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Abstract

This thesis is devoted to the analysis of two shape optimization problems that are discretized using
finite elements. First we consider a tracking-type functional subject to an elliptic partial differential
equation, then we maximize the difference between two eigenvalues of an elliptic partial differential
operator corresponding to the transmission problem. Both problems are transformed on a reference
domain and the existence of an optimal solution is shown. The main result for both problems is an
a-priori error estimate for the error between the optimal control and a sequence of optimal controls
to the fully discretized problem.

Zusammenfassung

In dieser Arbeit werde zwei Formoptimierungsprobleme betrachtet, welche mit finiten Elementen
diskretisiert werden. Im ersten Beispiel wird ein tracking-type Funktional mit einer elliptischen par-
tiellen Differentialgleichung als Nebenbedingung betrachtet, im zweiten Beispiel wird der Abstand
zweier Eigenwerte des zum Transmission-Problem gehorigen elliptischen partiellen Differentialop-
erators maximiert. Beide Probleme werden auf ein Referenzgebiet transformiert und es wird die
Existenz einer optimalen Losung gezeigt. Das Hauptresultat fiir beide Beispiele ist eine a-priori
Fehlerabschatzung fiir den Fehler zwischen der optimalen Kontrolle und einer Folge optimaler Kon-
trollen fiir das vollstdndig diskretisierte Problem.
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1. Introduction

This thesis is devoted to a-priori error estimates for finite element discretizations of shape optimiza-
tion problems. For this purpose we consider shape optimization problems, general optimal control
problems as well as discretization methods including error estimates.

In optimal control of partial differential equations one is interested in minimizing a cost functional
depending on a control and a state, where the control and the state are coupled via a partial
differential equation, there may be additional constraints on the state and the control. In many
cases, the control is given as a function or functional on the right hand side of a partial differential
equation on a fixed domain, whereas the state is the solution to that equation. Within shape
optimization, the control is no longer a functional but the shape of a domain. Some typical shape
optimization problems are finding the shape of an airfoil that minimizes air resistance or finding the
shape of a structural component that minimizes deformations induced by stress. Another practical
application of shape optimization is called electrochemical machining and presented in Lu et al. [84].
As the problem of finding an optimal shape cannot, in general, be solved exactly one has to discretize
the whole problem, i.e. the shape of the domain as well as the partial differential equation. The
corresponding discrete solutions only yield approximations to the original solution, hence one is
interested in estimating the induced error.

The main issue of this thesis is to embed shape optimization problems into the standard control
theoretic framework and to rigorously prove existence and regularity results. These results provide
the theoretical background for the a-priori error estimates, which are proven at the end of Chapter
and Chapter |3l The cost functionals under consideration are a classical L2-tracking-type functional
and a functional including the difference of the two smallest eigenvalues of a partial differential
operator corresponding to the transmission problem.

Optimal control of partial differential equations is an active area of research, see, e.g., the mono-
graphs by Lions [83] and Tréltzsch [103], for the numerical treatment we refer to Hinze et al. [60].

For an introduction to shape optimization we refer to the monographs by Sokotowski & Zolé-
sio [I01], Delfour & Zoleésio [37] and Ito & Kunisch [65], Chapter 11. Eppler [38] gives a short
overview on how to compute shape derivatives. For the existence of optimal shapes in a general
setting we mention Bucur & Buttazzo [2I] and Henrot & Pierre [57].

Within this thesis, the unknown part of the boundary is parametrized as the graph of a function.
This approach has already been used in various publications, see, e.g., Haslinger & Mikinen [52],
Haslinger & Neittaanméki [53], Kunisch & Peichl [75] and Slawig [100].

Within Chapter 3] a cost functional including eigenvalues of a partial differential operator is
being investigated. The relation between the eigenvalues of a partial differential operator and the
underlying domain has been studied for a long time, c¢f. the monograph by Henrot [56] and the
references cited therein. For an overview on stability estimates and sensitivity analysis we would
like to mention Burenkov & Feleqi [22], Barbatis et al. [I0] and Dambrine & Kateb [34].

For an introduction to the transmission problem and related regularity results we refer to Escau-
riaza & Mitrea [41], Escauriaza et al. [40], Xiong & Bao [109] and Caloz et. al [23]. Hintermiiller
& Laurain [58] showed how a transmission problem can be used within shape optimization in order
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to detect unknown shapes.

Braess [16] and Grofman & Roos [50] give a general introduction into the numerical treatment of
partial differential equations including the finite element method, an introduction to finite elements
in the context of shape optimization can be found in Haslinger & Neittaanméaki [53].

Finally, an introduction to a-priori error estimates for general optimal control problems can be
found in Falk [42], Hinze [59], Adar et al. [7], Casas et al. [26] and Casas & Troltzsch [29]. There
are just a few publications on error estimation and convergence analysis in shape optimization, cf.
Eppler et al. [39] and Hiptmair & Paganini [61]. Vanmaele & Zenisek [104] and the survey article by
Boffi [15] give an overview on error estimates for finite elements in the context of eigenvalue problems.

This thesis is organized as follows.

Chapter 2} A model problem

In this chapter we formulate an abstract shape optimization problem with a tracking-type cost
functional. We transform the problem on a reference domain and prove existence of an optimal
solution of the transformed problem. The transformation approach has also been considered by
Brandenburg et al. [19], Eppler & Harbrecht [39] and Tto et al. [65] [66]. Fumagalli et al. [45] applied
this approach on more difficult equations. This approach leads to a problem on a fixed domain where
the coefficients of the partial differential operator vary. In a more abstract setting, such types of
problems have also been considered by Casas [25]. Another approach on how to deal with shape
optimization problems is the so-called level set method, where the domain under consideration is
defined as the zero level set of a given function. This approach has been considered by Allaire et
al. [2] and Tto [64].

Afterward we derive an optimality system and use the optimality condition of first order to prove
higher regularity of the optimal control. Results of this type are common within optimal control, in
the context of shape optimization this idea has already been used by Carlier & Lachand-Robert [24]
and Lamboley et al. |77, [7§].

We then discretize the transformed problem using finite elements, and using a mild assumption
on the coercivity of the second derivative of the reduced cost functional we show a-priori error
estimates of optimal order for the error between the optimal control to the continuous problem and
its fully discretized counterpart. For a possible numerical implementation using Newton’s method
we refer the reader to Laumen [80]. In Laumen [79] a general overview on numerical methods in
shape optimization is given.

Some of the results of Chapter [2| are included from the author’s Master’s thesis [72], a detailed
enumeration of those previously published results is given at the beginning of that chapter on page[5l

Chapter 3} Optimization of eigenvalues
In this chapter we formulate another abstract shape optimization problem where the cost functional
is given as the difference of the first two Dirichlet eigenvalues for a transmission problem; for an
overview on Neumann and Robin boundary conditions we refer to Girouardo & Polterovich [46].
As the eigenfunctions and eigenvalues of a partial differential operator generally depend on the
shape of the underlying domain, it is possible to optimize functionals depending on the eigenvalues
with respect to the shape of the domain. Marc Kac once asked whether it is possible to hear the
shape of a drum, cf. [68]: Given all the eigenvalues of the Laplacian with homogeneous Dirichlet
boundary conditions over some domain, is it possible to reconstruct the domain? Although the set
of eigenvalues contains information such as the area or the diameter of the domain, the original
question itself has a negative answer as has been shown by Gordon et al. [47].



Some other interesting questions concerning the behavior of the eigenvalues are the question which
domain minimizes the n-th smallest eigenvector among all domains in R? with a given volume. The
well-known Faber-Krahn inequality states that the unique minimizer (up to sets of capacity zero)
for n = 1 is the ball. As proven by Krahn and Szego, cf. [74] and [90], for n = 2 the solution
consists of two balls of the same volume. For general n > 3, the optimal domain is not known so
far, cf. Henrot [55]. Furthermore, if additional constraints like connectedness or even convexity are
imposed on the admissible domains, then little is known so far. Numerical approximations to some
of these domains can be found in Antunes & Freitas [6] and Oudet [89].

Using the same approach as in Chapter [2| we transform the problem onto a reference domain,
show the existence of an optimal control and prove higher regularity.

Again we use finite elements to discretize the problem and then show a-priori error estimates for
the error between the optimal control to the continuous problem and its fully discretized counterpart.
Although the obtained result is very similar to the corresponding result of Chapter 2] the methods
used for its proof differ significantly.

Beside the Laplacian there is ongoing research concerning the eigenvalues of Schriédinger’s oper-
ator, where the eigenfunctions have a physical interpretation as energy levels of quantum particles;
but beside this physical meaning there are also some mathematical questions interesting on its own.
An overview, including further references, can be found in Henrot [56]. In the context of nonlinear
equations we would like to mention the p-Laplacian, cf. Lindqvist [82].

Chapter Conclusion and perspectives
In this chapter we summarize the results from Chapter [2] Chapter 3| and the Appendix and discuss
possible extensions and future work.

Chapter [A} Appendix

The first part of the appendix contains a collection of various supplementary results like regularity
results for partial differential equations and generalizations of the Bramble-Hilbert lemma and
inverse estimates, which will be needed throughout this thesis.

The second part contains a generalization of a result obtained by Bramble & King [17] regarding
finite element error estimates for a partial differential equation posed on a non-polygonal domain,
which will be needed for the error estimation in the context of the discretization of the state and
the transformation within Chapter [2] and Chapter

Chapter Nomenclature
The last chapter contains an overview on the notation used throughout in this thesis. For a more

detailed introduction into the topic of Sobolev-, and Hoélder spaces we refer to Adams & Fournier [I]
and Grisvard [48].






2. A model problem

The aim of this chapter is to introduce a general framework suited for the numerical analysis of
shape optimization problems, apply this framework to a model problem and derive error estimates
in the context of a finite element discretization of that shape optimization problem.

This chapter is organized as follows. In Section we formulate an abstract shape optimization
problem with cost functional of tracking type. We introduce a transformation to reformulate the
whole problem on a fixed reference domain and prove existence of an optimal control with higher
regularity. In Section we use finite elements to discretize the control, the state and the trans-
formation. Within Section we first state some general stability results and then prove a-priori
error estimates for the error between the optimal control to the continuous problem and its fully
discretized counterpart.

As mentioned in the introduction, some of the results of this chapter, i.e. Section without
Subsubsection [2.1.3.2] Subsection [2.3.1] Subsubsection and the beginning of Subsection [2.3.4]
until and inclusive Lemma have already been published within the author’s Master’s the-
sis [72] and are included in order to make this thesis more self-contained.

2.1. The problem

Within this section we are going to investigate a model shape optimization problem where the
underlying shapes will be star-shaped with respect to the origin. The control variable ¢ is an
element of the control space Q = H2,.(I) with I = (0,27) and

per

H2, (1) = Oy (1) 1720, (2.1)

per

equipped with the usual H?-norm, where

Coo(I) = {v € C®(I)| 0™ (0) = o™ (27)Vn € NO}.

per

The control ¢ characterizes the domain €, through

Q= {(@0,9) R <1+a(¢), 1 = Vo T4, ¢ = anglw + i)} ,

cf. Figure In order to exclude a possible degeneracy of the domain €2, we fix € > 0 and define
the set

Q' =1{qeQlalp) > —1+zforall p€I}. (2.2)

Because of H?(I) < CYY2(T), ([2.2) is well-defined. For each ¢ € @ad the domain €, is Lipschitz,
which allows for the definition of the state variable u? € H}(f2,) as the weak solution to the state
equation

{ —Au?+u? = f7 in Q, (2.3)

u!'=0 onl,=0Q,.
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1+ q(p)

Figure 2.1.: The domain 2

The shape optimization problem is then given as:
e .= 1 2 o —ad
Minimize J(q,u?) = B [|u? — ugHLg(Qq) + 3 Hq\|12qg([) ., where g € Q" and u? € H}(Q,), (2.4)

subject to (2.3) with f? and u} being sufficiently regular functions, cf. (2.7), and o > 0 is a fixed
constant. . .

We define the solution operator S?: @a — H& (), which assigns to each ¢ € @a the unique solu-
tion u? = S9(q) of (2.3). This allows for the introduction of the reduced cost functional j: @ad — R
by

J(a) = J(a,5%q))- (2.5)
In order to prove the existence of an optimal solution to (2.4) we bound @ad in H2(I).

Lemma 2.1.1. There exists a constant C = C(a) > 0 such that the search for a solution to (2-4)
can be restricted to the set

Q= {qééad

lall sy < € (2.6)
Furthermore it holds that

lim C(a) =0.

a—r00
Proof. Let qg =0 € @ad, a necessary condition for ¢ € @ad to be a solution to (2.4)) is

J(Q> < j(qo)’
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which reads as

1 2 [0 2 .
5 197(@) = uill720,) + 5 lallieen < 5(a0),
or equivalently

2

9 2 (. 1 2 .
lallay < (J(‘JO) —5115%(@) - uZHLQ(Qq)> < ~j(a)-

Setting C'(a) = \/ 2 (qo) finishes this proof. O

Due to the boundedness of Q* in C(T) it follows that there exists a bounded so-called holding-
all domain Q C R2, such that Q, CC Q for all ¢ € Q. Throughout this chapter we assume for the
data

ud = udlg, . f7= flg,, with ug, f € C%HQ). (2.7)

We will therefore just write f and ug instead of f9 and ug, respectively.

2.1.1. Transformation of the problem

The aim of the following subsection is to reformulate the original problem on a fixed reference
domain Q. This method is called the method of mapping, a short overview can be found in [37]
and [10I]. We define Qg to be the unit circle and then compute a transformation T, such that
the domain € is the image of Qy under that transformation, Q, = T;(2). All the results remain
true if Qg is replaced by any other sufficiently smooth domain sufficiently close to €2, in the sense
of Assumption . In order to compute Ty it is often necessary to solve an additional partial
differential equation like the equations of linear elasticity or the Laplace equation. Within this
thesis we will focus on the Laplace equation. Our results remain true as long as Theorem
holds for the chosen equation.

If one worked locally near the optimal shape instead of transforming the whole domain, then one
would have to remesh the working domain every step, which is costly. As already mentioned, we
bypass this remeshing at the cost of two additional Laplace equations. The reason why we choose
this approach is the fact that it allows for comparing states corresponding to different shapes, which
is important in the context of error estimation. Furthermore, from a practical point of view, adding
some Laplace equations to the numerical solver is often less complicated than including a remeshing
step.

Let F = (F7, F2>T be the weak solution to the following boundary value problem,

{ AF =0 in Qy, (2.8)

F=gn onTy=090,

where n is the outer unit normal to 2y and the Laplacian shall act on each component separately.
If F' = F(q) solves (2.8) for a given ¢ € @, then define T) = T, = Id +F(q).

Lemma 2.1.2. For ¢ € Q it holds that F = F(q) as the weak solution to (2.8) possesses the
regularity F € H/2(Qg) — CY'/2(Qg). More generally, for s > 1 there holds the estimate

[ re1r2 () < s lallmsry -
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Proof. As the outer unit normal n of the unit circle is uniformly bounded in C*(I'y) for every fixed
k e N, we get
anHHs(FO) < cllnflgra (To) HQHHs(I) <G HQHHS(I) )

cf. [48], Theorem 1.4.1.1, and the result follows with Theorem [A.1.2§ O
Let

F= {F € H5/2(Qo)‘ dg € @ such that F' = F(q) solves }, (2.9)

Fad = {F € HS/Q(QO)‘ Jg € Q* such that F = F(q) solves } , (2.10)

be the spaces of (admissible) transformations. Note that F24 is a bounded set in H°/2(Qp) due to
Lemma and (2.6)). In addition, F2d need not be closed in H%2() for the trace operator is
not surjective from H*t1/2(Qg) to H*(T'y) for k € Ny as mentioned in Theorem .

The following functions derived from the transformation

Tp =1d+F (2.11)

will be used in the sequel. Some existence and regularity results concerning these functions will be
shown below, some stability results concerning these functions can be found in Section

L+ 0:Fi(z,y)  OyFi(z,y)
DT =I+DF = ’ Y p 2.12
F(ac,y) + (x,y) ( 83;F2(3:,y) 1+8yF2(a:,y) ) ( )
vr(z,y) = det (DTp(z,y)), (2.13)
d
Vesr = VFHer(@Y)] (2.14)
=0
" d /
YF6FrF = EVFH-TF,M(%?J) ) (2.15)
=0
Ap(w,y) = (3 DT DTET) (2,), (2.16)
where DT = (DTp) ™!,
, d
Apsp(r,y) = EAF-HMF(:U’ZJ) ; (2.17)
=0
1 d /
Afpsprr(T,y) = n Fitrror(T:Y) (2.18)
=0

The following two lemmata will be needed to prove some regularity results concerning these func-
tions.

Lemma 2.1.3. Let Q C R” be open, bounded and Lipschitz. Let v € H'(Q) and k € N. If there
exists co > 0 such that v(z) > co for almost every x € Q, then v=F € H(Q).

Proof. We only have to show that
v (v_k> - (—kv_k_1Vv> € 12(Q),
which follows from the generalized Hélder inequality and

v Pl e L®(Q), Vv € L2 (Q). O
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Lemma 2.1.4. Let Q C R", n € {1,2}, be open, bounded and Lipschitz. Let s > 0 and v € H*(Q).
If there ewists co > 0 such that v(z) > co for almost every x € Q, then v=! € H*(Q).

Proof. Let s = k+o with k € Ny and o € [0,1). We start with the case k = 0. If in addition o = 0,
then the result is clear. If o € (0,1), then

2 |o(z)~" = v(y) [
— dzd
|U |HS(Q) /Q/Q |z —y|" T v

21}37—1)
:42/9 [o(@) — v(y)P

1
v(z)v(y) |z — y|n+20
<

*M?{s Q) -
—cg )

dz dy

Next we consider the case k = 1, v € H7(Q). Due to Lemma it remains to consider
the case 0 € (0,1). As Vv € H?(Q) and v=3 € H'(Q) due to Lemma [2.1.3] it follows with

Theorem that —203Vv = V (v™2) € H*(Q) for £ < 0. Hence, v™2 € H'™(Q), and again
with Theorem it follows that —v™?Vo =V (v7!) € H7(Q), and v~! € H'T7(Q).
The next case is s = 2. Due to Lemma, we only have to show that
V2 (v_l) = (211_3Vv Vol — ’U_QVQU) e L3 (Q),

which follows from v=2,073 € L>®(Q), Vv € H}(Q) — L*(Q) and Vv € L?(Q).

We finish the proof with induction. Assume that the statement has been shown for all s < k for
some k € N with k > 2. Let s =k + 0, 0 € [0,1) and v € H*?(Q). We can further assume that
o>0if k=2 Asov ! e HFD*t9(Q) by induction hypothesis, we get v=2 € HFD+7(Q) with
Theorem Furthermore, Vo € H*~D%7(Q), and again with Theorem we end up with
—v7 2V =V (v1) € H*=D+o(Q), which leads to v~! € H*7(Q). O

Lemma 2.1.5. Let s > 3/2 and q € H*(I). Then it holds that Yp(g), Ap(g) € H1/2(Qp).

Proof. The regularity result for yp(4) follows from (2.13), Lemma and Theorem Because

of
- 1 1+, —9,Fi(q) >
DT-L — Y Y 2.19
F@ ™ yp) < —0:F2(q) 14 0:F1(q))" 219

and DF € H*Y/2(y), Lemma yields DTF_(lq) € H*'/2(Qp), and the regularity for Ar(q)

follows with (2.16) and the regularity result for vp(,). O

Lemma 2.1.6. Let F € 72 qnd 6F, 7F € F. Then the following operators are Fréchet-differentiable
with respect to F.

o vp: HY2(Qy) — H3?(Q) with derivative
Visr = 7r trace (DT' - DOF) = div(yp DT - 6F) .
o DTEI: H2(Q0) — H3/?(Qp) with derivative

—1\/ — —
(DT3") e = — DT -D6F - DT,
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® Visr: H2(Q0) x H?(Q0) — H3?(Qo) with derivative

Yrsr-r = VF trace (DT},?1 -DJF) trace (DT},?1 -DTF) — yp trace (DT},?1 -D7F - DTE1 -DJF)
= trace (DO F') trace (DTF') — trace (DOF - DTF) .

o Ap: HY2(Qy) — H3?(Q) with derivative

A’FﬁF = trace (DTF_1 . D5F) Ap — DT};1 -DOF - Ap — Ap -DOFT . DTET- (2.20)
o Apsp: H2(Q0) x H/2(Qq) — H3/2(Qq) with derivative

%,5F,7—F
= —trace (DT - DTF - DT - DOF) Ap + trace (DT " - DSF) trace (DT ' - DTF) Ap
— trace (DT - D6F) DT,' - DTF - Ap — trace (DT - DTF) DT - DSF - Ap
—trace (DT,' - D6F) Ap - DTFT - DT, T — trace (DT ' - DrF) Ap - D6FT - DT, T (2.21)
+DT;' - DOF -DT' -DrF - Ap + DT,' - D7F - DT - DOF - Ap
+ DT -DOF - Ap -D7FT . DTT + DT -DrF - Ap - DSFT - DT, T
+ Ap-DSFT . DTT - DrFT - DT + Ap - DrFT . DTRT - DSFT - DTLT.

Proof. By a direct calculation it follows that

[vF+s7 — vp — p trace (DT - DOF)|| oz g

1m
1871 115/2 ) 0 10F | r5/2(02)
10,0y 8,6 Fy — 0,0 Fy 026 F| a2
= 11m
1871 g75/2 )0 16F [ gr5/2()

16 F 1 Z75/2(0)

9

<c im
1871 y5/2(00) =0 10F | 75/2(020)

where in the second step we used Theorem and Theorem |A.1.14} The result for DT, ! follows
from a direct calculation, and the result for 7} s follows from the fact that the trace is linear,
Theorem as well as the first two parts of this lemma. The fourth part follows from the

previous two parts, Theorem [A.1.11| and Theorem and the result for Apsp follows from a
direct calculation and the previous parts. O

Remark 2.1.7. For A, B € R™*" it holds that trace (A - B) = trace (B - A), hence the second deriva-
tives A% sp . and vpspp Within Lemma are symmetric with respect to the directions.

Lemma 2.1.8. For ||q|| y2(;y — 0 it holds that
o Tr(g — Id in H?(Qq) — CV1/2(Qy),
o Vr(g — 1 in H3?(Qg) = CO/2(Q),

. DT;(lq) — L in H3?(Qp),

10



2.1. The problem

. AF(q) —Tin H3/2(QQ),

Proof. The first part follows from (2.11) and Lemma [2.1.2) the second part follows from (2.13]),
Lemma and the first part of this lemma. The third part follows from (2.19)), Theorem
and the first two parts of this lemma, and the last part follows from (2.16)), the second and the third

part and again Theorem O

Lemma 2.1.9. There exist cg > 0, 0 < ¢1 < ¢o and 0 < ¢3 < ¢4 such that for HqHHg(I) < ¢
it holds that (g € [c1,ca] and the two eigenvalues of Ap) are elements of the interval [cs, ca).
Furthermore, for i € {1,2,3,4} it holds that

Cizl.

H‘J||H2(1)_>0

Proof. This lemma follows with Lemma [2.1.8| and the fact that the eigenvalues of a matrix contin-
uously depend on its entries. O

As we use the transformation Tp(,) to map g onto {1, it is desirable that this transformation is
one-to-one.

Lemma 2.1.10. For ||qHH2(I) sufficiently small, the transformation Trg: Qo — €y is bijective.

Proof. 1t holds that I'y = Tp(q) (o) by definition of F(q). The fact that Tr)(Q0) C € follows
with the maximum principle for harmonic functions, cf. [16], Chapter I, Theorem 2.2, surjectivity
follows by continuity and injectivity follows from Lemma and [3], Theorem 3.8. O

Assumption 2.1.11. We assume that the constant C' in (2.6]) is chosen sufficiently small such that
Lemma and Lemma [2.1.10/ hold for all ¢ € Q2.

Remark 2.1.12. With Lemma it follows that Assumption holds if « is sufficiently large.
Furthermore, within practical applications like computing the optimal shape of an airfoil, a good
approximation of the optimal shape is very often already known a-priori. For these reasons we think
that this assumption is reasonable.

For the ease of notation, for F' € 724 and u,v € H'(£) we will use the following (bi)linear forms.

a(F)(u,v) = ; Vul - Ap - Vo + uvyp dz, (2.22)
0

I(F)(v) = /Q (f o Tr)vp da. (2.23)

Lemma 2.1.13. The bilinear form a(F)(-,-) is uniformly continuous and coercive in H' (), i.e.
there exist c1,ca > 0, independent of F € F*4, such that for all u,v € H'(Qy) it holds that

|a(F)(u, v)| < et llull g gy 1Vl a) »

a(F)(u,u) > oo ulFi g -

Furthermore, there exists c3 > 0, independent of F € F24 and p € [1, 00|, such that for u € WHP(Qy)
and v € WH9(Qq) with 1/p+1/q = 1 the following Hélder-like inequality holds:

|a(E) (u, v)] < es [[ullproo,) [0llwrag) -

11



2. A model problem

Proof. As the matrix Ap is symmetric, this lemma follows with Lemma and Theorem
O

Lemma 2.1.14. Let F € F24. Then there ewists a unique u € H}(Qo) such that
a(F)(u,v) = I(F)(v) Vo € HY (), (2.24)

and [[ull g1y < cllf o Trl L2 (qq)-

Proof. This lemma is a direct conclusion of the Lax-Milgram theorem, cf. [3], Theorem 4.2, and
Lemma 2.1.13 O

Remark 2.1.15. For q1,q2 € Q* and F3 € F24 let u(q), w(Fy) and u(F3) denote the unique
solutions to (2.24) for F = F(q1), F = F» = F(q2) and F = F3, respectively.

Lemma [2.1.14 motivates the introduction of another solution operator S: Q*d — H{(Qp), which
assigns to each control ¢ € Q* the “transported” solution, i.e. let S(q) = u(q) € H(p) be the

solution of (2.24)) for F = F(q).

Lemma 2.1.16. Let ¢ € Q*, F = F(q) € F™ and v € L*(Q,). Then it holds that v € H*(Q,)
if and only if vo Tp € HY (). Furthermore, the two norms vl g1(q,) and [|ve Trllgiq,) are

equivalent for v € H ().
Proof. Let v € H'(Q,). We have

||v”§{1(ﬂq) / 02 + |Vl dz = /Q (voTr)* vp + |Vv o Tr|* yp dz

Qq 0

IN

c/ (voTr)® + ’DT};.VUOTF‘Q dx
Qo

2
= cllvo Trllf(qy)

Sc/ (voTr)?* + |Vvo Tp|? dxﬁc/ (v o Tr)* vr + |Vv o Tp|* yp da
Qo Q

0

—c [ o+ 190 do = el
q

where we also used Assumption 2.1.11] O

Lemma 2.1.17. Let F € 7, w9 € HY(Q,) and uw = u? o Tr € HE(Qo). Then the following two
vartational formulations are equivalent.

/ ((qu)T Vol + i) do = foldx Vol € Hg (), (2.25)
Qq Qq
/ (VUT +Ap - Vv +uvyp) do = / (foTr)vyrpda Yo € Hy (). (2.26)
QQ Q0
Proof. This lemma can be shown using integration by substitution and Lemma [2.1.16 U

We are now able to reformulate problem (2.4) on the reference domain.

. 1 2 (6 2
min J(q,u, F) = = u—ug ol dr + — , 2.27
i TP =5 [ wo T et Sl 227
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2.1. The problem

subject to

{—AFZO in Q, q {—diV(AF'Vu)—FU’yF :fOTF’yF in Qg,
an

F=gn on Ty, u=>0 on I'y.

Theorem 2.1.18. Let ¢ € Q1. Then q is an optimal solution to [2.4) if and only if it is an optimal
solution to (2.27)).

Proof. This theorem follows with Lemma [2.1.17 and the fact that J(¢,S(q)) = J(q,S(q), F(q))
holds for all ¢ € Q*. O

2.1.2. Existence of a solution

Within this subsection we are going to prove that there exists a solution to problem (2.4)). The
following proof relies on Assumption [2.1.11] which can be partially omitted as mentioned in Re-

mark [2.1.22] Due to Theorem [2.1.18]it is sufficient to show that (2.27)) has a global solution.

Theorem 2.1.19. If the constant C from (2.6)) is chosen sufficiently small in the sense of Assump-

tion [2.1.11), then the problem (2.27)) has a global solution.

Proof. Let j(q) = J(q,u(q), F(q)) > 0 be the reduced cost functional. There exists a minimizing
sequence (Gn, Un = u(qn), Fn = F(qn)),cny With
j= inf j(q) = lim j(gn) = lim J(qn,un, Fy).
n—oo

quad n—o0

As Q% is a convex, closed and bounded subset of the Hilbert space H?(I) it is weakly sequentially
compact, hence there exists § € Q*! such that, up to extracting a subsequence, it holds that

G =7 in H*(I),

n — q in H>5(I), for n — oo,
where the second convergence is due to the compact embedding of H2(I) into H?~¢(I), cf. Theo-
rem A.1.4l Let F = F(q) € F*d and @ = u(F). Due to Lemma it follows that F,, — F in

H5/?75(Qy), hence u(F,) — u(F) = @ in H'(Qp) by Lemma [2.3.21] In addition, vz, — 77 and
ug 0 Tp, — uq o T in L*°() due to Lemma [2.3.15 which leads to

n—o0

lim </ (un — ugo Tr, ) v, dx) = / (w—wugqo TF)Q g de. (2.28)
Qo Q0
As the squared H?-norm is continuous and convex it is lower semicontinuous,
liminf [|gu[l772 1) > [[@llz ) - (2.29)
and by adding (2.28)) and (2.29) we arrive at
J(@,u, F) < liminf J(qn, un, Fp,) = 7, (2.30)
n—o0

and conclude that J(g,@, F') = j. Hence (g, u, F) is a global solution to (2.27). O

13



2. A model problem

Corollary 2.1.20. Every minimizing sequence (qn),cn C Q* contains a subsequence (@ny ) pen Such
that qn, — q in H*(I) for k — oo, where G is an optimal solution to (2.27).

Proof. In the proot of Theorem [2.1.19) we have already proven the existence of such a subsequence
with gn, — gin H2(I). As J(qn,,u(qn, ), F(qn,,)) — J(@, 7, F) it follows that ||gy, ||H2(I) = [[@ll 21y
As within Hilbert spaces weak convergence plus convergence of the norm implies strong convergence,
cf. [3], U6.5, the result follows. O

Remark 2.1.21. Although the state equation (2.24)) is linear, the mapping ¢ — wu(q) is highly
nonlinear and one cannot expect the reduced cost functional j to be convex. Therefore uniqueness
of an optimal solution cannot be shown.

Remark 2.1.22. Although the proof of Theorem depends on Assumption this assump-
tion can be omitted. In [52], Theorem 2.8, the authors show existence of an optimal solution for a
similar shape optimization problem where they just need some sort of compactness of Q4 in Q. As
the proof mentioned in the source cited above is more involved than the one presented here, and as
Assumption is needed throughout this chapter, we decided to include the proof as stated.

2.1.3. The optimality system

Within this subsection it will be shown that the mapping ¢ — u(q) is at least twice continuously
Fréchet-differentiable. We will use this fact to derive a boundary expression for the first derivative of
the cost functional, and then use this representation to show higher regularity of the optimal control.
This differentiability results as well as the regularity results will also be used within Section in
order to derive a-priori error estimates.

2.1.3.1. Differentiability of the control-to-state mapping and first-order optimality conditions

At first we investigate the differentiability of the control-to-state mapping ¢ — u(q), which will be
shown using the implicit function theorem.

Lemma 2.1.23. The mapping Q > q — F(q) € F is at least twice continuously Fréchet-differentiable.
Proof. As the mapping ¢ — F(q) is linear, the result follows with Lemma [2.1.2] O

Lemma 2.1.24. The mapping int (Q*!) 3 ¢ — u(q) € H}(Qo) is at least twice continuously
Fréchet-differentiable.

Proof. We set X = Q, X* = int (@), Y = Y2 = H}(Q) and Z = H (). Furthermore, let
B: Q x Hy(Q0) = H (),
B(q,u) = a(F(g))(u,-) = L(F(g))(-).

Then B is affine linear in » and at least twice continuously differentiable with respect to ¢, as follows

from Lemma [2.1.6) Lemma [2.1.23| and (2.7)). This lemma now follows with Theorem O

In order to be able to use Lemma [2.1.24] to derive optimality conditions, we make the following
assumption.

Assumption 2.1.25. We assume that the optimal control § under consideration is an element of the
interior of the admissible set, g € int(Q?).

14



2.1. The problem

As a result of Lemma [2.1.24] the operator S as well as the reduced cost functional j are at least
twice continuously Fréchet-differentiable. The definition of the corresponding derivatives as well as
some stability results can be found in Section[2.3] Due to Assumption [2.1.25]and the differentiability
of 7 there holds a first-order optimality condition in g, which reads as

7'(@)(q) =0 Voq € Q. (2.31)

Our goal is to use (2.31)) to show higher regularity of the optimal control g. To do so, we first have
to reformulate the transformation equation.

2.1.3.2. A variational formulation for Dirichlet control problems

As the control g enters the equation for the transformation F' on the boundary, (2.8)) is a Dirichlet
control problem which is known not to be of variational type. In [76] various possibilities on how
to deal with such problems are presented. First we take a closer look at the weak solution u to the
problem

2.32
u=g¢g onl, ( )

{—Au:f in Q,

for an arbitrary Lipschitz domains Q C R™. If f € H='(Q) and g € H'/3(T"), then one can proceed
in a standard way as follows. Let T: HY/2(I') — H'(Q) be an arbitrary right inverse to the trace
operator. The existence of such a T is ensured by Theorem The solution to is now
given as u = uq + ur, where up = Tg and ug € HE(Q) solves

(Vug, Vv) = — (Vur, Vo) + (f,v) Vo € HY (). (2.33)

The drawback of formulation is the fact that one has to split v into the sum of the two
functions ur and ug. This makes it more difficult to take the derivative of u with respect to g,
which is crucial in order to derive an optimality system, where we have to take the derivative of
with respect to ¢. One possibility to overcome this difficulty is the use of the very weak formulation,
which can be obtained from the weak formulation of by partial integration once more,

— (u, Av) + (g, Opv) = (f,v) Yo € H}(Q) N H*(Q), (2.34)

which even allows for solutions u € L?(Q) of the boundary value problem. This approach is used
in [27], [36] and [85], a general overview can be found in [48] and [49]. However, it is not clear how
to define a discrete approximation to , for piecewise linear ansatz functions vy are in general
no element of H2(2). We will therefore stick to the approach presented in [13], which includes a
discrete formulation and also coincides with the classical formulation if the input data is sufficiently
regular. In what follows we will present that approach. Let © C R? be a H 3/ 2+e_regular domain,
which is fulfilled if €2 is either polygonal or convex. A precise formulation of this statement can be
found in [49], Theorem 2.4.3 and Corollary 2.6.7. Let f € L*(Q) and g € L*(T).

Definition 2.1.26. Let G: L*(Q) — R be defined as follows. For arbitrary v € L?(2), let 2 € H} ()
be the solution to

(Vz,Vw) = (v,w) Yw € HY ().
Now find A € L?(T) such that

(Vz, Vo) = (v,0) + (A, ©) Vo € H'(Q),

15



2. A model problem

and set

G(v) = (f,2) = {9, M)
Lemma 2.1.27. There exists a unique u € L?(Q) as the solutions to

(u,v) = G(v) Yo e L3(Q). (2.35)
Proof. This lemma follows from [I3], Theorem 4.1. O

Definition 2.1.28. In order to trace the dependency on the boundary values, for Q = Q4 we define,
using the same notation as in Definition [2.1.26

g(gav) = _<gn7A>7

where n shall denote the outer unit normal to I'y.

Lemma 2.1.29. Let f € H-1(Q) and g € H'/?(T'). Thenu € L*(Q) is the unique solution of (2.35)
if and only if it is the weak solution to (2.32]).

Proof. Let € > 0 be fixed such that Q is H%/?*¢_regular, and let
7= {z € HH(Q) N H3/2+5(Q)) Az e L?(Q)} .

From the definition of H3/?>*¢-regularity it follows that —A: Z — L2?(Q) is bijective. Now let
u € HY(Q) be the weak solution to (2.32), i.e.

{ (Vu, Vo) = (f,v) Vo€ HY(Q),

ulp = g.
As Z C H}(Q) it follows that
(Vu,Vz) = (f,2) Vz € Z,
and partial integration yields
(u, —Az) + (u,0p2) = (f, 2) Vz e Z.

Now let v = —Az. From Definition [2.1.26{ and Theorem it follows that A\(v) = Opz, and as
u|p = g we end up with

(U7U) = (fv z) - <g7 )‘> Vo € Lz(Q)a

which shows that u also solves (2.35). As the weak solution as well as the solution to (2.35) are
unique, the result follows. O
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2.1.3.3. The Lagrangian
Now we introduce the Lagrangian for problem (2.27)) via

L:Q* x HY Qo) x H} (Q) x F x L*(p) — R,

(2.36)
L(q,u, 2z, F\G) = J(q,u, F) + l(F)(z) — a(F)(u, 2) + (F,G) — G(q,G).

If u = u(q) and F = F(q), then L(q,u,z, F,G) = j(q) for all z € H}(Qo) and G € L?(). This
fact is well-known and often exploited in order to obtain an optimality system. In general, one is
looking for a stationary point of £, but in order to ensure that every local minima of is also
a stationary point of £ one needs some additional regularity which does not hold in general.

Lemma 2.1.30. Let g € Q*, then F(q) € F* is the unique solution to
Le(q,u, 2, F,G)(0G) = 0 VoG € L*(Qo). (2.37)
Proof. As L is linear in G, it follows that just reads as
(F,6G) = G(q,6G) VoG € L* ().
This lemma follows with Lemma 2.1.27] and Lemma 2.1.291 O

Lemma 2.1.31. Let ¢ € Q™ and F = F(q). Then it holds that u(q) € H(Q) is the unique
solution to

L. (q,u,z F,G)(§z) =0 vz € H(Q). (2.38)

Proof. As I(F)(-) as well as a(F)(u,-) are linear, it immediately follows that £ exists. As (2.38)
just reads as

a(F)(u,02) = I(F)(6z) vz € HE (),
this lemma follows with Lemma O

Lemma 2.1.32. Let ¢ € Q*, F = F(q) and u = u(q). Then there exists a unique z € Ha ()
such that

L (q,u,2 F,G)(du) =0 Vou € Hi (). (2.39)
Proof. First, equation can be written as
a(F)(6u, z) = J..(q,u, F)(du) You € Hy(Qo),
which reads as
a(F)(0u, z) = (v — ug o Tp)yr, 6u) Vou € HY (). (2.40)

As the right hand side in (2.40]) is a continuous functional on L?(), existence and uniqueness
again follow with Lemma [2.1.13] and the Lax-Milgram theorem. O

Remark 2.1.33. With z(q), z(F) or z(u) we will denote the adjoint state z as the solution to (2.39)
for given ¢, F or u, cf. Remark 2.1.15
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2. A model problem

To follow the standard procedure, we are now going to compute the derivative of £ with respect to
F, which exists due to Lemma[2.1.6] The goal is to prove the existence of an adjoint transformation
G € L*(Q) such that L (q,u, 2, F,G)(6F) = 0 for all §F € F. As the transformation F enters £
in a highly nonlinear way, we split the computation. First, it holds that

1
Tela,w, F)YOF) =5 [ (u—uao Te div(yp DT 6F) do
Qo

- / (u —ug o Tp) (Vugo Tp)! - 6Fvyp da
Qo

1 (2.41)
= / 3 (u—wugo Tp)2 fypéFT . DT},?T -nds
1)
- / (u—ugoTr)Vu - DT;' - §Fyp da,
Qo
In(FYOF,2) = | foTpdiv(ypDIR"-0F)z+ (VfoTr)" - 0Fypzdx
Qo
(2.42)
= — foTrypVzTl - DTF_1 -0F dx,
Qo
adp(F)(0F,u,z) = Vaul - Al sp - Vz+uzdiv(yr DT;' - 0F) dx
o (2.43)

= ; vul - Apsp-Vz— (uVz + 2Vu)! DT;' - §Fypdx,
0

where we used the divergence theorem, Vf o Tr = DTy TV (foTr) and the analog formula for
ug as well as the fact that uz € Wol’p(Qo) for p < 2 due to Theorem By combining (2.41]),
(2.42) and (2.43)) with the definition of the Lagrangian, (2.36)), we get

1
Lipla, 0.5 F.G)YOF) = [ (u=ugoTe) 4edF" DI nds
To

—/ (u—wugoTr)Vul - DT - §Fypda
Qo

-/ foTpypVzl DT - 6F da (2.44)
0
- Vaul - Apsp-Vz+ (uVz + 2Vu)' - DT.! - §Fvypdx
Qo
+/ 0F Gdx.
Qo

Lemma 2.1.34. Let g € Q*, u = u(q), z = 2(q), F = F(q) and G € L*(Q). Then there exists
d € H' () such that

£/F(Q7uaZ7Fa G)((;F) = <_d7 5F)H1(QO) + (5F7 G) VoF € Hl(QO)v

i.e. the derivative L':(q,u, z, F,G) is a continuous linear functional on H' ().

Proof. Linearity of L'-(q,u, z, F, G)(-) follows from (2.44)) and Lemma With Theorem [A.1.31
we get the improved regularity u(q), z(q) € W01’4(Qo), and the boundedness of £} in H*(Qp) with

respect to dF follows with Lemma [2.3.18 and Theorem [A.1.3] The Riesz representation theorem,
[3], Theorem 4.1, now ensures the existence of such an element d € H'(Q). O
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Remark 2.1.35. As u,z € H3/?75(Qp) but in general u,z ¢ H3/?(Qy) due to Theorem |A.1.30
Theorem [A.1.14and the definition of A% ;p, (2.20)), it follows that L(q,u, z, F, G) is in general not

a continuous linear functional on L?(£)). Tt follows that the equation
Lp(q,u(q), 2(q), F(q), G)(OF) =0 V6F € H' (),

need not have a solution G € L?(q) for general ¢ € Q2.

With Remark [2.1.35]it follows that, in order to show the existence of an adjoint transformation
G, it is necessary that the (adjoint) state as well as the transformation have a higher regularity.
This is the case if the corresponding control is more regular.

2.1.3.4. Higher regularity of the optimal solution

Now we are going to prove higher regularity of the optimal control, namely g € H 9/2 (I). In order
to do so we exploit the first-order optimality condition (2.31)), which relies on Assumption [2.1.25

@ 00) = ST @+ tog.u(a+t59), Fla +t5g))

t=0

d
= —L(q@+1tdq,u(G+1tdq),z, F(G+1tdq),G)

1 Vz € HS(Q()), G e LQ(QQ).

t=0

We now choose z = 2(q) and G = 0. With (2.31)), Definition and Lemma [2.1.32] we get

7@ (0q) = L(q,u(q), 2(q), F(q),0)(dq)

S - (2.45)
+ Lr(@,u(2), 2(2), F(7),0)(6F) =0 Véq € Q, 0F = F'(q)(6q) € F.
With Lemma [2.1.34] we can rewrite (2.45)) as
a (q,0q) g2y — (ds 0F ) i) = 0 Vég € Q, 0F = F'(q)(6q) € F, (2.46)

with some d € H'(Qg). Using the Cauchy-Schwarz inequality it follows that

(d, (5F)H1(QO) < ||dHH1(Qo) ”(SFHHI(QO) )

Furthermore the mapping d¢ — O0F is linear and [|0F| 1)) < cl|0q| g1y, which proves the
existence of d; € H'(I) with

(d, 6F)H1 Q) = (dl, 5q)H1(I) Yiq € Q. (247)
Inserting (2.47) into (2.46|) yields
«a (a, 5q>H2(I) = (dl, 5q)H1(I) V(5q € Q (248)

To proceed, we need the following lemma.

Lemma 2.1.36. Let X € HZ.(I) and ¢ € Hy (I) such that

per
(A, ‘P)HQ(I) = (ﬂ’a‘P)Hl(I) Vo € Cpe:(1). (2.49)
Then it holds that \ € H?

per(1):
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Proof. Equation (2.49)) just reads as

27 2T
/0 N+ N + Apdx = | ' +ppda Vi € Cpe,(1).

Partial integration yields

2 27
/0 (V' — A+ ) o da = /O (“A+ ) pda Ve € C (D). (2.50)

As (2.50)) is just the definition of the second weak derivative and (—\ + ) € H}

per(1), this yields

(' = A+ 9) € Hyor(T) C Hper (1),

(I), hence \ € H?

and because of X\,¢ € H},(I) we end up with X" € H per(1)- O

per

Applying Lemmamm §) yields g € H3(I), and Theoremproves F e H"/?(Qp) and
DF € H%?( L,1/2 . As a result it holds that Ax, 77 € C11/2(€Qy), and Theorem
yields w,z € WQ’p (Q0) for D < 00. Theorem now implies Vulp , VZ|p, € Wi=1/pp(Ty). Due
to this improved regularity we can further snnphfy some of the expressions within (2.44). First
recall that

/ _ -1 o -1 o o T =T
Aly ;. = trace (DT - DSF) A — DI' - DOF - Ay — Ag:- DaFT - DT
For the first part it holds that
~ | V@' Ag - Vztrace (DT - DIF) da
Qo

_ T -1 T oo givf v Tv—1 .
= J, v DIl DT . Vzdiv(yp DI - 6F) da

B / (DT§T ' VH>T' (DT%T ' Vf) ypoFT - DT - nds (251)
o

T T

B T e ~1

+/QOV<<DTF -va) - (DT -Vz)) DT - §Fypda.
It also holds that

T T T g 1
/QOV<<DTF -Vu) '<DTF Vz)> DT <0 Fypdw
+ | va- (DT;' - DSF - Ap + Ay - DOFT - DI - Vzda
= [ v Ap-V (VE" DIt 6F) + V2T Ap -V (Va' - DTL0F ) da (2.52)
= —/Q div(Ap - Va) Vz' - DT - 6F — div(Ap - Vz) Va' - DT - 0F da

+2 /F (D757 W)T (DT Vz) 4o FT - DT - nds,
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2.1. The problem

If we insert (2.51) and (2.52) into (2.44)) we finally arrive at

=0

+ /Q (CdivtAp - V) + 27 — (@ vao Tr)oy) (Va" DI 6F) do

=0

+ 0F Gdx,
Qo

where we used the strong formulation of the (adjoint) state equation, (2.38]) and (2.39)), which hold
due to the improved regularity of w and Z. As in the proof of Lemma [2.1.34] it is now possible to
show that there exists dy € H'/?(T) such that

Lr(q,u,z, F,G)(6F) = —(dy, F) + (6F, G) VoF € F. (2.53)

We now want to choose G € L?(€p) such that (2.53)) vanishes. Due to Theorem there exists
H € H}(Q0) N H?(Q) with 9,H = da. Now define G = AH € L%({)), it follows that

(6F,G) = (0F, AH)

(2.54)
= — (VOF,VH) + (6F,0,H) = (6F, d),

where the first term vanishes due to the fact that §F is weakly harmonic and H € HE (). Insert-

ing (2.54)) into (2.53) yields
Lw(q,u,z, F,G)(6F) =0 VOF € F,
and we arrive at

7'(@)(6q) = £4(7,5, %, F, G)(dq)

= a (4, 09) y2(py) — 9(0¢, G) Vig € Q.

Using the definition of H and G as well as Definition [2.1.28} it finally follows that

Ja@ea - |

o
+a(q,09) 2y -

T
<§ (- usoTp)* + (DT - va) '(DTET'WDWFT‘DT;'M’S (2.55)
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2. A model problem

Remark 2.1.37. One may note that looks similar to shape derivatives obtained by different
methods, as done for example in [65], [73] and [I0I]. The fact that we end up with a boundary inte-
gral is due to the well-known Hadamard-Zolesio theorem, cf. [I0I], Theorem 2.27, which states that
the derivative of a cost functional with respect to domain perturbations can always be represented
as an integral over the moving part of the boundary, given sufficient smoothness of all the involved
functions.

Remark 2.1.38. As H € H(Qo) N H?(p) is only defined modulo HZ(€p), it follows that G need
not be unique. However, it easily follows from Definition that for H € HZ(9p) and G=AH
it holds that

G(dq,G) =0 Yéq € Q.
This observation is supported by , which is independent of H and G.
The following lemma can be proven similar to Lemma
Lemma 2.1.39. Let X € H3,.(I) and ¢ € Hée/f(l) such that
(A @) ey = (@) 2y Vo € Cpe (D).

Then it holds that \ € Hgérz(l).
Lemma [2.1.39 now proves the following theorem.

Theorem 2.1.40. Let g € Q*! be an optimal solution to [2.27)) in which Assumption holds.
Then we have the improved reqularity g € HY/?(I).

Remark 2.1.41. By using a bootstrap argument it is possible to show an even higher regularity
of g. Using Theorem , one can show that g € H'(I), F € H"Y/?(Q), 4,z € H*(Qp) and
G € H%?275(Qy). A further improvement is not possible in general due to the regularity of f and ug,
cf. . Any further improvement in the regularity of f and ug would result in a further improved

regularity of q,%,z, F and G. For f,ug € C®(Q) we get g € C2.(I) and u,z, F,G € C*(£y).

per

2.2. Discretization

Within this section we are going to discretize problem ([2.27) using finite elements for the control,
the state and the transformation.

2.2.1. Discretization of the control

We start by discretizing the control. Let N € N, let 0 = ¢ < 21 < -+ < zny-1 < TN = 27
be a partition of the interval I and let I; = (xj,xj41) for j € {0,--- ,N — 1} be the associated
subintervals. The discretization parameter will be denoted with

o= max |[].
0<j<N-1

Now we define the space of (admissible) discretized controls via

Qo = { a0 € Qlasly, € PL) V) € {0, N~ 1}}, (2.56)
Q¥ = Q™ N Q,, (2.57)

i.e. the discretized controls are piecewise polynomials of degree at most three and globally contin-
uously differentiable. Note that it also follows that Q, C W°°(I).
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2.2. Discretization

Definition 2.2.1. Let i,: Q — @, ¢ — i,q be an interpolation operator which is defined as

(icq) (z) = q(z;),

(i0q) (z;) = ¢ (), (2.58)

for all j € {0,---,N —1}. As the elements in @), are piecewise polynomials of degree three
and gives four conditions on each subinterval I;, it follows that i,q is well-defined.
The following lemma can be shown using the Bramble-Hilbert lemma.
Lemma 2.2.2. Let s € [2,4] and g € QN H*(I). Then it holds that
HiUQHHQ(I) <c HQHH2(I) )
g = ioqll g2y < s \q] grs(ry -

The first partially discretized problem now reads as

min J(qs,u, F 559
qUEQ?rd7U€H&(QO)7Fefad (q ) ( )
subject to
o(F)(u,v) = UF)(v) Yo € HE(Q).

Theorem 2.2.3. For o > 0, problem (2.59)) has an optimal solution q,,.

Proof. In order to prove this theorem one may proceed as in the proof of Theorem [2.1.19| or use the
fact that dim (Q,) < oo. O

2.2.2. Discretization of the state

In order to discretize the state and the transformation, we first have to construct a polygonal approx-
imation to the domain €. For h > 0 sufficiently small, let zo,z1,- -,y ) denote M(h) points
on I'g such that the distance between any two consecutive points (modulo M (h)) is bounded from
above by h (possibly up to a given constant factor), and let Qg j, C Qg be the polygonal and convex
domain with vertices xo, 21, -+, Zpr(n). Hence, {Qo4},- is a family of domains approximating €.
For fixed h > 0, let 7, be an admissible partition of gy, into triangles and/or quadrilaterals in the
sense of Definition where the maximal edge length of each triangle or quadrilateral shall be
bounded from above by h. For each K € 7y, let hx denote the maximal length of its sides, and let
pk denote the radius of the biggest inscribed circle.

Definition 2.2.4. Let h > 0 be fixed. The triangulation m, of €} is called admissible if the
following three conditions are satisfied.

e [t holds that

= U %
Kem,

o If K1,Ks € 7, and K1 N Ky = {x} with z € Qo p, then z is a vertex of both K and K».

23



2. A model problem

o If K1, Ky € my, K1 # Ky and () # K7 N Ky # {z}, then it holds that K; N Ky = {E}, where
E C (0K1 NOKy) is an edge of both K; and Kj.

Definition 2.2.5 (Shape-regularity). The family of triangulations {7}, is called shape-regular
if there exists k > 0 such that

h
7K§/"v',

PK

holds uniformly for all h > 0 and K € mp,.

Definition 2.2.6 (Quasi-uniformity). The family of triangulations {m},- is called quasi-uniform
if there exists ¢y > 0 such that

h < coh,
holds uniformly for all h > 0 and K € mp,.

