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Abstract
In this position paper we present the FP7 ERC starting grant project iHEARu (Intelligent systems’ Holistic Evolving Analysis of
Real-life Universal speaker characteristics). This project addresses several fundamental shortcomings in state of the art methods for
computational paralinguistics, by introducing holistic analysis, evolving learning of features and models, and collection of real-life,
large-scale data annotated in multiple dimensions (‘universally’). We discuss the first aspect of the project, holistic analysis, in more
detail, and give benchmark results using state of the art multi-target learning methods on the INTERSPEECH 2012 Speaker Trait
Challenge dataset (Likability Sub-Challenge). The results clearly indicate the need for improved machine learning methods and data

collection to learn holistic speaker classification.
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1. Introduction

With recent technology advances, automatic speech recog-
nition and synthesis have matured to the degree that they
are used on a daily basis by millions of people, e.g., on
their smart phones or in call services. During the next
years, it is expected that speech processing technology will
move to a new level of social awareness to make interaction
more intuitive, speech retrieval more efficient, and lend ad-
ditional competence to computer-mediated communication
and speech analysis services in the commerce, health, se-
curity, and further sectors. To reach this goal, rich speaker
traits and states such as age, height, personality and physi-
cal and mental states as carried by the tone of the voice and
the spoken words must be reliably identified by machines.
The iHEARu project aims to push the limits of intelligent
systems for computational paralinguistics by considering
Holistic analysis of multiple speaker attributes at once,
Evolving and self-learning, deeper Analysis of acoustic
parameters - all on Realistic data on a large scale, ulti-
mately progressing from individual analysis tasks towards
universal speaker characteristics analysis, which can be
easily learnt about and can be adapted to new, previously
unexplored characteristics.

In this paper, the state of the art in the field is described in
Section 2. Next, we will introduce our long-term goals and
describe the methodologies of the iHEARu project in Sec-
tion 3. An in-depth discussion of holistic analysis of multi-
ple speaker attributes is given in Section 4. Further, a first
attempt on multi-target classification to improve on three
paralinguistics tasks by jointly learning age, gender, and
subjective likability of the voice, is presented and evaluated
in Sections 5 and 6. We conclude with a summary and out-
look on future research topics in Section 7.

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Pro-
gramme under grant agreements No. 338164 (ERC Starting Grant
iHEARu) and No. 289021 (STREP ASC-Inclusion).

2. State of the Art

Analysing ‘the voice behind the words’ has been an active
topic in many fields of research for more than two decades
now (Wu and Childers, 1991; Cowie et al., 2001; Schuller
and Batliner, 2014). Early studies have emerged from
research in phonetics and automatic speech recognition
(ASR), and have focussed on simple characteristics such as
gender (Wu and Childers, 1991). Research on recognizing
human emotion from speech started at the beginning of this
century (Cowie et al., 2001). As a matter of fact, the re-
lated paradigm of ‘affective computing’, that focusses on
emotional aspects of natural human-machine interaction,
has driven speech technology research throughout the last
decade. In the recent years, a new major field of speech
recognition research investigating the speaker characteris-
tics beyond affective states is evolving: ‘computational par-
alinguistics’ (Schuller and Batliner, 2014). Research in this
field has delivered highly promising results and tools for the
community including the first widely used open-source af-
fect analysis toolkit openEAR (Eyben et al., 2009) and its
large-scale acoustic feature extractor openSMILE (Eyben
et al., 2013) which both have become standard tools and
references in the field. Furthermore, researchers from all
over the world have reviewed their speech analysis systems
in the light of the INTERSPEECH Challenges that have
targeted a multitude of tasks such as emotion (2009), in-
terest, age and gender (2010), sleepiness and alcohol intox-
ication (2011), as well as the OCEAN five personality traits
(Openness, Conscientiousness, Extroversion, Agreeable-
ness, Neuroticism), voice pathology and likability (2012),
emotion, autism, and social signals (2013), and cognitive
and physical load (2014). An overview of the evaluation
campaigns up to 2012 is given in (Schuller, 2012).

