nition of the convergence of a discretized eigenvalue problem to its continuous

counterpart is as follows.

De�nition 3.4.33. Let i ∈ N and let Ni and Ni,h be the spaces spanned by the eigenfunctions and
discrete eigenfunctions for the i-th eigenvalue, respectively. Let m(i) denote the dimension of the
space spanned by the �rst distinct i eigenspaces. Then we say that the discrete eigenvalue problem
converges to the continuous one if, for any ε > 0 and i > 0, there exists h0 > 0 such that for all
h < h0 we have

max
1≤j≤m(i)

|λi − λi,h| ≤ ε and δ̂

m(i)⊕
j=1

Nj ,

m(i)⊕
j=1

Nj,h

 ≤ ε.
Remark 3.4.34. It can be shown that De�nition 3.4.33 includes convergence of eigenvalues and eigen-
functions with correct multiplicity and absence of spurious solutions. Using the notation introduced
in Lemma 3.1.1 it further holds that, if the solution operator for the underlying equation is compact
from H to V and Πh : V → Vh,0 as the elliptic projection associated with ah(F )(·, ·) converges
strongly to the identity operator from V to H, then convergence in the sense of De�nition 3.4.33
holds, cf. [15], Proposition 7.4 and Proposition 7.6.

Lemma 3.4.35. Let q ∈ Qad and i ∈ N, then it holds that

λi,h(q) ≤ ci.

Proof. Using (3.68) this lemma can be proven similar to Lemma 3.1.3, where one has to use the
fact that the i-th eigenvalue for the discrete Laplacian is bounded independently of h, which follows
with Remark 3.4.34.

Lemma 3.4.36. Let q ∈ Qad and i ∈ N, then it holds that

‖Si,h(q)‖H1
0 (Ω) ≤ ci.
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Proof. This lemma follows with De�nition 3.4.3 and Lemma 3.4.35.

Lemma 3.4.37. Let p ∈ [1,∞]. Then it holds that

‖µ− µh‖Lp(Ω) ≤ ch
2/p.

Proof. This lemma follows from the fact that µ, µh ∈ L∞(Ω),

|{x ∈ Ω| µ(x) 6= µh(x)}| = |Ω0\Ω0,h| ≤ ch2,

and Hölder's inequality.

Corollary 3.4.38. Let q ∈ Qad, F = F (q), p1, p2, p3 ∈ [1,∞] with 1/p1 + 1/p2 + 1/p3 = 1,
v ∈W 1,p1(Ω) and w ∈W 1,p2(Ω). Then it holds that

|a(F )(v, w)− ah(F )(v, w)| ≤ ch2/p3 ‖v‖
W

1,p1
0 (Ω)

‖w‖
W

1,p2
0 (Ω)

.

Proof. This corollary follows with Theorem A.1.7 and Lemma 3.4.37.

Lemma 3.4.39. Let q ∈ Qad, F = F (q), i ∈ N and u1, u2 ∈ span {Sj(q)}ij=1. Then it holds that

|ah(F )(u1, u2)− a(F )(u1, u2)| ≤ cih ‖u1‖W 1,4
0 (Ω)

‖u2‖W 1,4
0 (Ω)

, (3.96)∣∣∣∣ah(F )(u1, u1)

a(F )(u1, u1)

∣∣∣∣ = 1 +Oi(h), (3.97)∣∣∣∣ a(F )(u1, u1)

ah(F )(u1, u1)

∣∣∣∣ = 1 +Oi(h). (3.98)

Proof. The �rst part, (3.96), follows with Corollary 3.4.38. The estimates (3.97) and (3.98) are
immediate consequences of (3.96), Lemma 3.4.12 and the uniform ellipticity of AF .

Lemma 3.4.40. Let q ∈ Qad and i ∈ N. Then it holds that

λi(q) ≤ (1 + cih)λi,h(q).

Proof. Let F = F (q), using De�nition 3.4.2 and De�nition 3.4.3 we get

λi(q) = min
E∈V (i)

max
u∈E

a(F )(u, u)

b(F )(u, u)

= min
E∈V (i)

max
u∈E

(
a(F )(u, u)

ah(F )(u, u)

ah(F )(u, u)

b(F )(u, u)

)
≤ (1 + cih) min

Eh∈V
(i)
h,0

max
uh∈Eh

ah(F )(uh, uh)

b(F )(uh, uh)

= (1 + cih)λi,h(q),

where in the second step we used Lemma 3.4.39 and the fact that V (i)
h,0 ⊂ V

(i).

Lemma 3.4.41. Let q ∈ Qad and i ∈ N. If the �rst i eigenvalues (λj(q))1≤j≤i are simple, then it
holds that

λi,h(q) ≤ (1 + ci,εh
1−ε)λi(q).
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Proof. Let F = F (q), let V (i) =
⊕i

j=1Nj be the space spanned by the �rst i eigenfunctions and let
Nh = ΠhV

(i) with Πh as in De�nition 3.3.2. Due to the coercivity of the bilinear form ah(F )(·, ·) it
follows that for h su�ciently small it holds that dim(Nh) = i. Using Nh as testspace within (3.68)
yields

λi,h(q) ≤ max
uh∈Nh

ah(F )(uh, uh)

b(F )(uh, uh)
= max

u∈V (i)

ah(F )(Πhu,Πhu)

b(F )(Πhu,Πhu)

≤ max
u∈V (i)

ah(F )(u, u)

b(F )(Πhu,Πhu)
= max

u∈V (i)

(
ah(F )(u, u)

a(F )(u, u)

a(F )(u, u)

b(F )(u, u)

b(F )(u, u)

b(F )(Πhu,Πhu)

)
≤ (1 + cih)λi(q) max

u∈V (i)

b(F )(u, u)

b(F )(Πhu,Πhu)
,

(3.99)

where we also used Lemma 3.4.39. It remains to estimate the last term on the right hand side
of (3.99). Within Lemma 3.1.25 it has already been shown that V (i) ⊂ H3/2−ε(Ω), and a duality
argument (cf. Lemma 3.4.11) proves that

‖u−Πhu‖L2(Ω) ≤ cεh
1−ε ‖u‖H3/2−ε(Ω)

≤ ci,εh1−ε ‖u‖L2(Ω) ,

which yields

‖Πhu‖L2(Ω) ≥ ‖u‖L2(Ω)

(
1− ci,εh1−ε) . (3.100)

Inserting (3.100) into (3.99) yields

λi,h(q) ≤ (1 + cih)

(
1

1− ci,εh1−ε

)2

λi(q)

≤
(
1 + ci,εh

1−ε) λi(q),
where the second inequality is due to the fact that (1− x)−2 = 1 + 2x+O(x2) for |x| � 1.

Corollary 3.4.42. Let q ∈ Qad and i ∈ N. Then it holds that

|λi(q)− λi,h(q)| ≤ ci,εh1−ε.

Proof. This corollary follows with Lemma 3.4.40 and Lemma 3.4.41.

Lemma 3.4.43. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′i,h(q)(δq)
∣∣ ≤ ci ‖δq‖H2(I) .

Proof. This lemma follows with (3.70), Lemma 3.4.35 and Lemma 3.4.6.

Next we are going to estimate the error between an eigenfunction and its discrete counterpart.
The following proof is based on ideas presented in [15] and [93].

Lemma 3.4.44. Let q ∈ Qad and i ∈ N. Then it holds that

‖Si(q)− Si,h(q)‖L2(Ω) ≤ ci,εh
1−ε.
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Proof. Let F = F (q) and

ρi,h = max
j∈N\{i}

λi(q)

|λi(q)− λj,h(q)|
, (3.101)

which is uniformly bounded from above for h su�ciently small since λi(q) is a simple eigenvalue
due to Assumption 3.1.26 and the fact that λj,h(q) → λj(q) for h → 0 due to Corollary 3.4.42. In
addition, let

S̃i,h(q) = b(F )(ΠhSi(q), Si,h(q))Si,h(q), (3.102)

be the L2
b(Ω)-projection of ΠhSi(q) on the space spanned by Si,h(q), with L2

b(Ω) as in De�nition 3.1.9
and Πh as in De�nition 3.3.2. Now we have

‖Si(q)− Si,h(q)‖L2
b(Ω) ≤ ‖Si(q)−ΠhSi(q)‖L2

b(Ω) +
∥∥∥ΠhSi(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)

+
∥∥∥S̃i,h(q)− Si,h(q)

∥∥∥
L2
b(Ω)

,
(3.103)

we start with examining the second term on the right hand side of (3.103). Using Corollary 3.4.8
it follows that

ΠhSi(q)− S̃i,h(q) =
∑

j∈N\{i}

(
(ΠhSi(q), Sj,h(q))L2

b(Ω) Sj,h(q)
)
,

and ∥∥∥ΠhSi(q)− S̃i,h(q)
∥∥∥2

L2
b(Ω)

=
∑

j∈N\{i}

(ΠhSi(q), Sj,h(q))2
L2
b(Ω) . (3.104)

For the summands in (3.104) it holds that

(ΠhSi(q), Sj,h(q))L2
b(Ω) =

1

λj,h(q)
ah(F )(ΠhSi(q), Sj,h(q)) =

1

λj,h(q)
ah(F )(Si(q), Sj,h(q))

=
λi(q)

λj,h(q)
(Si(q), Sj,h(q))L2

b(Ω)

+
1

λj,h(q)
(∇Si(q), (µh − µ)AF · ∇Sj,h(q)) ,

(3.105)

or equivalently

λj,h(q) (ΠhSi(q), Sj,h(q))L2
b(Ω) = λi(q) (Si(q), Sj,h(q))L2

b(Ω) + (∇Si(q), (µh − µ)AF · ∇Sj,h(q)) .

Subtracting λi(q) (ΠhSi(q), Sj,h(q))L2
b(Ω) on both sides gives

(λj,h(q)− λi(q)) (ΠhSi(q), Sj,h(q))L2
b(Ω) = λi(q) (Si(q)−ΠhSi(q), Sj,h(q))L2

b(Ω)

+ (∇Si(q), (µh − µ)AF · ∇Sj,h(q)) ,
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and hence

(ΠhSi(q), Sj,h(q))L2
b(Ω) =

λi(q)

λj,h(q)− λi(q)
(Si(q)−ΠhSi(q), Sj,h(q))L2

b(Ω)

+
1

λj,h(q)− λi(q)
(∇Si(q), (µh − µ)AF · ∇Sj,h(q)) .

(3.106)

Now let vh ∈ Vh,0 be the solution to

(∇vh, µhAF · ∇ϕh) = (∇Si(q), (µh − µ)AF · ∇ϕh) ∀ϕh ∈ Vh,0,

for which we have the stability estimate

‖vh‖H1
0 (Ω) ≤ c ‖∇Si(q) (µh − µ)‖L2(Ω) ≤ ci,εh

1−ε,

where we used Lemma 3.4.12 and Lemma 3.4.37. Hence,

1

λj,h(q)− λi(q)
(∇Si(q), (µh − µ)AF · ∇Sj,h(q)) =

1

λj,h(q)− λi(q)
(∇vh, µhAF · ∇Sj,h(q))

=
λj,h(q)

λj,h(q)− λi(q)
(vh, Sj,h(q))L2

b(Ω) .

(3.107)

Inserting (3.107) into (3.106) yields∣∣∣(ΠhSi(q), Sj,h(q))L2
b(Ω)

∣∣∣ ≤ ρi,h ∣∣∣(Si(q)−ΠhSi(q), Sj,h(q))L2
b(Ω)

∣∣∣
+ ci

∣∣∣(vh, Sj,h)L2
b(Ω)

∣∣∣ , (3.108)

and using the estimate (3.108) within (3.104) shows

∥∥∥ΠhSi(q)− S̃i,h(q)
∥∥∥2

L2
b(Ω)
≤ ci

∑
j∈N\{i}

(
ρ2
i,h (Si(q)−ΠhSi(q), Sj,h(q))2

L2
b(Ω)

)
+ ci

∑
j∈N\{i}

(vh, Sj,h)2
L2
b(Ω)

≤ ci,ε
(
ρ2
i,h ‖Si(q)−ΠhSi(q)‖2L2

b(Ω) + ‖vh‖2L2(Ω)

)
≤ ci,ε

(
‖Si(q)−ΠhSi(q)‖2L2

b(Ω) + h2−ε
)
.

(3.109)

In order to estimate the third term within (3.103) we will show that∥∥∥S̃i,h(q)− Si,h(q)
∥∥∥
L2
b(Ω)
≤
∥∥∥S̃i,h(q)− Si(q)

∥∥∥
L2
b(Ω)

, (3.110)

for (3.110) would imply that∥∥∥S̃i,h(q)− Si,h(q)
∥∥∥
L2
b(Ω)
≤ ‖Si(q)−ΠhSi(q)‖L2

b(Ω) +
∥∥∥ΠhSi(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)

. (3.111)
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It holds that

Si,h(q)− S̃i,h(q) = Si,h(q)
(

1− (ΠhSi(q), Si,h(q))L2
b(Ω)

)
, (3.112)

and

‖Si(q)‖L2
b(Ω) −

∥∥∥Si(q)− S̃i,h(q)
∥∥∥
L2
b(Ω)
≤
∥∥∥S̃i,h(q)

∥∥∥
L2
b(Ω)
≤ ‖Si(q)‖L2

b(Ω) +
∥∥∥Si(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)

.

The normalizing conditions for Si(q) and Si,h(q) yield

1−
∥∥∥Si(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)
≤
∣∣∣(ΠhSi(q), Si,h(q))L2

b(Ω)

∣∣∣ ≤ 1 +
∥∥∥Si(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)

,

or ∣∣∣∣∣∣(ΠhSi(q), Si,h(q))L2
b(Ω)

∣∣∣− 1
∣∣∣ ≤ ∥∥∥Si(q)− S̃i,h(q)

∥∥∥
L2
b(Ω)

. (3.113)

Due to (3.69) it holds that

(ΠhSi(q), Si,h(q))L2
b(Ω) ≥ 0,

and hence ∣∣∣(ΠhSi(q), Si,h(q))L2
b(Ω)

∣∣∣ = (ΠhSi(q), Si,h(q))L2
b(Ω) . (3.114)

The estimates (3.112), (3.113) and (3.114) prove (3.110), and inserting the estimates (3.109) and (3.111)
into (3.103) yields

‖Si(q)− Si,h(q)‖L2
b(Ω) ≤ 2 (1 + ρi,h) ‖Si(q)−ΠhSi(q)‖L2

b(Ω) . (3.115)

In order to estimate the right hand side of (3.115), let z ∈ H1
0 (Ω) be the solution to

a(F )(v, z) = (Si(q)−ΠhSi(q), v)L2
b(Ω) ∀v ∈ H1

0 (Ω).

With Lemma 3.4.11 it follows that z ∈ H3/2−ε(Ω) and

‖z‖H3/2−ε(Ω) ≤ cε ‖Si(q)−ΠhSi(q)‖L2
b(Ω) .

Let ihz be the nodal interpolation of z, it holds that

‖Si(q)−ΠhSi(q)‖2L2
b(Ω) = a(F )(Si(q)−ΠhSi(q), z)

= ah(F )(Si(q)−ΠhSi(q), z) + (∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z)
= ah(F )(Si(q)−ΠhSi(q), z − ihz) + (∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z)
≤ cε ‖Si(q)−ΠhSi(q)‖H1

0 (Ω) h
1/2−ε ‖z‖H3/2−ε(Ω)

+ cε ‖Si(q)−ΠhSi(q)‖H1
0 (Ω) ‖µ− µh‖L 4

1−2ε (Ω)
‖z‖

W
1, 4

1+2ε (Ω)

≤ ci,εh1−ε ‖Si(q)−ΠhSi(q)‖L2
b(Ω) ,

where we used Céa's lemma, Lemma 3.4.12, the continuous embedding H3/2−ε(Ω) ↪→W 1, 4
1+2ε (Ω)

and Lemma 3.4.37.
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Within the next lemma we are going to estimate the same error as in the previous lemma, but
with respect to a stronger norm. As the proof is similar to the proof of Lemma 3.4.44 we will stick to
the same notation. Another approach to prove this kind of estimates is presented in Subsection 3.4.2
within the proof of Lemma 3.4.101, where the same di�erence has to be estimated in case of the
optimal control q.

Lemma 3.4.45. Let q ∈ Qad and i ∈ N, then it holds that

‖Si(q)− Si,h(q)‖H1
0 (Ω) ≤ ci,εh

1/2−ε.

Proof. Again let F = F (q) and de�ne

S̃i,h(q) = b(F )(ΠhSi(q), Si,h(q))Si,h(q) =
1

λi,h(q)
ah(F )(ΠhSi(q), Si,h(q))Si,h(q), (3.116)

be the L2
b(Ω)-projection of ΠhSi(q) on the space spanned by Si,h(q), where Πh is again as in

De�nition 3.3.2. Using the notation from De�nition 3.3.1 we have

‖Si(q)− Si,h(q)‖H1
0,ah

(Ω) ≤ ‖Si(q)−ΠhSi(q)‖H1
0,ah

(Ω) +
∥∥∥ΠhSi(q)− S̃i,h(q)

∥∥∥
H1

0,ah
(Ω)

+
∥∥∥S̃i,h(q)− Si,h(q)

∥∥∥
H1

0,ah
(Ω)

,
(3.117)

and again we start with examining the second term. It holds that

ΠhSi(q)− S̃i,h(q) =
∑

j∈N\{i}

(
1

λj,h(q)
ah(F )(ΠhSi(q), Sj,h(q))Sj,h(q)

)
,

and∥∥∥ΠhSi(q)− S̃i,h(q)
∥∥∥2

H1
0,ah

(Ω)
=

∑
j∈N\{i}

(
1

λj,h(q)
ah(F )(ΠhSi(q), Sj,h(q))2

)
=

∑
j∈N\{i}

(
λj,h(q) (ΠhSi(q), Sj,h(q))2

L2
b(Ω)

)
.

(3.118)

Within the proof of Lemma 3.4.44 it has been shown that

(λj,h(q)− λi(q)) (ΠhSi(q), Sj,h(q))L2
b(Ω) = λi(q) (Si(q)−ΠhSi(q), Sj,h(q))L2

b(Ω)

+ (∇Si(q), (µh − µ)AF · ∇Sj,h(q)) ,

and hence

λj,h(q) (ΠhSi(q), Sj,h(q))2
L2
b(Ω) ≤ c

λj,h(q)λi(q)
2

|λj,h(q)− λi(q)|2
(Si(q)−ΠhSi(q), Sj,h(q))2

L2
b(Ω)

+ c
λj,h(q)

|λj,h(q)− λi(q)|2
(∇Si(q), (µh − µ)AF · ∇Sj,h(q))2 .

(3.119)

Let again vh ∈ Vh,0 be the solution to

(∇vh, µhAF · ∇ϕh) = (∇Si(q), (µh − µ)AF · ∇ϕh) ∀ϕh ∈ Vh,0, (3.120)
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for which we have the stability estimate

‖vh‖H1
0 (Ω) ≤ c ‖∇Si(q) (µh − µ)‖L2(Ω) ≤ cih

1/2,

where we used Lemma 3.4.12 and Lemma 3.4.37. In addition, let wh ∈ Vh,0 be the solution to

b(F )(wh, ϕh) = b(F )(Si(q)−ΠhSi(q), ϕh) ∀ϕh ∈ Vh,0. (3.121)

We get

‖wh‖2L2
b(Ω) = b(F )(Si(q)−ΠhSi(q), wh)

≤ ‖Si(q)−ΠhSi(q)‖L2
b(Ω) ‖wh‖L2

b(Ω) ,

and hence

‖wh‖L2
b(Ω) ≤ ci,εh

1−ε.

Inserting (3.119) into (3.118) and using the de�nitions (3.120) and (3.121) shows that∥∥∥ΠhSi(q)− S̃i,h(q)
∥∥∥2

H1
0,ah

(Ω)
≤ ci

∑
j∈N\{i}

(
(wh, Sj,h(q))2

L2
b(Ω) +

1

λj,h(q)
(∇vh, µhAF · ∇Sj,h(q))2

)
= ci

(
‖wh‖2L2(Ω) + ‖vh‖2H1

0 (Ω)

)
≤ cih,

and hence∥∥∥ΠhSi(q)− S̃i,h(q)
∥∥∥
H1

0 (Ω)
≤ cih1/2. (3.122)

In order to estimate the third term within (3.117), we will show that∥∥∥S̃i,h(q)− Si,h(q)
∥∥∥
H1

0,ah
(Ω)
≤
∥∥∥S̃i,h(q)− Si(q)

∥∥∥
H1

0,ah
(Ω)

+ cεh
1/2−ε, (3.123)

for (3.123) would imply that∥∥∥S̃i,h(q)− Si,h(q)
∥∥∥
H1

0,ah
(Ω)
≤ ‖Si(q)−ΠhSi(q)‖H1

0,ah
(Ω)

+
∥∥∥ΠhSi(q)− S̃i,h(q)

∥∥∥
H1

0,ah
(Ω)

+ cεh
1/2−ε.

(3.124)

It holds that

Si,h(q)− S̃i,h(q) = Si,h(q)
(

1− (ΠhSi(q), Si,h(q))L2
b(Ω)

)
= Si,h(q)

(
1− 1

λi,h(q)
ah(F )(ΠhSi(q), Si,h(q))

)
.

(3.125)
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Let ‖·‖H1
0,ah

(Ω) be the norm from De�nition 3.3.1, the triangle inequality proves that

‖Si(q)‖H1
0,ah

(Ω) −
∥∥∥Si(q)− S̃i,h(q)

∥∥∥
H1

0,ah
(Ω)
≤
∥∥∥S̃i,h(q)

∥∥∥
H1

0,ah
(Ω)

≤ ‖Si(q)‖H1
0,ah

(Ω) +
∥∥∥Si(q)− S̃i,h(q)

∥∥∥
H1

0,ah
(Ω)

.

By de�nition it holds that

‖Si,h(q)‖H1
0,ah

(Ω) =
√
λi,h(q), (3.126)

and

‖Si(q)‖2H1
0,ah

(Ω) = ah(F )(Si(q), Si(q))

= a(F )(Si(q), Si(q)) + (∇Si(q), (µh − µ)AF · ∇Si(q))
= λi(q) + (∇Si(q), (µh − µ)AF · ∇Si(q)) .

With Lemma 3.4.39 and Lemma 3.4.12 it follows that

0 ≤ (∇Si(q), (µh − µ)AF · ∇Si(q)) ≤ cih,

hence ∣∣∣‖Si(q)‖H1
0,ah

(Ω) −
√
λi(q)

∣∣∣ ≤ cih1/2,

which yields√
λi(q)−

∥∥∥Si(q)− S̃i,h(q)
∥∥∥
L2
b(Ω)
− cih1/2 ≤ 1√

λi,h(q)
|ah(F )(ΠhSi(q), Si,h(q))|

≤
√
λi(q) +

∥∥∥Si(q)− S̃i,h(q)
∥∥∥
H1

0,ah
(Ω)

+ cih
1/2,

or√
λi,h(q)

∣∣∣∣1− 1

λi,h(q)
|ah(F )(ΠhSi(q), Si,h(q))|

∣∣∣∣ ≤ ∥∥∥Si(q)− S̃i,h(q)
∥∥∥
H1

0,ah
(Ω)

+ ci

(
h1/2 +

√
|λi(q)− λi,h(q)|

)
.

With (3.69) it follows that

ah(F )(ΠhSi(q), Si,h(q)) = λi,h(q) (ΠhSi(q), Si,h(q))L2
b(Ω) ≥ 0. (3.127)

The estimate (3.123) now follows with (3.125), (3.126), (3.127) and Corollary 3.4.42. The remaining
estimate for ‖Si(q)−ΠhSi(q)‖H1

0 (Ω) can again be shown using Céa's lemma and Lemma 3.4.12.

Lemma 3.4.46. Let q ∈ Qad, i ∈ N and p ∈ (1, 4). Then it holds that

‖Si,h(q)‖W 1,p(Ω) ≤ ci,p.
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Proof. For p ≤ 2 this statement follows with standard embedding theorems, Lemma 3.4.45 and
Lemma 3.4.12. For p > 2 let ihSi(q) be the nodal interpolation of Si(q). Using an inverse estimate
it follows that

‖Si,h(q)‖W 1,p(Ω) ≤ ‖ihSi(q)‖W 1,p(Ω) + ‖ihSi(q)− Si,h(q)‖W 1,p(Ω)

≤ c ‖Si(q)‖W 1,p(Ω) + ch2(1/p−1/2) ‖ihSi(q)− Si,h(q)‖H1(Ω)

≤ c ‖Si(q)‖W 1,p(Ω) + ch2/p−1
(
‖Si(q)− ihSi(q)‖H1(Ω) + ‖Si(q)− Si,h(q)‖H1(Ω)

)
≤ c ‖Si(q)‖W 1,p(Ω) + ci,εh

2/p−1h1/2−ε ‖Si(q)‖H3/2−ε(Ω)

≤ ci,p,

where in the last step we have to choose ε = 2/p− 1/2 > 0 for p < 4.

Lemma 3.4.47. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′i(q)(δq)− λ′i,h(q)(δq)
∣∣ ≤ ci,εh1/2−ε ‖δq‖H2(I) .

Proof. Let F = F (q) and δF = F ′(q)(δq), it holds that∣∣λ′i(q)(δq)− λ′i,h(q)(δq)
∣∣ ≤ ∣∣(∇ (Si(q)− Si,h(q)) , µA′F,δF · ∇ (Si(q) + Si,h(q))

)∣∣
+
∣∣(λi Si(q)2 − λi,h(q)Si,h(q)2, γ′F,δF

)∣∣
+
∣∣(∇Si,h(q), (µ− µh)A′F,δF · ∇Si,h(q)

)∣∣ ,
and the result follows with Lemma 3.4.45, Corollary 3.4.42, Lemma 3.4.6 and Lemma 3.4.37.

Lemma 3.4.48. Let q ∈ Qad, δq ∈ Q, i ∈ N and gi,h(q, δq) ∈ H−1(Ω) as in De�nition 3.4.5. Then
it holds that

‖gi,h(q, δq)‖H−1(Ω) ≤ ci ‖δq‖H2(I) .

Proof. Let F = F (q) and δF = F ′(q)(δq), then it holds that

‖gi,h(q, δq)‖H−1(Ω) ≤
∥∥λ′i,h(q)(δq)Si,h(q)γF + λi,h(q)Si,h(q)γ′F,δF

∥∥
L2(Ω)

+
∥∥div

(
µhA

′
F,δF · ∇Si,h(q)

)∥∥
H−1(Ω)

≤ ci ‖δq‖H2(I) ,

where we used Lemma 3.4.43 and Lemma 3.4.6.

Lemma 3.4.49. Let q ∈ Qad, δq ∈ Q, i ∈ N and gi(q, δq), gi,h(q, δq) ∈ H−1(Ω) as in De�ni-
tion 3.4.5. Then it holds that

‖gi(q, δq)− gi,h(q, δq)‖H−1(Ω) ≤ ci,εh
1/2−ε ‖δq‖H2(I) .

Proof. With F = F (q) and δF = F ′(q)(δq) it holds that

‖gi(q, δq)− gi,h(q, δq)‖H−1(Ω) ≤
∥∥λ′i(q)(δq)Si(q)γF − λ′i,h(q)(δq)Si,h(q)γF

∥∥
L2(Ω)

+
∥∥λi(q)Si(q)γ′F,δF − λi,h(q)Si,h(q)γ′F,δF

∥∥
L2(Ω)

+
∥∥div

(
µA′F,δF · ∇Si(q)− µhA′F,δF · ∇Si,h(q)

)∥∥
H−1(Ω)

,

and the result follows with Corollary 3.4.42 as well as Lemma 3.4.47, Lemma 3.4.45, Lemma 3.4.6
and Lemma 3.4.37.
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The subsequent lemmata will be needed to estimate the error between the continuous and the
discrete derivative of the eigenfunction with respect to q.

Lemma 3.4.50. Let q ∈ Qad, δq ∈ Q and i ∈ N. Let S′i,0(q)(δq) and S′i,h,0(q)(δq) be the (discrete)
solutions to the a�ne eigenvalue equations related to (3.66) and (3.71) without the normalizing
conditions but with minimal H1

0,a(Ω)-, and H1
0,ah

(Ω)-norm, respectively, cf. Subsection 3.2.2. Then
it holds that ∥∥S′i,0(q)(δq)− S′i,h,0(q)(δq)

∥∥
L2(Ω)

≤ ci,εh1/2−ε ‖δq‖H2(I) .

Proof. Let F = F (q). For arbitrary j ∈ N\ {i} it holds that

a(F )(S′i,0(q)(δq), Sj(q)) = b(F )(S′i,0(q)(δq), Sj(q)) = 0,

ah(F )(S′i,h,0(q)(δq), Sj,h(q)) = b(F )(S′i,h,0(q)(δq), Sj,h(q)) = 0.
(3.128)

Let Πh as in De�nition 3.3.2 and let

Π̃S′i,0(q)(δq) =
∑

j∈N\{i}

((
ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

Sj,h(q)
)

= ΠhS
′
i,0(q)(δq)−

(
ΠhS

′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

Si,h(q).

(3.129)

Then we split the error,∥∥S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥
L2
b(Ω)
≤
∥∥S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq)

∥∥
L2
b(Ω)

+
∥∥∥ΠhS

′
i,0(q)(δq)− Π̃S′i,0(q)(δq)

∥∥∥
L2
b(Ω)

+
∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)

∥∥∥
L2
b(Ω)

.

