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Zusammenfassung

In dieser Dissertation, schlagen wir einen Rahmen für die Gestaltung von dezentralen
Preismechanismen und zentralisierten Auktionsmechanismen ohne und mit böswilligen
Benutzern vor. Zunächst entwerfen wir Preismechanismen für eine effiziente Leistungszuteilung
in einem Uplink von Multi Carrier Code Division Multiple Access (MC-CDMA) mit
price taking Nutzern. Der Mechanismus wird um Leistungsrestriktion auf die Nutzer
sowie Träger und für die Umsatzmaximierung und Energieminimierung erweitert. Auch
Preismechanismen werden für multihop heterogene drahtlose Netzwerke ausgelegt. Ein
iterativer Algorithmus vorgeschlagen und seine Konvergenz bewiesen. Eine Regressions
learning methode wird durch den Designer verwendet, um die Utility-Funktionen von
Nutzern, von ihren Aktionen zu lernen. Wir verwenden diesen Preismechanismenrah-
men, um einen Speicherort Privatsphrenmechanismus für Mobile Commerce mit Entropi-
enutzenfunktionen und Budgetrestriktion zu entwerfen. Als nächstes wird ein zentral-
isierter Auktionsmechanismus mit price anticipating Nutzern vorgeschlagen und seine
Effizienz nachgewiesen. Eine neue Modellierung für Nutzenfunktion von böswilligen
Nutzern wird vorgeschlagen und eine Metrik Price of Malice (PoM) zur Quantifizierung
der Wirkung der böswilligen Nutzern definiert. PoM für die Preismechanismen und die
Auktionsmechanismen werden erhalten. Sowohl die Preismechanismen und Auktions-
mechanismen werden modifiziert für die Anfechtung von böswilligen Nutzern. Weiter
schwachen wir die Annahme, dass die Nutzer und der Designer wissen, die Art von
Nutzern. Dann schlagen wir Bayes-Mechanismen. Die Bedingungen sind erhalten, unter
denen die Unsicherheit über die Art der Nutzer ist Vorteil für die regelmigen Nutzer und
Designer. Die Wahrscheinlichkeit, dass ein Nutzer böswillig ist, mit machine learning
methoden aufgebaut. Die differenzierte Preis mit diese probabilistische Informationen
wird implementiert. Dann Preismechanismen mit böswilligen Nutzer auf einen Fall, wo
jeder Nutzer eine Quality of Service(QoS) Anforderung, erweitert.

5





Abstract

In this thesis, we propose a framework for designing decentralized pricing and central-
ized auction mechanisms in the presence and absence of malicious users. First, we design
pricing mechanism for efficient power allocation in the uplink of a single cell Multi Car-
rier Code Division Multiple Access (MC-CDMA) system with strategic and price taking
users. The mechanism is extended to sum power constraint over the users and carriers.
Additionally, prices are designed for different designer objectives such as revenue max-
imization and energy minimization. We also consider multihop heterogeneous wireless
networks and design appropriate pricing mechanisms for efficient joint power and rate
allocation. An iterative algorithm for pricing mechanism is proposed and its conver-
gence is proven. We use the pricing mechanism framework to design a location privacy
mechanism for mobile commerce with entropy utility functions and a budget constraint.
A regression learning method is used by the designer to learn the utility functions of
users from their actions. This is in contrast to direct mechanisms where the designer
asks the users to report their utility functions. Next, a centralized auction mechanism
for networks with interference coupled utilities and price anticipating users is proposed
and its efficiency is proven. A new modeling of malicious user utility function is pro-
posed and a metric Price of Malice (PoM) for quantifying the effect of malicious users
is defined. The PoM and related metrics for pricing and auction mechanisms are ob-
tained. Then both the pricing and auction mechanisms are extended for countering the
malicious users using differentiated pricing. Next, we relax the assumption that the
users and the designer know the nature of users and design Bayesian mechanisms. By
comparing to the complete information case, the conditions under which the uncertainty
about the nature of the users is beneficial for the regular users and the designer, are ob-
tained. The probability of a user being malicious is constructed using learning methods
and the differentiated pricing is implemented using this probabilistic information. Then
pricing mechanisms with malicious users are extended to a case where each user submits
a Quality of Service(QoS) requirement.
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History shows that where ethics and economics come in conflict, victory is always with
economics. Vested interests have never been known to have willingly divested themselves
unless there was sufficient force to compel them.