From a methodological point of view, today’s speaker
characteristics recognition mostly relies on standard ma-
chine learning techniques that have been proven successful
for various audio recognition tasks including speech and



speaker recognition. Most established techniques are static
modelling with Support Vector Machines (SVMs) and dy-
namic modelling with Hidden Markov Models (HMMs).
Generally, one starts with standard low-level descrip-
tors (LLDs) such as (Mel-frequency) spectrum, Cepstrum,
pitch, or voicing probability, extracted from short overlap-
ping frames of fixed length. Static modelling is then per-
formed by computing statistics of the LLD contours. Com-
bining static modelling of utterances with context knowl-
edge, Long Short-Term Memory (LSTM) Recurrent Neural
Networks (RNNs) have successfully been introduced for af-
fect recognition (Eyben et al., 2010). As a more recent ap-
proach to machine learning from unsupervisedly generated
features, Deep Belief Networks (DBNs) have been applied
to affect and likability recognition (Stuhlsatz et al., 2011;
Brueckner and Schuller, 2012; Le and Mower, 2013). De-
spite the manifold work done for a plethora of speaker char-
acteristics, the methodology has converged to a degree of
standardisation, and major breakthroughs have been lack-
ing in the past years. For many studies, it remains largely
unclear to what extent their findings can be transferred to
actual systems ‘in the wild’, for reasons outlined below.

Most importantly, today’s studies consider speaker charac-
teristics in isolation, i.e., single or only few speaker char-
acteristics are considered at once (cf. Figure 1). There is
very little exploitation of the interplay and synergies be-
tween different characteristics, yet in reality, strong interde-
pendencies between bits of paralinguistic information exist.
For example, it is intuitively clear that acoustic models for
gender classification (male vs. female) should be different
by age, since arguably the most important feature, pitch,
is also influenced by age. Still, before interdependencies
can be exploited in a more generic fashion, i.e., be learnt
from data, richly annotated data sets will have to be cre-
ated: at present, databases provide labels for only one or a
few speaker characteristics at the same time. Another sig-
nificant limitation of today’s systems can be seen in their
usage of acoustic features. These are mostly chosen ad-
hoc because ‘they seem to work well’, and are often sim-
ply borrowed from neighbouring disciplines in audio pro-
cessing such as ASR, instead of being tailored to the mod-
elling of speaker characteristics. Apart from features, the
limited transferability of most of today’s studies to real-life
applications is a more generic issue. First of all, this is be-
cause they are mostly carried out on hand-segmented, often
manually transcribed utterances recorded from noise-free
channels or in the presence of artificial noise and reverber-
ation, and often prompted speech. To cope with real-life
conditions in retrieval applications, however, robust single-
channel automatic speech detection, segmentation and en-
hancement of spontaneous utterances in real acoustic en-
vironments, transmitted over arbitrary channels, must be
addressed. Furthermore, all but a very few studies over-
look the issue of potential malicious system use, such as
faking of age, alcohol intoxication, or affective states; in
fact, this phenomenon has only lately received some atten-
tion in speaker verification (Alegre et al., 2013). Finally,
meaningful confidence measures (i. e., beyond simple pos-
terior probabilities or distances in the feature space) have
only been attempted recently (Deng and Schuller, 2012) de-

spite them being crucial for real-life applications such as
retrieval, dialogue systems and computer-mediated human-
to-human conversation.

All these shortcomings are the starting point for the re-
search envisioned in the iHEARu project.
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Figure 1: State of the art method for recognition of individ-
ual speaker characteristics. A standard machine learning
pipeline is applied, consisting of pre-processing (voice sep-
aration and segmentation), feature extraction and selection,
and classification/regression. Labels for (rather) small task
specific databases are supplied by expert labellers. Sim-
ulated active and simulated semi-supervised learning are
only considered by omitting labels from those expert la-
belled databases.

3. Methodology

To realise its ambitious goals, the iHEARu project aims
to leverage novel techniques for multi-target (multi-task),
semi-supervised and unsupervised learning. It is envi-
sioned to overcome today’s sparseness of annotated re-
alistic speech data by large-scale speech and meta-data
mining from public sources such as social media, crowd-
sourcing for labelling and quality control, and shared semi-
automatic annotation. Furthermore, by utilising feedback,
deep, and evolutionary learning methods, all stages from
pre-processing and feature extraction to the statistical mod-
elling can be subject to ‘life-long learning’ according to
new data. Finally, human-in-the-loop system validation and
novel perception studies are expected to help understand-
ing both of system behaviour and human interpretation in a
large variety of speaker classification tasks.