(3.130)

Using a duality argument and Lemma 3.4.26 it follows that∥∥S′i,0(q)(δq)−ΠhS
′
i,0(q)(δq)

∥∥
L2
b(Ω)
≤ ci,εh1−ε ‖δq‖H2(I) . (3.131)

From (3.129) we get

ΠhS
′
i,0(q)(δq)− Π̃S′i,0(q)(δq) =

(
ΠhS

′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

Si,h(q),

hence ∥∥∥ΠhS
′
i,0(q)(δq)− Π̃S′i,0(q)(δq)

∥∥∥
L2
b(Ω)

=
∣∣∣(ΠhS

′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

∣∣∣
=
∣∣∣(ΠhS

′
i,0(q)(δq)− S′i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

+
(
S′i,0(q)(δq), Si,h(q)− Si(q)

)
L2
b(Ω)

∣∣∣
≤
∥∥ΠhS

′
i,0(q)(δq)− S′i,0(q)(δq)

∥∥
L2
b(Ω)

+
∥∥S′i,0(q)(δq)

∥∥
L2
b(Ω)
‖Si(q)− Si,h(q)‖L2

b(Ω)

≤ ci,εh1−ε ‖δq‖H2(I) ,
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where we used (3.131), Lemma 3.4.26 and Lemma 3.4.44. The last part within (3.130) remains. As

S′i,h,0(q)(δq) =
∑

j∈N\{i}

((
S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

Sj,h(q)
)
,

it holds that

Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq) =
∑

j∈N\{i}

((
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

Sj,h(q)
)
,

∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥∥2

L2
b(Ω)

=
∑

j∈N\{i}

(
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

, (3.132)

and we have to estimate each summand within (3.132). It holds that

(
ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=
1

λj,h(q)
ah(F )(ΠhS

′
i,0(q)(δq), Sj,h(q))

=
1

λj,h(q)
ah(F )(S′i,0(q)(δq), Sj,h(q))

=
λi(q)

λj,h(q)

(
S′i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
1

λj,h(q)
(gi(q, δq), Sj,h(q))H−1,H1

0

+
1

λj,h(q)

(
ah(F )(S′i,0(q)(δq), Sj,h(q))− a(F )(S′i,0(q)(δq), Sj,h(q))

)
=

λi(q)

λj,h(q)

(
ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
λi(q)

λj,h(q)

(
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
1

λj,h(q)
(gi(q, δq), Sj,h(q))H−1,H1

0
+

1

λj,h(q)

(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)
,

where we used Lemma 3.4.39 and Lemma 3.4.27. Hence(
ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=
λi(q)

λj,h(q)− λi(q)
(
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
1

λj,h(q)− λi(q)
(gi(q, δq), Sj,h(q))H−1,H1

0

+
1

λj,h(q)− λi(q)
(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)
.

(3.133)

In addition,

(
S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=
1

λj,h(q)
ah(F )(S′i,h,0(q)(δq), Sj,h(q))

=
λi,h(q)

λj,h(q)

(
S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
1

λj,h(q)
(gi,h(q, δq), Sj,h(q))H−1,H1

0
,

hence (
S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=
1

λj,h(q)− λi,h(q)
(gi,h(q, δq), Sj,h(q))H−1,H1

0
. (3.134)
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The equations (3.133) and (3.134) yield(
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=
1

λj,h(q)− λi(q)
(gi(q, δq)− gi,h(q, δq), Sj,h(q))H−1,H1

0

+
λi(q)− λi,h(q)

(λj,h(q)− λi(q)) (λj,h(q)− λi,h(q))
(gi,h(q, δq), Sj,h(q))H−1,H1

0

+
λi(q)

λj,h(q)− λi(q)
(
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+
1

λj,h(q)− λi(q)
(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)
.

(3.135)

As |λj,h(q)− λi(q)| and |λj,h(q)− λi,h(q)| are uniformly bounded from below for h → 0 and j 6= i,
it holds that(

ΠhS
′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

≤ ci
(

1

λj,h(q)
(gi(q, δq)− gi,h(q, δq), Sj,h(q))2

H−1,H1
0

+ |λi(q)− λi,h(q)|2 1

λj,h(q)
(gi,h(q, δq), Sj,h(q))2

H−1,H1
0

)
+ ci

((
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

+
1

λj,h(q)

(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)2)
.

Let v ∈ H1
0 (Ω) be the solution to

(∇v, µhAF∇ϕ) =
(
∇S′i,0(q)(δq), (µh − µ)AF · ∇ϕ

)
∀ϕ ∈ H1

0 (Ω). (3.136)

Lemma 3.4.27 and Lemma 3.4.37 yield

‖v‖H1
0 (Ω) ≤ c

∥∥(µ− µh)∇S′i,0(q)(δq)
∥∥
L2(Ω)

≤ ch1/2 ‖δq‖H2(I) . (3.137)

With (3.132) and Corollary 3.4.10 we conclude that

∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥∥2

L2
b(Ω)

≤ ci
(
‖gi(q, δq)− gi,h(q, δq)‖2H−1 + |λi(q)− λi,h(q)|2 ‖gi,h(q, δq)‖2H−1

)
+ ci

(∥∥S′i,0(q)(δq)−ΠhS
′
i,0(q)(δq)

∥∥2

L2
b(Ω)

+ ch ‖δq‖2H2(I)

)
,

and �nish this proof with Lemma 3.4.49, Lemma 3.4.42, Lemma 3.4.48 and (3.131).

Lemma 3.4.51. Let q ∈ Qad, δq ∈ Q and i ∈ N. Let S′i,0(q)(δq) and S′i,h,0(q)(δq) as in Lemma 3.4.50.
Then it holds that ∥∥S′i,0(q)(δq)− S′i,h,0(q)(δq)

∥∥
H1

0 (Ω)
≤ ci,εh1/2−ε ‖δq‖H2(I) .
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Proof. The proof of this lemma is similar to the proof of Lemma 3.4.50. Let F = F (q), let Πh be
de�ned as in De�nition 3.3.2 and let

Π̃S′i,0(q)(δq) =
∑

j∈N\{i}

((
ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

Sj,h(q)
)

=
∑

j∈N\{i}

(
1

λj,h(q)
ah(F )(ΠhS

′
i,0(q)(δq), Sj,h(q))Sj,h(q)

)
= ΠhS

′
i,0(q)(δq)−

(
ΠhS

′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

Si,h(q)

= ΠhS
′
i,0(q)(δq)− 1

λi,h(q)
ah(F )(ΠhS

′
i,0(q)(δq), Si,h(q))Si,h(q).

(3.138)

Then we split the error,∥∥S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥
H1

0,ah
(Ω)
≤
∥∥S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq)

∥∥
H1

0,ah
(Ω)

+
∥∥∥ΠhS

′
i,0(q)(δq)− Π̃S′i,0(q)(δq)

∥∥∥
H1

0,ah
(Ω)

+
∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)

∥∥∥
H1

0,ah
(Ω)

.

(3.139)

Using Lemma 3.4.26 it follows that∥∥S′i,0(q)(δq)−ΠhS
′
i,0(q)(δq)

∥∥
H1

0,ah
(Ω)
≤ ci,εh1/2−ε ‖δq‖H2(I) . (3.140)

From (3.138) we get

ΠhS
′
i,0(q)(δq)− Π̃S′i,0(q)(δq) =

(
ΠhS

′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

Si,h(q),

and ∥∥∥ΠhS
′
i,0(q)(δq)− Π̃S′i,0(q)(δq)

∥∥∥
H1

0,ah
(Ω)

≤ c
√
λi,h(q)

∣∣∣(ΠhS
′
i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

∣∣∣
≤ ci

∣∣∣(ΠhS
′
i,0(q)(δq)− S′i,0(q)(δq), Si,h(q)

)
L2
b(Ω)

+
(
S′i,0(q)(δq), Si,h(q)− Si(q)

)
L2
b(Ω)

∣∣∣
≤ ci

(∥∥ΠhS
′
i,0(q)(δq)− S′i,0(q)(δq)

∥∥
L2
b(Ω)

+
∥∥S′i,0(q)(δq)

∥∥
L2
b(Ω)
‖Si(q)− Si,h(q)‖L2

b(Ω)

)
≤ ci,εh1−ε ‖δq‖H2(I) ,

where we used (3.140) with a duality argument, Lemma 3.4.26 and Lemma 3.4.44. It remains to
estimate the last part within (3.139). Because of

S′i,h,0(q)(δq) =
∑

j∈N\{i}

(
1

λj,h(q)
ah(F )(S′i,h,0(q)(δq), Sj,h(q))Sj,h(q)

)
,

it holds that

Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq) =
∑

j∈N\{i}

(
1

λj,h(q)
ah(F )(ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q))Sj,h(q)

)
,
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thus ∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥∥2

H1
0,ah

(Ω)

=
∑

j∈N\{i}

(
1

λj,h(q)
ah(F )(ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q))2

)
=

∑
j∈N\{i}

(
λj,h(q)

(
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

)
.

(3.141)

The summands within (3.141) have already been estimated within the proof of Lemma 3.4.50,
(3.135). It holds that√

λj,h(q)
(
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

=

√
λj,h(q)

λj,h(q)− λi(q)
(gi(q, δq)− gi,h(q, δq), Sj,h(q))H−1,H1

0

+

√
λj,h(q) (λi(q)− λi,h(q))

(λj,h(q)− λi(q)) (λj,h(q)− λi,h(q))
(gi,h(q, δq), Sj,h(q))H−1,H1

0

+
λi(q)

√
λj,h(q)

λj,h(q)− λi(q)
(
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)
L2
b(Ω)

+

√
λj,h(q)

λj,h(q)− λi(q)
(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)
.

Again we use the fact that |λj,h(q)− λi(q)| and |λj,h(q)− λi,h(q)| are uniformly bounded from below
for h→ 0 and j 6= i and get

λj,h(q)
(
ΠhS

′
i,0(q)(δq)− S′i,h,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

≤ ci
(

1

λj,h(q)
(gi(q, δq)− gi,h(q, δq), Sj,h(q))2

H−1,H1
0

+ |λi(q)− λi,h(q)|2 1

λj,h(q)
(gi,h(q, δq), Sj,h(q))2

H−1,H1
0

)
+ ci

((
S′i,0(q)(δq)−ΠhS

′
i,0(q)(δq), Sj,h(q)

)2
L2
b(Ω)

+
1

λj,h(q)

(
∇S′i,0(q)(δq), (µh − µ)AF · ∇Sj,h(q)

)2)
.

De�ning v ∈ H1
0 (Ω) as in (3.136), inserting this relation into (3.141), using Corollary 3.4.10 and the

estimate (3.137) yields∥∥∥Π̃S′i,0(q)(δq)− S′i,h,0(q)(δq)
∥∥∥2

H1
0,ah

(Ω)

≤ ci
(
‖gi(q, δq)− gi,h(q, δq)‖2H−1(Ω) + |λi(q)− λi,h(q)|2 ‖gi,h(q, δq)‖2H−1(Ω)

)
+ ci

(∥∥S′i,0(q)(δq)−ΠhS
′
i,0(q)(δq)

∥∥2

L2
b(Ω)

+ h ‖δq‖2H2(I)

)
,

and we �nish the proof with Lemma 3.4.49, Lemma 3.4.42, Lemma 3.4.48 and (3.140).

Lemma 3.4.52. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∥∥S′i(q)(δq)− S′i,h(q)(δq)
∥∥
H1

0 (Ω)
≤ ci,εh1/2−ε ‖δq‖H2(I) .
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Proof. Let F = F (q), δF = F ′(q)(δq), and let S′i,0(q)(δq) and S′i,h,0(q)(δq) be de�ned as in
Lemma 3.4.50. It follows that there exist t1, t2 ∈ R such that

S′i(q)(δq) = S′i,0(q)(δq) + t1 Si(q) and S′i,h(q)(δq) = S′i,h,0(q)(δq) + t2 Si,h(q).

Using the normalizing conditions for Si(q) and Si,h(q) it follows that

t1 = −1

2

(
Si(q)

2, γ′F,δF
)

and t2 = −1

2

(
Si,h(q)2, γ′F,δF

)
,

we get∥∥S′i(q)(δq)− S′i,h(q)(δq)
∥∥
H1

0 (Ω)
≤
∥∥S′i,0(q)(δq)− S′i,h,0(q)(δq)

∥∥
H1

0 (Ω)
+ |t1 − t2| ‖Si(q)‖H1

0 (Ω)

+ |t2| ‖Si(q)− Si,h(q)‖H1
0 (Ω) ,

and the result follows with Lemma 3.4.51, Lemma 3.4.45 and Lemma 3.4.6.

Lemma 3.4.53. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′′i (q)(δq, δq)− λ′′i,h(q)(δq, δq)
∣∣ ≤ ci,εh1/2−ε ‖δq‖2H2(I) .

Proof. Let F = F (q) and δF = F ′(q)(δq). With (3.53) and (3.72) it follows that∣∣λ′′i (q)(δq, δq)− λ′′i,h(q)(δq, δq)
∣∣

≤
∣∣(∇ (Si(q)− Si,h(q)) , µhA

′′
F,δF,δF · ∇ (Si(q) + Si,h(q))

)∣∣
+ 2

∣∣(∇ (S′i(q)(δq)− S′i,h(q)(δq)
)
, µhAF · ∇

(
S′i(q)(δq) + S′i,h(q)(δq)

))∣∣
+ 2

∣∣(λi(q)S′i(q)(δq)2 − λi,h(q)S′i,h(q)(δq)2, γF
)∣∣+

∣∣(λi(q)Si(q)2 − λi,h(q)Si,h(q), γ′′F,δF,δF
)∣∣

+
∣∣(∇Si(q), (µ− µh)A′′F,δF,δF · ∇Si(q)

)∣∣+ 2
∣∣(∇S′i(q)(δq), (µ− µh)AF · ∇S′i(q)(δq)

)∣∣ ,
and the result follows with Corollary 3.4.42, Lemma 3.4.47, Lemma 3.4.45, Lemma 3.4.52, Lemma 3.4.6
and general stability estimates.

Lemma 3.4.54. For q ∈ Qad and δq ∈ Q it holds that∣∣j′(q)(δq)− j′h(q)(δq)
∣∣ ≤ ci,εh1/2−ε ‖δq‖H2(I) ,∣∣j′′(q)(δq, δq)− j′′h(q)(δq, δq)
∣∣ ≤ ci,εh1/2−ε ‖δq‖2H2(I) .

Proof. This lemma follows with Lemma 3.4.47 and Lemma 3.4.53.

3.4.1.3. Estimates between the state-discretized case and the fully discretized case

Within this subsubsection we are going to estimate the error induced by the additional discretization
of the transformation F . If not stated otherwise we will always assume that the discretization
parameter k is chosen su�ciently small.
The proof of the following lemma is based on ideas presented in [32].
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3.4. A-priori error estimates

Lemma 3.4.55. Let p ∈ [2, 4] and let u ∈ W 1,p(Ω) with u|Ωj ∈ W
2,p(Ωj) for j ∈ {0, 1}. Further-

more, let ik : C(Ω) → Vk be the pointwise interpolation operator and let s ∈ [0, 1]. If p = 2 then it
holds that

‖u− iku‖H1(Ω) ≤ ck
2−s |ln k|1/2

(
‖u‖H1(Ω) + ‖u‖H2(Ω0) + ‖u‖H2(Ω1)

)
,

whereas for p > 2 it holds that

‖u− iku‖W 1,p(Ω) ≤ cpk
2−s
(
‖u‖W 1,p(Ω) + ‖u‖W 2,p(Ω0) + ‖u‖W 2,p(Ω1)

)
.

Proof. The proof for p = 2 can be found in [32], Lemma 2.1. The cited proof can also be generalized
to the case p > 2. In that case it holds thatW 1,p(Ωj) ↪→ L∞(Ωj), thus the log-term disappears.

Lemma 3.4.56. Let u ∈W 1,∞(Ω) with u|Ωj ∈W
3/2,∞(Ωj) for j ∈ {0, 1}. Then it holds that

‖u− iku‖W 1,∞(Ω) ≤ ck
1/2
(
‖u‖W 1,∞(Ω) + ‖u‖W 3/2,∞(Ω0) + ‖u‖W 3/2,∞(Ω1)

)
.

Proof. This lemma can be proven using the same ideas as presented in the proof of Lemma 3.4.55.

Within the following lemma we are going to estimate the error between the continuous trans-
formation and its discrete counterpart in W 1,p for some p, the error in Lp is estimated within
Lemma 3.4.84.

Lemma 3.4.57. Let q ∈ Qad, F = F (q), Fk = Fk(q) and p ∈ [4,∞]. Then it holds that

‖F − Fk‖H1(Ω) ≤ ck ‖q‖H2(I) , (3.142)

and

‖F − Fk‖W 1,p(Ω) ≤ cpk
2/p ‖q‖H2(I) . (3.143)

Proof. Let F̃ ∈ W 2,4(Ω) be a W 2,4-stable extension of F |Ω1
onto Ω, the extension of such a F̃

follows with Lemma A.2.2. Using Lemma A.2.22 and Theorem A.2.1 it follows that∥∥∥F̃ − Fk∥∥∥
H1(Ω1,k)

≤ ck ‖q‖H2(I) and ‖F − Fk‖H1(Ω0,k) ≤ ck ‖q‖H2(I) ,

it remains to estimate
∥∥∥F − F̃∥∥∥

H1(Ω0\Ω0,k)
. Hölder's inequality and the fact that |Ω0\Ω0,k| ≤ ck2

prove

‖F‖H1(Ω0\Ω0,k) ≤ ck ‖F‖W 1,∞(Ω0) ≤ ck ‖q‖H2(I) ,

and ∥∥∥F̃∥∥∥
H1(Ω0\Ω0,k)

≤ ck
∥∥∥F̃∥∥∥

W 1,∞(Ω0)
≤ ck

∥∥∥F̃∥∥∥
W 2,4(Ω0)

≤ ck ‖q‖H2(I) ,
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3. Optimization of eigenvalues

which proves (3.142). Using the same notation and references as before it holds that∥∥∥F̃ − Fk∥∥∥
W 1,4(Ω1,k)

≤ c |ln k|1/2 k ‖q‖H2(I) and ‖F − Fk‖W 1,4(Ω0,k) ≤ ck ‖q‖H2(I) ,

and again it remains to estimate
∥∥∥F − F̃∥∥∥

W 1,4(Ω0\Ω0,k)
. We have

‖F‖W 1,4(Ω0\Ω0,k) ≤ ck
1/2 ‖F‖W 1,∞(Ω0) ≤ ck

1/2 ‖q‖H2(I) ,

and ∥∥∥F̃∥∥∥
W 1,4(Ω0\Ω0,k)

≤ ck1/2
∥∥∥F̃∥∥∥

W 1,∞(Ω0)
≤ ck1/2 ‖q‖H2(I) .

As |ln k|1/2 k ≤ k1/2 for k su�ciently small, the proof for p = 4 in (3.143) is �nished. The proof for
p =∞ is similar to the second part of the proof of Lemma 2.3.29, it holds that

‖F − Fk‖W 1,∞(Ω) ≤ ‖F − ikF‖W 1,∞(Ω) + ‖ikF − Fk‖W 1,∞(Ω) . (3.144)

For the �rst part on the right hand side of (3.144) we use Lemma 3.4.56, for the second part we use
an inverse estimate and get

‖F − Fk‖W 1,∞(Ω) ≤ ck
1/2
(
‖F‖W 1,∞(Ω) + ‖F‖W 3/2,∞(Ω0) + ‖F‖W 3/2,∞(Ω1)

)
+ ck−1/2 ‖ikF − Fk‖W 1,4(Ω0)

≤ ck1/2 ‖q‖H2(I) + ck−1/2
(
‖F − ikF‖W 1,4(Ω) + ‖F − Fk‖W 1,4(Ω)

)
,

and now we use Lemma 3.4.55 and the �rst part of this Lemma to �nally obtain

‖F − Fk‖W 1,∞(Ω) ≤ ck
1/2 ‖q‖H2(I) + ck−1/2k

(
‖F‖W 1,4(Ω) + ‖F‖W 2,4(Ω0) + ‖F‖W 2,4(Ω1)

)
+ ck−1/2k1/2 ‖q‖H2(I)

≤ c ‖q‖H2(I) ,

and what is left follows with interpolation.

Assumption 3.4.58. We assume that there exist c1, c2, c3 > 0 such that for all q ∈ Qad it holds that
γFk(q) ≥ c3 on Ω, and the eigenvalues of the matrix AFk(q) are elements of the interval [c1, c2].

Remark 3.4.59. With Lemma 3.4.57 it follows that Assumption 3.4.58 holds if the constant C̃
from (3.11) is su�ciently small.

Lemma 3.4.60. Let q ∈ Qad and i ∈ N, then it holds that

λi,h,k(q) ≤ ci.

Proof. Let Fk = Fk(q). With Assumption 3.4.58 it follows that there exist c1, c2 > 0, independent
of q, such that for all u ∈ H1

0 (Ω) it holds that

ah(Fk)(u, u) ≤ c1 (∇u,∇u) ,

b(Fk)(u, u) ≥ c2 (u, u) .
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3.4. A-priori error estimates

With (3.73) it now follows that

λi,h,k(q) = min
Eh∈V

(i)
h,0

max
uh∈Eh

ah(Fk)(uh, uh)

b(Fk)(uh, uh)

≤ c1

c2
min

Eh∈V
(i)
h,0

max
uh∈Eh

(∇uh,∇uh)

(uh, uh)

≤ ci,

where we used the fact that the eigenvalues for the discrete Laplacian on Ω are bounded indepen-
dently of h, cf. Lemma 3.4.35.

Lemma 3.4.61. Let q ∈ Qad and i ∈ N, then it holds that

‖Si,h,k(q)‖H1
0 (Ω) ≤ ci.

Proof. This lemma follows with (3.4.4) and Lemma 3.4.60.

Lemma 3.4.62. Let q ∈ Qad, F = F (q), Fk = Fk(q), p1, p2, p3 ∈ [1,∞] and p3 ≥ 4 such that
1/p1 + 1/p2 + 1/p3 = 1. If v ∈W 1,p1(Ω) and w ∈W 1,p2(Ω), then it holds that

|ah(F )(v, w)− ah(Fk)(v, w)| ≤ cp3k
2/p3 ‖v‖

W
1,p1
0 (Ω)

‖w‖
W

1,p3
0 (Ω)

.

If v ∈ Lp1(Ω) and w ∈ Lp2(Ω), then it holds that

|b(F )(v, w)− b(Fk)(v, w)| ≤ cp3k
2/p3 ‖v‖Lp1 (Ω) ‖w‖Lp2 (Ω) .

Proof. This lemma follows with Theorem A.1.7 and Lemma 3.4.57.

Lemma 3.4.63. Let q ∈ Qad, F = F (q), Fk = Fk(q) and i ∈ N. Let

ũ ∈
(

span {Sj(q)}ij=1 ∪ span {Sj,h(q)}ij=1

)
,

then it holds that

ah(Fk)(ũ, ũ)

ah(F )(ũ, ũ)
= 1 +Oi,ε(k1−ε),

b(F )(ũ, ũ)

b(Fk)(ũ, ũ)
= 1 +Oi(k).

Proof. The proof to this lemma is similar to the proof of Lemma 3.4.39 and follows with Lemma 3.4.57
and Lemma 3.4.46.

Lemma 3.4.64. Let q ∈ Qad and i ∈ N, then it holds that

λi,h,k(q) ≤
(
1 + ci,εk

1−ε) λi,h(q).
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Proof. Let F = F (q), Fk = Fk(q), and let Eh = span {Sj,h(q)}ij=1 be the space spanned by the �rst
i discrete eigenspaces with respect to ah(F )(·, ·). With (3.73) it holds that

λi,h,k(q) ≤ max
uh∈Eh

ah(Fk)(uh, uh)

b(Fk)(uh, uh)

= max
uh∈Eh

(
ah(F )(uh, uh)

b(F )(uh, uh)

ah(Fk)(uh, uh)

ah(F )(uh, uh)

b(F )(uh, uh)

b(Fk)(uh, uh)

)
≤ (1 + ci,εk

1−ε)(1 + cik) max
uh∈Eh

ah(F )(uh, uh)

b(F )(uh, uh)

≤ (1 + ci,εk
1−ε)λi,h(q),

where we used (3.68) and Lemma 3.4.63.

Lemma 3.4.65. Let q ∈ Qad and i ∈ N, then it holds that

λi,h(q) ≤
(
1 + ci,ε(h+ k1−ε)

)
λi,h,k(q).

Proof. Let F = F (q) and Fk = Fk(q), with (3.63) it follows that

λi(q) = min
E∈V (i)

max
u∈E

a(F )(u, u)

b(F )(u, u)

= min
E∈V (i)

max
u∈E

(
a(F )(u, u)

ah(F )(u, u)

ah(F )(u, u)

ah(Fk)(u, u)

b(Fk)(u, u)

b(F )(u, u)

ah(Fk)(u, u)

b(Fk)(u, u)

)
≤ (1 + cih)(1 + ci,εk

1−ε)(1 + cik) min
E∈V (i)

max
u∈E

ah(Fk)(u, u)

b(Fk)(u, u)

≤ (1 + cih)(1 + ci,εk
1−ε)(1 + cik) min

Eh∈V
(i)
h,0

max
uh∈Eh

ah(Fk)(uh, uh)

b(Fk)(uh, uh)

= (1 + cih)(1 + ci,εk
1−ε)(1 + cik)λi,h,k(q)

≤
(
1 + ci,ε(h+ k1−ε)

)
λi,h,k(q),

and the result follows with Lemma 3.4.41 and Lemma 3.4.63.

Corollary 3.4.66. Let q ∈ Qad and i ∈ N, then it holds that

|λi,h(q)− λi,h,k(q)| ≤ ci,ε
(
h+ k1−ε) .

Proof. This corollary is a direct consequence of Lemma 3.4.64 and Lemma 3.4.65.

Lemma 3.4.67. Let q ∈ Qad and i ∈ N, then it holds that

‖Si,h(q)− Si,h,k(q)‖L2(Ω) ≤ ci,εk
1/2−ε.

Proof. The following proof is based on the same ideas as the proof of Lemma 3.4.44. Let F = F (q),
Fk = Fk(q) and

S̃i,h,k(q) = b(Fk)(Si,h(q), Si,h,k(q))Si,h,k(q). (3.145)
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Using De�nition 3.3.4 we get

‖Si,h(q)− Si,h,k(q)‖L2
b,k(Ω) ≤

∥∥∥Si,h(q)− S̃i,h,k(q)
∥∥∥
L2
b,k(Ω)

+
∥∥∥S̃i,h,k(q)− Si,h,k(q)∥∥∥

L2
b,k(Ω)

. (3.146)

We start with the �rst term on the right hand side within (3.146), we have

Si,h(q)− S̃i,h,k(q) =
∑

j∈N\{i}

(
(Si,h(q), Sj,h,k(q))L2

b,k(Ω) Sj,h,k(q)
)
,

and∥∥∥Si,h(q)− S̃i,h,k(q)
∥∥∥2

L2
b,k(Ω)

=
∑

j∈N\{i}

(Si,h(q), Sj,h,k(q))
2
L2
b,k(Ω) . (3.147)

For the summands within (3.147) one can show that

b(Fk)(Si,h(q), Sj,h,k(q)) =
λi,h(q)

λj,h,k(q)− λi,h(q)
(b(F )(Si,h(q), Sj,h,k(q))− b(Fk)(Si,h, Sj,h,k(q)))

+
1

λj,h,k(q)− λi,h(q)
(ah(Fk)(Si,h(q), Sj,h,k(q))− ah(F )(Si,h(q), Sj,h,k(q))) .

Now let ϕ1 ∈ L2(Ω) and ϕ2 ∈ H1
0 (Ω) be the unique solutions to

b(Fk)(ϕ1, v1) = b(F )(Si,h(q), v1)− b(Fk)(Si,h(q), v1) ∀v1 ∈ L2(Ω),

ah(Fk)(ϕ2, v2) = ah(Fk)(Si,h(q), v2)− ah(F )(Si,h(q), v2) ∀v2 ∈ H1
0 (Ω).

It holds that

‖ϕ1‖L2(Ω) ≤ ‖Si,h(q) (γF − γFk)‖L2(Ω) ≤ cik,

‖ϕ2‖H1
0 (Ω) ≤ ‖(AF −AFk) · ∇Si,h(q)‖L2(Ω) ≤ ci,εk

1/2−ε,

and

b(Fk)(Si,h(q), Sj,h,k(q)) =
λi,h(q)

λj,h,k(q)− λi,h(q)
b(Fk)(ϕ1, Sj,h,k(q))

+
1

λj,h,k(q)− λi,h(q)
ah(Fk)(ϕ2, Sj,h,k(q)),

hence ∥∥∥Si,h(q)− S̃i,h,k(q)
∥∥∥2

L2
b,k(Ω)

≤ c
(
‖ϕ1‖2L2(Ω) + ‖ϕ2‖2H1

0 (Ω)

)
≤ ci,εk1−ε.

(3.148)

In order to estimate the second term within (3.146) we will show that∥∥∥S̃i,h,k(q)− Si,h,k(q)∥∥∥
L2
b,k(Ω)

≤
∥∥∥S̃i,h,k(q)− Si,h(q)

∥∥∥
L2
b,k(Ω)

, (3.149)
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for (3.149) and (3.148) would �nish this proof. We have

Si,h,k(q)− S̃i,h,k(q) = (1− b(Fk)(Si,h(q), Si,h,k(q)))Si,h,k(q),

and

‖Si,h(q)‖L2
b,k(Ω) −

∥∥∥Si,h(q)− S̃i,h,k(q)
∥∥∥
L2
b,k(Ω)

≤
∥∥∥S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

≤ ‖Si,h(q)‖L2
b,k(Ω) +

∥∥∥Si,h(q)− S̃i,h,k(q)
∥∥∥
L2
b,k(Ω)

,

i.e.

1−
∥∥∥Si,h(q)− S̃i,h,k(q)

∥∥∥
L2
b,k(Ω)

≤ |b(Fk)(Si,h(q), Si,h,k(q))| ≤ 1 +
∥∥∥Si,h(q)− S̃i,h,k(q)

∥∥∥
L2
b,k(Ω)

,

which reads as

||b(Fk)(Si,h(q), Si,h,k(q))| − 1| ≤
∥∥∥Si,h(q)− S̃i,h,k(q)

∥∥∥
L2
b,k(Ω)

.

With (3.74) it follows that

|b(Fk)(Si,h(q), Si,h,k(q))| = b(Fk)(Si,h(q), Si,h,k(q)),

which �nishes the proof.

The following �ve lemmata can be proven in an analog way to Lemma 3.4.67 and the corresponding
lemmata in Subsubsection 3.4.1.2.

Lemma 3.4.68. Let q ∈ Qad and i ∈ N, then it holds that

‖Si,h(q)− Si,h,k(q)‖H1
0 (Ω) ≤ ci,ε

(
h+ k1/2−ε

)
.

Lemma 3.4.69. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′i,h(q)(δq)− λ′i,h,k(q)(δq)
∣∣ ≤ ci,ε (h+ k1/2−ε

)
‖δq‖H2(I) .

Lemma 3.4.70. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∥∥S′i,h(q)(δq)− S′i,h,k(q)(δq)
∥∥
H1

0 (Ω)
≤ ci,ε

(
h+ k1/2−ε

)
‖δq‖H2(I) .

Lemma 3.4.71. Let q ∈ Qad, δq ∈ Q and i ∈ N. Then it holds that∣∣λ′′i,h(q)(δq, δq)− λ′′i,h,k(q)(δq, δq)
∣∣ ≤ ci,ε (h+ k1/2−ε

)
‖δq‖2H2(I) .

Lemma 3.4.72. Let q ∈ Qad and δq ∈ Q. Then it holds that∣∣j′h(q)(δq)− j′h,k(q)(δq)
∣∣ ≤ cε (h+ k1/2−ε

)
‖δq‖H2(I) ,∣∣j′′h(q)(δq, δq)− j′′h,k(q)(δq, δq)

∣∣ ≤ cε (h+ k1/2−ε
)
‖δq‖2H2(I) .
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In order to prove Theorem 3.4.1 we also need a stability estimate for the derivative of the fully
discretized cost functional. The following lemmata are needed to prove Lemma 3.4.78.