- Dr. Bhimrao Ramji Ambedkar, The principal architect of the Constitution of India,
1945.
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1 Introduction

As mobile devices get higher computational and storage capability, the assumption that
they will blindly follow the algorithms in the network does not hold anymore. When
mobiles play a more active role in strategic resource allocation decisions in wireless
networks, the interaction between the individual devices and system owners become
more complex. The algorithms in the mobile devices will act strategically to gain better
throughput to the devices at the expense of overall network performance. Also, the
wireless users have the opportunity of manipulating the network by misrepresenting their
private information for their own benefit. Some devices may even get better benefit from
harming the throughput of other devices (users) by maliciously influencing the resource
allocation algorithms. Therefore, the behavior of the users in a wireless network vary
from selfish to extreme maliciousness. It is in the interest of the network to efficiently
allocate scarce network resources such as power and spectrum to devices of competing
interests in a decentralized network. For this, the network designs prices to align the
utility of the individual devices to the network goal.

In this thesis, we propose a framework for designing decentralized pricing without and
with malicious users. We address a class of problems known as distributed mechanism
design, which deals with designing pricing for distributed networks. The designer (net-
work) aims to design appropriate incentives and algorithms in order to achieve certain
network level goals while additionally eliciting true preferences from users. We also
propose centralized auction mechanisms where the designer has more control over the
resource allocation. Mechanisms such as pricing schemes and auctions are utilized to
design wireless resource allocation schemes, which can be analyzed within the mathemat-
ical framework of strategic (noncooperative) games. Although the participating players
are selfish or malicious, these mechanisms ensure that the game outcome is optimal with
respect to a global criterion (e.g. maximizing a social welfare function) and strategy-
proof, i.e. players have no reason to deceive the designer. The mechanism designer
achieves these objectives by introducing specific rules and incentives to the players; in
this case, by adding resource prices to their utilities.

In this chapter, we provide the motivation behind the different problems addressed in
this thesis, explain the previous results and give the contributions and the outline of the
dissertation.

1.1 Power Control in Wireless Networks

In a distributed wireless network, the control of power allocation by the users is an
important problem. The Signal-to-Interference plus Noise Ratio (SINR) based utilities
received by the users bring interference coupled functions in the optimization problems
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1 Introduction

of the individual users and also base station. The strategic and selfish nature of the
users in distributed wireless networks, makes game theory the most appropriate tool for
analyzing the power allocation problems.

Price of Anarchy (PoA), first defined by E. Koutsoupias and C. Papadimitriou [71],
can be summarized as loss in overall efficiency which occurs in networks when the users
are selfish. It is a metric which quantify the efficiency loss in competition compared to
cooperation. Distributed mechanism design aims to mitigate PoA and achieve system
level goals such as maximization of aggregate user performance in the network.The
network designs appropriate pricing for different network level goals based on the received
SINR from all the users which is measured by the base station.

Next generation wireless systems for broadband wireless access allocate the frequency
band simultaneously for multiple users over multiple orthogonal carriers using schemes
such as Orthogonal Frequency Division Multiplexing Access(OFDMA), Orthogonal Fre-
quency and Code Division Multiplexing (OFCDM) or Multi-Carrier Code Division Mul-
tiple Access (MC-CDMA)[107]. For instance, OFDMA is used in the downlink and Single
Carrier FDMA (SC-FDMA) is used in the uplink of the 3GPP LTE standard. OFDMA
results from combining Orthogonal Frequency Division Multiplexing (OFDM), which
splits input stream of symbols into a number of parallel streams which are transmitted
over orthogonal subcarriers, with Frequency Division Multiplexing Access (FDMA) tech-
nique [83]. OFDM has high robustness against multipath interference (MPI) as channel
equalization can easily be performed in the frequency domain. OFDMA allows multiuser
communication by dividing the available subcarriers to subchannels that are allocated
to distinct users for simultaneous transmission.