Remark 2.2.7 (Usual regularity assumptions). We will say that a family of admissible triangulations
{7h} o fulfills the usual regularity assumptions if it is both shape-regular and quasi-uniform in the
sense of Definition and Definition 2.2.61

Remark 2.2.8. If K € my, is a triangle, then it can be shown that shape-regularity is equivalent to
the fact that the minimal inner angle of K is uniformly bounded from below. Quasi-uniformity is
equivalent to the fact that the ratio of the area of the smallest triangle or quadrilateral to the area
of the biggest triangle or quadrilateral within one fixed triangulation 7 is uniformly bounded from
below for all A > 0.

If not stated otherwise we will always assume that {7}, fulfills the usual regularity assumptions
in the sense of Remark The finite element ansatz spaces are now defined as

Vi ={v, € H(Qop)| valx € RNK)VK € m,}, (2.60)
Vio = Vi N Hg(Qo,p), (2.61)

where we used the abbreviation

PLK) if K is a triangle,

2.62
QY K) if K is a quadrilateral, (2:62)

WWF{

where Q'(K) is the space of bilinear polynomials over K. We also have to define approximations
to the (bi)linear forms and the cost functional. As every function v € V}, o can be extended by zero
onto the whole domain 2, we can regard Vj, o as a subspace of H}(€).

a
Ig.wF) = [ (=g Tl ardo+ 5 lalfeg). (2.63)
0,h
ap(F)(u,v) = Vul - Ap - Vo + uwvyp de, (2.64)
Qo,n
Ih(F)(v) = f o Trpvyp da. (2.65)
QO,}L
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Now define the next partially discretized problem as

min Jn(qo, up, F'
20€Q24 up €V}, o, FeFad ndo:un, F)
subject to
(F,G) =G(¢0, G) VG e L2 (),
ah(F)(uh,vh) = lh(F)(Uh) Yoy, € Vh70.

The following theorem can be proven similar to Theorem
Theorem 2.2.9. For o,h >0, problem (2.66) has an optimal solution g, ,.

2.2.3. Discretization of the transformation

2.2. Discretization

(2.66)

The discretization of the transformation is analog to the discretization of the state, as in Subsec-
tion [2.2.2} let {Qox},., be a sequence of polygonal approximation to Qg and let {m},., be a
corresponding family of triangulations fulfilling the usual regularity assumptions. Now let

Vi = {vp € H' ()| vilx € RUK)VK € m.},
Vio = Vi N H (1),

Vo, = {gk € L*(To)| Juy, € Vj such that g = Uk|F07k} ;

My, = {vg € Vi|vg(z;) = 0 for all interior nodes z; of m},

2.67
2.68

2.69

(
(
(
(2.70

)
)
)
)

where R (K) is defined as in (2.62)). Furthermore, using the extension as presented at the beginning
of Subsection it is possible to regard Vj as subspace of H!(€). With these definitions at
hand we can now formulate the discrete transformation equation, cf. Subsubsection [2.1.3.2]

Definition 2.2.10. For f € L*(Qoy) and g € L?(Tg ), let Gx: L?(Q0x) — R be defined as follows,

cf. Definition [2.1.26] For v € LZ(QOJC), let 23, € Vi 0 be the solution to

(Vap, Vwg), = (v, wg), Vwy, € Vi o-

Now find A\, € Vk,r‘oyk such that

(Var, Vor), = (v, 01) + Mk, 0r)k Vi, € My,

and set

gk(’U) = (f7 Zk)k - <gv)‘k‘>k:~

Lemma 2.2.11. There exist a unique ug € Vi as the solutions to

(uk, V&) = Gr(vk) Yo, € V.
Moreover it holds that
(Vug, Vog),, = (f, v%) Vo € Vios
uk|r‘k = Pk?ga

where Pyg is the L?-projection of g onto the space Vil
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2. A model problem

Proof. This lemma follows from [13], Lemma 5.1 and Theorem 5.2. O

Definition 2.2.12. In order to trace the dependency on the boundary values we define, using the
same notation as in Definition [2.2.10

Gr(q,v) = = (I (gn), Ak,

where n shall denote the outer normal to I' and Il;: L*(T') — Vi r, shall denote the orthogonal
projection from I' onto I'y, followed by a L2-projection on the space of discrete boundary values,

i.e. (1) = Qx(%) in the sense of Definition [A.2.12

We also define the spaces for the discrete transformations.

Fr = { Fx € Vk| J¢» € Q, such that Fj, = Fj(q) solves (2.74)}, (2.71)
Fpd = { F}, € Vi| 3¢» € Q2 such that Fj, = Fy(q) solves [2.74) } . (2.72)

Now it is possible to state the fully discretized problem.

min In(qo, un, Fi) (2.73)
4o €Q34 up V), o, F€FRA
subject to
(Fk, Gr)y, = 9x(q0, Gi) VG, € Vi, (2.74)
an(F)(un, vn) = b (Fr)(vp) Yoy, € Vio.

The following theorem can be proven similar to Theorem [2.2.3] and Theorem [2.2.9
Theorem 2.2.13. For o,h,k > 0, problem (2.73|) has an optimal solution G, j, .-

As shown in [52] it is possible to prove that every sequence of optimal controls (thk)a B0

to (2.73)) contains a subsequence which converges to an optimal control to (2.27). Within Subsec-
tion we will prove kind of an inverse statement, that for every local optimal control to ([2.27)
there exists a converging sequence of local optimal controls to (2.73)).

2.3. A-priori error estimates

The aim of this section is to derive error estimates for the error between the optimal control to
the continuous problem (2.27) and the optimal control to the fully discretized problem (2.73). The
main result of this section will be the following, the proof can be found on page

Theorem 2.3.1. Let G be an optimal control to (2.27). Then there exists a sequence (§a7h7k)0h >0
of local optimal controls to (2.73) and ¢ > 0 such that

7 - qo,h,ka(I) <c(o + 0+ k),
for o,h, k — 0.

As already indicated in the previous theorem, we will, if not explicitily stated otherwise, always
assume that o, h and k are chosen sufficiently small. We start by recalling the definition of the
state, its (partially) discretized counterparts as well as their derivatives with respect to domain
perturbations.
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2.3. A-priori error estimates

Definition 2.3.2 (The continuous state).
e u=S(q) € H}(Qo) is the solution of
a(F)(u,v) =I(F)(v) Yo € HE (),
where F' = F(q).
e Su=S5(q)(6q) € Hi(Qp) is the solution of
a(F)(6u,v) = (f o T, vdiv(yp DT - 6F)) + ((v foTe)T . oF, mp)
— (Vu, A sp - Vv) — (w,vdiv(yp DT - 6F)) Yo € Hj(Q),
where 0F = F'(q)(dq).

o S7u = S"(q)(6q,7q) € H}(Qp) is the solution of
a(F)(d1u,v) = (f o Tp,v (trace (DIF) trace (DTF') — trace (DOF - DTF)))
(rF"-N?fo Ty 6F,vyr) — (Vu, Afsprp - V)
Vo Tp)" - 0F, vdiv(yr DTy 7F) )

S

(
((VfoTp)" - 7F,vdiv(yr DT} - 3F) )
— (Vru, Apsp - Vo) — (Véu, Ap . p- Vo)
— (Tu, v div('yp DT},?1 . 5F)) — ((5u, vdiv('yp DT},?I . TF))
— (uv, trace (DOF) trace (DTF') — trace (DOF - DTF)) Yo € HE (),

where Tu = S'(q)(7q) and 7F = F'(q)(7q).

Definition 2.3.3 (The partially discretized state).
e up = Sp(q) € Vi is the solution of
an(F)(up,vp) = U (F)(vp) Yoy, € Vo,
where F' = F(q).

o dup, = S} (q)(0q) € Vi is the solution of
an(F)(Oup, vn) = (f o T, vy div (v DT - 6F)), + ((Vf oTe)! - 6F, va)h
— (Vuh, A'F’(;F : Vvh)h — (uh, Up diV("}/F DT},?1 : 5F))h Yoy € Vi,
where 0F = F'(q)(dq).
o otup, =S} (q)(dq,7q) € Vi is the solution of

an(F)(d1up,vn) = (f o Tr, vy, (trace (DIF) trace (DTF) — trace (DOF - DTF))),,
+ (TFT-V?foTr - 6F,vopvr), — (Vun, Abspop - Vo),

(VfoTF '5F,vhdlv(’yFDT51'7'F))h
+ ((VfoTe)" - TF,updiv(ye DT} - 6F))
— (VTuy, AF,&F . Vvh)h — (V&uh, A’F’TF . Vvh)h

— (Tuh, g div(vF DTEI . (5F))h — (5uh, g div(yp DTI;1 . TF))h
— (upvp, trace (DOF') trace (DTF) — trace (DOF - DTF)), Yoy, € Vo,
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2. A model problem
where Tuy, = S) (q)(7q) and T7F = F'(q)(7q).
Definition 2.3.4 (The fully discretized state).
o up i = Shir(q) € Vi is the solution of
an(Fr)(Unk, vr) = In(Fr)(vn) Yoy, € Vi,
where Fj, = Fi(q).
o dupk = 5}, 1(q)(3g) € Vip is the solution of
an(F)Gun g, vn) = (f o T vn div (75, DT5! - 3F) )+ ((9f 0 Tw) - 6F, vnrm, )
— (VthC, AleyéFk . Vvh)h — (Uh,k, vp, div <7Fk DTF;1 . 5Fk))h Vo € Vi,
where 0Fy, = F}(q)(dq).

o OTup ) = 5’,’1’7k(q)(5q,7q) € Vi 0 is the solution of

—~

ap(Fy)(0Tup g, vn) = (f o T, , vy, (trace (DO Fy) trace (DT F),) — trace (DOF), - DTFy))),

TFkT . sz oTp, - 5Fk,vhfypk)h — (Vuhyk, A'Jfﬂk,tng,TFk . Vvh)h

Vo T)" - 6Fy v div (e, DT7! - TFk))h

Vfo Tpk)T -TFy, v div(ka DTI;; . 5Fk))h

V7unk, Ar, 57, - Vvh)h — (Véung, A +p, - Vvh)h

— (Tup , vy div (’YFk DTI;k1 . 5Fk)>h - <5uh,k, vy, div(ypk DTE}C1 . TFk>>h
U,k Vh, trace (DO F},) trace (DT Fy) — trace (D6 Fy, - DTFy)), Yoy, € Vo,

—~

+
+((
+((

/N 7 N

—

—~

where Tup, ) = S,’Lk(q)(Tq) and 7F = F}(q)(Tq).

For the ease of notation we introduce the following abbreviations for some of the right hand sides
within the previous definitions.

Definition 2.3.5. Let

IO(F,0F,u)(v) = (f o T, vdiv(yp DT - 6F)) + ((v foTe)T - F, WF) — (Vu, Ao - V)
— (u,vdiv(vp DT]‘;1 . 5F)) ,

I} (F,6F,u)(v) = (f o Tp,vdiv(yp DT - 6F)), + ((Vf oTp)" - 6F, mF)h — (Vu, A sp - Vo),
—

U, vdiv(*yp DTEI . 5F))h ,
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2.3. A-priori error estimates

and
1%7(F,6F,7F,u,0u,u)(v) = (f o TF, (trace (DOF) trace (DTF') — trace (DOF - DTF)))

+ (7' foTr-0F,vyp) — (Vu, AL 55 - V)
—i—(VfoTFT 5de1v('yFDT TF))
+((Vf oTe)" - 7F,vdiv(yr DT - 6F) )

— (Vru, Al sp - Vo) — (V(SU,A’F’TF - V)
— (Tu vdlv('yp DT ! 5F)) — (5u,vdiv('yp DT]El TF))
— (uv, trace (DO F) trace (DTF') — trace (DOF - DTF))
(fo TF, (trace (DOF) trace (DTF) — trace (DOF - DTF'))),
(T foTr-0F, v’yp) — (Vu, A} FoFTF VU)

_l’_
+ < VfoTF -(5F,vd1v(*yFDTE
+(

li’T(F, OF, 7F,u,du,7u)(v) =

TF))
(VfoTr)" - 7F,vdiv(ye DTy - 5F))h
— (VTU, AF,(iF . V'U)h - (V(S'LL, AIF,TF . V'U)h
— (TU,’UdiV(’)/F DTE1 . 5F))h — (5u,vdiv(’yp DTZ;1 . TF))h
— (uw, trace (DOF) trace (DTF) — trace (DOF - DTF)),, .

We also recall the definitions of the cost functionals and their derivatives. Within the following
three definitions let ¢ € Q*, 6q,7q € Q, F = F(q), Fi. = Fx(q), 0F = F'(q)(8q), TF = F'(q)(Tq),
0F), = F{(q)(0q) and 7F}, = F\(q)(7q).

Definition 2.3.6 (The continuous cost functional).

0) = 5 (S(0) — g o T (S(0) — ua o Te) ve) + 5 lalByacr
7(@)(50) = 5 (S(a) — g o Tr, (S(a) — ug o Te) div (7 DI - 6F))
+ (5’ — (VugoTr)" -6, (S(q) — uao Tr) ’YF) + (4, 69) 12 )
i"(q)(0q,Tq) = % (S(q) —ugoTr,(S(q) —uqg o Tr) (trace (DIF) trace (DTF') — trace (DOF - DTF)))

+ (8'(0)(6a) — (Vuao Tp)" - 6F, (8'(g)(rq) — (Vua o Tw)" - 7F) 1)

+ (S(q —ugo Tp, (S'(a)(6a) — (Vugo Tp)" - 6F ) div(yp DT; " - 7F))

+ (8(a) — a0 Tr, (S'(a)(rq) = (Vug o Tp)" - 7F ) div (7r DT} - 6F))

+(S(q) —uao Tr, (S"(q)(6¢,7q) — TFT - V?ug 0 T - 6F) yr) + (8¢, 7q) o) -

Definition 2.3.7 (The partially discretized cost functional).

Jn(a) = 5 (Sh(Q) —ug o T, (Sp(q) —uqoTr)Vr), + % lallZr2(r)
. 1 . _
Jn(q)(8q) = 3 (Sh(q) —uqgoTr,(Sp(q) —uqgoTr) le(")/F DTF1 . (5F))h

+ (S4(@)(39) = (Vua o Tr)" - OF, (Su(a) = wa o Te) 1r) |+ (q.60) 21y
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2. A model problem

Jn(@)(6¢,7q)
(Sh(q) —uqg o T, (Sh(q) — uq o Tr) (trace (DO F') trace (DTF) — trace (DOF - DTF))),

1
2
(Sh(@)(6a) = (Vuao Te)" - 6. (Sh(a)(rg) = (Vua o Te)" - 7F ) i)

(Sn(@) = wao Te, (Sh(a)(Ga) — (Vua o Te)T - 6F ) div(ye DTy - 7F) )
<Sh(q) —uqgolp, (S;L(q)(Tq) — (Vugo TF)T . TF) diV(’}/F DTEI . 5F))h

(Sh(q) —ugoTr, (Sl/{(q)(éq, Tq) — 7FT  YV2uy0Tp - (5F) ’yp)h + a (dq, T(])Hz([) )

Definition 2.3.8 (The fully discretized cost functional).

1 «
() = 5( ni (@) = ua © Ty, (Sna(@) = wa © Tr) vy + 5 iy
. 1 . 1
_] 0q) = 3 (Sh,k —uqgoTp,,(Shir(q) —uqoTr,) le(’}/Fk DTFk . 5Fk)>h
+ ( 1(0)(6q) — (Vug o Tr,)" - 6Fk, (Shi(q) — ua o Tr,) ’YFk>h +a (4, 09) 2y »

4

Jnk(@)(0g; Tq)
% (Shk(@) — 1a 0 Try, (Sh(q) — g © Ty, ) (trace (DSFY) trace (D7 Fy) — trace (D3Fy - DTFY))),

(S hie(q — (VugoTr,)" - 6 Fy, (Sﬁ,k(Q)(TQ) — (VugoTr,)" - TFk) ’YFk)h

(SM ~ a0 Ty, (S50 (00) = (Vua o Tr,)" -0} ) div (75, DTG - 7Fy ) )

(S14(0) — wa o oy, (S14la) (7) — (Va0 T )T - 7 ) div (v, DTR! - 95) ).

(Sh,k q) —uqoTr,, (Sh 1k(q)(6g,7q) — TFE - VZug o TF, - 5Fk) ’YFk)h + a (g, TQ)H?(I) :

+ o+ o+ 4

2.3.1. General stability estimates

This subsection is devoted to some general stability results which will be needed throughout in this
section.

Lemma 2.3.9. For F, E € F24 it holds that

|a(F)(u, v) = a(E)(u, )| < e [[F = Bl g2ve ) 1ull 71 0q) 01l 1 (020) »
|a(F)(u, v) = a(E)(u, 0)] < e [[F = Ell a2+« (0,) lullyra-<(qq) 10l 51 »

|a(F)(u,v) = a(E)(u, v)| < e | F' = Ell gasa+=(qq) 1ull ga/2-2 g 10111y -

Proof. For the first part it holds that

a(F)(u,0) = a(E) (w, )| < lull sy 10l 20y (14F = Al + 11 = V8l v
< CHUHHl(QO) HUHHl(QO) |1 F - EHWLoo(QO)

< ce ”uHHl(QO) ||”HH1(QO) |1F— E”H2+€(Qo) :
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2.3. A-priori error estimates

Using the same approach we get

2—¢

o), 0) = ), 0] < el oll (147 = Asll sz o+ bor =22 sz )

< cllullyr,a—e ) 101 ) 1F = E\\Wl,égmo)
< e [lullwra-< (o) 1Vl a0y I1F = Ell ozt (aq) »

where we used the fact that lim,_ g+ 821285 = 4. The last assertion follows from the continuous

embedding H3/27¢1(Q) «— W'4=22(Q), where g3 = e3(g1) > 0 can be made arbitrarily small,
depending on the choice of £1 > 0. O

Remark 2.3.10. We would like to mention that, with a slight abuse of notation, the £ within the
second and third line of the statement of Lemma need not be the same (even within one line),
but both can be made arbitrarily small.

Lemma 2.3.11. For F € 724, F, € 7 and p € [2,4] it holds that

|an(F)(u, v) = an(Fy) (u, 0)| < ¢||F = Fillyo(g,) IIUHWL%(QW 10l e ) »
|an(F)(u, v) — an(Fi) (u, 0)] < e [[F = Fillyave g 1l s q.) 101100 ) -
|an(F)(u, v) = an(Fy) (u, v)| < ce |[F = Fillwrare iy lullwra—cq ) 10l @) -
Proof. The proof is similar to the proof of Lemma [2.3.9 O
Lemma 2.3.12. For F, E € F* and v € L?(Qp) it holds that
L(F)(v) = UE) ()| < cl|F = Ell g10,) 101l 12(00) -
Proof. 1t holds that
L) (v) = L(E)(v)]
< el 2y (1 © Trlloe gy e = V5l aay) + 118l e I © Tr = £ © Trll 2y

< cllollpz (o) 1 = Ell () -

where in the last step we used the Lipschitz continuity of f and the boundedness of 724 in H%/2(0)).

O
Lemma 2.3.13. For F € F2d gnd F}, € ]-'f;d it holds that
W (F) () = (B)@) < e |F = Fillg ) 1ol 220y o -
Proof. The proof is similar to the proof of Lemma [2.3.12] 0

Lemma 2.3.14. For F € F2d it holds that

Hf o TFHC'1*1/2(970) <cgc, H’YFHH3/2(QO) <eg,
l|lug o TFH01,1/2(970) <gc HDTI*:IHH?’/Q(QO) <6

ITe 5/2(0) < €
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2. A model problem

Proof. The estimates for f and ug follow from the fact that f,uq € CQ(Q) and the fact that F2d
is bounded in H??(Qp) — C"'/2(Qy). This last fact also proves the estimate for Tp, which, in
combination with Theorem and Lemma [2.1.4] also proves the remaining two estimates. [

Lemma 2.3.15. For F,E € F* it holds that

If o Tk = foTrlrqy < ¢llF = Ellrqy) for p € [1, o],
IVfoTr =V foTelrqy < cllF = Ell sy, for p € [1, oc],
|V2f o Tp — V2fo TEHLP(QO) <c|F = Ell 1) for p € [1, o0,
[ o Tp — ug o TEHLP(QO) <c|F- EHLP(QO) for p € [1, 00],
[VugoTp = Vug o Tg| 1o, < cIlF = Ell o) for p € [1, 0],
|V?ug 0 Tr — VZug o TEHLP(QO) < c||F = Ellppq) for p € [1, 0],
ITr = Tell s ) = 1 = Ell gs () for s > 0,
IDTF — DTx| s (p) < I1F = Ell gst1(a) for s > 0,
17e = VBl s o) < ¢ I1F = Ell gsr1(qq) for s € [0,3/2],
DT - DT;HHS(QO) < es||F = Bl gosiag) for s € [0,3/2].

Proof. As f is Lipschitz continuous, we get
HfOTF— OTEHLP (Q0) / |fOTF—fOTE’p dz
Qo

C/ |TF—TE|p dz
Qo
= c|[F = Ell}q,

for p < oo, and it is clear that this statement also holds for p = co. The proof for the estimates of
the higher derivatives as well as the proof for the estimates related to ug follow in an analog way.
What is left follows from Lemma and Theorem O

Lemma 2.3.16. For F € F* and 6F,7F € F it holds that
||7F”H3/2(QO) <c
HV%,&FHHs(QO) < s [|0F | grat1(0) for s € [0,3/2],

H’Y%,(SF,TFHHs(QO) < Cs ”(SFHHS+1(QO) HTFHHs+1(QO) for s > 1.

Proof. The first part follows from Lemma [2.3.14] the second and the third part follow from the
representations obtained in Lemma [2.1.6] and Theorem [A.1.5] O

Lemma 2.3.17. For F,E € F™ and 6F,7F € F it holds that

Ive = VEl s (00) < €5 |F = Ell sty for s € [0,3/2],
|Vrsr — ’YE,(SFHHs(QO) < s |F = El| gst1(qq) 10F | grs+1(00) for s > 1,

" "
VYrsFrF = VESFrF-
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2.3. A-priori error estimates

Proof. The first two parts of this lemma follow from the boundedness of F24 in H®/2()) and
Theorem the last part follows from the fact that F — ~yp is a quadratic function. O

Lemma 2.3.18. For F € F* aqnd 6F,7F € F it holds that
[Ar| g2y < €
HAIF,éFHHs(QO) < Cs |0F || a1 () for s € [0,3/2],

1A% stm ey < €5 1F Nizess gy 17 F L gos for s € (1,3/2].

Proof. The first part follows from Lemma [2.3.14] and Theorem the second and the third part
of this lemma follow from the first part of this lemma and Lemma [2.1.6] O

Lemma 2.3.19. For F,E € F* and 6F,7F € F it holds that

[AF = Agll s (o) < s [1F = Ell gs11(0y) for s €[0,3/2],
[ A7 = A sl o) < € I1F = Ell o ) 10F [l o102 for s € (1,3/2],

| A% 5775 — A/é,ap,TFHHs(QO) < ¢s | F = Bl gst1(qp) 10F || gras100) ITF | e+ for s € (1,3/2].

Proof. The first part of this lemma follows from Lemma Lemma [2.3.15] Lemma [2.3.18 and
Theorem [A.1.5] The second and the third part follow from the first part and the references cited

therein. O

2.3.2. A-priori error estimates for a general control

Within this subsection we are going to estimate the error between the continuous state and its
(partially) discretized counterparts. Due to the low regularity of the matrix Ar for general F € F24,
these estimates do not yield convergence of optimal order with respect to h and k. However, these
estimates are crucial in order to prove optimality conditions of second order and the existence of
the converging subsequences as stated in Theorem cf. Subsection and Subsection [2.3.5]

2.3.2.1. Estimates within the purely continuous case

Lemma 2.3.20. For q € Q*, §q € Q and p € (1,00) it holds that
15(@)lwrr(0) < € 1S(2) | as2-e(q) < e
15(@ ED)lwr00) < e 18l gar2eey 15" (@ Ol 1y 0 < ez 164l 1142y
15" (@)(5460) |10 ey < o 19612421y -

Proof. The estimate for S(q) in the W'P-norm follows from Theorem [A.1.31] Let F' = F(q), in
order to estimate S’(q)(dq) in WP note that

|(VS(Q)7A/F,6F ) VU)‘ < ||VS(Q)HWLP(QO) HA/E&FHLoo(QO) ||VUHLq(QO)
< e HS(q)HWLP(QD) HAlF,éFHHus(QO) ||’UHW1,q(QO)
< Cep ||5FHH2+€(QO) ”Ule,q(QO)

< Cep [0dll garese ) [0l »
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2. A model problem
where we used Lemma [2.3.18 and Theorem [A.T.28] In the same way it holds that

‘(VSI(Q)(&J)? FoF - V’U)‘ < Cep H5QH§13/2+5(1) HUHWM(QO) )

and

|(VS(a), At - V)| < con 180127201y Iollinager

which proves the estimate for S”(q)(dq, dq).
As Ap € C%1/2(Qq) we can apply Theorem [A.1.30 which yields

HS((J)”HB/%E(QO) <cellfo TF’YFHL2(QO) < Ce.

Using the same theorem, Definition [2.3.2] and Theorem it holds that

¢|[5'(@)(50) 33 ) < alF)(S'(a)(30), S'(a)(50))
< cllf o Trll () 15" (@ (00) 13 ) ”YF DTy 6F‘H1(Qo)
+ |V o Trll oo ) 10F [ 2 (00) 15" (@GD 113 0r0) 77 00 20)
+eIS@llwrson 1457140, 15 (@D )
+ e [15(a) || oo (020 HS/(q)(éq)HHé(Qo) ‘7F DTP:«;1 OF
<c HS/(Q)(fsQ)HHg(QO) 10F (| g3 /20
< ¢ [[S"(D) 00| g2 ) 10! 1121y - =

H1(Qo)

Lemma 2.3.21. For ¢,p € Q4 it holds that

15a) — S < g — Bllriseqsy
15(a) = SP)ll 22 () < €lla = pllgrr2(zy -
Proof. Let e = (S(q) — S(p)), F = F(q) and E = F(p), then it holds that
C||€||?q(}(90) < a(F)(e,e)
CL(F)(@, S(Q)) - CL(E)(@, S(p)) + a’(E>(ev S(p)) - a(F)(e7 S(p))
(F

L(F)(e) — U(E)(e)| + [a(E)(e, S(p)) — a(F)(e, S(p))]
clF = Ellg1qy) el L2qq) + ¢ 1F = Ell a2+ ) 1S @) 372 (o) llell 2 o)

ININ

IN

Ce || F' = Ell gs/2+< (o) el )

IN

Ce [lg = pll gr+e o) el a3 ) -

where we used Lemma Lemma [2.3.12] Lemma [2.3.20| and Lemma Now let z € H} ()

solve

a(F)(v,z) = (e,v) Yo € H} ().
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2.3. A-priori error estimates

It holds that ||zl ys/2-c () < ¢ [lell f2(q,), and we get

lel 720 = a(F) (e, 2)

(2.75)
U(F)(2) = UE)(2)] + |a(E)(2, S(p)) — a(F)(z,S(p))]-

IA

We are now going to estimate each of the two terms on the right hand side of (2.75]) separately.
First we get

I(F)(2) = UE)(2)] < cllF = Ell g1(0g) 12l 2(00)
< cllg=pllgzm el 2 »

and for the second term it holds that

A(B) (2 S()) — alF) S| < e 1921 ) 195 socay (147 = Aelzzqay + e = el iz -
With Lemma 2.3.17 and Lemma 2.3.19] it follows that

1AF = AgllL2(qq) + 7P = VEl 2 (00) < ¢IF = Ellg1(qy)
< cllg=pllgrgy,

and we finish the proof with Lemma [2.3.20{and the continuous embedding H3/27¢(Qg) < W13(Qy)
for e < 1/6. O

The following technical lemma will be needed in the proof of Lemma [2.3.23]

Lemma 2.3.22. Let q,p € Q* with corresponding transformations F and E, respectively. Let
5q,7q € Q, OF = F'(q)(0q), TF = F'(q)(1q) and v € HE(Qo). Then it holds that

17 (FL0F, 5() (v) = 1 (B,0F, S0) ()] < e lla = plgarerery 16 /22 ) 10 g )
and

’l‘S’T (F.6F,7F,5(q),5'(a)(69), 5'(q)(7q)) (v) = 17 (E,6F, 7F, S(p), 5'(p)(80), 5" (p)(7q)) (v)

< c:|lq —pHH3/2+s(1) H5QHH3/2+6(1) HTq”H3/2+E(I) HU”H&(QO) :

Proof. With Definition it follows that

1(F,3F, $(a)(v) — I°(E, 6F, S(p))(v)

< |(foTp,vdiv(yp DT - F)) (f oTE,vdiv(yEDT,gl.éF))\
+ ’((Vf o TF)T -0F, v’yp> ((V ) TE -OF, v’yE)‘

+ ‘(VS a SF Vv) (VS(p) Alp OF Vv)‘

+|(S(q vdw(fyFDT L.6F)) — (S(p),vdiv(yg DT - 0F))|,

and the first estimate follows using the estimates within Subsection [2.3.1] Lemma [2.3.20] and
Lemma [2.3.21] The second part can be proven using the same references as well as the first part of
Lemma [2.3.23] O
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2. A model problem

Lemma 2.3.23. For ¢,p € Q* and 6q € Q it holds that
15"(0)(80) = S' YO 10y < €= lla = Pll sz ry 180l rsrzve 1)
HS”(Q)((S% dq) — 5" (p)(dq, 5Q)HH01(QO) <cellg - P||H3/2+a(1) H5(J‘|?{3/2+s(1) :

Proof. Let F and E be the respective transformations for ¢ and p and let e = (5(q)(dq) — S’ (p)(dq)).
It then holds that

CHeHiIOl(QO) < a(F)(ee)
< |a(F)(S'(9)(89), €) — a(E)(S'(p)(89), €)| + |a(E)(S'(p)(d9), e) — a(F)(S'(p)(8q), €)] -
With Lemma [2.3.9) and Lemma we get
[a(E)(S'()(60).€) — alF)(S (1) (3a). )|
< ||[F - EHH3/2+5([) HSl(p)((SQ)leA—s(QO) ”eHH(}(QO) (2.76)
< c:llq —PHHHS(]) ”(SqHH3/2+E(1) He”Hg(QO) :
Due to Definition and Definition it also holds that
|a(F)(S'(q)(6q), ¢) — a(E)(S'(p)(6q), )| = (15(1*1 OF,S(q))(e) — I°(E,6F, 5(p))(e)
and the first part of this lemma follows with the first part of Lemma [2.3.22]
For the second part we define d = (5”(q)(dq,0q) — S"(p)(dq,dq)) and get
clldlF o) < a(F)(d d)
< |a(F)(S"(q) (9, 6q), d) — a(E)(S" (p)(3q. 5q), d)] (2.77)
+ |a(B 5"( )(34,8q),d) — a(F)(S" (p)(8q,0q), d)| .

The second part on the right hand side of (2.77)) can be estimates similar to (2.76)), and for the first
part we can use the second part of Lemma 2.3.22 ]

)

Lemma 2.3.24. For ¢,p € Q* and 6q € Q it holds that
i) — i) <cllq —P||H2(1) )
17"(0)(6q) = 3" (P)(89)| < cllg = pllg2(r) 196l gr2ry »
. . 2
15" (9)(89,6q) — 3" (p)(69,69)| < cllg — Pl g2 (ry 16all7r2(1

Proof. This lemma follows from Definition Lemma [2.3.20, Lemma [2.3.21 and Lemma [2.3.23
O

2.3.2.2. Estimates between the continuous case and the state-discretized case

Within the following subsubsection we are going to estimate the error induced by the discretization
of the state. If not stated otherwise, we will always assume that h > 0 is chosen sufficiently small.

Lemma 2.3.25. For ¢ € Q* and 6q € Q it holds that

||Sh(q)||H3/2—6(QO’h) < Ce,
HS;L (69) HH3/2—€(QO ) S Ce H‘SQ||H3/2+S(1) )

HS 6‘]7 6(] HH3/2 =(Q0.1) <ece H5Q||§{3/2+s(1) .
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2.3. A-priori error estimates

Proof. The first part of this lemma follows from Corollary [A.1.25[and Lemma [2.3.20, Let F' = F(q)
and 0F = F'(q)(dq), in order to prove the second part let S(q,dq) € Hg(Q0) be the solution to

a(F)(S(q,8q),v) = I°(F,0F, Sy(q))(v) Yo € H} Q). (2.78)
With Corollary it follows that

(2.79)

S(q, 5q)‘

HS;L(C])@Q)HHS/%E(QO,,I) < e H3/2-¢(Qg)

and it remains to estimate the right hand side within (2.79). As Hé/z_a(Qo) = H'/275(Qy) due
o [48], Theorem 1.4.2.4, it holds that

’(vsh(Q)a AIFﬁF . VU)‘ S HA;’,M’ . vSh(q)HHl/Q—E(QO) ”vv||H*1/2+s(QO)
< ¢ [IVSu(@)ll 1722 ) |

A%,&FHHHE(QO) [0l gr/2+e () (2.80)
< e 10| grssate (1) [0l zrrr2+= () -
Hence the right hand side in ([2.78) is an element of H~'/27%(€)y), and the desired estimate for
Hg(q,éq)‘ 132 () follows with Definition |2.3.5[ and Theorem |A.1.30l In order to estimate the
—< (%

second derivative one defines S(q, 8¢, 0q) € H{(Qo) as the solution to

a(F)(S(q,6q,0q),v) = 17 (F,6F, 6F, Su(q), S},(a)(69), S7,(4)(59)) (v) Vv € Hg(Qo),
and then proceeds as in the proof of the second part of this lemma. O
Lemma 2.3.26. For ¢ € Q™ it holds that
15(2) = Su(@ 1y ) < bV,
15(a) = Su(@) 120,y < b~
Proof. This lemma is a direct consequence of Theorem [A.2.23] O
Lemma 2.3.27. For ¢ € Q* and 6q € Q it holds that
15'(a)(5a) = S7(a) (00) | 12 ) < cch™* = 0l rsszseay
15" (2)(84,69) = S7(2)(64,09) | 1y < €eh* % N0l e -

Proof. As in the proof of Lemma [2.3.25] we have to introduce an intermediate solution. Let
F =F(q), 0F = F'(q)(dq) and let Si(g,dq) € Vi 0 be the solution to

an(F)(Sh(q,0q),v) = I°(F,6F, S(q))(vp) Yoy, € Vio,

i.e. Si(q,dq) is the Ritz-projection of S'(¢)(dq). Now we split the error

|5'@(60) = Sh@ 6|y, < ||5'(@(60) ~ Sh(a. 00)

. th(%‘SQ) - Sé(q)(&z)‘

Hé(QO,h Hol(QO,h)

Using an estimate similar to (2.80]) shows that we can apply Theorem |A.2.23| and obtain

|5'(@)(6a) — Sha, 50)

< c.hM*E |8 o(p) -
HY(@Q0n) — 102
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2. A model problem
Now let e, = (,gh(q, 6q) — Sy (q, 5q)>, then ej, € V3 solves

an(F)(envn) = (V (Sn(q) = S(a)) , A sp - Von),,
+ (Sh(Q) —5(q),vn div('YF DTlgl : 6F))h Yoy, € Vi o,

and Lemma [2.3.26] yields

lenll sy < € 15(@) = 1@ i) (14757 | gy + 10F Lirs )
S Cah1/27€’

which proves the first part of this lemma. The estimate for the second part can be proven using the
same methods. O

Lemma 2.3.28. For ¢ € Q™ and 6q € Q it holds that

5(q) = dn(a)| < cch' %,
17(0)(69) — (@) (8q)| < k' >~%||8q]| oy
13" (0)(8q,6q) — 7/(q)(8q,6q)| < c-h'*~%||8q|[3p2 ) -

Proof. First note that |Q0\Qo 4| < ch?, and using Lemma [2.3.26 we get

i@ —ina)l = 5| [ (S —uaoTefarde= [ (i)~ usoTr)*rrde

IA
[

1
5 / (S(q) — uq o Tr) vpda
20\Q0,1

+ % /Qo,h ((S(q) — g © TF)2 — (Sh(q) —ugo TF)2> vrdx

<c(h*+|S(q) — Sh(Q)HLl(QO,h)>

c.h'e.

IN

The second and the third part of this lemma can be proven in the same way using Lemma [2.3.20
and Lemma 2.3.27] O

2.3.2.3. Estimates between the state-discretized case and the fully discretized case

Within this subsubsection we are going to estimate the error induced by the additional discretization
of the transformation F. If not stated otherwise we will always assume that k > 0 is chosen
sufficiently small.

Lemma 2.3.29. For q € Q¥, F = F(q), Fx = Fi(q) and p € [4,00] it holds that

1,2
HF — Fk”Wl,p(QO) < CkQer HQHH2(I) :
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2.3. A-priori error estimates

)

Figure 2.2.: The boundary triangle K and its extension K.

Proof. The case p = 4 is a direct consequence of Theorem and the continuous embedding
H?(I) < WT/A4(I).

Now let i,: C(Qg) — Vi be the pointwise interpolation operator. With the triangulation 7y, of
Qo we may associate a triangulation 7 of €0y, where all the boundary triangles K are replaced
by their curved extension K, cf. Figure . Due to the smoothness of Qg and [Q0\Qo x| < ck? it
follows that the family {7}, also fulfills the usual regularity assumptions. Hence we may use an
inverse inequality, it follows that

IF = Fillwi00g) < 1F = ik Fllyi,00 gy + ik F = Frllyri.00 )
< k2 || P llyssze (g + k7 ik F = Frllwiaay)
< k"2 ||F |z () + k™ (HF — ik F Iy + I1F — FkHW1»4(Qo)>
< k"2 ||F|lyyss2o0 () + b (k 1 lyy2.(00) + K HQHH2(1))

< ck!/? lall g2y -

where we used the continuous embeddings H%/2(Qg) — W3/2%°(Qq), H*?(Qg) — W?2*(Qp) and
the case p = 4. What is left follows with interpolation. O

Lemma 2.3.30. For ¢ € Q™ and 6q € Q it holds that

HSh,k(Q)HHé(QO’h) < ¢
HSI/z,k(Q)((SQ)HH%(QO’h) < c||6all g2y -

2
157 (@) (00, 09) | 111,y < €101y -
Proof. Let F' = F(q) and Fy, = Fj(q). From Lemma [2.3.29|it follows that Ap, — Ap in L>(8y)
for k — 0, hence the matrices {A Fk(q)| q € Qad} are uniformly elliptic for k sufficiently small. This
lemma now follows from Definition 2.3.4] O

Lemma 2.3.31. For g € Q™ it holds that

154(2) = S1k(@l g ) < 2.
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2. A model problem

Proof. Let F = F(q), Fi, = Fi(¢q) and e = (Sp(q) — Shx(q)) € Vho. We get
lellZr @y, < an(F)(e,e)
<|ln(F)(e) = In(F)(e)] + |lan(Fi)(Snk(q),e) — an(F)(Shr(q),e)l
<c (llF = Fill i o) el L2y + 1506 (@) 1 g1aq ) 1F = Fllw.o ) H€||H1(Qo7h)> ;
and using Lemma and Lemma, we arrive at
lell 1 gy, < ck'2. O
Lemma 2.3.32. For ¢ € Q* and 6q € Q it holds that
15(2)(09) = S5, 1 (D) | 1 g,y < K2 1000 12y
157(9)(3a,69) = S5 ()64, 09) | 1,y < K2 18allFra ) -
Proof. This lemma can be proven analogously to Lemma [2.3.31] O
Lemma 2.3.33. For ¢ € Q* and 6q € Q it holds that
”Sh,k(q)HHW?—E(QOYh) < Ce,

185 @D g2,y < € 16l sy

HS;z/,lc(Q)((s% 5Q)HH3/275(90,}1) < Ce H(SQ||§{3/2+E(I) .

Proof. This lemma follows with Lemma [2.3.25] Lemma [2.3.3T] and Lemma [2.3.32] as well as an
inverse estimate, Theorem [A.1.23] O

Lemma 2.3.34. For ¢ € Q* and 6q € Q it holds that
lin(@) — dng(a)| < ck'/2,
[54.()(89) = Jh1 () (60)] < k2 [16ql 21y -
|4 (a) (80, 0q) — 5t 1(2)(0q, 6q)| < ek |6q|7pa s -

Proof. This lemma, follows with Definition [2.3.7], Definition and the previous lemmata of this
subsubsection. O

Lemma 2.3.35. For ¢,p € Q* and 6q € Q it holds that

15h.4(2) = Snk )l 10y ) < P = alla2(ry
|Sh,4(a)(8q) — S;z,k(Q)(éq)HHé(Qoyh) <cllp = allgzn 196/ g2 (ry -

Proof. Let Fy, = Fy(q), Ex, = Fi(p) and e = (S x(q) — Shx(p)), then it holds that

c Herqg(Qo,h) < an(Fy)(e,e)
< |ln(Fr)(e) = In(Ex)(e)| + |an(Er)(Shi(p), €) — an(Fi)(Shi(p), e)|

< ¢ (17 = Bill s gy el 260 + 115040 73y 1Fie = Billre gy el ) -
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2.3. A-priori error estimates

As g — Fy(q) is linear, it follows with Lemma [2.3.29) that
1E% = Exllwoog) < ¢I1F (@ = P)lweo )
< c|lF(q =)l gsr2 0y
<cllq —p||H2(1) )
and the first part of this lemma follows. The second part follows in a likewise manner. O

The following lemma can be proven by a direct calculation using Lemma [2.3.35
Lemma 2.3.36. For ¢,p € Q* and 6q € Q it holds that

17h.4(0)(60) = Gk (D) (0)| < cllp = dall gp) 10al 2y -

2.3.3. A-priori error estimates for the optimal control

As already mentioned, due to the low regularity of the transformation matrix A for general ¢ € Q24
it is not possible to generally show convergence rates of optimal order. However, as the optimal
control has some improved regularity, it is possible to show optimal order of convergence in that
case. In what follows let g be a fixed optimal solution to with corresponding optimal state
S(q), optimal transformation F' = F(gq) and optimal discretized transformation Fj = Fj(gq). We
shortly summarize the known regularity.

Lemma 2.3.37. It holds that g € H*(I), S(q) € W>>(€Qy) and F € H?(Qy).

Proof. The regularity for § follows from Theorem [2.1.40, the regularity for F follows with Theo-
rem [A.1.28/ and the regularity for S(g) follows with [48], Theorem 6.3.2.1 and Remark 6.3.2.4. [

Lemma 2.3.38. Let p € (1,00) and s € [0,1], then it holds that
IF - FkHWSaP(QO) < k™

Proof. With Lemma [2.3.37 it holds that § € H*(I) < W?°(I), and this lemma follows with
Theorem [A.2.1] O

Lemma 2.3.39. For dq € Q it holds that
HS,<6)(5Q)HW2,4(QO) <c H(SqHHQ(I) :
Proof. Let §F = F'(3)(dq), because of S(g) € W?>°(Qp) it holds that

~ (V8(@, A5 5 - V0) = (div (A, - VS(@) 0) Vo € C5° ().

As a result, the right hand side in Definition for S’(7)(dq) is a functional in L*(£)), and with
Theorem it follows that
T
Tr)" - 6
" H (V1 Tr) d L4(Qo)>

HS’(@)((sq)HWQA(QO) <c (Hf o deiv(VfDTf’l . 5F>‘
L4(Qo)>

e (Hdiv (A% 5 V5@)|
< ¢ 10gll 21 - 0

L4(Q0)

. HS(@) div (77 DT 5F>)

L4(Qp

<c ”5F||W2,4(QO) <c ||5F||H5/2(Qo)
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2. A model problem

2.3.3.1. Optimal estimates between the continuous case and the state-discretized case
Lemma 2.3.40. For dq € Q and s € [0,1] it holds that
15@) = Sh(@)ll g1+ < €h*%, (2.81)
15" @)(60) = Sh@ )| g+ () < h*0al g2y - (2.82)

Proof. Estimate ([2.81) is a direct consequence of Theorem For the second part, (2.82)), we
follow an idea presented in [73]. Let 0F = F'(g)(dq) and let Sy (g, dq) € Vi,o be the solution to

an(F)(S(@ 3q), vn) = 1, (F,6F, S(@))(vn) Yoy € Vip.
As §h(q, dq) is the Ritz-projection of S'(q)(dq), Lemma implies

|s'@a) - Si@ 04

< ch?> 0|5
He(Qo) = c | QHHQ(I);

for s € [0,1]. Now let e = (gh(q, dq) — S;L(Q)((Sq)) € Vj 0, then e solves

an(F)(e,vn) = (V (5n(@) — 5@) s A s Von ),

+ (0@ — S(@). v div(yp DTF' -0F)) Yoy € Vi,

L2(90)>

It remains to estimate the L2-error. Let 2z € H{(Qo) and 2;, € Vj, o be the solutions to

which yields

el < 15@ = 5@l (|

< ch [|0q]| g2y -

/ : -1
AF";FHLOO(QO) + Hle(”yFDTF 5F>‘

a(F)(v,2) = (e,v), Yo € H&(QO),
an(F)(vn, z1,) = (e,vp),, Yoy, € Vio.

We have z € H?(£)) and 12l 200y < cllell z2(qy), 1t holds that
H€H%2(Qo) = ap(F)(e, z1)
(V (Sh@ = S@) Al - Van), + (1@ — (@), 20 div (15 DT -6F ) )
= (V (Sh(@) = @) A - V2) + (S0(@) — $(@). 2 div (47 DT - 6F) )
(V (1@ = S@) s A5 5o+ V (a0 = 2)), (2.83)
(0@ = 5(@), (2 — ) div (3 DI - oF) )
The estimate and general finite element error estimates yield
|(Sw(@ = S@), zdiv (75 DT - 6F) ) | < ch? (18] 721y el 2
|(V (Sh(@) = S@) s A s+ V (20— 2)) | < eh? 6] g2 lel 2

|(54(@ = @, (s — 2) div (45 DT - 9F ) ) | < ch* 18] 2(r) el 2
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2.3. A-priori error estimates

and it remains to estimate the last part on the right hand side of (2.83)). Using Theorem and
Theorem it holds that

(Y (Sul@) = S@), A5 5o V2) | = | (Sn@ — S@,div (45 5, 92)) |

=
< 150 (@) = S@)|l 1)

‘A,ﬁ(SF ' VZHW1’4/3(QO)

<158(@ = S@lgsqon) |41 0y, 190 3000
< ch? ||5QHH2(1) He||L2(QO) )
and the case s € (0,1) follows with interpolation. O
Lemma 2.3.41. For dq € Q it holds that
7 @(60) - 34@E0)] < 154] g2,
Proof. The proof for this lemma is similar to the proof of Lemma the improved order of
convergence is due to Lemma [2.3.40] O

2.3.3.2. Optimal estimates between the state-discretized case and the fully discretized case

In what follows we are going to prove a better convergence rate with respect to k, which will be
done using Taylor’s theorem.

Lemma 2.3.42. The mappings

v Wh(Q) — L®(Q), ond A: Whe(Qg) — L>(Qp),
V(F):’VFv A(F>:AF7

are at least three times continuously Fréchet-differentiable.

Proof. This lemma follows from Theorem Theorem and Theorem |A.1.13] O

Lemma 2.3.43. Let p € (1,00), then it holds that

|F - FkHLp(rO,k) < cpk?.

Proof. Let gn be defined as in (A.24)) and let the operator Qy, be defined as in (A.34). It holds that

L L L P (T P
As F’FO = gn we may use Lemma to obtain
HF —an LP(To ) < ek,
In addition it holds that F’“’FM = Qx(qn), hence
HgNn B Fk‘ Lr(Tor) Han - Qk(ﬁ)‘ LP(To )
and the result follows with standard interpolation results. ]
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2. A model problem

Lemma 2.3.44. Let p € (1,00), then it holds that
T_F 2
|7 - FkHLP(FO) < cpk”

Proof. Let € I'g and let xj, € T'g j, be the orthogonal projection of « onto Iy, cf. (A.23). Now it
holds that

(f — Fk) (x) = (F — F}C) (.%'k) + /01 (F — F}C)/ (xk + t(l’ - xk)) (x — J}k) dt.

As |z — 21| < ck? and Hf_FkHWLOO(QO) < ckY? due to (A.28) and Lemma [2.3.29] this lemma
follows with Lemma [2.3.43| and (A.25)). O

Lemma 2.3.45. Let p € (1,00), then it holds that

5 _ 7 2 2

|F - FkHLP(FO’h) <cp (h*+ k7).
Proof. The proof for this lemma is similar to the proof of Lemma [2.3.44, Let z; € I'gj;, and let
x € I'g such that zj, is the orthogonal projection of x onto I'g . It holds that

1
(F—Fy) (@n) = (F— F) (@) + /0 (F—TFy) (x4t (o — ) (o — ) dt.

Again we use the fact that [z — zp,| < ch? and ||[F — Fk”wl,oo( < ck'/? to obtain

Qo)
(F = Fy) (2n)| < |(F = Fy) ()| + ck/202,

and end up with

17 = Fillogey .y < € (IF = Filagey) +4°0%)
The proof is finished using Lemma [2.3.44] and Young’s inequality. O

Lemma 2.3.46. Let p € (1,00) and v € WHP(Qq 1), then it holds that
(077 = 7,), | < &0 (02 + K2 [0llwrngay -
Proof. Let F = (Fl,Fg)T and F}, = (Fk,l,FkQ)T, it holds that

Y5 — 7, = 0c(F1 — Fi1) + 0y(Fa — F2)
+ 0y (F1 — F1) OyFo + 0yF1 0,(Fr2 — F2)
— 0p(F1 — Fi1) 0y(F2 — Fi2) — 0y(Fry — F1) 05(F2 — Fi2)
+ 0, F1 0y(Fa — Fi2) + 0y(Fr1 — F1) 0,F3.