Lemma 3.4.73. Let q, p ∈ Qad and i ∈ N. Then it holds that

|λi,h,k(q)− λi,h,k(p)| ≤ ci ‖q − p‖H2(I) .

Proof. This lemma can be proven in the same way as Lemma 3.4.13.

Lemma 3.4.74. Let q, p ∈ Qad and i ∈ N. For ‖q − p‖H2(I), h and k su�ciently small it holds
that

‖Si,h,k(q)− Si,h,k(p)‖L2
b(Ω) < ‖Si,h,k(q) + Si,h,k(p)‖L2

b(Ω) .

Proof. Using the triangle inequality and Lemma 3.4.19 we get

‖Si(q) + Si(p)‖L2
b(Ω) ≥ 2 ‖Si(q)‖L2

b(Ω) − ‖Si(q)− Si(p)‖L2
b(Ω)

≥ 2− ci ‖q − p‖H2(I)

≥ 1,

(3.150)

for ‖q − p‖H2(I) ≤ c
−1
i . Using (3.150), Lemma 3.4.44 and Lemma 3.4.67 we get

‖Si,h,k(q) + Si,h,k(p)‖L2
b(Ω) ≥ ‖Si(q) + Si(p)‖L2

b(Ω) − ‖Si(q)− Si,h,k(q)‖L2
b(Ω) − ‖Si(p)− Si,h,k(p)‖L2

b(Ω)

≥ 1− ci
(
h1/2 + k1/4

)
≥ 1/2,

for h, k su�ciently small. It also holds that

‖Si,h,k(q)− Si,h,k(p)‖L2
b(Ω) ≤ ‖Si(q)− Si(p)‖L2

b(Ω) + ‖Si(q)− Si,h,k(q)‖L2
b(Ω) + ‖Si(p)− Si,h,k(p)‖L2

b(Ω)

≤ ci
(
‖q − p‖H2(I) + h1/2 + k1/4

)
,

which can be made arbitrarily small for ‖q − p‖H2(I), h and k su�ciently small, and the result
follows.

Lemma 3.4.75. Let q, p ∈ Qad and i ∈ N. For ‖q − p‖H2(I), h and k su�ciently small it holds
that

‖Si,h,k(q)− Si,h,k(p)‖L2(Ω) ≤ ci ‖q − p‖H2(I) .

Proof. Although the sign of Si,h,k is de�ned via (3.74) and cannot be chosen arbitrarily, it follows
with Lemma 3.4.74 that

‖Si,h,k(q)− Si,h,k(p)‖L2
b(Ω) = min

{
‖Si,h,k(q)− Si,h,k(p)‖L2

b(Ω) , ‖Si,h,k(q) + Si,h,k(p)‖L2
b(Ω)

}
,

and this lemma can be proven in the same way as Lemma 3.4.19.

Lemma 3.4.76. Let q, p ∈ Qad and i ∈ N. For ‖q − p‖H2(I), h and k su�ciently small it holds
that

‖Si,h,k(q)− Si,h,k(p)‖H1(Ω) ≤ ci ‖q − p‖H2(I) .
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Proof. Using Lemma 3.4.75, this lemma can be proven analogously to Lemma 3.4.20.

Lemma 3.4.77. Let q, p ∈ Qad with ‖q − p‖H2(I), h and k su�ciently small, let δq ∈ Q and i ∈ N,
then it holds that ∣∣λ′i,h,k(q)(δq)− λ′i,h,k(p)(δq)∣∣ ≤ ci ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. Using Lemma 3.4.73, Lemma 3.4.75, Lemma 3.4.76 and Lemma 3.4.57, this lemma can be
proven in the same way as Lemma 3.4.22.

Lemma 3.4.78. Let q, p ∈ Qad with ‖q − p‖H2(I), h and k su�ciently small and let δq ∈ Q. Then
it holds that ∣∣j′h,k(q)(δq)− j′h,k(p)(δq)∣∣ ≤ c ‖q − p‖H2(I) ‖δq‖H2(I) .

Proof. This lemma is a direct consequence of Lemma 3.4.77.

3.4.2. A-priori error estimates for the optimal control

Within this subsection we are going to estimate the error between the optimal solution and its fully
discretized counterpart. We start be recalling some regularity results for the optimal solution.

Lemma 3.4.79. Let q ∈ Qad be an optimal control to (3.21) with corresponding transformation
F = F (q) and eigenfunctions (ui = ui(q))i∈N. Then it holds that q ∈ H4(I), F

∣∣
Ωj
∈ W 2,∞(Ωj) for

j ∈ {0, 1} and ui|Ωj ∈W
2,∞(Ωj) for i ∈ N and j ∈ {0, 1}.

Proof. This lemma is a direct consequence of Lemma 3.1.40, Lemma 3.1.34 and Lemma 3.1.38.

Throughout this subsection let q be a �xed optimal control, and let F = F (q) and F k = Fk(q)
be the (discrete) optimal transformation.
In order to prove higher order of convergence with respect to the discretization of the state

we will use a duality argument and thus need piecewise H2-regularity of general solutions of the
transmission problem with right hand side in L2(Ω).

De�nition 3.4.80. Let

H2
pw(Ω) =

{
u ∈ H1

0 (Ω)
∣∣ u|Ωj ∈ H2(Ωj) for j ∈ {0, 1}

}
,

be the space of H1
0 -functions which are H2-regular on each subdomain, equipped with the norm

‖u‖2H2
pw(Ω) = ‖u‖2H1

0 (Ω) + ‖u‖2H2(Ω0) + ‖u‖2H2(Ω1) .

Lemma 3.4.81. Let v ∈ H2
pw(Ω) and let ih : C(Ω) → Vh be the nodal interpolation. Then it holds

that

‖v − ihv‖L2(Ω) + h ‖∇ (v − ihv)‖L2(Ω) ≤ c |lnh|
1/2 h2 ‖v‖H2

pw(Ω) .

Proof. This lemma can be found in [32], Lemma 2.1.

126
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Theorem 3.4.82. Let Ω′ ⊂ R2 be an open, bounded, convex and polygonal domain and let Ω′0 ⊂ Ω′

be open with C2 boundary Γ′0 ⊂ Ω′, and let Ω′1 = Ω′\Ω′0. Let α0, α1 > 0 and let f ∈ L2(Ω′). Then
there exists a unique ϕ ∈ H1

0 (Ω′) as the solution to

(∇ϕ, α0∇v)Ω′0
+ (∇ϕ, α1∇v)Ω′1

= (f, v)Ω′ ∀v ∈ H1
0 (Ω′),

and it holds the additional regularity ϕ ∈ H2
pw(Ω′). Furthermore, there exists c > 0, independent of

f and ϕ, such that

‖ϕ‖H2
pw(Ω′) ≤ c ‖f‖L2(Ω′) .

Proof. This theorem can be found in [32], Theorem 2.1. Some more general results can also be
found in [62], [70] and [23].

Lemma 3.4.83. Let f ∈ L2(Ω) and let ϕ ∈ H1
0 (Ω) be the unique solution to

a(F )(ϕ, v) =
(
f, vγF

)
∀v ∈ H1

0 (Ω).

Then it holds that ϕ ∈ H2
pw(Ω) and there exists c > 0, independent of f and ϕ, such that

‖ϕ‖H2
pw(Ω) ≤ c ‖f‖L2(Ω) .

Proof. This lemma follows with Theorem 3.4.82 and a transformation argument.

The following estimates will be needed in order to prove higher order of convergence with respect
to the discretization of the transformation.

Lemma 3.4.84. Let q ∈ Q ∩W 2,p(I) for some p ∈ [2, 4], let F = F (q) and Fk = Fk(q). Then it
holds that

‖F − Fk‖Lp(Ω) ≤ cp |ln k|
1/2 k2 ‖q‖W 2,p(I) .

Proof. As in the proof of Lemma 3.4.57, let F̃ ∈ W 2,4(Ω) be a W 2,4-stable extension of F |Ω1
onto

Ω. With Lemma A.2.22 and Theorem A.2.1 we get∥∥∥F̃ − Fk∥∥∥
Lp(Ω1,k)

≤ cp |ln k|1/2 k2 ‖q‖W 2,p(I) and ‖F − Fk‖Lp(Ω0,k) ≤ cpk
2 ‖q‖W 2,p(I) ,

and it remains to estimate
∥∥∥F − F̃∥∥∥

Lp(Ω0\Ω0,k)
. Let x ∈ Ω0\Ω0,k be arbitrary, and let x̃ ∈ Γ0 such

that the line from x to x̃ is orthogonal to Γ0,k. Then it holds that d(x, x̃) ≤ ck2 and(
F − F̃

)
(x) =

(
F − F̃

)
(x̃) +

∫ 1

0

(
F − F̃

)′
(x+ t(x̃− x)) (x̃− x) dt.

Now we use the fact that
(
F − F̃

)∣∣∣
Γ0

= 0, hence
(
F − F̃

)
(x̃) = 0, and get

∣∣∣(F − F̃) (x)
∣∣∣ ≤ ck2

(
‖F‖W 1,∞(Ω0) +

∥∥∥F̃∥∥∥
W 1,∞(Ω0)

)
.

Using Lemma 3.1.6 and the continuous embedding W 2,4(Ω0) ↪→W 1,∞(Ω0) we end up with∥∥∥F − F̃∥∥∥
L∞(Ω0\Ω0,k)

≤ ck2 ‖q‖H2(I) ≤ cpk
2 ‖q‖W 2,p(I) .
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Lemma 3.4.85. Let q ∈W 2,p(I) with p ∈ (1,∞), F = F (q) and Fk = Fk(q). Then it holds that

‖F − Fk‖Lp(Γ0,k) ≤ cpk
2 ‖q‖W 2,p(I) ,

‖F − Fk‖Lp(Γ0) ≤ cpk
2 ‖q‖W 2,p(I) ,

‖F − Fk‖Lp(Γ0,h) ≤ cp
(
h2 + k2

)
‖q‖W 2,p(I) .

Proof. This lemma can be proven similar to Lemma 2.3.43, Lemma 2.3.44 and Lemma 2.3.45. Note
that the estimate ‖F − Fk‖W 1,∞(Ω) ≤ c due to Lemma 3.4.57 is su�cient in order to prove these
estimates.

Lemma 3.4.86. Let v ∈ H1(Ω), then it holds that∣∣∣(v, γF − γFk)∣∣∣ ≤ c(|lnh|1/2 h2 + |ln k|1/2 k2
)
‖v‖H1(Ω0) .

Proof. This lemma can be proven similar to Lemma 2.3.46, the terms corresponding to (2.84),
(2.85) and (2.86) can be estimated using Lemma 3.4.84 and Lemma 3.4.85. The term corresponding
to (2.87) can be estimated using Lemma 3.4.57 and Lemma A.1.15, including the usual choice of
p = |ln k|.

Lemma 3.4.87. Let v ∈ H1(Ω), δq ∈ Q, δF = F ′(q)(δq) and δFk = F ′k(q)(δq). Then it holds that∣∣∣(v, γ′F ,δF − γ′Fk,δFk)∣∣∣ ≤ c(|lnh|1/2 h2 + |ln k|1/2 k2
)
‖δq‖H2(I) ‖v‖H1(Ω0) .

Proof. Let F =
(
F 1, F 2

)T
, and analogously for F k, δF and δFk. On each subdomain Ωj for

j ∈ {0, 1} it holds that

γ′
F ,δF

− γ′
Fk,δFk

= ∂x (δF1 − δFk,1) + ∂y (δF2 − δFk,2)

+ ∂xF 1 ∂y (δF2 − δFk,2) + ∂x
(
F 1 − F k,1

)
∂y (δFk,2 − δF2) + ∂x

(
F 1 − F k,1

)
∂yδF2

+ ∂yF 2 ∂x (δF1 − δFk,1) + ∂y
(
F 2 − F k,2

)
∂x (δFk,1 − δF1) + ∂y

(
F 2 − F k,2

)
∂xδF1

− ∂xF 2 ∂y (δF1 − δFk,1)− ∂x
(
F 2 − F k,2

)
∂y (δFk,1 − δF1)− ∂x

(
F 2 − F k,2

)
∂yδF1

− ∂yF 1 ∂x (δF2 − δFk,2)− ∂y
(
F 1 − F k,1

)
∂x (δFk,2 − δF2)− ∂y

(
F 1 − F k,1

)
∂xδF2,

and this lemma can be proven similar to Lemma 3.4.86.

Lemma 3.4.88. Let u, v ∈ H2
pw(Ω), then it holds that∣∣∣(∇u,(µAF − µhAFk) · ∇v)∣∣∣ ≤ c (|lnh|h2 + |ln k| k2

)
‖u‖H2

pw(Ω) ‖v‖H2
pw(Ω) .

Proof. It holds that∣∣∣(∇u,(µAF − µhAFk) · ∇v)∣∣∣ ≤ ∣∣∣(∇u, µ(AF −AFk) · ∇v)∣∣∣ (3.151)

+
∣∣∣(∇u, (µ− µh)AFk · ∇v

)∣∣∣ . (3.152)
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For the �rst part, (3.151), we get∣∣∣(∇u, µ(AF −AFk) · ∇v)∣∣∣ ≤ d
∣∣∣∣(∇u,(AF −AFk) · ∇v)Ω0\Ω0,h

∣∣∣∣ (3.153)

+ d

∣∣∣∣(∇u,(AF −AFk) · ∇v)Ω0,h

∣∣∣∣ (3.154)

+

∣∣∣∣(∇u,(AF −AFk) · ∇v)Ω1

∣∣∣∣ . (3.155)

For (3.153) we use Lemma A.1.15 and get∣∣∣∣(∇u,(AF −AFk) · ∇v)Ω0\Ω0,h

∣∣∣∣ ≤ ‖u‖W 1,p(Ω0) ‖v‖W 1,p(Ω0)

∥∥∥AF −AFk∥∥∥L∞(Ω0)
‖1‖Lp/(p−2)(Ω0\Ω0,h)

≤ cph2−4/p ‖u‖H2
pw(Ω) ‖v‖H2

pw(Ω)

≤ c |lnh|h2 ‖u‖H2
pw(Ω) ‖v‖H2

pw(Ω) ,

where we choose p = |lnh|. As (3.154) as well as (3.155) can be estimated in the same way, we will
focus on the �rst one. Similar to Lemma 2.3.47 we set δF =

(
F k − F

)
and use Taylor's theorem to

get (
∇u,

(
AF −AFk

)
· ∇v

)
Ω0,h

=
(
∇u,

(
A′
F ,δF

+R2(F , δF )
)
· ∇v

)
Ω0,h

.

With Lemma A.1.15 we get∣∣∣(∇u,R2(F , δF ) · ∇v
)

Ω0,h

∣∣∣ ≤ ‖u‖W 1,p(Ω0) ‖v‖W 1,p(Ω0)

∥∥R2(F , δF )
∥∥
Lp/(p−2)(Ω0,h)

≤ cp ‖u‖H2(Ω0,h) ‖v‖H2(Ω0,h)

∥∥F − F k∥∥2

L2p/(p−2)(Ω0,h)
.

(3.156)

Setting p = |ln k| and using Lemma 3.4.57 yields∣∣∣(∇u,R2(F , δF ) · ∇v
)

Ω0,h

∣∣∣ ≤ c |ln k| k2 ‖u‖H2(Ω) ‖v‖H2(Ω) .

The estimation of the term
∣∣∣∣(∇u,A′F ,δF · ∇v)Ω0

∣∣∣∣ can be done as in the proof of Lemma 2.3.47,

where we also have to use Lemma 3.4.85 and Lemma A.1.15. In order to estimate (3.152) we use
Lemma 3.4.37 as well as Lemma A.1.15 and get∣∣∣(∇u, (µ− µh)AFk · ∇v

)∣∣∣ ≤ c ‖u‖W 1,p(Ω) ‖µ− µh‖L
p
p−2 (Ω)

‖v‖W 1,p(Ω)

≤ cph2−4/p ‖u‖H2
pw(Ω) ‖v‖H2

pw(Ω) ,

and setting p = |lnh| �nishes the proof.

Lemma 3.4.89. Let u, v ∈ H2
pw(Ω), δq ∈ Q, δF = F ′(q)(δq) and δFk = F ′k(q)(δq). Then it holds

that∣∣∣(∇u,(µA′F ,δF − µhA′Fk,δFk) · ∇v)∣∣∣ ≤ c (|lnh|h2 + |ln k| k2
)
‖u‖H2

pw(Ω) ‖v‖H2
pw(Ω) ‖δq‖H2(I) .
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Proof. This lemma can be proven similarly to Lemma 3.4.88.

Lemma 3.4.90. For i ∈ N and u1, u2 ∈ span {Sj(q)}ij=1 it holds that∣∣a(F )(u1, u2)− ah(F )(u1, u2)
∣∣ ≤ cih2,∣∣ah(F )(u1, u2)− ah(F k)(u1, u2)
∣∣ ≤ ci (|lnh|h2 + |ln k| k2

)
.

Proof. The �rst estimate is a direct consequence of Lemma 3.4.79 and Corollary 3.4.38, the second
estimate follows with the �rst one and Lemma 3.4.88.

Lemma 3.4.91. Let i ∈ N and u1, u2 ∈ span {Sj(q)}ij=1. Then it holds that

∣∣b(F )(u1, u2)− b(F k)(u1, u2)
∣∣ ≤ ci (|lnh|1/2 h2 + |ln k|1/2 k2

)
.

Proof. This lemma follows with Lemma 3.4.86.

Next we will prove two approximation results including the two operators Πo
h and Πk from Def-

inition 3.3.3 and De�nition 3.3.6. A statement similar to the following lemma can also be found
in [32], Theorem 2.2.

Lemma 3.4.92. Let v ∈ H2
pw(Ω) and let Πo

h be as in De�nition 3.3.3. For s ∈ [0, 1] it holds that

‖v −Πo
hv‖Hs(Ω) ≤ c |lnh|

2−s
2 h2−s ‖v‖H2

pw(Ω) .

Proof. Using Céa's lemma and Lemma 3.4.81 we get

‖v −Πo
hv‖H1

0 (Ω) ≤ c |lnh|
1/2 h ‖v‖H2

pw(Ω) .

Now let z ∈ H1
0 (Ω) be the weak solution to

a(F )(v, z) = (v −Πo
hv, w) ∀w ∈ H1

0 (Ω).

We get

‖v −Πo
hv‖

2
L2(Ω) = a(F )(v −Πo

hv, z)

= a(F )(v −Πo
hv, z − ihz)

≤ c ‖v −Πo
hv‖H1

0 (Ω) ‖z − ihz‖H1
0 (Ω)

≤ c |lnh|1/2 h ‖v‖H2
pw(Ω) |lnh|

1/2 h ‖z‖H2
pw(Ω)

≤ c |lnh|h2 ‖v −Πo
hv‖L2(Ω) ‖v‖H2

pw(Ω) ,

where we used Lemma 3.4.83 and Lemma 3.4.81. What is left follows with interpolation.

Lemma 3.4.93. Let i ∈ N and s ∈ [0, 1], then it holds that

‖Si(q)−ΠkSi(q)‖Hs(Ω) ≤ ci
(
|lnh|

2−s
2 h2−s + |ln k|

2−s
2 k2−s

)
.
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Proof. Using the coercivity of ah(F k)(·, ·) we get

c ‖Si(q)−ΠkSi(q)‖2H1
0 (Ω) ≤ ah(F k)(Si(q)−ΠkSi(q), Si(q)−ΠkSi(q))

= ah(F k)(Si(q), Si(q)) + ah(F k)(ΠkSi(q),ΠkSi(q))− 2ah(F k)(Si(q),ΠkSi(q))

= a(F )(Si(q),ΠkSi(q)− Si(q))− ah(F k)(Si(q),ΠkSi(q)− Si(q)) (3.157)

+ a(F )(Si(q)−Πo
hSi(q), Si(q)−ΠkSi(q)) (3.158)

+ a(F )(Si(q)−Πo
hSi(q),ΠkSi(q)− Si(q))− ah(F k)(Si(q)−Πo

hSi(q),ΠkSi(q)− Si(q)) (3.159)

+ a(F )(Si(q)−Πo
hSi(q), Si(q))− ah(F k)(Si(q)−Πo

hSi(q), Si(q)), (3.160)

and it remains to estimate each of these four terms. For (3.157) we get∣∣∣(∇Si(q),(µAF − µhAFk) · ∇ (ΠkSi(q)− Si(q))
)∣∣∣

≤ c ‖Si(q)‖W 1,∞(Ω)

(∥∥∥AF −AFk∥∥∥L2(Ω)
+ ‖µ− µh‖L2(Ω)

)
‖ΠkSi(q)− Si(q)‖H1

0 (Ω)

≤ ci (h+ k) ‖ΠkSi(q)− Si(q)‖H1
0 (Ω) ,

where we used Lemma 3.4.37 and Lemma 3.4.57. For (3.158) we use Lemma 3.4.92 and obtain

∣∣a(F )(Si(q)−Πo
hSi(q), Si(q)−ΠkSi(q))

∣∣ ≤ c ‖Si(q)−Πo
hSi(q)‖H1

0 (Ω) ‖Si(q)−ΠkSi(q)‖H1
0 (Ω)

≤ ci |lnh|1/2 h ‖Si(q)−ΠkSi(q)‖H1
0 (Ω) .

For (3.159) we get∣∣∣(∇ (Si(q)−Πo
hSi(q)) ,

(
µAF − µhAFk

)
· ∇ (Si(q)−ΠkSi(q))

)∣∣∣
≤ c ‖Si(q)−Πo

hSi(q)‖H1
0 (Ω)

(∥∥∥AF −AFk∥∥∥L∞(Ω)
+ ‖µ− µh‖L∞(Ω)

)
‖Si(q)−ΠkSi(q)‖H1

0 (Ω)

≤ ci |lnh|1/2 h ‖Si(q)−ΠkSi(q)‖H1
0 (Ω) .

At last we estimate (3.160) via∣∣∣(∇ (Si(q)−Πo
hSi(q)) ,

(
µAF − µhAFk

)
· ∇Si(q)

)∣∣∣
≤ c ‖Si(q)−Πo

hSi(q)‖H1
0 (Ω)

(∥∥∥AF −AFk∥∥∥L2(Ω)
+ ‖µ− µh‖L2(Ω)

)
‖Si(q)‖W 1,∞(Ω)

≤ ci |lnh|1/2 h (h+ k) ,

and the case s = 1 follows with Young's inequality.
Now let z ∈ H1

0 (Ω) be the solution to

a(F )(v, z) = b(F )(Si(q)−ΠkSi(q), v) ∀v ∈ H1
0 (Ω).
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Due to Lemma 3.4.83 it holds that z ∈ H2
pw(Ω) and ‖z‖H2

pw(Ω) ≤ c ‖Si(q)−ΠkSi(q)‖L2(Ω). We get

c ‖Si(q)−ΠkSi(q)‖2L2(Ω) ≤ a(F )(Si(q)−ΠkSi(q), z)

= a(F )(Si(q), z)− a(F )(ΠkSi(q), z)

= a(F )(Si(q),Π
o
hz)− a(F )(ΠkSi(q), z) + a(F )(Si(q), z −Πo

hz)

= ah(F k)(ΠkSi(q)− Si(q),Πo
hz − z)− a(F )(ΠkSi(q)− Si(q),Πo

hz − z) (3.161)

+ ah(F k)(ΠkSi(q)− Si(q), z)− a(F )(ΠkSi(q)− Si(q), z) (3.162)

+ a(F )(Si(q)−ΠkSi(q), z −Πo
hz) (3.163)

+ ah(F k)(Si(q),Π
o
hz − z)− a(F )(Si(q),Π

o
hz − z) (3.164)

+ a(F k)(Si(q), z)− a(F )(Si(q), z). (3.165)

Again we have to estimate each of these �ve terms separately. For (3.161) we use the �rst part of
this lemma and Lemma 3.4.92 and get∣∣∣(∇ (Si(q)−ΠkSi(q)) ,

(
µAF − µhAFk

)
· ∇ (z −Πo

hz)
)∣∣∣

≤ c ‖Si(q)−ΠkSi(q)‖H1
0 (Ω)

(∥∥∥AF −AFk∥∥∥L∞(Ω)
+ ‖µ− µh‖L∞(Ω)

)
‖z −Πo

hz‖H1
0 (Ω)

≤ ci |lnh|1/2 h
(
|lnh|1/2 h+ |ln k|1/2 k

)
‖z‖H2

pw(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖Si(q)−ΠkSi(q)‖L2(Ω) .

In order to estimate (3.162), let p0 = |ln k|, p1 = |lnh| and choose qj such that p−1
j + q−1

j = 1/2 for
j ∈ {0, 1}. We obtain∣∣∣(∇ (Si(q)−ΠkSi(q)) ,

(
µAF − µhAFk

)
· ∇z

)∣∣∣
≤ c ‖Si(q)−ΠkSi(q)‖H1

0 (Ω)

∥∥∥AF −AFk∥∥∥Lq0 (Ω)
‖z‖W 1,p0 (Ω)

+ c ‖Si(q)−ΠkSi(q)‖H1
0 (Ω) ‖µ− µh‖Lq1 (Ω) ‖z‖W 1,p1 (Ω)

≤ ci
(
|lnh|1/2 h+ |ln k|1/2 k

)(
|lnh|1/2 h1− 2

|lnh| + |ln k| k1− 2
|ln k|

)
‖z‖H2

pw(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖Si(q)−ΠkSi(q)‖L2(Ω) .

Expression (3.163) can be estimated via∣∣(∇ (Si(q)−ΠkSi(q)) , µAF · ∇ (z −Πo
hz)
)∣∣ ≤ c ‖Si(q)−ΠkSi(q)‖H1

0 (Ω) ‖z −Πo
hz‖H1

0 (Ω)

≤ ci
(
|lnh|1/2 h+ |ln k|1/2 k

)
|lnh|1/2 h ‖z‖H2

pw(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖Si(q)−ΠkSi(q)‖L2(Ω) .

For (3.164) we get∣∣∣(∇Si(q),(µAF − µhAFk) · ∇ (z −Πo
hz)
)∣∣∣

≤ c ‖Si(q)‖W 1,∞(Ω)

(∥∥∥AF −AFk∥∥∥L2(Ω)
+ ‖µ− µh‖L2(Ω)

)
‖z −Πo

hz‖H1
0 (Ω)

≤ ci (h+ k) |lnh|1/2 h ‖z‖H2
pw(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖Si(q)−ΠkSi(q)‖L2(Ω) .
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Finally, for (3.165) we use Lemma 3.4.88 and get∣∣∣(∇Si(q),(µAF − µhAFk) · ∇z)∣∣∣ ≤ ci (|lnh|h2 + |ln k| k2
)
‖z‖H2

pw(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖Si(q)−ΠkSi(q)‖L2(Ω) .

Collecting these �ve estimates �nishes the case s = 0, and what is left follows with interpolation.

Lemma 3.4.94. For i ∈ N it holds that

λi(q) ≤
(
1 + ci

(
|lnh|h2 + |ln k| k2

))
λi,h,k(q).

Proof. This lemma can be proven similar to Lemma 3.4.65, the higher rate of convergence follows
with Lemma 3.4.90 and Lemma 3.4.91.

Lemma 3.4.95. For i ∈ N it holds that

λi,h,k(q) ≤
(
1 + ci

(
|lnh|h2 + |ln k| k2

))
λi(q).

Proof. This proof is based on the same idea as the proof of Lemma 3.4.41. Let again V (i) =
⊕i

j=1Nj

be the space spanned by the �rst i eigenfunctions and let Nk = ΠkV
(i) with Πk as in De�nition 3.3.6.

For h and k su�ciently small it follows that dim (Nk) = i, and (3.73) yields

λi,h,k(q) ≤ max
uh∈Nk

ah(F k)(uh, uh)

b(F k)(uh, uh)
= max

u∈V (i)

ah(F k)(Πku,Πku)

b(F k)(Πku,Πku)

= max
u∈V (i)

a(F )(u,Πku)

b(F k)(Πku,Πku)

= max
u∈V (i)

(
a(F )(u, u)

b(F )(u, u)

b(F )(u, u)

b(F k)(Πku,Πku)

a(F )(u,Πku)

a(F )(u, u)

)
, (3.166)

where in the second line we used the de�nition of Πk. With Lemma 3.4.93 it follows that

b(F )(u, u)

b(F k)(Πku,Πku)
≤ 1 + ci

(
|lnh|h2 + |ln k| k2

)
. (3.167)

Partial integration yields

a(F )(u, u−Πku) = −d
(
div
(
AF · ∇u

)
, u−Πku

)
Ω0
−
(
div
(
AF · ∇u

)
, u−Πku

)
Ω1
,

where the boundary terms vanish due to the transformed version of (3.2). With Lemma 3.4.93 we
get ∣∣a(F )(u, u−Πku)

∣∣ ≤ c ‖u−Πku‖L2(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
,

and hence

a(F )(u,Πku)

a(F )(u, u)
≤ 1 + ci

(
|lnh|h2 + |ln k| k2

)
. (3.168)
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Inserting (3.167) and (3.168) into (3.166) �nally yields

λi,h,k(q) ≤
(
1 + ci

(
|lnh|h2 + |ln k| k2

))2
max
u∈V (i)

a(F )(u, u)

b(F )(u, u)

≤
(
1 + ci

(
|lnh|h2 + |ln k| k2

))
λi(q).

Corollary 3.4.96. For i ∈ N it holds that

|λi(q)− λi,h,k(q)| ≤ ci
(
|lnh|h2 + |ln k| k2

)
.

Proof. This corollary is a direct consequence of Lemma 3.4.94 and Lemma 3.4.95.

Lemma 3.4.97. For i ∈ N it holds that

|λi(q)− λi,h(q)| ≤ ci |lnh|h2.

Proof. This lemma can be proven using the same ideas and methods as presented in the proofs of
Lemma 3.4.94, Lemma 3.4.95 and Corollary 3.4.96.

Our next goal is to estimate the error ‖Si(q)− Si,h(q)‖L2(Ω). The proof for this estimation is
similar to the proof for the non-optimal case within Lemma 3.4.44. The following two lemmata are
needed in order to show higher order of convergence in this optimal case.

Lemma 3.4.98. Let Πh be de�ned as in De�nition 3.3.2, let i ∈ N and s ∈ [0, 1]. Then it holds
that

‖Si(q)−ΠhSi(q)‖Hs(Ω) ≤ ci |lnh|
2−s

2 h2−s.