Single-carrier CDMA is not suitable for communication over a broadband channel due
to the vulnerability to multipath interference. Combining CDMA with OFDM as in
MC-CDMA, benefits from the robustness of OFDM to MPI[78]. MC-CDMA also gives
frequency diversity and facilitate one-cell frequency reuse in a cellular environment, in
addition to the benefit of OFDM. Therefore, MC-CDMA is considered as a potential
candidate for next generation broadband wireless systems. In MC-CDMA, the power
strategy selected by one user affects other users through multiple access interference and
this makes the game interactions between the users interesting.

In the first part of the thesis, we propose a framework to find the optimal pricing for
a general multiuser multi-carrier wireless system. The optimal pricing function depends
on the different network goals such as net utility maximization, revenue maximization
and energy minimization. Another important factor is the topology of the network.

Due to their ability to bring about massive spatial reuse of frequency, small cell base
stations such as Femto Base Stations (FBS) or Pico Base Stations (PBS) are increasingly
important for improving network capacity. At the same time, FBSs also give better data
rate to end users due to short transmission range and fewer users per cell. FBSs are
normally deployed in indoor home or office environments owned or rented by second
parties other than the service provider, and are normally underutilized. One way to
better utilize the capacities of FBSs is to employ the FBSs as relays [43]. In this scenario,
FBSs carry traffic from the Macro Base Station (MBS) to Macro Users (MUs), in addition
to serving Femto Users (FUs). The relaying generates revenue for the owner of the
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FBSs. Moreover, the relaying extends the coverage of FBSs to outdoor environments
[51], thereby reducing the burden on the MBS. If the network is multihop, the pricing
function need to take into account the power and rate allocation at different parts of the
network. This thesis deals with designing prices for different network goals and also for
multihop wireless networks.

1.2 Location Privacy and Security Problems in Wireless
Networks

In mobile commerce, a company provides location based services to a set of mobile users
who are concerned about their location privacy. The users report to the company their
location with a level of granularity to maintain a degree of anonymity, depending on their
perceived risk. According to the level of accuracy of information, the users receive in re-
turn monetary benefits or better services from the company. We formulate a quantitative
model, in which information theoretic metrics such as entropy quantify the anonymity
level of the users. The individual perceived risks of users and the benefits they obtain are
considered to be linear functions of their chosen location information granularity. The
interaction between the mobile commerce company and its users are investigated using
mechanism design techniques as a privacy game. The user best responses and optimal
strategies for the company are derived under budgetary constraints on incentives, which
are provided to users in order to convince them to share their private information at the
desired level of granularity.

Security problems in wireless networks include jamming, Denial of Service (DoS) at-
tacks and Botnets. We propose a general framework to deal with these security prob-
lems and additionally address the specifics of jamming and Botnet problems. Botnets
are software programs which compromise the networked devices (bots) and carry out
Distributed Denial of Service (DDoS) attacks in the network. DDoS attacks use the
overall network bandwidth and other resources of the bots, to deny the legitimate ac-
cess to resources. The high inter-connectivity of the wireless network with the Internet
makes these networks highly vulnerable to security attacks.There is a need for a differ-
ent modeling of utility functions of malicious users who create security problems than
the utility functions of regular users. This different modeling is important to find the
resource allocation solutions and to quantify the effect of malicious users on the network
performance. Also some of the malicious users collude to increase the impact of their
activities on the regular users and to have selfish benefits. In the mechanism design liter-
ature, the mechanisms which are resistant to collusion are referred to as group-strategy
proof mechanisms. The pricing schemes are vulnerable when there are malicious users
in the network. In this dissertation, we quantify the effect of malicious users on the
pricing schemes which are originally designed for networks with only selfish users. Then
we modify these mechanisms to counter the malicious users.

Price of Malice (PoM) is a form of PoA which occurs in the presence of malicious
users in the network. It quantifies the effect of malicious users on the net utilities of the
regular users. The mechanism rules need to be modified to reduce the PoM . Mitigating
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PoM is compelling than mitigating PoA, due to the difficulty in detecting the malicious
users or obtaining the statistics about malicious user population int he network.