(2.84)

In what follows let ¢ = p/(p—1) € (1, 00) be the conjugate index to p. Now we use Green’s theorem
and get

‘(Uaax(Fl _Fk,l))h| < ‘(a;ﬂ),?l - Fk,l)h| + ‘<U, (Fl —Fkyl)ny>h|
< HU”WLP(QO’,I) Hfl - Fm‘

L9(S 1) (2.85)
+ellvll oy, 11 = Fk’IHLq(FO,h)

< ¢p (h* + &%) [ollypina,)
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2.3. A-priori error estimates

where we used Lemma [2.3.38] the trace theorem and Lemma [2.3.45] Using the same references we
also get
‘ (U, 8I(F1 — Fk,l) 83/F2)h| < ‘ (89511 o”@?z + v(‘)gyfg,Fl — Fkvl)h’
+ ](vﬁyfz, (F1— Fk,l)ny>h‘

< cllvllwrriag ) HF?HWZ,OO(QO,,L) [F1 - FkﬁlHLq(QOV,L) (2.86)

‘FQHWl’w(FO,h) ‘ Fi- Fk’l HLq(Fo,h)

< ¢y (h* +#7) [ollwrpag ) »

+ellvllzecr,,)

where we used F € HY2(,) < W2®(Qq4). Let ¢ = (2p)/(p — 1) € (1,00), and using Holder’s
inequality we get

|(v,0:(F1 — Fr1) 0y(Fa — Fr2)), |

1= Frallwi o, ) 1 F2 = Frzllwie o, )

< vl zr (g n)

2 (2.87)
<c HUHWLP(QO,h) HF - FkHWLq/(QO)
< Cpk2 HUHWLP(QOJL) )
where we again used Lemma [2.3.3§ O

Lemma 2.3.47. Let v,w € H*(Q ), then it holds that
(Vo (45— 47, ) - Vw) [ < e (84 12) ol zgaq Il iz -
Proof. Let 6F = (Fy — F). With Lemma [2.3.42 and Theorem |A.1.12|it follows that

(Vo (47— 47, ) Vw)h = (Vo (A5 + Bo(F,5F)) - Vw)h ,

where Ry(-,-) is the remainder term from Taylor’s theorem. Using the estimate (A.2)) for Ra(-,-),
. /) .
the representation of AF+nTF,<TF,<TF as shown in (2.21)) and Lemma [2.3.38 we get

|(Vv, Ro(F,0F) - V), |
< ||U‘|W1a4((207h) ”wHWlA(QO,h) HRQ(F757F)HL2(QOJL)
< clloll g2y 10l 52 (04 ) (HFHEI;VLM(QOW) + HFka/vl»M(Qo,h)) HF_FRHIZA/LM(QOM
< ck? [vll g2y ) 10l 20y -
From we know that

AL

. -1 5 -1 -T -1 N5 Sanid -T
57 = div(1p DT - 6F) DT-! - DIT - DT DSF - Ap — Ap-DOF -DTZT. (2388)

Partial integration yields
: -1 <1 -1 =T -1 < T —1 =T
|(Vo.div(vp DT - 5F) DT - DT - V) | < | (45 D15 - F,V (VoT - DIt - DIT - Yw) ) |
_ _ =1 _
+ ‘(WT D' DT=T - Vw,v8F - DT=T- n>h‘ :
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2. A model problem
Now we use DTf_l,fyf € H'2(Qg1,) — C%(Qop) as well as Wh4(Qq ) — H?(Qp ) and get

‘(Vu,div(yFDTF*l 57?) DT DT V“’)h‘ < c||3F | gy ) 10120520, 101l 22000
+c H5FHL3(FO o IVl sy IV@llsr, )
<c (h2 + k2) HUHH2(QM) HwHHQ(QO’h) )

where we used Lemma [2.3.38] Lemma[2.3.45(and H' () !F — L3(F07h). For the two remaining

terms within (2.88) we use Green’s theorem once more, and using a similar estimate as before we
arrive at

(Vv, (DT5! - DIF - Ag + Ap - DSF' - DT ) - V“’)h’

A

T . pr=l. A-. SF
<ec ’ (D(VU DT Ap Vw) ,5F)h‘
+c’<WT-DTf—1 A Vw,FT.mh‘
< (B2 + ) Noll g ) 10l 2 0 s
Lemma 2.3.48. Let s € [0,1], then it holds that
150@) — S @l ey ) < € (B2 + K279 .
Proof. Let e = (Sy(q) — Shk(q)) € Vh,0, using Lemma [2.3.33| and Lemma [2.3.38| it follows that

||€||§11(Qo,h) < ah(F)(eae)
< |in(F)(e) = n(Fr)(e)| + |an(Fi)(Snr (@), €) — an(F)(Shr (@), €)|
<c (HF - FkHHl(Qo,h) ||e||H1(Qoﬂh) + HF - Fk?HWl,G(QOyh) ||Sh,k(q)||wl,3(go’h) H6||H1(Qoyh))
< ckllell g1 qq ) »

which proves the estimate for s = 1.
Now we estimate the L?-error. Let z € H&(Qoyh) and z;, € Vj, 0 be the solutions to

an(F)(v, 2) = (e,v), Yo € Hy(Qon), (2.89)
an(F) (v, zn) = (e,vn),, Yop, € Vi (2.90)
Due to the regularity of Az it holds that z € H?(Qo) and [|z[|2(q, ,) < cllellr2(q, ,)» Where the

constant ¢ does not depend on h or g 5, for the H?-estimate just depends on the diameter of the
domain, cf. [51], Theorem 9.1.26, and [69]. Now it holds that

lel220,) = an(F)(e. 1)

W(F)(2n) = (Fr)(2n) + an(Fr) (Snhx(@)s 2n) — an(F) (S (@), 2n)
‘lh )(z = 21) = W (F)(z = 20)| + | (F)(2) = U(Fr)(2)| (2.91)
+ |an(F)(S@) — Shr(@), 2n) — an(Fi)(S(@) — Sni (@), zn))|
+ |an(F)(5(@), 2 — z1n) — an(Fr)(5(Q), 2 — 1)
+ an(F)(S(), 2) — an(F1)(S(@), 2)|,
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2.3. A-priori error estimates

and we will estimate each of the five terms on the right hand side of (2.91)) separately. The three
terms including the differences (S(q) — Shx(q)) and (2 — zp,) can be estimated in a straightforward

way. Using Lemma [2.3.38 and standard finite element error estimates if follows that
\In(F) (2 — zn) — W(Fi)(z — 2n)| < ¢||F — FkHHl(QO’h) 2 — ZhHL2(QO,h) (2.92)
< ch2k [ell 2y

and
lan(F)(S@) = Shi(@), zn) — an(F)(S(@) — Shi(@), 21)|
<cl[F - Fk”wl,G(QOJL) 15(q) — Sh,k(a)HHl(QO’h) lznllws (0 ) (2.93)
<clh+k)klell 2 ,) -
In order to estimate the second factor within we used Lemma and the first part of this
lemma, for the last factor we used the estimate
lenllwr sy < €l < lellmos@nn < eIl (2.94)

which is due to Theorem [A.1.24, As the triangulations {7}, are assumed to be quasiuniform
and as § is sufficiently smooth, the constants within (2.94) do not depend on h. In the same way
it holds that

|an(F)(S(@), z = zn) — an(F1)(S @), = — z)]
§ C HF — FkHW1’4(Qo,h) HS(q)HWlA(QO,h) HZ — ZhHHl(Qo,h) (2.95)
< chklell 2 )

The two remaining parts on the right hand side of (2.91) require more care. First, it holds that
W) = nFo )] < | (o T = foTr2m,) |+ |(FoTror—7,),

and for the first part it holds that

(foTe—roTr, o) | <c(|Tr -5,

. (2.96)

i

),

<c HF B F"J‘HLQ(QO,h) ||Z||L2(Qo,h)

z ’}/Fk

(2.97)

"Yf’f L= (Qo,n)

< ck? [l (g ) -

For the second part we use Lemma [2.3.46| and (f o Txz) € Hj(Qop) to get

‘(f o T2, VF — 'Yfk)h‘ <c (P + ) [|f o Tz 1 g
<c (h2 + k:2) HGHLQ(Qo,h) )
Now we use Lemma Lemma and get
an(F)(5(@), 2) - an(Fu)(S@), 2)| < | (V5@ (A7 - AF,) - V2) | +|(S@= 7 - 7,)
<c(h®+ k%) IS@I 12 ) 121 E2(62,0)
< (P + k) llell 2y, -

(2.98)

1

Now Young’s inequality finally proves the case s = 0, and what is left follows with interpolation. [
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2. A model problem

Lemma 2.3.49. For §q € Q and s € [0,1] it holds that

155,@)(80) — S}, x(@)(59)]

B e S N L e

Proof. The main idea of the following proof is similar to the proof of Lemma [2.3.48] but more
involved due to a more complicated right hand side in the equations for S}, (g)(dq) and Sj, ;.(7)(dq).

Again, let e = <S’( )(6q) — Sjlyk(q)((sq)) € Vio, 0F = F'(q)(0q) and 6F, = F/(q)(dq). It holds
that

c ||€||?11(907,L) < an(F)(e,e)
< [P, 0P, Su(@) () — 1 (Fi, 6Fi, Shn(@)(e)| (2.99)
+[an(F) (S} 1(@)(09), €) — an(Fi) (S} x(@)(3q), €)] -
For the second part on the right hand side of (2.99)) we use Lemma [2.3.38| and Lemma [2.3.33|to get
a1 (F)(84,4(@)(64) ) ~ an(Fi) (S, @(00). )

<c HF - FkHWI’G(QO,;L) HS;Lk(g)(éq)HWI,S(QOJL) HGHHl(Qoyh)

< ek [|0q] g2 lell g ) -

For the first part it holds that

1(F. 0F, S1(@))(€) = U} (Fi, 6 Shr (@) e)|

< |(/ o T ediv (5 DTL! 5F))h ~ (f o T, ediv(yg, DT 5Fk)>h) (2.100)
+ ((VfoTF)T SF, eyf)h _ <(VfoTFk>T : 5Fk,efyFk>h’ (2.101)
+ | (VSh(@: A Ve) | = (V@) A5 g - Ve) | (2.102)
+ (Sh(q),ediv(ﬁDTf_l . 5F))h . (Sh,k(q),edw(ﬁk DT, 5Fk>)h‘. (2.103)

The differences (2.100) and (2.101)) can be estimated through telescoping, we get

’(f o Tf,ediv<’nyTf_1 : (5F))h — <f o Tfk,ediv(’yfk DTf_: : 5Fk>>h’ < ck 10l 2y llell g ag ) »

T T
\((w oTp)" - oF,evp) — ((VfoTFk) -5Fk7%)h' < ck 10l r2qr) el 1 -
The third part, (2.102)), is a bit more complicated. It holds that

(V@) A% 5 V€)= (VShr(@: A, 5, - Ve) |
< |(V (S0(@) = She (@) Al - Ve) | +] (V@) Al g, - Ve)

+ )(Vsh,k@a (AIF,zSFk - AIFMFk) ' Ve)h

h} (2.104)

)
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2.3. A-priori error estimates
with

|(V (S0(@) = Sn@) A5 5+ V) | < 15(@) = Stk @l

/
[ v gy Il 000

< ck 110all 21y llell () -

IN

‘ (VSh,k (@), Alf,aF—éFk ' Ve)

— /
| 1805 @l 45 srsm o, Ielli@0

IN

c||6F = 8Fkllyrro(qq ) el g )

IN

ck 10l g2 py el i ) -
In order to estimate the last part of (2.104]) we again use Taylor’s theorem. Fix §F}, and define

G: Wl’oo(QoJl) — L=(Qo,1),
G(F) = /F',6Fk7

then G is at least twice continuously differentiable due to Lemma [2.3.42] Using Theorem it
follows that

/ / Y/ D (T T Al
Afk,fSFk — AF,(SF;C = AF,kaf,éFk + RQ(F,Fk - F, 5Fk), (2105)

and the estimate (A.2) for the remainder term Ry reads as

P I Fnl m
|falF P F";F’“)Hmo(go) =00, T T e

D L2 (S0) (2.106)
< clloFkllwroe (g ) [1F = F’“HWlﬁ"O(Qo,h) '

Equation (2.105) yields

‘(vsh’k@)’ <A/F5Fk B A/FMFk) .ve)h‘ - ‘(VS;M(@), A%‘Skak—f ' Ve)h‘

+|(VSurl@), Ro(F, i = F,6F,) - Ve) |,

with

— i — 124
\(vsm(q),Am,mk -Ve)h] < 11Sm@ w1500 ) \Af,fk,f,m

5@ 1 @0

< clloFkllwrizaq ) [1Fe = Fllyraz gy, el )

<ck ||5Q||H2(1) ||e||H1(Qo,h) :

Using the estimate (2.106)), the fact that 0Fy = F(dq) and Lemma [2.3.29| we arrive at

|(VSs(@), Ro(F, Ty = F,5F) - Ve) | < l1S5@ o | R Fi = FaB0)| o lellina

= 5= 112
S c HéFkHWl"X’(Qo,h) HF B FkHWLOO(QOJ,,) He”Hl(QO,h)

< ck 16q/l gr2ry lenll g, ) -
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2. A model problem

The last term within this estimate, (2.103)), can again be estimated through telescoping,

‘(Sh@)’@di\’(’YFDTF_l : 5F))h - <Sh,k(§)76diV<’ka DT%: : 5Fk)>h‘ < ck 10l g2y el ag ) »

which finishes the proof for s = 1.
We proceed with the L2-error, which can be proven similarly to the proof of Lemma, [2.3.48] Let
again z € H&(Qoyh) and zp, € V3,0 be the solutions to

ah(f)(v7 Z) - (6, U)h Yu € H& (QO,h)7
an(F)(vp, zn) = (e, 08)), Yoy, € Vio-
Again it holds that z € HQ(QO n) with [|z|[ g2, ) < cllell2(qqy), where the constant ¢ is independent

of h. With Theorem [A.1.27] it follows that

Iz = 2alre(0,) < B~ lellzzqgy ) -
for s € [0,3/2). We get
el = an(F) (e, ) = an(F)(S1(@)(60), 21) — an(F)(
— U}(F, 6P, S0(@)(20) — 1 (Fis 0 Fi St (@) (21)
+ an(Fi) (34,40 (60), 21) — an(F)(S},4() (00), 1)
< |WL(F.0F, S(@) (2n — 2) = U (Fr, 6k, Shi(@) (20— 2)| (2.107)
)

)(Sh 1 (@) (09), 2n)

)(2) = 1) (Fi, 0F, Sni(@))(2) (2.108
+ an(Fr) (S, 4(@)(69) — 5" (@) (3q), zn) — an(F)(Shx(@)(3q) — S"(@)(89), zn)|  (2.109
+ |an(Fi)(S"(@)(89), zn — 2) — an(F)(S"(@)(8q), zn — 2)| (2.110
+ |an(F)(S"(9)(89), 2) — an(F)(S'(@)(3q), 2)| - (2.111

Again we can estimate each term separately. The first part, (2.107), can be estimated as in the first
part of this proof which yields

‘li(ﬁ OF, Sn(@))(zn — 2) = Ip(Fr, 6Fy, Sn k(@) (20 — Z)‘ < ck 16g/l 21y 12 = 20l 51 (g )

< chk [16ql| g2 1y llell L2(q) -

+ |1(F.0F, Sh(@)

)
)
)
)

The following part, (2.108]), needs to be split once more, we have

(P OF, $4(@)(2) — 1 (Fr. 6 Fi, S1u(@))(2)

< WP, 0F, $y(@)(2) — B(F, 6F, S 1(@))(2)] (2.112)
+ 108 $14@) — S@)(2) — B(Fr 6Fr $14(@) — @) ()| (2113)
+ BP0, 5@) () ~ 1h(Fr 0Fi, S@)(2)]. (2114)

We start with and get
(P 6F, $1(@)(2) — 1(F,0F. S0, @)(2)| < | (V ($u@ = Sux @) s A5 5. V2) |

+ ‘(511@) — Sh(q), zdiv <7FDT§1 ' 5F))h) ’
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2.3. A-priori error estimates

which results in

‘(v (Sh@—Sh,k(g)),A'mF-Vz)h‘ - ‘(Sh( ) = Sni(@), div (Al Vz))h’

< ¢ 150(@) ~ Sk @l 20 ) [0, 1972220

+¢llSn(@) = Sk @l 12q, ) ’A,F,(SFHWLAL(QO " IVl L1 ) -

Now we use ||Sx(q) — Sh,k(@HLQ(QO p S (h? + k?) due to Lemma [2.3.40| and Lemma [2.3.48] the
continuous embeddings W14 (Qq 1) < L®(Qor), H*(Qon) < WH4(Qp ) and the estimate

|

A g
O [lwia(qq )

< cl0F lw2a(a,,) < clloF o2y < clogl g2y »

to obtain

(7 (50@ = 514 @) A5 92), | < (08 +12) 160l |2l
< e (h+K2) 10l 2y el 2, -

In addition,

[(54(@ — Sns(@). 2 div (35 DT5" - 0F)) | < 150(@) — bk @l a0y 120 () 19 11
<c (h2 + kz) ||5QHH2(]) ||€||L2(Q0,h) ’
hence
1(F.0F, $(@)(2) = BL(F,6F, S0, (@) (2)] < ¢ (2 + k) 18]l 21y el 20 -

For the next two estimates we use Theorem and Lemma [2.3.42 and get

/ ! o / ’ /
AL sp = AT sp. = AT sp_sp, T AT sp, — AT, sp, s
B AIF OF—6Fy + A%vfk—F,(st + RQ(F’ Fk - Fv 6Fk)a

similar to . Now we estimate via
’li(ﬁ OF, Sp (@) — S@))(2) = 1} (Frs 6 Fy, Sne(@) — S(@))(2)
. —1 . -1
< (fon,zd1v<77DTf 0F)) = (f o5, 2div(vp, DTS- 6F,)) |
T
VioTs)" - oF, Z'yF> ((Vf OTE) .5Fk,vak>
h

((
+ (v — Sui(@), (A'f’éF _Affkm) .Vz>h‘
< — Shi(q )z,div(VFDTgl OF — g, DT%: .5Fk>)h‘ .

_l’_
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2. A model problem

The first two expression can be estimated using standard telescoping arguments, for the third line

we use to get
(V5@ = S04 @), (A5 — Ao, ) - V2) |
< |(V (5@ — Snr @) A% 5y_g V7)), |
+|(V (5@ - S1al@) A, 755, V2),|
.
|

(V (8@ = Sus(@) , Re(F, Fi = F.6F3) - V=)

)

where it holds that
(V5@ = $1k@) . A yp_sp, - V2) |

< |5(g) — Sh,k(@)”ﬂl(go,h) A

!/
‘ F.8F—6Fk || L0 1) HZHWL“(Qo,h)
< c(h+ k) [0F = 6Fkllyaq, ) 12 llwraaq )
< c(h+ k) kN6qllwa-1/aay 1220 )

< e (h+ k) K 18ll g2 llell 20 ) -

and

(V (S(@) — Shi(@) ’A%F,FF,(SFk ' Vz)h‘

<@ ~ S5 @ 1, || 457,78 1,

<c(htk) HF - FkHWIA(QO,h) ”(stHWl’oo(Qo,h) HZHHz(Qo,h)
< c(h+ k) E6ql g2 lell L2 -
For the last part we use the estimate (2.106) and get

”ZHWl“l(Qo,h)

(v<s<> Sni(@)) , Ro(F, Fy, — F,6Fy) - VZ)J

< 15@ ~ Sni@l 1

(F,Fp—F, 5Fk)HL°°(QO7h) 121l 21 (26.0)

= = 2
< c(h+ 1) [|F = Fillspr.y ) 1Fel i oo ) 1ol 2
< c(h+ k) k 10al 21y el 2 -
Finally we estimate (2.114)),
(P, 0P, S(@)(2) ~ 1 (Fr. 0Fi, S(@)(2)|

< (fon,zdiv<fy7DT%1 : 5F>)h . (f oTFk,zdiv(yfk DT - 5Fk>)h) (2.116)

+|((VoTR) 0F 25) - <(VfoTFk)T-6Fk,zfyFk> ’ (2.117)
h

+ (VS ( A m) -Vz) ‘ (2.118)

+|(S@s aiv(vz DTS - 6F — 4, DT -6 ) |- (2.119)
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2.3. A-priori error estimates

The expressions (2.116)) and (2.117)) can again be estimated through telescoping, and with (2.115])
one can estimate (2.118]) via

‘(VS(Q), (A,FﬁF B AIFMFk) -Vz)h’ = ’(VS(Q), AIFﬁF—‘st -Vz)h‘ + ’(VS(@), A%fk—fﬁFk ' Vz)h)
+|(VS@, Re(F.Fi~ F,0F) - 92) |

Using the same method as in the proof of Lemma [2.3.47| one can show that
‘(Vs(ﬁ)yAlfﬁF_(;Fk 'Vz’)h’ < c(? + k) [16all gz lell 2o -

It also holds that

’(VS (@, AF 7, F o1, 'Vz)h‘ = ‘(VS (@ AF 7 Fom—sr Vz)h‘ + ‘(VS (@, AF 7, For Vz)h‘

with

‘(VS(Q),A%E_F(;F}C_(;F : Vz)h( < 1S@ g, ‘A%,fk—F,éFk—éF‘

< c|[F = Frllyrag,, 10F: = 0F llwragqq ) I12lwrsg,)

12(00 1) HZHWLLL(QOJL)

< ok? allz=(1) llel 2 g ) -
The estimate
(VS@, A7, 50 72) | < € (04 82) 160l 2 Nell 2 )

can be shown using partial integration similar to the proof of Lemma [2.3.47 Using the representa-

tion (2.106)) we get

(VS(@), Fal(F, Fi = F,6F) - 92) | < 15@ o

\Rﬁ,ﬁk _F, 5Fk)’

oy 0

< c|Ro(F, Fic ~ F. 05

(00 120l 122 (.0)

— =2
< clloFllwrey ) 1F = Frllwroqg ) 121200,
< ck? 164 21 ”6HL2(QO,h) .

The remaining part (2.119)) can be estimated via

( (8@ div(v7 DT - 0F — 77, DT! - 0F)) ‘ (V(8@2) 7 DT5" - 6F — 45, DT ! 6Fk)h‘ ,

h‘_

and using Lemma [2.3.38|one can proceed with telescoping as in the previous cases, as (S(q)z) € H%(Qo )
one can also use Lemma [2.3.46| and ends up with

|(S@3,div (75 DTS 6F =, DT -6F)) | < e (02 +K2) 6all gy el o -
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2. A model problem

Now we return to the original estimation. For (2.109) it holds that
|an(Fr)(Shx(@)(0a) — S'(@)(59), 2n) — an(F)(S}, (@) (5q) — S"(@)(5q). z1))|
< |(V (Sh4@(00) - S@a) . (47 — Az, ) - V2n) |

! (— ! — . .
< |9'@0a) = S, @9 111, HAF Ap, Lo

< C(h + k) H(SQHH2([) HF_FICHI/VLG(QOJL) HZHHQ(QO,h)
< c(h+ k) ElI5q] g2y llell 22y, -

W) thHWL?’(QQh)

Expression can be estimated as follows,
|an(F)(S'(@)(69), 20 — 2) — an(F)(S"(@)(3q), zn — 2)|
< |(VS'@0a). (Ap— A, ) -V (z =) |

< 15" @ 09 |yr11a )

‘Af ~ g, L4 (0 1) == 2l 0.
<ch H&IHH?(I) HF - FkHWlA(QO,h,) HZHHQ(QO,h)

< chk H5(JHHQ(1) HeHLQ(Qo,h) :

The last part, (2.111)), can again be estimated using Lemma [2.3.46| and Lemma [2.3.47, We can

apply these lemmata because of S"(g)(6q) € H*(Q4), (25(q)(6q)) € H'(Q0,1,), and get
an(F) (S @)(59). ) — an(FNS @ (00). 2)] < e (2 + ) |8 @60 |y ) 1l 20, 0
<c(h®+ k%) 10all 1721y llell 2 ) »
which finishes the L?-estimate, and what is left follows with interpolation. O
Lemma 2.3.50. For dq € Q) it holds that
71(@)(89) = jh k(@ (0q)| < ¢ (n* +#?) 16all 1721 -

Proof. This lemma follows with Definition [2.3.7] Definition [2.3.§] Lemma [2.3.48 and Lemma[2.3.49
O

2.3.4. Second order optimality conditions

Within this subsection we are going to prove some optimality conditions of second order and some
quadratic-growth conditions which hold in the optimal continuous and discretized solutions. At
first we have to make the following assumption regarding the coercivity of the second derivative of
the reduced cost functional.

Assumption 2.3.51. We assume that

7"(@)(8q,6q) >0 Véq € Q\ {0} .
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2.3. A-priori error estimates

Remark 2.3.52. As j is twice continuously differentiable, we know that there holds a necessary
optimality condition of second order,

3"(@)(6q,6q) >0 Vg € Q. (2.120)

Hence, Assumption[2.3.51]is just slightly stronger than the second order optimality condition (2.120)
and therefore reasonable to assume. In addition, numerical optimization algorithms are more likely
to fail if Assumption [2.3.51]is not satisfied.

We also recall the first order optimality conditions, where q,, q, ), and g, , are arbitrary local

optimal solutions to . . an . respectively.
ptimal solutions to (259), [68) and (73), respectively

7'(@(6q) =0 Viq € Q,
( )(5QU) 0 V&Za € Qm
]h(QU h)((SQU) 0 \V/(SQO' € Qav (2.121)
Ihk@op ) (040) =0 Vogy € Qo

In what follows we are going to prove that all optimal solutions fulfilling Assumption [2.3.51] also
fulfill a seemingly stronger form of coercivity. The following lemmata and proofs have been inspired
by [30].

Lemma 2.3.53. Let ¢ € Q*, 6q € Q and (6¢n),,cy C Q- If 6, — 6q in H3/2%2(I), then it holds
that

S'(9)(3gn) — S'(q)(d9) in Hy (), (2.122)
5" (q)(6qn, 6qn) — S" (q)(8q, 6q) in H (). (2.123)

Proof. Let F = F(q), 6F = F'(q)(0q) and 0F, = F'(q)(dg,). With Lemma it follows that
§F, — §F in H?T¢(Qy), and with Theorem it follows that

/ /
Apsr, = Arsps

in HY™E(Qg) = C(Q).
div(yr DTp" - 6F,) — div(yr DTp" - 0F) () = Cf)

As a result, the right hand side in Definition converges in H~1(£)), and follows with
standard H'-stability results. The second part, , is proven analogously to the first part.
In order to show that the right hand side in Definition converges in H~1(€g) one has to
use , Lemma and the fact that the trace of a matrix, trace: X2*? — X is continuous
for every Banach space X. O

Lemma 2.3.54. Let ¢ € Q*, g € Q and (0Gn)peny C Q with 6gn — 6q in H3/2te(I). Let
m: Q¥ x Q - R and n: Q* x Q — R be defined via

m(q)(8q) = j'(q)(6q) — a(q,q) g2(1),
n(q)(dq) = ”(q)(éq, 6q) — a(dq,6q) (1)
Then it holds that

m(q)(dgn)
n(q)(6gn)

m(q)(dq),
n(q)(dq),

for n — oo.
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2. A model problem

Proof. This lemma is a direct consequence of Definition and Lemma [2.3.53 0
Lemma 2.3.55. Let g € Q*, g € Q and (0Gn)peny C Q- If 6gn — dq in H?(I) then
7'(a)(0an) — j'(4)(0q),
7"(9)(0q,6q) < liminf " (q) (3qn, 5qn)-

Proof. As H?(I) is compactly embedded into H3/2t¢(I) for e < 1/2, we get dq, — dq in H3/2e(I).
As (q,0gn) 521y — (¢,09) gr2(r), the first part follows from the first part of Lemma The
squared H2-norm is a continuous and convex functional on H?(I) and therefore weakly lower semi-
continuous, hence HéqH%{g(I) < liminf,, o0 ”5an§_]2(1), and the second part follows from the second

part of Lemma [2.3.54 O
Lemma 2.3.56. Let g € Q*, 6q € Q, (0qn),en C Q and g, — q in H*(I). If

Tim_3"(4)(3qn, 04n) = 5" (a)(Sa, 0q),
then
5qn — 0q in H?(I).

Proof. Again we get dq, — dq in H3/?%¢(I) for ¢ < 1/2. With the second part of Lemma [2.3.54] it
follows that |[0¢n| g2y = 16| g2y The result follows from the fact that within Hilbert spaces,
strong convergence is equivalent to weak convergence plus convergence of the norm. O

Theorem 2.3.57. Let § € Q* be a solution of ([2.27) fulfilling Assumption |2.3.51. Then there
exists 8 > 0 such that

7"@(54,069) > Bloal32 ) Vdq € Q. (2.124)
Proof. Assume that (2.124)) does not hold. Then there exists a sequence (4¢y),,cy C @ with
10gall 72 = 1

and

o 1
7"(@)(8gn, 6qn) < -

Possibly after extracting a subsequence we get the existence of an element dq € @ with dg, — dq
in H?(I). We get

0 < j"(2)(9g,0q) < liminf 5(q)(dqn, 6¢n) < limsup j"(7)(3gn, 0gn) < limsup To0 (2129)

n—00 n—oo N

The first inequality is just the necessary optimality condition of second order ([2.120]), and the second

inequality is due to Lemma [2.3.55] Equation (2.125)) yields
3" (@) (8¢n, 6a) — 5" (@) (99, 0q) = 0.

As a result, Assumption [2.3.51| implies 0¢ = 0, whereas Lemma [2.3.56| implies 6q,, — dq in H?(I),
which contradicts the fact that [|6gn/| g2y = 1. O
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2.3. A-priori error estimates

Lemma 2.3.58. Let ¢ € Q*. If there exists B > 0 such that
"(0)(5q,89) = B 116ql 2y Véq € Q,

then there exists § > 0 such that for all p € Q*d with ||q —pHHg(]) < § it holds that

. B
7"(p)(0g,09) = 3 15a]1 721, Vig € Q.
Proof. With Lemma [2.3.24] we get the existence of ¢y > 0 such that

7"(p)(6q,0q) = 7" (q)(0q,dq) + 5" (p)(0q,6q) — 5" (q)(dq, 6q)
> 3"(q)(6q,6q) — |3" (p)(6q,6q) — j"(q)(6q, bq)]|
> B16q) 2y = co la = pll oy 18all3r2

= (8= colla = plla=cr)) 18l
and the result follows for § < % O

Lemma 2.3.59. Let ¢ € Q* be a solution of (2.27). Then the following two statements are
equivalent.

o There exists 51 > 0 such that
7"@)(59.69) > B 16all3 ) ¥og € Q. (2.126)
e There exist B2, > 0 such that
i) > 5@ + Bz llp — @7 ) Vp € Q*: |lp—qll gy < 6. (2.127)
Proof. 1t holds, then due to Theorem we have for some t € [0, 1] that
i0) = i@ + 7@k~ 3 + 57" @+t~ D)o 7.0 -1
=@+ 3" @+ - D) - 7.0~ )
> @+ 2L o~ Ty
whereas in the second step we used the first order optimality condition , in the third step we

used Lemma [2.3.58
If the second assertion, (2.127)), holds, then § is a solution to

. . —112
min (JQ*@E q— Q|72 )
Jnin, (9) lg = @llz2 1y
Hq_gHHQ(I)S(S

and the necessary optimality condition of second order yields

3"(@)(59,09) — 285 [16q]| 2 ) > 0 og € Q. O
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2. A model problem

Lemma 2.3.60. There ezists € > 0 such that for all 5 € Qo with ||q¢o — Qo g2y < €, where G, i
a local optimal control of (2.59) with ||q, — G| g2y < €, it holds that

. o B _
40) 2 3(@5) + 7 llae = ll3en

Proof. As in the proof of Lemma [2.3.59| we use a taylor expansion around g,. There exists ¢t € [0, 1]
such that for £ =tg, + (1 — t)q, it holds that

) = @) + 7@, — o) + 57" (@ — 4o — a0)

e 1. _ _
=§(@,) + 53"(€) @ — 90,85 — 90)
o B 2
> j(ds) + 1 17, — qO’||H2([) :
In the first step we used the first order optimality condition (2.121f), in the second step we used

Lemma [2.3.58 and the fact that ||g — 5HH2(1) can be made arbitrarily small by a suitable choice of
e>0. O

We can also prove similar statements regarding the discrete cost functional jp.

Lemma 2.3.61. There exists ¢ > 0 such that for all p € Q with 17 = pllg2ry < € and all b
sufficiently small it holds that

70)(60.00) > 2 150l vbg € Q.

Proof. Using Lemma [2.3.28 we get the existence of ¢y > 0 such that

Jn(p)(8q,6q) > j"(p)(6q,8q) — |5" (p)(8q, 6q) — j1, (p)(6q.6q)|
> 2 8ql3a — o’ I3alagr
= (5 - cht”*) Lol
> 2 gl
which holds for
4
h < <4€0> . O

Lemma 2.3.62. There exists € > 0 such that for all g5, € Qs with anh q(,hHH2 < e, where

Qo1 15 a local optimal control of (2.66) with Hq _QUJLHH%I) < e, it holds that

jh(QU,h) > jh(th) + g an',h - qo,hHZHQ(I)
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2.3. A-priori error estimates

Proof. We use a taylor expansion around g, j,, it holds with &, = g, + (1 — t)qo,, for a t € [0, 1]
that

. o R 1. _ i
In(ton) = 3nG@op) + 31 @o ) (@op — o) + 532’ (1) @op = Goh Top — o)
o 1. _ i
= jn(@op) + 532’ (&) @op — Goh Top — o)
Lo B_ 2
> jh(qa,h) + g HQU,h - q0'7hHH2(]) .

In the first step we used the first order optimality condition (2.121f), in the second step we used
Lemma [2.3.61and the fact that ||g — thH2(1) can be made arbitrarily small by a suitable choice of
e>0. O

Finally we also state the versions for the fully discretized cost functional jy, .

Lemma 2.3.63. There exists € > 0 such that for all p € Q* with ||§—p||H2(I) <eandalh, k
sufficiently small it holds that

Hor0)(60.50) > 2 601Brar vig € Q.
Proof. Using Lemma [2.3.34] we get the existence of ¢y > 0 such that
Jhk(0)(0a,60) = ji(p)(6q, 6q) — |5 () (84, 0q) — jp, 1 (») (5, 3q))|

8
> 7 18allzrery — ok 6]z 1

:
= (§ - ok’ oty

2
Hence, for £ < (%) and h sufficiently small such that Lemma [2.3.61]is applicable it holds that

: p
Ik (P)(9g,0q) > 3 16q(1772 ) - B
The following lemma can be proven in the same way as Lemma [2.3.60| and Lemma [2.3.62

Lemma 2.3.64. There exists € > 0 such that for all g p i € Qo with H(Ja,h,k —@nh,kHHQ(I) <eg,
where Gy, p, . 95 a local optimal control of (2.73) with Hq—aathHQ(I) < g, il holds that

. . B _ 2
Jh,k(qa,h,k) > ]h,k(qJ,h,k) + E H%,h,k - qa,h,kHHz(I) .

2.3.5. On the existence of a converging subsequence

In order to prove Theorem we need to show that for every fixed g there exist sequences of
local optimal controls (7,),~o C @3, (th)m,»o C Q¥ and (qavhvk)a,h,k>0 C QX to the discretized
problems (2.59), (2.66]) and (2.73), respectively, that converge to g in H?(I) for o, h,k — 0. What
follows adapts a method presented in [28]. At first we fix § as the solution to the continuous optimal
control problem and let

Q= {4s € Q11T doll oy < €} (2.128)
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2. A model problem

where € > 0 is chosen sufficiently small such that Lemma [2.3.59, (2.127)), holds for all ¢, € Qifje.

Let iy: Q — Qo be the interpolation operator from Definition 1] with Lemma it follows
that Q» 3 icq — q in H*(I), hence Q2L # ) for 0 = o(e) sufficiently small, where we have to
assume that g € int(Q*?). Let Gy be the optimal solution to

n, 7 (@oe)- (2.129)

Lemma 2.3.65. For o — 0 it holds that j(q,.) — j(q)-

Proof. We have

3(do2) 2 3(a),

due to the definition of g, and using Lemma [2.3.24] we get

3(8o,e) = 3(@) < j(ioq) = 3(@) < cllicq = qllg2(ry = 0 for o — 0. H

Lemma 2.3.66. For o — 0 it holds that |[q, . — 0.

=l g2y
Proof. Using Lemma [2.3.59]it follows that

B 12
1@oe) = 5@ 2 5 [Goe = ll sy
and the proof follows with Lemma [2.3.65 0

Lemma 2.3.67. For o sufficiently small, q, . is a local solution to the partially discretized prob-
lem (2.59).

Proof. We have to show that all elements ¢, € Q2 which are sufficiently close to Gy are also
elements of ngjs. Choose o such that qua — QHHQ(I) < 5. Now, if ¢, € di and an _ qa,EH < it
holds that

H@ - QUHHQ(I) < H@ - qo,sHHz(I) + qus - qUHHQ(]) < g,

which shows that ¢, € ngla. O

Now fix g, as a local solution to (2.59)), close to g, and define

Qg(,ih,e = {qa € Q?yd‘ 4o *qty”[ﬁ(]) < 5}, (2.130)

where o and ¢ have to be chosen sufficiently small such that Lemma [2.3.60| holds in g, for all
0o € Q2 . Now let Gy e De the optimal solution to

o,he*

min jh(QG,h,a>- (2'131)

qUahﬁfeQZ(,{h,s

Lemma 2.3.68. For h — 0 it holds that jn(Q,pc) — J(Qy)-
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2.3. A-priori error estimates

Proof. 1t holds that
jh(amh,a) < jh(qa)v

and Lemma shows
jh(qa,h,a) - j(go) < jh(@f) - j(go) < Chl/Z'

Because of

j(ga) < j(qa,h,e)v

it follows that

jh(ga,h,s) - .](60) > jh(@r,h,s) - j(‘]a,h,s) > _Ch1/2' [
Lemma 2.3.69. For h — 0 it holds that j(q, ) — J(Qy)-
Proof. It holds that

|j(q0,h,€) - ](ao)’ < }j(aa,h,e) - jh(éa,h,e)‘ + ‘jh(qa,h,e) - ](QU)‘ — 0,
where for the first term we used Lemma [2.3.28| for the second term we used Lemma [2.3.68 OJ

Lemma 2.3.70. For h — 0 it holds that an,h@ — 0.

— ol 2y
Proof. Using Lemma [2.3.60] it holds that

B _ 2
](QU,h,E) - ](QU) > Z an',h,E - qO’HHQ(I) 3
and the proof follows with Lemma [2.3.69] O

Lemma 2.3.71. For h sufficiently small, G, . is also a local solution to the partially discretized
problem (2.66)).

Proof. We have to show that all elements ¢, € Q¢, which are sufficiently close to Qo e are also ele-

ments of ngihva. Choose h such that an,h,e — QUHHQ(I) < 5. Now, if ¢, € Q2 and an — qa,h,s” <5,

then it holds that
1@ = doll 2y < [0 — qa,h,aHm(z) +{[@one — qJHHZ(I) <é€
which gives ¢, € dih . [

At last, fix g, ;, as a local optimal solution to (2.66)) and define

e = { 00 € Q2 o = Tonll oy < ¢ (2.132)

where o, h and ¢ are chosen sufficiently small such that Lemma|2.3.62/holds in g, 5, for all ¢, € foflh’ ke
Now let g, , . be the optimal solution to

min hk(Qohoke)- (2.133)

ad
qﬂ'yhyquGQo',hA,k,s
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2. A model problem

Lemma 2.3.72. For k — 0 it holds that jn k(Gyp i) = Jn(@on)-
Proof. 1t holds that
jh,k(aa,h,k,s) < jh,k(th)a

and using Lemma [2.3.34] we conclude that

ko ppe) = 0 (@on) < nk(@on) — Jn(@op) < ck'/2.

Because of

jh (qa,h) < jh (qa,h,k:,s)

it follows that

Ink(@opie) = In(@opn) = Ink(@oppe) = In@oppe) = —ck'/2, O
Lemma 2.3.73. For k — 0 it holds that jn(Gyp k) = Jn(@pn)-
Proof. Tt holds that

’jh(ga,h,k,s) - jh(@a,h)‘ < ‘jh(qoyh,kz,e) - jh,k(@zh,k,a)} + ‘jh,k(qa,h,k,a) - jh(@a,h)‘ — 0,
where for the first term we used Lemma [2.3.34] for the second term we used Lemma [2.3.72 OJ

Lemma 2.3.74. For k — 0 it holds that qu}hkrg - @LhHHQ(I) — 0.

Proof. Using Lemma it follows that

o o B
In@onie) = In(@opn) = 3

_ _ 2
quh,k’,a - q0HH2([) )
and the proof follows with Lemma, [2.3.62 O

Lemma 2.3.75. For k sufficiently small, G, 1 . 15 also a local solution to the fully discretized

problem (2.73).

Proof. We have to show that all elements ¢, € Q*, which are sufficiently close to Qo h ke are

ag 7

also elements of Qiflh’k’e. Choose k such that an,h,k,e —QUHHQ(I) < % Then, for g, € di and
95 = T kel g2y < 5 it holds that

HQU,h - qUHHz(I) < Hqcr,h - QU,h,k,EH}p([) + HQU,h,k,s - q‘7HH2(I) < &,
which shows that ¢, € 2%&5. O

Lemma 2.3.76. There erist sequences (4,) 0 (ﬁmh)gh>0 and (qa7h7k)ahk>o of local optimal so-
lutions to (2.59), (2.66) and (2.73)), respectively, with

Yim 1y — ey = lim @on =l oy = Jim (@ =l oy = 0-
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Proof. The existence of (g, ), follows with Lemma [2.3.66{ and Lemma [2.3.67, the existence of
(th)ahw follows with Lemma [2.3.70, Lemma [2.3.71| and the first part of this lemma, and the

existence of (aavhyk)o,h,loo follows with Lemma [2.3.74] Lemma [2.3.75|and the first two parts of this

lemma. O
No we can finally finish the proof of Theorem [2.3.1]

Proof. Let g be an optimal control for (2.27) and let G, , be an optimal control for (2.73) for o,
h and k sufficiently small, such that Lemma [2.3.63| holds for g, ;. The existence of such a g, j
is guaranteed by Lemma [2.3.76, Now there exists ¢ € [0, 1] such that with { = tg+ (1 — 1)q, 5, it
holds that
_ 2 . _ _
cllg - qo,h,kHHz([) < I k@ = Topks T — Tonte)
= ik @@ = Tonk) = Ihk@ons) (@ = Topr)
= i@ @ = Tonr) = Ink@op i) (@ — 107),
where we used the first order optimality condition in g, ;, ;. Using the first order optimality condition

in ¢ we get

[ 2 . N — = _
cl[@ = Tongell oy < Ik @@ = Top) = 5" @(@ = Do)
+ 3k @@ = i69) = Jnx@o 1) (@ — i67)
+7'@(@ —is0) = (@)@~ 07),

and using Lemma Lemma [2.3.50| and Lemma [2.3.36| we arrive at

Hﬁ - qa,h,k“ipu) <c (h2 + k2) H@ - qo,thm(I)
+el[@ = Tongll oy 17— iotll 2
+ e (B 4+ K) 17 — iodll g2y -

With Young’s inequality we get the existence of a ¢; > 0 such that

_ 2 1 _
Hq — qU,h,kHipU) <a ((h2 + k’Q) + 17— ZaQH12q2(1)> + B Hq — q(r,h,kuip([) .
For a,b > 0 it holds that va2 + b < a + b, and using Lemma we finally end up with

7= Toll oy < € (0 + 17+ 57). -
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3. Optimization of eigenvalues

The aim of this chapter is to apply the framework introduced in Chapter [2| to a shape optimization
problem where the cost functional includes eigenvalues of a partial differential operator.

This chapter is organized as follows. In Section we present the problem under consideration
and apply the framework presented in Section to this problem, i.e. we transform the problem
onto a fixed reference domain, show existence of an optimal solution and prove some regularity
and differentiability results. As even normalized eigenfunctions are only defined up to their sign,
Section deals with estimating the difference between two eigenfunctions corresponding to dif-
ferent controls. In Section we discretize the original problem using finite elements similar to
Section Finally, in Section we prove an a-priori error estimate for the error between the
optimal control and a sequence of local optimal controls to the fully discretized problem.

3.1. The problem

Within this chapter we focus on the maximization of the distance between the first two eigenvalues
of a partial differential operator corresponding to the transmission problem. This choice of the
cost functional may be motivated as follows. Multiple eigenvalues are in general no longer Fréchet-
differentiable with respect to domain perturbations, this irregularity is also responsible for some
physical effects. In the context of musical instruments, for example, it is possible to hear some
undesired interferences if some of the lower eigenvalues are too close to each other. For a more
detailed investigation onto that topic we refer to [43].

The exact definition of the cost functional to be minimized will be given in (3.10), we start with
some preliminaries. In what follows, the notation will be very similar to that in Chapter 2] As in
Section let ¢ € Q = Hpe,(I) with I = (0,2m) be the control variable, and let

Q= {(z,y) eR} -2 <,y <2} CR?

be the interior of a square with side length 4, centered at the origin and sides parallel to the axes.
Let €, be divided into an inner, star-shaped domain,

Qo= { (@,y) €Rr <1+qlp), 1= V2> + ¢ ¢ =arg(w +1iy) |,
and the outer domain,
Qq,l = Qq\%v
see Figure In order to exclude a possible degeneracy of the domain €2, o we fix € > 0 and define

Q" ={qeQlal¢) > ~1+2Vp el and Qup C Oy} . (3.1)

As H*(I) — CYY2(T), (B.1) is well-defined. Now let d > 0 be a constant which shall remain fixed
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3. Optimization of eigenvalues

Fq,O 1—‘O

Qq,l 0

Figure 3.1.: The original domain (), Figure 3.2.: The transformed domain {2

throughout this chapter and let L: H}(Q,) — H_1(~Qq) be the partial differential operator such
that for u € H}(Q,) and f € H~1(Q,) the equation Lu = f shall be a formulation for u being the
unique weak solution to

—dAu=f in Q40, —Au=f in Qq1,
[u]q =0 on Fq70 = 8Qq,0, u=0 on Pq = 8Qq, (32)
dOpug,— = Opug+ on I'yp,

where [u], is defined as follows. For x € I'y let

“q,+(x) = ?}I%H% u(y), uq,*(m) = ?}ILI:IB u(y), (33)
yEQqﬁl yqu,O

be the function values when approaching Iy ¢ from either €41 or € ¢ in a nontangential way, cf. [40],
and let

[u]q = Ug,+ — Uq,—,
be the jump of u over I'yo. It can easily be derived that the weak formulation of (3.2]) reads as

(Vu, Vo)g  +d(Vu,Vo)g = (f,v)q, Yo € Hi (). (3.4)

As H}(Q,) is compactly embedded into L?(Q,), it follows that L' is a compact and self-adjoint

operator on L*(),). Hence, for each fixed ¢ € @ad, the spectral theorem for compact operators,
Theorem yields the existence of a sequence (\;);cy C RT with 0 < A\; < A2 < ... (counted
with multiplicity) and

lim \; = oo,
1—00

and a sequence of eigenfunctions (u;);cy C H}(Qq) with
Lu; = \u; Vi €N, (3.5)

and eigenfunctions to different eigenvalues are orthogonal with respect to the L2-scalar product. In
order to compute the i-th eigenvalue for general ¢ € N one may use the following lemma, a proof
can be found in the survey article [15], Chapter 7.
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3.1. The problem

Lemma 3.1.1. Let V and H be two real Hilbert spaces with dense and continuous embedding
Ve—H. Leta: VXV = Rand b: H x H — R be two symmetric and continuous bilinear forms.
Let a(-,-) be V-elliptic, i.e. there exists « > 0 such that a(v,v) > « HUH%/ forallv eV, and let b(-,-)
define a scalar product on H. For i € N, let V) denote the set of all subspaces of V of dimension
1. Then the i-th eigenvalue corresponding to the equation

a(ui,v) = A b(u;,v) Yv eV,
18 glven via

a(v,v)

: (3.6)

A; = min max
" Bev® veE b(v,v)

where the minimum with respect to the subspace is attained for E being the subspace spanned by the
first © eigenfunctions, and the mazimum with respect to the element of that subspace is attained for
v being an eigenfunction to ;.

Now let
luq =1 + (d_ 1)XQq,oa

with xq,, being the characteristic function of €2, and

aqg(u,v) = (Vu,/,Lqu)Qq , (3.7)
bg(u,v) = (u,v)Qq . (3.8)
Then the weak formulation of , including a normalizing condition, reads as
{%@MZM%ww)WG%m@ 59)
bg(ui, u;) = 1.

For the rest of this chapter we consider the variational problem. The problem under consideration
is now given via
. Q@

min, j(a) = (@) = (@) + 5 lalifzqr (3.10)

qeQ”
subject to (3.6) and (3.9)), where a > 0 is a given constant.
Remark 3.1.2. With X\;(¢) for i € N and ¢ € Q* we will always denote the i-th eigenvalue for a
given control ¢, which can be computed via (3.6)).

In order to prove the existence of a solution to (3.10) we will at first show that j is uniformly
bounded from below. This follows from the fact that Aa(q) is uniformly bounded from above for

q € @ad, which is a direct consequence of the following lemma.

Lemma 3.1.3. Let i € N, then there exists ¢ = c(i) > 0 such that \i(q) € (0,c] for all ¢ € @ad.

Proof. As all the eigenvalues are known to be positive we just have to prove the upper bound. Let A
denote the i-th eigenvalue for the Laplacian on €, which does not depend on ¢. Using Lemma
it follows that

\i(g) = min maXM
Eev () veE (Ua U)

\%
< max{l,d} min maxﬂ
Eev() veE  (v,0)

= max {1,d} \;. O
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3. Optimization of eigenvalues

Remark 3.1.4. The eigenvalues for the Laplacian on a rectangle can be computed exactly. For exam-
ple, on the square D = (—2,2) x (—2,2) the set of eigenvalues is given by { 7{—2 (m? + nQ)‘ m,n € N}.

Lemma [B.1.3] ensures that

j(q) = oo.

||CIH1-12(1)%00

It follows that there exists C' = C () such that we can restrict the search for a minimum onto the
set

Q' = {q€Qlllall = < C}- (3.11)

As within Subsection we have to assume that the constant C is sufficiently small, it is reasonable

to assume that Q4 c Q™ i.e. the elements of Q*d are not degenerated in the sense of (3.1]). Before
we continue in proving the existence of a solution to (3.10)) we will apply a transformation argument
similar to Subsection R.1.11

3.1.1. Transformation of the problem

In order to solve (3.10) we will use a transformation Tp to transform the equation (3.9) onto a
partitioned reference domain, see Figure Let 2 = Qg, let {29 be the open unit circle centered
at the origin and let 1 = Q\Qg. Let F' be the weak solution to

—-AF =0 inQy, je€{0,1},
F=0 onl =09, (3.12)
F=gn onTIy=0Q,

where n shall always denote the outer unit normal with respect to 9. Similar to Subsubsec-

tion [2.1.3.2] it is possible to reformulate (3.12) in variational form which then shall be denoted
with

G(q,G) = (F,G) VG € L3 (Q), (3.13)

where G: L?(Tg) x L%(Q)) — R is bilinear and continuous. Let T = Id +F be the transformation,
it now holds that

Qq,; = Tr(Q;),

for j € {0,1}, where we also have to assume that C from (3.11) is chosen sufficiently small such
that TF is a bijection from €, onto € for all ¢ € Q¥ cf. Assumption [2.1.11)and the lemmata cited
therein.

Remark 3.1.5. With F(q) we will always denote the solution to (3.12) for a given control ¢ € Q.

Lemma 3.1.6. Let q,p € Q*! with corresponding transformations F and E, respectively. Then it
holds that

3.14
3.15
3.16
3.17

Fy = Flo, € H?(Q) = W4 (Qg) — CH1/2(Qy),
Fy = Flo, € W Q) — CH/2(y),

(3.14)
(3.15)
Fewh®(Q) =% (), and [F w00 ) < e lall garavery s (3.16)
(3.17)

HF - EHWLoo(Q) <ce Hq - pHH3/2+g(I) .
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Proof. The regularity results for Fy and Fi, (3.14) and (3.15]), follow with Theorem |[A.1.28] Theo-
rem and Theorem [A.1.4] As Fy and Fj are both continuous and coincide on the boundary

[y due to (3.12)) it follows that F' is continuous on £, its regularity can be seen as follows. Let
xz,y € (. If either x,y € Qg or x,y € (11, then the regularity result within follows from the
regularity of F and Fi. Now, without loss of generality, let x € Qq, y € €21 and let z € I'g be the
intersection of the line segment Ty with I'g, |z — y| = |z — z| + |z — y|. In addition, let Ly and L;
be the Lipschitz constants of Fjy and F}, respectively. Then it holds that

[F(x) = F(y)| < [F(z) = F(2)| + |[F(2) — F(y)]
< Loz — 2|+ Li[z —
<max{Lg, L1} (|lx — z| + |z — y|)
=max{Lg, L1} |z —y|.
From the regularity results cited above it follows that ¢ € C%¢(I) is sufficient for Fy and F} to be

Lipschitz, and Lo and L; continuously depend on ||q[|c1.(s). Because of H32+e(1) — CY4(T) we
end up with

[F(2) = F(y)| < cellallgsrzve iy 2 =9l

which proves (3.16). The last assertion, (3.17), follows with (3.16) and the fact that ¢ — F(q) is
linear. O

For given ¢ € Q* with FF = F(q) and transformation Tr it is now possible to transform (3.9)
onto the reference domain, which then reads as

{ (Vui(q), nAr - Vo) = Ai(q) (ui(q),vvr) Vo € Hy(Q), (3.18)

(ui(q), ui(q)vr) =1,

with u = 1+ (d — 1)xq,, where xq, is the characteristic function of Qg, y7 = det (DTr) and
Ap =DT, L.pr = Top. Regularity and differentiability results concerning these functions can be
proven similar to Lemma [2.1.6] In what follows we will use the following abbreviations,

a(F)(u,v) = (Vu, pAp - Vv), (3.19)
b(F)(u,v) = (u,vyF), (3.20)

such that (3.18) can be rewritten as

{ a(F)(ui(q), v) = Xi(q) b(F)(ui(q),v) Yo € Hg (),
b(F)(ui(q),ui(q)) =1

Remark 3.1.7. Let u;(q) denote the i-th eigenfunction for given ¢ € @Q*! and i € N, which can be
computed via (3.18).

The transformed problem now reads as

YN o 2
qgléng(Q) = M(a) = 22(a) + 5 llallrzry » (3.21)

subject to (3.13), (3.6) and (3.18].
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3. Optimization of eigenvalues

3.1.2. On the existence of eigenfunctions

Although the existence of real eigenvalues and eigenfunctions for the original equation is well-
known, here we give rigorous proofs for their existence in the transformed setting :3.18). The
approach presented within this subsection will also be needed in the context of error estimation

later on.

Definition 3.1.8. For given ¢ € Q* and F = F(q), let L = L,: H}(Q) — H™Y(Q) be the
differential operator related to the bilinear form (3.19)),

Lu = —div(pAr - Vu) .