Proof. The case s = 1 is due to Céa's lemma, let ih : C(Ω)→ Vh be the nodal interpolation operator,
then it holds that

c ‖Si(q)−ΠhSi(q)‖2H1
0 (Ω) ≤ ah(F )(Si(q)−ΠhSi(q), Si(q)−ΠhSi(q))

= ah(F )(Si(q)−ΠhSi(q), Si(q)− ihSi(q))
≤ c ‖Si(q)−ΠhSi(q)‖H1

0 (Ω) ‖Si(q)− ihSi(q)‖H1
0 (Ω) ,

and this part follows with Lemma 3.4.81. The case s = 0 uses a duality argument but needs some
additional care due to the de�nition of Πh. Let z ∈ H1

0 (Ω) be the solution to

a(F )(v, z) = (Si(q)−ΠhSi(q), v) ∀v ∈ H1
0 (Ω).

With Lemma 3.4.83 it follows that z ∈ H2
pw(Ω) and ‖z‖H2

pw(Ω) ≤ c ‖Si(q)−ΠhSi(q)‖L2(Ω). We get

‖Si(q)−ΠhSi(q)‖2L2(Ω) = a(F )(Si(q)−ΠhSi(q), z)

= ah(F )(Si(q)−ΠhSi(q), z)

+
(
∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z

)
= ah(F )(Si(q)−ΠhSi(q), z − ihz) (3.169)

+
(
∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z

)
. (3.170)
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We use Lemma 3.4.81 and the �rst part of this lemma to estimate (3.169),

ah(F )(Si(q)−ΠhSi(q), z − ihz) ≤ c ‖Si(q)−ΠhSi(q)‖H1
0 (Ω) ‖z − ihz‖H1

0 (Ω)

≤ ci |lnh|1/2 h |lnh|1/2 h ‖z‖H2
pw(Ω)

≤ ci |lnh|h2 ‖Si(q)−ΠhSi(q)‖L2(Ω) .

In order to estimate (3.170) we use Lemma 3.4.37 and Lemma A.1.15,(
∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z

)
≤ c ‖Si(q)−ΠhSi(q)‖H1

0 (Ω) ‖µ− µh‖
L

2p
p−2 (Ω)

∥∥AF∥∥L∞(Ω0)
‖z‖W 1,p(Ω0)

≤ ci |lnh|1/2 hh1−2/pp1/2 ‖z‖H2(Ω0) ,

and by setting p = |lnh| we arrive at(
∇ (Si(q)−ΠhSi(q)) , (µ− µh)AF · ∇z

)
≤ ci |lnh|h2 ‖z‖H2

pw(Ω)

≤ ci |lnh|h2 ‖Si(q)−ΠhSi(q)‖L2(Ω) ,

which �nishes the case s = 0, and what is left follows with interpolation.

Lemma 3.4.99. Let i ∈ N and let vh ∈ Vh,0 be the solution to(
∇vh, µhAF · ∇ϕh

)
=
(
∇Si(q), (µh − µ)AF · ∇ϕh

)
∀ϕh ∈ Vh,0. (3.171)

Then it holds that

‖vh‖L2(Ω) + |lnh|1/2 h ‖vh‖H1
0 (Ω) ≤ ci |lnh|

1/2 h2.

Proof. Using (3.171) and Lemma 3.4.37 it follows that

‖vh‖2H1
0 (Ω) ≤ c

(
∇Si(q), (µh − µ)AF · ∇vh

)
≤ c ‖Si(q)‖W 1,∞(Ω0) ‖µ− µh‖L2(Ω)

∥∥AF∥∥L∞(Ω0)
‖vh‖H1

0 (Ω)

≤ cih ‖vh‖H1
0 (Ω) ,

hence

‖vh‖H1
0 (Ω) ≤ cih. (3.172)

Now let z ∈ H1
0 (Ω) be the solution to

a(F )(ϕ, z) = (vh, ϕ) ∀ϕ ∈ H1
0 (Ω).

With Lemma 3.4.83 it follows that z ∈ H2
pw(Ω) and ‖z‖H2

pw(Ω) ≤ c ‖vh‖L2(Ω), we get

‖vh‖2L2(Ω) = a(F )(vh, z)

= ah(F )(vh, z) +
(
∇vh, (µ− µh)AF · ∇z

)
.

(3.173)
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For the �rst term on the right hand side of (3.173) we get

ah(F )(vh, z) = ah(F )(vh, z − ihz) + ah(F )(vh, ihz). (3.174)

We use (3.172) and Lemma 3.4.81 and get

ah(F )(vh, z − ihz) ≤ c ‖vh‖H1
0 (Ω) ‖z − ihz‖H1

0 (Ω)

≤ ci |lnh|1/2 h2 ‖z‖H2
pw(Ω)

≤ ci |lnh|1/2 h2 ‖vh‖L2(Ω) .

For the remaining term within (3.174) we get

ah(F )(vh, ihz) =
(
∇Si(q), (µh − µ)AF · ∇ihz

)
=
(
∇Si(q), (µ− µh)AF · ∇ (z − ihz)

)
+
(
∇Si(q), (µh − µ)AF · ∇z

)
≤ ‖Si(q)‖W 1,∞(Ω0)

∥∥AF∥∥L∞(Ω0)

(
‖µ− µh‖L2(Ω) ‖z − ihz‖H1

0 (Ω) + ‖µ− µh‖
L

p
p−1 (Ω)

‖z‖W 1,p(Ω0)

)
≤ c

(
|lnh|1/2 h2 + h2−2/pp1/2

)
‖z‖H2

pw(Ω)

≤ c |lnh|1/2 h2 ‖vh‖L2(Ω) .

Finally, the second term on the right hand side of (3.173) can be estimated via∣∣(∇vh, (µ− µh)AF · ∇z
)∣∣ ≤ ‖vh‖H1

0 (Ω) ‖µ− µh‖
L

2p
p−2 (Ω)

∥∥AF∥∥L∞(Ω)
‖z‖W 1,p(Ω0)

≤ c ‖vh‖H1
0 (Ω) h

1−2/pp1/2 ‖z‖H2(Ω0)

≤ c |lnh|1/2 h ‖vh‖H1
0 (Ω) ‖vh‖L2(Ω)

≤ c |lnh|1/2 h2 ‖vh‖L2(Ω) ,

and inserting these estimates into (3.173) �nishes the proof.

Lemma 3.4.100. For i ∈ N it holds that

‖Si(q)− Si,h(q)‖L2(Ω) ≤ ci |lnh|h
2.

Proof. This lemma can be shown in the same way as Lemma 3.4.44, the higher order of convergence
follows with Lemma 3.4.98 and Lemma 3.4.99.

Lemma 3.4.101. For i ∈ N it holds that

‖Si(q)− Si,h(q)‖H1(Ω) ≤ ci |lnh|
1/2 h.

Proof. It holds that

c ‖Si(q)− Si,h(q)‖2H1
0 (Ω) ≤ ah(F )(Si(q)− Si,h(q), Si(q)− Si,h(q))

= ah(F )(Si(q), Si(q))− 2ah(F )(Si(q), Si,h(q)) + ah(F )(Si,h(q), Si,h(q))

= a(F )(Si(q), Si(q)) +
(
∇Si(q), (µh − µ)AF · ∇Si(q)

)
− 2ah(F )(ΠhSi(q), Si,h(q))

+ ah(F )(Si,h(q), Si,h(q))

≤ λi(q) + cih
2 − 2λi,h(q) b(F )(ΠhSi(q), Si,h(q)) + λi,h(q)

= λi(q)− λi,h(q)− 2λi,h(q) b(F )(ΠhSi(q)− Si,h(q), Si,h(q)) + cih
2

≤ |λi(q)− λi,h(q)|+ 2ci

(
‖ΠhSi(q)− Si(q)‖L2(Ω) + ‖Si(q)− Si,h(q)‖L2(Ω)

)
+ cih

2,
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and we �nish the proof using Lemma 3.4.97, Lemma 3.4.98 and Lemma 3.4.100.

Lemma 3.4.102. For i ∈ N it holds that

‖Si(q)− Si,h,k(q)‖L2(Ω) ≤ ci
(
|lnh|h2 + |ln k| k2

)
.

Proof. This proof is similar to the proof of Lemma 3.4.44. Let Πk be de�ned as in De�nition 3.3.6
and let

S̃i,h,k(q) = b(F k)(ΠkSi(q), Si,h,k(q))Si,h,k(q),

we have

‖Si(q)− Si,h,k(q)‖L2
b,k(Ω) ≤ ‖Si(q)−ΠkSi(q)‖L2

b,k(Ω) +
∥∥∥ΠkSi(q)− S̃i,h,j(q)

∥∥∥
L2
b,k(Ω)

+
∥∥∥S̃i,h,k(q)− Si,h,k(q)∥∥∥

L2
b,k(Ω)

.
(3.175)

For the �rst term on the right hand side of (3.175) we use Lemma 3.4.93 and get

‖Si(q)−ΠkSi(q)‖L2
b,k(Ω) ≤ ci

(
|lnh|h2 + |ln k| k2

)
. (3.176)

We now concentrate on the second term on the right hand side of (3.175). It holds that

ΠkSi(q)− S̃i,h,j(q) =
∑

j∈N\{i}

(
b(F k)(ΠkSi(q), Sj,h,k(q))Sj,h,k(q)

)
,

hence ∥∥∥ΠkSi(q)− S̃i,h,j(q)
∥∥∥2

L2
b,k(Ω)

=
∑

j∈N\{i}

∣∣b(F k)(ΠkSi(q), Sj,h,k(q))
∣∣2 . (3.177)

For the summands within (3.177) it holds that

b(F k)(ΠkSi(q), Sj,h,k(q)) =
1

λj,h,k(q)
ah(F k)(ΠkSi(q), Sj,h,k(q)) =

1

λj,h,k(q)
a(F )(Si(q), Sj,h,k(q))

=
λi(q)

λj,h,k(q)
b(F )(Si(q), Sj,h,k(q)),

hence

λj,h,k(q) b(F k)(ΠkSi(q), Sj,h,k(q)) = λi(q) b(F )(Si(q), Sj,h,k(q)),

which yields

b(F k)(ΠkSi(q), Sj,h,k(q) =
λi(q)

λj,h,k(q)− λi(q)
(
b(F )(Si(q), Sj,h,k(q))− b(F k)(ΠkSi(q), Sj,h,k(q))

)
.

Using Lemma 3.4.86 and Lemma 3.4.93 one can show that∥∥∥ΠkSi(q)− S̃i,h,j(q)
∥∥∥
L2
b,k(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
, (3.178)
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and it remains to estimate the last term on the right hand side of (3.175). In order to do so we will
show that∥∥∥S̃i,h,k(q)− Si,h,k(q)∥∥∥

L2
b,k(Ω)

≤
∥∥∥Si(q)− S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

+ ci
(
|lnh|h2 + |ln k| k2

)
, (3.179)

for (3.179), the triangle inequality, (3.176) and (3.178) would prove the �nal claim. It holds that

Si,h,k(q)− S̃i,h,k(q) = Si,h,k(q)
(
1− b(F k)(ΠkSi(q), Si,h,k(q))

)
,

and

‖Si(q)‖L2
b,k(Ω) −

∥∥∥Si(q)− S̃i,h,k(q)∥∥∥
L2
b,k(Ω)

≤
∥∥∥S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

≤ ‖Si(q)‖L2
b,k(Ω) +

∥∥∥Si(q)− S̃i,h,k(q)∥∥∥
L2
b,k(Ω)

.

Lemma 3.4.86 and (3.64) prove that∣∣∣‖Si(q)‖L2
b,k(Ω) − 1

∣∣∣ ≤ ci (|lnh|h2 + |ln k| k2
)
,

and using the normalizing condition for Si,h,k(q) it follows that

1− ci
(
|lnh|h2 + |ln k| k2

)
−
∥∥∥Si(q)− S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

≤
∣∣b(F k)(ΠkSi(q), Si,h,k(q))

∣∣
≤ 1 + ci

(
|lnh|h2 + |ln k| k2

)
+
∥∥∥Si(q)− S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

,

hence ∣∣∣∣b(F k)(ΠkSi(q), Si,h,k(q))
∣∣− 1

∣∣− ci (|lnh|h2 + |ln k| k2
)
≤
∥∥∥Si(q)− S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

.

It holds that

b(F k)(ΠkSi(q), Si,h,k(q)) = b(F k)(Si,h(q), Si,h,k(q)) + b(F k)(Si(q)− Si,h(q), Si,h,k(q))

+ b(F k)(ΠkSi(q)− Si(q), Si,h,k(q)).
(3.180)

With (3.74) it follows that

b(F k)(Si,h(q), Si,h,k(q)) ≥ 0, (3.181)

and with the help of Lemma 3.4.100 one can show that∣∣b(F k)(Si(q)− Si,h(q), Si,h,k(q))
∣∣ ≤ ci (|lnh|h2 + |ln k| k2

)
. (3.182)

In addition, Lemma 3.4.93 proves∣∣b(F k)(ΠkSi(q)− Si(q), Si,h,k(q))
∣∣ ≤ ci (|lnh|h2 + |ln k| k2

)
. (3.183)
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Inserting (3.181), (3.182) and (3.183) into (3.180) proves

b(F k)(ΠkSi(q), Si,h,k(q)) ≥ −ci
(
|lnh|h2 + |ln k| k2

)
,

where ci is a positive real number. It follows that∥∥∥Si,h,k(q)− S̃i,h,k(q)∥∥∥
L2
b,k(Ω)

=
∣∣1− b(F k)(ΠkSi(q), Si,h,k(q))

∣∣
≤
∥∥∥Si(q)− S̃i,h,k(q)∥∥∥

L2
b,k(Ω)

+ ci
(
|lnh|h2 + |ln k| k2

)
.

Lemma 3.4.103. For i ∈ N it holds that

‖Si,h(q)− Si,h,k(q)‖H1
0 (Ω) ≤ ci

(
|lnh|1/2 h+ |ln k|1/2 k

)
.

Proof. We use the same ideas as presented in the proof of Lemma 3.4.101 and get

c ‖Si,h(q)− Si,h,k(q)‖2H1(Ω) ≤ ah(F k)(Si,h(q)− Si,h,k(q), Si,h(q)− Si,h,k(q))

= ah(F k)(Si,h(q), Si,h(q))− 2ah(F k)(Si,h(q), Si,h,k(q)) + ah(F k)(Si,h,k(q), Si,h,k(q))

= ah(F )(Si,h(q), Si,h(q)) +
(
∇Si,h(q), µh

(
AFk −AF

)
· ∇Si,h(q)

)
− 2λi,h,k(q) b(F k)(Si,h(q), Si,h,k(q)) + λi,h,k(q)

= λi,h(q)− λi,h,k(q) + 2λi,h,k(q) b(F k)(Si,h,k(q)− Si,h(q), Si,h,k(q))

+
(
∇Si,h(q), µh

(
AFk −AF

)
· ∇Si,h(q)

)
≤ |λi,h(q)− λi,h,k(q)|+ ci

(
‖Si(q)− Si,h,k(q)‖L2(Ω) + ‖Si(q)− Si,h,k(q)‖L2(Ω)

)
+
(
∇Si,h(q), µh

(
AFk −AF

)
· ∇Si,h(q)

)
.

(3.184)

The �rst term on the right hand side of (3.184) can be estimated using Lemma 3.4.97 and Corol-
lary 3.4.96. The second part can be estimated using Lemma 3.4.100 and Lemma 3.4.102, we get

‖Si,h(q)− Si,h,k(q)‖2H1
0 (Ω) ≤ ci

(
|lnh|h2 + |ln k| k2

)
+ c

(
∇Si,h(q), µh

(
AFk −AF

)
· ∇Si,h(q)

)
.

The remaining term on the right hand side of (3.184) can be estimated via(
∇Si,h(q), µh

(
AFk −AF

)
· ∇Si,h(q)

)
=
(
∇ (Si,h(q)− Si(q)) , µh

(
AFk −AF

)
· ∇ (Si,h(q)− Si(q))

)
(3.185)

+ 2
(
∇Si(q), µh

(
AFk −AF

)
· ∇ (Si,h(q)− Si(q))

)
(3.186)

+
(
∇Si(q),

(
µhAFk − µAF

)
· ∇Si(q)

)
(3.187)

+
(
∇Si(q), (µ− µh)AF · ∇Si(q)

)
. (3.188)

For (3.185) we get ∣∣∣(∇ (Si,h(q)− Si(q)) , µh
(
AFk −AF

)
· ∇ (Si,h(q)− Si(q))

)∣∣∣
≤ c ‖Si,h(q)− Si(q)‖2H1

0 (Ω)

∥∥∥AFk −AF∥∥∥L∞(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
.
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For the second part, (3.186), we get∣∣∣(∇Si(q), µh (AFk −AF) · ∇ (Si,h(q)− Si(q))
)∣∣∣

≤ c ‖Si(q)‖W 1,∞(Ω)

∥∥∥AFk −AF∥∥∥L2(Ω)
‖Si,h(q)− Si(q)‖H1

0 (Ω)

≤ cik
(
|lnh|1/2 h+ |ln k|1/2 k

)
≤ ci

(
|lnh|h2 + |ln k| k2

)
.

The third term, (3.187), can be estimated using Lemma 3.4.88, and the last part, (3.188), can be
estimated using Lemma 3.4.37.

Lemma 3.4.104. For δq ∈ Q and i ∈ N it holds that∣∣λ′i(q)(δq)− λ′i,h,k(q)(δq)∣∣ ≤ ci (|lnh|3/4 h3/2 + |ln k|3/4 k3/2
)
‖δq‖H2(I) .

Proof. Let δF = F ′(q)(δq) and δFk = F ′k(q)(δq). With (3.65) and (3.75) it follows that∣∣λ′i(q)(δq)− λ′i,h,k(q)(δq)∣∣
≤
∣∣∣(∇Si(q), µA′F ,δF · ∇Si(q))− (∇Si,h,k(q), µhA′Fk,δFk · ∇Si,h,k(q))∣∣∣ (3.189)

+
∣∣∣λi(q) (Si(q)2, γ′

F ,δF

)
− λi,h,k(q)

(
Si,h,k(q)

2, γ′
Fk,δFk

)∣∣∣ . (3.190)

We start with estimating (3.189) and get(
∇Si(q), µA′F ,δF · ∇Si(q)

)
−
(
∇Si,h,k(q), µhA′Fk,δFk · ∇Si,h,k(q)

)
= 2

(
∇ (Si(q)− Si,h,k(q)) , µA′F ,δF · ∇Si(q)

)
(3.191)

+
(
∇ (Si,h,k(q)− Si(q)) , (µ− µh)

(
A′
F ,δF

+A′
Fk,δFk

)
· ∇Si(q)

)
(3.192)

+
(
∇ (Si,h,k(q)− Si(q)) , (µ+ µh)

(
A′
F ,δF

−A′
Fk,δFk

)
· ∇Si(q)

)
(3.193)

+
(
∇Si(q),

(
µA′

F ,δF
− µhA′Fk,δFk

)
· ∇Si(q)

)
(3.194)

+
(
∇ (Si,h,k(q)− Si(q)) , µhA′Fk,δFk · ∇ (Si(q)− Si,h,k(q))

)
. (3.195)

The �rst part, (3.191), can be estimated in the following way.∣∣∣(∇ (Si(q)− Si,h,k(q)) , µA′F ,δF · ∇Si(q)
)∣∣∣ ≤ d ∣∣∣∣(∇ (Si(q)− Si,h,k(q)) , A′F ,δF · ∇Si(q)

)
Ω0

∣∣∣∣
+

∣∣∣∣(∇ (Si(q)− Si,h,k(q)) , A′F ,δF · ∇Si(q)
)

Ω1

∣∣∣∣ . (3.196)

The terms on the right hand side of (3.196) can be estimated using partial integration, for j ∈ {0, 1}
it holds that∣∣∣∣(∇ (Si(q)− Si,h,k(q)) , A′F ,δF · ∇Si(q)

)
Ωj

∣∣∣∣ ≤ ∣∣∣∣(div
(
A′
F ,δF

· ∇Si(q)
)
, Si(q)− Si,h,k(q)

)
Ωj

∣∣∣∣ (3.197)

+
∣∣∣〈Si(q)− Si,h,k(q),∇Si(q)T ·A′F ,δF · n〉Γ0

∣∣∣ . (3.198)
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For (3.197) we have∣∣∣∣(div
(
A′
F ,δF

· ∇Si(q)
)
, Si(q)− Si,h,k(q)

)
Ωj

∣∣∣∣ ≤ ci ∥∥∥A′F ,δF∥∥∥H1(Ωj)
‖Si(q)− Si,h,k(q)‖L2(Ωj)

≤
(
|lnh|h2 + |ln k| k2

)
‖δq‖H2(I) ,

whereas (3.198) can be estimated via∣∣∣〈Si(q)− Si,h,k(q),∇Si(q)T ·A′F ,δF · n〉Γ0

∣∣∣
≤ ‖Si(q)− Si,h,k(q)‖L2(Γ0) ‖Si(q)‖W 1,∞(Γ0)

∥∥∥A′F ,δF∥∥∥L2(Γ0)

≤ ci ‖Si(q)− Si,h,k(q)‖
1/2
L2(Ω)

‖Si(q)− Si,h,k(q)‖
1/2
H1(Ω)

∥∥∥A′F ,δF∥∥∥H1(Ω)

≤ ci
(
|lnh|3/4 h3/2 + |ln k|3/4 k3/2

)
‖δq‖H2(I) ,

where we used (A.38).
The term (3.192) may be estimated as follows.∣∣∣(∇ (Si,h,k(q)− Si(q)) , (µ− µh)

(
A′
F ,δF

+A′
Fk,δFk

)
· ∇Si(q)

)∣∣∣
≤ ‖Si(q)− Si,h,k(q)‖H1

0 (Ω) ‖µ− µh‖L2(Ω)

(∥∥∥A′F ,δF∥∥∥L∞(Ω)
+
∥∥∥A′Fk,δFk∥∥∥L∞(Ω)

)
‖Si(q)‖W 1,∞(Ω)

≤ cih
(
|lnh|1/2 h+ |ln k|1/2 k

)
‖δq‖H2(I) .

The term (3.193) can be estimated via∣∣∣(∇ (Si,h,k(q)− Si(q)) , (µ+ µh)
(
A′
F ,δF

−A′
Fk,δFk

)
· ∇Si(q)

)∣∣∣
≤ c ‖Si(q)− Si,h,k(q)‖H1

0 (Ω)

∥∥∥A′F ,δF −A′Fk,δFk∥∥∥L2(Ω)
‖Si(q)‖W 1,∞(Ω)

≤ ci
(
|lnh|1/2 h+ |ln k|1/2 k

)
k ‖δq‖H2(I) .

For the fourth term (3.194) we use Lemma 3.4.89 and get∣∣∣(∇Si(q),(µA′F ,δF − µhA′Fk,δFk) · ∇Si(q))∣∣∣ ≤ ci (|lnh|h2 + |ln k| k2
)
‖δq‖H2(I) ,

and for (3.195) we get∣∣∣(∇ (Si,h,k(q)− Si(q)) , µhA′Fk,δFk · ∇ (Si(q)− Si,h,k(q))
)∣∣∣

≤ c ‖Si(q)− Si,h,k(q)‖2H1
0 (Ω)

∥∥∥A′Fk,δFk∥∥∥L∞(Ω)

≤ ci
(
|lnh|h2 + |ln k| k2

)
‖δq‖H2(I) .

It remains to estimate the second part within the original estimation, (3.190). We get

λi(q)
(
Si(q)

2, γ′
F ,δF

)
− λi,h,k(q)

(
Si,h,k(q)

2, γ′
Fk,δFk

)
= (λi(q)− λi,h,k(q))

(
Si(q)

2, γ′
F ,δF

)
(3.199)

+ λi,h,k(q)
(
Si(q)

2 − Si,h,k(q)2, γ′
Fk,δFk

)
(3.200)

+ λi,h,k(q)
(
Si(q)

2, γ′
F ,δF

− γ′
Fk,δFk

)
. (3.201)
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For the �rst term, (3.199), we use Corollary 3.4.96 and get

|λi(q)− λi,h,k(q)|
(
Si(q)

2, γ′
F ,δF

)
≤ ci

(
|lnh|h2 + |ln k| k2

)
‖δq‖H2(I) .

For (3.200) we use Lemma 3.4.102 and obtain

λi,h,k(q)
(
Si(q)

2 − Si,h,k(q)2, γ′
Fk,δFk

)
= λi,h,k(q)

(
Si(q)− Si,h,k(q), (Si(q) + Si,h,k(q)) γ

′
Fk,δFk

)
≤ ci

(
|lnh|h2 + |ln k| k2

)
‖δq‖H2(I) ,

and (3.201) can be estimated using Lemma 3.4.87.

Lemma 3.4.105. For δq ∈ Q and i ∈ N it holds that∣∣j′(q)(δq)− j′h,k(q)(δq)∣∣ ≤ c(|lnh|3/4 h3/2 + |ln k|3/4 k3/2
)
‖δq‖H2(I) .

Proof. This lemma is a direct consequence of Lemma 3.4.104.

3.4.3. Second order optimality conditions and converging subsequences

Within this subsection we are going to state some optimality conditions of second order for both
the continuous as well as the (partially) discretized cost functional. As these results can be proven
in a similar way to the corresponding results in Section 2.3, we just present the results and will omit
the proofs.
Again we have to start with the following assumption.

Assumption 3.4.106. We assume that

j′′(q)(δq, δq) > 0 ∀δq ∈ Q\ {0} .

As in the proof of Theorem 2.3.57 within Subsection 2.3.4 it is possible to show that As-
sumption 3.4.106 implies the strict convexity of j′′(q)(·, ·), and using the stability estimates for
the error between the continuous cost functional and its discretized counterparts, Lemma 3.4.32,
Lemma 3.4.54 and Lemma 3.4.72, the following theorem follows.

Theorem 3.4.107. There exist β > 0 and ε > 0 such that for h, k su�ciently small and all q ∈ Qad

with ‖q − q‖H2(I) < ε it holds that

j′′(q)(δq, δq) ≥ β ‖δq‖2H2(I) ∀δq ∈ Q,

j′′h(q)(δq, δq) ≥ β ‖δq‖2H2(I) ∀δq ∈ Q,

j′′h,k(q)(δq, δq) ≥ β ‖δq‖
2
H2(I) ∀δq ∈ Q.

As in Subsection 2.3.5 one can introduce auxiliary problems like (2.128), and using the results
obtained in Subsubsection 3.4.1.1, Subsubsection 3.4.1.2 and Subsubsection 3.4.1.3 the following
theorem can be proven.

Theorem 3.4.108. There exist sequences (qσ)σ>0,
(
qσ,h

)
σ,h>0

,
(
qσ,h,k

)
σ,h,k>0

of local optimal so-
lutions to (3.57), (3.60) and (3.62), respectively, such that

lim
σ→0
‖q − qσ‖H2(I) = lim

σ,h→0

∥∥q − qσ,h∥∥H2(I)
= lim

σ,h,k→0

∥∥q − qσ,h,k∥∥H2(I)
= 0.
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3.4. A-priori error estimates

We are now able to �nish the proof of the main theorem of this section, Theorem 3.4.1; what
follows is similar to the proof of Theorem 2.3.1 on page 63.

Proof. Let q be an optimal control for (3.21) and let qσ,h,k be an optimal control for (3.62) for σ,
h and k su�ciently small, such that Theorem 3.4.107 holds for qσ,h,k and Lemma 3.4.78 holds for
q and qσ,h,k. The existence of such a qσ,h,k is guaranteed by Theorem 3.4.108. Now there exists
t ∈ [0, 1] such that with ξ = tq + (1− t)qσ,h,k it holds that

c
∥∥q − qσ,h,k∥∥2

H2(I)
≤ j′′h,k(ξ)(q − qσ,h,k, q − qσ,h,k)

= j′h,k(q)(q − qσ,h,k)− j′h,k(qσ,h,k)(q − qσ,h,k)
= j′h,k(q)(q − qσ,h,k)− j′h,k(qσ,h,k)(q − iσq),

where the second equality is due to the �rst order optimality condition in qσ,h,k which reads as
j′h,k(qσ,h,k)(δqσ) = 0 for all δqσ ∈ Qσ. Next we use the �rst order optimality condition in q, i.e.
j′(q)(δq) = 0 for all δq ∈ Q, and get

c
∥∥q − qσ,h,k∥∥2

H2(I)
≤ j′h,k(q)(q − qσ,h,k)− j′(q)(q − qσ,h,k)

+ j′h,k(q)(q − iσq)− j′h,k(qσ,h,k)(q − iσq)
+ j′(q)(q − iσq)− j′h,k(q)(q − iσq).

Using Lemma 3.4.78 and Lemma 3.4.105 we arrive at∥∥q − qσ,h,k∥∥2

H2(I)
≤ c

(
|lnh|3/4 h3/2 + |ln k|3/4 k3/2

)∥∥q − qσ,h,k∥∥H2(I)

+ c
∥∥q − qσ,h,k∥∥H2(I)

‖q − iσq‖H2(I)

+ c
(
|lnh|3/4 h3/2 + |ln k|3/4 k3/2

)
‖q − iσq‖H2(I) .

With Young's inequality we get the existence of a c1 > 0 such that

∥∥q − qσ,h,k∥∥2

H2(I)
≤ c1

((
|lnh|3/4 h3/2 + |ln k|3/4 k3/2

)2
+ ‖q − iσq‖2H2(I)

)
+

1

2

∥∥q − qσ,h,k∥∥2

H2(I)
.

For a, b ≥ 0 it holds that
√
a2 + b2 ≤ a+ b, and using Lemma 2.2.2 we �nally end up with∥∥q − qσ,h,k∥∥H2(I)

≤ c
(
σ2 + |lnh|3/4 h3/2 + |ln k|3/4 k3/2

)
.
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4. Conclusion and perspectives

In this thesis we proved a-priori error estimates for �nite element discretizations of two shape opti-
mization problems with di�erent cost functionals.

In the �rst part, Chapter 2, we investigated a shape optimization problem with tracking-type cost
functional. We parametrized the class of star-shaped domains using periodic H2-functions, which
enabled us to use the standard methods of control theory. We used a Tikhonov-type term for reg-
ularization instead of a bound on an appropriate norm of q. Using the transformation approach
we reformulated the original problem on a reference domain, where we stated the exact regularity
assumptions needed for the transformation to exist. Using the optimality condition of �rst order,
we proved higher regularity of the optimal control, which in turn enabled us to compute the deriva-
tive of the reduced cost functional as a boundary integral. The obtained representation is similar
to the representations obtained by di�erent methods like classical shape calculus or the level-set
method. In order to obtain error estimates, we proved estimates for general controls as well as for
the optimal control with higher regularity. Estimating the error with respect to the discretization
of the control q and the state u can be done using standard arguments, for quadratic convergence
in the optimal case we used various regularity results and duality arguments. In order to estimate
the error with respect to the discretization of the transformation F we used Taylor's theorem and
a result on the error of a �nite element approximation on a non-polygonal domain. The existence
of a sequence of local optimal controls to the fully discretized problem converging to the optimal
control of the continuous problem is due to the error estimates for the non-optimal case, whereas
the quadratic convergence within the �nal estimate is due to the error estimates for the optimal case.