1.3 Wireless Networks with Limited Information

For the efficient resource allocation to the users, the designer need to know their utility
functions which are usually infinite dimensional. In distributed mechanism design, the
designer finds allocation and pricing rules based on the one dimensional scalar signals
from the users. Alternatively, the designer can assume a surrogate utility function for
the users and make them report a scalar parameter of the utility function [65]. Learning
schemes can be used to obtain utility functions from the signals of the users for designing
prices and allocation.

In realistic situations, the users are uncertain about the nature of other users, i.e.
whether others are regular users or bots (malicious users). In this thesis, we study the
conditions under which uncertainty in the network is beneficial for regular users. The
boundary conditions are based on wireless system parameters. A malicious user does not
want to harm other malicious users by unnecessarily spending more energy and paying
more price for the extra power. Therefore, by creating the uncertainty about their nature
by hiding, the regular users confuse the malicious users. The uncertainty created in the
network is a way for the regular users to counter the malicious users and have better
utility for themselves. By observing the network over long period of time, the designer
forms probability distributions on the nature of users and then design prices based on
them.

For different resource allocation algorithms in wireless networks involving games, the
users need to know the channel gain of other users for finding their best response.
Sometimes, the designer also need to know the channel gains of all the users to find
the prices and allocations. We address all these limited information cases in this thesis
to make our results realistic to the existing networks. In the later part of the thesis,
we relax the information assumptions in the first part and use learning methods and
Bayesian analysis.

1.4 Literature Review

1.4.1 Power Control Games

An Iterative Water Filling (IWF) algorithm is proposed in [120] to maximize the sum
rate in the presence of individual power constraints in a Gaussian Multiple Access Chan-
nel (GMAC). This algorithm converges to a non-pareto-optimal Nash equilibrium and
inefficient sum rate when the independent and strategic users take their power levels in a
distributed fashion. Pricing of transmit power for Pareto improvement of the inefficient
Nash equilibrium in noncooperative power control game is introduced in [100]. The pric-
ing function is linear in transmit power and the utility of users are defined in terms of
bits per Joule. In [78], the Nash equilibrium for a multi-carrier CDMA game is charac-
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terized. There is no pricing to move the NE to the desired point and the utility function
they consider are one to obtain the energy efficiency. A distributed pricing mechanism
for interference coupled systems in which each user announces a price is proposed in [58].
The price signal from each user reflects the interference compensation price paid by the
other users. In [114], a pricing based game for spectrum allocation with individual power
constraint and multiple carriers is analyzed and a Price based Iterative Water Filling is
proposed. The social optimization problem is taken as the weighted sum of Shannon ca-
pacities which are the utilities of individual users. To enable the users to achieve better
Nash equilibrium a price based iterative distributed water-filling algorithm is proposed
in [114]. In [38], a modified Vicrey-Clarke-Groves (VCG) mechanism is obtained for
allocation of a divisible resource in which the pricing function is modified for achieving
efficiency, individual rationality and almost budget balance properties.

Myerson [86] introduced optimal auctions in which the designer knowing the distribu-
tion of private values of players maximizes the expected revenue. In [40], for a wide-band
wireless network that employs CDMA as the spectrum access mechanism, the revenue
maximization problem is formulated as a Stackelberg game. The optimal prices are ob-
tained for the Nash equilibrium points. For revenue maximization in a similar setting,
suboptimal constant distributed pricing scheme is proposed in [93]. In [1], for a gen-
eral delay network, a two-stage dynamic pricing-congestion game in which the service
provider sets a price anticipating demand of users and users chose their flow vectors
given the prices, is analyzed. An optimal revenue maximizing pricing is proposed for
networks with several competing oligopolies and the extent of inefficiency loss is lower
bounded. In [103], a lower bound for the ratio between the revenue from flat entre fee
pricing rule and maximum revenue possible is provided, which they refer to as the Price
of Simplicity (PoS). A price discrimination scheme is also studied and Price of Simplicity
is obtained for it.