3.1. Holistic Processing

The iHEARu project intends to advance the state of the
art by investigating novel methodology for holistic analysis
of established speaker attributes, such as age and gender,
in conjunction with currently under-researched character-
istics, such as speech in different physiological and men-
tal states. Large-scale speech and meta data mining from
public sources (e.g., social media), combined with semi-
automatic annotation methods (e.g., active learning) will be
an essential means for building large, realistic, richly anno-
tated and transcribed data sets.



3.2. Evolving “Life-Long” Learning for
Self-Improvement

Self-learning and self-improvement in the iHEARu project
will not be limited to iterative data collection. Rather,
iHEARu will consider self-optimising feature extraction
and self-organising classifiers: The whole process of
speaker characteristics learning and analysis shall be self-
optimising, as depicted in the flow chart above. For real-
ising these ambitious goals, deep learning (Hinton et al.,
2012) combined with neuroevolutionary methods and non-
parametric Bayesian learning will play an essential role.
This provides promising means for creating self-optimising
statistical models and hierarchical input representations
with very little amount of supervision.

3.3. Analysis with Deeper Understanding and
Context-Dependent Speech Features

The iHEARu project approaches the acoustic feature gener-
ation and selection issue by trying to understand human rea-
soning in challenging conditions, from very low SNR, ap-
plication of voice conversion algorithms, and speech com-
pression, all the way to deliberate faking of voice or speaker
states by the subjects. As a consequence, the iHEARu
project will not only address environmental (technical)
robustness, but more importantly also robustness against
fraud.

3.4. Real-Life

To automatically obtain robust speech detection and seg-
mentation into meaningful units, the iHEARu project aims
to improve all of the pre-processing algorithms including
speech separation, noise reduction, voice activity detection,
and segmentation in a loop with the subsequent analysis
algorithms and the confidence scores given by these (cf.
Fig. 2). Further, dealing with real-life data also means cop-
ing with various transmission channels.

3.5. Universal Analysis

The iHEARu project addresses the automatic recognition
of speaker attributes and speaking styles that can be clearly
identified by humans. However, the iHEARu approach to
universal analysis is not to simply define more and more
new recognition tasks that are chosen ‘ad hoc’; conversely,
it is aimed at developing data-driven methods for a frame-
work which is able to automatically identify characteristics
of interest by looking at crowd-sourced resources, such as
tag collections, opinions in textual comments, or explicitly
collected annotations from paid click-workers.

4. Holistic Speaker Analysis with
Multi-Task Learning

Integrating the concept of holistic analysis into automatic
systems demands enhanced machine learning methods for
context-aware learning. The first step toward a holistic
analysis of speaker attributes is to consider multiple speaker
attributes simultaneously and jointly in existing learning
methods. One encounters many terms and buzz-words in
this respect in the literature, which all refer to different
concepts: multi-class, multi-label, multi-target, multi-task,
multi-instance, and others. Therefore, it is important to
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Figure 2: Flowchart of the proposed concept for holistic
evolving analysis of realistic universal speaker characteris-
tics. A large-scale collection of richly annotated data is cre-
ated and extended by semi-supervised and active learning.
Confidence measures of system components as well as hu-
mans in the loop are used to give feedback to components in
the processing chain in order to implement evolving holistic
learning.
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first clarify the definitions of these terms at this point. Tra-
ditional single-label or single-target learning is concerned
with learning from examples, where each example is as-
sociated with a single label ! from a set of disjoint labels
L,|L| > 1. For |L| = 2, the learning problem is called a
binary classification problem or filtering in the case of tex-
tual and web data, while for |L| > 2, it is referred to as a
multi-class problem (Tsoumakas and Katakis, 2007; Mad-
jarov et al., 2012). In contrast, multi-label learning is con-
cerned with learning from examples, where each training
example is associated with zero, one, or more labels taken
form a finite set of labels Y C L (Zhang and Zhou, 2013).