The aim of the second part, Chapter 3, was to maximize the distance between the �rst two eigen-
values of an elliptic partial di�erential operator corresponding to the transmission problem, with
respect to domain perturbations. Using the same methods as presented in Chapter 2 we transformed
the problem on a reference domain, proved existence and higher regularity of the optimal control
and showed how to compute the derivative of the reduced cost functional as a boundary integral.
As solutions to the transmission problem have a jump of the normal derivative in the interior of
their domain of de�nition, a special emphasis had to be put on regularity results for these kind
of problems. We used the closed graph theorem to prove a stability result for the derivative of
eigenfunction with respect to perturbations of the domain. Due to the special structure of eigen-
value equations, the methods usually used in �nite element error estimation cannot be applied here.
Instead, one uses Parseval's identity and the Bessel inequality to expand the error as weighted sum
of certain eigenfunctions. We extended this method to also estimate the error between derivatives
of eigenfunctions with respect to perturbations of the domain. Again having proved error estimates
for the general as well as for the optimal case, we could proceed as within Chapter 2 in proving the
existence of a converging sequence of optimal controls to the fully discretized problem and conver-
gence rates.

In the Appendix, Chapter A, we presented some well-known functional analytic theorems and reg-
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ularity results and showed how to generalize the Bramble-Hilbert lemma and inverse estimates for
�nite element ansatz functions onto fractional Sobolev spaces. In the second part of the Appendix
we generalized a result regarding the error induced by a �nite element discretization of a partial
di�erential equation on a non-polygonal domain. For the proof we used regularity results in W 1,p,
duality arguments and stability results for the Ritz projection on both convex and nonconvex do-
mains. We showed that for convex domains the order of convergence is the same as one would expect
on polygonal domains, whereas for nonconvex domains an additional logarithmic term enters the
estimate.

There are several possible directions for future research on these topics:

• The main results of Chapter 2 and Chapter 3 rely on the higher regularity of the optimal
controls, which can be shown using the assumption that no control constraints are active in
the optimal control. Even in case of active control constraints one can often show higher
regularity, cf. [71], thus it may be possible to derive error estimates of optimal order for that
case as well.

• The elliptic partial di�erential operator within Chapter 2 may be exchanged with a parabolic
one, and the shape of the domain may be time-dependent.

• It would be interesting to apply the framework for a-posteriori error estimation presented
in [11] onto these shape optimization problems in order to get an adaptive re�nement strategy
for the discretization of the control.

• As has been shown within this thesis, given su�cient regularity of the control, the �rst deriva-
tive of the reduced cost functional may be represented as a boundary integral. Using the
algorithm presented in [106] it should be possible to �nd a representation for the second
derivative of the reduced cost functional as a boundary integral as well.

• Regarding eigenvalue problems, most publications deal with homogeneous Dirichlet conditions.
Thus it would be interesting to consider a partial di�erential operator with Neumann or Robin
boundary conditions within Chapter 3.
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This chapter is a collection of results which will be needed throughout in Chapter 2 and Chapter 3
but are not directly related to shape optimization. It is organized as follows.
Section A.1 contains some well-known functional analytic theorems, a generalization of the

Bramble-Hilbert lemma for Sobolev spaces of fractional order, nonstandard inverse estimates for
�nite element ansatz functions as well as regularity results for elliptic partial di�erential equations,
including the stability of the Ritz projection.
Section A.2 is devoted to a generalization of a result from [17] concerning �nite element error

estimates on non-polygonal domains to the Lp/W 1,p-case for some p > 2.

A.1. Some general theorems and regularity results

Theorem A.1.1 (Hahn-Banach theorem). Let X be a normed space and let Y ⊂ X be a subspace,
equipped with the norm of X.

• For each y′ ∈ Y ′ there exists a x′ ∈ X ′ such that

x′ = y′ in Y and
∥∥x′∥∥

X′
=
∥∥y′∥∥

Y ′
.

• For each x0 ∈ X with x0 6= 0 there exists x′0 ∈ X ′ with∥∥x′0∥∥X′ = 1 and
(
x′0, x0

)
X′,X

= ‖x0‖X .

Proof. These consequences of the Hahn-Banach theorem can be found in [3], Chapter 4.

Theorem A.1.2 (Spectral theorem). Let X be a Hilbert space over R and let L 6= 0 be a compact
operator over X. Then it holds that:

• For the spectrum σ(L) of L it holds that σ(L)\ {0} consists of countably many eigenvalues
with 0 as only possible accumulation point.

• For µ ∈ σ(L)\ {0} we have

1 ≤ nµ = max
{
n ∈ N| N

(
(µ I−L)n−1

)
6= N ((µ I−L)n)

}
<∞.

• For µ ∈ σ(L)\ {0} it holds that

X = N ((µ I−L)nµ)⊕R ((µ I−L)nµ) ,

and both subspaces are closed.
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• If L is additionally self-adjoint, then there exists an orthonormal system (ei)i∈N and a sequence
(µi)i∈N ⊂ R with

Lei = µiei,

and it holds that

lim
i→∞

µi = 0.

Proof. This theorem can be found in [3], Theorem 9.9, Theorem 10.12 and Remark 10.13.

Theorem A.1.3 (Trace theorem). Let Ω ⊂ R2 be bounded and open with a Ck,1 boundary Γ for a
k ∈ N0. Let s > 0, p ∈ (1,∞) and let (s− 1/p) /∈ Z, s ≤ k + 1, s− 1/p = l + σ with σ ∈ (0, 1) and
l ∈ N0. Then the mapping

u 7→
{
u|Γ ,

∂u

∂n

∣∣∣∣
Γ

, · · · , ∂
lu

∂nl

∣∣∣∣
Γ

}
,

which is de�ned for u ∈ Ck,1(Ω), has a unique continuous extension as an operator from

W s,p(Ω) onto
l∏

j=0

W s−j−1/p,p(Γ),

and a similar statement holds in case that Γ is a curvilinear polygon of class Ck,1. This trace
operator has a continuous right inverse which does not depend on p.

Proof. This version of the trace theorem can be found in [48], Theorem 1.5.1.2 and Theorem 1.5.2.1.

Theorem A.1.4 (Embedding theorem). Let Ω ⊂ Rn be a bounded and open Lipschitz domain. Let
m1,m2, k ≥ 0 be integers, let p1, p2 ∈ [1,∞) and let α ∈ [0, 1]. Then it holds that:

• If m1 − n
p1
≥ m2 − n

p2
and m1 ≥ m2, then it holds that Wm1,p1(Ω) ↪→Wm2,p2(Ω).

• If m1 − n
p1
> m2 − n

p2
and m1 > m2, then it holds that Wm1,p1(Ω) ↪→↪→Wm2,p2(Ω).

• If m1 − n
p1
≥ k + α and α ∈ (0, 1), then it holds that Wm1,p1(Ω) ↪→ Ck,α(Ω).

• If m1 − n
p1
> k + α then it holds that Wm1,p1(Ω) ↪→↪→ Ck,α(Ω).

The �rst two statements remain true if both spacesWmi,pi(Ω) are replaced byWmi,pi
0 (Ω) for i ∈ {1, 2}.

In addition, we use the notation Ck,0(Ω) = Ck(Ω).

Proof. This theorem can be found in [3], Theorem 8.9 and Theorem 8.13.

Theorem A.1.5. Let Ω ⊂ Rn be bounded and open with Lipschitz boundary Γ, let s1, s2 ≥ s ≥ 0
and p1, p2, p ∈ (1,∞) such that either

s1 + s2 − s ≥ n
(

1

p1
+

1

p2
− 1

p

)
≥ 0 and sj − s > n

(
1

pj
− 1

p

)
for j ∈ {1, 2} ,
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or

s1 + s2 − s > n

(
1

p1
+

1

p2
− 1

p

)
≥ 0 and sj − s ≥ n

(
1

pj
− 1

p

)
for j ∈ {1, 2} .

Then the mapping (u, v) 7→ uv is continuous from W s1,p1(Ω)×W s2,p2(Ω) into W s,p(Ω).

Proof. This theorem can be found in [48], Theorem 1.4.4.2 and the comment afterward.

Theorem A.1.6 (Implicit function theorem). Let B ∈ Ck(Xad × Y ad, Z) for k ∈ N, where Z is a
Banach space and Xad, Y ad are open subsets of the Banach spaces X and Y , respectively. Suppose
that B(x∗, y∗) = 0 and let B′y(x

∗, y∗) be continuously invertible. Then there exist neighborhoods Θ

of x∗ in X, Φ of y∗ in Y and a map g ∈ Ck(Θ, Y ) such that

• B(x, g(x)) = 0 for all x ∈ Θ,

• B(x, y) = 0, (x, y) ∈ Θ× Φ implies y = g(x),

• g′(x) = − (By(x, g(x)))−1 ◦Bx(x, g(x)) for x ∈ Θ.

Proof. This theorem can be found in [5], Theorem 2.3.

Theorem A.1.7 (Generalized Hölder inequality). Let Ω ⊂ Rn be a bounded and open Lipschitz
domain. Let k ∈ N, pi, q ∈ [1,∞] for 1 ≤ i ≤ k with

∑k
i=1

1
pi

= 1
q . If fi ∈ L

pi(Ω) for 1 ≤ i ≤ k then
it holds that

k∏
i=1

fi ∈ Lq(Ω)

and ∥∥∥∥∥
k∏
i=1

fi

∥∥∥∥∥
Lq(Ω)

≤
k∏
i=1

‖fi‖Lpi (Ω) .

Proof. A proof for this theorem can be found in [3], Lemma 1.16.

Theorem A.1.8 (Generalized Young's inequality). Let p, q ∈ (1,∞) with 1/p + 1/q = 1 and let
ε > 0. Then there exists Mε > 0 such that for all a, b ∈ R it holds that

|ab| ≤ ε |a|p +Mε |b|q .

Proof. This result can be found in [3], (1-11).

Theorem A.1.9 (Riesz-Thorin interpolation theorem). Let Ω ⊂ Rn be a domain, let p0, p1 ∈ [1,∞]
and let q0, q1 ∈ [1,∞] with p0 6= p1, q0 6= q1. If

T : Lp0(Ω)→ Lq0(Ω),

and

T : Lp1(Ω)→ Lq1(Ω),
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is a bounded linear operator with norm M0 and M1, respectively, then it holds that

T : Lp(Ω)→ Lq(Ω),

is also a bounded linear operator with norm M , M ≤M1−θ
0 M θ

1 , where θ ∈ (0, 1),

1

p
=

1− θ
p0

+
θ

p1
, and

1

q
=

1− θ
q0

+
θ

q1
.

Proof. This theorem can be found in [14], Theorem 1.1.1.

The following generalized di�erentiation rules can both be found in [110], Proposition 4.10 and
Proposition 4.11.

Theorem A.1.10 (Chain rule). Let X, Y and Z be Banach spaces, let x ∈ X with f : U(x)→ Y ,
where U(x) is a neighborhood of x. Let y = f(x), and g : U(y) → Z for a neighborhood U(y) of y.
Let h : U(x)→ Z, h = g◦f be the composite map. If f ′(x) and g′(f(x)) exist as Fréchet-derivatives,
then h is Fréchet-di�erentiable at x and it holds that

h′(x) = g′(f(x)) ◦ f ′(x). (A.1)

If f ′(x) exists only as Gâteaux-derivative at x, then h is also Gâteaux-di�erentiable at x, and (A.1)
holds.

Theorem A.1.11 (Product rule). Let X, X1, X2 and Y be Banach spaces and suppose that the
mapping B : X1 ×X2 → Y is bilinear and bounded. Suppose further that the maps

fi : Ui(x) ⊆ X → Xi, i ∈ {1, 2} ,

are Fréchet-di�erentiable at x, where Ui(x), i ∈ {1, 2}, are neighborhoods of x. Then the mapping
h : X → Y , h(x) = B (f1(x), f2(x)) is Fréchet-di�erentiable at x and it holds that

h′(x)(δx) = B
(
f ′1(x)(δx), f2(x)

)
+B

(
f1(x), f ′2(x)(δx)

)
∀δx ∈ X.

These results remains true if Fréchet-di�erentiability is replaced with Gâteaux-di�erentiability.

Theorem A.1.12 (Generalized Taylor's theorem). Let the mapping f : U(x) ⊂ X → Y be de�ned
on an open and convex neighborhood U(x) of x, and let X and Y be Banach spaces. Let n ∈ N and
let f ′, f ′′, · · · , f (n) exist as Fréchet-derivatives on U(x), then it holds that

f(x+ h) = f(x) +
n−1∑
k=1

(
1

k!
f (k)(x)hk

)
+Rn(x, h),

where Rn(x, h) is a remainder term with

‖Rn(x, h)‖ ≤ 1

n!
sup

0<τ<1

∥∥∥f (n)(x+ τh)hn
∥∥∥ , (A.2)

where ‖·‖ is an arbitrary norm on Y . If f (n) is also continuous on U(x), then

Rn(x, h) =

∫ 1

0

(1− τ)n−1

(n− 1)!
f (n)(x+ τh)hn dτ.
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Proof. This version of Taylor's theorem can be found in [110], Theorem 4.A.

Theorem A.1.13 (Local inverse mapping theorem). Let X and Y be Banach spaces over R, let
x0 ∈ X and let f : U(x0)→ Y , with U(x0) ⊆ X being a neighborhood of x0, be a Ck-mapping where
k ∈ N ∪ {∞}. If f ′(x0) : X → Y is bijective, then f is a local Ck-di�eomorphism at x0 and(

f−1
)′

(y) = f ′(x)−1 with y = f(x),

for all x in a neighborhood of x0.

Proof. This theorem can be found in [110], Theorem 4.F and Corollary 4.37.

Theorem A.1.14. Let Ω ⊂ Rn be a bounded Lipschitz domain, let s ∈ R and p ∈ (1,∞). Then
the di�erentiation operator ∂xi : W

s,p(Ω)→W s−1,p(Ω) is a linear and continuous functional unless
s = 1/p.

Proof. This theorem can be found in [48], Theorem 1.4.4.6.

Lemma A.1.15. Let Ω ⊂ R2 be a bounded Lipschitz domain. Then there exists c > 0 such that for
all p > 2 and u ∈ Lp(Ω) ∩H1(Ω) it holds that

‖u‖Lp(Ω) ≤ cp
1/2 ‖u‖H1(Ω) .

Proof. This inequality can be found in [32], equation (2.16), and is based on results proven in [94].

A.1.1. The Bramble-Hilbert lemma for Sobolev spaces of fractional order

In the context of estimating interpolation errors, many results are based on the Bramble-Hilbert
lemma. Within this subsection we are going to generalize this lemma to Sobolev spaces of fractional
order. What follows is a generalization of the proof presented in [105], another version can also be
found in [16], Chapter II, Theorem 6.3.
For the following three lemmata, let Ω ⊂ Rn be a bounded Lipschitz domain, let p ∈ (1,∞] and

let s = k + σ with k ∈ N0 and σ ∈ (0, 1).

Lemma A.1.16. Let u ∈ W s,p(Ω). If Dαu is constant for each multiindex α ∈ Rn with |α| = k,
then u ∈ Pk(Ω).

Proof. It is clear that u ∈ Wm,p(Ω) for all m ∈ N, and hence u ∈ C∞(Ω). The proof follows with
induction on k.

Lemma A.1.17. For every u ∈W s,p(Ω) there exists a unique uh ∈ Pk(Ω) such that for all α ∈ Rn
with 0 ≤ |α| ≤ k it holds that ∫

Ω
Dα(u− uh) dx = 0. (A.3)

Proof. First we show uniqueness. Let uh,1, uh,2 ∈ Pk(Ω) be two polynomials satisfying (A.3), and
let ũh = uh,1 − uh,2. Then it holds that∫

Ω
Dαũh dx = 0 for 0 ≤ |α| ≤ k.

By induction it follows that ũh = 0, hence uh,1 = uh,2. As the statement (A.3) is equivalent to
a system of dim

(
Pk(Ω)

)
linear equations with the same number of unknowns, uniqueness implies

existence.
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Lemma A.1.18. There exists c > 0 such that for all u ∈W s,p(Ω) with∫
Ω

Dαudx = 0 where 0 ≤ |α| ≤ k, (A.4)

it holds that

‖u‖W s,p(Ω) ≤ c |u|W s,p(Ω) . (A.5)

Proof. Suppose that (A.5) does not hold, then there exists a sequence (un)n∈N ⊂ W s,p(Ω) for
which (A.4) holds and

‖un‖W s,p(Ω) ≥ n |un|W s,p(Ω) .

Without loss of generality we may assume ‖un‖W s,p(Ω) = 1. As this sequence is bounded inW s,p(Ω),
we can extract a subsequence (still denoted (un)n∈N) such that un ⇀ u inW s,p(Ω) for a u ∈W s,p(Ω),
where for p = ∞ we have to use weak∗-convergence. As W s,p(Ω) is compactly embedded into
W k,p(Ω) we get un → u in W k,p(Ω), and (un)n∈N is Cauchy in W k,p(Ω). As |un|W s,p(Ω) → 0, the
sequence is also Cauchy in W s,p(Ω), hence un → u in W s,p(Ω). This implies

‖u‖W s,p(Ω) = lim
n→∞

‖un‖W s,p(Ω) = 1. (A.6)

On the other hand, as |u|W s,p(Ω) = 0 it follows from the de�nition of the W s,p-seminorm that

∫
Ω

∫
Ω

|(Dαu) (x)− (Dαu) (y)|p

|x− y|n+σp dx dy = 0,

for all multiindices α with |α| = k, hence Dαu is constant almost everywhere and Lemma A.1.16
implies u ∈ Pk(Ω). Furthermore, ∫

Ω
Dαu dx = lim

n→∞

∫
Ω

Dαun dx = 0,

for all α with 0 ≤ |α| ≤ k, which implies u = 0 as in the proof of Lemma A.1.17. This is a
contradiction to (A.6).

Theorem A.1.19 (Generalized Bramble-Hilbert lemma). Let Ω ⊂ Rn be a bounded Lipschitz
domain, let p ∈ (1,∞] and let s = k + σ with k ∈ N0 and σ ∈ (0, 1]. Let F : W s,p(Ω) → R be a
functional with

|F (u)| ≤ c0 ‖u‖W s,p(Ω) ∀u ∈W s,p(Ω),

|F (u+ v)| ≤ c1 (|F (u)|+ |F (v)|) ∀u, v ∈W s,p(Ω),

F (p) = 0 ∀p ∈ Pk(Ω).

Then there exists c2 > 0 such that

|F (u)| ≤ c2 |u|W s,p(Ω) ∀u ∈W s,p(Ω).
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Proof. The case σ = 1 corresponds to the usual formulation and can be found in [105], Theorem 5.1.
For σ < 1 let uh ∈ Pk(Ω) be the interpolation polynomial de�ned in Lemma A.1.17. It holds that

|F (u)| = |F (u− uh + uh)|
≤ c (|F (u− uh)|+ |F (uh)|)
= c |F (u− uh)|
≤ c ‖u− uh‖W s,p(Ω)

≤ c |u− uh|W s,p(Ω)

= c |u|W s,p(Ω) .

A.1.2. Generalized nonstandard �nite element estimates

Inverse estimates, where a strong norm is estimated via a weaker norm, are often used in the context
of error estimates. Given certain assumptions on the triangulation of the polygonal domain Ωh, a
typical estimate is

‖vh‖H1(Ωh) ≤ ch
−1 ‖vh‖L2(Ωh) ∀vh ∈ Vh,

where Vh is the space of (bi)linear �nite elements on Ωh; a more general version can be found in [16],
Chapter II, Theorem 6.8. We have Vh ⊂ W 1,∞(Ωh) and it even holds that Vh ⊂ W 1+1/p−ε,p(Ωh)
for all p ∈ (1,∞) and ε > 0. However, inverse estimates like

‖vh‖H3/2−ε(Ωh) ≤ cεh
−1/2+ε ‖vh‖H1(Ωh) ∀vh ∈ Vh,

are not considered in general, which is partly due to the fact that fractional norms contain nonlo-
cal terms. Within the following subsection we are going to generalize the nonstandard estimates
obtained in [12] and [20] to general p ∈ [2,∞).
Within this subsection, let Ωh ⊂ Rn with n ∈ {1, 2} be a polygonal domain and let {πh}h>0

be a family of triangulations of Ωh satisfying the usual regularity assumptions in the sense of
Remark 2.2.7. Let Vh be the space of bilinear �nite elements over Ωh with respect to the triangu-
lation πh, and let Vh,0 ⊂ Vh be the subspace of elements with zero boundary conditions, cf. (2.60)
and (2.61). With K we will denote an element of πh. In addition, let p ∈ [2,∞) be �xed from now
on.
The statements of the following lemma can be found in [48], (1.3.2.12) and Theorem 1.4.4.3.

Lemma A.1.20. Let

ρ(x, ∂K) = inf
y∈∂K

|x− y| ,

be the distance from x to the boundary of K. For arbitrary x ∈ K and σ ∈ (0, 1) it holds that∫
Ωh\K

1

|x− y|n+σp dy ≤ cσ,p
1

ρ(x, ∂K)σp
.

In addition, let K̂ be the reference cell and let σ ∈ (0, 1/p), then it holds that∫
K̂

up

ρ(x, ∂K̂)σp
dx ≤ cK̂,σ,p ‖u‖Wσ,p(K̂) ∀u ∈W σ,p(K̂).
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Lemma A.1.21. Let k ∈ N0, σ ∈ (0, 1) and u ∈W k+σ,p(Ωh). Then it holds that

|u|p
Wk+σ,p(Ωh)

≤ cσ,p
∑
|α|=k

∑
K∈πh

(
|Dαu|pWσ,p(K) +

∫
K

|Dαu|p

ρ(x, ∂K)σp
dx

)
.

Proof. It holds that

|u|p
Wk+σ,p(Ωh)

=
∑
|α|=k

∫
Ωh

∫
Ωh

|Dαu(x)−Dαu(y)|p

|x− y|n+σp dx dy

=
∑
|α|=k

∑
K∈πh

∫
K

∫
K

|Dαu(x)−Dαu(y)|p

|x− y|n+σp dx dy +
∑

K,K′∈πh
K 6=K′

∫
K

∫
K′

|Dαu(x)−Dαu(y)|p

|x− y|n+σp dx dy

 .

(A.7)

The �rst sum within (A.7) equals
∑
|α|=k

∑
K∈πh |D

αu|pWσ,p(K), whereas the second sum can be
estimated as follows∑

K,K′∈πh
K 6=K′

∫
K

∫
K′

|Dαu(x)−Dαu(y)|p

|x− y|n+σp dx dy

≤ cp

 ∑
K,K′∈πh
K 6=K′

∫
K

∫
K′

|Dαu(x)|p

|x− y|n+σp dx dy +
∑

K,K′∈πh
K 6=K′

∫
K

∫
K′

|Dαu(y)|p

|x− y|n+σp dx dy

 ,

(A.8)

Using Lemma A.1.20, we get

∑
K,K′∈πh
K 6=K′

∫
K

∫
K′

|Dαu(x)|p

|x− y|n+σp dx dy =
∑
K∈πh

∫
K
|Dαu|p

(∫
Ωh\K

1

|x− y|n+σp dy

)
dx

≤ cσ,p
∑
K∈πh

∫
K

|Dαu|p

ρ(x, ∂K)σp
dx,

which �nishes the proof since the right hand side in (A.8) is symmetric with respect to x and y.

In what follows let ih : C(Ωh) → Vh be the nodal interpolation operator, and for x ∈ K and
ϕ ∈ W s,p(K) let x̂ ∈ K̂ and ϕ̂ ∈ W s,p(K̂) be the transformed point and function, respectively, on
the reference triangle.

Theorem A.1.22. Let σ ∈ (0, 1/p) and τ ∈ [σ, 1]. Then it holds that

|u− ihu|W 1+σ,p(Ωh) ≤ cσ,ph
τ−σ |u|W 1+τ,p(Ωh) ∀u ∈W 1+τ,p(Ωh).

Proof. From Lemma A.1.21 we get

|u− ihu|pW 1+σ,p(Ωh)
≤
∑
K∈πh

(
|u− ihu|pW 1+σ,p(K)

+

∫
K

|∇(u− ihu)|p

ρ(x, ∂K)σp
dx

)
.
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Using a transformation argument we get

|u− ihu|pW 1+σ,p(K)
+

∫
K

|∇(u− ihu)|p

ρ(x, ∂K)σp
dx

≤
∥∥B−1

K

∥∥n+σp ‖BK‖p |detBK |2
∣∣∣û− ˆihu

∣∣∣p
W 1+σ,p(K̂)

+
∥∥B−1

K

∥∥σp ‖BK‖p |detBK |
∫
K̂

∣∣∣∇(û− ˆihu)
∣∣∣p

ρ(x̂, ∂K̂)σp
dx̂

≤ cσ,p
∥∥B−1

K

∥∥σp ‖BK‖p |detBK |
(∣∣∣û− ˆihu

∣∣∣p
W 1,p(K̂)

+
∣∣∣û− ˆihu

∣∣∣p
W 1+σ,p(K̂)

)
,

where in the last step we used Lemma A.1.20. Due to the equivalence of norms on �nite dimensional
spaces we get∣∣∣û− ˆihu

∣∣∣p
W 1,p(K̂)

+
∣∣∣û− ˆihu

∣∣∣p
W 1+σ,p(K̂)

≤ cp
(
|û|p

W 1,p(K̂)
+ |û|p

W 1+σ,p(K̂)
+
∥∥∥ ˆihu

∥∥∥p
W 1,p(K̂)

)
≤ cp

(
|û|p

W 1,p(K̂)
+ |û|p

W 1+σ,p(K̂)
+ ‖û‖p

W 1,p(K̂)

)
≤ cσ,p ‖û‖pW 1+σ,p(K̂)

.

These estimates shows that we can apply the Bramble-Hilbert lemma, Theorem A.1.19, and end up
with

|u− ihu|pW 1+σ,p(K)
+

∫
K

|∇(u− ihu)|p

ρ(x, ∂K)σp
dx

≤ cσ,p
∥∥B−1

K

∥∥σp ‖BK‖p |detBK | |û|pW 1+σ,p(K̂)

≤ cσ,p
∥∥B−1

K

∥∥σp ‖BK‖p |detBK | |û|pW 1+τ,p(K̂)

≤ cσ,p
∥∥B−1

K

∥∥σp ‖BK‖p |detBK | ‖BK‖n+τp
∥∥B−1

K

∥∥p ∣∣detB−1
K

∣∣2 |u|p
W 1+τ,p(K)

≤ cσ,php(τ−σ) |u|p
W 1+τ,p(K)

.

Theorem A.1.23. Let σ ∈ (0, 1/p) and τ ∈ [0, σ], then it holds that

|uh|W 1+σ,p(Ωh) ≤ cσ,ph
τ−σ |uh|W 1+τ,p(Ωh) ∀uh ∈ Vh.

Proof. With Lemma A.1.21 it holds that

|uh|pW 1+σ,p(Ωh)
≤ cσ,p

∑
K∈πh

(
|uh|pW 1+σ,p(K)

+

∫
K

|∇uh|p

ρ(x, ∂K)σp
dx

)
. (A.9)

Now we use the equivalence of norms on �nite dimensional subspaces, Lemma A.1.20 and the
quasi-uniformity of πh to get∑
K∈πh

(
|uh|pW 1+σ,p(K)

+

∫
K

|∇uh|p

ρ(x, ∂K)σp
dx

)
≤
∥∥B−1

K

∥∥n+σp |detBK |2 |ûh|pW 1+σ,p(K̂)

+
∥∥B−1

K

∥∥σp |detBK |
∫
K̂

|∇ûh|p

ρ(x̂, ∂K̂)σp
dx̂

≤ cσ,p
∥∥B−1

K

∥∥σp |detBK | ‖ûh‖pW 1,p(K̂)

≤ cσ,p
∥∥B−1

K

∥∥σp |detBK |
∣∣detB−1

K

∣∣ ‖uh‖pW 1,p(K)

≤ cσ,ph−σp ‖uh‖pW 1,p(K)
.

(A.10)

155



A. Appendix

Combining the estimates (A.9) and (A.10) we get

|uh|W 1+σ,p(Ωh) ≤ cσ,ph
−σ ‖uh‖W 1,p(Ωh) , (A.11)

which proves this theorem for τ = 0. The proof for τ ∈ (0, σ] is more complicated. For K ∈ πh, let
ωK denote all the elements of πh which share at least on vertex with K, i.e.

ωK =
{
K ′ ∈ πh

∣∣K ∩K ′ 6= ∅} ,
and let SK be de�ned via

SK = int

 ⋃
K′∈ωK

K ′

 .

We have

|uh|pW 1+σ,p(Ωh)
=

∑
K,K′∈πh

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy

=
∑

K,K′∈πh
K′∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy

+
∑

K,K′∈πh
K′ /∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy.

(A.12)

The second part within (A.12) can easily be estimated,∑
K,K′∈πh
K′ /∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy ≤ cσ,php(τ−σ)
∑

K,K′∈πh
K′ /∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+τp dx dy

≤ cσ,php(τ−σ) |uh|pW 1+τ,p(Ωh)
.

With the de�nition of SK it follows that

∑
K,K′∈πh
K′∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy ≤
∑
K∈πh

|uh|pW 1+σ,p(SK)
. (A.13)

Now let ŜK be a reference domain similar to SK , T the a�ne transformation that maps ŜK to SK
and ûh = uh ◦ T be the pull-back of ŜK . We obtain, by using (A.11) and Theorem A.1.19,

|ûh|W 1+σ,p(ŜK) = inf
p∈P1(ŜK)

|ûh − p|W 1+σ,p(ŜK)

≤ cσ,p inf
p∈P1(ŜK)

‖ûh − p‖W 1,p(ŜK)

≤ cσ,p |ûh|W 1+τ,p(ŜK) .

(A.14)
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Combining (A.14) with a scaling argument yields

|uh|W 1+σ,p(SK) ≤ cσ,ph
τ−σ |uh|W 1+τ,p(SK) ,

which, together with (A.13), implies

∑
K,K′∈πh
K′∈ωK

∫
K

∫
K′

|∇uh(x)−∇uh(y)|p

|x− y|n+σp dx dy ≤ cσ,php(τ−σ)
∑
K∈πh

|uh|pW 1+τ,p(SK)

≤ cσ,php(τ−σ) |uh|pW 1+τ,p(SK)
.

(A.15)

The case τ ∈ (0, σ] now follows from (A.12) and (A.15).