Recently, researchers have become more aware of environmental concerns and the
need for energy efficient protocols [66]. In [78], a game theoretic model is proposed
for energy efficient power control by defining utility of users as the ratio of through-
put(goodput) and power (with unit bit/J) for multi-carrier CDMA wireless systems.
A repeated game model and the cooperation induced due to repeated interaction is
analyzed in [16].

In [116], a pricing game is considered within a multi-hop relay network where link
cost functions depend only on the traffic flow rate. Each relay submits to the Source
a charging function and a demand for a traffic share. The paper [117] investigates
pricing games with both complete and incomplete information within multihop wireless
networks, without taking into account the interference coupling between relays. For the
complete information case, it is shown that all NE’s are efficient and that there exists
an efficient NE where each relay uses a charging function which depends linearly on
the traffic flow rate. In [30], cooperative relaying is considered where the relays are
incentivized to forward packets within a Stackelberg game framework. A bargaining
game with utility requirements is considered for the same scenario in[28]. In another
relevant work, the authors of [58] proposed, within a wireless ad hoc network setting,
an asynchronous pricing algorithm in which each user cooperatively announces a price
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to which all users respond by adjusting their transmission powers. The price announced
by each user reflects its sensitivity to the interference created by other users.

1.4.2 Location Privacy

A wireless location privacy protecting system is analyzed and an information theoretic
approach to define anonymity is proposed in [59]. In [61], the interaction between the
local adversary deploying eavesdropping stations to track mobile users and mobile users
deploying mix zones to protect their location privacy is studied using a game-theoretic
model. MobiAd, a system for personalized, localized and targeted advertising on smart
phones is proposed in [60]. Utilizing the rich set of information available on the phone,
MobiAd presents the user with local advertisements in a privacy-preserving way by
routing the information through a delay tolerant network. In this work they suggest the
service provider to give discounts to motivate users to use MobiAd system.

1.4.3 Learning and Iterative methods in Game theory

In [67], an iterative algorithm is proposed for VCG and scalar parameterized VCG mech-
anisms which reduces the amount of overhead information by appropriate selection of
the initial value of bids. The appropriate selection takes into account the previous bids
and plays an important role in convergence to a NE. But they do not attempt any learn-
ing of the utility function. An iterative auction iBundle [90] is proposed in a setting in
which users take myopic best-response bidding as response to the bid of other users and
rules set by the designer. The optimality of proposed iterative auction is proved with
connection to primal-dual optimization theory. In [14], the authors reduce mechanism
design problems to standard algorithmic problems using techniques from sample com-
plexity. The approach in [52] considers a learning phase followed by an accepting phase,
and is careful to handle incentive issues for agents in both the phases. They study a
limited-supply online auction problem, and construct value- and time-strategyproof auc-
tions. The scenario when the users are strategic and they may manipulate the labeling
for their individual benefit is considered in [42].

1.4.4 Malicious Behavior in Games and Mechanisms

In networked systems with selfish users, a loss in overall social welfare was identified and
referred to as Price of Anarchy in [71, 96]. In [84],with the presence of malicious users
this concept was extended and Price of Byzantine Anarchy and Price of Malice were
first introduced and obtained bounds on these metrics, which are parametrized by the
number of malicious users for a virus inoculation game in social networks. A modified
definition was proposed in [12] for congestion games based on the delay experienced at
Nash equilibrium point with and without the presence of a malicious player. Both of
these works observed a Windfall of Malice, where malicious behavior actually improves
the social welfare of non-oblivious selfish users due to the better cooperation resulting
because of the ’fear factor’ or effects similar to Braess’s paradox [12]. In [95], a more
general definition of Price of Malice was given with weaker assumptions than above
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mentioned works in the presence of Byzantine players and using a no-regret analysis. A
game theoretic model for the strategic interaction of legitimate and malicious players
was introduced in [111], where the authors derived a bound on the damage caused by
the malicious players. In [31], partial altruism of some of the users was analyzed and a
bound on Price of Anarchy was obtained as a function of the altruism parameter. In [10],
the Degree of Cooperation of a user as a vector of values was used to obtain a convex
combination of other user utilities and to model altruistic behavior in the context of
network routing games. The Value of Unilateral Altruism (VoU) was defined to be the
ratio of the equilibrium utility of the altruistic user to the equilibrium utility she would
have received in Nash equilibrium if she was selfish and was calculated for routing games
in [11].