During the past decade, the multi-label problem has re-
ceived significant attention due to its wide variety of appli-
cations including text categorization, automatic annotation
for multimedia contents (e.g., images, music, video), bioin-
formatics, web and rule mining, information retrieval, tag
recommendation, etc. (Zhang and Zhou, 2013). Tsoumakas
and Katakis (Tsoumakas and Katakis, 2007) were the
first to group the multi-label learning approaches into two
main categories: a) problem transformation methods, and
b) algorithm adaption methods. The problem transfor-
mation methods refer to methods which transform the
multi-label classification problem into either one or more
single-label classification problems, for which there ex-
its a plethora of machine learning algorithms. The al-
gorithm adaption methods refer to multi-label methods
where an existing machine learning algorithm is adapted,
extended and customised in order to handle multi-label
data directly. Furthermore, besides these two categories
of methods for multi-label learning, Madjarov et al. (Mad-
jarov et al., 2012) have introduced a third category: en-



semble methods. The most well known problem trans-
formation ensemble methods are the RAKEL system by
Tsoumakas et al. (Tsoumakas and Vlahavas, 2007), ensem-
bles of pruned sets (EPS) (Read et al., 2008) and ensem-
bles of classifier chains (Read et al., 2011) (ECC). The
ECC method iteratively trains a multi-target classifier (or
regressor) (y1,...,yr)) = h(x), where x is a feature
vector. Forl = 1,...,|L|, a single-target base classifier
Yy = hi(X,y1,...,y1—1) is trained, i.e., the estimates of
the other targets are included as features. Since the order
of labels clearly affects the results, bagging is performed
to create an ensemble of classifiers using different label or-
ders (and instance weights). An advantage of ECC over
multi-task methods based on regularization (Evgeniou and
Pontil, 2004), which presumes task similarity, is that not
only correlations among labels but also correlations of la-
bels with label-feature combinations can be effectively ex-
ploited, and that the method does not saturate with large
amounts of training data (Read, 2010).

In a broad sense, multi-label learning can be regarded
as a special case of multi-target learning, i.e., multi-
dimensional learning. In multi-target learning, an example
(a data instance) is associated with more than one target
variable (as opposed to single-target learning, where only
one target value is associated). Each target variable can
take multiple numeric (regression) or nominal values (dis-
crete classes). The multi-label case can now be seen as a
special case of multi-target learning, where all target vari-
ables are binary and each target variable corresponds to a
label being present or not.

Multi-target learning is often also referred to as multi-task
learning. Besides learning multiple tasks/targets in par-
allel, information of related tasks is used as an inductive
bias to improve the generalization performance of other
tasks (Caruana, 1997).

Going back to multi-label learning, the differences between
multi-label and multi-task learning are not conceptually
based, but given by the different nature of the problems and
use-cases addressed. Thus, in multi-label learning often a
large space of labels is handled while in standard multi-task
or multi-target learning a small set of labels is handled. For
the holistic analysis in the iHEARu project both methods
will be considered and investigated. Given the fact that they
are closely related might result in novel, beneficial combi-
nations of algorithms from both areas (Mencia, 2010).
Completely different from the problems of multi-label and
multi-task learning, is multi-instance learning, where label
sparseness is the core issue: for a bag of multiple instances,
only one label exists for the whole bag and information on
labels for the individual instances is lacking (Maron and
Lozano-Pérez, 1998). In the most primitive case the label
is only a binary label (positive and negative instances) and
positively labelled bags have to contain at least one instance
with a positive label, and negatively labelled bags contain
only instances with negative labels (Maron and Lozano-
Pérez, 1998). In the context of computational paralinguis-
tics, potential applications of multi-instance learning can be
found, e.g., in emotion detection: For example, if a speaker
displays negative emotion, this usually affects a few short-
time observations, while the remaining observations are

Table 1: Partitioning of Speaker Likability Database (L:
likable / NL: non-likable); Age (Y: young / A: adult / O:
old); Gender (M: male / F: female)

Task SLD# Train Devel Test >
L L 189 94 117 400
Likability 1 505 g4 111 400
Y 116 47 70 233

Age A 131 58 76 265
O 147 73 8 302

Gonder M 195 89 113 397
F 199 89 115 403

similar to a ‘neutral’ state; in turn, manual annotation of
each short-time observation is too cumbersome to perform
on a large scale, in contrast to labelling whole utterances.

S. Experimental Setup
5.1. Selected Database

This section introduces multi-task learning experiments for
the joint classification of speaker age, gender, and the av-
erage subjective likability of the speaker’s voice by oth-
ers. For that purpose, we use the database of the Likability
Sub-Challenge of the INTERSPEECH 2012 Speaker Trait
Challenge and perform multi-task learning with the MEKA
toolkit, which is an extension to the WEKA machine learn-
ing framework by adding support for multi-label and multi-
target classification (Hall et al., 2009).