Furthermore, let L=1: H=1(Q) — H}(Q) be the inverse of L with respect to the scalar product
induced by the bilinear form b(F)(-,-), i.e. u = L' f is defined as the unique solution to

(Vu, pAp - Vo) = (f, U’}/F)H_17H6 Yo € HY(Q). (3.22)

The following spaces will be used in order to simplify notation. The equivalence of the norms
follows from Subsection

Definition 3.1.9. For fixed ¢ € Q@ and F = F(q), let L}(Q) = L?(Q,q) be the space L*(1)
equipped with the scalar product induced by (3.20)),

(UaU)Lg(Q) = (w,vyr).
The LZ(£2)-norm is equivalent to the standard L?(£2)-norm.

Definition 3.1.10. For fixed ¢ € Q*! and F = F(q), let H&G(Q) = H&a(Q, q) be the space Hg(Q)
equipped with the scalar product induced by (3.19),

(u, U)Hé,a(ﬂ) = (Vu, uAp - Vo).
The Hj ,(Q2)-norm is equivalent to the standard Hg(€2)-norm.

Lemma 3.1.11. Let ¢ € Q*4, then the operator L™ from Definition is compact from L*(Q)
onto HE ().

Proof. Let L™! be the solution operator for (3-2). From [95], Theorem 5 and Remark 5.1, it
follows that L~! maps L?(Q) onto HS’/Q_a(Qz for ¢ > 0. As H§/2_5(Q) is compactly embed-
ded into H}() for ¢ < 1/2, it follows that L~! is compact from L?(€2) onto H}(f2). Because
L7Yf) = (Efl(f oTEl)> oTF is the concatenation of linear and compact operators, the result
follows. H

As L7 is selfadjoint and compact over Hj(Q2) due to Lemma 3.1.11{and hence also over Hy ,(Q),
it follows from Theorem that there exists a sequence of eigenvalues (;);cy C R with 0 as
only limit point, and a sequence of eigenfunctions (u;);eyy C Hg ,(Q) with

L_luz- = V;Uy;.
Taking the H&CL(Q)—scalar product on both sides yields

(V (Lilui) AR - V) = (V (viw) , pAp - Vv) Vv € H&,a(Q)-
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Setting \; = v, 1 and using the definition of L~ we arrive at
(Vui, pAp - Vo) = X; (ug, vyp) Yo € H&ya(Q).
From
Ai (wiy ujyr) = (Vui, pAp - Vug) = Aj (ui, ujyr) ,
it also follows that the eigenfunctions are mutually orthogonal,
alF) (i, uz) = b(F) (us, u) = 0, (3.23)

for i # j.

3.1.3. Existence of a solution

Within this subsection we are going to prove that the variational problem has a solution. As
the original problem is equivalent to the transformed problem , we will show the existence of
a minimizer just for the transformed one. First we need a continuity result for the eigenvalues, the
following theorem can be found in [56], Theorem 2.3.1.

Theorem 3.1.12. Let T1 and T be two self-adjoint, compact and positive operators on a separable
Hilbert space V. Let i € N, and let v;(T1) and v;(Ty) be their i-th eigenvalues, respectively. Then it
holds that

[vi(Ty) — vi(T3)| < sup (v, (Th — T3)v)y,

veV [ol[3
Ty —T5) (v
< up 1T mWVﬂm_BM-
veV HUHV

Lemma 3.1.13. Let i € N and let q,p € Q*! with corresponding transformations F and E, respec-
tively. Then it holds that

Mila)~ M) < sup (Vs (Ar = Ap) Tu)l+ | e~ e
weHL(Q) [l 0
< cellg = pllgase=(ry -
Proof. This lemma follows from Theorem and Lemma [3.4.6 O
Theorem 3.1.14. Problem has a solution.

Proof. Let (¢n),eny C Q* be a minimizing sequence with

i j(an) = nf j(a) = .
As Q* is a bounded, closed and convex subset of the Hilbert space Q it is weakly sequentially
compact. It follows that there exists § € Q*! and a subsequence of (g,) denoted in the same
way, with

neNs

an — 7 in H*(I),
Gn — q in H*~¢(I),
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where the strong convergence follows from the fact that H?(I) is compactly embedded into H?~%(I).
With Lemma [3.1.13|it follows that A;(g,) — Ai(q) for n — 0o and i € {1,2}. As the squared norm

is lower semicontinuous it follows that
. 2 2
hnrr_l)gf lanllr2cry = 1@l z2(r) -
hence
liminf j(¢,) > (),
n—oo

and from the definition of j it follows that

i@ =J. m
Remark 3.1.15. As g — X;(q) is highly nonlinear, the optimal control § need not be unique.

3.1.4. Regularity of the eigenfunctions

The aim of this subsection is to investigate in the regularity of the eigenfunctions, i.e. the solutions
(ui, Ai) to (3.18),

(vui7 ,U'AF . V/U) = )\Z (uiv /U’YF) V’U € H&(Q)7
where it is known that Ar € C%Y/2(Q;) for j € {0,1}. Here we will prove some general regularity
results for u;, in a later section we will show that the optimal control § possesses some even higher
regularity which will also improve the regularity of the associated optimal eigenfunctions. As we

just focus on the regularity of the eigenfunctions, we omit the normalizing condition in ([3.18]) within
this subsection.

Lemma 3.1.16. Let ¢ € Q*!, i € N and u; = u;(q), then it holds that
il g ) < i lluill L2y -

Proof. Let F = F(q) and \; = )\;(q), as all the matrices uAp are uniformly elliptic for ¢ € Q¢ it
follows that

¢|luill Ty ) < alF)(ui,ui) = Ab(F) (ui, us)
< eXi lluill 22 »
and the proof follows with Lemma, [3.1.3 O
Lemma 3.1.17. There exists p € (2,00) such that for all ¢ € Q* and i € N it holds that
ui(q) € WHP(Q) and
[will ey < cip lluill 2o -

Proof. Let F = F(q) and \; = \;(¢). Again we use the fact that for ¢ € Q*? the ellipticity constants
of the matrices uAr can be bounded uniformly. The existence of such a p > 2 now follows from
Theorem [A.1.32l From the cited theorem it also follows that

HuiuwlaP(Q) < ||)\iui’YF||Lp(Q) < CGip HuiHLP(Q)
<G <G

P Hui\|H5(Q) P \Uz‘||L2(Q)a

where we used the continuous embedding H'(Q)) < LP(Q) for p < oo in dimension n = 2 and
Lemma [3.1.161 O
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The following lemma can be proven by a direct calculation.

Lemma 3.1.18. Let f € CY*(Y,Z) and g € CY*(X,Y) for some o € (0,1] and closed subsets
X,Y and Z of some Banach spaces. Then it holds that fog € CY¥(X,Z) and

1f OQHCLa(X,Z) <c ”f”cl;a(xz) HQHCL&(X,Y) :
Lemma 3.1.19. Let ¢ € Q™, F = F(q), j € {0,1} and K CC Q;. Then F|; is analytic.

Proof. This lemma is a direct consequence of Weyl’s lemma, cf. [108], Lemma 2, and the fact that
F is weakly harmonic in Q; for j € {0,1}. O

Lemma 3.1.20. Leti € N, g € Q*, u; = u;(q), j € {0,1} and let K CC Q; be sufficiently smooth.
Then it holds that u; € CYY2(K) for i € N and there exists ¢; = c¢;(K) such that

[willraregrey < eilluill p2(q) -

Proof. Let F = F(q) and K’ = Tz'(K). Due to Lemma F|, is analytic, and as Tp
is bijective it follows that K’ is sufficiently smooth. On K’ it holds that ug; = u; o TEl solves
—Aug; = :\uq,i, where 5\1 = )\; or 5\1 = %, depending on whether 5 is either 0 or 1. Us-
ing the results presented in [56], Section 1.2.4 and the references cited therein it follows that
l|wi g |W2,4(K,) < ¢(i, K) ||u¢7q|\L2(Qq). The regularity result and the estimate for ;| = u;q 0 Tr

follow with the continuous embedding W2*(K') — C%'/?(K"), Lemmal3.1.18and Lemma(3.1.6| [

Next we are going to prove a result dealing with the regularity of the eigenfunctions up to the
boundary I'g. The following theorem can be found in [81], Corollary 1.3.

Theorem 3.1.21. Let Q C R™ be a bounded domain with CY“-boundary T' with o € (0,1). Let
L € N and for 1 <m < L let Q,, be a subdomain of Q with CY*-boundary and Q = U{;L:lm
For 1 <m < L let A™ € CO*(Q,,) with p € (0,1] be a symmetric and positive definite matriz,
and let the matriz A be defined via Alg = A Suppose that 0 < ¢; < A < ¢p < o0 on Q in the
sense of symmetric and positive definite matrices. In a likewise manner, let K™ € CO*(Qy,) and
hlg, = RU™) At last, let f € L®(Q) and g € CY*(T). Then the restriction of the weak solution u
to

(3.24)

—div(A-Vu) = f+div(h) in Q,
u=g on I,

onto Qy, belongs to C1 () for 0 < o < min {,u, ot } and there holds the estimate

(m) ,
s, [y < ¢ (I + s, [0 b lglonrr).
with the constant ¢ being independent of f, K™ and g.

Coming back to our situation, we obtain:

Corollary 3.1.22. Leti € N, ¢ € Q*, u; = ui(q), € > 0, and let Q. = {x € Q|dist(x,T) > ¢}.
Then it holds that

uilq, € CHY0(0), uilg,no. € ch5(Q N9y,

lwill o1 gy < i lluill 2 (a5 [willora/smnn < Cie llwill L2q) -
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Proof. Let K CC 1 be sufficiently smooth such that 02 C K. Lemma [3.1.20] now yields

uill gra/s00,) < ¢lluillorare gy < cilluill 2y -

This corollary now follows with Lemma |3.1.17| which ensures that u; € L*°(2) and Theorem (3.1.21
O

The following lemmata are proven in order to show H3/275(Q) N W1P(Q)-regularity of u;.
Lemma 3.1.23. Let g € Q*, i € N, u; = ui(q), p € [2,00) and € > 0. Then there exists

uir € WyP(Q) nWitt/r=er(Q),

such that w;r| = wlp, and

||ul'7r”W1+1/P*€~,p(Q) < Ciep il 20 -

Proof. With Corollary [3.1.22] it follows that u;|p, € CU/6(Tg) < WT/6P(Ty) for all p < co. In
addition, for € > 0 sufficiently small let the annulus K be defined as

K= {ac € QlldiSt((L‘,Fo) < 8} C Ql.

Using Theorem it follows that for p € [6/5,00) there exists a function u; r € L*(Qo U K) with
the following properties.

uirlq, € WT6+1pp Qo) 5 CBY/6-1/P(Qy),

Ui,l“rﬂ = Ui|r0 ’ (3.25)
6nui,F‘FO = 07

[l ui, ‘W7/6+1/p,p(90) < ¢ HuiHWme(Fo) ’

and

Ui,F|K c W7/6+1/p,p(K) SN 01’1/6_1/p(K),
OK\I'g = 07 (326)

|W7/6+1/p,p(K) <& ”uiHW7/6’P(FO) .

U, |3K\F0 = anui,F

[Jwi,r

As u; r is continuous along I'g, it follows that

[|wir \@Vl,p(KUQD) = HUZ‘,FHI;VLIJ(K) + HULF”];VL;:(QO)

<ep HuiH];W/G,
P ?P(Io) (3.27)
<e, HuiHcl,l/e(gTo)

< Cip HUiHIiz(Q) )
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3.1. The problem

where we used Corollary [3.1.22] From the definition of fractional norms (B.1|) it now follows that

- _ Vu;r(z) — Vi r(y)[?
sweemer o) = o) Jreony e y\2+p Vo)

[Vuir(z) = Vuir(y)l”
S <<|UZF|W1+1/1; ep( W1+1/p gp(QO) / /QO y‘2+p 1/p—e) dxdy

Sce,puu@rrrf;wﬁ,m)+max{uui,rugl(m,Hu@ruglm /. /Q ,x_y,w(l/p_e) dedy

dz dy

< cep (1B myy + M0 {0 By gy 100 Wiy § 10 Byt )
< cep (10 By + 1ilBymsorey Hlaouwl/,,*s,,,(mo))

< cop il sso gy (14 110000 )
< Ciep ||uz”122(9) )
(3.28)

where we used Corollary and the fact that the characteristic function of every bounded C*-
domain is an element of W/P=5P(R?), cf. [I01], Proposition 2.1, and [9]. Tf we extend wu;r by
zero to the whole domain (2, one can repeat the steps undertaken in (3.27) and (3.28) to show
WH1/p=22(Q)-regularity as well as the stability estimate and thus finish this proof. O

Lemma 3.1.24. Let g € Q*, i € N, u; = u;(q) and p < co. Then it holds that u; € WP(Q) and

luillwro(q) < cip lluill 120 -

Proof. Let @ = (u; — w;r) with u; p defined as in Lemma [3.1.23] Then @ is the weak solution to

{ —div(pAr - fL) Aiwiyp + div(pAp - Vur) in €, (3.20)

=0 on 8Qj,

for j € {0,1}. As p is constant on €, one can apply Theorem [A.1.31) and get @ € Wol’p(ﬂj), as
well as

lallwioy) < & (Iiwirel oy + 148 - Vairll )

( j))
< Cip ||ui||L2(Q) ;

where we used Lemma [3.1.16] Lemma and Lemma [3.1.23] As u € Wol’p(ﬂj) it also follows

that @ € W, ?(§2), and the result follows. O

< i (il ay) + 14F ey

Lemma 3.1.25. Let ¢ € Q*!, i € N and u; = u;(q). Then it holds that u; € H>?>~5(Q) and

HuiHH3/2—E(Q) < Cie ”uiHL2(Q)
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3. Optimization of eigenvalues

Proof. As in the proof of Lemma [3.1.24|let @ = (u; — u; 1), then @ is the weak solution to (3.29)) for
j €{0,1}. As both subdomains of Q are Lipschitz, Theorem |A.1.30| proves &|Qj € H3?75(Q;) and

]l gr3/2-< () < ce (||>\z‘uﬂF||L2(Qj) +[|AF - VUz‘,FHHm—s(Qj))

< i (Iluill 2y + AP N zs/2(c il gsro<qa)

< Cie HUiHLQ(Q) )

where we used Lemma |3.1.23 and Theorem It remains to prove H3/27¢(Q)-regularity. This
can be done in exactly the same way as shown in (3.28]) within the proof of Lemma [3.1.23 O

3.1.5. Differentiability of the eigenvalues

It is well-known that in the case of a sufficiently smooth domain, the eigenvalues with multiplicity
one are Fréchet-differentiable with respect to smooth domain perturbations, whereas eigenvalues
with a higher multiplicity are only Gateaux-differentiable, cf. [54]. In the following subsection we
are going to prove differentiability of the eigensystem with respect to domain perturbations. In
order to do so we follow the approach presented in [34], where it is proven that eigenvalues are
differentiable with respect to a specific boundary perturbation and also a representation for the
derivative is given. Although our approach uses a transformation to a reference domain and our
regularity assumptions differ, their proofs can be adapted to our case.

Assumption 3.1.26. We assume that for all ¢ € Q*?, the eigenvalues A1 (¢) and A2(g) have multiplicity
one.

Taking into account the cost functional it is reasonable to assume that A;(q) # Aa(q) for
all ¢ sufficiently close to the optimal control . Another justification is the Krein-Rutman theorem
(cf. [56], Theorem 1.2.5 and Theorem 1.2.6), which states that the first eigenvalue for a uniformly
elliptic partial differential operator of second order is simple. However, we do have to admit that
we did not find theoretical results supporting the claim that A2(q) # A3(q) for all ¢ € Q* with
1 = all g2y sufficiently small.
3.1.5.1. On the existence of the derivatives of )\; and u;

The proof of the existence of the derivatives of A; and wu; with respect to ¢ relies on the implicit
function theorem and Fredholm’s alternative.

Theorem 3.1.27 (Fredholm’s alternative). Let X be a Banach Space over K with K =R or K = C.
Let T be a compact operator on X with adjoint T', and let A € K, X # 0. Then exactly one of the
following two possibilities holds true.

e The equation
Ax — Tz =0, (3.30)
has © = 0 as its only solution and

e — Tz =y, (3.31)

s uniquely solvable for every y € X.
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3.1. The problem
o There exist n = dim(ker(AId —T)) linear independent solutions to (3.30), and the adjoint
equation
' —T'2' =0,

also has n linear independent solutions. Furthermore, there exists a solution to (3.31) if and
only if y € (ker(AId —T"))*.

Proof. This theorem can be found in [3], Theorem 10.8. O

Lemma 3.1.28. Let g € Q*, F = F(q), i € N, let (u; = ui(q), \s = \i(q)) be an eigenpair to the
simple eigenvalue \; and let g € H=1(Q). The equation

(VU, /-LAF ) V’U) =Ai (’LL, U’YF) + (gv ’U)Hfl,Hé Vv e H(}(Q) (332)
has a solution u € H}(Q) if and only if (g,ui)H_17Hé =0.

Proof. Again, we use the operator L from Definition [3.1.8] Let h = L™!(g/vF), then equation (3.32)
can be written as

(u, U)H&a(m =X\ (L', U)Hé,a(m + (h,U)H(}ya(Q) Yo € Hj (),
which can be written as
viu — L7'u = y;h in H&Q(Q),
with v; = /\i_l. With Theorem it now follows that has a solution if and only if
(hs i)y (@) =0,
which reads as
0= (Vh,uAp - Vu;) = (97Ui)H—1,H5 : O

Theorem 3.1.29. Let g € Q*, 6¢ € Q and i € N such that \;(q) is a simple eigenvalue. Then the
mappings q — Ni(q) and q — u;(q) are at least two times continuously Fréchetl-differentiable.

Proof. Let F' = F(q) and let
B: H*(I) x H{(Q) xR — H1(Q) x R,

(= div(pAF - Vu) — duyp
B(QvuaA)_ < fﬂuz’del‘*l :

The operator B is at least twice continuously differentiable, which can be shown similar to the proof
of Lemma [2.1.24] and it follows that B(q, u;, A;) = 0 if and only if u; is a normalized eigenfunction
with eigenvalue \; corresponding to the control q. Taking the derivative of B with respect to u and
A yields

DuB(q, ui; Ai) (v, ¥) = <_ divlpdr V) = davye = ﬁuﬂF) :

2 [ uivyr de
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3. Optimization of eigenvalues

Now we show that D, xB(q,u;, \;) is bijective, which can be done using Theorem [3.1.27 and
Lemma 3.1.28] as follows. Let (w,7) € H '(Q) x R be arbitrary, we have to show that there
exists (v,9) € H}(Q) x R such that

(Vo, uAp - V) = Xi (v, 07F) = 0 (ui, 07F) + (w0, 0) g1 g Voo € Hp(Q), (3.3
2 (uj,vyp) = T. '

If we set
U =- (w7ui)H*17H6 s

then Lemma [3.1.28) yields the existence of vg € Hg(Q) such that the first equation within (3.33)) is
fulfilled for v = vy + cu; for all ¢ € R. Setting

-
c= 9 (ui, voyr) ,

makes v also fulfill the second equation within (3.33]), and this theorem follows with the implicit
function theorem, Theorem O
3.1.5.2. Representation of the derivatives )\, and v

In this subsubsection we are going to find explicit representations for the derivatives of the eigenvalue
and eigenfunction. Let ¢ € Q*, F = F(q), ¢ € Q, i € N and let X, = N.(q)(6q), du; = ui(q)(3q)
and 0F = F'(q)(dq). Due to Theorem [3.1.29) we can differentiate (3.18) with respect to ¢, which
yields

(Vou, pAp - Vv) = N (dui, vyp) + N (ug, vye)
+ A (ui,v*y}ﬁF) — (Vu,, nAEsp - Vv) Vv e H(Q), (3.34)
2 (dui, uiyr) + (u?,’y};w) =0.

Remark 3.1.30. From the first equation within (3.34) it follows that du; can formally be seen as a
solution to

— diV(,U,AF . Vduz) = )\iéui’yp + (Agui’}/F + )\z"u,i’}/}:’&F + diV(/QLA/F’(gF . Vuz)) y (335)
which is just a “perturbed” eigenvalue equation of the form
Léu; = Aiduivr + g,

with g = g(\i, ui, q,0q) € H~(Q). Solutions to (3.35]) are not unique: if du; is a solution, then so is
du; + cu; for all ¢ € R. Instead, uniqueness is guaranteed through the second equation within (3.34]).

Now using u; as a test function in (3.18)), we get
and differentiation yields

2 (Vui, pAr - Vou;) + (Vui, pApsp - Vug) = ] (uZ,vr) + 2N (widus, yp) + N (u?,’th) . (3.36)
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3.1. The problem

As 6u; € HY(Q) it holds that

(Vul-, ,LLAF . V(Sul) = )\i (ul-, 5uz'yp) . (3.37)
Inserting (3.37) and the normalizing condition (u?,vr) = 1 into (3.36) yields
Xi(@)(6q) = (Vui, pArsp - Vi) — X (uf, Yisr) - (3.38)

It can be seen that the computation of du; is not necessary in order to compute A,. Expression ({3.38)
may be rewritten as a boundary integral, but in order to do so we need more regularity of the involved
functions in order to justify partial integration. This will be shown in the next subsection.

3.1.6. Higher regularity of the optimal control
Our proof of the higher regularity of the optimal control exploits some first order optimality condi-
tions, we therefore have to make the following assumption.

Assumption 3.1.31. We assume that the optimal control § under consideration is an element of the
interior of Q2.

Due to Assumption [3.1.31] the first order optimality condition reads as

7' (@)(0q) =0 Voq € Q, (3.39)
which is
X(@)(69) — Xo(@) (50) + 0 (@ 60) yazy = 0 Vog € Q. (3.40)
Lemma 3.1.32. For every q € Q*! there ewists p; = p;(q) € H'(I) such that
Xi(@)(0a) = (pi; 00) (1) Voq € Q.

Proof. Let F = F(q), ¢ € Q and 6F = F'(q)(dq). With (3.38) it holds that

Xi(a)(8q) = (Vui, nApsp - Vi) = Ni (uf, Yisr)

= (Vui, pdpsp - Vui) o + (Vui, plpsp - Vi) o, (3.41)

— A (U?a’ﬁiap)go =X (W Vrsr) g,
Using Lemma [3.1.24] and the normalizing condition for u; we can estimate the right hand side
within (3.41) via

2 2 2 -1
(ui>’7}7,5F)Qj =< ||“¢”L4(Qj) HV%,zSFHLQ(Qj) < C||“Z’”H5(Qj) |7 DT '5FHH1(QJ-)
< clluillz ) 16F o, < ill6F |l o)
< ¢ ||5QHH1(I) )

and in a similar way it holds that
2
(VUmMA%,(sF : Vui)ﬂj <c Hui”le‘l(Q) HA/F,(;FHLQ(QJ)

< CH(SQHH1(1)7

for j € {0,1}. As dq — MN.(q)(0q) is linear, the existence of such a p; follows with the Riesz
representation theorem. ]
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3. Optimization of eigenvalues

Lemma 3.1.33. The optimal control G € Q* has the higher reqularity g € H3(I).

Proof. This lemma follows from (3.40]), Lemma [3.1.32| and Lemma [2.1.36 O

Lemma 3.1.34. For F = F(q) and j € {0,1} it holds that F}Q € W2 (Q;).
J

Proof. As g € H3(I) due to Lemma 3.1.33|7 Theorem [A.1.28| yields F‘Qo € H'/2(Qg) — W22(Qy).
The regularity of F on € follows with Theorem A.1.29L O

In order to derive higher regularity of w; = u;(q) we will need some regularity results concerning
spaces with bounded mean oscillation.

Definition 3.1.35 (Campanato-John-Nirenberg space). Let Q@ C R™ be a bounded domain with
diameter d and let ¢: [0,d] — R be a nonnegativ continuous function satisfying r < ci(r) for some
positive constant c. A function f € L?(f2) is said to be an element of BMOy (), the space of
bounded mean oscillation, if

1/2
1 2
f :sup/ f(@) = (f)ae dx < 00,
| ’BMOw(Q) (p) Q(Imp)‘ (@) = (e o,p)’

ToEN 1/}
0<p<d

where Q(zg, p) = QNQ (o) with Q,(xo) being a cube with center zg, sides parallel to the axis and
side length equal to 2p. Furthermore,

1
(o= 15 /Dfdar,

shall denote the mean value of f on D.

In what follows we will focus on the case where ¥(p) = p® with « > 0 sufficiently small. As
mentioned in [109], the resulting spaces are called Campanato spaces. Furthermore, in that case it
even holds that

BMOy(Q) = C%(Q),

cf. [102], Example 1.

Definition 3.1.36 (Domains of class C*BMOv). Let O C R” be a bounded domain. We say
that 09 € CFBMOu for I e N if for any zo € 90 there exists a C*~1!-transformation 7 and a
neighborhood N, of xy such that

T : Ny N Q2 — B (0),

where Bj(0) is the unit ball with positive last coordinate, is one to one and onto with

T (Nzo NOQ) = B (0) N {z,, = 0}.

Moreover, the norms of 7, 7! and their derivatives DT, D¥ (7 ~!) are uniformly bounded in L*
and BMO,; for |v| < k.

From [37], Remark 3.2, it follows that domains which are locally the epigraph of a C*“ function
for k > 1 are of class C*®. Furthermore, from the same source, Definition 3.1, it follows that if O
is a domain of class C*<, then it is also in C*BMOu for ¢(p) = p°.

80



3.1. The problem

Theorem 3.1.37. Let Q@ C R™ be a bounded domain containing L € N disjoint subdomains
Qn CCQforl1<m< L, and let Q1 = O\ Ufn:l Q. We consider weak solutions uw € H*(Q) to
the equation

—div(A - Vu) = —div(f), (3.42)
where the matriz A is uniformly elliptic. Suppose that 08, € C*T1BMOv yin 1> 1,
,D*f

Alg,, > fla,, € C*711 () and D" A € BMOy(Q).

m

Then for any ' CC Q it holds for the solution u to (3.42)) that

m

ulg, € C*Qmn Q) and DF iy € BMOy (' N Q).

Proof. This theorem can be found in [109], Theorem 2.3, where it is assumed that the function v
fulfills some additional assumptions. In [63], Remark 2.2, it is shown that these assumptions hold
true for ¢(p) = p® with o > 0 sufficiently small. O

Lemma 3.1.38. Fori € N, u; = ui(q) and j € {0,1} it holds that ulq € W22(0Q;).

Proof. With Theorem [3.1.37] it follows that u; € C*%(Qg) < W?>°(Qq). Now let F = F(g) and
Ui g = U; © Tf_l be an eigenfunction on the untransformed domain. As

Ug,ilg,, € H*75(Qq1) = L)

as shown in the proof of Lemma [3.1.11], it follows with Theorem that
Ugilg,, € W2P(Qy1) <= CH*(Qq1)

for all p< oo and @« =1 —2/p > 0. With Theorem it now follows that
Ugilg, , € WH™(Qq,1).

Due to the regularity of T% on (2, cf. Lemma (3.1.34}, it follows that

Tilo, = Tg1 o T | € W2 (). O

3.1.6.1. A representation of \' as a boundary integral

Due to the higher regularity of the optimal eigenfunctions w;, equation (3.18) also holds in strong
form (at least on each of the subdomains Qg and ), therefore it is possible to rewrite expres-
sion (3.38) from above, the goal is to compute Xg(q)((sq) as a boundary integral over TI'g. Let
d0F = F'(q)(dq), using the same approach as in Subsubsection [2.1.3.4| one can show that

(Vi 1A% g - Vi) = 2 (v (A - VI) Vil - DT - 6F ) o

+2 (div(uAg - V@), Val - DTS - oF ) o
gl

To
J,

2 3.43
DT." - vm,_‘ vp OFT DT nds (343)

2
+ [ |PTET V| g, 6T DI nds,
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3. Optimization of eigenvalues

where w; — and u; 1 shall denote u; approaching I'g from the inside of Qo and (2 respectively,
cf. (3.3), and the same for F_ and F. It holds that
P (div(uAF-Vm) ,var -DTzl.aF) — 9N (mf, val  DI=! -6F>
F Qj F Qj
B ) . (3.44)
= X (V (@) 75 DT;" - 5F>Qj :

for j € {0,1}, and

N ( l,ymF) =N (ﬂ?,div(*nyTf_l-éF)) Y (ﬂ?,div(nyTf_l-éF))Q . (3.45)

Qo 1

Summing up (3.44) and (3.45)) yields

1

S (2 (dvtnar- vm) val DTt 0) N (i), )

Jj=

:—A,»/ div iy DT 6F dez — X / fy—DTll-éF dz
Q0 ( F PR > (3.46)

:—)\i/ Uyp OFT-DTT nds+)\/ wyp, OFT - DT T nds
To

-\ /FungéFT . DT%T -nds,
where the last term vanishes due to u; € H}(£2). Inserting (3.46)) back into (3.43) finally yields

— 2 _
)‘;(@(5@1) = /F <d ‘DT%f . Vﬂi,f‘ + )\zu?) g 6FT. DT%_T -nds
0
4
+ ]DT -V ‘2 + \ag SFT.DT-T  nds 340
- f;T i,+ iU ’YF+ i .

Remark 3.1.39. As 0F|p, = dgn, it is not necessary to compute §F in order to compute X(@)(dq}
via (3.47)).

Lemma 3.1.40. The optimal control G € Q* has the higher reqularity g € H*(I).

Proof. As OF |F = §gn and using the higher regularity of u; and F as shown in Lemma [3.1.38| and
Lemma it follows similar to the proof of Lemma [3.1.32] that there exists p; = p;(q) € L*(I)
with

Xi(@)(89) = (pi> 60) 121y Voq € Q,

and this lemma follows similar to Lemma [3.1.33l O

3.1.7. The second derivative

Within this subsection we are going to compute the second derivative of u; = u;(q) and A; = A\i(q)
with respect to perturbations in ¢, which exist due to Theorem[3.1.29] These explicit representations
will be needed to prove error estimates within Section [3.4]
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3.2. Stability estimates for eigenvalues and eigenfunctions

Taking the second derivative of the first equation of (3.18) with respect to ¢ yields the equation
for 67u; = ui(q)(g,7q),
(VoTui, pAp - Vo) = N\; (01u;, vyp) + )‘;‘,,(Sq,rq (ui, vyp) + )\deq (Tug, vyF) + )\;75(1 (ui7 U’Y%;F)
+ )\{Z,Tq (5ul’ U’VF) + )‘;,Tq (uiv UW%’,&F)
+ )\l (5“1, UPY/F,TF) + )‘7« (Tui’ U’Y/F,(SF) + )\’L (ui7 UPYZ—',(SF,TF) (348)
— (Véu;, pAE  F Vo) — (Vru, 1A% sp - Vo)
- (V’LLZ, MA/}/‘—',(SF,TF ’ VU) RS H&(Q)7
the abbreviations used are A; = Ai(q), A} 5, = Xi(0)(39), Ni ., = Ni(0)(79), N5, = A ()3, Tq),
du; = u}(q)(dq) and Tu; = ul(q)(7q). Note that (3.48) can again be regarded as a “perturbed”
eigenfunction equation.
Using u; itself as a test function within (3.18) and then taking the second derivative with respect
to q yields
2 (Vrui, pAp - Vou;) + 2 (Vui, MA,F,TF . V(Sui) + 2 (Vui, uAp - VoTu,)
+ 2 (Vui, pApsp - V7ui) + (Vus, pAf sp e - V)
= )‘gl,éq,'rq (’LL?, 'YF) + 2)\;75(1 (uiv Tui'VF) + )‘;,&1 (u127 /7}‘_’,TF) + 2>‘;’,Tq (ui7 6ui/7F) (3'49)
+ 20 (0ug, Tuiyr) + 20 (wg, 01U yE) + 2 (ui, (5ui'y}:’TF) + )\;’Tq (u?, 7}75F)
+2X; (wis Tupsp) + N (4 VEoper) -
Using Tu; as a test function in (3.34), and vice versa for du; in the equation for Tu;, yields

(VTui, pAp - Vou;) + (Vui, MAIF,(SF . VTui) = /\275(1 (ui, TUYF)

+ X (Tui, Suiyr) + N (i TuiYpsF)
(V(Suw :uAF ) vTUl) + (vuh :U’A/F,TF ’ V(;ul) = A;,Tq (ui7 6uZ,YF)

+ Xi (ui, Tuiye) + Ni (i, Suivp ) -

(3.50)

(3.51)

The second derivative of the normalizing condition within (3.18]) with respect to ¢ reads as

2 (6ui, Tuiyr) + 2 (us, 0Tuiyr) + 2 (Ui, 0uive ) + 2 (us, Tum};ﬁF) + (u?, Yror.r) =0.  (3.52)

Now subtracting (3.50) and (3.51) twice from (3.49) finally yields

Vsqra = (Vui, pAY sp o p - Vi) — 2 (V7ug, pAp - Véuy)

(3.53)
- )‘;',611 (u?, 7}7‘,6F) - )\;,Tq (ufa 7}7,7—F) + 2\ (5@61, Tui'yF) = A (u?a 7};75F7TF) .

3.2. Stability estimates for eigenvalues and eigenfunctions

In order to estimate the error between eigenfunctions and their discretized counterparts, the appli-
cation of the “standard” techniques as done in Chapter [2is not possible, this is due to the fact that
eigenfunctions appear on the left-, as well as on the right hand side of the corresponding equation,
cf. . Hence we have to deal with different concepts which will be presented in this section.

The results of Subsection will be needed to estimate terms like ||u;(q) — u;(p)|| for ¢, p € Q*9,
whereas the results of Subsection will be needed to estimate terms like ||u}(q)(dq) — u}(p)(dq)||
for ¢,p € Q* and éq € Q.
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3. Optimization of eigenvalues

3.2.1. Gap between operators

If w is an eigenfunction of a linear partial differential operator L, then for arbitrary ¢ € R\ {0}, cu
is also an eigenfunction. Due to this fact it is not clear how to estimate the difference ||u;,; — ug ||
between the i-th eigenfunctions u ; and ug; corresponding to different differential operators L and
Lo, for even normalized eigenfunctions are only unique up to their sign. In order to deal with this
difficulty we will have a closer look at the concept of the so-called gap between operators. What
follows is mainly based on [10] and [22].

Definition 3.2.1. Let M and N be linear subspaces of a normed space Z. The gap from M to N
is defined via

0(M,N)= sup dist(u,N),
ueM
[lull z=1
where for u € Z we have

dist(u, N) = in]%Hu—vHZ.
S

Furthermore, the gap between M and N is defined via

A

5(M, N) = max {§(M, N),5(N, M)} .

Lemma 3.2.2. Let M and N be linear subspaces of a Hilbert space Z, and let P and () be the
orthogonal projections onto the closures of M and N, respectively. Then it holds that

O(M,N) = [[1-Q)P|,,

6(M,N) =[P =@l
Proof. This lemma can be found in [22], Theorem 2.2. O

Definition 3.2.3. Let T: D(T) C X — Y be a linear operator whose domain D(T') is a subset of
the Hilbert space X and maps onto the Hilbert space Y. The graph G of the operator T is defined

G(T)={(u,Tu)lue D(T)}.

Definition 3.2.4. Let X and Y be Hilbert spaces and let
S:D(S)C X =Y,
T:D(T)C X =Y,
be linear operators mapping subsets of X onto Y. The gap from S to T is defined by
(8, T) = 0(G(S5), G(T)),
whereas the gap between S and T is defined by
(S, T) = §(G(S), G(T)).
More explicitly,

5(S,T)=  sup inf (Hu—vH2 +HSu—TvH2)1/2 (3.54)
’ u€D(S) veD(T) X Y
l[ull% +ISwl3 =1
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3.2. Stability estimates for eigenvalues and eigenfunctions

Lemma 3.2.5. Let X be a Hilbert space and let S and T be selfadjoint on X. Then it holds that
5(S,T) = 6(T,S) = 5(S,T).
Proof. This lemma can be found in [22], Corollary 2.6. O

Theorem 3.2.6. Let Q C R" be a bounded open set, let T be a selfadjoint operator over L*(Q)
with compact resolvent bounded from below and let i € N such that the i-th eigenvalue A\; of T is
simple. Then there ewist cy,00 > 0 such that for each selfadjoint operator S over L?(Q) whose
compact resolvent is bounded from below, for which 6(S,T) < dy and normalized eigenfunction
@; corresponding to the i-th eigenvalue \; of S, there exists a normalized eigenfunction u; of T,
corresponding to \;, such that

llu; — ulHLg < cpd(S,T).

Proof. This theorem can be found in [22], Theorem 2.14. O

3.2.2. Stability estimates for affine eigenvectors

In what follows let X be a Hilbert space over R with scalar product (-, )y, norm ||ul| y = /(u, ) x,
and let L be a compact linear operator over X. The ordered eigenvalues of L shall be denoted with
(V4)ien, Where lim;_,oo v; = 0. The eigenspace corresponding to v; will be denoted with N;(L), its
orthogonal complement N;(L)" has to be understood with respect to the X-scalar product. From
Theorem it follows that for g € X and i € N there exists a solution u € X to

Lu = v;u + g, (355)

if and only if g € N;(L)*. This solution, if it exists, is not unique. If u solves (3.55), so does u -+ cu;
for all u; € N;(L) and ¢ € R. In what follows we are going to prove that there exists ¢; > 0 such
that for all g € N;(L)* there exists a solution to (3.55) with [julyx < ¢ |lg]|x-

Lemma 3.2.7. The subspace N;(L)* is closed in X.

Proof. With Theorem it follows that N; (L) C X is of finite dimension and closed. From [3],

Lemma 7.17, it follows that X = N;(L) ® N;(L)*. As N;(L) is closed, there exists a continuous
orthogonal projection P onto N;(L) with N;(L)* = A(P), and this lemma follows with the closed
complement theorem, cf. [3], Theorem 7.15. O

Lemma 3.2.8. Let g € N;(L)* and let u, be a solution to ([3.55)). Then u, minimizes the X -norm
amonyg all solutions of (3.55)) if and only if uy € N;(L)*.

Proof. Let ug be a solution to (3.55). Then uy has minimal X-norm if and only if for all u; € N;(L),
the solution to

. 2
tu; 3.56
arggré%l]]ug—i- ui || ( )

is t = 0. The proof now follows by taking the first and second derivative of the squared norm

within (3.56) with respect to t. O

Lemma 3.2.9. Let g € N;(L)*. Then there exists exactly one solution u, to (3.55)) that minimizes
the X -norm among all solutions to (3.55)).
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3. Optimization of eigenvalues

Proof. Let ug1 and ug o be two solutions to (3.55) with minimal X-norm, and let uy = ug1 — ug 2.
With Lemma it follows that ug € N;(L)~. As L is linear we get Luy = vjug, hence ugy € N;(L).
It follows that u, € N;(L) N N;(L)* = {0}, and the result follows. O

Corollary 3.2.10. Let g € N;(L)*, let ug be an arbz’tmry solution to and let {u}, ..., u)'}
be an orthogonal basis for N;(L). Then the solution ug of (3.55)) with mmzmal X-norm is gwen via

N .
J- 3oty
i=1 Hu ”X

Proof. By definition of g it follows that (ug,u},), =0 for alli € {1,..., N} and the result follows
with Lemma O

Definition 3.2.11. For i € Nlet T = T;: N;(L)* € X — X, Tg = ug such that u, is a solution

to (3.55)) corresponding to g with minimal X-norm, i.e. for all solutions 4 to (3.55) with ug # g4
it holds that |lug|| < [|g]| -

Remark 3.2.12. The fact that the operator T from Definition [3.2.11| is well-defined follows with
Theorem [3.1.27 and Lemma [3.2.9

Lemma 3.2.13. The operator T from Definition [3.2.11] is linear.

Proof. Let g,h € N;(L)*, let ug and up be arbitrary solutions to the corresponding perturbed
eigenvalue equations ([3.55]), let {u},, e ,u,]jv} be an orthogonal basis for N;(L) and let a € R. As

L(oug) = aLug = a(viug + g) = v; (qug) + ag,

it follows with Corollary [3.2.10] that

N i 7
Qlg, U . Ug, U .
T(ag) = aug — (l;)Xuf, =« (ug — Z (ZVQ)Xuf,> =aT(g).
=1 ||uuHX i=1 ||uVHX

Furthermore,
L(ug +up) = Lug + Lup, = (viug + g) + (iwn + h) = v (ug +up) + (9 + h),

and again we use Corollary [3.2.10]to get

i ((ug + up) v“wx i

v

T(g+h) = (ug + up) — =
i=1 ”uuHX

N i 7
Ug, U . up, U .
_ (ug_z ( gvi Vz)Xuzy> + (uh_z ( ’wi VQ)XUZV>
i=1 ”U’I/HX i=1 HuuHX

=T(g)+T(h). O

Lemma 3.2.14. Let T be as in Definition|3.2.11 and let G(T) = {(9,Tg)| g € N;(L)*} C (X x X)
be the graph of T. Then G(T) is closed.
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Proof. Let (gn)peny C Ni(L)*, wp = T(gn) with g, — ¢ and u, — u in X for some elements
g,u € X. We have to show that g € N;(L)* and v = Tg. From Lemma it follows that
(un)peny C Ni(L)E. As N;(L)* is closed due to Lemmait follows that u,g € N;(L)*. As L is
compact it follows that

Lu < Luy, = vjuy + gn — viu+ g,

hence u =Tyg. O

Lemma 3.2.15. The operator T from Definition[3.2.11] is bounded.

Proof. As T is a linear operator with closed graph due to Lemma [3.2.13| and Lemma [3.2.14] this
lemma follows with the closed graph theorem, cf. [3], Theorem 5.9. O

Corollary 3.2.16. There exists c; > 0, independent of g € N;(L)*, such that

ITgllx < cillgllx

for all g € N;(L)*.

3.3. Discretization

Within this section we are using finite elements in order to discretize problem ({3.21)) with respect to
the control, the state and the transformation. Most of what follows is similar to Section where
the original modelproblem has been discretized.

3.3.1. Discretization of the control

We split the interval I = (0,27) into N € N subintervals I; for j € {0,..., N — 1} with maximal
length o, and introduce the space of (admissible) discretized controls as

Qo = {qo € Q| gl € P3(I;)Vj € {O,...,N—l}},
di :Qdeada

where P3(I) shall denote the set of all polynomials of degree at most 3 over the interval I. The
first partially discretized problem now reads as

L _ o 2
q:gé%dj(qa) = Ai(d) = A2(90) + 5 oz - (3.57)

subject to
G(40,G) = (F,G) VG e L3 (Q),
a(F)(ui,v) = N\ b(F)(us,v) Yo € HY(Q),
b(F)(ui,u;) =1,

where i € {1,2} and \; is the i-th eigenvalue given via (3.6)).
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3. Optimization of eigenvalues

3.3.2. Discretization of the state

For h > 0 let Qg C Qo be a polygonal approximation of {)g where we assume that all the vertices
of Do, = 0Qop, lie on Ty, In addition, let Q1 , = Q\Qo, D Q1 be a polygonal approximation of
Q1. Let {7}, be a family of admissible triangulations of Q using triangles or quadrilaterals with
maximal diameter h, fulfilling the usual regularity assumptions in the sense of Definition and
Remark In addition we assume that each member of this family can be represented as the
union of a triangulation of Qg ) with a triangulation of €; ;. We define the usual (bi)linear finite
elements,

Vi, = {vh € HY(Q)| valg, € RM(Kn) VK, € wh},

(3.58)
Vio = Vi N Hy (),
where R(K},) is defined as in (2.62)). Now let
phn =1+ (d - 1)X901h7
ap(F)(u,v) = (Vu, upAp - Vo), (3.59)

with xq,, being the characteristic function of € ;. The following definition is similar to Defini-

tion 3.I.10L
Definition 3.3.1. For given ¢ € Q*!, F = F(q) and h sufficiently small, let H&ah (Q) be the space
H () equipped with the scalar product

(u, U>H01,a,h(9) = (Vu, upAp - Vo).

The Hj,, (Q2)-norm is equivalent to the Hg(2)-norm due to Lemma [3.4.37,

Definition 3.3.2. For given ¢ € Q* with F = F(q) let II,: H}(Q) — Vi be defined as the
projection with respect to ay(F)(+,-), i.e. for u € H}() it holds that

an(F)(u—Ipu,vp) =0 Vup € Vi 0.

Definition 3.3.3. For the optimal control § € Q! with F' = F(q) let I12: H}(Q2) — Vi o be defined
as the projection with respect to a(F)(+,-), i.e. for u € H}() it holds that

a(F)(u—fu,vp) =0 Yoy, € Vi .

In addition, let \; 4(g) be the i-th eigenvalue with respect to the bilinear forms ay(F)(-,-) and
b(F)(-,+) which can be computed via (3.6). The second partially discretized problem, where we
additionally discretize the state, now reads as

. - «a 2
Jin, n(ds) = Mnldo) = Aon(9o) + 5 Idollzr2r) (3.60)

subject to
G(¢r,G) = (F,G) VG € L*(Q),

an(F)(uih, vn) = Nip O(F)(wip,vn) Yop € Vi,
b(F)(ui,haui,h) - 1’
with i € {1,2}.
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3.3. Discretization

3.3.3. Discretization of the transformation

As in Subsection let Qo C Qo be a polygonal approximation to Qo, let o = 9Qo , let
Q= NQox D O be a polygonal approximation to €2y and let {m;}, ., be a family of admissible
triangulations of € using triangles or quadrilaterals with maximal diameter k, and fulfilling the usual
regularity assumptions in the sense of Definition and Remark Again we assume that
every triangulation 7 can be considered as the union of a triangulation of g ;, with a triangulation

of Q4 . Similar to ([3.58) let
VkZ{'UkEHl(Q)| Uk’Kk ERl(Kk) VKkeﬂ'k}. (3.61)

In order to discretize the transformation we will use a discrete approximation G to the operator G,
defined similarly as in Subsection cf. [13], Section 5. If Fj, = Fy(q) denotes the discrete
transformation corresponding to the control ¢, then the fully discretized i-th eigenvalue A;j,  is
given via using the forms ap,(Fy)(-, ) and b(F)(-,-). The following two definitions are similar
to Definition [3.1.9] and Definition B.1.10]

Definition 3.3.4. For fixed ¢ € Q*, F;, = Fy(q) and k sufficiently small let Lg,k(Q) be the space
L?(2) equipped with the scalar product

(U’U)Lgvk(Q) = (u,vyR,) -
The Lgvk(Q)—norm is equivalent to the L?(2)-norm due to Assumption [3.4.58

Definition 3.3.5. For fixed ¢ € Q*, F, = Fi(q) and h, k sufficiently small let H&,ah . (Q) be the
space Hi () equipped with the scalar product

(W) (@) = (Vu, mndAp, - Vo).

0,ap k

The H&}ah . (©)-norm is equivalent to the H}(92)-norm due to Lemma [3.4.37|and Assumption [3.4.58

Definition 3.3.6. For given ¢ € Q*, F = F(q) and F}, = Fy(q) let IIy: H}() — Vi, be defined
as

an(Fr) (Mgu, vy) = a(F)(u,vp) Yoy, € Vio.

Finally, the fully discretized problem, where also the transformation is being discretized, reads as
. o
min jhk(Go) = ALnk(ds) = Aoni(de) + 5 961 772(1) (3.62)
qo €EQE

subject to
Gr(qo, G) = (Fy, Gy) VG, € Vi,

an(Fr) (Wi n, va) = Ning O(Fi) (win, vn)  Yop € Vi,

b(Fy) (i n, uip) = 1,
where again i € {1, 2}.
Theorem 3.3.7. For o,h,k > 0 the problems (3.57)), (3.60) and (3.62)) possess optimal solutions
Qs Do and Qo b ks respectively.

Proof. This theorem can be proven similar to Theorem Theorem[2.2.9/and Theorem[2.2.13] [
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3. Optimization of eigenvalues

3.4. A-priori error estimates

The goal of this section is to prove error estimates for the H?-error between the optimal control g
for (3.21) and a sequence of optimal controls (Gmh’k)a’h’bo for the fully discretized finite-element
approximation (3.62)). The main result of this section is the following theorem, the proof can be
found on page [143]

Theorem 3.4.1. Let § € Q* be a local optimal control to (3.21). Then there exists a sequence
(aoviuk)gh k=0 of local optimal controls to the fully discretized problem (3.62)) such that for o,h,k >0
sufficiently small it holds that

7= Gy < (02 + IR B2 4 k4 172)

Although Theorem is of similar structure as the main result of Section Theorem [2.3.1]
there are some major differences in the methods used for its proof which are due to the specific
structure of the eigenvalue equation. Again, if not explicitly stated otherwise, we wil always assume
that o, h and k are chosen sufficiently small. First we will restate the definitions of the (discretized)
eigenpairs and their derivatives and we will also deal with the fact that, as already mentioned at
the beginning of Subsection [3.2.1], even normalized eigenfunctions are only defined up to their sign.

Within the following three definitions, let ¢ € Q*! and let dq, 7q € Q be arbitrary.

Definition 3.4.2 (The continuous eigenpair).

e Let V) be the set of all subspaces of H}(Q) with dimension i and let ' = F(q). It holds

that
0= o 553
o u; = Si(q) is a solution of
(Vui, pAr - Vo) = Ni(q) (ui, vyr) Vo € Hy(9),
{ (U%’VF) 1 (3.64)

For ¢ = 0 we fix one of the two solutions of (3.64) as S;(0). For ¢ € Q*\ {0} with lall g2
sufficiently small let S;(¢) be a solution to (3.64]) such that Lemma [3.4.19|is applicable.

e It holds that
Xi(@)(6q) = (Vui, pAk s - Vi) = Xilq) (47, Vo) (3.65)

where 6F = F'(q)(dq).

e du; = Si(q)(dq) is the solution of

(Vou;, pAp - Vu) = Ni(q) (0us, vyr) + Ni(q)(6q) (ui, vyr)
+Xi(q) (ui,v¥rsp) — (Vui, pdpsp - Vo) Vo € Hy(Q), (3.66)
2 (0w, uiyr) + (u?ﬁﬁw,éF) = 0.
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3.4. A-priori error estimates

e It holds that
)\;/(q)(éq,Tq) (VUZ,MAF(;FTF Vul) 2(V7’uz,uAF Véu;)

+ 2)"5((]) (5ul7 TUZ’YF ) ( Uy, ’YF(;FTF)
with 7F = F'(q)(7q) and Tu; = S.(¢)(7q).
Definition 3.4.3 (The partially discretized eigenpair).

o Let Vh(lg be the set of all subspaces of V}, ¢ with dimension ¢ and let F' = F(g). It holds that

Ain(g) = min max M. (3.68)

et By b(F)(un, un)

o u;p, = S;x(q) is a solution of

(Vi n, pnAr - Vop) = Xin(q) (Uip, vnyr)  Yon € Vi,
(ufp,vr) =1, (3.69)
b(F)(I,Si(q), Sin(q)) > 0,

where II;, is defined as in Definition |3.3.2

e [t holds that

in(@00) = (Vi s i A - Vuin) = Xin(a) (4 Vesr) (3.70)
where 0F = F'(q)(dq).
o du;p = S];(q)(0g) is the solution to
(Vougp, pnAr - Vop) = Xin(q) (0w p, vivr) + N, (0)(0q) (wip, vavr)

+ Xin (@) (wip, UW%,&F)
— (Vi inAp s - Vop) Vup, € Vi,

2 (5ui,h> ui,h’yF) + (u?7ha /7}7',517) =0.
(3.71)

e It holds that

i@ (0q,7q) = (Vuin, un AL sprp - Vuin) — 2 (VTuip, pnAp - Vougp)
- )‘;,h(Q)(‘S@ (Uzz,hﬁ}r,rF) - )‘;,h(Q)(TQ) (Uzz,hﬁ}?,w) (3.72)
+ 25, 1(q) (6ui by TU R YF) — Ain(q) (uz%ha 7};,6F,7F) )

with 7F = F'(q)(7q) and Tu; ), = S n(@)(Tq).
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3. Optimization of eigenvalues

Definition 3.4.4 (The fully discretized eigenpair).

e Let Vh(lg be the set of all subspaces of V}, o with dimension ¢ and let Fj, = Fj(q). It holds that

Aihk(q) = min maxm

. 3.73
eV ineEn () (un, un) (3.73)

wihk = Sink(q) is a solution to

(VUi b kb AF, - VUr) = X bk (Wi bk, UnYF,)  Yon € Vi,
(uf o vE) = 1, (3.74)
b(Fk)(Sin(a), Sinkl(q) > 0.