In order to circumvent Price of Anarchy, a pricing scheme for price taking users
[70, 5, 18] and auctions for price anticipating users [75, 65] were developed. In [27], the
effect of spiteful behavior of some of the users was analyzed in the context of first and
second price auctions and the revenues obtained from each were compared. A Bayesian
Nash equilibrium is obtained. A similar analysis was carried out in [110].

There are works in mechanism design literature, e.g. [56, 29, 7], addressing the issue of
some (malicious) players forming a coalition and gaining unfair advantage by misleading
the designer. Such collusion behavior is adversarial to the mechanism because it destroys
some of its desirable properties. These works developed group-strategy proof mechanisms
which are resistant to collusion and estimate the effect of collusion on overall efficiency
and revenue. Price of Collusion was introduced in [54] as the worst possible ratio between
the social cost at equilibrium before and after the collusion scenario. Some other metrics
to quantify the effect of collusion were defined in [6] and obtained in the context of load
balancing games.

To counter the adversarial behavior, Micali & Valiant in [80], developed a modified
Vickrey-Clarke-Groves (VCG) mechanism, taking into account collusive, irrational, and
adversarial user behavior for combinatorial auctions. In the proposed mechanism, the
price charged to an agent is increased from VCG price by a scaled factor of the maximum
social welfare of other agents. The First Price auction was modified to make it incentive
compatible to adversarial behavior and other externality effects in [87].

There has been a lot of work on games and mechanisms with incomplete information.
Games with Bayesian players have been studied a lot in works starting with [53]. Cor-
related equilibria in the context of incomplete information about other players, where
the probabilities reflect the uncertainty about other players, were investigated in [8].
Recently there has been an increasing interest to analyze the security problems using
game theory [76, 115]. Jamming problems are investigated using game theory in [118, 9].

1.4.5 Bayesian Mechanisms

In [73], an attack, by botnets composed entirely of mobile phones, using selected service
request of user location in the network is studied. Through measurement, simulation
and analysis, the authors in [73] have demonstrated the ability of a botnet composed
of as few as 11,750 compromised mobile phones to degrade service to area-code-sized
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regions by 93 percent. In [98], Bayesian jamming games are considered and the NE
points for different jamming scenarios are obtained. Some of the works on anomaly
based detection for mobile botnets are [15], [113] & [97]. While allocating resources to
the users the base station or service provider should ensure QoS requirement of each
user even in the presence of malicious users in the network [77].

1.5 Contributions of the Dissertation

The contributions of this thesis are,

1. A framework for designing mechanisms with and without malicious users in inter-
ference coupled networks. A new modelling of utility functions of malicious users
in network resource allocation problems.

2. Mechanisms for multi-carrier systems, where the designer without knowing users
utility functions achieves three different global objectives through appropriate pric-
ing. Also pricing function for efficient joint power and rate allocation in multihop
wireless networks.

3. A privacy mechanism where the company motivates users to report their location
information at a granularity level desired by the company.

4. The convergence proof of the iterative distributed algorithm for implementation of
the pricing mechanism.

5. Showing the effect of malicious behavior in VCG Mechanism for allocation of di-
visible resources and quantifying the Price of Malice and related metrics in VCG
Mechanism and in various network mechanisms with adversarial users.

6. Analyzing the resistance of mechanisms against collusion of players, i.e. whether
it is group strategy-proof or not. Defining and calculating metrics to quantify the
effect of collusive behavior of malicious users in network mechanisms.

7. Design of differentiated pricing scheme to punish adversarial users. Also differen-
tiated pricing using Bayesian information where the designer does not know the
identities of the malicious users for determining the prices.

8. Bayesian analysis in which the users do not know the nature of other users. The
users take action according to probability beliefs of others types (natures). The
model is also extended to arbitrary number of malicious users in an ad-hoc wireless
network. We find, in which scenarios, the uncertainty about the types is beneficial
for the regular users.