Theorem A.1.24. Let u ∈ H1+σ
0 (Ωh) for a σ ∈ (0, 1/2), let a : H1(Ωh)×H1(Ωh)→ R be a contin-

uous, H1
0 -coercive bilinear form, and let the Ritz-projection uh ∈ Vh,0 be de�ned via a(u− uh, vh) = 0

for all vh ∈ Vh,0. Then it holds that

‖uh‖H1+σ(Ωh) ≤ cσ ‖u‖H1+σ(Ωh) .

Proof. As H1+ε(Ωh) ↪→ C(Ωh) for n ≤ 2, the pointwise interpolation ihu is well-de�ned. It holds
that

‖uh‖H1+σ(Ωh) ≤ ‖u‖H1+σ(Ωh) + ‖u− uh‖H1+σ(Ωh)

≤ ‖u‖H1+σ(Ωh) + ‖u− ihu‖H1+σ(Ωh) + ‖ihu− uh‖H1+σ(Ωh) .

Now we use Theorem A.1.22 for (u− ihu) and Theorem A.1.23 for (ihu− uh) to obtain

‖uh‖H1+σ(Ωh) ≤ cσ ‖u‖H1+σ(Ωh) + cσh
−σ ‖ihu− uh‖H1(Ωh)

≤ cσ ‖u‖H1+σ(Ωh) + cσh
−σ
(
‖u− ihu‖H1(Ωh) + ‖u− uh‖H1(Ωh)

)
≤ cσ ‖u‖H1+σ(Ωh) + cσh

−σ ‖u− ihu‖H1(Ωh)

≤ cσ ‖u‖H1+σ(Ωh) + cσh
−σhσ ‖u‖H1+σ(Ωh)

≤ cσ ‖u‖H1+σ(Ωh) ,

where we also used Céa's Lemma, (u− uh) ∈ H1
0 (Ωh) and standard interpolation estimates.

Corollary A.1.25. Let Ω be convex with polygonal approximation Ωh ⊂ Ω. Let u ∈ H1+σ
0 (Ω) with

σ ∈ (0, 1/2), and let uh ∈ Vh,0 be de�ned as in Theorem A.1.24. Then it holds that

‖uh‖H1+σ(Ωh) ≤ cσ ‖u‖H1+σ(Ω) .

Proof. This corollary can be proven using the same method as in the proof of Theorem A.1.24, note
that uh ∈ H1

0 (Ωh) can, via extension by zero, be regarded as a function in H1
0 (Ω).

Theorem A.1.26. Let Ωh be convex and let u ∈ W 1+σ,p
0 (Ωh) for σ ∈ (0, 1/p). Let A ∈ R2×2 be

su�ciently regular in the sense of Theorem A.1.41, and let uh ∈ Vh,0 be the Ritz-projection de�ned
via (∇ (u− uh) , A · ∇vh)h = 0 for all vh ∈ Vh,0. Then the Ritz-projection is stable in W 1+σ,p

0 (Ωh).
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Proof. Using the same arguments as in the proof for Theorem A.1.24 we arrive at

‖uh‖W 1+σ,p(Ωh) ≤ cσ ‖u‖W 1+σ,p(Ωh) + cσh
−σ
(
‖u− ihu‖W 1,p(Ωh) + ‖u− uh‖W 1,p(Ωh)

)
,

and the result follows with standard interpolation estimates and [92],

‖uh‖W 1+σ,p(Ωh) ≤ cσ ‖u‖W 1+σ,p(Ωh) + cσh
−σhσ ‖u‖W 1+σ,p(Ωh)

≤ cσ ‖u‖W 1+σ,p(Ωh) .

Theorem A.1.27. Let Ωh be convex and let u ∈ W 1,p
0 (Ωh) ∩W 1+σ,p(Ωh) with σ ∈ (0, 1]. Let the

matrix A ∈ R2×2 be su�ciently regular in the sense of Theorem A.1.41, and let uh ∈ Vh,0 be the
Ritz-projection, i.e. (∇ (u− uh) , A · ∇vh)h = 0 for all vh ∈ Vh,0. Then it holds that

‖u− uh‖W 1+τ,p(Ωh) ≤ cσ,τh
σ−τ ‖u‖W 1+σ,p(Ωh) ,

for all τ ∈ (0, 1/p) with τ ≤ σ.

Proof. Let v = u− ihu, with Theorem A.1.26 it follows that

‖uh − ihu‖W 1+τ,p(Ωh) ≤ cτ ‖u− ihu‖W 1+τ,p(Ωh) ,

and the result follows with standard interpolation estimates.

A.1.3. Regularity results for elliptic partial di�erential equations

Within this subsection we are going to present some general regularity results concerning the solu-
tions of partial di�erential equations of second order.

Theorem A.1.28. Let Ω ⊂ R2 be a bounded and open C∞-domain. Let s ≥ 0, s 6= 1/2,
f ∈ Hs−1(Ω) and g ∈ Hs+1/2(Γ). Then the weak solution u of{

−∆u = f in Ω,

u = g on Γ,

belongs to Hs+1(Ω) and there holds the estimate ‖u‖Hs+1(Ω) ≤ cs
(
‖f‖Hs−1(Ω) + ‖g‖Hs+1/2(Γ)

)
.

Proof. This theorem can be found in [51], Theorem 9.1.20.

Theorem A.1.29. Let Ω ⊂ R2 be a rectangle, and let u ∈ H1
0 (Ω) be the weak solution to{

−∆u = f in Ω,

u = 0 on Γ.

If f ∈ C1,α(Ω) for some α ∈ (0, 1) and f(xi) = 0 in all corner points xi of Ω, then it holds that
u ∈ C3,α(Ω).

Proof. This theorem follows from [31], Remark 1, and the references cited therein, [44] and [107].
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Theorem A.1.30. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let 1/2 ≥ t > s > 0, and let the
coe�cients of the matrix A ∈ R2×2 belong to C0,t(Ω). If f ∈ H−1+s(Ω), then there exists a unique
u ∈ H1+s

0 (Ω) as the weak solution to{
−div(A · ∇u) = f in Ω,

u = 0 on Γ,

and it holds that ‖u‖H1+s(Ω) ≤ cs ‖f‖H−1+s(Ω).

Proof. This theorem follows with [51], Theorem 9.1.25, and [87].

Theorem A.1.31. Let Ω ⊂ R2 be bounded and either convex or C1. Let A ⊂ R2×2 be uniformly
elliptic on Ω with continuous coe�cients. Let p ∈ (1,∞) and f ∈ W−1,p(Ω). Then there exists a
unique weak solution u ∈W 1,p

0 (Ω) of{
−div(A · ∇u) = f in Ω,

u = 0 on Γ,

and there holds the estimate ‖u‖
W 1,p

0 (Ω)
≤ cp ‖f‖W−1,p(Ω).

Proof. This theorem can be found in [4], Theorem 1.

Theorem A.1.32. Let Ω ⊂ R2 be bounded and either Lipschitz or with su�ciently smooth boundary
Γ in the sense of Remark A.1.33. Let A ⊂ R2×2 be a uniformly elliptic matrix, and let f ∈W−1,p(Ω)
for a p ∈ (Q,P ), where P > 2 depends on the ellipticity constant of A and 1/P + 1/Q = 1. Then
there exists a unique solution u ∈W 1,p

0 (Ω) of{
−div(A · ∇u) = f in Ω,

u = 0 on Γ,

and it holds that

‖∇u‖Lp(Ω) ≤ cp ‖f‖W−1,p(Ω) .

For the constant P it holds that

lim
A→I

P (A) =∞.

Proof. This theorem can be found in [86], Theorem 1.

Remark A.1.33. The boundary Γ of the domain Ω ⊂ R2 is su�ciently smooth in the sense of
Theorem A.1.32 if the equation {

−∆u = f in Ω,

u = 0 on Γ,

has a unique solution u ∈ W 1,p
0 (Ω) for all f ∈ W−1,p(Ω) for that certain p < ∞, and it also holds

that
‖u‖W 1,p(Ω) ≤ cp ‖f‖W−1,p(Ω) ,

where the constant cp may depend on p but not on f . In [4] it is shown that for convex or C1

domains this holds true for all p ∈ (1,∞); in [67], Theorem 0.5, it is shown that for every Lipschitz

domain there exists ε > 0 such that this holds true for all p ∈
(

4+ε
3+ε , 4 + ε

)
.
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Theorem A.1.34. Under the same assumptions on Ω, A, f and p as in Theorem A.1.31 and
Theorem A.1.32, let g ∈W 1−1/p,p(Γ). Then there exists a unique u ∈W 1,p(Ω) as the weak solution
to {

−div(A · ∇u) = f in Ω,

u = g on Γ,
(A.16)

and it also holds that ‖u‖W 1,p(Ω) ≤ cp
(
‖f‖W−1,p(Ω) + ‖g‖W 1−1/p,p(Γ)

)
.

Proof. This theorem follows with Theorem A.1.3, Theorem A.1.31 and Theorem A.1.32.

De�nition A.1.35. A domain Ω ⊂ R2 is said to be a curvilinear, right-angled C1,1-domain if its
boundary is either C1,1, or if there exist �nitely many points (xi)1≤i≤N on the boundary Γ such that
Γ is piecewise C1,1, and the angle between the tangents in xi is a right angle for all i ∈ {1, . . . , N}.

Theorem A.1.36. Let Ω ⊂ R2 be a bounded, curvilinear, right-angled C1,1-domain, let the matrix
A ⊂ R2×2 be uniformly elliptic with Lipschitz continuous coe�cients, and let

D (A,Lp(Ω)) = {u ∈ Lp(Ω)| − div(A · ∇u) ∈ Lp(Ω)}

be the domain of the maximal extension of the operator u 7→ −div(A · ∇u) in Lp(Ω). Then,

u 7→ {−div(A · ∇u) , u|Γ} (A.17)

is an isomorphism from D(A,Lp(Ω)) onto Lp(Ω)×W−1/p,p(Γ).

Proof. This theorem is proven in [48], Theorem 2.5.2.1, in the case of a C1,1-domain. As that proof
just relies on the fact that (A.17) is an isomorphism from W 2,q(Ω) onto Lq(Ω) ×W 2−1/q,q(Γ) for
the conjugate index q = p/(p−1), it can be extended to domains with right-angled vertices, cf. [48],
Section 5.2.

Corollary A.1.37. Under the same assumptions on Ω and A as in Theorem A.1.36, let f ∈ Lp(Ω)
and g ∈W−1/p,p(Γ). Then there exists a unique u ∈ Lp(Ω) which weakly solves (A.16) and it holds
that

‖u‖Lp(Ω) ≤ cp
(
‖f‖Lp(Ω) + ‖g‖W−1/p,p(Γ)

)
.

Theorem A.1.38. Let Ω ⊂ R2 be a bounded, curvilinear, right-angled C1,1-domain, let A be a
uniformly elliptic matrix with Lipschitz continuous coe�cients. Let f ∈ Lp(Ω) and g ∈W 2−1/p,p(Γ),
then there exists a unique u ∈W 2,p(Ω) which solves (A.16) and there holds the estimate

‖u‖W 2,p(Ω) ≤ cp
(
‖f‖Lp(Ω) + ‖g‖W 2−1/p,p(Γ)

)
.

Proof. This theorem can be found in [48], Theorem 2.4.2.5 and Section 5.2.

Remark A.1.39. The estimate in Theorem A.1.38 is not explicitly mentioned in the source cited, but
can be shown using either [3], Theorem 5.8 or the closed graph theorem, cf. [3], Theorem 5.9. Let
X = Lp(Ω)×W 2−1/p,p(Γ), Y = W 2,p(Ω) and L : X → Y be the linear solution operator to (A.16).
Let (fn, gn)n∈N ⊂ X, un = L(fn, gn) ∈ Y and (fn, gn, un) → (f, g, u) in X × Y for n → ∞. It
remains to show that u = L(f, g). First it holds that

f ← fn = −div(A · ∇un)→ −div(A · ∇u) in Lp(Ω) for n→∞,
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hence −div(A · ∇u) = f . Let γ : W 2,p(Ω)→W 2−1/p,p(Γ) be the trace operator. It holds that

‖γu− g‖W 2−1/p,p(Γ) ≤ ‖γu− γun‖W 2−1/p,p(Γ) + ‖γun − g‖W 2−1/p,p(Γ)

≤ c ‖u− un‖W 2,p(Ω) + ‖gn − g‖W 2−1/p,p(Γ) → 0 for n→∞,

whereas we used the continuity of γ, Theorem A.1.3, γun = gn by de�nition of un and gn and the
fact that un → u, gn → g in W 2,p(Ω) and W 2−1/p,p(Γ), respectively. As a result, u = L(f, g), which
proves the continuity of L.

The following lemma can be proven using an interpolation argument, Corollary A.1.37 and The-
orem A.1.38.

Lemma A.1.40. Under the assumptions on Ω and the matrix A from Theorem A.1.38, let f ∈ Lp(Ω)
and g ∈ W s−1/p,p(Γ) for a s ∈ [0, 2]. Then there exists a unique weak solution u ∈ W s,p(Ω)
to (A.16), and it holds that

‖u‖W s,p(Ω) ≤ cp
(
‖f‖Lp(Ω) + ‖g‖W s−1/p,p(Γ)

)
.

A.1.4. On the stability of the Ritz-projection in general polygonal domains

It follows from Céa's lemma that the Ritz-projection of the solution to a uniformly elliptic linear
partial di�erential equation of second order is stable in H1 in both convex and non-convex domains.
Within this subsection we are going to investigate on the stability of the Ritz-projection in W 1,p

for p 6= 2.

Theorem A.1.41. Let Ωh ⊂ R2 be polygonal and convex and let the matrix A ⊂ R2×2 be symmetric,
uniformly elliptic and Lipschitz such that there exists ε > 0 such that the mapping u 7→ −div(A · ∇u)
is a homeomorphism from W 1,q

0 (Ωh)∩W 2,q(Ωh) onto Lq(Ωh) for all q ∈ (1, 2 + ε]. Let u ∈W 1,p
0 (Ωh)

for a p ∈ [2,∞], and let uh ∈ Vh,0 be its Ritz-projection. Then it holds that

‖uh‖W 1,p
0 (Ωh)

≤ c ‖u‖
W 1,p

0 (Ωh)
,

where c is independent of u and p.

Proof. This theorem can be found in [92].

Remark A.1.42. The assumptions of Theorem A.1.41 are certainly true if A is the identity matrix,
but they are also true if the transformation induced by the matrix A do not map the convex angles
of Ωh into non-convex ones, cf. [48], Section 5.2, which is certainly ful�lled if A is su�ciently close
to the identity matrix.

In order to extend the result of Theorem A.1.41 onto non-convex domains, we need an assumption
on the domain.

Assumption A.1.43. Let Ωh ⊂ R2 be a polygonal and non-convex domain with maximum interior
angle α ∈ (0, 2π). Let {πh}h>0 be a family of triangulations of Ωh ful�lling the usual regularity
assumptions in the sense of Remark 2.2.7. We say that Ωh ful�lls Assumption A.1.43 if there
exists a convex polygonal domain Ω̃ ⊃ Ωh, such that each triangulation πh can be extended to a
triangulation π̃h of Ω̃, and the family {π̃h}h>0 is also quasi-uniform with the same constant c0, cf.
De�nition 2.2.6.
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Theorem A.1.44. Let Ωh ⊂ R2 ful�ll Assumption A.1.43. Let u ∈ C(Ωh) ∩W 1,1(Ωh), and let uh
be its Ritz-projection with respect to the Laplacian which interpolates u on the boundary Γh. Then
it holds that

‖u− uh‖L∞(Ωh) ≤ c |lnh| inf
vh∈Vh

‖u− vh‖L∞(Ωh) .

If u ∈W 1,∞(Ωh), then it holds that

‖u− uh‖W 1,∞(Ωh) ≤ c |lnh| inf
vh∈Vh

‖u− vh‖W 1,∞(Ωh) .

Proof. This theorem can be found in [96], Theorem 2.

Remark A.1.45. The statement of Theorem A.1.44 remains unchanged if the Ritz-projection is
taken with respect to the di�erential operator induced by a uniformly elliptic matrix A ∈ R2×2 with
Lipschitz coe�cients. This holds due to the fact that all the result needed to prove Theorem A.1.44
rely on regularity results for the corresponding di�erential operator, cf. [88], [97] and [98], which
are known to also holds in that case, cf. [48], Section 5.2.

Corollary A.1.46. Let Ωh ⊂ R2 ful�ll Assumption A.1.43. Let p ∈ [2,∞], and let the matrix
A ∈ R2×2 be uniformly elliptic with Lipschitz coe�cients. Let u ∈W 1,p(Ωh) with Ritz-projection uh
which interpolates u on the boundary,

(∇ (u− uh) , A · ∇vh)h = 0 ∀vh ∈ Vh,0.

Then, for h su�ciently small, it holds that

‖uh‖W 1,p(Ωh) ≤ c |lnh|
p−2
p ‖u‖W 1,p(Ωh) .

Proof. The case p = 2 is well-known, the case p = ∞ follows with Theorem A.1.44 and Re-
mark A.1.45, and what is left follows with interpolation, Theorem A.1.9.

Within this last theorem we are going to collect the previous results and also extend them to the
dual exponent.

Theorem A.1.47. Let Ωh ⊂ R2 be a bounded and polygonal Lipschitz domain, let p ∈ [4/3, 4] and
let the matrix A be uniformly elliptic with Lipschitz continuous coe�cients and su�ciently close to
the identity matrix. If f ∈W−1,p(Ωh), then there exists a unique u ∈W 1,p

0 (Ωh) as the weak solution
to {

−div(A · ∇u) = f on Ωh,

u = 0 in Γh,

and it holds that

‖u‖W 1,p(Ωh) ≤ cp ‖f‖W−1,p(Ωh) . (A.18)

Furthermore, for the Ritz-projection uh of u it holds that

‖uh‖W 1,p(Ωh) ≤ cp |lnh|
∣∣∣ p−2
p

∣∣∣ ‖u‖W 1,p(Ωh) . (A.19)
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Proof. The existence and stability part for u, (A.18), follows with Theorem A.1.32 and Remark A.1.33.
Now we concentrate on the stability estimate for the Ritz-projection (A.19). The case p ≥ 2 is a
direct consequence of Corollary A.1.46, we now focus on p ∈ [4/3, 2). Let q = p/(p− 1) ∈ (2, 4] be
the dual exponent. Due to Theorem A.1.1, there exists s ∈W−1,q(Ωh) with ‖s‖W−1,q(Ωh) = 1 and

(s, u− uh)
W−1,q ,W 1,p

0
= ‖u− uh‖W 1,p

0 (Ωh)
.

Now let w ∈W 1,q
0 (Ωh) be the solution to

(∇w,A · ∇v) = (s, v)
W−1,q ,W 1,p

0
∀v ∈W 1,p

0 (Ωh),

with Ritz-projection wh. The existence of such a w is ensured by Remark A.1.33, it also holds that

‖w‖W 1,q(Ωh) ≤ cp.

Using the �rst part of this theorem, we get

‖u− uh‖W 1,p
0 (Ωh)

= (s, u− uh)
W−1,q ,W 1,p

0
= (∇w,A · ∇ (u− uh))h

= (∇ (w − wh) , A · ∇u)h ≤ c ‖w − wh‖W 1,q
0 (Ωh)

‖u‖
W 1,p

0 (Ωh)

≤ cp |lnh|
q−2
q ‖w‖

W 1,q
0 (Ωh)

‖u‖
W 1,p

0 (Ωh)

≤ cp |lnh|
2−p
p ‖u‖

W 1,p
0 (Ωh)

.

A.2. A-priori error estimates for nonhomogeneous Dirichlet

problems in curved domains

Most a-priori error estimates estimate the error between the continuous solution u of a partial
di�erential equation and its discrete counterpart uh in the L2-, or theH1-norm, where the underlying
domain is in general polygonal and convex. In [17] error estimates where the domain no longer
needs to be polygonal nor convex are proven. The discrete equation is formulated on a polygonal
approximation of that curved domain and then extended onto the whole original domain. Within
this section we are going to generalize these results in order to estimate the error in Lp and W 1,p

with p > 2.
Let Ω ⊂ Rn be a Lipschitz, curvilinear C1,1-domain which need not be convex and let Ωh be a

polygonal approximation of Ω, a precise de�nition will be given in Subsection A.2.1. We wish to
estimate the error between the solution u and uh to the following partial di�erential equation and
its �nite-element approximation:{

Lu = f in Ω,

u = g on Γ,

{
Lhuh = f in Ωh,

uh = gh on Γh,
(A.20)

where L is a uniformly elliptic partial di�erential operator of second order with discrete approx-
imation Lh, f and g are given functions and gh is an approximation to g on Γh. The needed
regularity of the involved operators and functions are given below, the de�nition of gh is given in
De�nition A.2.12. With the operator L we associate a symmetric matrix A in the sense that

Lu = −div(A · ∇u) , (A.21)
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where A is assumed to be uniformly elliptic on Ω∪Ωh for all h > 0 su�ciently small. Equation (A.21)
implies that (A.20) is just the strong form of{

(∇u,A · ∇v) = (f, v) ∀v ∈ H1
0 (Ω),

u|Γ = g,

{
(∇uh, A · ∇vh)h = (f, vh)h ∀vh ∈ Vh,0,

uh|Γh = gh,
(A.22)

where Vh,0 is the usual space of (bi)linear �nite elements with zero boundary conditions as speci�ed
in Subsection A.2.2. In what follows, we will focus on the following two cases:

• The matrix A has Lipschitz coe�cients, f ∈ Lp(Ω) and g ∈ W s,p(Γ) for some s > 0 and
p ∈ (1,∞).

• The matrix A has coe�cients in C0,1/2(Ω ∪ Ωh), f ∈ H−1/2+ε(Ω) and g = 0.

In addition, some regularity assumptions have to be imposed onto the boundary Γ which will be
speci�ed later on. Our main result, obtained for the �rst case, is the following theorem.

Theorem A.2.1. Let Ω ⊂ R2 be a bounded, curvilinear, right-angled C1,1-domain in the sense of
De�nition A.1.35, let A be a symmetric and uniformly elliptic matrix with Lipschitz coe�cients, let

p ∈

{
[2,∞) if Ω is convex,

[2, 4] else,

and let s ∈ [1− 1/p, 2− 1/p]. Let u and uh be de�ned as the solutions to (A.22) with f ∈ Lp(Ω),
g ∈W s,p(Γ) and gh de�ned as in (A.2.12). Then it holds that

‖u− uh‖Lp(Ω) ≤ cpcΩ(h)
(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
,

‖u− uh‖W 1,p(Ω) ≤ cpcΩ(h)
(
h ‖f‖Lp(Ω) + hs−1+1/p ‖g‖W s,p(Γ)

)
,

where cΩ(h) from De�nition A.2.15 contributes a logarithmic factor if Ω is not convex.

Due to the approximation of curved boundaries through piecewise polygonal ones, it is sometimes
necessary to extend functions onto a bigger domain.

Lemma A.2.2. Let Ω ⊂ Rn be bounded with Lipschitz boundary, let s > 0 and p ∈ (1,∞).
Then there exists a linear and continuous extension operator Es : W s,p(Ω) → W s,p(Rn) such that
Esφ|Ω = φ for all φ ∈W s,p(Ω). Furthermore Es can be chosen independently of s.

Proof. This lemma can be found in [48], Theorem 1.4.3.1. The independence of s is shown in [8]
and [99].

From now on, if not stated otherwise, we will always assume that p ∈ (1,∞).

A.2.1. On the approximation of Ω with Ωh

Within this subsection we give a precise de�nition of the polygonal domain Ωh and show how to
transform the boundary data g onto Γh. Let

(
x(i)
)

1≤i≤N be a set of N ∈ N points on Γ and let

x(N+1) = x(1). Now let Ωh be the polygonal domain with vertices
(
x(i)
)

1≤i≤N , and let Γ
(j)
h be the
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edge from x(j) to x(j+1). We assume a quasiuniform distribution of the points
(
x(i)
)

1≤i≤N , i.e. there
exists c0 > 0 such that

lim inf
N→∞

min1≤j≤N

∣∣∣Γ(j)
h

∣∣∣
max1≤j≤N

∣∣∣Γ(j)
h

∣∣∣
 ≥ c0.

In addition, let Γ(j) denote the part of Γ between x(j) and x(j+1), cf. Figure A.1. Let h = max1≤j≤N

∣∣∣Γ(j)
h

∣∣∣
be the length of the longest edge of Ωh. Let n

(j)
h be the unit normal vector on Γ

(j)
h pointing outwards

Γ(j)

x(j) Γ
(j)
h

Ω
(j)
h x(j+1)

Figure A.1.: Approximation of Ω via Ωh

and let xh(t) be a parametrization of Γ
(j)
h by arc length. Furthermore let δ(xh(t)) be the distance

between xh(t) and Γ along n(j)
h and let

Xh(t) = xh(t) + δ(xh(t))n
(j)
h . (A.23)

We assume that h is small enough such that Xh(t) is well de�ned. Now, for an arbitrary function
g de�ned on Γ, let

g̃ : Γh → R,

g̃(xh(t)) = g(Xh(t)) for xh(t) ∈ Γ
(j)
h ,

(A.24)

be the orthogonal projection onto Γ. This mapping also has an inverse, and as Γ is Lipschitz if
follows that there exist constants c1, c2 > 0, independent of h and p ∈ [1,∞], such that

c1 ‖g‖Lp(Γ) ≤ ‖g̃‖Lp(Γh) ≤ c2 ‖g‖Lp(Γ) . (A.25)

Now let Ω
(j)
h be the region bounded by Γ(j) and Γ

(j)
h , cf. Figure A.1. We rotate the coordinate

system such that Γ
(i)
h has its left endpoint at the origin, and it further holds that

Γ
(j)
h =

{
(x, y) ∈ R2

∣∣ y = 0, x ∈ [0, c1h]
}
, (A.26)

Γ(j) =
{

(x, y) ∈ R2
∣∣ y = δ(x) ≥ 0, x ∈ [0, c1h]

}
, (A.27)

as well as

|δ(x)| ≤ c2h
2,

∣∣δ′(x)
∣∣ ≤ c3h. (A.28)

Let ϕ ∈W 1,p(Ω ∪ Ωh) be arbitrary and let

f1 =

(
0
ϕp

)
, f2 =

(
0
yϕp

)
.
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We get

div(f1) = pϕp−1∂yϕ, div(f2) = ϕp + ypϕp−1∂yϕ,

and conclude with the divergence theorem that∫
Ω

(j)
h

pϕp−1∂yϕdx =

∫
Γ(j)

ϕp(1 + δ′2x )−1/2 dx−
∫

Γ
(j)
h

ϕp dx,∫
Ω

(j)
h

ϕp + ypϕp−1∂yϕdx =

∫
Γ(j)

yϕp(1 + δ′2x )−1/2 dx.

(A.29)

Using Hölder's inequality, (A.28) and (A.29) leads to

‖ϕ‖p
Lp(Ω

(j)
h )
≤ ch2 ‖ϕ‖p

Lp(Γ(j))
+ ph2 ‖ϕ‖p−1

Lp(Ω
(j)
h )
‖∂yϕ‖Lp(Ω

(j)
h )

,

and

‖ϕ‖p
Lp(Γ(j))

≤ p ‖ϕ‖p−1

Lp(Ω
(j)
h )
‖∂yϕ‖Lp(Ω

(j)
h )

+ c ‖ϕ‖p
Lp(Γ

(j)
h )

.

Applying the generalized Young's inequality we end up with

‖ϕ‖p
Lp(Ω

(j)
h )
≤ cp

(
h2 ‖ϕ‖p

Lp(Γ(j))
+ h2p ‖∂yϕ‖p

Lp(Ω
(j)
h )

)
,

‖ϕ‖p
Lp(Ω

(j)
h )
≤ cp

(
h2 ‖ϕ‖p

Lp(Γ
(j)
h )

+ h2p ‖∂yϕ‖p
Lp(Ω

(j)
h )

)
.

(A.30)

In case of ϕ|
Γ

(j)
h

= 0 we also have

‖ϕ‖p
Lp(Γ(j))

≤ cph2p−2 ‖∂yϕ‖p
Lp(Ω

(j)
h )

. (A.31)

Lemma A.2.3. Let s ∈ [1, 2], w ∈ W s,p(Ω), possibly extended with Es. Let g = w|Γ denote the
trace of w on Γ. Then it holds that

‖w − g̃‖Lp(Γh) ≤ cph
2− 4−2s

p ‖w‖W s,p(Ω) .

Proof. Throughout this proof we will assume that the coordinate system is rotated as before,
cf. (A.26) and (A.27). Now we set ϕ(x, y) = w(x, y) − w(x, 0) and use (A.25) and (A.31) to
obtain

‖w − g̃‖p
Lp(Γ

(j)
h )

=

∫
Γ

(j)
h

|ϕ̃|p dx ≤ cp ‖ϕ‖pLp(Γ(j))
≤ cph2p−2 ‖∂yw‖p

Lp(Ω
(j)
h )

. (A.32)

Applying (A.30) to ∂yw we also get

‖w − g̃‖p
Lp(Γ

(j)
h )
≤ cp

(
h2p ‖∂yw‖pLp(Γ(j))

+ h4p−2 ‖w‖p
W 2,p(Ω

(j)
h )

)
, (A.33)

now we sum up (A.33) for all j and use Theorem A.1.3 in the sense that

‖w‖W 1,p(Γ) ≤ cp ‖w‖W 2,p(Ω) ,

to prove the estimate for s = 2. Summing up (A.32) over all j yields the estimate for s = 1, and
what is left follows by interpolation.

166



A.2. A-priori error estimates for nonhomogeneous Dirichlet problems in curved domains

Lemma A.2.4. Let w1 ∈W 1,p(Ω) and w2 ∈W 1,p(Ωh), both possibly extended by Es. Then it holds
that

‖w1‖pLp(Ωh4Ω) ≤ cp
(
h2 ‖w1‖pLp(Γ) + h2p ‖w1‖pW 1,p(Ω)

)
,

‖w2‖pLp(Ωh\Ω) ≤ cp
(
h2 ‖w2‖pLp(Γh) + h2p ‖w2‖pW 1,p(Ωh)

)
.

Proof. This lemma follows from (A.30) by summing up for all j.

A.2.2. Finite elements and interpolation results

Within this subsection we will introduce �nite elements on the domain Ωh as well as on the bound-
ary Γh. We start with the discretization of the domain, let {πh}h>0 be a family of admissible
triangulations of Ωh in the sense of De�nition 2.2.4 ful�lling the usual regularity assumptions in the
sense of Remark 2.2.7. Let Vh and Vh,0 be the spaces of (bi)linear �nite elements, where the latter
is the one with homogeneous boundary values, cf. De�nition 2.60 and De�nition 2.61. The �nite
elements on the boundary are de�ned as follows.