It holds that

Nk (00) = (Vi in A%, sp, - Viing) — Aihi(q) (U?,h,ka’wak,aFk) ; (3.75)
where 0Fy, = F}(q)(dq).

dui g = Sip, (q)(dq) is the solution to

(2

(Vouip o, tnAF, - VUr) = Nk (0 pge, VaYE,) + Npp g (Wihoky VRYE,)
+ Xk (Wi ks VYR, 5F,)
— (Vi i Al 55, - Von) Vup, € Vho,

2 (6ui p k> inVE,) + (U?,h,kﬁ%k,wk) =0.
(3.76)

It holds that

Tk (@)(00,7q) = (Vui g, inAR, sp,2p, - Viink) — 2 (VU bk, tn AR, - Vougp k)
- /\;,h,k(Q)(CSQ) (u?,h,kv ’Y%k,TFk) - )‘;,h,k(Q)(T(]) (u?,h,kv'V%’k,éFk) (3.77)

+ 2Nk (Ot o, TUL L VE) — i (We o Vi 5F 7 Fy) »
with 7F, = Fy(¢)(7q) and Tu;p g = S;p, (@) (79)-

For the ease of notation we introduce the following functionals which appear in the equations for
the derivative of the (discrete) eigenfunctions.

Definition 3.4.5. For ¢ € Q*, g € Q and i € N let
9i = 9i(0:09), gin = 9i.1(4,00); Gink = Gini(a:0q) € H (),
be defined via
(9, v) -1 gy = Xi(@)(89) (ui, vyr) + Ni(a) (wi, vyisp) — (Vg pAfsp - Vo),
(Gihs ) g1 g = X1 (@) (69) (i ps vve) + Nin (@) (Wi VYrsE) — (Vi A sp - V)
(Gisntr ) 1 g1y = Nt (@(09) (Wi hes vYE) + Nione(@) (Wi VY 55) = (Vb ih Al 55, - V0) 5

where F' = F(q), F, = Fy(q), 0F = F'(q)(6q) and 6F;, = F{(q)(q).
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3.4. A-priori error estimates

As within Subsection we need some general regularity and stability results for Ar and yr as
well as their derivatives. The following lemma can be proven similar to Lemma|2.3.16] Lemma|2.3.17]

Lemma [2.3.18 and Lemma [2.3.19] c¢f. Lemma [3.1.6

Lemma 3.4.6. Let ¢,p € Q* with transformations F and E, respectively. Let 6q,7q € Q,
OF = F'(q)(0q), TF = F'(q)(7q) and let j € {0,1}. Then it holds that

1Al Lo @) < €, vl e @) < e
HA 5FHLO<>(Q < CH(SQHHQ ) H’YF,&FHLOO < CH5(1HH2(1 )
H 6FTFHLOO(Q <c ||5QHH2 HTQHH2 H’Y%,(SF,TFHLOO < c H(SQHH2 HTQHH2(1) )

and

IAr — Apll Lo @) < ¢llg = Pl

| Ak sr — AlE,&FHLm(Qj) < clla = pllgz2y I6all g2
H /},‘—',(SF,TF - A%,(SF,TFHLOO(QJ-) <cllq —pHH2(1) ||5CJ”H2(1) ||TQ||H2(1) )

lvr = vEl Lo () < €lla = pllg2(ry

H’Y%,(SF - ’739,5FHL00(QJ-) <cllq —pHH2(1) ||5QHH2(1)
’Y%,(SF,TF‘QJ. = ’Y%,aF,TF‘Qj -
The following theorem can be found in [3], Theorem 7.7.

Theorem 3.4.7. Let X be a Hilbert space over R or C with dim(X) € NU {oo} and let (€)1 <;<qim(x)
be an orthonormal basis for X. For all x € X it then holds that

dim(X) dim(X)
r= Y (z,e)xe, and lzl% = > (@ e)xl*.
=1 i=1
Corollary 3.4.8. Let ¢ € Q*, F = F(q), v € L*(Q) and w € H}(Q). Then it holds that
v=">_ (b(F)(v,Si(q)) Si(q)) and vl 72 = D b(F) (v, Si(a))*,
i=1 =1
> 1 > 1
w=Y (5w s@s@)  wd il e =Y (5HaEwsw?),
i=1 ¢ i=1

and a similar statement holds for vy, € Vi, 0 and the orthonormal bases (S; ), and (Sink),;-

Lemma 3.4.9. Let g € H Q) and ¢ € Q*'. Then, up to norm equivalence, it holds that

oo = 3= (57 O S5@Vi )

i=1
Proof. Let again F = F(q) and h = L™'(g/vr) with L™! as in Definition Then it holds that

2
@)y o a(F)(hv)?

lglF-1() = sup 2 D
veHG () ||UHH5(Q) vEH}(Q) ”UHHI(Q)
[ 1
~ Il o = X (5P ):Z( S @) O

=1 =1
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3. Optimization of eigenvalues

Corollary 3.4.10. Let ¢ € Q*, g € H™1(Q) and u € H}(Q). Then it holds that

dim(Vhy())

1
2 > ’ 2 )
e = ( () ) ) , (3.78)
dim(Vh,O) 1
2 2
ol = 3 (5o @Sin @) (3.719)

If w € Vyq, then equality holds within (3.78)). The statements (3.78) and (3.79) remain true if
Xin(q) and S;p(q) are replaced with \; 1 (q) and Sip k(q).

The following lemma will be needed in order to use duality arguments later on.

Lemma 3.4.11. Let ¢ € Q*, F = F(q), f € L*(Q) and let u € H}(Q) be the solution to
a(F)(u,v) =b(F)(f,v) Yo € HY(Q).
Then it holds that v € H3/?>7(Q) and
ll ey < = 11l z2qen -

Proof. Let TFTI be the inverse transformation for T, Tgl olp = TFOTIZ1 =1d, and let & = uoTEl.
Then u is the solution to

aq(t,v) = by(f Ongl’ﬁ) Vo € Hy (),
cf. and (3.8). With [95], Theorem 5 and Remark 5.1 it follows that @ € H>/275(,) and
18l 32— (@, < €2 [[f 0 TR | 12
As ¢ € Q¥ it follows that 1F'(q) [[w1.00 gy is sufficiently small, hence there exist co, ¢; > 0 such that
colZ—g| < |Tr(2) —Tr(g)| < a |z — 7| Vz,j € Q.
As Ty is also a bijection, let x,y €  be arbitrary and let & = Tgl(az), J= Tgl(y). We get
et e —yl < ‘T},?l(x)—T},?l(yH < gtz —yl Y,y € Q. (3.80)

With (B.80)) it follows that det (D (T 1)) is uniformly bounded from above. Now it holds that

2 . 2 |V (@0 Tr) (x) = V (@0 Tr) (y)
|u’H3/275(Q) = |U © TF|H3/275(Q) — /Q/Q ‘x _ y‘2+2(1/275) d$ dy

|Vii(x) — Vi(y)|* _ -
B /Q/Q 77 (@) - T 2v2(1/2-2) et (D(T ' (x))) det (D(T5 " (y))) dady

()]
Vi) = Va(y)? e =y P02 . By
-, o~y [y g e o P ) et (DT W) ded
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3.4. A-priori error estimates

and again using (3.80) we arrive at

Vii(z) — Vi(y)|
< C/Q

|'LL’2 3/2—¢ d.’]j dy =cC ”EL‘Q 3/2—¢ .
H ) Q |z — y|2+2(1/2—5) H Q)

It also holds that

10T 20y = [, (FoTi)* dr= [ Papas

q

Sc/QdexZCIIflliz(g),
and the result follows. O

3.4.1. A-priori error estimates for a general control

As within Section we start with error estimates for a general control ¢ € @, within Subsec-
tion we will prove error estimates for the optimal control § which possesses a higher regularity
and thus allows for higher convergence rates.

3.4.1.1. Estimates within the purely continuous case

Within this subsubsection we are going to investigate the error induced by the discretization of the
control.

Lemma 3.4.12. Let g € Q*, p € [1,00) andi € N. Then it holds that S;(q) € W'P(Q) N H3/>~¢(Q)
and

15i(q) ||W17P(Q)QH3/2*E(Q) < Ciep-

Proof. This lemma is a direct consequence of Lemma [3.1.24] Lemma [3.1.25] and the normalizing
condition within (3.64)). O

Lemma 3.4.13. For ¢,p € Q* and i € N it holds that
[Xi(q) = Ai(p)| < clla = pllg2 -

Proof. Let F and E be the transformations for ¢ and p, respectively. Using Lemma [3.1.13] and
Lemma [3.4.6] it follows that

Xila) = Xi(w)| < e (I 4p = Apll ey + 77 = 78l 2
SCHCI—pHH2(1)' =

Definition 3.4.14. For ¢ € Q* and F = F(q) let L,: D(L,) C L*(Q) — L?(Q2) be the self-adjoint
operator corresponding to a(F)(-,-), i.e.

Ly(u) = —div(pAp - Vu),
with domain

D(Lg) = {u € Hy(Q)| Lg(u) € L*(Q)}.
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3. Optimization of eigenvalues

In what follows we are going to estimate the gap 6(Lg, Ly), cf. Definition , for q,p € Q¥.

Lemma 3.4.15. Let q,p € Q> with corresponding transformations F and E, respectively, and let
u € D(Lgy). Then there exists v = v(u) € D(Ly) and c1,c2 > 0, independent of p,q,u and v, such

that the following conditions are simultaneously satisfied.

—div(uAg - Vv) = —div(uAr - Vu) in L2(Q),

ol ey < 1 lull 0y

l|lu — U||HO1(Q) < e ||U”H3(Q) lg = ol -

Proof. Let v € H} () be the solution to

(Vv, pAg - Vo) = (Vu, pAp - Vo) Vo € Hy ().

(3.81)
(3.82)

(3.83)

(3.84)

Due to the properties of the bilinear form related to Lz for arbitrary ¢ € Q* it follows that such
a v € H}Q) actually exists and ||v||H5(Q) < c||u||Hé(Q), which shows (3.82). Furthermore, as
u € D(L,), the right hand side of (3.84)) can be extended to a linear functional over L?({2). Hence,
also the left-hand side can be defined for test functions in L?(£2), which proves (3.81)). At last it

holds that
¢V (u = 0)|j2(q) < (V (u—v), uAp -V (u—v))
= (Vu, pAp -V (u—0)) = (Vu, pAp - V (u —v))
= (Vu,pu(Agp — Ar) -V (u —v))
<c HUHHg(m |AF — AEHLOO(Q) IV (u— U)HLQ(Q) )
and hence

IV (u=0)| 2y < cllullga) e —Plaa) -

Lemma 3.4.16. Let ¢ € Q*! and F = F(q). There exists ¢ > 0, independent of q, such that

sup [ull g ey < e
u€D(Lg)

lull} 2 g+ diWAR- V)l 2 =1
Proof. For u € D(Ly) it holds that
c HUH?{(%(Q) < (Vu, uAp - Vu) = — (div(pAr - Vu) ,u)
< |ldiv(pAr - Vu)ll 2o lull 20 -

and using Young’s inequality we end up with

gy oy < ey/lulaqy + Idiv(udr - V) 3.
Lemma 3.4.17. There exists ¢ > 0 such that for all q,p € Q* it holds that

6(Lq, Lp) < clla = pllg2(py -
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Proof. Let again F' and F be the transformations related to g and p, respectively. Using Defini-
tion it follows that

0(Lg, Lp)

. 2 . . 2 1/2

= sup inf uU—v + ||div(pAp - Vu) — div(pdg - Vo .

e ot (Il = vl +div(uAp - Vu) = div(udp - Vo) 320
||u||2LQ(Q)+||diV(HAF'vu)HiQ(Q):l

Let v = v(u) be defined as in Lemma [3.4.15] we get

5(LQ7LP) <c ”q - p”HQ(I) 851(12 ) HUHH(%(Q) s
ue q

[ull? 2 g HlIdiv(pA R V)22 o) =1
and finish the proof with Lemma [3.4.16 O
Corollary 3.4.18. For ¢,p € Q*! it holds that
S(anLp) <cllq _p||H2(I) :
Lemma 3.4.19. Let ¢,p € Q*! and i € N, then it holds that

15i(a) = Si(P)ll 20y < cilla = Pllgz(r) -

Proof. Let v;(g) and v;(p) be normalized i-th eigenfunctions in the sense of L?(2) for L, and Ly,
ie.

Lqui(q) = Ai(q) vi(q), Lyvi(p) = Ai(p) vi(p),
and
lvi( @)l o) = L. lvi(P)l L2y = 1,
satisfying Theorem ie.
[vi(q) = vi(P)ll L2 () < €i0(Lg, Lp) < ¢illg = Plla2(ry - (3.85)

where the second inequality is due to Lemma Let F and FE be the transformations for ¢ and
p, respectively, and let

5z’,q = (Uz‘(Q)ngF)_l/Q and Bi,p = (Ui(p)za’YE)_l/Q .
Then it holds that
Si(q) = Bi,qvi(q) and Si(p) = Bipvi(p),
and we have
15i(q) = Si(p)ll 20y < Big 1vi(q) = vi(P)ll L2 () + [Pig = Bipl 1vi(P)] 20 - (3.86)
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3. Optimization of eigenvalues

As v is uniformly bounded from below and above for ¢ € Q4 so is Bi,q- This allows to estimate
the first part in (3.86) through (3.85), and it remains to estimate |3; ; — Bip|. Using the uniform
boundedness of 3; , and 3;, once again we get

Big + Bi, _
|Biqg = Bipl < ¢ lﬁqg ﬁ;p 1Bi,g = Bipl = ¢ ﬁsz - qu }
l’q Z7p

= c|(vi(9)%,vF) — (vi(p)*,7E)|
< cllvi@)I72(q) IvF = VBl L @)
+ cllvilg) + vi(P) | L2(q) vi(a) = viP)l L2 () VEN Lo (@)

and the second part can also be estimated using Lemma [3.4.6| and ([3.85)). O

Lemma 3.4.20. For ¢,p € Q* and i € N it holds that

15i(a) = Si(P) | ) < €illg = pllazry -

Proof. Let again F' and E be the transformation for ¢ and p, we get

c[ISi(a) = Si(P) 13y < (V (Sia) = Si(p)) , nAr - V (Sia) — Si(p)))
(VSi(q), pAr -V (Si(q) — Si(p))) — (VSi(p), MAF V (Si(q) = Si(p)))
Ai(q) (Si(q) = Si(p), Si(@)vr) — Xi(p) (Si(a) — Si(p), Si(p)VE)
+ (VSi(p), p (AE—AF) V (Si(q) = Si(p)))
< |18i(q) = Si(p)ll p2(0 [1Ai(@) Si(@)vr — Ai(P)Si(P)VEll L2(02)
+¢[1S:0)ll 20 ||AF Agll oo () [19:(0) = i)l 30

and the result follows with Lemma [3.4.19] Lemma |3.4.13| and Lemma [3.4.6 O

Lemma 3.4.21. Let g € Q*, §¢ € Q and i € N. Then it holds that
[Xi()(d9)] < ¢ 16all 1721
Proof. This lemma follows from and Lemma [3.4.6] O
Lemma 3.4.22. For q,p € Q*, §q € Q and i € N it holds that
INi(a)(69) — Xi(p)(89)| < i llg — pll 2y 100 oy -

Proof. Let F' and E be the transformations corresponding to q and p, respectively. In addition, let
OF = F'(q)(6q) = F'(p)(dq), then it holds that

N (@) (89) — Xi(p)(9)] = [(VSi(), 1A g - VSilq)) — (VSi(p), nAlp s - VSi(p)) |
+ i) (Si(@)? Aesr) — Mip) (Si(0)*, VEsr) | »

and the result follows with Lemma [3.4.13] Lemma[3.4.20] and Lemma [3.4.6 O

Lemma 3.4.23. Let g € Q*, 6q € Q and i € N, then it holds that

l1gi(q, 5(1)”1{71(9) <¢ H&]HH?(I)
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3.4. A-priori error estimates

Proof. Let F = F(q) and 0F = F'(q)(dq), then Definition Lemma and Lemma [3.4.21
yield

”gi(% 5q)HH*1(Q) < HA;(q)SZ(Q)/yFHLQ(Q) + “)\i(Q)Si(Q)’Y%‘,aF“LQ(Q) + HdiV(MAIF,dF : VSZ(q)) HH—l(Q)
< ci [0l () - H
Lemma 3.4.24. Let ¢,p € Q*, ¢ € Q and i € N, then it holds that
19:(q,9q) — g:i(p, 5Q)||H—1(Q) <ecillq —pHH2(1) ||5Q||H2(1) .

Proof. This lemma can be proven in a similar way to Lemma [3.4.23] we additionally have to use
Lemma, and Lemma [3.4.20] O

The following lemmata will be needed to estimate the error between the derivative of the eigen-
functions with respect to the control variable.

Lemma 3.4.25. Let ¢ € Q*, F = F(q), i € N and g € H™1(Q) with (g, Si(q))H,l’Hé = 0. Then
there exists a solution S; € HY(Q) to

(Vi udr - Vo) = i (S 0ve) + (9,0) 1.1 Vo € H(9), (3.87)

|

where ¢; 1s independent of g. In addition it holds that

with

< ¢ _ .
i = 90l -1 (0 - (3.88)

(8:.Si(a)rr) =0, (3.89)

Proof. Let H&a(ﬂ) be as in Definition [3.1.10[ and let L~! be the compact operator from Defini-
tion Setting h = LY (g/vr) € Hg ,(©) it follows that (h, Si(q))Hé @ = 0. It follows from

Corollary [3.2.16| that there exists S; € H; () as the solution to (3.87) with

‘ Hg o ()

As the norms of H&,a(Q) and H}(Q) are equivalent, (3.88)) follows using standard stability estimates
for L=!. The orthogonality condition (3.89) follows from Subsection [3.2.2| O

Si

<cilhll gy @)

Lemma 3.4.26. Let ¢ € Q*, 6g € Q, i € N and p € [1,00). Then there exists a solution
t0(q)(dq) € Wol’p(Q) N H3/275(Q) to the first equation within (3.66) with

HSg,O(q)((Sq)le,p(Q)QHSM—s(Q) < Cie,p ”(SqHHZ(]) :

Proof. Let g; € H-(Q) be as in Definition . With (3.38)) it follows that (g;, Si(q))Hfleé = 0.
Lemma [3.4.25 now yields the existence of such a S} ,(¢)(dq) € H(Q2) with

15500 (50) | 3y < € 193l -1(5 < i NSl

where the last inequality is due to Lemma [3.4.23] In order to prove higher regularity of S! ;(q)(dq)
we refer to Subsection where an analog result is proven for S;(¢), cf. Lemma [3.4.12] This
lemma can be proven following the same steps. O
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3. Optimization of eigenvalues

Lemma 3.4.27. Let g € Q*, 6g € Q, i € N and p € [1,00). Then it holds that

HSz/'(Q)(fSQ)le,p(g)mm/zfs(g) < Ciep ||5CI||H2(I) :

Proof. Let ' = F(q), 6F = F'(q)(0q) and let S} ,(¢)(dq) be as in Lemma|3.4.26 In order to fulfill the
normalizing condition within (3.66) we have to find ¢ € R such that Sj(q)(dq) = S; o(q)(dq) +1 Si(q)
solves

2 (S4(q)(5q), Si(a)vr) + (Si(@)%Vpsr) =0,

and because of (S;yo(q)(éq), Si(q)’yp> = 0 due to Lemma [3.4.25[ and Lemma [3.4.26| we have to set

t=—3 (Si(@)* Vrsr) »

with
t] < clldgll gy -

As a result,

1S5(@) G| y100yrmrsrz—< ) = 19500 (00) + i@ |15y 52— (0
< [18L0(@0) s aarrros g+ H115: @)y spnsre-<cay
< Ciep H&JHHQ(I) )
where we used Lemma [3.4.12] and Lemma [3.4.26] O

Lemma 3.4.28. Let q,p € Q*, 6q € Q and i € {1,2}. Let Sio0(@)(6q), S (p)(dq) € H}(Q) be
defined as in Lemma[3.4.20, then it holds that
15%0(0)(60) — Sho®)00)] 20 < €12 = pllacry Il acr -

Proof. First note that due to Assumption [3.1.26|the expression |A;(q) — A;(¢)| is uniformly bounded
from below for i,7 € {1,2} and i # j. Let the transformations for ¢ and p be denoted with F' and
E, respectively. Using Definition and Corollary it follows that

2 2
157.0(0) (99) = S50 (P) (09)][ 2 = > (Sio(@)(dq) — Sio(p)(59), S;(q)) L2
jEN
= Y (Sio(a)(60) — Sio(P)(00). 55(0)) pp(y  (3:90)
JEN\{i}
2
+ ( 1{70(]9)(5(]); Sz(Q))Lg(Q) 3 (391)
where we again used the fact that <S£7O(q)(5q), Si(q))LQ(m = 0. We start by estimating (3.91]), we
get ’
2 2
(S70(P)(34), Si(9)) 12 = (Si0(P)(99), Si(a) = Si(P)) 12
2
< 80P 60|23 g 15:(a) — SiD) 2o (392

< cllg = pllFe 16al 2y »
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where we used Lemma and Lemma [3.4.26] Now we estimate (3.90)), the definition of S;(q)
yields

a(F)(S0(q)(6q) — Si0(p)(0q), Sj(a)) = A;(q) b(F) (S 0(q)(6q) — S 0(p)(0q), Sj(a)); (3.93)
whereas using the definition of S} ;(¢)(dq) and S} 4(p)(dq) yields

)
a(F)(S0(q)(6q) — S 0(p)(0q), Sj(a))
= a(F)(S;0(0)(09), Sj(q)) — a(E)(Sio(p)(39), Sj(q)) + (VSio(p)(09), 1 (Ap — AF) - VSj(q))
= Xi(q) b(F)(S70(9)(59), S;(a)) + (9i(a:69), S5() g1 gy — Ai (p) b(E)(Si0(p)(09), Sj(a))
— (9:(P.09), Sj(0) g1 g1 + (VSi0(P)(09), 1 (AE — AF) - VSj(a))
= Xi(q) b(F)(S0(9)(6q) — S o(p)(09), Sj(q))
+ (Ai(g) = Ai(p)) D(F)(S;0(p)(59), S (Q))+Az( ) (Sio( )(39), Sj(a) (vr — 7))

(

+(9i(a,09) = 9i(p, 69), Sj(0)) g1 s + (VSi0(P)(89), 1 (A — AF) - VS;(q)) -
(3.94)

Combining (3.93) and ([3.94) yields
(S7.0(@)(00) = Si9(P)(80), 53(9)) 12

Ailg) = Xilp) (o Ai(p) /
= %) = Nla) (S50(P)(69), 55(9)) 22y + (@) — M) (Si0(p)(99), Sj () (vr — &)
+ M (9i(¢,69) — 9i(p, 69), S5(@)) g1 1
1

p VSLo(0)(3q), n(Ap — Ar) - VS;(q)) -

Now let v € H}(2) be the unique solution to
(Vo, pdp - Vo) = (VS o(p)(09), 1 (Ap — AF) - Vip) Yy € Hy(Q),
hence

1]l 730y < € ||S50(p)(30) [Ae — Apll oo (q) - (3.95)

[,

As |Xi(q) — Aj(q)| is uniformly bounded from below for j # i we get
2
(Si.0(@)(09) = S50(1)(09) 8}(9)) L2

- 2
<o (m-@ =20 (S10(0)(60). 55(0)) 73q) + (S;,o<p><6q> = ”E,sj<q>)L2(m)

YF

1 1
o0 (5 00050 = 50,00 5,0V oy + 55 (Ve TS(0)°).

Summing up these terms and using Corollary and Lemma, yields
2
> (Sio(@(59) = Si0(p)(50), 8j(4)) 12 0,
JEN\{i}
2 / 2 / 2 2
< il@) = M) [|570(P) (00 [ 13 ) + 970 (I ED 2 17 = V5l L0 (0

+l9:(9,69) — 9i(p, 6) | Fy-1 () + IIUIIfqg(g) ,
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3. Optimization of eigenvalues

which, together with the estimates from the previous lemmata, (3.95) and (3.92), proves the result.
O

Lemma 3.4.29. Let q,p € Q*, 6qg € Q and i € {1,2}. Then it holds that

|S50(@)(60) = S ®)(09) | 3 ) < @lla = Pl 18] 21

Proof. Let F and E denote the corresponding transformations to ¢ and p, respectively. It then
holds that

|5 0(a)(Ga) = S7o(p)(3a)][ s Hi(Q)
< (V(Siolg )(561) 0(P)(89)) , nAF - V (S o(a)(q) — S o(p)(59)))
<(V( Z (q)(dq) — p)(éq)),u VS'LO( )(69)) — (V( 10(0)(09) — 87 o(p)(69)) , AR - VS] o(p)(90))
( (Si0(a)(6q) — Sio(p)(5q)) 1 AF — Ag) - VS ,(p)(59))
i(9) (Sio(9)(dq) — 5 0(P)(39), Si0(0)(0a)vr) + (9:(a: 09), Si0(9)(00) = Sio(P)(39)) -1
i(0) (S70(0)(89) = S70(p)(89). ;0 (1) (09)7E) — (9:(P: 69), S50(0)(30) = S} 0(1)(00)) 1
( ( (Q)(5Q) Sio(P)(0q)) s 1 AF—AE)-VSQ,O( )(d9))
= (Xi(9) Si (@) (69)vF — Xi(p) Sio(p )(5Q)'VE, 0(2)(69) — S o(p)(3q))
+ (g q,5q — 9i(p. 69), S} o(a)(3q) — (P)(5Q))H—1,H3
— (V (Sio(a)(6q) — Sio(p)(9q)) vN(AF—AE) VSio(p)(9q))
< c(m(q) —Ai(p)| + H 0(0)(50) = 10 (P) D] 2y + 17 = 78 2060 ) [10(@)(00) = S70(P)(09) |2 g
+ lgi(a, 59) — g (p, 5q)HH 1@ 1S50(@)(89) — S (p)( HH1 @
+¢||5;0(a)(39) — Sio(p)(dq) HHI(Q [AF = Apl oo q) [|Si0 6q)HHé(Q)7
and the result follows with Lemma[3.4.28] Lemma[3.4.13] Lemma[3.4.24] Lemma[3.4.26] Lemmal3.4.6
and Young’s inequality. O

Lemma 3.4.30. Let q,p € Q*, 6q € Q and i € {1,2}. Then it holds that
15:(@)(59) = Si(P) 00|l 13 0 < ¢l = Pllzr2(ay 19l 21

Proof. Let F' and E be the transformations corresponding to ¢ and p, respectively, with derivative
OF = F'(q)(0q) = F'(p)(dq). As in the proof of Lemma [3.4.27] let

1

ty = -3 (Si(q)Q,%q(;F) and ty = 5 (Si(p)Q,%:,aF) )

such that

Si(@)(99) = Sio(a)(dq) +tq Si(q) and Si(p)(0q) = Sio(P)(39) + tp Si(p)-
We use Lemma [3.4.20] Lemma [3.4.29 and Lemma and get

15i()(09) = Si(P)(50) | 1130y < [|S7:0(0)(90) = S50 (PI(ED)| 1
+ [tg = tpl 1Si(@)ll 12 ) + Ep] [196(@) = Si(p)l p @)

< cllg = pllgzey 10all g2 - -
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3.4. A-priori error estimates

Lemma 3.4.31. For ¢,p € Q*, 6q € Q and i € {1,2} it holds that

|\ (9)(8q,6q) — X/ (0)(8q,69)| < cllg = pll 2y I6al 2y -
Proof. This lemma follows with representation (3.67) and the previous lemmata. O

Lemma 3.4.32. For ¢,p € Q* and 6q € Q it holds that

13"(9)(6q) = 3" (P)(89)| < cllg = pllg2(r) 196l g2y »
15" (2)(8q,69) — 5" (p)(84,69)| < cllq = pll g2y I16alFr2(ry -

Proof. This lemma is a direct conclusion of Lemma [3.4.22| and Lemma [3.4.31 O

3.4.1.2. Estimates between the continuous case and the state-discretized case

Within this subsubsection we are going to estimate the error induced by the discretization of the
state. We start with general results concerning the finite element approximation of eigenvalues and
eigenfunctions, some of them are based on ideas presented in the survey article [15]. If not stated
otherwise we will always assume that the discretization parameter h is chosen sufficiently small.

One possible definition of the convergence of a discretized eigenvalue problem to its continuous
counterpart is as follows.

Definition 3.4.33. Let ¢ € N and let N; and N}, be the spaces spanned by the eigenfunctions and
discrete eigenfunctions for the i-th eigenvalue, respectively. Let m(i) denote the dimension of the
space spanned by the first distinct ¢ eigenspaces. Then we say that the discrete eigenvalue problem
converges to the continuous one if, for any € > 0 and ¢ > 0, there exists hg > 0 such that for all
h < hg we have

m(i) (i)
max |\ — Aip| < ¢ and 0| PN, PN | <=
j=1 j=1

1<j<m(i)

Remark 3.4.34. Tt can be shown that Definition [3.4.33]includes convergence of eigenvalues and eigen-
functions with correct multiplicity and absence of spurious solutions. Using the notation introduced
in Lemma it further holds that, if the solution operator for the underlying equation is compact
from H to V and II,: V. — Vj as the elliptic projection associated with ap(F')(-,-) converges
strongly to the identity operator from V to H, then convergence in the sense of Definition
holds, cf. [I5], Proposition 7.4 and Proposition 7.6.

Lemma 3.4.35. Let ¢ € Q*! and i € N, then it holds that
Ain(q) <o

Proof. Using (3.68) this lemma can be proven similar to Lemma where one has to use the
fact that the i-th eigenvalue for the discrete Laplacian is bounded independently of h, which follows
with Remark [3.4.34] ]

Lemma 3.4.36. Let ¢ € Q* and i € N, then it holds that

55,1 (q) HHé(Q) < ¢.
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3. Optimization of eigenvalues

Proof. This lemma follows with Definition and Lemma [3.4.35] 0
Lemma 3.4.37. Let p € [1,00]. Then it holds that
it = 1l oy < h?P.
Proof. This lemma follows from the fact that u, up € L(Q),
{z € Q| u(z) # pn(@)} = [20\Qop| < ch?,
and Hélder’s inequality. O

Corollary 3.4.38. Let ¢ € Q™, F = F(q), p1,p2,p3 € [1,00] with 1/p; + 1/ps + 1/p3 = 1,
v € WHPL(Q) and w € WP2(Q). Then it holds that

|a(F)(v,w) = an(F) (v, w)] < kP [oll o o wlly 102 g

Proof. This corollary follows with Theorem and Lemma [3.4.37 O
Lemma 3.4.39. Let ¢ € Q*4, F = F(q), i € N and uy,uy € span {S;(q )}j 1- Then it holds that
|an(F) (u1, uz) = a(F)(ur, uz)| < cibvflurly s ) luzllyieg) (3.96)
an(F)(u1,u1)
IAE LUV 1 o,(h), 3.97
o(F) iy, 1) (h) (3.97)

)
a(F)(u1,uq)
an(F)(u1,u1)

Proof. The first part, , follows with Corollary m The estimates and (| - are
immediate consequences of -, Lemma |3.4.12| and the uniform ellipticity of A F.

=1+ O;(h). (3.98)

Lemma 3.4.40. Let ¢ € Q*! and i € N. Then it holds that

Ai(g) < (14 cih) Xin(q)-
Proof. Let F' = F(q), using Definition and Definition we get

B a(F)(u, u)
Aile) = min max e

a(F)(u,u) a (F)(uaU)>
an(F)(u, w) b(F)(u,w)

F
< (14 ¢h) min max an(F) (up, un)
EhEV}Si()) up€E b(F)(Uh,’LLh)

= (1 + Cih) /\i,h(Q)a

= min max
Ecv(i) uekE

where in the second step we used Lemma [3.4.39|and the fact that Vh(lg c v, ]

Lemma 3.4.41. Let g € Q* and i € N. If the first i eigenvalues ()\j(q))1<j<i are simple, then it
holds that o

Nin(q) < (1+cich' %) Nilq).
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3.4. A-priori error estimates

Proof. Let F = F(q),let V() = i-: N, be the space spanned by the first ¢ eigenfunctions and let
Jj=1""J g

Ny, =11,V with IIj, as in Definition Due to the coercivity of the bilinear form ap(F)(-, ) it
follows that for h sufficiently small it holds that dim(Ny) = i. Using N}, as testspace within (3.68])
yields

ap(F)(up,up) ap(F)(Hpu, Thu)
Ainlq) < max b(F)(un,un)  weviyr b(F) (M, Myu)
an(F)(w,u) Hax an(F)(u,uw) a(F)(u,u)  b(F)(u,u)
S bR (T, ) oot ( a(F)(u,u) b(F)(u,u) b(F)(Hhu,Hhu)) (3.99)

b(F)(u,u)
< (1 +cih) Aig) Jgf}?% b(F)(Hpu, Opu)’

where we also used Lemma |3.4.39] It remains to estimate the last term on the right hand side
of (3.99). Within Lemma [3.1.25|it has already been shown that V&) ¢ H3/27¢(Q), and a duality

argument (cf. Lemma [3.4.11)) proves that

lu — Hh“”L?(Q) <ch'™* HUHHS/?*E(Q)

<cich'™ lull 20 »
which yields
HHhUHL2(Q) = HUHL2(Q) (1 - Cz‘,shl_a) . (3.100)

Inserting (3.100) into (3.99)) yields

2
wn0) < (1 et (1= ) M@
< (1+¢h' %) Ni(g),
where the second inequality is due to the fact that (1 — )72 = 1 + 22 + O(2?) for |z| < 1. O
Corollary 3.4.42. Let g € Q* and i € N. Then it holds that
IAi(g) = Ain(@)] < ecich' ™.
Proof. This corollary follows with Lemma and Lemma [3.4.41] O

Lemma 3.4.43. Let ¢ € Q*, 5 € Q and i € N. Then it holds that
N ()(89)| < ci l15all oy -

Proof. This lemma follows with (3.70), Lemma [3.4.35[ and Lemma (3.4.6] O

Next we are going to estimate the error between an eigenfunction and its discrete counterpart.
The following proof is based on ideas presented in [15] and [93].

Lemma 3.4.44. Let ¢ € Q*! and i € N. Then it holds that

15:(q) — Si,h(Q)||L2(Q) < Cz‘,ehl_a-
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3. Optimization of eigenvalues

Proof. Let F' = F(q) and

= max )\Z(q)
jeM{it [ Ailg) = Ajn(g)]

Pih (3.101)

which is uniformly bounded from above for h sufficiently small since A;(q) is a simple eigenvalue
due to Assumption [3.1.26| and the fact that \;,(¢) — A;j(q) for h — 0 due to Corollary [3.4.42] In
addition, let

Sin(q) = b(F)(I1,Si(q), Sin(q)) Sin(q), (3.102)

be the L (€2)-projection of I1;,S;(g) on the space spanned by S; ,(¢), with L?(£) as in Definition
and II; as in Definition [3.3.2l Now we have

155(a) = Sin(@)ll 130y < 15:() = T1uSi() | 2y + |[TTrSi(a) — Sin(a)]

2
L (3.103)

|

Sin(a) = Sinla)|

)

L2(9)

we start with examining the second term on the right hand side of (3.103)). Using Corollary
it follows that

WSila) = Sin(@) = > ((04Si(a), $50(0)) 130 Sina) )

JEN\{i}
and
~ 2 9
[m5:(@) = 5@, g = D= (MSila), S0 300 (3.104)
b JEN\{i}
For the summands in (3.104)) it holds that
1 1
= 2D g0 80 0(0) (3.105)
T Nnlg) @) '
1
+ (VSi(a), (un — 1) Ar - VSjn(a)) .
)\],h(Q)

or equivalently
Ajr(a) (MnSi(a), S5n(@)) L2 () = Ail@) (9i(9), S5n(@)) 2y + (VSi(@), (kn = 1) Ar - VSjn(a)) -

Subtracting \;(q) (II5S:(q), S’jvh(q))ng)(Q) on both sides gives

(Njn(a) = Ai(a) (nSi(a), S5n(@)) L2(q) = Aila) (9i(a) — 1nSi(a): Sjn(a)) L2
+ (VSi(q), (un — 1) Ar - VSjn(q)) ,
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3.4. A-priori error estimates

and hence

Ai(q)
Ain(q) = Ai(q)
1

T onld) = @) (VSi(q), (un — 1) Ap - VS;0(q)) -

(xSi(a), Sj.n(4)) L2 () = (5i(q) = nSi(9), Sjn(9)) 12 (0

(3.106)

Now let vy, € Vj 0 be the solution to

(Von, unAr - V) = (VSi(q), (un — 1) Ar - V) Veon € Vo,

for which we have the stability estimate

Fonllmy oy < € lIVS:(@) (21— )l 2y < cnch,
where we used Lemma [3.4.12] and Lemma [3.4.37] Hence,

1 1

m (Vsi(Q); (Mh - M) Af - VSj,h(Q)) = m (Vvh; UhAF - VSj,h(Q))
)

(3.107)
m (0ns Sj.(0) 20 -

Inserting (3.107) into (3.106]) yields

|(08:(), S5 () 1310y | < P | (Si(0) = TnSia), S5 (@) 130

+Ci

(3.108)

(vn, Sj,h)Lg(Q)

)

and using the estimate (3.108)) within (3.104) shows

2 2 2

o S0 > (P (8i(@) ~ Si(0), Sin(0) (o))
NG ’

+ C; Z (Uha S],h)%Q(Q)
JEN(i} ’ (3.109)

< i (P24 115:(@) = TS0 320 + lonlFa(ey )

< cie (18i(a) = TuSi() 30 + 127

| 148i(q) = Sina)]

In order to estimate the third term within (3.103) we will show that

for (3.110) would imply that

Sinla) = Sila)|

Sin(a) = Sin(a)|

, (3.110)

2 S ‘ 2
L3(®) L3(®)

(3.111)

Sin(a) = Sinla)|

< 1i(0) = TSi(@)l gy + [TSi(a) ~ Sin(a)

L2(Q

2 L2(Q)

107



3. Optimization of eigenvalues

It holds that

Sin(a) = Sinla) = Sin(a) (1= (MnSi(a). Sin(@)) 20y ) (3.112)
and
) —ls:(qg) — S < ||S < IS () — S .
1:(@) | 20 ‘ Si(q) Sm(q)‘ L S \ Sz,h(q)) ray = 15@llzze) + \ Si(q) Sz,h(‘])‘ 2@
The normalizing conditions for S;(¢) and S; ;(q) yield
_S:(a) — S, < . A < () — G.
L= [[8i6@) = 5@, ) < [08:@): Sin@) ey <1+ [[860) = Sia@)]
or
. . —1l < lS:(qg) — §. ) )
11810, Sin@)sz00| = 1] < [[Sit) = 5@, (3.113)
Due to it holds that
(InSi(q), Si,h(Q))Lg(Q) >0,
and hence
(IxSi(q), Si,h(Q))Lg(Q)’ = (nSi(9), Sin(4)) 2 () - (3.114)

The estimates (3.112)), (3.113)) and (3.114)) prove (3.110), and inserting the estimates (3.109)) and (3.111)
into (3.103)) yields

15i(@) = Sin(Dl 2y < 21+ pin) [15i(a) = TaSi(@)| 2 - (3.115)

In order to estimate the right hand side of (3.115)), let 2 € H}(Q2) be the solution to

a(F)(v,z) = (Si(q) — HhSz‘(Q)W)Lg(Q) Vo € H} (Q).
With Lemma it follows that z € H3/27¢(Q) and

2/l 322 () < < 19i(q) — TnSi(a) [l L2 -

Let ip2 be the nodal interpolation of z, it holds that

15:(q) — Hhsi(Q)H%?)(Q) a(F)(Si(q) — HnSi(q), 2)

= ap(F)(Si(q) — nSi(q), 2) + (V (Si(q) — UnSi(q)) , (1 — pn) Ap - V2)
= ap(F)(Si(q) — UpSi(q), z — inz) + (V (Si(q) — UnSi(q)) , (1 — pn) Ar - V2)
< ce [15i(q) = MnSi(D) gy ) h1/2= 121l gr3r2-< ()

+ e [19:(a) = WnSi(@) |y oy 11 = pnll | 1, @ ||Z||W1,1+42€ @
< ¢ieh! ™7 [1Si(a) — MhSi(@) 2 ) »

where we used Céa’s lemma, Lemma [3.4.12) the continuous embedding H3/27¢(Q) — Wl’ﬁ(ﬁ)
and Lemma B.4.37 0
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3.4. A-priori error estimates

Within the next lemma we are going to estimate the same error as in the previous lemma, but
with respect to a stronger norm. As the proof is similar to the proof of Lemma[3.4.44] we will stick to
the same notation. Another approach to prove this kind of estimates is presented in Subsection[3.4.2]
within the proof of Lemma where the same difference has to be estimated in case of the
optimal control g.

Lemma 3.4.45. Let ¢ € Q*! and i € N, then it holds that
15i(q) = Sin(@l g1y < cich!/? <.

Proof. Again let F' = F(q) and define
~ 1
Sin(a) = b(F)(InSi(q), Sin(a)) Sinla) = ()

be the LZ(Q)-projection of II,5i(¢q) on the space spanned by S;n(g), where II; is again as in
Definition [3.3.2] Using the notation from Definition we have

an(F)M,Si(q), Si.n(q)) Sin(q), (3.116)

15:(0) = Sia(@lly, (@) < I15i(0) = TaSi(@)lg, (@) + |14 Si(@) = S (o)

Hi, (@)
i (3.117)
+ ‘ Sin(q) — Si,h(Q)’ Hy @)
and again we start with examining the second term. It holds that
~ 1
080~ () = Y (5PN 53000 Si0(0))
NG I
and
. 2 1 )
|mSi(@) = Sinla)] -3 an(F)(T,5:(a), S;(4)
H,, (@ A= \Xjn(g)
t I (3.118)
= > (/\j,h(Q) (I, Si(a), Sj,h(Q))ig(QQ :
JEN\{i}
Within the proof of Lemma [3.4.44] it has been shown that
(A (@) = Mi(0)) (Si(a), S (0)) 13y = (@) (S:(a) — TuSi(a). S(0)) 13 gy
+ (VSi(a), (un — 1) Ap - VSjn(a))
and hence
Njn(a) Xi(g)?
Ajn(a) (UpSi(q), Sj,h(‘]))%g(ﬂ) <e— 5 (Si(q) — 11 Si(q), Sj,h(q»%%(ﬂ)
[Ajn(@) — Ai(q)]
»ala) (3.119)
j,h\q 2
+c 2t (VSi(a), (hn — 1) Ar - VSjn(a))”-
INin(a) = Xig))? ’
Let again vy, € Vo be the solution to
(Von, unAr - Ven) = (VSi(q), (tn — 1) Ap - Vi) Von € Vi, (3.120)
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3. Optimization of eigenvalues

for which we have the stability estimate

[orll 1) < €V Si(a) (un — )]l L2(q) < cih'’?,

where we used Lemma and Lemma [3.4.37 In addition, let wy € Vj 0 be the solution to

b(F)(wh, pn) = b(F)(Si(q) — UrSi(q), on) Yo € Vio. (3.121)
We get
||wh||%g(g) = b(F)(5i(q) — UxSi(q), wn)
< [15i(q) = MaSi()ll 22 (@) llwnll L2 (@) »
and hence

||wh||L§(Q) < Ci,ahlis

Inserting (3.119) into (3.118]) and using the definitions (3.120)) and (3.121]) shows that

_ 2 1
HHhSi(Q) - Si,h(Q)H ) <g¢ Z (wh, Sj,h(Q))QLz(Q) + = (Von, upAp - VSin(a))?
HY. (Q) L b Ajn(q)
h JEN\{i} ’
2 2
= ci (lwonlFa) + ol )
< Cih,
and hence
HHhSi(Q) - gi,h(‘])‘ HQ) < c;h'/?, (3.122)

0

In order to estimate the third term within (3.117), we will show that

for (3.123)) would imply that

+ c.h'/?7e, (3.123)
Hy,, (@)

Sinla) = Sinla)|

HY ()

Sinla) = Sinla)|

< 118:(0) - TSi(a) Ly, (0

o0, (3.124)

. _ Q. 1/2—¢

+ HHhSz(CJ) Sz,h(Q)’ Hy @) + czh :

It holds that
Sin(a) = Sinla) = Sina) (1= (0nSi(a), Sin(@)) 20y )
1 (3.125)
= Sin(q) (1 - an(F)(I14,5:(q), Si,h(Q))) .
Aih(q)
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3.4. A-priori error estimates

Let H-HH&%(Q) be the norm from Definition the triangle inequality proves that

Si — ||Si(q) = S < |Si
I5:@ g, 00 = [Si0) = (@, o < |Sn@], o
<18y, o+ |80 = Sun@]], -
By definition it holds that
1Sin( @z (@) =/ Ainl), (3.126)
yap,

and

”Si(Q)”%{&’ah(Q) = an(F)(Si(9), Si(q))

= a(F)(Si(q),Si(q)) + (VSi(q), (un — 1) Ar - VSi(q))
= Xi(q) + (VSi(q), (un — 1) Ar - VSi(q)) -

With Lemma [3.4.39 and Lemma it follows that
0 < (VSi(q), (un — 1) Ar - VSi(q)) < cih,

hence
[15: @y, @) = VM@ < ek

which yields

Ailg) — ‘ Si(q) — gi,h(Q)‘ e cih!'/? < )\1}1((1) |an(F)(I1S5i(q), Sin(q))]
< V@) + ||Si(a) = Sinla)| e,

H, (@)

or

Va1 3 B s 0,5l <| b o
+ ¢ <h1/2 + \/!Ai(Q) - )\i,h(Q)|> :

Sifa) = i (@)

With (3.69) it follows that
an(F)(nSi(9), Sin(@)) = Xin(q) nSi(9), Sin(a)) 2 () = 0- (3.127)

The estimate (3.123) now follows with (3.125)), (3.126)), (3.127) and Corollary|3.4.42] The remaining
estimate for ||.5;(q) — I15.5:(q) ”H&(Q) can again be shown using Céa’s lemma and Lemma [3.4.12 O

Lemma 3.4.46. Let g € Q*, i € N and p € (1,4). Then it holds that

HSz',h(Q)”Wl,p(Q) < Cip-
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3. Optimization of eigenvalues

Proof. For p < 2 this statement follows with standard embedding theorems, Lemma [3.4.45| and
Lemma [3.4.12] For p > 2 let i;,5;(¢q) be the nodal interpolation of S;(¢). Using an inverse estimate
it follows that

185 @ iy < 1inSi(@) gy + 1inSi(@) = Sin(@ ooy

< e 115:(@) oy + B2 1inSia) — S (@) g1 0

)
< cl18: @iy + b7 (15:(0) — inSi(0) 110y + 15:(@) — Sin(@)l 1)
<cllS; (Q)HWLP(Q) + CiﬁshQ/pilhl/Qis HSZ‘(Q)HH3/2—€(Q)

where in the last step we have to choose e =2/p —1/2 > 0 for p < 4. O
Lemma 3.4.47. Let g € Q*, ¢ € Q and i € N. Then it holds that
INi(0)(69) = X 1 (9)(39)] < ei.eh™* = 18q]| 121
Proof. Let F = F(q) and 0F = F'(q)(dq), it holds that
IXi(@)(8a) = N (@) 0a)| < [(V (Si(a) = Sin(@)) s nA s - V (Si(a) + Sin(2))) |

+ | (N Sila)* = Ninla) Sinlq) a'YF,cSF)}

+[(VSin(a), (1 — ) Asp - VSin(a))|
and the result follows with Lemma [3.4.45] Corollary [3.4.42] Lemma [3.4.6| and Lemma [3.4.37] O

Lemma 3.4.48. Let g € Q™, g € Q, i € N and 9i.n(q,6q) € H71(Q) as in Definition , Then
it holds that

195.1(@; 0@) |l -1y < i 0l (1) -
Proof. Let F = F(q) and §F = F'(q)(dq), then it holds that
9280 | 710y < X (@)(00) Sin@)rr + Nin(@) Sin(@ Vel 2o
+ Hle(MhAR(gF : VSi,h(q)) HH_l(Q)
< i l10g 2 (py
where we used Lemma [3.4.43] and Lemma [3.4.6] O

Lemma 3.4.49. Let ¢ € Q*, 6q € Q, i € N and gi(q,3q),9i1(q,6q9) € HX(Q) as in Defini-
tion[3.4.5 Then it holds that

19i(a,69) = 9in (a0, 69| -1 () < cich'/? 10all 721y -
Proof. With F' = F(q) and §F = F'(q)(dq) it holds that
l9:(a: ) = gin(a,6a)l| 10y < [ Ni(@)(3a) Si(@)rr = X1 (@)(6a) Sin(@)7r | 2
+ [[Nie) Si(@)Vrsr — )\i,h(Q) Sin(q )’YF,&FHLz(Q)
+ ||div (pA% 5 - VSi(q) — pn Ak sp - VSin(q)) HHfl(Q) ,

and the result follows with Corollary [3.4.42] as well as Lemma [3.4.47] Lemma [3.4.45] Lemma [3.4.6
and Lemma B.4.37 0
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3.4. A-priori error estimates

The subsequent lemmata will be needed to estimate the error between the continuous and the

discrete derivative of the eigenfunction with respect to q.

Lemma 3.4.50. Let g € Q*, 6q € Q and i € N. Let Si0(@)(3q) and S} o(q)(q) be the (discrete)
solutions to the affine eigenvalue equations related to (3.66) and (3.71) without the normalizing
conditions but with minimal H&a(Q)—, and H&ah (Q)-norm, respectively, cf. Subsection M Then

it holds that
157.0(a)(09) = 540 (D) G| 12 < cieh™* = 10all g2 -
Proof. Let F' = F(q). For arbitrary j € N\ {i} it holds that

a(F)(S;0(q)(39), Si(q)) = b(F)(S} o(9)(5q), Sj(q)) = 0,
an(F) (S} 1.0(0)(6q), Sjn(q)) = b(F) (S} 1.0(q)(q), Sjn(q)) = 0.

Let IIj, as in Definition and let

=b
=b

ISNGOICHES ((HhS;,O(Q)((SQ)vSj,h(Q))Lg(Q) Sj,h(Q))
JEN\{i}

= TTS;,0(a)(99) — (TnS70(a)(89), Sin(a)) 12 Sin()-

Then we split the error,
185 0(@)(60) = St 4.0(0)00)| 1200 < [1S%0(@(60) ~ TaS]o(@) (6| 3

+ HHhSé,o(q)(éq) - 1:[51{70(q)(5q)‘

L2(Q)

+ Hﬁsé,o(q)(éq) — S£7h70(q)(5q)‘

3@
Using a duality argument and Lemma, it follows that
155.0(2)(09) = T11.50(0)(60) | 2y < cich’ = 10all g2y -
From (3.129) we get
115,87 0(a)(09) = T170(9)(50) = (1T ;0(9)(89), Sin(9)) 12y Sin(@):

hence

[0 0@ (00) — 115 o) 00)

Ly ()
’ Sz’,h (Q)) LE Q) ‘

-
-
< q) — Sio(a)(d9)|

< cich' ™ (18q]| 2y

(157 0(a)(d9)
(TnS%.0() () = S70(a)(69); S (9)) 12y + (Si0(9)(00), Sin(a) = Sil9)) Lg(m’
111,57 (4) (39) L2y + 1950(@ @D 126 19:(0) = Sin(@)l 20

(3.128)

(3.129)

(3.130)

(3.131)
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3. Optimization of eigenvalues

where we used (3.131]), Lemma [3.4.26| and Lemma |3.4.44] The last part within (3.130)) remains. As
Sino@@a) = 3 ((S10(@)(39). (@) 12 Sin(@))

JeN\{d}

it holds that

11S; 4(q)(69) = S po(0)(6g) = > ((HhSé,o(Q)(fM) = Sin0(@)(00), S1(a)) 12 Sj,h(Q)) 7

FEN\{i}
2 , , 2
| 1157 ()(04) = S¢0(0) (59) Lg(ng\j{} (TS0(0)(60) = S%1,0(0)(30). S3(@)) 5y (3:132)
VIS )

and we have to estimate each summand within (3.132f). Tt holds that

an(F)(M4S; 0()(09), Sjn(a))

1
Ajn(g

)
(an(F)(S0()(39), Sjn(q)) — a(F)(S;0(0)(99), Sjn(a)))
(

(9i(9,99), 95n(9)) g1 111

= un (0nS7.0(9)(09), S5.1(a)) 22y + ;:h(q;) (S70()(99) = TS 0(9)(09): 9n(9)) 13
1 1

/ .
+ n(a) (9i(q,0q), Sjn (Q))H—l,Hé + on@) (VS;o(a)(6q), (un — 1) Ap - VS;n(q)),
where we used Lemma [3.4.39 and Lemma [3.4.27 Hence

(T1nS7 0(0) (99), Sj,h(Q))Lgm) - )\jh(;\)i(i]))\i(Q) (
1

TN~ M) (91(9,09), Sj.n(0) -1 111 (3.133)

T3t ) (VSho(@(00), (an — 1) Ap - VSj(4)

1{,0 (Q)(&J) - HhSz{,O (Q)((SQ)? Sj:h(Q))LE(Q)

In addition,

(S7.0(0)(09), S5.1(9)) 122y = /\j;(q)ah(F )(Si,,0(9)(59), 5.1 (9))
= S (510,006, 55(0) 3+ a5 90n(6:50) 5001y
hence
(10000 5000 0y = 577 = g (9299 S @)y (3134)
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3.4. A-priori error estimates

The equations (3.133]) and (3.134) yield

(T11.57,0(2) (69) = S 4,0(@)(80), S (0) 12
N )‘]h(Q)l_)\z(Q) (9:(g,09) - gi’h(q’ 59), Sjvh(Q))H717Hé

Ai
oS Az(g))( <(>) ol 000 S D (3.135)

+ W ( S, 0(9)(09), Sjyh(Q))Lf(Q)
1

T (@) = @) (VS!0(a)(8a), (n — 12) A - VS (q)) -

+

As [A\jn(q) — Xi(@)| and |\jn(q) — Ain(g)| are uniformly bounded from below for h — 0 and j # 1,
it holds that

(114 0(2) (50) = % 1.0(0)(00), S (0)) 12

. 1 . . . 2 . . 2 1 . . 2
< (/\M(q) (9i(9,99) = 9i.n(4:09): Sj.n(@)) -1 gz + [Xi@) = Xin(9)] () (9i.1(9; 89), Sj,h(Q))H17H5>
2 1 2
+ei <(S§,o(Q)(5Q) ~ WSi0(0)(9): 5n(0)) () 5y (VSi0(@)(00), (1 = ) Ap - V5;(0)) ) :
]7
Let v € H}(Q) be the solution to
(Vo, i ApVe) = (Vi 0(9)(59), (n — ) Ar - V) Vi € Hy (). (3.136)
Lemma, and Lemma yield
1oll gy < €l = 10) V8L (@) (80)]| oy < b 180l g2 - (3.137)
With (3.132)) and Corollary [3.4.10| we conclude that
|15 () (80) — L0()60) |
2,0 i,h,0 L%(Q)
2 2 2
<¢ (ng-(q, 6q) = 9ih(0,0) | z7—1 + 1Xi(@) — Ain (@) llgin(a, 5q)||H71)
2
T (H q)(6q) — HhS{,O(q)(‘Sq)HLg(Q) +ch H‘SQH%I?(I)) )
and finish this proof with Lemma [3.4.49] Lemma Lemma [3.4.48 and ((3.131). O

Lemma 3.4.51. Letq € Q*!, §g € Q andi € N. Let Sio(@)(3q) and 57}, 4(q)(3q) as in Lemmal|3.4.50,
Then it holds that

15,0(@)(69) = S50 (@) 0D 1 0 < cich 7 180l 21 -
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3. Optimization of eigenvalues

Proof. The proof of this lemma is similar to the proof of Lemma [3.4.501 Let F' = F(q), let II; be
defined as in Definition and let

S o(@6a) = > ((1aS!0(0)(39). S3(@) 210 Si(@)

JEN\{i}
1 !
- jENZ\{i} (Wahwnhsw(q)(aq), 5(0)) sj,h<q>)

= nSi0(a)(9q) — (TaSi0(0)(84), Sin(4)) 12 Sin(9)

= 11,5} 5(q)(dq) — an(F)(I14S5; o(q)(6q), Si.n(q)) Sin(q).