In the Likability Sub-Challenge, the “Speaker Lika-
bility Database” (SLD) was used (Burkhardt et al.,
2011). The SLD is a subset of the German Agender
database (Burkhardt et al., 2010), which was originally
recorded to study automatic age and gender recognition
from telephone speech. The speech is recorded over fixed
and mobile telephone lines at a sample rate of 8 kHz. The
database contains 18 utterance types taken from a set listed
in detail in (Burkhardt et al., 2010). An age and gender
balanced set of 800 speakers is selected. While the annota-
tion provides likability in multiple levels, the classification
task is binarised into ‘likable’ (L) and ‘non-likable’ (NL).
The data are partitioned into a training, development, and
test exactly as in the INTERSPEECH 2012 Speaker Trait
Challenge (cf. Table 1).

5.2. Feature Extraction

The acoustic feature set used in this experiment corre-
sponds to the baseline feature set of the INTERSPEECH
2012 Speaker Trait Challenge (Schuller et al., 2012). The
open-source openSMILE feature extractor is used (Eyben
et al., 2013) to ‘brute-force’ a high-dimensional feature
set by applying statistical functionals to frame-wise LLDs,
which comprise energy, spectral and voicing related low-
level descriptors (LLDs). The chosen set of LLDs is shown
in Table 2. Regarding functionals, we aim at a compromise
between a broad variety of functionals, and careful selec-
tion so as not to include meaningless features, such as the
arithmetic mean of delta coefficients, which is expected to
be zero. The set of applied functionals is given in detail



Table 2: 64 provided low-level descriptors (LLD).

4 energy related LLD

Sum of auditory spectrum (loudness)

Sum of RASTA-style filtered auditory spectrum

RMS Energy

Zero-Crossing Rate

54 spectral LLD

RASTA-style auditory spectrum, bands 1-26 (0-8 kHz)
MFCC 1-14

Spectral energy 250-650 Hz, 1 k-4 kHz

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90

Spectral Flux, Entropy, Variance, Skewness, Kurtosis,
Slope, Psychoacoustic Sharpness, Harmonicity

6 voicing related LLD

FO by SHS + Viterbi smoothing, Probability of voicing
logarithmic HNR, Jitter (local, delta), Shimmer (local)

Table 3: Applied functionals. *: arithmetic mean of LLD

/ positive A LLD. 2: only applied to voice related LLD. 3:
not applied to voice related LLD except FO. *: only applied
to FO.

Functionals applied to LLD/A LLD

quartiles 1-3, 3 inter-quartile ranges

1 % percentile (= min), 99 % percentile (= max)
position of min/max

percentile range 1 %-99 %

arithmetic mean!, root quadratic mean

contour centroid, flatness

standard deviation, skewness, kurtosis

rel. duration LLD is above /below 25/50/75/90% range
rel. duration LLD is rising/ falling

rel. duration LLD has positive / negative curvature?
gain of linear prediction (LP), LP Coefficients 1-5
mean, max, min, std. dev. of segment length3

Functionals applied to LLD only

mean of peak distances

standard deviation of peak distances

mean value of peaks

mean value of peaks — arithmetic mean
mean/ std.dev. of rising / falling slopes
mean/ std.dev. of inter maxima distances
amplitude mean of maxima/minima
amplitude range of maxima

linear regression slope, offset, quadratic error
quadratic regression a, b, offset, quadratic error
percentage of non-zero frames*

in Table 3. Altogether, the 2012 Speaker Trait Challenge
feature set contains 6 125 features, which is roughly a 40 %
increase over previous year’s feature set.

5.3. Single- and Multi-Target Learning

To assess the potential of multi-target learning, we compare
the following learning schemes, all of which can be found
in MEKA.

e Single-target learning (ST), i.e., independent training

Table 4: Classification results for likability, age, and gen-
der targets for single target classification (ST), multi-target
classification by Ensembles of Classifier Chains (ECC) or
Class Relevance (ECR), and “oracle” single target clas-
sification with the other two labels included as features
(OMT). SVM with SMO training, complexity C' optimised
on the development set between 0.0001 and 1.0.