De�nition A.2.5. Let Sh(Γh) consist of all continuous functions θ on Γh which are linear on each
of the intervals Γ

(j)
h . The space Sh(Γ) is de�ned as the space of transformed functions of Sh(Γh)

onto Γ, i.e.
Sh(Γ) =

{
θ| θ̃ ∈ Sh(Γh)

}
.

Furthermore, let S1
h(Γ) be the space of all functions θ1 ∈W 2,∞(Γ) which are cubic polynomials by

arclength on each of the intervals Γ(j).

We also introduce orthogonal projections with respect to the scalar product in L2 over Γh and Γ,
respectively, which will be denoted via

Qh : L2(Γh)→ Sh(Γh),

Q̂h : L2(Γ)→ Sh(Γ),
(A.34)

and

Q1
h : L2(Γ)→ S1

h(Γ). (A.35)

The following lemma can be shown using the Bramble-Hilbert lemma, Theorem A.1.19.

Lemma A.2.6. Let w ∈ W s,p(Ωh) with s ∈ [1, 2] and p ∈ [2,∞). Then there exists wh ∈ Vh such
that

‖w − wh‖Lp(Ωh) + h ‖w − wh‖W 1,p(Ωh) ≤ cph
s ‖w‖W s,p(Ωh) . (A.36)

The estimate (A.36) even holds for s ∈ [0, 2] if the W 1,p-term is omitted.

Lemma A.2.7. Let w ∈ W s,p(Ωh) for some s ∈ [1, 2] and let φh ∈ Vh be arbitrary, then it holds
that

inf
χh∈Vh,0

(
‖w − φh − χh‖Lp(Ωh) + h ‖w − φh − χh‖W 1,p(Ωh)

)
≤ cp

(
hs ‖w‖W s,p(Ωh) + h1/p ‖w − φh‖Lp(Γh)

)
.
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Proof. Let wh ∈ Vh satisfy the approximation property from Lemma A.2.6, and choose χh ∈ Vh,0
such that χh = wh − φh on all interior nodes of Ωh. A direct calculation yields

‖wh − φh − χh‖Lp(Ωh) + h ‖wh − φh − χh‖W 1,p(Ωh) ≤ cph
2/p

 N∑
j=1

∣∣∣wh(x(j))− φh(x(j))
∣∣∣p
1/p

≤ cph1/p ‖wh − φh‖Lp(Γh) ,

where the last inequality follows from the equivalence of norms on the �nite dimensional space
Sh(Γh) and a scaling factor due to the dependence on h. Now we use the triangle inequality and
obtain

inf
χh∈Vh,0

(
‖w − φh − χh‖Lp(Ωh) + h ‖w − φh − χh‖W 1,p(Ωh)

)
≤ ‖w − wh‖Lp(Ωh) + h ‖w − wh‖W 1,p(Ωh) + cph

1/p ‖wh − φh‖Lp(Γh) .
(A.37)

Moreover, for v ∈W 1,p(Ωh) it holds that

‖v‖pLp(Γh) ≤ cp ‖v‖
p−1
Lp(Ωh) ‖v‖W 1,p(Ωh) . (A.38)

A proof for this estimate in the special case p = 2 can be found in [35], Dupont, Lemma 2.4. The
proof can be adapted to the general case p ∈ (1,∞) in a straightforward way. Setting v = w − wh
and using the generalized Young's inequality, (A.38) implies

h1/p ‖w − wh‖Lp(Γh) ≤ cp
(
‖w − wh‖Lp(Ωh) + h ‖w − wh‖W 1,p(Ωh)

)
. (A.39)

Inserting (A.39) into (A.37) and using the triangle inequality yields

inf
χh∈Vh,0

(
‖w − φh − χh‖Lp(Ωh) + h ‖w − φh − χh‖W 1,p(Ωh)

)
≤ cp

(
‖w − wh‖Lp(Ωh) + h ‖w − wh‖W 1,p(Ωh) + h1/p ‖w − φh‖Lp(Γh)

)
,

and we �nish the proof with the de�nition of wh and Lemma A.2.6.

Lemma A.2.8. Let w ∈ W 1,p
0 (Ω) ∩W s,p(Ω) for some s ∈ [1, 2]. If w is extended by Es then it

holds that
inf

χh∈Vh,0

(
‖w − χh‖Lp(Ωh) + h ‖w − χh‖W 1,p(Ωh)

)
≤ cphs ‖w‖W s,p(Ω)

Proof. This lemma follows with Lemma A.2.7 with φh = 0 and the estimate (A.31).

A.2.2.1. Interpolation results on the boundary

Using the Bramble-Hilbert lemma once again, the following approximation properties can be shown
to hold for g ∈W s,p(Γ) with s ∈ [1, 2].

inf
ϕh∈Sh(Γ)

(
‖g − ϕh‖Lp(Γ) + h ‖g − ϕh‖W 1,p(Γ)

)
≤ cphs ‖g‖W s,p(Γ) ,

inf
ϕh∈Sh(Γ)

(
‖g − ϕh‖Lp(Γ) + h1−1/p ‖g − ϕh‖W 1−1/p,p(Γ)

)
≤ cphs ‖g‖W s,p(Γ) ,

(A.40)

where the �rst estimate even holds for s ∈ [0, 2] if the W 1,p-term is omitted.
The following Lemmata are easy generalizations of results in [18] and [33].
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Lemma A.2.9. Let g ∈W s,p(Γ) and ϕh ∈ Sh(Γ), then it holds that∥∥∥(Id−Q̂h)g
∥∥∥
Lp(Γ)

≤ cphs ‖g‖W s,p(Γ) for s ∈ [0, 2] ,∥∥∥(Id−Q̂h)g
∥∥∥
W 1−1/p,p(Γ)

≤ cphs−1+1/p ‖g‖W s,p(Γ) for s ∈ [1− 1/p, 2] ,∥∥∥(Id−Q̂h)g
∥∥∥
W−1/p,p(Γ)

≤ cphs+1/p ‖g‖W s,p(Γ) for s ∈ [0, 2] ,

‖ϕh‖W s,p(Γ) ≤ cph
−s ‖ϕh‖Lp(Γ) for s ∈ [0, 1] .

Lemma A.2.10. Let g ∈W s,p(Γ) with s ∈ [0, 2] and ϕh ∈ S1
h(Γ), then it holds that∥∥Q1

hg
∥∥
W s,p(Γ)

≤ cp ‖g‖W s,p(Γ) ,∥∥(Id−Q1
h)g
∥∥
W−1/p,p(Γ)

≤ cphs+1/p ‖g‖W s,p(Γ) ,∥∥(Id−Q1
h)g
∥∥
Lp(Γ)

≤ cphs ‖g‖W s,p(Γ) ,

‖ϕh‖W s,p(Γ) ≤ cph
−s ‖ϕ‖Lp(Γ) .

Lemma A.2.11. Let Ω be a curvilinear C1,1-domain and let g ∈ Lp(Γ), then it holds that∥∥∥∥Qhg̃ − ˜̂Qhg∥∥∥∥
Lp(Γh)

≤ cph2 ‖g‖Lp(Γ) .

Proof. Let t be the arclength parameter on Γh and let J(t) be the Jacobian of the piecewise C1,1-
parametrization t 7→ Xh(t). Integration by substitution yields for every ϕ ∈ L1(Γ),∫

Γ
ϕds =

∫
Γh

ϕ̃J dt,

and, due to the regularity of Γ,

max
t∈[0,lh]

|1− J(t)| ≤ ch2,

where lh is the length of Γh. It is clear that if ϕ ∈ Sh(Γ), then ϕ̃ ∈ Sh(Γh). Vice versa, if φ ∈ Sh(Γh),
then there exists χ ∈ Sh(Γ) such that φ = χ̃. Let

χ̃ =

(
Qhg̃ − ˜̂Qhg)p−1

,

and note that χ̃ ∈ L∞(Γh). It holds that∥∥∥∥Qhg̃ − ˜̂Qhg∥∥∥∥p
Lp(Γh)

=

∫
Γh

(
Qhg̃ − ˜̂Qhg) χ̃dt =

∫
Γh

(
Qhg̃ − ˜̂Qhg)Qhχ̃dt,
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where we used the fact that
(
Qhg̃ − ˜̂Qhg) ∈ Sh(Γh) and (A.34). If χh ∈ Sh(Γ) is chosen such that

χ̃h = Qhχ̃ then we get∫
Γh

(
Qhg̃ − ˜̂Qhg)Qhχ̃dt =

∫
Γh

g̃Qhχ̃dt−
∫

Γh

˜̂
QhgQhχ̃dt

=

∫
Γ
gχh ds−

∫
Γ
Q̂hgχh ds+

∫
Γh

(
g̃ − ˜̂Qhg)Qhχ̃ (1− J(t)) dt

=

∫
Γh

(
g̃ − ˜̂Qhg)Qhχ̃ (1− J(t)) dt.

Now we use the generalized Hölder's inequality to obtain∥∥∥∥Qhg̃ − ˜̂Qhg∥∥∥∥p
Lp(Γh)

≤
(

max
t∈[0,lh]

|1− J(t)|
)∥∥∥∥g̃ − ˜̂Qhg∥∥∥∥

Lp(Γh)

‖Qhχ̃‖Lq(Γh) ,

with the conjugate index q = p/(p − 1). Using (A.25) and the Lp-stability of the L2-projection,
cf. [33], we also get∥∥∥∥g̃ − ˜̂Qhg∥∥∥∥

Lp(Γh)

≤ cp
∥∥∥g − Q̂hg∥∥∥

Lp(Γ)
≤ cp ‖g‖Lp(Γ) ,

‖Qhχ̃‖Lq(Γh) ≤ cp ‖χ̃‖Lq(Γh) =

∥∥∥∥Qhg̃ − ˜̂Qhg∥∥∥∥p−1

Lp(Γh)

,

and arrive at∥∥∥∥Qhg̃ − ˜̂Qhg∥∥∥∥
Lp(Γh)

≤ cph2 ‖g‖Lp(Γ) .

De�nition A.2.12. For g ∈ L2(Γ) we de�ne the approximation of boundary data via

gh = Qhg̃.

A.2.3. A-priori error estimates

From now on, if not stated otherwise, let Ω ⊂ R2 be a bounded, curvilinear, right-angled C1,1-
domain in the sense of De�nition A.1.35. In addition, let the matrix A be symmetric and uniformly
elliptic with Lipschitz coe�cients.
Let a : H1(Ω)×H1(Ω)→ R and ah : H1(Ωh)×H1(Ωh)→ R be two bilinear forms de�ned via

a(u, v) =

∫
Ω
∇uT ·A · ∇v dx,

ah(u, v) =

∫
Ωh

∇uT ·A · ∇v dx.

Now, as already mentioned in (A.22), let uh ∈ Vh be the solution of{
ah(uh, vh) = (f, vh)h ∀vh ∈ Vh,0,

uh = gh on Γh,
(A.41)
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where f is extended by 0 onto Ωh\Ω. In addition, if Ω
(j)
h 6⊂ Ωh, then extend uh as follows. Let τ (j)

h

be the triangle having Γ
(j)
h as one of its sides, and de�ne uh on Ω

(j)
h to be the linear extension from

τ
(j)
h .
In order to prove Theorem A.2.1, we will consider the two cases f = 0 and g = 0 separately, we

start with the �rst case.

De�nition A.2.13. Let u0 ∈W 1,p
0 (Ω) and uh,0 ∈ Vh,0 be the (weak) solutions to{

Lu0 = f in Ω,

u0 = 0 on Γ,
(A.42)

and

ah(uh,0, vh) = (f, vh)h ∀vh ∈ Vh,0. (A.43)

The following lemma will be needed to estimate the error between u0 and uh,0.

Lemma A.2.14. Let u0 be extended by Es, then it holds that

ah(u0 − uh,0, vh) = − (div(A · ∇u0) , vh)Ωh\Ω ∀vh ∈ Vh,0.

Proof. Let vh ∈ Vh,0 be arbitrary. Due to Lemma A.1.40 it holds that u0 ∈ W 2,p(Ω), i.e. (A.42)
holds in strong form, hence

(∇u0, A · ∇vh)Ω∩Ωh
= (f, vh)Ω∩Ωh

+ 〈vh,∇uT0 ·A · n〉∂(Ω∩Ωh),

and

(∇u0, A · ∇vh)Ωh
= (f, vh)Ω∩Ωh

+ 〈vh,∇uT0 ·A · n〉∂(Ω∩Ωh) + (∇u0, A · ∇vh)Ωh\Ω .

In addition,

(∇uh,0, A · ∇vh)Ωh
= (f, vh)Ωh

.

As f is extended by zero outside of Ω, it follows that (f, vh)Ωh
= (f, vh)Ω∩Ωh

, hence

ah(u0 − uh,0, vh) = (∇ (u0 − uh,0) , A · ∇vh)Ωh

= 〈vh,∇uT0 ·A · n〉∂(Ω∩Ωh) + (∇u0, A · ∇vh)Ωh\Ω

= 〈vh,∇uT0 ·A · n〉∂(Ω∩Ωh) − (div(A · ∇u0) , vh)Ωh\Ω + 〈vh∇uT0 ·A · n〉∂(Ω\Ωh)

= 〈vh,∇uT0 ·A · n〉Γh − (div(A · ∇u0) , vh)Ωh\Ω

= − (div(A · ∇u0) , vh)Ωh\Ω ,

where we used vh|Γh = 0.

As in the original paper [17], we do not restrict ourselves to convex domains. However, in the
case p > 2 there appear some logarithmic terms in the non-convex case.
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De�nition A.2.15. Let Ω ⊂ Rn be a bounded Lipschitz-domain. With cΩ(h) we will denote
constants such that

cΩ(h) =

{
cΩ, for convex domains Ω,

cΩ |lnh|p̃ , for non-convex domains Ω,

where cΩ is a constant depending on the domain Ω but not on h, and p̃ ≥ 0 is �nite and uniformly
bounded independent of h and Ω, cf. Theorem A.1.47.

De�nition A.2.16. Let Ω ⊂ R2 be a bounded Lipschitz domain. With p−1(Ω) we will denote the
supremum over all p ∈ [2,∞] such that the Laplace problem with right hand side f ∈W−1,p(Ω) has a
unique solution u ∈W 1,p

0 (Ω) which continuously depends on the data f for all p ∈ (q−1(Ω), p−1(Ω)),
where

1

p−1(Ω)
+

1

q−1(Ω)
= 1.

The following bounds follow from Theorem A.1.31 and Remark A.1.33.

p−1(Ω)

{
> 4 for arbitrary Lipschitz domains,

=∞ for convex or C1-domains.
(A.44)

Lemma A.2.17. Let Ω ⊂ R2, p ∈ [2, p−1(Ωh)) and s ∈ [0, 1]. Then it holds that

‖u0 − uh,0‖W s,p(Ωh) ≤ cpcΩh(h)h2−s ‖f‖Lp(Ω) .

Proof. With Lemma A.1.40 it follows that u0 ∈ W 2,p(Ω) and ‖u0‖W 2,p(Ω) ≤ cp ‖f‖Lp(Ω). For
arbitrary χh ∈ Vh,0 it holds that

c |u0 − uh,0|pW 1,p(Ωh)
≤
(
∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇ (u0 − uh,0)

)
h

=
(
∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇ (u0 − uh,0 − χh)

)
h

+
(
∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇χh

)
h
.

(A.45)

Now we estimate both terms on the right hand side of (A.45) separately. For the �rst part it holds
that ∣∣∣(∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇ (u0 − uh,0 − χh)

)
h

∣∣∣
≤ c |u0 − uh,0|p−1

W 1,p(Ωh)
|u0 − uh,0 − χh|W 1,p(Ω0) .

(A.46)

Now we concentrate on the second part. Let ϕh ∈ Vh,0 be such that(
∇vh, |∇ (u0 − uh,0)|p−2A · ∇χh −A · ∇ϕh

)
h

= 0 ∀vh ∈ Vh,0.

The existence of such a ϕh as well as the stability estimate

‖ϕh‖W 1,q(Ωh) ≤ cpcΩh(h)
∥∥∥|∇ (u0 − uh,0)|p−2A · ∇χh

∥∥∥
Lq(Ωh)

≤ cpcΩh(h) ‖u0 − uh,0‖p−2
W 1,p(Ω0)

‖χh‖W 1,p(Ωh) ,
(A.47)
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follows from Theorem A.1.47. Using Lemma A.2.14 we get(
∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇χh

)
h

=
(
∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇χh −A · ∇ϕh

)
h
− (div(A · ∇u0) , ϕh)Ωh\Ω

=
(
∇ (u0 − uh,0 − χh) , |∇ (u0 − uh,0)|p−2A · ∇χh −A · ∇ϕh

)
h
− (div(A · ∇u0) , ϕh)Ωh\Ω .

As a result it holds that∣∣∣(∇ (u0 − uh,0) , |∇ (u0 − uh,0)|p−2A · ∇χh
)
h

∣∣∣
≤ c |u0 − uh,0 − χh|W 1,p(Ωh)

(
|u0 − uh,0|p−2

W 1,p(Ωh)
|χh|W 1,p(Ωh) + |ϕh|W 1,q(Ωh)

)
+ c ‖u0‖W 2,p(R2) ‖ϕh‖Lq(Ωh\Ω) .

(A.48)

Using Lemma A.2.2 and Lemma A.2.4 it follows that

‖u0‖W 2,p(R2) ‖ϕh‖Lq(Ωh\Ω) ≤ cph
2 ‖u0‖W 2,p(Ω) ‖ϕh‖W 1,q(Ωh)

≤ cph2 ‖f‖Lp(Ω) ‖ϕh‖W 1,q(Ωh) .
(A.49)

Inserting (A.46), (A.48) and (A.49) into (A.45) yields

|u0 − uh,0|pW 1,p(Ωh)

≤ cp |u0 − uh,0 − χh|W 1,p(Ωh)

(
|u0 − uh,0|p−1

W 1,p(Ωh)
+ |u0 − uh,0|p−2

W 1,p(Ωh)
|χh|W 1,p(Ωh) + |ϕh|W 1,q(Ωh)

)
+ cph

2 ‖f‖Lp(Ω) ‖ϕh‖W 1,q(Ωh) .

Now we use the estimate (A.47) and get

|u0 − uh,0|2W 1,p(Ωh) ≤ cpcΩh(h) |u0 − uh,0 − χh|W 1,p(Ωh)

(
|u0 − uh,0|W 1,p(Ωh) + |χh|W 1,p(Ωh)

)
+ cpcΩh(h)h2 ‖f‖Lp(Ω) ‖χh‖W 1,p(Ωh) ∀χh ∈ Vh,0.

(A.50)

Now we �x χh as the in�mum from Lemma A.2.7, and using Lemma A.2.3 we get

|u0 − uh,0 − χh|W 1,p(Ωh) ≤ cp
(
h ‖u0‖W 2,p(Ωh) + h1/p−1 ‖u0‖Lp(Γh)

)
≤ cp

(
h ‖u0‖W 2,p(Ωh) + h1/p−1h2 ‖u0‖W 2,p(Ωh)

)
≤ cph ‖u0‖W 2,p(Ωh) .

Again we use the properties of Es and get

|u0 − uh,0 − χh|W 1,p(Ωh) ≤ cph ‖f‖Lp(Ω) . (A.51)

From the de�nition of χh it follows that

‖χh‖W 1,p(Ωh) ≤ ‖u0 − uh,0 − χh‖W 1,p(Ωh) + ‖u0 − uh,0‖W 1,p(Ωh)

≤ ‖u0 − uh,0 − 0‖W 1,p(Ωh) + ‖u0 − uh,0‖W 1,p(Ωh)

≤ c ‖u0 − uh,0‖W 1,p(Ωh) .

(A.52)
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Inserting (A.51) and (A.52) into (A.50) �nally yields

|u0 − uh,0|W 1,p(Ωh) ≤ cpcΩh(h)h ‖f‖Lp(Ωh) ,

and it remains to prove the Lp-case.
Here we follow the proof presented in [17] and use a duality argument. Let ϕ ∈ C∞0 (Ωh) be

arbitrary and let w ∈W 1,q
0 (Ω) ∩W 2,q(Ω) solve{

Lw = ϕ in Ω,

w = 0 on Γ,

where q is the conjugate index to p. Whenever necessary, regard w as being extended by 0 outside
of Ω. Now, for χh ∈ Vh,0 arbitrary it holds that

(u0 − uh,0, ϕ)h = (u0 − uh,0, Aw)h + (u0 − uh,0, ϕ−Aw)h
= ah(u0 − uh,0, w − χh) + ah(u0 − uh,0, χh)

− 〈u0,∇wT ·A · n〉h + (u0 − uh,0, ϕ−Aw)h .

(A.53)

We get

ah(u0 − uh,0, w − χh) + ah(u0 − uh,0, χh)

≤ c ‖u0 − uh,0‖W 1,p(Ωh) ‖w − χh‖W 1,q(Ωh) + (Au0 − f, χh)h

≤ c ‖u0 − uh,0‖W 1,p(Ωh) ‖w − χh‖W 1,q(Ωh) + c ‖f‖Lp(Ω) ‖χh‖Lq(Ωh\Ω)

≤ cp
((
‖u0 − uh,0‖W 1,p(Ωh) + h2 ‖f‖Lp(Ω)

)
‖w − χh‖W 1,q(Ωh) + h2 ‖f‖Lq(Ω) ‖w‖W 1,q(Ω)

)
,

where we used Lemma A.2.4 and the triangle inequality. By taking χh as the in�mum from
Lemma A.2.8 we get

ah(u0 − uh,0, w − χh) + ah(u0 − uh,0, χh)

≤ cp
(
h ‖u0 − uh,0‖W 1,p(Ωh) + h2 ‖f‖Lp(Ω)

)
‖ϕ‖Lq(Ω) .

(A.54)

We also get ∣∣〈u0,∇wT ·A · n〉h
∣∣ ≤ c ‖u0‖Lp(Γh) ‖w‖W 1,q(Γh)

≤ cph2 ‖u0‖W 2,p(Ω) ‖w‖W 2,q(Ω)

≤ cph2 ‖f‖Lp(Ω) ‖ϕ‖Lq(Ω) ,

(A.55)

where we used Theorem A.1.3 and Lemma A.2.3. Finally we get

(u0 − uh,0, ϕ−Aw)h ≤ c ‖u0 − uh,0‖Lp(Ωh\Ω)

(
‖w‖W 2,q(R2) + ‖ϕ‖Lq(Ωh)

)
≤ cp

(
h2/p ‖u0‖Lp(Γh) + h2 ‖u0 − uh,0‖W 1,p(Ωh)

)
‖ϕ‖Lq(Ωh)

≤ cp
(
h2+2/p ‖f‖Lp(Ω) + h2 ‖u0 − uh,0‖W 1,p(Ωh)

)
‖ϕ‖Lq(Ωh) .

(A.56)
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Inserting the estimates (A.54), (A.55) and (A.56) into (A.53), we end up with

(u0 − uh,0, ϕ)h
‖ϕ‖Lq(Ωh)

≤ cp
(
h ‖u0 − uh,0‖W 1,p(Ωh) + h2 ‖f‖Lp(Ω)

)
,

and using the �rst part of this lemma we conclude that

‖u0 − uh,0‖Lp(Ωh) = sup
ϕ∈C∞0 (Ωh)

(u0 − uh,0, ϕ)h
‖ϕ‖Lq(Ωh)

≤ cpcΩh(h)h2 ‖f‖Lp(Ω) ,

and the rest follows by interpolation.

Now let vh ∈ Vh and ûh, uh ∈W 1,p(Ω) satisfy{
Lûh = 0 in Ω,

ûh = Q̂hg on Γ,
(A.57){

Luh = 0 in Ω,

uh = Q1
hg on Γ,

(A.58){
ah(vh, wh) = 0 ∀wh ∈ Vh,0,

vh =
˜̂
Qhg on Γh.

(A.59)

Note that, because of Q1
hg ∈W 2−1/p,p(Γ), it holds that uh ∈W 2,p(Ω).

Lemma A.2.18. Let Ω ⊂ R2, p ∈ [2, p−1(Ωh)) and s ∈ [1− 1/p, 2− 1/p]. Then it holds that∥∥∥ûh − vh∥∥∥
Lp(Ωh)

≤ cpcΩh(h)hs+1/p ‖g‖W s,p(Γ) ,∥∥∥ûh − vh∥∥∥
W 1,p(Ωh)

≤ cpcΩh(h)hs−1+1/p ‖g‖W s,p(Γ) .

Proof. First we note that, within the estimate for
∥∥ûh − vh∥∥W 1,p(Ωh)

, we can replace ûh by uh, since

∥∥∥ûh − uh∥∥∥
W 1,p(Ωh)

≤
∥∥∥Es(ûh − uh)

∥∥∥
W 1,p(R2)

≤ c
∥∥∥ûh − uh∥∥∥

W 1,p(Ω)
≤ chs−1+1/p ‖g‖W s,p(Γ) , (A.60)

for s ∈ [1− 1/p, 2− 1/p], where we used Lemma A.1.34 and the properties of Qh and Q1
h. For

arbitrary χh ∈ Vh,0 it holds that

c
∣∣∣uh − vh∣∣∣p

W 1,p(Ωh)
≤
(
∇(uh − vh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇(uh − vh)

)
h

=

(
∇(uh − vh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇(uh − vh − χh)

)
h

+

(
∇(uh − vh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh
)
h

,

(A.61)
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and we are now going to estimate both terms on the right hand side of (A.61) separately. For the
�rst term it holds due to Hölder,(

∇(uh − vh),
∣∣∣∇(uh − vh)

∣∣∣p−2
A · ∇(uh − vh − χh)

)
h

≤ c
∣∣∣uh − vh∣∣∣p−1

W 1,p(Ωh)

∣∣∣uh − vh − χh∣∣∣
W 1,p(Ωh)

.

(A.62)

No we set χh to be the minimizing function from Lemma A.2.7 and get∣∣∣uh − vh − χh∣∣∣
W 1,p(Ωh)

≤ cp
(
h
∥∥∥uh∥∥∥

W 2,p(Ω)
+ h1/p−1

∥∥∥uh − vh∥∥∥
Lp(Ωh)

)
≤ cp

(
h
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

+ h1/p−1

(∥∥∥uh − Q̃1
hg
∥∥∥
Lp(Γh)

+

∥∥∥∥Q̃1
hg −

˜̂
Qhg

∥∥∥∥
Lp(Γh)

))

≤ cp
(
h
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

+ h1/p−1

(
h2−1/p

∥∥∥uh∥∥∥
W 2,p(Ω)

+
∥∥∥Q1

hg − Q̂hg
∥∥∥
Lp(Γ)

))
≤ cphk+1−1/p ‖g‖Wk,p(Γ) ,

(A.63)

where in the last step we used of the properties of Q1
h and Q̂h, cf. Lemma A.2.9 and Lemma A.2.10.

It remains to estimate the second part within (A.61). As can be seen from its proof, Lemma A.2.14
also holds for the di�erence

(
uh − vh

)
, hence we have for arbitrary ϕh ∈ Vh,0,(

∇(uh − vh),
∣∣∣∇(uh − vh)

∣∣∣p−2
A · ∇χh

)
h

=

(
∇(uh − vh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh −A · ∇ϕh
)
h

−
(

div
(
A · ∇uh

)
, ϕh

)
Ωh\Ω

=

(
∇(uh − vh − χh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh −A · ∇ϕh
)
h

−
(

div
(
A · ∇uh

)
, ϕh

)
Ωh\Ω

,

where the last equality holds if(
∇vh, A · ∇ϕh −

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh
)
h

= 0 ∀vh ∈ Vh,0,

and it remains to show that such a ϕh ∈ Vh,0 actually exists. As
(∣∣∇(uh − vh)

∣∣p−2∇χh
)
∈ Lq(Ωh)

with the conjugate index q = p/(p − 1), the existence of ϕh follows with Theorem A.1.47. Using
Lemma A.2.2, Lemma A.2.4 and the property of the operator Q1

h it follows that∣∣∣∣(div
(
A · ∇uh

)
, ϕh

)
Ωh\Ω

∣∣∣∣ ≤ c∥∥∥uh∥∥∥W 2,p(R2)
‖ϕh‖Lq(Ωh\Ω)

≤ cph2
∥∥∥uh∥∥∥

W 2,p(Ω)
‖ϕh‖W 1,q(Ωh)

≤ cph2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

‖ϕh‖W 1,q(Ωh)

≤ cphk+1/p ‖g‖Wk,p(Γ) ‖ϕh‖W 1,q(Ωh) .
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Again we use the extended Hölder inequality and conclude(
∇(uh − vh − χh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh −A · ∇ϕh
)
h

≤ c
∣∣∣uh − vh − χh∣∣∣

W 1,p(Ωh)

∣∣∣uh − vh∣∣∣p−2

W 1,p(Ωh)
|χh|W 1,p(Ω) + c

∣∣∣uh − vh − χh∣∣∣
W 1,p(Ωh)

|ϕh|W 1,q(Ωh)

+ cph
k+1/p ‖g‖W 2−1/p,p(Γ) ‖ϕh‖W 1,q(Ωh) .

Due to the de�nition of χh as the in�mum in Lemma A.2.7 and 0 ∈ Vh,0 it follows that

|χh|W 1,p(Ωh) ≤
∣∣∣uh − vh − χh∣∣∣

W 1,p(Ωh)
+
∣∣∣uh − vh∣∣∣

W 1,p(Ωh)

≤
∣∣∣uh − vh − 0

∣∣∣
W 1,p(Ωh)

+
∣∣∣uh − vh∣∣∣

W 1,p(Ωh)

≤ c
∣∣∣uh − vh∣∣∣

W 1,p(Ωh)
.

Due to the de�nition of ϕh and the corresponding stability estimate we get

|ϕh|W 1,q(Ωh) ≤ cpcΩh(h)

∥∥∥∥∣∣∣∇(uh − vh)
∣∣∣p−2
∇χh

∥∥∥∥
Lq(Ωh)

≤ cpcΩh(h)
∣∣∣uh − vh∣∣∣p−1

W 1,p(Ωh)
,

which �nally leads to(
∇(uh − vh),

∣∣∣∇(uh − vh)
∣∣∣p−2

A · ∇χh
)
h

≤ cpcΩh(h)
∣∣∣uh − vh∣∣∣p−1

W 1,p(Ωh)

∣∣∣uh − vh − χh∣∣∣
W 1,p(Ωh)

+ cph
k+1/p

∣∣∣uh − vh∣∣∣p−1

W 1,p(Ωh)
‖g‖Wk,p(Γ) ,

and we �nish the proof for the W 1,p-case with (A.63).
Now we deal with the Lp-case. For �xed ϕ ∈ C∞0 (Ωh) let w ∈W 1,q

0 (Ω) ∩W 2,q(Ω) solve{
Lw = ϕ in Ω,

w = 0 on Γ,

where again q is the conjugate index to p. Then, for χh ∈ Vh,0 it holds that(
ûh − vh, ϕ

)
h

=
(
ûh − vh, Lw

)
h

+
(
ûh − vh, ϕ− Lw

)
h

= ah(ûh − vh, w − χh) + ah(ûh − vh, χh)

− 〈ûh − vh,∇wT ·A · n〉h +
(
ûh − vh, ϕ− Lw

)
h
.