Ain(q)

Then we split the error,

1S7.0(a)(d0) — é,h,o(Q)(M)HH&%(Q) < [[8i0(0)(60) — TS o (0)(80)]| 11 (g,

O,ah
+ | TSt o(a)60) - TiSEp(@)6a)| ©
O,ah
+ Hﬁsé,o(@(éq) - Sé,h,o(q)(M)‘ Hi, (@)
O,a,;L

Using Lemma [3.4.26] it follows that

157 .0(9)(3q) — HhS{,o(Q)(‘S‘I)HH(} u () < ¢ htPE 164!l gr2(1 -

From (3.138]) we get

and

115,87 0(a)(09) = T170(9) (50) = (T ;0(9)(59), Si1(9)) 122y Sin(@),

11840 (a)(0a) — 118 5(a)(0a)|

H,, ©)
< ey/Xin(@) | (TS} (@)(60). i (0)) 13 )|
(nSi.0(9)(09) = S0(4)(59), Si.n(@)) 12 (o) + (S7.0(a)(99), Sin(e) = Si(a)) Li(ﬂ)‘

< ci (|18 0(@)(00) = S:0(@) (0| g + 1197.0(@) G| 2 gy 155(0) = Sin(@) 2

< cih! = 04l g2y »

<¢g

(3.138)

(3.139)

(3.140)

where we used (3.140) with a duality argument, Lemma |3.4.26| and Lemma |3.4.44] It remains to
estimate the last part within (3.139)). Because of

/ _ 1 a ! . .
Staalooi = 3 (5 () S 0)60): 500 S5

it holds that

1] o(0)(60) — Slpo@)60) = 3 ( ! ah<F><nhs;,o<q><aq>—s;,hp(q)(aq),sj,h<q>>sjvh<q>),
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3.4. A-priori error estimates

thus
|118%(a) (650) = St 0(a ><6q>\H1 o
- (520 Y IS10)60) = Sio(@) G0 S0 .14
= j%‘{i} (V@) (1147 0(0) (50) = S%,0(0) (80): S3n(0)) 2y ) -

The summands within (3.141) have already been estimated within the proof of Lemma [3.4.50

(13.135)). It holds that

(@) (TnSi0(a)(99) = Sipo(a)(09), Sin(a)) 12

- )M (9:(g,09) = gi’h(q’ 4q), Sj7h(Q))H—17Hé

Aj i Nion(q
+ nl(q) — (g z())(( q) — - )_()\):h(q)) (gi,h(q,(5q),Sj7h<q))H717Hé
RNy
Ajn(a) —
Aﬂ'—ah(q)
Ain(@) — Xi(q)
Again we use the fact that [A; 4 (q) — Ai(q)| and |A; 1(q) — Ain(q)| are uniformly bounded from below
for h — 0 and j # 7 and get

Njn(9) (1115} 0(a)(3) = S ,0(0) (50), Sjn(@)) 12

1
<¢ ( (9i(a:0q) — 9in(2,00), S; ()31 g + INi(@) — Nin(@)]?
Ajh(q) Ho

— S0(a)(99), S5.1(a)) 20

+ (VSi0(@)(89), (pn — 1) Ar - VS (a)) -

1
Ain(q)

(VS40(a)(6a). (sn — 1) Ap - vsj,h(q>)2) ,

(9i.n(q,9q), Sjﬁ(q))iIl,Hé)
1

e <( o(@(00) = ISo(0)00): 530 o) + 573

Defining v € H}(Q) as in (3.136)), inserting this relation into (3.141]), using Corollary [3.4.10|and the
estimate (3.137)) yields

|12 0)50) — St (o))

Hpq, ()
<¢ (Hgi(q, 6q) — 9in(4, 5Q)IIH—1(Q + i) = N (@) ll9in(a, 5q)llfq_1(m)
+ ¢ ([1S%0(a) (5a) — TS, o(a) 0) | g + P 10aeqs) )

and we finish the proof with Lemma [3.4.49) Lemma [3.4.42] Lemma [3.4.48 and (3.140)). O

Lemma 3.4.52. Let g € Q*, ¢ € Q and i € N. Then it holds that

15i(a)(d9) — S 4 (@) < cich'*7 164l g

HHl
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3. Optimization of eigenvalues

Proof. Let F' = F(q), 0F = F'(q)(dq), and let S}4(q)(dg) and S}, 1(¢)(0g) be defined as in
Lemma [3.4.50] It follows that there exist ¢1,%2 € R such that

Si(a)(dq) = Sio(@)(dq) +t1 Si(g)  and in(0)(09) = Si50(a)(6q) + t2 Sin(a).
Using the normalizing conditions for S;(¢q) and S; ,(q) it follows that

1 1

h=-3 (5i(0)* Vror) and t2=—3 (Sin(@) Vo)
we get
155(2)(60) = S5 0@ ()| 11 ) < [1570(0)(69) = ST (DD 1 ) + 11 = L2l 1560 1130
+ [ta Hsi( ) = Sin( @l o) »
and the result follows with Lemma [3.4.51] Lemma [3.4.45] and Lemma [3.4.6 [
Lemma 3.4.53. Let ¢ € Q*!, §¢ € Q and i € N. Then it holds that
|\ (0)(8q,69) — N/ 4(0)(5q, )| < cih'?~%||5q]|3p2

Proof. Let F = F(q) and 0F = F'(q)(dq). With (3.53)) and (3.72)) it follows that

XY (9)(8g, 6q) — N 1,(q)(8g, 59)]

< |(V( ‘(Q)—S ()) 1A spse -V (Si(q) + Sin(q)))|

+2|(V (Sa)(0) = S14(2)(00)) , unAr - V (S}(9)(69) + S} 1, (q)(59))) |

+2|(Ni(9) Si(q)(59)? —)\- (@) Sip(0)(60)%,vr) | + | (Ni(@) Si(0)® — Nin(@) Sin(0). Visrsr)]
+[(VSi(a), (1 — pn) Ak spsr - VS (@)] +2[(VSi(@)(d9), (1 — 1) Ar - VSi(0)(69))]

and the result follows with Corollary|3.4.42] Lemma|3.4.47] Lemma|3.4.45] Lemmal|3.4.52] Lemmal|3.4.6
and general stability estimates. O

Lemma 3.4.54. For ¢ € Q* and 6q € Q it holds that

17(0)(69) — (@) (8a)| < cich*~ 116q] g2y
15" (0)(8q,69) — 1 (@)(8q,6q)| < cich'* = [|6ql 32y

Proof. 'This lemma follows with Lemma [3.4.47 and Lemma [3.4.53 O

3.4.1.3. Estimates between the state-discretized case and the fully discretized case

Within this subsubsection we are going to estimate the error induced by the additional discretization
of the transformation F. If not stated otherwise we will always assume that the discretization
parameter k is chosen sufficiently small.

The proof of the following lemma is based on ideas presented in [32].
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3.4. A-priori error estimates

Lemma 3.4.55. Let p € [2,4] and let u € W1P(Q) with ulg, € W?2P(Q;) for j € {0,1}. Further-

more, let iy C () — Vi be the pointwise interpolation operator and let s € [0,1]. If p = 2 then it
holds that

lu = iull 1y < ck®* [n k|2 (HUHHI(Q) + llull g2 0y + ”UHH2(91)) :

whereas for p > 2 it holds that

lu = tkull sy < cph?™® (HUHWLP(Q) + llullw2r ) + HUHWZP(Ql)) :

Proof. The proof for p = 2 can be found in [32], Lemma 2.1. The cited proof can also be generalized
to the case p > 2. In that case it holds that W1P(Q;) < L>°(Q;), thus the log-term disappears. [

Lemma 3.4.56. Let u € WH™(Q) with u|Qj € W3/22(Q;) for j € {0,1}. Then it holds that

s = ikl ey < A2 (llpaqy + lllparzoqay) + lelwarnmn) ) -

Proof. This lemma can be proven using the same ideas as presented in the proof of Lemma |3.4.55
O

Within the following lemma we are going to estimate the error between the continuous trans-
formation and its discrete counterpart in WP for some p, the error in LP is estimated within

Lemma B.4.84]

Lemma 3.4.57. Let g € Q*!, F = F(q), Fy, = Fi.(q) and p € [4,00]. Then it holds that
| F — FkHHl(Q) < ck ||QHH2(I) ) (3.142)
and
|1F— Fk”Wlm(Q) < Cpkz/p HQHH2(1) : (3.143)

Proof. Let F € W2*(Q) be a W2*stable extension of Flg, onto ©Q, the extension of such a F
follows with Lemma [A.2.2] Using Lemma and Theorem it follows that

HF - FkHHl(QLk) < ¢k lqll g2(p) and 1F' = Fill g ) < <k llall g2y
it remains to estimate HF — FH . Holder’s inequality and the fact that |[Q0\Qox| < ck?
H1(20\Q0,x) ’
prove
HF\|H1(QO\QOJC) <ck HFHWLOO(QO) < ck HQHHQ(I) 5
and
; < ck HFH < ck HFH < ck ,
H HHI(QO\QO,,C) =¢ Wieo (@) — ¢ W2a@g) — C el
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3. Optimization of eigenvalues

which proves (3.142)). Using the same notation and references as before it holds that

HF—FkH < c\lnk!1/2k||QHH2(I) and 1F" = Fiellywaqq,) < <k llall g2y »

Wha(Qq k)

and again it remains to estimate HF —F H . We have
W4(Q0\Q0o,x)

IFllwraiongo o) < K2 IF e (ag) < k" llall g2y »
and

< k2| < k2 gl gy -

i T

As |In k]l/Q k < k'/2 for k sufficiently small, the proof for p = 4 in (3.143)) is finished. The proof for
p = oo is similar to the second part of the proof of Lemma [2.3.29] it holds that

1F = Frllwroo ) < I = ik Fllyioo ) + i F = Frllyoo ) - (3.144)

For the first part on the right hand side of (3.144)) we use Lemma |3.4.56] for the second part we use
an inverse estimate and get
1F = Fillyr.oo () < ck'/? (HF”WLOC(Q) + 1Flywsr2.00 () + ”F||W3/27°°(Q1)>
+ k™2 ikF = Fillwaa)

< ck!/? lall g2y + ck'/? (HF — i F ) + 11— FkHWM(Q)) )
and now we use Lemma [3.4.55| and the first part of this Lemma to finally obtain

IF = Fillyr.oo) < k"2 llgll gory + k™K (HF”WL“(Q) + [ Fllw2a000) + ||FHW2,4(91))
+ k™ 2EY gl g2
< cllall g2y -
and what is left follows with interpolation. O

Assumption 3.4.58. We assume that there exist ¢1, ¢z, ¢35 > 0 such that for all ¢ € Q*? it holds that
YFy(q) = €3 on £, and the eigenvalues of the matrix A, (4) are elements of the interval [c1, ca].

Remark 3.4.59. With Lemma [3.4.57] it follows that Assumption [3.4.58 holds if the constant C
from (3.11)) is sufficiently small.

Lemma 3.4.60. Let ¢ € Q*! and i € N, then it holds that

Nink(q) < ¢

Proof. Let Fy = Fy(q). With Assumption [3.4.58|it follows that there exist ¢, co > 0, independent
of g, such that for all u € H}(Q) it holds that

ap(Fr)(u,u) < ¢1 (Vu, Vu),
b(Fy)(u,u) > co (u,u) .
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3.4. A-priori error estimates

With (3.73)) it now follows that

: an(Fi) (up, up)
Aink(¢) = min max ————>
o) Enev® un€bn b(Fy)(un, up)

c1 ) (Vup, Vuy)
min  max —————
Co Ehevh(zg up €Ly, (uh, uh)

< =

S Ci,

where we used the fact that the eigenvalues for the discrete Laplacian on 2 are bounded indepen-
dently of h, c¢f. Lemma [3.4.35] O

Lemma 3.4.61. Let ¢ € Q*! and i € N, then it holds that
1Sink (@D gy () < i
Proof. This lemma follows with (3.4.4) and Lemma [3.4.60| O

Lemma 3.4.62. Let ¢ € Q*, F = F(q), Fx, = Fi(q), p1,p2,p3 € [1,00] and p3 > 4 such that
1/p1+1/pa+1/ps = 1. If v € WIPL(Q) and w € WEP2(Q), then it holds that

an(F)(,) — an(Fe)(0,0)] < epuk®/P2 ol y1.m g el
If v € LPY(Q) and w € LP2(QY), then it holds that
IB(F) (0, w) — (F) (v, )] < ek o]l 1or ) 10l oy -
Proof. This lemma follows with Theorem and Lemma [3.4.57 O
Lemma 3.4.63. Let ¢ € Q*, F = F(q), Fi, = Fi(q) and i € N. Let
i € (span {S;(a)}_; Uspan {Sjn(0)}i, )

then it holds that

Proof. The proof to this lemma is similar to the proof of Lemma(3.4.39and follows with Lemma|3.4.57
and Lemma B.4.46] 0

Lemma 3.4.64. Let ¢ € Q*! and i € N, then it holds that

Aink(@) < (14 k™) Ain(a).

121



3. Optimization of eigenvalues

Proof. Let F = F(q), F, = Fi(q), and let Ej, = span {Sjﬁ(q)};:l be the space spanned by the first
i discrete eigenspaces with respect to ap(F)(-,-). With (3.73)) it holds that

Aink(q) < ur}fleagh W

R < h(F) (un; un) an(Fr) (un, un) b(F)(Uh,Uh)>
un€Bn \ O(F)(up,un) an(F)(un, up) b(F)(un, up)
(

F)(un, up)
1 ngl £)(1 ; ah(—’
(I ik )+ k) max 2o o)

IN

< (14 cick' ™) Ain(a),
where we used and Lemma . O
Lemma 3.4.65. Let ¢ € Q*d and i € N, then it holds that
Ain(q) < (T4 cie(h+K79)) Xipsla)-

Proof. Let F = F(q) and Fy, = Fy(q), with (3.63)) it follows that

- a(F)(u,u)
Ailg) = Erél‘l/l(lw Wek W

< a(F)(u,u) an(F)(u,u) b(Fk)(u U)

= min max
Ecv(i) uekE

< (14 eh) (1 + ik =) (1 + ik 7( o
< (L ah)(L 4 ek )1+ ak) min mae o

F;
< (14 cih)(1+ cick'=5)(1 4 cik) min  max M
EpeV) un€Ey b(Fy)(up, up)

= (14 cih)(1 4 i k') (1 + cik)Nink(9)
< (T4 cie(h+ k7)) Ain(a),

and the result follows with Lemma, and Lemma [3.4.63 O
Corollary 3.4.66. Let ¢ € Q* and i € N, then it holds that

Nin(@) = A (@)] < cie (R +KTF).
Proof. This corollary is a direct consequence of Lemma and Lemma [3.4.65 0
Lemma 3.4.67. Let ¢ € Q*! and i € N, then it holds that

155,n(q) = Sin (@)l 120y < ci kM2 E

Proof. The following proof is based on the same ideas as the proof of Lemma3.4.44] Let F' = F(q),
Fk = Fk(q) and

Sini(@) = b(F)(Sin(0), Sink(a)) Sini(a)- (3.145)
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3.4. A-priori error estimates

Using Definition we get

: _g. < |lg. _g. G. _gq. )
156(@) = S (@)l 2 oy < || Sin(@) = Sl . | Sini(a) = Sini(a) oy (L)
We start with the first term on the right hand side within (3.146)), we have
Sin(@) = Sinn(@) = <(Si,h(Q)a Sinik(@)rz (@) Sj,h,k(Q)) :
JEN\{i}
and
- 2
|Sin(@) = Sinr@| . = D (Sin(@) Sina@)z o (3.147)
pe(@) ) bk
’ JeN\{d}
For the summands within (3.147) one can show that
Ain (g
) (S0 (0): $3000(0)) = +— D () (S, ), S0 (0)) = D) (S Sk @)
Ak (@) = Aip(q)
1
T @) =@ (an(Fr)(Sin(9); Sini(a)) — an(F)(Sin(q), Sjnr(a))) -
Now let 1 € L*(Q) and @2 € H} () be the unique solutions to
b(Fy) (1, v1) = b(F)(Sin(q), v1) = b(Fi)(Sin(q), v1) Vo € L*(9),
an(Fr)(p2,v2) = an(Fi)(Sin(q), v2) — an(F)(Sin(q), va) Vup € Hy(Q).
It holds that
le1llL2q) < 156n(0) (vr = 7B )l 12y < ik,
H‘P2HH§(Q) < ”(AF - AFk) : VSLh(Q)H[ﬁ(Q) < Ci,skl/Q_Ea
and
ED (S 0): S30)) = 5D () . 53400)
’ w Ajne(@) = Ain(q) o
1
+ ap(F , S ,
N kla) — Aol U 2 S ()
hence
. 2
. _ Q. < 2 2
[Siata) = Sinsta)], o < e (lorliam + leelige) -
< Ci,skl_a-
In order to estimate the second term within (3.146) we will show that
S, _ s, < I3, _ 5 14
[Sinnt@) = Siast@)] ) < [Sianta) = Sunt@ - (3.149)
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3. Optimization of eigenvalues

for (3.149) and (3.148)) would finish this proof. We have

Sine(@) = Sin(@) = (1= b(F) (Sin(@)s Sinre(a))) Sink(a),

and
. _ s _q. < || S,
I8: @Iz, 0 = |50 = Sinst@], < [Sinsta]
< IS, . _q.
< I8 @Iz, 0 + [ i0@) = Siant@], oo
ie.
_ s, _gq. < . . < . _q.
L= [[Sin(@) = Sinat@)] ;) < PEDSA@: Sins@)] £ 1+ [Siae) = Sinnl@] -
which reads as
(ER)(Sin(a), Sinr(@)] =11 < |[Sin(@) = Sinn(@)| , -
L . ()
With (3.74) it follows that
D) (S:(0): Sina(@)] = B(FW)(Sin(0), Si (@),
which finishes the proof. O

The following five lemmata can be proven in an analog way to Lemma|3.4.67|and the corresponding
lemmata in Subsubsection [3.4.1.2

Lemma 3.4.68. Let ¢ € Q*! and i € N, then it holds that
15:.1(9) = Sin k(D g3 () < Cie (h + kl/z_e) :
Lemma 3.4.69. Let ¢ € Q*d, §¢ € Q and i € N. Then it holds that
[N (@)(00) = X (@) (60)| < e (B + KY275) 00l g2
Lemma 3.4.70. Let ¢ € Q*!, §¢ € Q and i € N. Then it holds that
1/2—¢

[15:4(0)(30) = 511000 3 gy < cie (h+ K27 18l o)
Lemma 3.4.71. Let g € Q*!, §¢ € Q and i € N. Then it holds that

(N1 (9) (04, 0q) — X j, 1 (0) (94, 0q)| < i (h + kl/H) 15q]1 2y -
Lemma 3.4.72. Let ¢ € Q*! and 6q € Q. Then it holds that

|71(0)(89) — jn k() (8q)| < e (h + kl/“) 160l 721y -

[71(a)(0,60) — 37 1(a)(0g,60)| < ez (h+ kY27 ) 16l )
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3.4. A-priori error estimates

In order to prove Theorem we also need a stability estimate for the derivative of the fully
discretized cost functional. The following lemmata are needed to prove Lemma [3.4.78

Lemma 3.4.73. Let ¢,p € Q*! and i € N. Then it holds that
[Xin k(@) = Xk (P < €illg = pllgzry -
Proof. This lemma can be proven in the same way as Lemma |3.4.13 0

Lemma 3.4.74. Let ¢,p € Q* and i € N. For |q _p”HZ(I)z h and k sufficiently small it holds
that

155,n,6(@) = Sin k(P L2y < [19i08(a) + Sin e (P) L2 () -
Proof. Using the triangle inequality and Lemma [3.4.19| we get

15i(a) + Si(P)l 20y = 2 19:(D)l L2 @) — I19i(a) = Si(P) || 120
> 2 cillg—pllueqy (3.150)
> 1,

for |lg = pllg2(ny < c¢;'. Using (3.150), Lemma [3.4.44] and Lemma [3.4.67| we get

190(@) + Sink D)3y > 15:() + S0y — 15:0) — Soi@)l 1200y — 15:8) — Sinik (P20
Z 1— ¢ (h1/2 + kl/4>
>1/2,

for h, k sufficiently small. It also holds that

15i,,6(@) = Sin k(D) L2y < 196(a) = Si(P) L2 () + [15i(@) = Sisn (Dl 20y + [19:(0) = Sink(P)l 20
< ¢ <||q =l + h'/? + k1/4> ;

which can be made arbitrarily small for [l¢ — p||g2(;), h and k sufficiently small, and the result
follows. O

Lemma 3.4.75. Let ¢,p € Q* and i € N. For |q —pHHz(I), h and k sufficiently small it holds
that

1551,k (@) = Sin kPl 20y < €illg =Pl -

Proof. Although the sign of S; 1 is defined via (3.74) and cannot be chosen arbitrarily, it follows
with Lemma B.4.74] that

15:.04(9) = Sin (Pl L2y = min { 155,,6(@) = Sisn k()| 220y » 15,0, (@) + Si,h,k(P)|!L§(Q)} 7
and this lemma can be proven in the same way as Lemma [3.4.19] O

Lemma 3.4.76. Let ¢,p € Q* and i € N. For |q = Pllpzy, b and k sufficiently small it holds
that

||Si,h,k(Q) - S’L,h,k(p)HHl(Q) <cillq —pHH2(1) .
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3. Optimization of eigenvalues

Proof. Using Lemma [3.4.75] this lemma can be proven analogously to Lemma [3.4.20) 0

Lemma 3.4.77. Let ¢,p € Q*! with |q — pHHz(I), h and k sufficiently small, let 6q € Q and i € N,
then it holds that

X n e (@)(89) = Nk (0)(89)| < cillg = pll gz ry 10| g2 -

Proof. Using Lemma [3.4.73] Lemma [3.4.75] Lemma [3.4.76] and Lemma [3.4.57], this lemma can be

proven in the same way as Lemma [3.4.22] O

Lemma 3.4.78. Let q,p € Q4 with ||q — p||H2(I), h and k sufficiently small and let 5q € Q. Then
it holds that

17h.1(0)(60) = Jh k(D) (0)| < cllg = pllg2r) 100l 2y -

Proof. This lemma is a direct consequence of Lemma [3.4.77 0

3.4.2. A-priori error estimates for the optimal control

Within this subsection we are going to estimate the error between the optimal solution and its fully
discretized counterpart. We start be recalling some regularity results for the optimal solution.

Lemma 3.4.79. Let q € Q4 be an optimal control to (3.21)) with corresponding transformation

F = F(q) and eigenfunctions (U; = ui(q));cy- Then it holds that g € H*(I), F|, € W»>(;) for
J

7 €10,1} and wlg, € W2>(Q;) for i € N and j € {0,1}.

Proof. This lemma is a direct consequence of Lemma [3.1.40] Lemma [3.1.34]and Lemma [3.1.38) O

Throughout this subsection let g be a fixed optimal control, and let F' = F(g) and Fj, = F(q)
be the (discrete) optimal transformation.

In order to prove higher order of convergence with respect to the discretization of the state
we will use a duality argument and thus need piecewise HZ2-regularity of general solutions of the
transmission problem with right hand side in L?(Q).

Definition 3.4.80. Let

H2,(Q) = {u € HY(Q)| ulg, € H*() for j € {0, 1}} :
be the space of H&—functions which are H?-regular on each subdomain, equipped with the norm

||U||§{gw(9) = llullZ @) + lulirzg) + lullfz) -

Lemma 3.4.81. Let v € HSW(Q) and let ip,: C(Q) — Vj, be the nodal interpolation. Then it holds
that

v — invll ooy + A1V (0 = in0)ll 2y < €M hlY2 B2 o] 3 (o) -

Proof. This lemma can be found in [32], Lemma 2.1. O
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3.4. A-priori error estimates

Theorem 3.4.82. Let Q' C R? be an open, bounded, conves and polygonal domain and let Qfy C €
be open with C? boundary Ty C €, and let Q) = Q\Q. Let ap, a1 > 0 and let f € L*(V). Then
there exists a unique p € H}(Y) as the solution to

(Ve a0V)g + (Vp, a1 Vo)gy = (f, )y Vo € H(Q),

and it holds the additional reqularity ¢ € HgW(Q’). Furthermore, there exists ¢ > 0, independent of
f and @, such that

H‘P”ng(ﬂf) <c HfHLQ(Q’) :

Proof. This theorem can be found in [32], Theorem 2.1. Some more general results can also be
found in [62], [70] and [23]. O

Lemma 3.4.83. Let f € L?(Q) and let p € H}(Q) be the unigque solution to
a(F)(p,v) = (f,v77) Vv € Hy(Q).
Then it holds that ¢ € HSW(Q) and there exists ¢ > 0, independent of f and p, such that
1ellmz, @) < cllfllzz@) -
Proof. This lemma follows with Theorem and a transformation argument. O

The following estimates will be needed in order to prove higher order of convergence with respect
to the discretization of the transformation.

Lemma 3.4.84. Let ¢ € Q N W?2P(I) for some p € [2,4], let F = F(q) and F}, = Fy(q). Then it
holds that

IF = Full oy < o k2 1 gl

Proof. As in the proof of Lemma [3.4.57, let F € W24(Q) be a W2%-stable extension of Fl|g, onto
Q. With Lemma and Theorem we get

|7 -7 < oIk 2K lalwesy  and I = Filliay,) < ook lalhyan

LP(Q4,1)

and it remains to estimate HF — F’ . Let € Q9\Qo be arbitrary, and let £ € I'g such

LP(Q0\Q0,x)
that the line from z to Z is orthogonal to I'g ;. Then it holds that d(z, &) < ck? and

(F—F) (z) = (F_F) (:z)+/01 (F_F)'(x+t(gz—m))(gz—m)dt.

Now we use the fact that (F — F)

= 0, hence (F — F) () =0, and get

To

8 ) s
‘(F a F> (x)‘ < ck (HFHWLOO(QO) + HFHWI«OC(QD)> '
Using Lemma and the continuous embedding W?24(Qq) < W1°°(Qg) we end up with

~ 2 2
HF B FHLOO(QO\QO,k) < kgl g2y < ok lallwanry - -
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3. Optimization of eigenvalues

Lemma 3.4.85. Let ¢ € W*P(I) with p € (1,00), F = F(q) and F}, = Fi(q). Then it holds that

1E = Frll ey o) < ok lallwenry »
IF = Fill ooy < ok llallwzary »
IE = Filioqry ) < e (07 +K2) lalhwzrir

Proof. This lemma can be proven similar to Lemma [2.3.43] Lemma [2.3.44] and Lemma [2.3.45] Note
that the estimate ||F'— F||y1.00(q) < ¢ due to Lemma |3.4.57)is sufficient in order to prove these
estimates. O

Lemma 3.4.86. Let v € H'(Q), then it holds that
(v =7, )| < € (0202 k2 62 ol gy

Proof. This lemma can be proven similar to Lemma [2.3.46 the terms corresponding to ({2.84)),

(2.85) and (2.86]) can be estimated using Lemma [3.4.84and Lemma [3.4.85] The term corresponding
to (2.87) can be estimated using Lemma [3.4.57 and Lemma [A.1.15] including the usual choice of

p=|Ink|. O
Lemma 3.4.87. Let v € H'(Q), 6q € Q, 6F = F'(q)(8q) and 6F, = F(q)(0q). Then it holds that
’(U,V’F’M — y’ﬂvm)) <ec (\111 BV 2 4 (I k[2 k2> 16al 2721y ol 271 -

Proof. Let F = (fl,Fg)T, and analogously for F, 0F and 6F,. On each subdomain 1; for
j €{0,1} it holds that

7%,5F - 7/Fk,aFk
=0, (5F1 - 6Fk71) + 8 (5FQ —0F;, 2)

+ 0, F10y (0F> — 6Fk ) + 0y (F1 — Fi1) 0y (6Fy2 — 6Fy) + 0y (F1 — Fr1) 0,6F,
+ 0yF2 0y (6Fy — 6Fk 1) + 0y (Fg — Fkg) Oy (0F, 1 — 6F1) + 0, (FQ — Fkyg) 0,0 F1
— 03 F20y (0F) — 0Fy1) — 0y (F2 — Fra) 0y (6Fk1 — 6F1) — 0y (F2 — Fi2) 0,0 F
— Oy F a (6Fy — 8Fy2) — Oy (F1 — Fi1) Op (0Fk2 — 0F2) — 0y (F1 — Fy1) 0,0F,
and this lemma can be proven similar to Lemma [3.4.86 ]

Lemma 3.4.88. Let u,v € H2 (Q), then it holds that
|(Vu. (wAg = in Az, ) - V)| < e (AR + Mk K2) ul g, o ol
Proof. It holds that

’ (Vu, (MAF - MhAfk) - w)( < )(vu, u (Af _ AE) : w) ‘ (3.151)
+ ‘(Vu, (1 — ) A, - Vv) ‘ . (3.152)
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For the first part, (3.151), we get

(veon (4 - 47,) - v0) | < a|(Vu. (47 - 47,) - 50) (3.153)
+d ‘ (Vu, (47 - 47,) - Vv) o (3.154)
+ ‘ (Vu, (47— 47,) w)ﬂl (3.155)
For (3.153) we use Lemma and get
] (Ve (47 = 45,) - 90) o < Tl s [ 47 = 47 . ) 100000,

< eph® P |lull gz () 0] 12, ()

< c|Inh|h? HUHH}%W(Q) HUHHSW(Q) )
where we choose p = |Inh|. As (3.154) as well as (3.155|) can be estimated in the same way, we will

focus on the first one. Similar to Lemma [2.3.47|we set 0F = (Fk — F) and use Taylor’s theorem to
get

(vu, (AF _ AE) : w) o, = (Vu, (A’fﬁ + Ry(F, W)) . Vv) o,

With Lemma we get

[(Vu, Bo(F,5F) - Vo) g | < Nl 10lwss ) [ R P8 porooa oy (3.156)
— — 2 :

<cp HUHHQ(QOJL) ||UHH2(QO,h) HF B Fk“LQp/@—?)(QO,h) :
Setting p = |ln k| and using Lemma [3.4.57 yields

|(Vu, Ba(F,5F) - Vo) | < ekl K ull ooy ol

The estimation of the term

(Vu,AL— . Vv) can be done as in the proof of Lemma [2.3.47
FOF Qo

where we also have to use Lemma [3.4.85| and Lemma [A.1.15, In order to estimate (3.152) we use
Lemma [3.4.37] as well as Lemma and get

| (Vo = gm) A, - V0) | < elullragy e = il 2 o Iollwrocey
< cph®™H/P [l a2, ) 0l 22, 0 »
and setting p = |In h| finishes the proof. O

Lemma 3.4.89. Let u,v € H2 (Q), 0q € Q, 6F = F'(q)(6q) and 6F}, = F(q)(0q). Then it holds
that

|(Vus (A% 5 — 0 A, s, ) - F0) | < € (AR + Ik K2) 3, o 100, o 10l
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3. Optimization of eigenvalues

Proof. This lemma can be proven similarly to Lemma [3.4.88] 0
Lemma 3.4.90. Fori € N and U, U € span {Sj(q)}é‘:l it holds that

|a(F) (w1, ) — an(F) (u, )| < ¢;h?,
|an (F) (@1, 02) — an(Fi) (U1, U2)| < ¢ (|Inh|h* + |Ink|k?).

Proof. The first estimate is a direct consequence of Lemma [3.4.79 and Corollary [3.4.38] the second
estimate follows with the first one and Lemma [3.2.88] O

Lemma 3.4.91. Let ¢ € N and Uy, Uz € span {Sj(q)};zl. Then it holds that
[b(F) (11, 735) = b(Fy) (11, 02)]| < e (Im A" B2 + [l k[ 1)

Proof. This lemma follows with Lemma [3.4.86] O

Next we will prove two approximation results including the two operators II? and IIj from Def-
inition [3.3.3] and Definition A statement similar to the following lemma can also be found
in [32], Theorem 2.2.

Lemma 3.4.92. Let v € HgW(Q) and let TIY, be as in Definition|3.3.9, For s € [0,1] it holds that
2-s g
[v =10l o () < c[lh[ "2 A2 [0l g2, (0 -
Proof. Using Céa’s lemma and Lemma we get
o = 0]l oy < A2 R ol ) -

Now let z € H}(Q2) be the weak solution to

a(F)(v,2) = (v —T%v, w) Yw € HY ().
We get
o = 0220 = a(F)(w - o, 2)
=a(F)(v—1Yv, 2z — ipz)
<cllv- HZ”HH&(Q) Iz — ihz“H&(Q)
< AV kvl g ) Ikl Bzl s, (o)
< clmh|h? |lv = TI0] 12 () 10l gz, (0 »
where we used Lemma [3.4.83| and Lemma [3.4.81] What is left follows with interpolation. 0

Lemma 3.4.93. Let i € N and s € [0, 1], then it holds that

— — 228 0 g 2os 9
15:@) = T Si(@ ey < i (JInhIZ" W27 + [k 2" k2.
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3.4. A-priori error estimates
Proof. Using the coercivity of ap(F)(-, ") we get

cl1i(@) = TeSi@ 773 0y < an(Fi)(Si(@) — MeSi(a), Si(q) — 1xSi(2))
)

= an(Fr)(S:(2), 8i(@)) + an(Fr) (xSi(q), 111.5i(q)) — 2an(Fx)(Si(7), 11x.Si(q))

= a(F)(Si(q), Si(q) — Si(@)) — an(Fx)(Si(@), M Si(q) — Si(q)) (3.157)
+ a(F)(Si(q) — 107,5:(q), Si(q) — xSi(q)) (3.158)
+a(F)(Si(q) — 11},5:(9), 1 Si(q) — Si(@)) — an(Fx)(Si(@) — 11;8:(7), 1xSi(@) — Si(@))  (3.159)
+ a(F)(Si(q) — 113,5i(9), Si(7)) — an(F1)(Si(q) — 113,5i(q), Si(q)), (3.160)

and it remains to estimate each of these four terms. For (3.157) we get

|(V8:@). (1d — Az, ) - ¥ (i) — 5:@))))|

< i@l (A4 = 45 g = 1= il ) M) = 5@l
< ¢i (h+ k) M Si(@) = Si(@)| ) -

where we used Lemma [3.4.37| and Lemma [3.4.57, For (3.158]) we use Lemma |3.4.92| and obtain

|a(F)(Si(@) - T17,5:(3), Si(@) — TSi(@))| < ¢llSi(@) — 117,.5:@) | 13 0y 15:(@) — T Si (@) g )
< ¢ [ hY? h)|Si(@) — TeSi (@) |y o

For (3.159)) we get
(V(Si@ - 158:@) « Az — 1Az, ) - 9 (S:(@) — Si(@) )|

<cllSi(@) = IRSi@) uy@) | ||AF — A7, + i = snll poo oy | 115:(@) = TeSi(@)| 2 (2
0

< ¢ |Inh|Y? 1 ||Si(q) — 105D g2 o) -

Lo (9)

At last we estimate via
(V5@ ~ 1135@) . (nAr — 1n g, ) - V@) |

< cl5:@) - W@y [ 47 - 47,

< ¢ |mhY?h(h+k),

o = il ) 1S @l

and the case s = 1 follows with Young’s inequality.
Now let z € H}(2) be the solution to

a(F)(v, 2) = b(F)(Si(q) — MSi(q), v) Vv € Hy(Q).
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3. Optimization of eigenvalues

Due to Lemma [3.4.83|it holds that z € HZ_(Q) and ||z]| ;2 <c||S;(q
pw HZ.,(Q)

— 11:Si(@) || L2(2)- We get

c||Si(@) — Mk Si(@)[I72() < al(F)(Si(q) — 11xSi(q), 2)

= a(F)(Si(a), ) a(F)(11.8:(q), 2)

= a(F)(Si(q), 117, 2) — a(F)(xSi(q), 2) + a(F)(Si(q), z — 115 2)

= apn(Fx )(Hk;S() Si(@), Iz — 2) — a(F)(11.8;(q) — Si(q), 1T}z — 2) (3.161)
+ an(Fr)(11:8i(@) — Si(7), 2) — a(F)(1xSi(q) — Si(q), 2) (3.162)
+ a(F)(Si(q) — 11.5;:(q), 2 — 119 2) (3.163)
+ap(Fr)(S:(@), M2 — 2) — a(F)(Si(q), [Tz — ) (3.164)
+ a(F1)(Si(q), 2) — a(F)(Si(q), 2)- (3.165)

Again we have to estimate each of these five terms separately. For (3.161]) we use the first part of

this lemma and Lemma and get
(V(Si@ - S @), 1Az — Az, ) -V (2 = T52))|
< cl18(0) ~ TS e [ 47 -

< cifm b2 h (I h bt kY k) 2] 3, )
< ci (| h* + k| 52) [1S:(@) — T0xSi (@) 120

A=
Fy, oo (Q)

1= il ) I = Tl

In order to estimate (3.162)), let po = |Ink|, p1 = [In | and choose g; such that pj_1 + qj_1 =1/2 for

j €40,1}. We obtain
’ (V (Si(7) — 5i(q)) , (MAF - MhAFk) : VZ) ‘
< c|[Si(q) = WiSi(@) | o) HAF_ Ty

— eSi(@) gy

N L Trawes

+c|15:(a) ) I = il Lo @) 2o o

< e (b2t k2 ) (A2 BT 4 k| K00 |2l o

< ¢ (nh|h? + [Ink| &%) ||S;i(q)
Expression (3.163) can be estimated via

— e Si (@)l 120

|(V (Si(@) —MSi(q)) , nAp - V (2 = 1I72)) | < ¢||Si(q) — W Si(@)| ga o 12 = T2l 2 o)
< ci (A2 b+ k]2 k) InlY2 b2l s,
pw
< ¢i (|mh| h* + k[ k?) [|Si(@) — TkSi(@) || 12 (o -
For (3.164) we get

(V5i@), (naz — mnag, ) - ¥ (=~ 1152) )|

< cIS@lhyi~e (47~ 4

Fk LQ(Q)
1/2
<c¢i(h+k)[nh| hHZHHgW(Q)

< ¢i (|nh| p? + Ink| £?) [|Si(q) — MrSi(@)] 120
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3.4. A-priori error estimates

Finally, for we use Lemma and get
‘ (VSi@), (nAp— Az, ) - v2) ] < ¢ (mh| B + Mk k%) 2] 20
< ¢ ([Inh|h? + [In k| £2) [|S:(7) — MSi(@) [ 120
Collecting these five estimates finishes the case s = 0, and what is left follows with interpolation. O
Lemma 3.4.94. Fori € N it holds that
Xi(@) < (1+ ¢ (Inh| B + Ink| k%)) A pk (@)

Proof. This lemma can be proven similar to Lemma [3.4.65] the higher rate of convergence follows
with Lemma B.4.90] and Lemma [3.4.91] O

Lemma 3.4.95. For 1 € N it holds that
Nink(@ < (L4 ¢ (Inh|h® + [Ink| &) Xi(q).

Proof. This proof is based on the same idea as the proof of Lemma (3. 4 41| Let again V() EB] 1 N;

be the space spanned by the first i eigenfunctions and let Ny, = IT;V*) with IIj, as in Definition m
For h and k sufficiently small it follows that dim (Ny) = i, and (3.73) yields

7 ah(Fk)(uh,uh) . (Fk)(l_[ku, Hku)
/\i,h,k(Q) = Ur}?ea]if(k b Fk (uh,uh) B urél\%f() b(? )(Hku,Hku)
~ e a(F)(u, Iu)
ueV @ b(Fk)(Hku,Hku)
= e ((ODww)  b(F) () a(F)(u, i)
 uev® (b(F)(u,u) b(Fr)(Mgu, u)  a(F)(u,u) ) ’ (3.166)

where in the second line we used the definition of II;. With Lemma, [3.4.93|it follows that

b(F) (u, u)

_ <1+ (Inh|h? +|Ink|k?). (3.167)
b(Fi) (g, i) ( )

Partial integration yields

a(F)(u,u — M) = —d (div(Az - Vu) ,u — Izu) Q0 (div(Az - Vu) ,u — HkU)QI ,

where the boundary terms vanish due to the transformed version of (3.2). With Lemma [3.4.93| we
get

|a(F)(u,u — yw)| < ¢ lu—Tgul| 2q)
< ¢ (|lnh|h* + Ink| k%),

and hence

“Elu):()()) <1+ i (Al B + k| K?). (3.168)
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3. Optimization of eigenvalues

Inserting (3.167) and (3.168)) into (3.166) finally yields

Aink(@) < (14 ¢ (Jnh| B2 + [In k| k?))° max m
< (1+¢ (|Inh|h* + |Ink| k%)) Xi(@). O
Corollary 3.4.96. For ¢ € N it holds that
IAi(@) — Ak (@)] < ¢ ([Inh|h? + [Ink| £?) .
Proof. This corollary is a direct consequence of Lemma and Lemma [3.4.95 0

Lemma 3.4.97. For i € N it holds that
IAi(@) — Aip(@)] < ci [Inh| b,

Proof. This lemma can be proven using the same ideas and methods as presented in the proofs of

Lemma [3.4.94] Lemma and Corollary O

Our next goal is to estimate the error [[S;(q) — Si (@)l 2. The proof for this estimation is
similar to the proof for the non-optimal case within Lemma [3.4.44] The following two lemmata are
needed in order to show higher order of convergence in this optimal case.

Lemma 3.4.98. Let II;, be defined as in Definition let i € N and s € [0,1]. Then it holds
that

2=s 5
15:@) — TSi@) 7o < A= B2,

Proof. The case s = 11is due to Céa’s lemma, let ij,: C(Q) — V}, be the nodal interpolation operator,
then it holds that

c|[Si(g) — HpSi(q )||H1 < &h( )(8i(@) — 11S:(q), Si(q) — 11nS:(q))
F)(Si(@) — 15i(q), Si(q) — inSi(q))
<c ||Si@ —0nSi@) g3 o 15:(@) — inSi(@l g2 @) »

and this part follows with Lemma [3.4.81] The case s = 0 uses a duality argument but needs some
additional care due to the definition of IIj,. Let 2 € H}(2) be the solution to

a(F)(v, 2) = (8i(q) — nS(),v) Vo € Hy(Q).

With Lemma |3.4.83| it follows that z € ng(Q) and |[z[| g2y < ¢[[9i(@) — HaSi(@) | 12(q)- We get
pw

15:(@) — MhSi(@) 172 () = a(F)(Si(@) — MrSi(7), 2)

= an(F)(Si(q) — MxSi(), )

+ (V(Si@) — InSi@) . (1 — 1n) Ap - V=)

= an(F)(Si(q) — M4Si(q), z — inz) (3.169)
+(V(Si(@) — WSi(@)), (1 — pn) Az - Vz). (3.170)
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3.4. A-priori error estimates

We use Lemma |3.4.81| and the first part of this lemma to estimate (3.169]),

an(F)(Si(@) — MaSi(a), 2 — in2) < c]|Si(@) — WnSi (@)l g () 12 — in2ll o)
< ci [ R b2 2l gy (o)
< ¢; [ h| h?[|S;(q) — TnSi()| z2(q -
In order to estimate (3.170) we use Lemma [3.4.37] and Lemma [A.1.15

(V(Si(@) —111Si(@)) » (1 — pn) Af - V2)
< el1Si(@) —WSi@ iy i = pnll, 2, A7 e 12100

< i [Inh|'/? hh!=2/Ppl/2 121l 52 (20 »
and by setting p = |In h| we arrive at

(V (Si(@) = TnSi@)) (1 — ) Ag - Vz) < ¢ b B [|2] 2 (0
< ¢ [nh| h*(|Si(@) — nSi (@)l z2(q »

which finishes the case s = 0, and what is left follows with interpolation. O
Lemma 3.4.99. Let 1 € N and let v, € Vi, 0 be the solution to

(Von, un Az - Veor) = (VSi(q), (un — 1) A - Vion) Von € Vio- (3.171)
Then 4t holds that

lonll 2y + A2 Bllonll s o) < e I h| Y2 B2,

Proof. Using (3.171]) and Lemma |3.4.37|it follows that

lvnl 7 ) < ¢(VSi@), (un — 1) Az - Vup)
ol
< e[S (@ lwree ) 1t = pnllp2(q) HAFHLOO(QO) ||UhHH5(Q)

< cih thHHol(Q)a
hence
lonll g o) < cih (3.172)

Now let z € H}(Q2) be the solution to

a(F) (e, z) = (vn, ) Vo € HYQ).

With Lemma [3.4.83[it follows that z € H2_ () and ||z| ;- < c||Vnl| 2/, We get
pw H3, () L2(Q)

lonlZ2(q) = a(F)(vn, 2)
(

’ (3.173)
= ap(F)(vp, 2) + (Von, (0 — pp) Az - Vz) .
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3. Optimization of eigenvalues

For the first term on the right hand side of (3.173) we get
an(F)(vn, 2) = an(F)(vp, 2 — inz) + an(F)(vp, in2). (3.174)

We use (3.172)) and Lemma [3.4.81| and get

an(F)(vn, 2 = inz) < ol gao) 12 = inzll g o)
< ¢ [Inh['/? p? 121l 22, (52)
< ci [ A2 12 | 2
For the remaining term within we get
an(F)(vn, in2) = (VSi(@), (i — 1) Ag - Vinz)
= (VSi(@), (n— 1) Ap - V (2 —in2)) + (VSi(@), (1 — 1) Ag - V2)

< 11Si @l (0 147 o () (HM = tnllp2o) 12 = inzll gy + = mnll e o) ||z||w1,p(90)>
<e (\lnh|1/2 h2 4+ h2_2/pp1/2) ||Z||ng(§2)
< c|lnh|?R? lvnll 20

Finally, the second term on the right hand side of { can be estimated via

‘(Vvh,(,u /Jh)A* VZ)‘ < ||UhHH1(Q) HM Mh” HAFHLoo(Q) quwl,p(go)

2(Q)
< cllonll gy ) h' /7P 1/2 121 2
<c|mh['?h [onll 1.(q) ||Uh||L2(Q)
< el "B om0
and inserting these estimates into finishes the proof. O
Lemma 3.4.100. For i € N it holds that
15:(@) = Sip (@l 2 < e nh| A%

Proof. This lemma can be shown in the same way as Lemma [3.4.44] the higher order of convergence
follows with Lemma [3.4.98 and Lemma [3.4.99] O

Lemma 3.4.101. For i € N it holds that
15:@) = Sin@ |l 1 (g < cilnh|/? b,

Proof. It holds that

cllSi(@) — Si h(7)||?{1 @) = ah(F)(Si@) = Sin(q), 5i(@) — Sin(q))

= ap(F)(S ( ) ( )) - (7)( 1(@), Sin(@) + an(F)(Sin(@), Sin(@))

= a(F)(S; ( ), (= 1) Az - VSi(q)) — 25 (F)(.S:(q), Sin(q))

+ah(F)( ( ) ( )
< A )+ il —2Azh( ) b(F)(TT4Si(q), Sin (@) + Xin (@)
= Xi(@) = Nin(@) = 2200(@) b(F) (4Si(q) — Sin (@), Sin(@)) + cih?

< Xi(@) — (@) + 2¢; (I0Si(@) = Si(@)l 20 + 15:@) = S @l 2y ) + it

q
q
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3.4. A-priori error estimates

and we finish the proof using Lemma [3.4.97] Lemma [3.4.98 and Lemma [3.4.100 U
Lemma 3.4.102. For i € N it holds that
HSAQ) — Si’h,k(q>HL2(Q) <c¢ (|ln h‘ h2 + Hn k‘ k2) .

