Georeferenced Data Collection and Yield Measurement on a Self Propelled Six Row Sugar Beet Harvester

by

Demmel M., Auernhammer H., Rottmeier, J.

Institut für Landtechnik,
Technische Universität München
85350 Freising-Weihenstephan
Germany

Written for Presentation at the
1998 ASAE Annual International Meeting
Sponsored by ASAE

Disney's Coronado Springs Resort
Orlando, Florida
July 12-16, 1998
Data acquisition and yield measurement in a self propelled sugar beet harvester HOLMER 1995/1996 (Machinery Ring Dachau)
Space segment
21 (+3) satellites
6 orbital planes
20,183 km altitude
12 hours orbit period

Control segment
1 master control station
5 monitor stations
3 data uploading stations
(US Department of Defense)

Time + position +
1715.42 MHz (L1)
(P) and coarse/
acquisition (C/A) code

User segment
land vehicles
ships and boats
planes

System design of NAVSTAR
Global Positioning System (GPS)
Traces
(6 row sugar beet harvester)
Traces and processing data
(6 row sugar beet harvester)
<table>
<thead>
<tr>
<th>partfield</th>
<th>lower</th>
<th>middle</th>
<th>upper</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>1.8 ha</td>
<td>0.624 ha</td>
<td>0.293 ha</td>
<td>2.717 ha</td>
</tr>
<tr>
<td>driving / standing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>driving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[min]</td>
<td>[min]</td>
<td>[%]</td>
<td>[min]</td>
<td>[%]</td>
</tr>
<tr>
<td>driving</td>
<td>7.8</td>
<td>4.0</td>
<td>4.4</td>
<td>3.5</td>
</tr>
<tr>
<td>standing</td>
<td>10.7</td>
<td>3.5</td>
<td>4.4</td>
<td>3.5</td>
</tr>
<tr>
<td>lifting</td>
<td>56.9</td>
<td>65.1</td>
<td>19.9</td>
<td>60.5</td>
</tr>
<tr>
<td>unloading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standing</td>
<td>8.1</td>
<td>3.1</td>
<td>3.8</td>
<td>0.6</td>
</tr>
<tr>
<td>driving</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>others</td>
<td>3.1</td>
<td>3.5</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>total</td>
<td>87.4</td>
<td>100</td>
<td>32.9</td>
<td>100</td>
</tr>
<tr>
<td>harvesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>performance (rel.)</td>
<td>1.24 ha/h</td>
<td>1.14 ha/h</td>
<td>1.03 ha/h</td>
<td>1.19 ha/h</td>
</tr>
<tr>
<td>(100 %)</td>
<td>(91.9 %)</td>
<td>(83.1 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>harvesting speed</td>
<td>5.53 km/h</td>
<td>5.25 km/h</td>
<td>7.31 km/h</td>
<td>5.66 km/h</td>
</tr>
</tbody>
</table>
Conclusions

• Global Positioning Systems combined with some additional sensors and a data acquisition makes automated geo-referenced data collection in a sugar beet harvester possible.

• During the first season in 1995 the systems run without continuous support by scientific or technical stuff of the institute only started and stopped by the 65 years old driver.

• The technology for continuously working mass flow and yield detection in the sugar beet harvester needs further development and modification.

• The analysis of the data has shown that the position and time information of satellite positioning Systems together with some additional sensor data delivers work time studies without the usual gaps. The visualization of the traces of the harvester allows to analyse the harvesting process for future optimization.

• Automated data acquisition on the sugar beet harvester as well as on the sugar beet planter and sugar beet loader will become a key technology for future organization conception for the harvesting and fleet management in sugar (beet) production.

• For this final target the shown approach has to be developed. Beside the improvement of the yield detection system, heaper universal data recording systems are needed. They have to be based on the DIN 9684 standardized agricultural bus system LBS which will in future be followed by ISO 11783.