(A.64)

We get

ah(ûh − vh, w − χh) + ah(ûh − vh, χh)

≤ c
∥∥∥ûh − vh∥∥∥

W 1,p(Ωh)
‖w − χh‖W 1,q(Ωh) +

(
Luh, χh

)
h

+ ah(ûh − uh, χh)

≤ c
∥∥∥ûh − vh∥∥∥

W 1,p(Ωh)
‖w − χh‖W 1,q(Ωh) + c

∥∥∥uh∥∥∥
W 2,p(Ω)

‖χh‖Lq(Ωh\Ω) + ah(ûh − uh, χh)

≤ cp
(
‖ûh − vh‖W 1,p(Ωh) + h2

∥∥Q1
hg
∥∥
W 2−1/p,p(Γ)

)
‖w − χh‖W 1,q(Ωh)

+ cph
2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

‖w‖W 1,q(Ω) + ah(ûh − uh, χh).

(A.65)
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Because of w ∈ W 1,q
0 (Ω), we can extend it by 0 outside of Ω, we shall denote the extension by w.

Similar, extend χh by zero outside of Ωh. We get

ah(ûh − uh, χh) = ah(ûh − uh, χh − w) + ah(ûh − uh, w),

and since ûh − uh is A-harmonic, a(ûh − uh, w) = 0, it holds that

ah(ûh − uh, w) ≤ c
∣∣∣E(ûh − uh)

∣∣∣
W 1,p(R2)

‖w‖W 1,q(Ωh\Ω) . (A.66)

From the de�nition of w and w we get

ah(ûh − uh, χh − w) ≤ c
∣∣∣E(ûh − uh)

∣∣∣
W 1,p(R2)

‖w − χh‖W 1,q(Ω∪Ωh)

≤ c
∣∣∣E(ûh − uh)

∣∣∣
W 1,p(R2)

(
‖w − χh‖W 1,q(Ωh) + ‖w‖W 1,q(Ω4Ωh)

)
.

(A.67)

Inserting (A.66) and (A.67) into (A.65), we conclude

ah(ûh − uh, χh) ≤ c
∥∥∥ûh − uh∥∥∥

W 1,p(Ω)

(
‖w − χh‖W 1,q(Ωh) + ‖w‖W 1,q(Ω4Ωh)

)
.

Using the �rst part of this lemma and Lemma A.2.4 we end up with

ah(ûh − uh, χh) ≤ c
∥∥∥Q̂hg −Q1

hg
∥∥∥
W 1−1/p,p(Γ)

(
‖w − χh‖W 1,q(Ωh) + h ‖w‖W 2,q(Ω)

)
. (A.68)

The estimates (A.65) and (A.68) yield

ah(ûh − vh, w − χh) + ah(ûh − vh, χh)

≤ cp
(∥∥∥ûh − vh∥∥∥

W 1,p(Ωh)
+ h2

∥∥Q1
hg
∥∥
W 2−1/p,p(Γ)

+
∥∥∥Q̂hg −Q1

hg
∥∥∥
W 1−1/p,p(Γ)

)
‖w − χh‖W 1,q(Ωh)

+ cp

(
h2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

+ h
∥∥∥Q̂g −Q1

hg
∥∥∥
W 1−1/p,p(Γ)

)
‖w‖W 2,q(Ω) ,

and by taking χh as the in�mum from Lemma A.2.7 we get

ah(ûh − vh, w − χh) + ah(ûh − vh, χh)

≤ cp
(
h
∥∥∥ûh − vh∥∥∥

W 1,p(Ωh)
+ h2

∥∥Q1
hg
∥∥
W 2−1/p,p(Γ)

+ h
∥∥∥Q̂hg −Q1

hg
∥∥∥
W 1−1/p,p(Γ)

)
‖ϕ‖Lq(Ω)

(A.69)

For the next part within (A.64), we estimate∣∣∣〈ûh − vh,∇wT ·A · n〉h∣∣∣
≤ c

∥∥∥ûh − vh∥∥∥
Lp(Γh)

‖∇w‖Lq(Γh)

≤ cp
∥∥∥ûh − γ̃ûh∥∥∥

Lp(Γh)
‖w‖W 2,q(Ω)

≤ cp
(∥∥∥(ûh − uh)− γ( ˜ûh − uh)

∥∥∥
Lp(Γh)

+
∥∥∥uh − γ̃uh∥∥∥

Lp(Γh)

)
‖ϕ‖Lq(Ω)

≤ cp
(
h
∥∥∥ûh − uh∥∥∥

W 1,p(Ω)
+ h2

∥∥∥uh∥∥∥
W 2,p(Ω)

)
‖ϕ‖Lq(Ω)

≤ cp
(
h
∥∥∥Q̂hg −Q1

hg
∥∥∥
W 1−1/p,p(Γ)

+ h2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

)
‖ϕ‖Lq(Ω) .

(A.70)
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As Lw = ϕ in Ω, for the last term within (A.64) it holds that(
ûh − vh, ϕ− Lw

)
h
≤ c

∥∥∥ûh − vh∥∥∥
Lp(Ωh\Ω)

‖ϕ‖Lq(Ω) ,

and again it follows that

(
ûh − vh, ϕ− Lw

)
h
≤ cp

(
h
∥∥∥Q̂hg −Q1

hg
∥∥∥
W 1−1/p,p(Ω)

+ h2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

)
‖ϕ‖Lq(Ω) (A.71)

Combining the estimates (A.69), (A.70) and (A.71), inserting them into (A.64) and using Lemma A.2.9
and Lemma A.2.10 we get∥∥∥ûh − vh∥∥∥

Lp(Ωh)
= sup

ϕ∈C∞0 (Ωh)

(
ûh − vh, ϕ

)
h

‖ϕ‖Lq(Ωh)

≤ cp
(
h
∥∥∥ûh − vh∥∥∥

W 1,p(Ωh)
+ h

∥∥∥Q̂hg −Q1
hg
∥∥∥
W 1−1/p,p(Γ)

+ h2
∥∥Q1

hg
∥∥
W 2−1/p,p(Γ)

)
≤ cpcΩh(h)hs+1/p ‖g‖W s,p(Γ) ,

for s ∈ [1− 1/p, 2− 1/p], which �nally completes the proof.

Now let uH ∈W 1,p(Ω) be the weak solution to{
LuH = 0 in Ω,

uH = g on Γ.
(A.72)

Lemma A.2.19. Let p ∈ [2, p−1(Ωh)) and s ∈ [1− 1/p, 2− 1/p], then it holds that

‖uH − vh‖Lp(Ωh) ≤ cpcΩh(h)hs+1/p ‖g‖W s,p(Γ) ,

‖uH − vh‖W 1,p(Ωh) ≤ cpcΩh(h)hs−1+1/p ‖g‖W s,p(Γ) ,

where uH may be extended to Ωh by Es if necessary.

Proof. From Lemma A.2.18 it is clear that we only have to estimates
∥∥uH − ûh∥∥W i,p(Ω)

for i ∈ {0, 1}.
We have∥∥∥uH − ûh∥∥∥

Lp(Ωh)
≤
∥∥∥E(uH − ûh)

∥∥∥
Lp(R2)

≤ cp
∥∥∥uH − ûh∥∥∥

Lp(Ω)
≤ cp

∥∥∥g − Q̂hg∥∥∥
W−1/p,p(Γ)

≤ cphs+1/p ‖g‖W s,p(Γ) ,

for s ∈ [1− 1/p, 2− 1/p], where we used Corollary A.1.37. The analog inequality holds true for
i = 1, which, together with Lemma A.2.18, �nishes the proof.

To continue we need the following generalization of Poincaré's inequality.

Lemma A.2.20. Let p ∈ (1,∞) and let Ω ⊂ Rn be a bounded Lipschitz domain. Let u ∈ W 1,p(Ω)
with trace u|Γ = g ∈W 1−1/p,p(Γ). There exists cp > 0, independent of u and g, such that

‖u‖W 1,p(Ω) ≤ cp
(
|u|W 1,p(Ω) + ‖g‖Lp(Γ)

)
.
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Proof. The following proof generalizes a proof presented in [35], Dupont, Lemma 2.7, to the case
p 6= 2.

‖u‖pLp(Ω) =

∫
Ω
up ∂xi (xi) dx

= −
∫

Ω
∂xi (up)xi dx+

∫
Γ
gpxini ds

= −
∫

Ω
pup−1 ∂xi (u)xi dx+

∫
Γ
gpxini ds,

where ni shall denote the i-th component of the outer unit normal. Using Hölder's inequality, we
get

‖u‖pLp(Ω) ≤ cp
(
‖u‖p−1

Lp(Ω) |u|W 1,p(Ω) + ‖g‖pLp(Γ)

)
,

and the generalized Young's inequality yields

‖u‖pLp(Ω) ≤
1

2
‖u‖pLp(Ω) + cp

(
|u|p

W 1,p(Ω)
+ ‖g‖pLp(Γ)

)
.

It is well-known that harmonic functions minimize the H1-seminorm among all functions with
the same boundary conditions. Here we are going to generalize that result.

Lemma A.2.21. Let Ωh ⊂ R2 be polygonal, let p ∈ [2, p−1(Ωh)), let A ∈ R2×2 be uniformly elliptic
and Lipschitz and let uh ∈ Vh be a discrete A-harmonic function, i.e.

(∇uh, A · ∇vh)h = 0 ∀vh ∈ Vh,0.

Then it holds that

|uh|W 1,p(Ωh) ≤ cpcΩh(h) inf
ϕh∈Vh,0

|uh − ϕh|W 1,p(Ωh) .

Proof. Let χh ∈ Vh,0 be the solution to

(∇χh, A · ∇vh)h =
(
|∇uh|p−2∇uh, A · ∇vh

)
h

∀vh ∈ Vh,0.

The existence of such a χh is ensured by Theorem A.1.47, which also shows the following stability
estimate,

|χh|W 1,q(Ωh) ≤ cp cΩh(h)
∥∥∥|∇uh|p−2∇uh

∥∥∥
Lq(Ωh)

= cp cΩh(h) |uh|p−1
W 1,p(Ωh)

.

Let ϕh ∈ Vh,0 be arbitrary, it now holds that

|uh|pW 1,p(Ωh)
≤ c

(
∇uh, |∇uh|p−2A · ∇uh

)
h

= c
(
∇uh, |∇uh|p−2A · ∇uh −A · ∇χh

)
h

= c
(
∇(uh − ϕh), |∇uh|p−2A · ∇uh −A · ∇χh

)
h
,
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where in the �rst step we used the discrete A-harmonicity of uh, in the second step we used the
de�nition of χh. Now we use Hölder's inequality and get(
∇(uh − ϕh), |∇uh|p−2A · ∇uh −A · ∇χh

)
h
≤ c |uh − ϕh|W 1,p(Ωh)

(
|uh|p−1

W 1,p(Ωh)
+ |χh|W 1,q(Ωh)

)
≤ cpcΩh(h) |uh − ϕh|W 1,p(Ωh) |uh|

p−1
W 1,p(Ωh)

,

and hence

|uh|W 1,p(Ωh) ≤ cpcΩh(h) |uh − ϕh|W 1,p(Ωh) .

Lemma A.2.22. Let p ∈ [2, p−1(Ωh)) and s ∈ [1− 1/p, 2− 1/p]. Then it holds that

‖u− uh‖Lp(Ωh) ≤ cpcΩh(h)
(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
,

‖u− uh‖W 1,p(Ωh) ≤ cpcΩh(h)
(
h ‖f‖Lp(Ω) + hs−1+1/p ‖g‖W s,p(Γ)

)
.

Proof. We set uh,H = uh−uh,0, because of Lemma A.2.17 it remains to estimate ‖uH − uh,H‖W i,p(Ωh).
For i ∈ {0, 1} we get

‖uH − uh,H‖W i,p(Ωh) ≤ ‖uH − vh‖W i,p(Ωh) + ‖vh − uh,H‖W i,p(Ωh) , (A.73)

and with Lemma A.2.20 it follows that

‖vh − uh,H‖W 1,p(Ωh) ≤ cp
(
|vh − uh,H |W 1,p(Ωh) + ‖vh − uh,H‖Lp(Γh)

)
. (A.74)

Since vh − uh,H is discrete A-harmonic, it follows from Lemma A.2.21 that

|vh − uh,H |W 1,p(Ωh) ≤ cpcΩh(h) |vh − uh,H − χh|W 1,p(Ωh) ,

for arbitrary χh ∈ Vh,0. Thus, using Lemma A.2.7 with w = 0 and φh = uh,H − vh we arrive at

|vh − uh,H |W 1,p(Ωh) ≤ cpcΩh(h) inf
χh∈Vh,0

|vh − uh,H − χh|W 1,p(Ωh)

≤ cpcΩh(h)h1/p−1 ‖vh − uh,H‖Lp(Γh) .
(A.75)

Combining (A.74) and (A.75) yields

‖vh − uh,H‖W 1,p(Ωh) ≤ cpcΩh(h)h1/p−1 ‖vh − uh,H‖Lp(Γh) .

By de�nition it holds that (uh,H − vh)|Γh = Qhg− ˜̂Qhg. In addition, Qh
˜̂
Qhg =

˜̂
Qhg = ˜̂QhQ̂hg. We

set G = g − Q̂hg and use Lemma A.2.11 to obtain

‖uh,H − vh‖Lp(Γh) =

∥∥∥∥QhG− ˜̂QhG
∥∥∥∥
Lp(Γh)

≤ cph2 ‖G‖Lp(Γh) = cph
2
∥∥∥(Id−Q̂h)g

∥∥∥
Lp(Γh)

,

and using Lemma A.2.9 we arrive at

‖vh − uh,H‖W 1,p(Ωh) ≤ cpcΩh(h)hs+1+1/p ‖g‖W s,p(Γ) , (A.76)

for s ∈ [0, 2− 1/p]. Together with the splitting (A.73) at the beginning of this proof and Lemma A.2.17,
this proof is �nished.
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Now we are in the position to �nally prove Theorem A.2.1.

Proof. Within the following proof, let s ∈ [1− 1/p, 2− 1/p] be arbitrary. We start by splitting the
error,

‖u− uh‖W i,p(Ω) ≤ ‖u− uh‖W i,p(Ωh) + ‖u− uh‖W i,p(Ω\Ωh) .

Because of Lemma A.2.22 it is su�cient to estimate the latter part. Setting wh =
(
u0 + uh

)
∈W 2,p(Ω),

we get

‖u− uh‖W i,p(Ω\Ωh) ≤
∥∥∥u− wh∥∥∥

W i,p(Ω)
+
∥∥∥wh − uh∥∥∥

W i,p(Ω\Ωh)
.

Now we use Lemma A.1.40 for
(
u− wh

)
and the properties of Q1

h to get∥∥∥u− wh∥∥∥
W 1,p(Ω)

≤ cphs−1+1/p ‖g‖W s,p(Γ) , (A.77)∥∥∥u− wh∥∥∥
Lp(Ω)

≤ cphs+1/p ‖g‖W s,p(Γ) , (A.78)

and it remains to estimate
∥∥wh − uh∥∥W i,p(Ω\Ωh)

. As uh is linear on Ω
(j)
h , its second derivatives

vanish. It follows with (A.30) that

∣∣∣wh − uh∣∣∣p
W 1,p(Ω

(j)
h )
≤ cp

(
h2
∣∣∣wh − uh∣∣∣p

W 1,p(Γ
(j)
h )

+ h2p
∥∥∥wh∥∥∥p

W 2,p(Ω
(j)
h )

)
. (A.79)

If τ (j)
h denotes the triangle which has Γ

(j)
h as one of its vertices, then one can show, using (A.38)

and Young's inequality, that

h ‖v‖p
Lp(Γ

(j)
h )
≤ cp

(
‖v‖p

Lp(τ
(j)
h )

+ hp |v|p
W 1,p(τ

(j)
h )

)
∀v ∈W 1,p(τ

(j)
h ). (A.80)

Setting v = ∇
(
wh − uh

)
and inserting the estimate (A.80) into (A.79) yields∣∣∣wh − uh∣∣∣p

W 1,p(Ω
(j)
h )
≤ cp

(
h
∣∣∣wh − uh∣∣∣p

W 1,p(τ
(j)
h )

+ hp+1
∥∥∥wh∥∥∥p

W 2,p(Ω
(j)
h ∪τ

(j)
h )

)
. (A.81)

Summing (A.81) over all j leads to

∣∣∣wh − uh∣∣∣
W 1,p(Ω\Ωh)

≤ cp
(
h1/p

∣∣∣wh − uh∣∣∣
W 1,p(Ωh)

+ h1+1/p
∥∥∥wh∥∥∥

W 2,p(Ω)

)
, (A.82)

The �rst term on the right hand side of (A.82) can be estimated using the triangle inequality,
Lemma A.2.22 and (A.77); the second term can be estimated using Theorem A.1.38 and the prop-
erties of Q1

h, Lemma A.2.10. We arrive at∥∥∥wh − uh∥∥∥
W 1,p(Ω\Ωh)

≤ cpcΩh(h)h1/p
(
h ‖f‖Lp(Ω) + hs−1+1/p ‖g‖W s,p(Γ)

)
,
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and combining this estimate with (A.77) yields

‖u− uh‖W 1,p(Ω\Ωh) ≤ cpcΩh(h)
(
h ‖f‖Lp(Ω) + hs−1+1/p ‖g‖W s,p(Γ)

)
.

It remains to prove bounds for
∥∥wh − uh∥∥Lp(Ω\Ωh)

. Applying (A.30) and (A.80) directly to
(
wh − uh

)
one can show, similar to (A.82), that

∥∥∥wh − uh∥∥∥
Lp(Ω\Ωh)

≤ cp
(
h1/p

∥∥∥wh − uh∥∥∥
Lp(Ωh)

+ h1+1/p
∥∥∥wh − uh∥∥∥

W 1,p(Ω∪Ωh)

)
. (A.83)

We combine (A.82) and (A.83) to get∥∥∥wh − uh∥∥∥
Lp(Ω\Ωh)

≤ cp
(
h1/p

∥∥∥wh − uh∥∥∥
Lp(Ωh)

+ h1+1/p
∥∥∥wh − uh∥∥∥

W 1,p(Ωh)
+ h2+2/p

∥∥∥wh∥∥∥
W 2,p(Ω)

)
.

(A.84)

Using the triangle inequality, Lemma A.2.22 and (A.78) proves

h1/p
∥∥∥wh − uh∥∥∥

Lp(Ωh)
≤ cpcΩh(h)h1/p

(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
. (A.85)

Using Theorem A.1.38 and the properties of Q1
h we arrive at

h2+2/p
∥∥∥wh∥∥∥

W 2,p(Ω)
≤ cph2/p

(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
. (A.86)

It holds that wh − uh = (u0 − uh,0) + (uh − vh) + (vh − uh,H). These terms can be estimated using
Lemma A.2.17, Lemma A.2.18 and (A.60), and (A.76), respectively. We get

h1+1/p
∥∥∥∇(wh − uh)

∥∥∥
Lp(Ωh)

≤ cpcΩh(h)h1/p
(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
. (A.87)

Using the estimates (A.85), (A.86) and (A.87) in (A.84), we get

∥∥∥wh − uh∥∥∥
Lp(Ω\Ωh)

≤ cpcΩh(h)h1/p
(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
,

which �nally results in

‖u− uh‖Lp(Ω\Ωh) ≤ cpcΩh(h)
(
h2 ‖f‖Lp(Ω) + hs+1/p ‖g‖W s,p(Γ)

)
.

We �nish the proof by noting that Ωh is convex for all h su�ciently small if and only if Ω is convex.
The bounds on p follow with (A.44).
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A.2.4. Finite element approximation on curved domains with irregular di�erential
operators

As stated at the beginning of this section we are now going to prove some results concerning the
case when the matrix A is not Lipschitz and thus does not admit H2-regularity. Once again, let
Ω ⊂ R2 be a bounded and convex domain, let f ∈ H−1/2−ε(Ω) and consider the following problem{

−div(A · ∇u) = f in Ω,

u = 0 on Γ,
(A.88)

where the matrix A is uniformly positive de�nite with coe�cients in C0,1/2(Ω). With Theo-
rem A.1.30 it follows that u ∈ H3/2−ε(Ω) and

‖u‖H3/2−ε(Ω) ≤ cε ‖f‖H−1/2−ε(Ω) .

Using Céa's lemma it follows that

‖u− uh‖H1(Ω) ≤ cεh
1/2−ε, (A.89)

for the �nite-element approximation uh of u if Ω itself is polygonal. If this is not the case, one
should not expect better approximation rates for one additionally has to approximate the curved
boundaries. Furthermore, as shown in [91], Theorem 3.8, it holds that

‖u− uh‖H−1(Ω) ≥ c ‖u− uh‖
2
H1

0 (Ω) ,

and as estimate (A.89) is of optimal order, it follows that

‖u− uh‖L2(Ω) ≤ cεh
1−ε,

is the best order of convergence one can hope for in the general case.

Theorem A.2.23. Let Ω ⊂ R2 be a bounded Lipschitz domain, let u ∈ H1
0 (Ω) ∩H3/2−ε(Ω) be the

weak solution to (A.88) for given f ∈ H−1/2−ε(Ω) and let uh ∈ Vh,0 solve

ah(uh, vh) = (f, vh)h ∀vh ∈ Vh,0.

If s ∈ [0, 1], then it holds that

‖u− uh‖Hs(Ωh) ≤ cεh
1−ε−s/2 ‖f‖H−1/2−ε(Ω) .

Proof. As Ω is convex it holds that Ωh ⊂ Ω, hence every function in H1
0 (Ωh) can, via extension by

0, be regarded as a function in H1
0 (Ω). Let χh ∈ Vh,0 be arbitrary, it holds that

c ‖∇ (u− uh)‖2L2(Ωh) ≤ ah(u− uh, u− uh) = ah(u− uh, u− χh),

hence

‖∇ (u− uh)‖L2(Ωh) ≤ c ‖∇ (u− χh)‖L2(Ωh) ,
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and using Lemma A.2.8 we get

‖∇ (u− uh)‖L2(Ωh) ≤ cεh
1/2−ε ‖f‖H−1/2−ε(Ω) .

Next the L2-error has to be estimated. Let ϕ ∈ C∞0 (Ωh) be arbitrary and let w ∈ H1
0 (Ω)∩H3/2−ε(Ω)

be the solution to

a(w, v) = (ϕ, v) ∀v ∈ H1
0 (Ω),

again it holds that ‖w‖H3/2−ε(Ω) ≤ cε ‖ϕ‖H−1/2−ε(Ωh). Now we have

(u− uh, ϕ)h = a(w, u− uh) = a(w − wh, u− uh),

where wh ∈ Vh,0 is the Ritz-projection of w. We end up with

(u− uh, ϕ)h = ah(w − wh, u− uh) + (∇ (w − wh) , A · ∇ (u− uh))Ω\Ωh

= ah(w − wh, u− uh) + (∇w,A · ∇u)Ω\Ωh .
(A.90)

The �rst term on the right hand side of (A.90) can be estimated as in �rst part of this proof, it
holds that

ah(w − wh, u− uh) ≤ c ‖∇ (w − wh)‖L2(Ωh) ‖∇ (u− uh)‖L2(Ωh)

≤ cεh1−2ε ‖w‖H3/2−ε(Ω) ‖f‖H−1/2−ε(Ω)

≤ cεh1−2ε ‖ϕ‖L2(Ωh) ‖f‖H−1/2−ε(Ω) .

(A.91)

The second term can be estimated using Hölder's generalized inequality. We get

(∇w,A · ∇u)Ω\Ωh ≤ ‖1‖L 2
1−2ε (Ω\Ωh)

‖∇w‖
L

4
1+2ε (Ω)

‖A‖L∞(Ω) ‖∇u‖L 4
1+2ε (Ω)

.

(A.92)

Now we use the fact that |Ω\Ωh| ≤ ch2 and the continuous embedding H3/2−ε(Ω) ↪→ W 1,4−ε(Ω),
and end up with

(∇w,A · ∇u)Ω\Ωh ≤ cεh
1−2ε ‖w‖H3/2−ε(Ω) ‖u‖H3/2−ε(Ω)

≤ cεh1−2ε ‖ϕ‖L2(Ωh) ‖f‖H−1/2−ε(Ω) .
(A.93)

Inserting (A.91) and (A.93) into (A.90) yields

‖u− uh‖L2(Ωh) = sup
ϕ∈C∞0 (Ωh)

(u− uh, ϕ)h
‖ϕ‖L2(Ωh)

≤ cεh1−2ε ‖f‖H−1/2−ε(Ω) ,

and what is left follows with interpolation.
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General notation and abbreviations

• Within this thesis we will follow the constant convention, i.e. c will always denote a constant
with possibly di�erent values upon di�erent appearances. These constants shall, if not stated
otherwise, be independent of other appearing functions. The explicit dependance upon a
speci�c function or value X will be denoted with cX .

• With ε we will always denote a positive real number which can be made arbitrarily small.

• For any Banach space X let X ′ denote its dual. The duality pairing will be denoted with
(·, ·)X,X′ .

• For any Hilbert space W let (·, ·)W denote its scalar product.

• For X and Y being two normed spaces, let X
‖·‖Y denote the completion of the space X with

respect to the norm of Y .

• The continuous embedding of the Banach space X into the Banach space Y will be denoted
with X ↪→ Y , if this embedding is also compact we will write X ↪→↪→ Y .

• Let N be the set of positive integers and let N0 = N ∪ {0}.

• For every Banach space X, let Id denote the identity function.

• For given n ∈ N, let I ∈ Rn×n denote the identity matrix.

• For T : X → Y being a linear operator, let N (T ) ⊂ X denote the nullspace of T and let
R(T ) ⊂ Y denote the range of T .

• For α = (α1, α2, . . . , αn) ∈ Nn0 being a multiindex, let |α| =
∑n

i=1 αi and

Dαu =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
u.

• For an arbitrary subset A ⊂ Rn, let |A| denote its n-dimensional Lebesgue measure.

• For Ω ⊂ Rn being a domain, its boundary ∂Ω will be denoted with Γ.

• For two sets A and B let A4B = (A\B) ∪ (B\A) be the symmetric di�erence.
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Hölder spaces

• For k ∈ N0, let Ck(Ω) be the set of all k-times continuously di�erentiable functions with norm

‖u‖Ck(Ω) = max
|α|≤k

sup
x∈Ω
|Dαu(x)| .

• For k ∈ N0 and σ ∈ (0, 1], let Ck,σ(Ω) be the set of all k-times continuously di�erentiable
functions whose derivatives of order k are Hölder-continuous with exponent σ. The norm is
de�ned via

‖u‖Ck,σ(Ω) = max
{
‖u‖Ck(Ω) , |u|Ck,σ(Ω)

}
,

with

|u|Ck,σ(Ω) = max
|α|=k

sup
x,y∈Ω

|Dαu(x)−Dαu(y)|
|x− y|σ

.

• Let

C∞(Ω) =
⋂
k∈N

Ck(Ω),

be the set of functions which are arbitrarily di�erentiable, and let

C∞0 (Ω) = {u ∈ C∞(Ω)| suppu ⊂⊂ Ω} ,

be the set of all arbitrarily di�erentiable functions with compact support in Ω.

Sobolev spaces

• For Ω ∈ Rn and p ∈ [1,∞] let Lp(Ω) be the vector space of all (equivalence classes of)
measurable functions u with ‖u‖Lp(Ω) <∞, where

‖u‖pLp(Ω) =

∫
Ω
|u|p dx,

for p <∞, whereas for p =∞ the norm is de�ned via

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| = inf
N⊂Ω
|N |=0

sup
x∈Ω\N

|u(x)| .

• For k ∈ N let W k,p(Ω) denote the vector space of all functions u ∈ Lp(Ω) such that the weak
derivatives of u up to order k exist in Lp(Ω). For p ∈ [1,∞), the norm is de�ned via

‖u‖p
Wk,p(Ω)

=
∑
|α|≤k

‖Dαu‖pLp(Ω) ,
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and a seminorm can be de�ned via

|u|p
Wk,p(Ω)

=
∑
|α|=k

‖Dαu‖pLp(Ω) .

For p =∞ we have

‖u‖Wk,∞(Ω) = max
|α|≤k

‖Dαu‖L∞(Ω) ,

|u|Wk,∞(Ω) = max
|α|=k

‖Dαu‖L∞(Ω) .

• Let W k,p
0 (Ω) = C∞0 (Ω)

‖·‖
Wk,p(Ω) . Within this space the seminorm |·|Wk,p(Ω) is equivalent to

the full norm ‖·‖Wk,p(Ω), hence let

‖u‖
Wk,p

0 (Ω)
= |u|Wk,p(Ω) .

• For s ∈ R, s > 0 and s /∈ N, the space W s,p(Ω) can be de�ned via interpolation. Let s = k+σ
with k = bsc and σ ∈ (0, 1), then again for p <∞ it holds that

‖u‖pW s,p(Ω) = ‖u‖p
Wk,p(Ω)

+ |u|pW s,p(Ω) ,

where

|u|pW s,p(Ω) =
∑
|α|=k

(∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+σp dx dy

)
. (B.1)

For Ω su�ciently smooth it holds that W s,∞(Ω) = Ck,σ(Ω).

• With a slight abuse of notation we may write u ∈W s,p(Ω) if u ∈ (W s,p(Ω))n.

• For s ∈ R with s < 0 and p ∈ (1,∞], the space W s,p(Ω) is de�ned as the dual space of
W−s,q0 (Ω), where q ∈ [1,∞) such that 1/p+ 1/q = 1.

• Let Hs(Ω) = W s,2(Ω), which is known to be a Hilbert space. For k ∈ N0 it holds that

(u, v)Hk(Ω) =
∑
|α|≤k

(∫
Ω

DαuDαv dx

)
,

whereas the scalar product on the boundary will be denoted with 〈u, v〉Hk(Γ). Let

(u, v)Ω = (u, v)L2(Ω) .

If the domain Ω is �xed and there is no risk of confusion, let

(u, v) = (u, v)L2(Ω) ,

〈u, v〉 = 〈u, v〉L2(Γ).

For Ωh being a polygonal domain (possibly approximating Ω) with boundary Γh, let

(u, v)h = (u, v)L2(Ωh) ,

〈u, v〉h = 〈u, v〉L2(Γh).
(B.2)

If two polygonal domains are used simultaneously, we will denote the second one with Ωk and
boundary Γk, the notation (B.2) shall hold accordingly.
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