Proof. This proof is similar to the proof of Lemma [3.4.44] Let II;, be defined as in Definition [3.3.6]
and let

Sink(@) = b(Fr)(xSi(q), Sink(@)) Sipk(@),

we have

15:(@) = ik @ 1z, o) < 15:@) ~ TeSi@lzz, ) + || 65:@) ~ Sis @],
’ ’ b,k

_ (3.175)
+ ‘ S; q)—S; q ’ .
k(D) = Sih ik (7) 2,
For the first term on the right hand side of (3.175)) we use Lemma [3.4.93| and get
15:(@) — TkSs(@l 2 (o) < @i (Inh|h* + [Ink| k?) . (3.176)
We now concentrate on the second term on the right hand side of (3.175]). It holds that
11,55(q) — Sinj (@) = Z (0(Fr)(MSi(q), Sj,nk (@) Sin k(@) »
JeN\{i}
hence
_ 2 = _ (2
[ms:@ ~ Sis @[, o = X PEDIS@, Siu@)] (3.177)
AR ETNG!
For the summands within (3.177) it holds that
_ 1 — 1 — _
b(F') (e Si(q), Sjn k(D) = 7= an(Fr) M5i(q), Sjn(@) = —a(F)(Si(@); Sj.nk(7)
Ajnke(@) Ajnke (@)
Ai(@) o _
= b(F')(Si(q),S; ,
Nk @ (£)(Si(@), Sj.nk(@))

hence
Ak (@) b(Fr) (T1Si(), Sjn k(@) = Xi(@) b(F)(Si(@), Sjnk (@),
which yields

Ai(q) (
ik (@) — Ai(@)

Using Lemma [3.4.86] and Lemma [3.4.93| one can show that

b(Fi) (T Si(3), Sjnk(q) = b(F)(Si(q), Sjnk(@) — 0(F1) (M Si(q), Sjnk(7))) -

< ¢ (nh|h* + [Ink| k), (3.178)

HHkSi(ﬁ) = Sing @‘ LZ,(Q) ~
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3. Optimization of eigenvalues

and it remains to estimate the last term on the right hand side of (3.175). In order to do so we will
show that

for (3.179)), the triangle inequality, (3.176]) and (3.178)) would prove the final claim. It holds that

Sihge(@) — Sink @) = Sinr(@ (1= b(Fr) (1S (@), Sini(@))) »

Sink(@) — Sz’,h,k(a)’ Lo

b,k(

<

$i(@) ~ (@)

@ T (Inh|h* + [Ink| k?), (3.179)

Q) b,k

and
19: @l zz () — ’ Si(q) - Si,h,k(fi)‘ o S ‘ Si,h,k(fi)’ 2@
< 1@z, o0 + 5@ — Sint@] ;-
Lemma [3.4.86] and (3.64) prove that
1@z, 0 — 1] < s (k[ K2 + k[ K2)
and using the normalizing condition for S; j, () it follows that
1—ci (IInhl A%+ Ink| &%) — ||S;(@) — Sinx(@
ci (Bl + bl ) = |[Si@) = Sins@],
< |b(Fr) (M1Si(q), Sink (@)
<1 g (B2 + [kl K2) + || Si@) = Sinnl@)||
12,(9)
hence
||6(Fr) (11Si(q), Sink(@)] — 1] — ¢ (Inh| * + [Ink| k%) < ‘ Si(q) — gz‘,h,k(?)‘ Lo
bk

It holds that
b(Fr)(IkSi(q), Sipne(@) = b(Fr)(Sin(@), Sink(@) + b(Fi)(Si(@) — Sin(q), Sink(q))

= _ _ _ (3.180)
+ 0(Fk) (I Si(q) — Si(@), Sipk(@))-
With (3.74) it follows that
b(Fr)(Sin(@): Sink(@) > 0, (3.181)
and with the help of Lemma [3.4.100] one can show that
I6(FR)(Si(@) — Sin(@), Sk (@)] < ¢ (Ih] A+ [In k| £2). (3.182)
In addition, Lemma [3.4.93| proves
0(Fr)I1S:(q) — Si(@), Sink(@)| < ci (Inh|h* + [Ink|k*) . (3.183)
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3.4. A-priori error estimates

Inserting (3.181)), (3.182) and (3.183)) into (3.180) proves
b(F3) (WeSi(a), Sino(@) > —ci (Inh| h* + [In k[ k?)

where ¢; is a positive real number. It follows that

Sink(@) — Sin k(@) . = |1 = b(Fr)(1xSi(), Sink(@)]
L )

b,k(

<

Si(q) — Si,h,k(ﬁ)‘

+¢; (Inh|h* + [Ink| k?) . O

12,()
Lemma 3.4.103. For i € N it holds that
1Sin(@) = Sin k@l 0y < e (A4 kY2 k).
Proof. We use the same ideas as presented in the proof of Lemma and get
c1Sin (@) — Sin k(*)ll?m(g) < an(Fr)(Sin(@ — Sink(@), Sin(@) — Sink(q))
= an(Fr)(Sin(@), Sin(@)) — 2an(Fr)(Sin (@) Sin k(@) + an(Fr)(Sin k(@) Sin k(@)
= an(F)(Sin(@), Sin(@) + (VSin @, (Ap, — Ap) - V5u1(0))

— 2Xink (@) B(F1) (Si,0(@)s Sink (@) + Ain ()
= Xin(@) — Xk (@) + 221,k (@) O(EF1) (Si k(@) — Sin (@), Sink (@)

+ (VSin(@). i (47, = AF) - VS (@)
< An (@) = Xip k(@) + e (||5i(§) = Sin k@l 20y + 15:(a) — Si,h,k(?)HLz(Q))
+ (VSin(@). i (45, — AF) - VSu(@) -

The first term on the right hand side of (3.184]) can be estimated using Lemma [3.4.97| and Corol-
lary [3.4.96] The second part can be estimated using Lemma [3.4.100| and Lemma [3.4.102] we get

19:0@) = S @ 3y < € (Ih| B + Ik k2) + ¢ (VSin(@, mn (Ap, — Ax) - VSin(@))

The remaining term on the right hand side of ({ can be estimated via

(3.184)

(VS@;L( )s bh (A Af) 'Vsi,h(ﬁ))

= (V(Sin(@ — $:@) . 1n (A, = Ap) - V (Sia(@) - 5i(@))) (3.185)
2(VSi(@), (47, - AF) - V (Sin(@) - Si(@)) (3.186)

+ (VSi@, (mnag, - nAz) - VSi@) (3.187)

+ (VSi(@), (1 — 1) Ay - VSi(q)) - (3.188)

For (3.185)) we get

(Y (Sin(@ = 5i@) s (Ag, — AF) -V (Sinl@) — Si(@) |
< el1S0(@ = 5:@ ey | A5, — A7 0 g
< ¢ (|lnh|h* + Ink| k?).
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3. Optimization of eigenvalues

For the second part, (3.186)), we get

(Vi@ 1 (A7, — A7) - ¥ (Sin@ - S$i(@))|
< el18:@ o || 47, — A7, 0 15:@ = 5:@ 0
< ik (unh|1/2 h+ |In k|2 k)
< ¢ (Inh|h* + [Ink| k?).
The third term, , can be estimated using Lemma and the last part, , can be

estimated using Lemma d

Lemma 3.4.104. For 0q € Q and i € N it holds that
X(@(50) X @ (0] < e (B F2 4 kP K72 gl s
Proof. Let 0F = F'(q)(dq) and 6F}, = F}(q)(dq). With and it follows that
W@) (6q) — )\;hk(f)(&])‘
< ‘(VS( ). 1Al - VSi(g )) (vslhk( )oinAl s VSink(@ ))‘ (3.189)

+ i@ (Si@% 5 5) = Ak (@ (Sinn@® 7%, 5 )| (3.190)
We start with estimating and get
(VSZ( ) MAF(gF VS@( )) (Vszhk’( ) MhAF OF, vsz,h,k(q))
=2 (V(Si@) = $:0x(@)  p A 5o VSi(0)) (3.191)
+ (V (Sine(@) = Si@) s (0= 1n) (A g + A_g ) - V(D)) (3.192)
+ (V(Sins@ = Si@) s (- un) (Al pp = Al g, ) - VSi(@)) (3.193)
+(Vsi@), MA’F — Al ) VSi@) (3.194)
- (V( Sink(@) = S:(@) Al s+ V (Si(@) — Sir(@) - (3.195)
The first part, (3.191)), can be estimated in the following way.
(V(Si@ = Sunk(@) . 14y 5o - V5:@)) | < d ‘ (V(Si@ ~ Suns(@) . A VS:@)
(3.196)

+ '(V (Si(@) — Sink(@)) aA/F,JF ’ VSAG))

ol

The terms on the right hand side of (3.196)) can be estimated using partial integration, for j € {0,1}
it holds that

(750 = Sunal@) Ay VS(0)

< ’(div (A g V8@, S1(@) — Sin(@)

)

(3.197)

Q; j

+‘<Si(§)—5i,h,k(a),VSi() AL |- (3.198)
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3.4. A-priori error estimates

For (3.197)) we have

‘(dw(Aw V(@) 5i(@) ~ k@), | < i A 5 g 15:@) ~ Sins@ iz

< (b B® + In k| &) 16q]l 21y

J

whereas (3.198) can be estimated via

|(5:@ — Si(@), V@) - A g,
< 154@) = Sinrl@l 0y 16 w0 [ A
< i 18:@) = Suns @iy 1540 = Sis @130y [ 58]y

< (|1Ilh|3/4 h3/2 + |lnk|3/4 k3/2> ”5q||H2(I) ’

where we used (A.38).

The term (3.192)) may be estimated as follows.

‘ (V (Sink(@) — Si(@) , (1 — ) <AF sF T A/Fk §Fy, ) ' VSZ'@)) ‘

< [|Si(q) — Si,h,k:@)HHé(Q) |l — MhHL2(Q) < A/F,ﬁFHLoo(Q) + HA%kv‘SFk

ey 15 @l
< cih (Jm Al b+ k12 k) ol

The term can be estimated via
(Y (Sinr(@ = $:@) (1 + n) (A; s = A s ) VSi@))|
< 1@ = Sk @y ) | A 55 —
< <\1nh|1/2 h+ |ln k|2 k) K 164!l 2,y
For the fourth term we use Lemma and get
(VSi@), (1A% 3 = 1045, 55, ) - VSi@)| < i (kI B2 + [k K2) 00l 2
and for we get
(Y (Sini(@ = Si@) 1Ay, - 9 (5:(@) — Sins(@))]
< c1Si@) — Sink @y
< ¢; ([Inh| h? + |In k| k?) 104!l 21
It remains to estimate the second part within the original estimation, (3.190) . We get

Xi(Q) (Si(§)277%75F> — Aink(q) (Szhk( )2, (5Fk>

/
Fi,0F),

Lo ()

= (@) = Ak @) (S:@% 551 (3.199)
+ X,k (@) (SZ-@2 = Sin(@° 7, 6Fk> (3.200)
+ Ain k(@) (Si(a)Z, VFsF — vfk,(;Fk) : (3.201)
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3. Optimization of eigenvalues

For the first term, (3.199)), we use Corollary [3.4.96| and get
@) = N @) (@)% V) < s (AL A + [l k] K2) 189 | -

For (3.200)) we use Lemma [3.4.102| and obtain

Nink (@) (Si@Z — i,h,k(Q)Q,v’fMFk) = Nihk(Q) (Sz‘@ = Sink(@), (Si(@) + Sink(Q)) VIFk,5Fk>
< ¢; (lnh|h? + In k| k?) 16all gr21y -

and (3.201)) can be estimated using Lemma [3.4.87| O

Lemma 3.4.105. For dq € QQ and i € N it holds that

5@ 6a) ~ i@ G| < ¢ (P B2 4 kP E2) 0g] g2s)

Proof. This lemma is a direct consequence of Lemma [3.4.104] O

3.4.3. Second order optimality conditions and converging subsequences

Within this subsection we are going to state some optimality conditions of second order for both
the continuous as well as the (partially) discretized cost functional. As these results can be proven
in a similar way to the corresponding results in Section [2.3] we just present the results and will omit
the proofs.

Again we have to start with the following assumption.

Assumption 3.4.106. We assume that

3"(@)(6q,0q) >0 Vg € Q\{0}.

As in the proof of Theorem [2.3.57] within Subsection it is possible to show that As-
sumption [3.4.106 implies the strict convexity of j”(q)(-,-), and using the stability estimates for
the error between the continuous cost functional and its discretized counterparts, Lemma [3.4.32

Lemma and Lemma [3.4.72] the following theorem follows.

Theorem 3.4.107. There exist f > 0 and € > 0 such that for h, k sufficiently small and all ¢ € Q4
with ||q — qll g2y < € it holds that

7"(0)(5q,89) = B 116ql 2y Véq € Q,
(@) (a.69) > B16a 32 ¥aq € Q,
i (@) (0g,6q) > B116ql 32, ¥dq € Q.

As in Subsection one can introduce auxiliary problems like (2.128]), and using the results
obtained in Subsubsection [3.4.1.7] Subsubsection and Subsubsection the following

theorem can be proven.

Theorem 3.4.108. There exist sequences (G,),~, (qa,h)gh>0; (607h7k)0hk>0 of local optimal so-
lutions to (3.57), (3.60) and (3.62), respectively, such that

(}_il)l’%) Hq - 60'||H2(I) = o’,l/ing Hg - qa,hHHQ(]) = o‘,illi}cn—m Hq - aa,h,kHH2(1) =0.
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3.4. A-priori error estimates

We are now able to finish the proof of the main theorem of this section, Theorem what
follows is similar to the proof of Theorem [2.3.1] on page

Proof. Let ¢ be an optimal control for and let g, 5, ,, be an optimal control for for o,
h and k sufficiently small, such that Theorem holds for G, j,  and Lemma, holds for
g and G, . The existence of such a g, is guaranteed by Theorem [3.4.108] Now there exists
t € [0,1] such that with { = tq + (1 — t)q,p, it holds that

_ 2 . _ _
C Hq - qa,h,kHH2(I) < .];:,k(é.)(q ~4ohkrd QU,h,k)
= ik @@ = Tonr) = Thk@opni) (@ = Topi)
= i @@ = Gon ) = I (o) (@ = i),
where the second equality is due to the first order optimality condition in g, ; which reads as

Ink(@on)(0gs) = 0 for all 6g; € Q. Next we use the first order optimality condition in g, i.e.
3'(@)(6q) = 0 for all g € Q, and get

_ 2 g S =
cllg— qcf,h,kHHz([) < k@@ = Topp) = 5" @@ — Do)
+ 31k @@ = 109) = 1k @o 1) (@ — 007)
+5/(@(@ — i67) — h k(@ (@ — i07).
Using Lemma [3.4.78 and Lemma [3.4.105| we arrive at

7 - %,h,kHip(I) <c <Un B2 4 ok kw) l7=ons

‘HQ(I)

‘HQ(I) Hq - Z.U'q”HQ(I)

+e (]lnh|5/4 h3/2 + |lnk|3/4 k3/2> Hq i Z’O'QHHQ(I) )

+c HG ~ Qo hk

With Young’s inequality we get the existence of a ¢; > 0 such that
1= Ty < ex (182 i k2 492) = 1y )+ = T
q— 4ok H2(I) = C1 n n q—1q H2(I) 2 qd— 45 nk H2(I) "

For a,b > 0 it holds that va? + b? < a + b, and using Lemma we finally end up with

H@—%h,kau) < 6(02 i |lnh\3/4 R3/2 4 |1nk\3/4 k:3/2). O
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4. Conclusion and perspectives

In this thesis we proved a-priori error estimates for finite element discretizations of two shape opti-
mization problems with different cost functionals.

In the first part, Chapter [2| we investigated a shape optimization problem with tracking-type cost
functional. We parametrized the class of star-shaped domains using periodic H2-functions, which
enabled us to use the standard methods of control theory. We used a Tikhonov-type term for reg-
ularization instead of a bound on an appropriate norm of ¢q. Using the transformation approach
we reformulated the original problem on a reference domain, where we stated the exact regularity
assumptions needed for the transformation to exist. Using the optimality condition of first order,
we proved higher regularity of the optimal control, which in turn enabled us to compute the deriva-
tive of the reduced cost functional as a boundary integral. The obtained representation is similar
to the representations obtained by different methods like classical shape calculus or the level-set
method. In order to obtain error estimates, we proved estimates for general controls as well as for
the optimal control with higher regularity. Estimating the error with respect to the discretization
of the control ¢ and the state u can be done using standard arguments, for quadratic convergence
in the optimal case we used various regularity results and duality arguments. In order to estimate
the error with respect to the discretization of the transformation F' we used Taylor’s theorem and
a result on the error of a finite element approximation on a non-polygonal domain. The existence
of a sequence of local optimal controls to the fully discretized problem converging to the optimal
control of the continuous problem is due to the error estimates for the non-optimal case, whereas
the quadratic convergence within the final estimate is due to the error estimates for the optimal case.

The aim of the second part, Chapter [} was to maximize the distance between the first two eigen-
values of an elliptic partial differential operator corresponding to the transmission problem, with
respect to domain perturbations. Using the same methods as presented in Chapter 2] we transformed
the problem on a reference domain, proved existence and higher regularity of the optimal control
and showed how to compute the derivative of the reduced cost functional as a boundary integral.
As solutions to the transmission problem have a jump of the normal derivative in the interior of
their domain of definition, a special emphasis had to be put on regularity results for these kind
of problems. We used the closed graph theorem to prove a stability result for the derivative of
eigenfunction with respect to perturbations of the domain. Due to the special structure of eigen-
value equations, the methods usually used in finite element error estimation cannot be applied here.
Instead, one uses Parseval’s identity and the Bessel inequality to expand the error as weighted sum
of certain eigenfunctions. We extended this method to also estimate the error between derivatives
of eigenfunctions with respect to perturbations of the domain. Again having proved error estimates
for the general as well as for the optimal case, we could proceed as within Chapter [2]in proving the
existence of a converging sequence of optimal controls to the fully discretized problem and conver-
gence rates.

In the Appendix, Chapter [A] we presented some well-known functional analytic theorems and reg-
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ularity results and showed how to generalize the Bramble-Hilbert lemma and inverse estimates for
finite element ansatz functions onto fractional Sobolev spaces. In the second part of the Appendix
we generalized a result regarding the error induced by a finite element discretization of a partial
differential equation on a non-polygonal domain. For the proof we used regularity results in WP,
duality arguments and stability results for the Ritz projection on both convex and nonconvex do-
mains. We showed that for convex domains the order of convergence is the same as one would expect
on polygonal domains, whereas for nonconvex domains an additional logarithmic term enters the
estimate.

There are several possible directions for future research on these topics:

146

The main results of Chapter [2] and Chapter [3] rely on the higher regularity of the optimal
controls, which can be shown using the assumption that no control constraints are active in
the optimal control. Even in case of active control constraints one can often show higher
regularity, cf. [7I], thus it may be possible to derive error estimates of optimal order for that
case as well.

The elliptic partial differential operator within Chapter 2 may be exchanged with a parabolic
one, and the shape of the domain may be time-dependent.

It would be interesting to apply the framework for a-posteriori error estimation presented
in [I1] onto these shape optimization problems in order to get an adaptive refinement strategy
for the discretization of the control.

As has been shown within this thesis, given sufficient regularity of the control, the first deriva-
tive of the reduced cost functional may be represented as a boundary integral. Using the
algorithm presented in [L06] it should be possible to find a representation for the second
derivative of the reduced cost functional as a boundary integral as well.

Regarding eigenvalue problems, most publications deal with homogeneous Dirichlet conditions.
Thus it would be interesting to consider a partial differential operator with Neumann or Robin
boundary conditions within Chapter



A. Appendix

This chapter is a collection of results which will be needed throughout in Chapter [2] and Chapter
but are not directly related to shape optimization. It is organized as follows.

Section contains some well-known functional analytic theorems, a generalization of the
Bramble-Hilbert lemma for Sobolev spaces of fractional order, nonstandard inverse estimates for
finite element ansatz functions as well as regularity results for elliptic partial differential equations,
including the stability of the Ritz projection.

Section is devoted to a generalization of a result from [I7] concerning finite element error
estimates on non-polygonal domains to the LP /W !P-case for some p > 2.

A.1l. Some general theorems and regularity results

Theorem A.1.1 (Hahn-Banach theorem). Let X be a normed space and let Y C X be a subspace,
equipped with the norm of X.

e For each y' € Y’ there exists a ¥’ € X' such that

Y=y iny nd Il = 1/l

e For each xy € X with xo # 0 there exists x(, € X' with

H%HX' =1 and (1/'6’5”0))(',)( = [|zol|x -

Proof. These consequences of the Hahn-Banach theorem can be found in [3], Chapter 4. 0

Theorem A.1.2 (Spectral theorem). Let X be a Hilbert space over R and let L # 0 be a compact
operator over X. Then it holds that:

e For the spectrum o(L) of L it holds that o(L)\ {0} consists of countably many eigenvalues
with 0 as only possible accumulation point.

o For p € o(L)\ {0} we have
1 <n,=max{neNN((pI-L)" ") £N ((ul-L)")} < cc.
o For p € o(L)\ {0} it holds that
X =N(pI-L)")&R((pI-L)"™),

and both subspaces are closed.
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o If L is additionally self-adjoint, then there exists an orthonormal system (e;);cy and a sequence

Le; = e,
and it holds that
lim p; = 0.
i—o0
Proof. This theorem can be found in [3], Theorem 9.9, Theorem 10.12 and Remark 10.13. O

Theorem A.1.3 (Trace theorem). Let Q C R? be bounded and open with a C*' boundary T for a
keNg. Let s >0, pe (1,00) and let (s —1/p) ¢ Z, s<k+1,s—1/p=14 o with o € (0,1) and
l € Ng. Then the mapping

w4 ul Ou
T on )’

which is defined for u € C*1(Q), has a unique continuous extension as an operator from

A
o
r on

l
W*P(Q) onto H WeTi=/pp(T),
j=0

and o similar statement holds in case that T' is a curvilinear polygon of class C*'.  This trace
operator has a continuous right inverse which does not depend on p.

Proof. This version of the trace theorem can be found in [48], Theorem 1.5.1.2 and Theorem 1.5.2.1.
Ul

Theorem A.1.4 (Embedding theorem). Let Q C R™ be a bounded and open Lipschitz domain. Let
my,ma, k > 0 be integers, let p1,p2 € [1,00) and let a € [0,1]. Then it holds that:

o Ifmy— - >my— b and my > my, then it holds that W™1P1(Q) — W™m2P2(Q).

o Ifmy — - >my— - and my > my, then it holds that W™ P! (Q) —— WM2P2((2).
o 2 >ktaandac(0,1), then it holds that W™ (9) < Cho Q).

o Ifmy— - >k+a then it holds that WP (Q) —— Cke(Q).

The first two statements remain true if both spaces W™iPi(Q) are replaced by WP (Q) fori € {1,2}.
In addition, we use the notation C*0(Q) = C*(Q).

Proof. This theorem can be found in [3], Theorem 8.9 and Theorem 8.13. O

Theorem A.1.5. Let Q C R" be bounded and open with Lipschitz boundary T, let 51,50 > s > 0
and p1,p2,p € (1,00) such that either

1 1 1 1 1 )
si+ss—s>n|{—+——-)>0 and s;j—s>n|——— for  je{l1,2},
p; b
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or

1 1 1 1 1 )
si+sp—s>n({—+———-]>0 and sj—s>n|——— for  je{l1,2}.
pr p2 P pbj P

Then the mapping (u,v) — uv s continuous from WHLPL(Q) x W52P2(Q) into WP(Q).
Proof. This theorem can be found in [48], Theorem 1.4.4.2 and the comment afterward. O

Theorem A.1.6 (Implicit function theorem). Let B € C¥(X?d x Y4 7) for k € N, where Z is a
Banach space and X2, Y24 qre open subsets of the Banach spaces X and Y, respectively. Suppose
that B(z*,y*) = 0 and let B (z*,y*) be continuously invertible. Then there exist neighborhoods ©

of x* in X, ® of y* inY and a map g € CF(0,Y) such that
e B(z,g9(x)) =0 forallz € O,
e B(z,y) =0, (z,y) € © x & implies y = g(x),
o 9(2) = — (By(r,9())) " 0 Balz, g(x)) for z € ©.
Proof. This theorem can be found in [5], Theorem 2.3. O

Theorem A.1.7 (Generalized Hélder inequality). Let Q@ C R™ be a bounded and open Lipschitz
domain. Let k € N, p;,q € [1,00] for 1 < i < k with Zle = %, If fi € LPi(QQ) for 1 <i <k then
it holds that

1
pi

k
|V ERALD)
i=1
and
k k
11+ < TTIill i ey -
i=1 llpag) =1
Proof. A proof for this theorem can be found in [3], Lemma 1.16. O

Theorem A.1.8 (Generalized Young’s inequality). Let p,q € (1,00) with 1/p+ 1/q = 1 and let
€ > 0. Then there exists M. > 0 such that for all a,b € R it holds that

lab|] < e |al? + M |b|?.
Proof. This result can be found in [3], (1-11). O

Theorem A.1.9 (Riesz-Thorin interpolation theorem). Let Q C R™ be a domain, let pp,p1 € [1, 00]
and let qo, q1 € [1,00] with po # p1, qo # q1- If

T: LP°(Q) — LP(Q),
and

T: LP(Q) — LT (Q),
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s a bounded linear operator with norm My and My, respectively, then it holds that
T: LP(Q) — LY(Q),

is also a bounded linear operator with norm M, M < M&feMle, where 6 € (0,1),

1 1-6 ¢ 1 1-60 60
= + —, and - = —
p Do b1 q 4o il
Proof. This theorem can be found in [14], Theorem 1.1.1. O

The following generalized differentiation rules can both be found in [110], Proposition 4.10 and
Proposition 4.11.

Theorem A.1.10 (Chain rule). Let X, Y and Z be Banach spaces, let v € X with f: U(z) — Y,
where U(x) is a neighborhood of x. Let y = f(x), and g: U(y) — Z for a neighborhood U(y) of y.
Let h: U(x) — Z, h = go f be the composite map. If f'(x) and ¢'(f(x)) exist as Fréchet-derivatives,
then h is Fréchet-differentiable at x and it holds that

W(z) =g'(f(z)) o f'(z). (A.1)

If f'(x) exists only as Gateauz-derivative at z, then h is also Gateaua-differentiable at x, and (A.1)
holds.

Theorem A.1.11 (Product rule). Let X, X1, Xy and Y be Banach spaces and suppose that the
mapping B: X1 X Xo — Y is bilinear and bounded. Suppose further that the maps

fi: Ui(r) € X — X;, i€ {1,2},

are Fréchet-differentiable at x, where U;(z), i € {1,2}, are neighborhoods of x. Then the mapping
h: X =Y, h(z) = B(f1(z), fo(x)) is Fréchet-differentiable at x and it holds that

W(z)(0x) = B (fi(x)(62), fo(2)) + B (fi(2), f2(z)(0x)) Vor € X.

These results remains true if Fréchet-differentiability is replaced with Gateauz-differentiability.

Theorem A.1.12 (Generalized Taylor’s theorem). Let the mapping f: U(x) C X — 'Y be defined
on an open and convex neighborhood U(x) of x, and let X and Y be Banach spaces. Let n € N and
let f',f",--, f) exist as Fréchet-derivatives on U(x), then it holds that

n—1

Flat ) = 1)+ X (I V@) + R,

k=1

where Ry (x,h) is a remainder term with

|Ra(a, )l < — sup ||/ @+ rh)n"|.
n- <r<l1

(A.2)
where ||-|| is an arbitrary norm on Y. If f) is also continuous on U(x), then

1 _ -l
Ry(z,h) = /0 (1(”_)1), £ (2 + Th)h™ dr.
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Proof. This version of Taylor’s theorem can be found in [I10], Theorem 4.A. O

Theorem A.1.13 (Local inverse mapping theorem). Let X and Y be Banach spaces over R, let
zo € X and let f: U(xg) — Y, with U(xg) C X being a neighborhood of ¢, be a C*-mapping where
ke NU{oc}. If f'(x0): X — Y is bijective, then f is a local C*-diffeomorphism at zo and

) w=rw with y = f(a),
for all x in a neighborhood of .
Proof. This theorem can be found in [110], Theorem 4.F and Corollary 4.37. O

Theorem A.1.14. Let Q@ C R™ be a bounded Lipschitz domain, let s € R and p € (1,00). Then
the differentiation operator O,,: WP(Q) — W*=1P(Q) is a linear and continuous functional unless

s=1/p.
Proof. This theorem can be found in [48], Theorem 1.4.4.6. O
Lemma A.1.15. Let Q C R? be a bounded Lipschitz domain. Then there exists ¢ > 0 such that for
all p>2 and u € LP(Q) N HY(Q) it holds that

lull oy < 0™ llull oy -

Proof. This inequality can be found in [32], equation (2.16), and is based on results proven in [94].
O

A.1.1. The Bramble-Hilbert lemma for Sobolev spaces of fractional order

In the context of estimating interpolation errors, many results are based on the Bramble-Hilbert
lemma. Within this subsection we are going to generalize this lemma to Sobolev spaces of fractional
order. What follows is a generalization of the proof presented in [105], another version can also be
found in [16], Chapter II, Theorem 6.3.

For the following three lemmata, let @ C R™ be a bounded Lipschitz domain, let p € (1, 00] and
let s =k + o with k € Ny and o € (0,1).

Lemma A.1.16. Let u € W*P(Q). If D% is constant for each multiindezr o« € R™ with |a| = k,
then u € PH(Q).

Proof. 1t is clear that u € W"P(Q) for all m € N, and hence u € C*>(2). The proof follows with
induction on k. O

Lemma A.1.17. For every u € W*P(Q) there exists a unique uj, € P¥(Q) such that for all o € R"
with 0 < |a| < k it holds that

/ D%(u — up) dzx = 0. (A.3)
Q

Proof. First we show uniqueness. Let up1,up2 € PF(Q) be two polynomials satisfying (A.3)), and
let @, = up,1 — up2. Then it holds that

/Daﬂhdm:() for 0 < |a| <k.
Q

By induction it follows that @, = 0, hence w1 = upz2. As the statement (A.3) is equivalent to
a system of dim (Pk(Q)) linear equations with the same number of unknowns, uniqueness implies
existence. ]
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Lemma A.1.18. There exists ¢ > 0 such that for all w € W*P(Q) with

/QDO‘u dr=0 where 0 < |a| <k, (A.4)
it holds that

HUHWS»P(Q) <c |U|W57P(Q) : (A.5)

Proof. Suppose that (A.5) does not hold, then there exists a sequence (up),cy C W*P(Q2) for
which (A.4) holds and

||u7LHWS~,P(Q) >n ‘un’Ws,p(Q) .

Without loss of generality we may assume [|up ||y« (q) = 1. As this sequence is bounded in W*?(Q),
we can extract a subsequence (still denoted (uy,), <) such that w, — uin W*P(Q) for a u € W*P(Q),
where for p = oo we have to use weak*-convergence. As W*®P(Q) is compactly embedded into
WFP(Q) we get u, — u in W*P(Q), and (uy,),,cy is Cauchy in WHP(Q). As |Unlyysp() — 0, the
sequence is also Cauchy in W*P(Q2), hence u,, — w in W*P(§2). This implies

HUHWSaP(Q) = nlL)Holo HunHWs,p(Q) =1. (A6)

On the other hand, as ]u|Ws,p(Q) = 0 it follows from the definition of the W*P-geminorm that

[ [ D@0l
aJo |

o=y

for all multiindices a with |a| = k, hence D%u is constant almost everywhere and Lemma |[A.1.16
implies u € P¥(Q). Furthermore,

/ D% dz = lim D%, dz = 0,
Q n—o0 O

for all @ with 0 < |a| < k, which implies v = 0 as in the proof of Lemma [A.1.17] This is a
contradiction to (A.6)). O

Theorem A.1.19 (Generalized Bramble-Hilbert lemma). Let Q@ C R™ be a bounded Lipschitz
domain, let p € (1,00] and let s = k+ o with k € Ny and o € (0,1]. Let F: W3P(Q) — R be a
functional with

|F(u)] < co HUHW&,p(Q) Yu € WP(Q),
[F(u+0)| < e (|F(u)| + [F(v)]) Vu,v € WHP(Q),
F(p)=0 Vp € PE(Q).

Then there exists co > 0 such that

F(u)] < €2 |ulyyanoy Yu € WP(Q).
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Proof. The case 0 = 1 corresponds to the usual formulation and can be found in [105], Theorem 5.1.

For o < 1 let uj, € P*(Q) be the interpolation polynomial defined in Lemma [A.1.17, It holds that
|F(w)] = |F(u — up + up)|

¢ ([F(u—up)| + |F(un)])

c|F(u—up)|

¢llu = unllysr(e)

A

IA A

clu— uh‘Wsm(Q)

C|U‘W5,P(Q)' m

A.1.2. Generalized nonstandard finite element estimates

Inverse estimates, where a strong norm is estimated via a weaker norm, are often used in the context
of error estimates. Given certain assumptions on the triangulation of the polygonal domain Qp, a
typical estimate is

lvall g0,y < b ™ llonll ey Vo, € Vh,

where V}, is the space of (bi)linear finite elements on €2p,; a more general version can be found in [16],
Chapter II, Theorem 6.8. We have Vj, € W1h(,) and it even holds that V;, ¢ Wt1/P=2r(Q,)
for all p € (1,00) and € > 0. However, inverse estimates like

HUhHH3/2—E(Qh) < cchmHTE thHHl(Qh) Yop, € Va,

are not considered in general, which is partly due to the fact that fractional norms contain nonlo-
cal terms. Within the following subsection we are going to generalize the nonstandard estimates
obtained in [12] and [20] to general p € [2, 00).

Within this subsection, let Q) C R™ with n € {1,2} be a polygonal domain and let {mp},-
be a family of triangulations of €} satisfying the usual regularity assumptions in the sense of
Remark 2.2.7] Let V3, be the space of bilinear finite elements over €, with respect to the triangu-
lation 7y, and let V3, o C V}, be the subspace of elements with zero boundary conditions, cf.
and (2.61). With K we will denote an element of 7. In addition, let p € [2,00) be fixed from now
on.

The statements of the following lemma can be found in [4§], (1.3.2.12) and Theorem 1.4.4.3.

Lemma A.1.20. Let

0K) = inf |z —
p(z,0K) ngM yl,
be the distance from x to the boundary of K. For arbitrary x € K and o € (0,1) it holds that

/ 1 dy < 1
_ Cop——————.
QK |T — y|"+"p v= U’pp(x,aK)UP

In addition, let K be the reference cell and let o € (0,1/p), then it holds that

uP .
———dx <cp P7] | I— Yu € WPP(K).
/. e S iy Wi (K)
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Lemma A.1.21. Let k € No, o € (0,1) and u € WFoP(Q,). Then it holds that

|D>ul?
|u|Wk+oth < Cop Z Z <|Dau‘ww /}(de .

la|=k K€,

Proof. 1t holds that

|DO‘ — Du(y)l”
’u|Wk+dp Qh Z / /Q TL+0‘p dxdy
h

la|=k
Do‘ — D% Do‘ — D%u
= Z// n+0p() dzdy + Z // | n+ap( )l dx dy
|a\ e\ Kem, K,K'e K
K;éK’

(A7)

The first sum within (A.7) equals >, 1 > xenr, \D"‘u\@va’p(m, whereas the second sum can be
estimated as follows

Z ///‘Da Ejop( ol de dy

K,K'e
K;éK’
(A.8)
[D%u( \DO‘
<¢p E /// n+apd xdy + Z / n+apdxdy ,
K,K'e K,K'e
K;éK’ K;éK’

Using Lemma we get

D%u 1
Z / / | n+0p d dy = / ‘Dau‘p / ntop dy | dz
' Kem, QK |2 — Yl

K K'e
|Dau|p
S Cop Z / p(x, OK)°P dz,

K;éK’
which finishes the proof since the right hand side in (A.8) is symmetric with respect to x and y. [

In what follows let ip: C(Q) — V, be the nodal interpolation operator, and for z € K and
o € WP(K) let & € K and ¢ € W5P(K) be the transformed point and function, respectively, on
the reference triangle.

Theorem A.1.22. Let o € (0,1/p) and 7 € [0,1]. Then it holds that
U —inulyrsan(o,) < Coph™™ 7 |ulyiirs@,) Yu € WHTP(Qy).
Proof. From Lemma we get

, IV (u —ipu)|?
|u—zhu|W1+th ; <u—zhu|€vl+w(K)+ Kde )
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Using a transformation argument we get

V(= inu)l”

g p L S e I
lu zhu|W1+a,p(K)+ (2, 0K) dz

P
‘V U — zhu)‘

- . .~ P A
< |1BR "™ 1Bl laet Bl o — i A-+Hf?1H”pnBKnpkmtBK|/"‘té”KYW
_ ..~ P AP
< cop || Bi' |77 1B |IP |det Bx | (‘U - Zhu‘wm(f{) + ‘u —ipu W1+a,p(1‘()> )

where in the last step we used Lemma[A.1.20] Due to the equivalence of norms on finite dimensional
spaces we get

~ P o P ~ P
A _ . A _ . A p .
‘u inu Wis(R) + ‘u ipu WHM(K) <| ’Wlp + ‘u|wl+w(f<) + ||ipu ’lep(f()>
1P
< ¢ (100810000 + 1080y 181210 )
< Cap ||u||W1+g P(K) ‘

These estimates shows that we can apply the Bramble-Hilbert lemma, Theorem [A.1.19] and end up
with

o |V (u — ipu)[”

| = ihulyy o ) + P 0K

< cop | B 1Bk |IP |det Br| [af?

dx

Witor(K)

< o B | 1B et Bicl [0,

< cop | BRI Bic|l” [det Bic| | Bicl|"*7 || B||” |det BR!|” L
<co hp(T 7) |U|W1+TP(K)' O
Theorem A.1.23. Let o € (0,1/p) and 7 € [0, 0], then it holds that
|Uh|W1+a,p(Qh) < Ca,phTig ‘uh‘W1+T,P(Qh) vUh € Vh-
Proof. With Lemma it holds that
|Vup[”
‘Uh‘WH—aP Q) = CU,p K; (’uhywl+ap (K) +/}( p(l‘,aK)Up dz | . (Ag)
Th

Now we use the equivalence of norms on finite dimensional subspaces, Lemma and the
quasi-uniformity of 7, to get

N +
K; ('uhﬁ"”“w(Kﬁ/Kp(:c,aK)apd < B ™ et B [l s )
h,

_ |Vaip? .
+||B 1}{Up|detBK|/ VUL g5
" &, 0K )7 (A.10)

Whr(K)
< cop || B! || 1det B | [det Byt | [lun .0 1

<%wa”mwmww

)

< coph™ ||Uh||€V1,p(K) .
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Combining the estimates (A.9) and (A.10) we get
|uh‘W1+ayp(Qh) < Co,phig Huh|’W17p(Qh) s (All)

which proves this theorem for 7 = 0. The proof for 7 € (0, o] is more complicated. For K € my, let
wg denote all the elements of m;, which share at least on vertex with K, i.e.

WK = {K/ Gﬁh‘FﬂF# @},
and let Sk be defined via

Sk = int U K'

K'cwgk

We have

|Vuh — Vup(y)[”
|Uh|€[/1+a,p(9h): Z /// S dx dy

K,K'em,

> // Wuh ZZI;( y)I” dz dy
KK'en, K (A.12)
K'cwg

+ Z // |Vuh ZZL( )| dz dy.

KK’

The second part within (A.12)) can easily be estimated,

|vuh vuh(y)‘ T—0 |VUh vuh( )‘
Z / /l ’rL—‘,—a'p d dy < Ca- hp ) Z / /l TL—‘,-T]J d:]j dy

K,K'eny, K,K'eny,
K’in Klin

T—0 p
=< CU,php( ) |Uh|W1+r,p(Qh) :

With the definition of Sk it follows that

Vu Vuh
> //' n(@ nm( Ol drdy < 3 |unlfprimpgs, ) (A.13)

K,K'em, Keny,
K'ewg

Now let S}( be a reference domain similar to Sk, T the affine transformation that maps S}< to Sk
and up, = up o T be the pull-back of Sk. We obtain, by using (A.11) and Theorem |A.1.19]

’uh|W1+a,p(5}<) = pE']i?(fS}() |2y, — p‘WlJro,p(s}()
<cop Inf ||ldp —Dllyiss A.14
oo it i =Dl (A14)

S Co,p ‘dh‘wl+r,p(s}<) .
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Combining (A.14) with a scaling argument yields

|uh|W1+U’P(SK) < CmphTig |Uh|W1+r,p(5K) )

which, together with (A.13)), implies

‘Vuh vuh( )’ T—0
Z / /K’ n+o’p dxdygcn,php( ) Z |uh|€V1+7,p(SK)

K,K'e Ke
CKem, g (A.15)

T—0 p
< Cmphp( ) ‘uh‘ler'r,P(SK) .

The case 7 € (0, 0] now follows from (A.12) and (A.15). O

Theorem A.1.24. Letu € Hy 7 (Q) for ao € (0,1/2), let a: H(Q,) x H(Q,) — R be a contin-
UoUs, H&—coercz’ve bilinear form, and let the Ritz-projection uy, € Vi, o be defined via a(u — up,vp) =0
for all vy, € Vi, 0. Then it holds that

lunll e,y < co llull greoq,) -

Proof. As H'¢(Qy,) < C(Qy) for n < 2, the pointwise interpolation iju is well-defined. It holds
that

lunllgrveq,y < lull grveq,) + lu = unll g1eoq,)

< Null grte () + v = inull grso(q,y + llinw — unll greoq,) -

Now we use Theorem |A.1.22| for (u — ipu) and Theorem |A.1.23| for (ipu — up) to obtain

lnl g4y < o Nl oy + cah™ lline = unll o,
< o [ull vy + eoh ™ (Il = inill 1) + 16— unlln e,
< ¢ ||u||H1+U(Qh) +coh™ [Ju— ihu‘|H1(Qh)
< Co ||lull grvo(q,y + coh™ 77 |[ull grvo(q,)

< Co [lull grto(qy) »
where we also used Céa’s Lemma, (u — up) € H} () and standard interpolation estimates. O

Corollary A.1.25. Let Q) be convex with polygonal approximation Qp C Q. Let u € H&+U(Q) with
o€ (0,1/2), and let up, € Vi o be defined as in Theorem|A.1.24, Then it holds that

||uh||H1+ff(Qh) < Co ||u||H1+f’(Q) :

Proof. This corollary can be proven using the same method as in the proof of Theorem [A.1.24] note
that uy, € H} () can, via extension by zero, be regarded as a function in H{ (). O

Theorem A.1.26. Let Q) be conves and let u € Wy "7P(Qy) for o € (0,1/p). Let A € R**2 pe
sufficiently reqular in the sense of Theorem and let up, € Vi 0 be the Ritz-projection defined
via (V (u—wup),A- Vo), =0 for all vy, € Vi o. Then the Ritz-projection is stable in W1+U’p(Qh),
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Proof. Using the same arguments as in the proof for Theorem we arrive at

o llsse@y < o lullsoniay) + coh™ (o= inullyogay) + o= unliro,))
and the result follows with standard interpolation estimates and [92],

[unllwr+on(,) < o llullwitoni,) + cah™ 70 [ullyrion(q,
(Qn) (Qn) (Qn)

< ¢o l[ullyrvonay) - -

Theorem A.1.27. Let Q, be conver and let u € Wol’p(Qh) N Wter(Q) with o € (0,1]. Let the
matriz A € R?*? be sufficiently reqular in the sense of Theorem |A.1.41, and let up, € Vi be the
Ritz-projection, i.e. (V (u—up),A-Vuy), =0 for all vy, € V}, 0. Then it holds that

o—T

Hu — uhHWlJr‘r,p(Qh) < CO’,Th ||u||W1+°'*P(Qh) ’
for all 7 € (0,1/p) with T < 0.

Proof. Let v = u — ipu, with Theorem it follows that

Jun — ihUHWHT,p(Qh) <erllu— ihUHWan(Qh) )

and the result follows with standard interpolation estimates. O

A.1.3. Regularity results for elliptic partial differential equations

Within this subsection we are going to present some general regularity results concerning the solu-
tions of partial differential equations of second order.

Theorem A.1.28. Let Q C R? be a bounded and open C*®-domain. Let s > 0, s # 1/2,
f e HYQ) and g € H**Y2('). Then the weak solution u of

{—Au—finQ

u=g¢g onl,

belongs to H571(Q) and there holds the estimate [l a1y < €5 (||f||H571(Q) + Hg||Hs+1/2(F)>,
Proof. This theorem can be found in [51], Theorem 9.1.20. O

Theorem A.1.29. Let Q C R? be a rectangle, and let u € H}(Q) be the weak solution to

u=0 onT.

{—Au:f in Q,

If f € CY*(Q) for some a € (0,1) and f(z;) = 0 in all corner points z; of ), then it holds that
u € C32(Q).

Proof. This theorem follows from [31], Remark 1, and the references cited therein, [44] and [107]. O
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Theorem A.1.30. Let Q C R? be a bounded Lipschitz domain. Let 1/2>1t> s >0, and let the
coefficients of the matriz A € R?*2 belong to COY(Q). If f € H-175(Q), then there exists a unique
u € Hy™(Q) as the weak solution to
—div(A-Vu)=f inQ,
u=0 onT,
and it holds that [ull gr+s(qy < s 1| -1+5(q)-
Proof. This theorem follows with [51], Theorem 9.1.25, and [87]. O
Theorem A.1.31. Let Q2 C R? be bounded and either convexr or C'. Let A C R**? be uniformly
elliptic on Q0 with continuous coefficients. Let p € (1,00) and f € W=LP(Q). Then there evists a
unique weak solution u € W&’p(ﬂ) of
—div(A-Vu)=f inQ,
u=0 onT,

and there holds the estimate HUHW(}*p(Q) < & | fllw-100)-
Proof. This theorem can be found in [4], Theorem 1. O

Theorem A.1.32. Let Q C R? be bounded and either Lipschitz or with sufficiently smooth boundary
T in the sense of Remark. Let A C R?*2 be a uniformly elliptic matriz, and let f € W~1P(Q)
for a p € (Q,P), where P > 2 depends on the ellipticity constant of A and 1/P +1/Q = 1. Then
there exists a unique solution u € Wol’p(Q) of

—div(A-Vu)=f inQ,
u=0 onl,

and it holds that

HVUHLP(Q) < ¢ HfHW—Lp(Q) .
For the constant P it holds that

lim P(A) = oc.
A—1

Proof. This theorem can be found in [86], Theorem 1. O

Remark A.1.33. The boundary I' of the domain Q C R? is sufficiently smooth in the sense of

Theorem if the equation
—Au=f inQ,
{ u=0 onl,
has a unique solution u € Wol’p(Q) for all f € W—LP(Q) for that certain p < co, and it also holds
that
HUHWlm(Q) <o Hf”w—l,p(g) )

where the constant ¢, may depend on p but not on f. In [4] it is shown that for convex or C*
domains this holds true for all p € (1,00); in [67], Theorem 0.5, it is shown that for every Lipschitz

domain there exists € > 0 such that this holds true for all p € (g—ii, 44 8).
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Theorem A.1.34. Under the same assumptions on ), A, f and p as in Theorem and
Theorem let g € WI=V/PP(T). Then there exists a unique u € W'P(Q2) as the weak solution
to

(A.16)
u=g¢g onl,

{ —div(A-Vu)=f inQ,

and it also holds that ||U”W17p(g) < ¢ (HfHW*LP(Q) + HQHWI—I/p,p(F)>~
Proof. This theorem follows with Theorem [A.1.3] Theorem and Theorem [A.1.32] O

Definition A.1.35. A domain Q C R? is said to be a curvilinear, right-angled C*!-domain if its
boundary is either C11, or if there exist finitely many points (2;);.;< 5 on the boundary I' such that
I is piecewise C1!) and the angle between the tangents in x; is a right angle for all i € {1,..., N'}.

Theorem A.1.36. Let Q C R? be a bounded, curvilinear, right-angled CY'-domain, let the matriz
A C R?*2 pe uniformly elliptic with Lipschitz continuous coefficients, and let

D (A, LP(Q)) ={ue LP(Q)] —di(A-Vu) € LP(Q)}
be the domain of the mazimal extension of the operator u— —div(A - Vu) in LP(Q2). Then,
u— {—div(A-Vu), u|p} (A.17)

is an isomorphism from D(A, LP(Q)) onto LP(Q) x W—Y/P»(I).

Proof. This theorem is proven in [48], Theorem 2.5.2.1, in the case of a C'-domain. As that proof
just relies on the fact that is an isomorphism from W?29(Q) onto LI(2) x W2~ 1/%49(T) for
the conjugate index ¢ = p/(p—1), it can be extended to domains with right-angled vertices, cf. [48],
Section 5.2. O

Corollary A.1.37. Under the same assumptions on Q@ and A as in Theorem let f e LP(Q)
and g € W=YPP(T). Then there exists a unique u € LP(Q) which weakly solves (A.16) and it holds
that

el < e (IF @) + 19l -17mm(ry) -

Theorem A.1.38. Let Q C R? be a bounded, curvilinear, right-angled C'-domain, let A be a
uniformly elliptic matriz with Lipschitz continuous coefficients. Let f € LP(Q) and g € W2~ Y/PP(T),
then there exists a unique u € W2P(Q) which solves (A16]) and there holds the estimate

lullwzgay < o (1o + I9lwa-1mmqry ) -
Proof. This theorem can be found in [48], Theorem 2.4.2.5 and Section 5.2. O

Remark A.1.39. The estimate in Theorem is not explicitly mentioned in the source cited, but
can be shown using either [3], Theorem 5.8 or the closed graph theorem, cf. [3], Theorem 5.9. Let
X = LP(Q) x W2 1/PP(T), Y = W2P(Q) and L: X — Y be the linear solution operator to (A.16).
Let (fn, 9n)peny € X, Un = L(fn,gn) € Y and (fn,gn,un) — (f,9,u) in X x Y for n — co. It
remains to show that u = L(f, g). First it holds that

[+ fon=—div(A-Vu,) = —div(A - Vu) in LP(Q) for n — oo,
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hence — div(A - Vu) = f. Let v: W2P(Q) — W2-1/PP(T') be the trace operator. It holds that

Ivu = gllw2-1/mpry < vt = vunllyz-1me@y + 170 = gllw2-1/m0 )

< cllu = unlly2p@) + 1190 — gllwe-1/pp@y =0 for n — oo,

whereas we used the continuity of v, Theorem [A.1.3] yu,, = gy, by definition of u,, and g, and the
fact that u, — u, gn — ¢ in W2P(Q) and W2~1/PP(T), respectively. As a result, u = L(f, g), which
proves the continuity of L.

The following lemma can be proven using an interpolation argument, Corollary and The-
orem [A.1.38

Lemma A.1.40. Under the assumptions on Q2 and the matriz A from Theorem|A.1.38, let f € LP(Q)
and g € WS YPP(T) for a s € [0,2]. Then there exists a unique weak solution u € W9P(Q)

to (A.16), and it holds thal
ety < e (1 oy + I9hwssmnry ) -

A.1.4. On the stability of the Ritz-projection in general polygonal domains

It follows from Céa’s lemma that the Ritz-projection of the solution to a uniformly elliptic linear
partial differential equation of second order is stable in H' in both convex and non-convex domains.
Within this subsection we are going to investigate on the stability of the Ritz-projection in WP

for p # 2.

Theorem A.1.41. Let Q;, C R? be polygonal and convex and let the matriz A C R?*? be symmetric,
uniformly elliptic and Lipschitz such that there exists € > 0 such that the mapping u — — div(A - Vu)
is a homeomorphism from ng’q(Qh)ﬂWQ’q(Qh) onto L1(Qy,) for allq € (1,2 +¢€]. Letu € Wol’p(Qh)
for a p € [2,00], and let up, € Vi, o be its Ritz-projection. Then it holds that

oy < @ lullyinay,
where ¢ is independent of u and p.
Proof. This theorem can be found in [92]. O

Remark A.1.42. The assumptions of Theorem are certainly true if A is the identity matrix,
but they are also true if the transformation induced by the matrix A do not map the convex angles
of €, into non-convex ones, cf. [48], Section 5.2, which is certainly fulfilled if A is sufficiently close
to the identity matrix.

In order to extend the result of Theorem onto non-convex domains, we need an assumption
on the domain.

Assumption A.1.43. Let Q;, C R? be a polygonal and non-convex domain with maximum interior
angle a € (0,27). Let {m4},~, be a family of triangulations of ), fulfilling the usual regularity
assumptions in the sense of Remark We say that €, fulfills Assumption if there
exists a convex polygonal domain Q O €, such that each triangulation 7, can be extended to a

triangulation 7, of €, and the family {7} h>o is also quasi-uniform with the same constant cp, cf.
Definition

161



A. Appendix

Theorem A.1.44. Let , C R? fulfill Assumption |[A.1.43. Let u € C(Qy) NWH(Qy), and let uy,
be its Ritz-projection with respect to the Laplacian which interpolates u on the boundary I'y,. Then
it holds that

Hu - uhHL‘X’(Qh) sc th| viIel{‘/h ”U a vhHLOO(Qh) '
If u € WH*(Qy,), then it holds that
Hu - uhHWl’oo(Qh) sc |1Hh| vigﬁh ||U B UhHWLOO(Qh) .

Proof. This theorem can be found in [96], Theorem 2. O

Remark A.1.45. The statement of Theorem remains unchanged if the Ritz-projection is
taken with respect to the differential operator induced by a uniformly elliptic matrix A € R?*? with
Lipschitz coefficients. This holds due to the fact that all the result needed to prove Theorem
rely on regularity results for the corresponding differential operator, cf. [88], [97] and [98], which
are known to also holds in that case, cf. [48], Section 5.2.

Corollary A.1.46. Let Q, C R? fulfill Assumption [A.1.49 Let p € [2,00], and let the matriz
A € R?*2 be uniformly elliptic with Lipschitz coefficients. Let u € WYP(Qy,) with Ritz-projection uy,
which interpolates u on the boundary,

(V(u—wup),A- Vo), =0 Yoy, € Vi 0.

Then, for h sufficiently small, it holds that

p—2
[unllwiog,) < clmhl > fullyisq,) -

Proof. The case p = 2 is well-known, the case p = oo follows with Theorem and Re-
mark [A.1.45] and what is left follows with interpolation, Theorem O

Within this last theorem we are going to collect the previous results and also extend them to the
dual exponent.