9. A truthful Bayesian mechanism and quantification of the additional price paid by
the malicious users, when they report false degree of maliciousness.
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10. Detection methods based on hypothesis tests and machine learning algorithms for
the detection of bots, observing the prices and rate allocations. These detections
are used by the designer and regular users to construct a better estimate of the
probability of existence of malicious users.

1.6 Outline of the Dissertation

First, in Chapter 2, we give the network mechanism model, interference function model
and utility model with malicious users. We describe the different entities in the model,
their interaction with the information available in the hands of each of them and as-
sumptions about the different functions associated with these entities. A new modeling
of malicious user utility function is proposed and a metric PoM for quantifying the
effect of malicious users in the network is defined. Next in Chapter 3, as a first step, we
design pricing mechanism for efficient power allocation in a multi-carrier Code Division
Multiple Access(MC-CDMA) uplink. The users are assumed to be price taking. Pricing
functions are obtained for different network level goals. The mechanism is extended to
sum power constraint over the users and carriers. An iterative algorithm is proposed
for the implementation of the pricing mechanism. We also consider multihop wireless
networks with Femto cell relays and pricing mechanisms are designed for this case. The
optimal incentives to the relays to carry the packets to the macro users under the femto-
cells from Macro Base Station (MBS) are proposed. The efficiency loss when the pricing
is only a function of the amount of traffic, as in wired network, is quantified. In Chapter
4, we use the pricing mechanism framework which was proposed in the previous chapter,
to design a location privacy mechanism for mobile commerce with entropy based user
utility functions. The designer or company wants to improve the precision of location
information from each user, which is captured by a designer objective function that
maximizes the sum of granularity of information of all the users. For this the designer
finds the optimal subsidies for the users with a budget constraint. Then in Chapter
5, a regression learning method is used by the designer to learn the utility functions
of users from their actions, unlike in direct mechanisms where the designer asks the
users to report their utility functions. Additionally, the convergence of the iterative dis-
tributed algorithm proposed in Chapter 3 is proven. Next in Chapter 6, the mechanism
model with malicious users is described. A centralized auction mechanism with price
anticipating users is proposed and its efficiency is proven. Then the values of PoM for
auction mechanisms with malicious users are obtained with and without interference
coupled utility functions. Another malicious behavior resulting from the collusion of
many users to manipulate the mechanism is also analyzed. Next, both the pricing and
auction mechanisms are extended for countering the malicious users. Next in Chapter
7, we relax the assumption that the users and the designer know the nature of users
and we design Bayesian mechanisms. The conditions under which the uncertainty about
the nature of the users is beneficial for the regular users and designer are obtained by
comparing Bayesian case to the complete information case. Then pricing mechanisms
with malicious users are extended to a case where each user submits a QoS requirement.
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The dissertation ends with concluding remarks and discussion in Chapter 8.

Notation

Throughout the thesis, we denote vectors with boldface letters and scalars with ital-
ics. The vector of elements other than ith element in vector x is denoted x−i. We let
f(xi; x−i) denote the function f(.) as a function of xi while keeping the vector compo-
nents x−i fixed. The logarithm denoted by log is to base 2. Analogously, exp(x) denotes
2x.

Bibliographic Note

Portions of the content of Chapter 3 appeared in the papers [39], [33] and [69]. Portions
of the content of Chapters 4, 5, 6 and 7 appear in the papers [34], [32], [37] and [36]
respectively.
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2 Preliminaries

In this chapter, we describe the system model and the assumptions about the strategy
space of users, the utility functions of the users, the information available for different
entities and the infrastructure of the network. We first give the system model with only
selfish users and later extend it to include malicious users.

2.1 System Model

Consider a mechanism design model where a designer D influences a set, A of users
who have private utilities (preferences) and compete for limited resources. The designer
tries to achieve a global objective such as welfare maximization by making the users
reveal their true utilities. For this purpose, the designer imposes certain rules and prices
to the users who agree to participate in the mechanism. However, the designer cannot
dictate user actions or modify their private utilities. This setup is applicable to a variety
of network resource allocation problems in networks such as flow and power control,
interference management, and spectrum sharing.