ST ECC ECR
Development set
Likability 589 554 549 60.0

UAR [%] OMT

Age 49.7 519 519 50.2
Gender 944 949 949 95.5
Test set
Likability 58.1 528 575 57.3
Age 46.9 460 453 46.9

Gender 969 969 96.0 96.9

of single-target classifiers — linear support vector ma-
chines (SVMs) trained by sequential minimal opti-
mization (SMO) are chosen;

e Multi-target learning by the ECC method, using SMO-
trained SVMs as the base classifier;

e Multi-target learning by the Ensembles of Class Rele-
vance (ECR) method, using SMO-trained SVMs as the
base classifier — this corresponds to bagging of single-
target SVM classifiers;

e ‘Oracle’ multi-target learning with SMO-trained
SVMs (OMT), where each single-task classifier uses
the correct labels for the other tasks as features.

In contrast to ECC, ECR breaks down the multi-target
learning problem by considering each [ independently, i.e.,
y = hi(x). However, in contrast to ST, an ensem-
ble of classifiers is trained with different instance weights

(bagging). Finally, the OMT method can be written
as Yy = hl(Xa gla R :&l,]_, Z}H*h s 7Q|L\)’ where y =
(91, - .-, 9z|) is a vector of ground truth labels.

For the parameter instantiation, we choose the complexity
parameter C € {107%,1072,...,1} for the SMO algo-
rithm that achieves best UA recall on the development set,
while the rest of the parameters are set as default values
recommended by MEKA.

As evaluation measure, we use unweighted average (UA)
recall (UAR) as used in the INTERSPEECH 2012 Speaker
Trait Challenge (Schuller et al., 2012).

6. Results and Discussion

Table 4 shows the results obtained for single and multi-task
classification, as well as for the oracle single-task exper-
iment where the ground truths of the other labels are in-
cluded as features in the training and development/test sets.
Let us first look at the results of the oracle experiment,
which hint at the performance attainable by the ECC ap-
proach, which is based on iterative classification using es-
timated class labels for the other tasks. It can be seen that
only a few slight (statistically insignificant, according to a



z-test) performance improvements on the development set
are obtained when including the ground truth labels for the
other two tasks (OMT). Unsurprisingly, this greatly limits
the performance of the ECC multi-task learning approach.
Comparing with the ECR results, the slight performance
improvement observed in age classification by the ECC ap-
proach might as well be attributed to bagging, not multi-
target learning as such. On the test set, none of the multi-
target methods can improve over the single-target baseline
(ST).

Overall, but particularly for the likability task, we found
that performance heavily depended on the complexity pa-
rameter, and parameter selection on the development set did
not generalise to the test set. As the complexity parameter
controls the feature weights in the SVM, this indicates that
the features deemed most important on the development set
do not model well the test set. For instance, if we tuned the
complexity for the likability task on the test set, we could
attain 61.4 % UAR with ECC and 61.0 % with ECR, instead
of 52.8/57.5 %.

7. Conclusions

In this paper, we introduced the iHEARu project, which
addresses some of the shortcomings of current research in
computational paralinguistics, one of them being looking
at speaker attributes in isolation. A few initial experiments
with state of the art multi-target learning methods could not
demonstrate improvements over conventional methods. As
there are clear signs of overfitting, poor performance can
also be attributed to very limited amounts of training data,
and failure to extract features that generalise across dif-
ferent speakers. Furthermore, since even the inclusion of
ground truth labels from other tasks could not improve per-
formance, it is obvious that there is still large room for im-
provement in existing machine learning methods for multi-
target learning, as foreseen in the iHEARu project. For ex-
ample, the combination of large-scale, continuous valued
feature sets with small-scale, discrete valued label sets in
a linear or kernel feature space is arguably sub-optimal; a
more suited alternative could lie in novel architectures of
Bayesian networks or decision forests. Besides, it seems
that multi-target learning can only be successful if consider-
able progress is also made in the other research challenges
addressed by the iHEARu project: large-scale data collec-
tion with truly multi-dimensional (‘universal’) labels, but
also unsupervised and semi-supervised feature learning, as
well as features inspired by human perception, which are
expected to lead to better generalisation. For example, to
address the scarcity of multi-target databases (where all in-
stances are labelled in multiple dimensions), and alleviate
overfitting, we can investigate large-scale unsupervised fea-
ture learning followed by discriminative fine-tuning, using
semi-supervised learning to determine missing labels.
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