Theorem A.1.47. Let €, C R? be a bounded and polygonal Lipschitz domain, let p € [4/3,4] and
let the matriz A be uniformly elliptic with Lipschitz continuous coefficients and sufficiently close to
the identity matriz. If f € W=1P(Qy), then there exists a unique u € Wol’p(Qh) as the weak solution
to

—div(A-Vu) = f on Qy,
u=0 1in I'p,

and it holds that

[ullyrry) < o llf w10, - (A.18)

Furthermore, for the Ritz-projection up, of u it holds that

pP—2
o < cp A5 oo, - (A.19)
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Proof. The existence and stability part for u, (A.18)), follows with Theorem |A.1.32/and Remark|A.1.33
Now we concentrate on the stability estimate for the Ritz-projection (A.19). The case p > 2 is a

direct consequence of Corollary [A.1.46| we now focus on p € [4/3,2). Let ¢ = p/(p — 1) € (2,4] be

the dual exponent. Due to Theorem [A.1.1], there exists s € W~149(,) with sl -1.4q,) =1 and

(s,u — Uh)w—l,qwol’p = |lu - UhHWOl’P(Qh) .
Now let w € W,4(%) be the solution to
17
(Vw, A-Vv) = (S,U)W,quwg,p Vo € WP (Qn),
with Ritz-projection wy. The existence of such a w is ensured by Remark |A.1.33] it also holds that
”wHWLLZ(Qh) < ¢p
Using the first part of this theorem, we get

Ju — uhHWOl’P(Qh) =(s,u— uh)w—Lq,WOM’ = (Vw,A-V (u— Uh))h
— (V (w—wn) A+ V), < el — wnlyay, Tl ogan)

q—2
¢y A7 |

IN

‘wHWOl’q(Qh) HuHWOl*p(Qh)

N

2-p
< cplnh| 7 HUHWOLP(Q;L)' O

A.2. A-priori error estimates for nonhomogeneous Dirichlet
problems in curved domains

Most a-priori error estimates estimate the error between the continuous solution u of a partial
differential equation and its discrete counterpart uy, in the L2-, or the H'-norm, where the underlying
domain is in general polygonal and convex. In [I7] error estimates where the domain no longer
needs to be polygonal nor convex are proven. The discrete equation is formulated on a polygonal
approximation of that curved domain and then extended onto the whole original domain. Within
this section we are going to generalize these results in order to estimate the error in LP and WP
with p > 2.

Let Q C R™ be a Lipschitz, curvilinear C"'-domain which need not be convex and let Q, be a
polygonal approximation of , a precise definition will be given in Subsection We wish to
estimate the error between the solution u and wy to the following partial differential equation and
its finite-element approximation:

{Lu:f in £, {Lhuh:f in Qp,

(A.20)
u=g¢g onl,

up = gp on L'y,

where L is a uniformly elliptic partial differential operator of second order with discrete approx-
imation Ly, f and g are given functions and g is an approximation to g on I',. The needed
regularity of the involved operators and functions are given below, the definition of g is given in
Definition With the operator L we associate a symmetric matrix A in the sense that

Lu = —div(A-Vu), (A.21)
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where A is assumed to be uniformly elliptic on QU for all A > 0 sufficiently small. Equation (|A.21])
implies that (A.20]) is just the strong form of

{ (Vu, A-Vv) = (f,v) Yoe H}(Q), { (Vup, A-Nop)y, = (f,on), Yo € Vio, (A.22)

ulp =g, Unlp, = 9n,

where V}, ¢ is the usual space of (bi)linear finite elements with zero boundary conditions as specified
in Subsection In what follows, we will focus on the following two cases:

e The matrix A has Lipschitz coefficients, f € LP(Q2) and g € W#*P(T") for some s > 0 and
p € (1,00).

e The matrix A has coefficients in C%/2(QUQ,,), f € H~1/?t¢(Q) and g = 0.

In addition, some regularity assumptions have to be imposed onto the boundary I' which will be
specified later on. Our main result, obtained for the first case, is the following theorem.

Theorem A.2.1. Let Q C R? be a bounded, curvilinear, right-angled CY'-domain in the sense of
Definition[A.1.35, let A be a symmetric and uniformly elliptic matriz with Lipschitz coefficients, let

c [2,00) if Q is convex,
b [2,4]  else,

and let s € [1 —1/p,2 —1/p|. Let u and uyp, be defined as the solutions to ((A.22)) with f € LP(Q),
g € WSP(T') and gy, defined as in (A.2.12)). Then it holds that
lu = unll oy < cpeah) (B2 11 zaay + B2 lglhwen)) -
lu — UhHWLp(Q) < ¢pea(h) (h Hf”Lp(Q) + TP HQHWs,p(r)> 5
where cq(h) from Definition contributes a logarithmic factor if Q) is not conver.

Due to the approximation of curved boundaries through piecewise polygonal ones, it is sometimes
necessary to extend functions onto a bigger domain.

Lemma A.2.2. Let Q C R" be bounded with Lipschitz boundary, let s > 0 and p € (1,00).
Then there exists a linear and continuous extension operator Es: WP(Q) — WSP(R™) such that
Esp|lq = ¢ for all ¢ € W3P(Q). Furthermore Es can be chosen independently of s.

Proof. This lemma can be found in [48], Theorem 1.4.3.1. The independence of s is shown in [§]
and [99]. O

From now on, if not stated otherwise, we will always assume that p € (1, 00).

A.2.1. On the approximation of Q with Q,

Within this subsection we give a precise definition of the polygonal domain € and show how to
transform the boundary data g onto I'y. Let (x(i)) be a set of N € N points on I' and let

and let Fg) be the

1<i<N

WD) = (U Now let Qp, be the polygonal domain with vertices (‘T(i))1<i<N’

164



A.2. A-priori error estimates for nonhomogeneous Dirichlet problems in curved domains

edge from ) to U We assume a quasiuniform distribution of the points (x(i))lgigN’ i.e. there
exists ¢p > 0 such that

: j
ming <<y ‘FH

>‘2

lim inf
N—oo

(, Co.
Maxi<j<n )Fﬁj

In addition, let T'Y) denote the part of T’ between () and 20+1) cf. Figure|A.1| Let h = max;<j<n ‘ng

be the length of the longest edge of . Let ngj) be the unit normal vector on ng) pointing outwards

2 (+1)

1X%2

Figure A.1.: Approximation of Q via

and let x5 (t) be a parametrization of F,(lj) by arc length. Furthermore let §(x,(t)) be the distance
between zp,(t) and I' along ngf) and let

Xn(t) = () + 8(zn(t)) nf. (A.23)

We assume that h is small enough such that X}, (t) is well defined. Now, for an arbitrary function
g defined on I, let
g: Iy — R,

dlan(t)) = g(Xn(t) for an(t) € T},
be the orthogonal projection onto I'. This mapping also has an inverse, and as I' is Lipschitz if
follows that there exist constants ¢1,ce2 > 0, independent of h and p € [1, 0], such that

(A.24)

€1 HgHLP(F) < ||§||Lp(rh) < e ||9||Lp(r) : (A.25)

Now let Q;Lj) be the region bounded by I'’) and I‘éj), cf. Figure . We rotate the coordinate
system such that FE:) has its left endpoint at the origin, and it further holds that

T = {(2,y) eR?|y =0,z € [0,c1h]}, (A.26)
r = {(z,y) € RQ‘ y=26(z) >0,z €(0,c1h]}, (A.27)

as well as
16(z)| < cah?, ‘5,(56)‘ < czh. (A.28)

Let o € WHP(QUQy,) be arbitrary and let
0 0
f1_<(pp>7 f2: <y§0p>
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We get

div(f1) = pe"' 9y, div(fa) = ¢ + ype? ' dyep,

and conclude with the divergence theorem that

/(j) p(pp_laygpdx - / j Sop(l * 6;2)_1/2 dz - /< ) " da,
Q) @) 1“,]

(A.29)
P+ yppP oy pde = yeP (14 02)"12 de.
h
Using Holder’s inequality, (A.28)) and (A.29)) leads to
2 2
el bl S < h” ol riy + PR ||90Hp @) 10yl 1 0, -
and
o0y < 11 100, + €11,
Applying the generalized Young’s inequality we end up with
16l g, < o (2 1ol + 1221001, )
(A.30)
161, < 0 (P11, g, + 2 10512, 00 )
In case of gp]rm = 0 we also have
h
2p—2
el oy < oh™ " 10yell” b))’ (A.31)

Lemma A.2.3. Let s € [1,2], w € W*P(Q), possibly extended with Es. Let g = w|p denote the
trace of w on I'. Then it holds that

B g_4-2
[Jw — QHLp(rh) Soht e Q) -

Proof. Throughout this proof we will assume that the coordinate system is rotated as before,

cf. (A.26) and (A.27). Now we set p(z,y) = w(x,y) — w(z,0) and use and (A.31) to

obtain
=31, oy /F 8” dz < eIl iy < ph™ 2 0w Wl g0, (A.32)
Applying (A.30) to dyw we also get
~ 2 4p—2
HUJ - g”ip(rglj)) <¢ <h P Haywnip(r(j)) + h*P~ H H;;VQP Q(j))> ) (A.33)

now we sum up ({A.33) for all j and use Theorem in the sense that

||wHW1,p(r) <¢ ||w||W2»P(Q) )

to prove the estimate for s = 2. Summing up (A.32)) over all j yields the estimate for s = 1, and
what is left follows by interpolation. O
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Lemma A.2.4. Let w; € WYP(Q) and wy € WYP(Qy,), both possibly extended by Es. Then it holds
that

lo1 0, m0y < 0 (B2 101150 + B2 0B 00) )
sl < 0 (B 02l + B2 0810, ) -

Proof. This lemma follows from (A.30]) by summing up for all j. O

A.2.2. Finite elements and interpolation results

Within this subsection we will introduce finite elements on the domain €2, as well as on the bound-
ary I'y. We start with the discretization of the domain, let {m},., be a family of admissible
triangulations of €, in the sense of Definition [2.2.4] fulfilling the usual regularity assumptions in the
sense of Remark Let V3, and V}, o be the spaces of (bi)linear finite elements, where the latter
is the one with homogeneous boundary values, cf. Definition [2.60] and Definition 2.61] The finite
elements on the boundary are defined as follows.

Definition A.2.5. Let Si(I'},) consist of all continuous functions € on I'y, which are linear on each

of the intervals F,(f)

onto I, i.e.

. The space Sp(I") is defined as the space of transformed functions of Sj,(T'y)

Su(T) = {610 € 5w }.

Furthermore, let S} (T') be the space of all functions #' € W2°°(I") which are cubic polynomials by
arclength on each of the intervals T'0).

We also introduce orthogonal projections with respect to the scalar product in L? over I'y, and T,
respectively, which will be denoted via

Qn: L*(T') = Si(Tn),

Qn: L*(T) — S(), (A.34)

and
Qp: L*(T) — Si(T). (A.35)
The following lemma can be shown using the Bramble-Hilbert lemma, Theorem [A.1.19]

Lemma A.2.6. Let w € WP(Qy,) with s € [1,2] and p € [2,00). Then there exists wy, € Vj, such
that
lw — whHLP(Qh) +hfw— wh”wl,p(gh) < ¢ph® kuwsm(gh) . (A.36)

The estimate (A.36) even holds for s € [0,2] if the W P-term is omitted.

Lemma A.2.7. Let w € W%P(Qy,) for some s € [1,2] and let ¢y, € V3, be arbitrary, then it holds
that

inf (Hw — &n = Xnll Lo,y +hllw — én — XhHWl’P(Qh))

Xhe‘/lL,O

< ¢ (A llwllpenayy + 577 1o = nllzogr,y ) -
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Proof. Let wy, € Vj, satisfy the approximation property from Lemma and choose x5, € Vi, 0
such that xn = wp — ¢ on all interior nodes of €2,. A direct calculation yields
1/p

N

. NP

|wn — én — Xh”LP(Qh) + h|lwp — ¢n — XhHleP(Qh) < Cph2/p Z ‘wh(x(])) - ¢h(5’3(j))
j=1

< cphl/p lwn = nllo(r,) >

where the last inequality follows from the equivalence of norms on the finite dimensional space
Sr(Ty) and a scaling factor due to the dependence on h. Now we use the triangle inequality and
obtain

inf (Jlw = én = xallzogay) + b llw = 01 = Xalwraga,))

Xh€Va,0 (A.37)
< flw - whHLP(Qh) +hw - whHWl,p(Qh) + Cphl/p [[wn — ¢hHLp(F,L) :
Moreover, for v € WP (€),) it holds that
905y < €0 00ty Bolhncan- (A.35)

A proof for this estimate in the special case p = 2 can be found in [35], Dupont, Lemma 2.4. The
proof can be adapted to the general case p € (1,00) in a straightforward way. Setting v = w — wy,
and using the generalized Young’s inequality, (A.38)) implies

h/P Jw = wh”LP(Fh) < ¢ (||w - whHLP(Qh) + hlw— whHWLP(Qh)) : (A.39)
Inserting ([A.39)) into (A.37)) and using the triangle inequality yields

o (=0 = xalzsgay) + 1w = 6= Xl

< 6y (1 = wnll gy + 510 = wnlhwnagayy + 57 10 = dnll o)
and we finish the proof with the definition of wj, and Lemma [A.2.6] O

Lemma A.2.8. Let w € Wol’p(Q) NWSP(Q) for some s € [1,2]. If w is extended by Es then it
holds that

: S
ot (=l + b v = Xalwis,y) < e el

Proof. This lemma follows with Lemma with ¢, = 0 and the estimate (A.31)). O

A.2.2.1. Interpolation results on the boundary

Using the Bramble-Hilbert lemma once again, the following approximation properties can be shown
to hold for g € W*P(T") with s € [1,2].

inf - +hllg— < ¢ h’ p (s
Lt (g = eullae + hllg = @nllwray ) < eoh® gl o

. f ( . . hl*l/p _ _ ) ) < hS op ,
whégh(l“) lg —enllL @t lg — enlly pp(T) ) = Cp gy, ()

where the first estimate even holds for s € [0, 2] if the W1P-term is omitted.
The following Lemmata are easy generalizations of results in [I8] and [33].
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Lemma A.2.9. Let g € W*P(T') and ¢y, € Si(I"), then it holds that

| =@ua|, . < coh* lolhwesy for s € [0,2],

[aa =@, 0 < b Mol for s € [1-1/p,2],
H(Id _Qh)gwal/p,p(F) < cph™* lgllwsr(ry for s € [0,2],
lenllwsrry < coh™ llenll Loy for s € [0,1].

Lemma A.2.10. Let g € W*P(T) with s € [0,2] and ¢, € S}(T), then it holds that

HQ}lngWs,p(F) < Cp HgHWSvP(F) )
1G4 =QR)gllwy-1/00r) < 0h™ P gllrenry
104 =Q1)gl| ey < eoh® gl

lenllwenry < eoh™ @l Logry -

Lemma A.2.11. Let Q be a curvilinear C1:*-domain and let g € LP(T), then it holds that

Proof. Let t be the arclength parameter on I';, and let J(¢) be the Jacobian of the piecewise C1:!-
parametrization ¢t — X}, (t). Integration by substitution yields for every ¢ € LY(T),

/gods:/ oJ dt,
r Ty

Qhé—é;

< cph? HgHLP(F) :
Lr(T'p)

and, due to the regularity of ',

max |1 — J(t)| < ch?,
te[0,lp]

where [}, is the length of T'y,. It is clear that if ¢ € Si(T), then ¢ € Sy (I'y,). Vice versa, if ¢ € Sy (I'y,),
then there exists x € Sp(T") such that ¢ = x. Let

—\7!
X = <Qh§ - th> ;
and note that xy € L*>(I',). It holds that

—||P — —
Hth oW - / (th - th> dt = / <Qh§ - th> Qn dt.
LP(T'y) Iy Tn
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where we used the fact that (Qh§ - th> € Sp(T'y) and (A.34)). If x5, € Sp(T) is chosen such that
Xr = Qnx then we get

/ <th - th> Quidt= [ goitdt— [ QuoQuia
Ty 'y 'y
= /th ds — / Qngxn ds +/ (?] - @hg) Qrx (1 —J(t)) dt
r r Iy,
= / <§ - Qh9> Qnx (1= J(t)) dt.
'y
Now we use the generalized Holder’s inequality to obtain

HQh§ — Qng 1QrX N Laqr,)

T (max |1—J(t)) Hg—évhg

Lp(r‘h) tE[O,lh}

Lp(T'y,)

with the conjugate index ¢ = p/(p — 1). Using (A.25) and the LP-stability of the L2-projection,
cf. [33], we also get

§—0O < .y <

Hg Qng iy = Hg thHLp(F) < e llgllpo(ry -

— P!
HQh?ZHLq(ph) <6 ”>~C|’Lq(rh) = HQh@ —Qny ,
LP(F}L)

and arrive at
Hth “Gndl| <Nl - =
Lp(Fh)

Definition A.2.12. For g € L?(T") we define the approximation of boundary data via
9h = Qng-

A.2.3. A-priori error estimates

From now on, if not stated otherwise, let @ C R? be a bounded, curvilinear, right-angled C!:!-
domain in the sense of Definition In addition, let the matrix A be symmetric and uniformly
elliptic with Lipschitz coefficients.

Let a: HY(Q) x H'(2) = R and ay: H' () x H(;,) — R be two bilinear forms defined via

a(u,v)—/VuT'A'Vvdx,
Q

ap(u,v) = ; Vul - A-Voudz.
h

Now, as already mentioned in (A.22)), let uj, € V} be the solution of

{ah(Uh,vh) = (f;on)n Youp € Vi, (A.41)

Up = gh on I'p,
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where f is extended by 0 onto Q;\Q. In addition, if Qg) ¢ Qp,, then extend wuy as follows. Let T]Ej)

;lj) ) to be the linear extension from

be the triangle having I';’’ as one of its sides, and define uy on Qﬁf

)

.
In order to prove Theorem [A.2.1] we will consider the two cases f = 0 and g = 0 separately, we
start with the first case.

Definition A.2.13. Let ug € Wol’p(Q) and upo € Vi 0 be the (weak) solutions to

(A.42)
ug=0 onlT,

{Lu(]:f in Q,

and
an(uno,vn) = (f,vn)n Yoy, € Vio. (A.43)
The following lemma will be needed to estimate the error between ug and wy, o.

Lemma A.2.14. Let ug be extended by Es, then it holds that

an(uo — up,0,v) = — (div(A - Vug) ,vp)q,\o Vo € Vio.

Proof. Let vy, € Vi o be arbitrary. Due to Lemma |[A.1.40|it holds that ug € W2P(Q), i.e. (A.42)
holds in strong form, hence

(Vuo, A Vup)gna, = (f,0h)anq, + (0 Vg - A n)ana,);
and

(Vug, A - VUh)Qh = (f, Uh)QmQh + (Un, vUOT A n>a(QmQh) + (Vug, A - Vvh)gh\g .
In addition,
(Vuno, A-Vup)g, = (f,vn)g, -
As f is extended by zero outside of {2, it follows that (f,vs)q, = (f,vn)gng, hence

an(uo — un,o,vn) = (V (uo —unp), A-Vup)g,

= (
= (v, Vug - A-n)oqna,) + (Vuo, A - Vur)g,\q

= (vn, Vg - A-n)oang,) — (div(A - Vug) ,vn)g,\q + (vaVug - A= n)aa,)
= (v, Vud - A- n)r, — (div(A - Vug) ’vh’)Qh\Q

= — (div(A - Vug) ,vh)Qh\Q ,

where we used vp[p, = 0. O

As in the original paper [17], we do not restrict ourselves to convex domains. However, in the
case p > 2 there appear some logarithmic terms in the non-convex case.
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Definition A.2.15. Let 2 C R"™ be a bounded Lipschitz-domain. With cq(h) we will denote
constants such that

cq, for convex domains €,
ca(h) =

co|Inh|P, for non-convex domains 2,

where cq is a constant depending on the domain € but not on h, and p > 0 is finite and uniformly
bounded independent of h and €2, ¢f. Theorem

Definition A.2.16. Let Q C R? be a bounded Lipschitz domain. With p_1(£2) we will denote the
supremum over all p € [2, 0o such that the Laplace problem with right hand side f € W~1P(Q) has a
unique solution u € W&’p(Q) which continuously depends on the data f for all p € (¢—1(Q),p-1(2)),
where
1 + 1
p-1(2)  ¢-1()

The following bounds follow from Theorem and Remark [A.1.33]

=1

>4  for arbitrary Lipschitz domains,
p_m){ yn (A.44)

=00 for convex or C'-domains.
Lemma A.2.17. Let Q CR?, p € [2,p_1()) and s € [0,1]. Then it holds that
lto = tnollyyenay) < creanmMA2 [ fllncey -

Proof. With Lemma [A.1.40| it follows that ug € W2*P(Q) and [uollwzr)y < e fllpp)- For
arbitrary xp € Vj, o it holds that

cluo = unolymg,) < (V (uo = un0) , |V (uo — un) "% AV (ug — “h70)>h
- (v (o — wno) |V (o — uno) P2 A~V (ug — upo — Xh))h (A.45)
+ (V (uo — uno) , |V (uo — uno) P~ A- VXh>h :
Now we estimate both terms on the right hand side of separately. For the first part it holds
that

’ (V (o — n) |V (o — uno) P> AV (ug — upp — Xh))h‘ (A.46)

-1
< clug — unolfpingg,) [0 = uho = Xalwrpqy) -
Now we concentrate on the second part. Let ¢, € Vj, o be such that
(Vvh, ‘V (UO — uh70)|p_2 A- th —A- Vgoh>h =0 Vvh S Vh,O-

The existence of such a ¢y as well as the stability estimate
linllwrate,) < cpean(® IV (w0 —uno)?* 4- V]|

) *(2n) (A.47)
< CPCQh(h’) l|uo — uh,0||;LI;[;17P(QO) HXhHWl,p(Qh) )
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follows from Theorem [A.T.47 Using Lemma [A.2.14] we get

(V (uo — uno), |V (uo — upp)[P"> A VXh)h

= (V (w0 = wn0) IV (w0 = u0) "> A~ Vxu = A+ Vigr,) = (div(4 - Vo) , on)g, 0

= (V (0 — uno — Xn) » |V (1o — uno) P2 A Vxn — A- V@h)h — (div(A - Vuo) , on)g,na -
As a result it holds that

Kvmwmwxwam—wmwﬁ*VML(

-2
< clug — uppo — Xh|W1,p(Qh) <|u0 - Uh,0|€vl,p(gh) |Xh|W1,p(Qh) + |§0h|W1,q(Qh)) (A.48)
t+c HUOHWM(R?) H<Ph||Lq(Qh\Q) :
Using Lemma and Lemma [A.2.4]it follows that
HUOHW?aP(R?) H‘PhHLq(Qh\Q) < Cph2 ||UOHW2@(Q) ||‘Ph”w1»q(9h) (A.49)

< cph? ||f”Lp(Q) H‘Ph”Wl’q(Qh) :
Inserting , and into yields
[0 — uno 10 (q,)
< ¢p luo = uno = Xalyis(,) (!Uo —unollyiagq,) 110 = unolyis o, Xalwin,) + \@h\wm(ﬂh))
+ cph? || fll oy lenllwraay)
Now we use the estimate and get

2
|U0 - uh,o’Wl,p(Qh) < CpCQh(h) |U0 — Uh,0 — Xh’wl,p(gh) (|U0 - uh,0|W1,p(Qh) + |Xh’W17P(Qh)>

) (A.50)
+ epc, (PP | fll Loy IXnllwie ) VXn € Vho.
Now we fix xj, as the infimum from Lemma [A72.7] and using Lemma [A-2:3] we get
|up — upo — Xh’WLp(Qh) <o (h HUOHWZP(Qh) + pl/r—1 ||u0HLP(Fh))
< ¢ (B luollwzr,) + 57702 w0y,
< ¢h HUOHWZP(Q;L) :
Again we use the properties of E5 and get
|uo = uno = Xnlyiaq,) < Il - (A.51)
From the definition of y;, it follows that
Ity < o = uno = Xallwroay, + o = unollpin, )
< lluo = uno = Ol + 40 = w0l (A.52)

<c|lup — Uh,OHWLP(Qh) '
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Inserting (A.51)) and (A.52)) into (A.50)) finally yields

|uo — Uh,Olwl,p(Qh) < cpea,(h)h Hf”LP(Qh) 5

and it remains to prove the LP-case.
Here we follow the proof presented in [I7] and use a duality argument. Let ¢ € C§°(£2;) be
arbitrary and let w € Wol’q(Q) N W?24(Q) solve

Lw=¢ in Q,
w=0 onl,

where ¢ is the conjugate index to p. Whenever necessary, regard w as being extended by 0 outside
of €. Now, for x5, € Vj, o arbitrary it holds that

(UO — Up,0, ‘P)h = (UO — Up,0, Aw)h + (UO — Uh,0, P — Aw)h
= ap(uo — un,0, W — Xn) + an(uo — un0, Xn) (A.53)
— (ug, VT - A-n)p + (ug — Up,0, 0 — Aw), .

We get

ap(uo — up,0, w — Xn) + ap(uo — un0, Xh)

< cfluo — “h,OHWl,p(Qh) lw = Xnllwaq,) + (Auo = f,xn),

< clluo = unollyrria,) v = xallwra,) +cllfllo@) IxallLa@,\0)

< ¢y (w0 = wnollwrgay + B2 1 i) I = Xnllwray) + B 11l oy lollraey )

where we used Lemma and the triangle inequality. By taking yj as the infimum from
Lemma we get

ap(ug — upo, w — xp) + an(uo — un0, Xn)

2 (A.54)
< 5 (Alluo = unollwrnay + 2 1l oy 19l oy
We also get
(a0, VT - A ] < elluoll ey ey,
< cph? HUOHWM(Q) Hw”WZQ(Q) (A.55)
< cph? ”fHLP(Q) ||80HLq(Q) )
where we used Theorem and Lemma [A.2.3] Finally we get
(uo — un0,  — Aw), < cllug — Uh,OHLp(Qh\Q) (Hw”qu(R?) + ||<P||Lq(szh))
< ¢ (W7 gl ey + B2 o wnolhgnayy ) [lae,y  (A56)

< ¢ (W27 oy + B2 llto = wnollyroey) ) 12l zogen) -
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Inserting the estimates (A.54)), (A.55) and (A.56]) into (A.53)), we end up with

(UO_Uh0790)h 9
o Eh < (e uo = unoll gy 1 1 vy
11l Lo () P Whp(Qp) Lr(Q)

and using the first part of this lemma we conclude that

(uo — Up,0, %0)

luo = unoll o,y =  sup "< cpeq(h)h? 1l o () »

PECE () ||90\|Lq(ﬂh)

and the rest follows by interpolation. O

Now let vy, € V3, and 4", u € WHP(Q) satisfy

Li"=0 inQ,
. (A.57)
W' =Qpg onl,
Lu" =0 in Q, (A.58)
u" = Qhg onT, '
ah(’uh,wh) =0 th € Vh70,
AN (A.59)
Vp = th on Fh.

Note that, because of Q}g € W?2-1/pP(T), it holds that u® € W?22(Q).

Lemma A.2.18. Let Q CR?, p € [2,p_1(Q)) and s € [L — 1/p,2 — 1/p|. Then it holds that

0 = cpea (WP gy

. < CPCQh(h)hS_1+1/p ||9||Ws,p(r) .

Proof. First we note that, within the estimate for Hzlh we can replace 4" by u”, since

- ”hHWLp(Qh,)’

A PR P

s—1+1/
Wle(R2) — <ch p ||g||WS,p(F) , (A.GO)

W (S, Whr(Q)
for s € [1—1/p,2—1/p], where we used Lemma |[A.1.34] and the properties of @), and Q;. For
arbitrary xp € Vj, o it holds that

c’uh—vh

< ho ho . ho
‘WLP(Qh) < <V(u vp), |V(u" — vp) A-V(u vh))h

= (V(uh —wup), | V(u" =) A-V(u" — vy, — Xh)) (A.61)

—2
+ <V(Uh —up), V(" =) A VXh) ,

175



A. Appendix

and we are now going to estimate both terms on the right hand side of (A.61)) separately. For the
first term it holds due to Holder,

(T = [7 — 4T 0 =)

o (A.62)

WLr(Qp)

h
U _Uh_Xh’ .

<c uh — Up,
o Wlp(Qp)

No we set xp, to be the minimizing function from Lemma and get

Lp(Qh))

<e, (h [@hollsso ey + 21 <H“h - Qo]

h
U — v, — h’
‘ R X,

o (1 #
W2:p(Q)

+ HQ%LQ—Q;LQ

) s
LP(Iy)
o))

where in the last step we used of the properties of Q,ll and Qy,, cf. Lemma and Lemma |A.2.10
It remains to estimate the second part within (A.61). As can be seen from its proof, Lemma [A.2.14
also holds for the difference (uh — vh), hence we have for arbitrary o5, € V39,

T'y)

<e, (h 1Qhollys sy + 1P <h21/p i

S Cphk+1—1/p

L
Wz,pm)*Hth Qg

||g||Wk»P(F)7

-2
(V(uh —wp), |V(u" — vh)‘p A Vxh>
h
_ h h p—2 . _ ) o . ) h
= <V(u vr), |V (u vh)’ A-Vyx,—A Vg0h>h (le(A Vu ) ,Sph>9h\ﬂ
_ oo N L L T o h
= <V(U Vh = Xh); ‘V(U Uh)‘ A-Vxp—A V¢h>h (d1V<A Vu ) 7%)9}1\9,
where the last equality holds if
h p=2
<Vvh,A -Voyp, — ‘V(u — Uh)) A th) =0 Yoy, € Vh70,
h

and it remains to show that such a ¢ € V}, o actually exists. As (‘V(uh — vh)’p_2 Vxn ) € L4YQy,)
A.1.47

with the conjugate index ¢ = p/(p — 1), the existence of ¢y, follows with Theorem Using

Lemma, Lemma, and the property of the operator Q}L it follows that

'(div(A-Vuh>,aph>Q o <cllu
h

= I N e

< cph2 Huh

‘sz(g) HLthWl’q(Qh)
2 1
=< Cph HthHW2—1/p,p(r) ||<Ph||wl,q(gh)

k
< cph T HQHWk,p(F) H%HWl,q(Qh) :
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Again we use the extended Hélder inequality and conclude

h h p=2
V(u" — vy —xn), |V(u _Uh)‘ A-Vxn—A-Vyy
h
<eclul —uvp — ‘ ‘uh—v v IXn| —I-c‘uh—v - ‘ |on|
S h — Xh Wia () h Wia () Xhlwte(Q) h — Xh Wia () Phiwta(Qy,)

+ Cphk+1/p Hg”w%l/p,p(r) HSOhHWLq(Qh) .
Due to the definition of xy, as the infimum in Lemma and 0 € V}, o it follows that

. h
Xalwrry) < ’u vh Xh’WLP(Qh) * ‘u vh‘Wlw(Qh)
S’uh—vh—O‘ —i—’uh—vh‘
WLr(Qp) WLp(Qy,)
<c ‘uh — vy, .
WLp(Qy)

Due to the definition of ¢p and the corresponding stability estimate we get

p—2
erhsacon < en ) |[v - )
La(Qp)
h p=1
< epeay(h) ‘u B vh’WLP(Qh) ’

which finally leads to

p—2
<V(Uh — V), ’V(Uh - Uh)‘ A- VXh)
h
o + e hFt1/P ’uh — vy, 7
b Wi (Q)

< cpeqy(h) [u = v u = v = xa gl -

WLr(Qp)

and we finish the proof for the W1P-case with (A.63).
Now we deal with the LP-case. For fixed ¢ € C§°(Qp) let w € Wol’q(Q) N W?24(Q) solve

{Lw:go in Q,

WLp(Qyp)

w=0 onl,
where again ¢ is the conjugate index to p. Then, for x; € V}, o it holds that
(ﬁh — vh,w>h = (ﬁh — vh,Lw)h + (ﬁh — Vp, P — Lw)h
= an(@" — vp, w — xp) + an(@" — va, xp) (A.64)
— (" — v, VT - A-n), + (ﬁh — U, — Lw)h
We get
an (i@ — vp, w — xn) + an(@" = va, xn)

o h R h
<ol = tn] o, 1= Nl + (B 0), @ =)

<c Hﬁh - UhH lw = xnllwra,) +¢ HUhHWM(Q) Xkl Lag,\0) + an (@ —uP xn)  (A.65)

WLp(Qp,)
< ¢ (Hah - vhHleP(Qh,) + h? HQ}ILQHV[/'Q—l/p,P(F)) ”w - XhHWLq(Qh)

~h h
T CPhQ HQII“LQHW%l/p,p(p) ||w||W1,q(Q) + an (@ —u”, xp).-
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Because of w € Wol’q(Q), we can extend it by 0 outside of €2, we shall denote the extension by .
Similar, extend xp by zero outside of Q. We get

ap (" —u xn) = ap(@" — ", xp — ) + ap (0" — o, W),
and since 4" — u” is A-harmonic, a(a" — v, @) = 0, it holds that
(i ) < e|B@ )]l (.66)

Wlp(R2)
From the definition of w and w we get
ap (" — ", xp —w) < ¢ ‘E(ﬁh - Uh)‘ 1@ = Xnllwro@uan)

Wi (®) (A.67)

~h h
s¢ ‘E(u —u )‘WI,P(RQ) <||w - XhHle‘l(Qh) + HwHWl’q(QAQh)> ’

Inserting (A.66]) and (A.67)) into (A.65), we conclude

h hH

h—uh,xh)chﬁ —u

ap(t W) <H’w - XhHqu(Qh) + HwHWLq(QAQh)) :

Using the first part of this lemma and Lemma we end up with
an(@" = u*, xn) < ¢ | Qng — Qlg lw = Xnlhwraay) +Blwlwza) - (A68)

The estimates (A.65) and (A.68) yield

ah(ﬂh — vp,w — Xp) + ah(ﬂh — Uh, Xh)

<o o

+¢p (h2 [[erT] - T Q}lgwap’p(F)) ol -

and by taking yp, as the infimum from Lemma we get

W1=1/p.p(T) (

2 1 A 1
WLp(Qp) +h HthHWQ—l/p,p(I‘) + Hth - thlel/p,p(F)> ||’LU - XhHWl,q(Qh)

ah(ﬁh — Up,w — Xp) + ah(@h — U, Xn)
<ec (h |

For the next part within (A.64), we estimate

(A.69)

2 1 A 1
WLe(Qy) +h HthHWQ—Up,p(F) +h Hth - thle_l/pyp(F)> H‘P”Lq(g)

(@h — v, Vul - A n)h‘

ot 192 sars

Lo(Ty) Hw||W2¢1(Q)

—_—

<o ([ @ =ty =@ =) (A.70)

+ Huh —ﬁ‘

s P

L 2|,k
o HleP(Q) +h Hu lep(g)) H(p”Lq(Q)
) 1 2111
= @ h th B thlefl/zﬂ,p(r) +h HthHWQ—l/IhP([‘)> HSOHLLI(Q) .
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As Lw = ¢ in Q, for the last term within (A.64) it holds that

(dh — Vp, o — Lw)h < cHzlh —vh)

Lo(\Q) ||<PHLq(Q),

and again it follows that

(= onoo = L), < (1] ns - b + 12 | Qholhys oy ) el (ATD)

Wi=1/p.p(Q)

Combining the estimates (A.69)), (A.70)) and (A.71)), inserting them into (A.64) and using Lemma|A.2.9|
and Lemma we get

“h
v — vy,

= sup M
Lr(m)  pecee)  1Plla,)

S T I Y

< CpCQh(h)hSH/p ||9||Ws,p(r) )

[ =]

T I -

W () W1=1/p0(r)

for s € [1 —1/p,2 — 1/p|, which finally completes the proof. O

Now let uy € WHP(Q) be the weak solution to

(A.72)

Lupg =0 in €,
ug =g onl.

Lemma A.2.19. Let p € 2,p_1(Q,)) and s € [1 — 1/p,2 — 1/p], then it holds that

s = vnll o) < oWV gllipanry »

hs—l—f—l/p

”U,H - UhHWl,p(Qh) S CpCQh(h) ||g||WS’p(F) )

where upy may be extended to Qp by Es if necessary.

Proof. From Lemma|A.2.18)it is clear that we only have to estimates H“H — ﬁhHWi’p(Q) fori € {0,1}.
We have

!

< tur )

!

S R
H H Lr(Q) Le(R2) — ° H y — P 9= @ng

< CphSH/p ||9||Ws,p(1“) )

Lr(Q W—1/p.p(I)

for s € [1 —1/p,2 —1/p|, where we used Corollary [A.1.37, The analog inequality holds true for
i = 1, which, together with Lemma [A.2.1§] finishes the proof. O

To continue we need the following generalization of Poincaré’s inequality.

Lemma A.2.20. Let p € (1,00) and let Q C R™ be a bounded Lipschitz domain. Let u € W1P(Q)
with trace u|p = g € W=VPP(T). There ewists ¢, > 0, independent of u and g, such that

lullwioey < e (Iehwr + lglln) -
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Proof. The following proof generalizes a proof presented in [35], Dupont, Lemma 2.7, to the case

p#2
Jullny = [ 0 9r, (@) da

——/6@. (up):vidx—i—/gpxmids
Q T

= —/pup1 O, (u) z; da?—i—/gpxmi ds,
Q r

where n; shall denote the i-th component of the outer unit normal. Using Hélder’s inequality, we
get

el ) < 0 (Iulladey lelwrogy + g0 )

and the generalized Young’s inequality yields

1
e A (e P O

It is well-known that harmonic functions minimize the H'-seminorm among all functions with
the same boundary conditions. Here we are going to generalize that result.

Lemma A.2.21. Let Q;, C R? be polygonal, let p € [2,p_1(2,)), let A € R?*2 be uniformly elliptic
and Lipschitz and let up, € Vi, be a discrete A-harmonic function, i.e.

(Vuh, A- V’Uh)h =0 Yup, € Vh,0~
Then it holds that

[unlwie,) < cea,(h) sohlen\ﬁh,o lun — nlwie,) -

Proof. Let x5, € Vi, 0 be the solution to
(Vxh, A- V"Uh)h = <‘Vuh‘p_2 Vuh, A- vvh)h Vvh c Vh70.

The existence of such a yj is ensured by Theorem [A.1.47] which also shows the following stability
estimate,

|Xh‘W17q(Qh) < ¢ Cﬂh(h) H |vuh|p72 vuhH =Cp CQh( ) ’Uh’W1 ()

La(S2,)

Let ¢, € Vi o be arbitrary, it now holds that

|un im0,y < € (un [Vup P2 A - VUh>h

c (Vuh, Vup|P"2 A Vuy, — A- th)h

¢ (V(“h —on), [Vup[P 2 A~ Vuy, — A - VXh>h ,
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where in the first step we used the discrete A-harmonicity of uy, in the second step we used the
definition of xp. Now we use Holder’s inequality and get

_ -1
(V<Uh —n), [Vun[P? A- Vuy, — A - VXh>h < clup — pnlyn, 2(Qp,) (‘uﬂ@m pp) T ’Xh‘wl’th))
g CPCQh( ) |Uh - SDh|W1P Qh |uh|W1p Qh)
and hence

‘Uh\wl,p(gh) < cpeqy(h) lun — 80h|W1»P(Qh) : -
Lemma A.2.22. Let p € [2,p_1()) and s € [1 —1/p,2 — 1/p|. Then it holds that

s = wnll oy < o) (B2 1oy + 2P Ngllwoniry)

e =iy < oo (117 Loy + 54 o) -

Proof. We set up, i = up—up, o, because of LemmalA.2.17|it remains to estimate ||lug — uthHWi»P(Qh)'
For i € {0,1} we get

lurr = unmllyin,) < llur = vnllwie,) T 1o = unallyisg,) (A.73)
and with Lemma it follows that
[lon — uh,HHWLp(Qh) < & (’Uh - uh,H‘Wl»p(Qh) + [lon = “hHHLp(Fh)) : (A.74)
Since vj, — up, g is discrete A-harmonic, it follows from Lemma that
[vh = unHlyeq,) < Cau(h) [vn — una = Xalyagg,)
for arbitrary x5 € Vj 0. Thus, using Lemma with w = 0 and ¢p, = up g — vy, We arrive at
[vh = un,E g, < cpeai(h) Inf [vn — un.E = Xhlyiago,)

nEVho (A.75)
< cpean (WP oy — gl o r,y

Combining (A.74) and (A.75) yields

lon = un il < coconmIB P on = wn gl por,) -

—_—

By definition it holds that (up g — vh)lrl =Qng — th. In addition, Qthg = th = Qthg. We

set G = g — Qng and use Lemma |A.2.11] to obtain

lun,z = vnll por,) ‘ QnG — QiG
Lr(Ty)
2 2
< e Gl = cph? (10 —Quyg]|

and using Lemma we arrive at

lon — Uh,HHWLp(Qh) < CPCQh(h)hSHH/p HgHWSm(I‘) ) (A.76)
for s € [0,2 — 1/p]. Together with the splitting (A.73) at the beginning of this proof and LemmalA.2.17]
this proof is finished. ]
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Now we are in the position to finally prove Theorem [A.2.1]

Proof. Within the following proof, let s € [1 —1/p,2 — 1/p| be arbitrary. We start by splitting the
error,

lu — uhHWi,p(Q) < u— uhHW@P(Qh) + [lu— UhHWim(Q\Qh) :

Because of Lemmal|A.2.22]it is sufficient to estimate the latter part. Setting w" = (ug + u”) € W22(Q),
we get

R R T M

Wi (Q Wip(Q\Qp)

Now we use Lemma [A.1.40for (u — wh) and the properties of Q}L to get

e Iy (ATT)

< P | gl - (A.78)

Hu - ‘ Lr(Q)

As wuy, 1s linear on Qg)

and it remains to estimate Hwh — , its second derivatives

vanish. It follows with (A.30]) that

Uh HWi,p(Q\Q,L)'

‘wh — uh‘p L <g¢ <h2 ‘wh - uh‘p (A.79)

) P
o) 0 +h1 H’whH
Hl’p(whj) Wi (Ihg)

W2,p(Q;LJ>)> '

If T}(lj ) denotes the triangle which has Fg) as one of its vertices, then one can show, using (A.38])
and Young’s inequality, that

Iy < 00 (012, o #0000 ) W EWIED) (s

Setting v = V (w”" — uy) and inserting the estimate (A.80) into (A-79) yields

h ’p (A.81)

p
)w — Up ) + HwhH
wir(Ql))

<c w” — uy, N
p W2,p(Q§LJ)UT}(LJ))

lep(T}(Lj))
Summing (A.81) over all j leads to

L T (e e ] T P T (A5

The first term on the right hand side of (A.82) can be estimated using the triangle inequality,

Lemma [A.2.22] and (A.77)); the second term can be estimated using Theorem |[A.1.38| and the prop-

erties of @}, Lemma 0L We arrive at

w

o = < ey (1 ey + B alynr)

WLe(Q\Qp)
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and combining this estimate with (A.77)) yields
lu— UhHWl,p(Q\Qh) < ¢peq,(h) (h HfHLP(Q) + he P HQHWS»P(F)> :

It remains to prove bounds for Hwh - uhHLp(Q\Qh). Applying (A.30]) and (A.80) directly to (wh — up)
one can show, similar to (A.82), that

[ uh) <o (W7t ], g+ 0t = ). s
LP(Q\Qp) Lr(Qp) Whp(QuQp)
We combine and (| - ) to get
o - “h\
LP(Q\Qp) (A.84)
S O e I ] P S e TG W
Lr(Qp) Wl’p(Qh) w2 P()
Using the triangle inequality, Lemma [A.2.22| and (A.78)) proves
ip |, h_ 1p (32 s+1/
W [t | < e, OB (2l + B gl - (A85)
Using Theorem |A.1.38| and the properties of Q}l we arrive at
2+2/ 2/p (12 s+1/
w2t < (B s+ 1 gl (A.86)

It holds that w” — uj, = (ug — Upp) + (uh —vp) + (vp, — up,i). These terms can be estimated using
Lemma [A.2.17, Lemma [A.2.18 and (A.60), and (A.76)), respectively. We get

pi+1/p Hv<wh _ uh)‘

Lo < CpCQh(h)hl/p (h2 HfHLp + pstip Hg”ws,p(p)) . (A.87)

Using the estimates (A.85), (A.86) and (A.87) in (A.84), we get

< pea, (MR (B2 1wy + 0P Ngllnry )

Jio* =
LP(Q\Qp)

which finally results in

e =l oene,) < cpean(®) (B2 1oy + 2P lglwenry ) -
(Q\

We finish the proof by noting that €, is convex for all h sufficiently small if and only if €2 is convex.
The bounds on p follow with (A.44]). O
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A.2.4. Finite element approximation on curved domains with irregular differential
operators

As stated at the beginning of this section we are now going to prove some results concerning the
case when the matrix A is not Lipschitz and thus does not admit H2-regularity. Once again, let
Q c R? be a bounded and convex domain, let f € H~/ 2=¢(Q) and consider the following problem

{ —difA-Vu)=f inQ, (A.58)

u=0 onT,

where the matrix A is uniformly positive definite with coefficients in C%'/2(Q). With Theo-

rem |A.1.30| it follows that v € H3/27¢(Q) and

el ooy < o I Fllr-v/seqey -
Using Céa’s lemma it follows that
lw = unll 1) < ch!'/?7F, (A.89)
for the finite-element approximation up of w if € itself is polygonal. If this is not the case, one

should not expect better approximation rates for one additionally has to approximate the curved
boundaries. Furthermore, as shown in [91], Theorem 3.8, it holds that

2
lu = unll 1) = ¢llu = unll o)
and as estimate (A.89)) is of optimal order, it follows that
H'LL - UhHLQ(Q) < Cghl_g,

is the best order of convergence one can hope for in the general case.

Theorem A.2.23. Let Q C R? be a bounded Lipschitz domain, let u € H}(Q) N H3/275(Q) be the
weak solution to (A88) for given f € H='/>75(Q) and let uy, € Vi, solve

an(un,vn) = (f,vn)y Yoy, € Vi .

If s € [0,1], then it holds that
lu = wnll ey < b2 | fllg-1/2-2 (0 -

Proof. As € is convex it holds that Qj C €, hence every function in H}(£2,) can, via extension by
0, be regarded as a function in H{ (). Let x; € Vi 0 be arbitrary, it holds that

eIV (u—un) 172,y < an( — up,u—un) = ap(u—un, v — xn),

hence

IV (u = un)ll 20,y < elIV (u=xn)llL2(,)
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and using Lemma we get

IV (u— Uh)”m(gh) < Cshl/Q_e ||f||H71/275(Q) .

Next the L?-error has to be estimated. Let ¢ € C§°(€2) be arbitrary and let w € HJ (Q)NH?/27¢(Q)

be the solution to
a(w,v) = (¢,v) Yo € Hi (),
again it holds that ||w|| ys/2-(q) < ¢z [|¢ll g-1/2-2(q,)- Now we have
(u = up, )y, = alw,u —up) = a(w — wp,u — up),

where wy, € V}, o is the Ritz-projection of w. We end up with

(u—un, @), = ap(w — wh,u —up) + (V(w—wn) , AV (u—upn))gq,

= ap(w — wp, u —up) + (Vw, A-Vu)gq, -

(A.90)

The first term on the right hand side of (A.90) can be estimated as in first part of this proof, it

holds that

ap(w — wp,u —up) < cl|V (0 —wp)|l 20, IV (@ = un)ll 20,
<ch'™F lwl ggsr2-< @) 1f =172 ()

< c.h' ”SOHLQ(Qh) Hf”H*W*f(ﬂ) :

The second term can be estimated using Holder’s generalized inequality. We get

(Vo, A Vularg, S, 12, 00 1900, o 1A 1901 g

1728 (\Qs

Now we use the fact that |Q\Qy| < ch? and the continuous embedding H3/275(Q) —

and end up with

(Vi A= V), < e ull o<y Il <oy

< eeh' " el 2y 1l -1r2- 0 -

Inserting (A.91)) and (A.93)) into (A.90)) yields

(’LL - uha@)
[ —unl o,y = sup S
ecc) 19ll2@,)

< ch T | fllgr-12-e oy »

and what is left follows with interpolation.

(A.91)

(A.92)

Wh-(Q),

(A.93)
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B. Nomenclature

General notation and abbreviations
e Within this thesis we will follow the constant convention, i.e. ¢ will always denote a constant
with possibly different values upon different appearances. These constants shall, if not stated
otherwise, be independent of other appearing functions. The explicit dependance upon a
specific function or value X will be denoted with cx.

e With ¢ we will always denote a positive real number which can be made arbitrarily small.

e For any Banach space X let X’ denote its dual. The duality pairing will be denoted with
('7 ')X X'

e For any Hilbert space W let (-, )}, denote its scalar product.

e For X and Y being two normed spaces, let Y”'HY denote the completion of the space X with
respect to the norm of Y.

e The continuous embedding of the Banach space X into the Banach space Y will be denoted
with X < Y if this embedding is also compact we will write X —— Y.

e Let N be the set of positive integers and let Ng = N U {0}.
e For every Banach space X, let Id denote the identity function.
e For given n € N, let I € R™*" denote the identity matrix.

e For T: X — Y being a linear operator, let N(T') C X denote the nullspace of T and let
R(T) C Y denote the range of T.

e For a = (a1, 9,...,a,) € Nj being a multiindex, let |of = > | a; and

Hlel

D% = u
(07 « (e}
0z 0x5? - - - Oxp™

e For an arbitrary subset A C R", let |A| denote its n-dimensional Lebesgue measure.
e For Q) C R" being a domain, its boundary 02 will be denoted with T'.

e For two sets A and B let AAB = (A\B) U (B\A) be the symmetric difference.
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Holder spaces
e For k € Ny, let C*(Q) be the set of all k-times continuously differentiable functions with norm

||~k oy = max sup |[D%u(x)].
il ox oy = misssup D)

e For k € Ny and o € (0,1], let C*7(2) be the set of all k-times continuously differentiable
functions whose derivatives of order k are Holder-continuous with exponent o. The norm is

defined via
[ull gt () = max {HUHck(Q) : \U\cm(ﬂ)} :
with
[D%u(x) — Du(y)|
]u\ck,g(m = max sup =
lal=Fk 2 e lz —yl
o Let

C>(Q) = () CH(9),
keN

be the set of functions which are arbitrarily differentiable, and let
CP(Q2) ={ue C>®()|suppu CC Q},

be the set of all arbitrarily differentiable functions with compact support in €.

Sobolev spaces

e For O € R" and p € [1,00] let LP(2) be the vector space of all (equivalence classes of)
measurable functions u with [lu[| ) < oo, where

i) = [ Il da.
Q

for p < 0o, whereas for p = oo the norm is defined via

||l fociqy = esssup |u(z)| = inf sup |u(z)].
L= @) zeQ I//\\f[‘cz%meﬁ\/\/

e For k € N let W¥P(Q) denote the vector space of all functions u € LP(Q) such that the weak
derivatives of u up to order k exist in LP(2). For p € [1,00), the norm is defined via

||UH€[/k,p(Q) = Z ||DauHI£p(Q)a
lo| <k
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and a seminorm can be defined via
ey = 3 1Dl -
la|=k

For p = co we have

_ (03
HUHWMOO(Q) = Eﬁ%’; D uHLOO(Q) )
_ (0%
|ul oo () = max ID%ul[ oo @) -
Let W:’p(Q) = CSO(Q)llek’p(Q). Within this space the seminorm ||y k(g is equivalent to
the full norm |[-[|yk 5 (), hence let

HUHW:J’(Q) = ’u‘W’f»P(Q)'

For s € R, s > 0 and s ¢ N, the space W*P(£) can be defined via interpolation. Let s = k+o
with k = |s| and o € (0, 1), then again for p < oo it holds that

HU‘H%/S,D(Q) = HuHﬁ,k,p(Q) + |u‘€vs,p(g) )

By = D < /Q /Q |Daf)__y|?fj;(y)’p dxdy). (B.1)

|laf=Fk

where

For 2 sufficiently smooth it holds that W*>=(Q) = C*7(Q).
With a slight abuse of notation we may write u € WP(Q) if u € (W*P(Q))".

For s € R with s < 0 and p € (1,00], the space W*P(Q) is defined as the dual space of
W, >4(Q), where ¢ € [1,00) such that 1/p+1/¢ = 1.

Let H*(Q) = W*2(Q), which is known to be a Hilbert space. For k € Ny it holds that
(U’U)Hk(ﬂ) = Z (/ D% D% d$> y
Q
lal<k
whereas the scalar product on the boundary will be denoted with (u,v) (). Let
(u,v)qg = (u, U)L2(Q) .
If the domain {2 is fixed and there is no risk of confusion, let
(u,v) = (u, U)LQ(Q) )
<U, ’U> = <U, U>L2(F)'
For Q, being a polygonal domain (possibly approximating 2) with boundary I'y,, let
(u,v),, = (u, U)LQ(Qh) )
<uv V) = <u’ U>L2(Fh)-

If two polygonal domains are used simultaneously, we will denote the second one with € and
boundary Ty, the notation (B.2)) shall hold accordingly.

(B.2)
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