In order to analyze such mechanisms, define an N -player strategic game which results
due to the interaction of users, G (A , x ∈X , U), where each user or player i ∈ A has a
respective scalar decision variable xi such that

x = [x1, . . . , xN ] ∈X ⊂ <N+ ,

and X is the decision space of all players. The decision variable xi may represent,
depending on the specific problem formulation, ith player’s flow rate, power level, invest-
ment, or bidding in an auction.

Assumption 2.1. We assumes that the strategy space X has scalar decision variables,
is compact, convex and has a nonempty interior.

Due to the inherent coupling between the players, the decisions of players directly affect
each others performance as well as the aggregate allocation of limited resources. For
example, the players may share fixed divisible resource Xmax, such that

∑
i xi ≤ Xmax.

In the context of power control, xi denotes the received power of user i. The transmitted
power of user i is xi

hi
where hi is the channel gain.

The preference of the ith player is captured by the utility function

Ui(x) : X → <.

Assumption 2.2. The utility function of the ith user, Ui(x), is jointly continuous in all
its arguments and twice continuously differentiable, non-decreasing and strictly concave
in xi.
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The designer imposes a price Ci(x) on the actions of players, which is formulated by
adding it as a cost term to utility.

Assumption 2.3. The payment function of the ith user, Ci(x), is jointly continuous in
all its arguments and twice continuously differentiable, non-decreasing and convex in xi.

The player i has the cost function

Ji(x) = Ci(x)− Ui(x), (2.1)

and solves the individual optimization problem

min
xi

Ji(x). (2.2)

Assumption 2.4. The cost function of the ith user, Ji(x), is twice continuously differ-
entiable in all its arguments and strictly convex in xi.

The Nash equilibrium (NE) is a widely-accepted and useful solution concept in
strategic games, where no player has an incentive to deviate from it while others play
according to their NE strategies.

Definition 2.5 (Nash Equilibrium). The strategy profile x∗ = [x∗1, . . . , x
∗
N ] is in Nash

Equilibrium if the cost of each player is minimized at the equilibrium given the best
strategies of other players.

Ji(x
∗
i ,x
∗
−i) ≤ Ji(xi,x∗−i), ∀i ∈ A , xi ∈Xi

The NE is at the same time the intersection point of player’s best responses obtained
by solving (2.2) individually, i.e.,

x∗i := arg min
xi

Ji(xi,x
∗
−i), ∀i, (2.3)

Definition 2.6 (Dominant Strategy Equilibrium). The strategy profile xD = [xD1 , . . . , x
D
N ]

is in dominant strategy equilibrium if the cost of each player is minimized at the equi-
librium irrespective of the strategies of other players.

Ji(x
D
i ,x−i) ≤ Ji(xi,x−i),∀i ∈ A , xi ∈Xi,x−i ∈X−i

The players choose the dominant strategy regardless of the actions of others. Hence,
DSE is a stronger concept and a subset of NE and doesn’t require information about
the utility or action of other users.

We consider two types of users in this thesis.

Definition 2.7 (Price anticipating users). Price anticipating users consider the effect of
their strategy on the allocation and pricing functions while deciding on their strategy.

Definition 2.8 (Price taking users). Price taking users consider allocation and pricing
functions as constants while taking their best response.

Price taking users ignore the effect of their strategy mainly due to lack of informa-
tion and less computational capacity. When the users are price taking the equilibrium
obtained according to equation (2.3) is referred as competitive equilibrium [65].
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2.1.1 Mechanism Design

Definition 2.9 (Mechanism). A mechanism M is a tuple (X1,X2, · · · ,XN , f(.)), where
function f specify an outcome for every strategy vector x ∈X ⊂ <N , of the players.

The function f is implemented through allocation and pricing rules.
We differentiate between two kinds of mechanisms, auctions and pricing, which differ

in the assumption on the nature of the users and the interaction rules.

Definition 2.10 (Auction Mechanism). In auction mechanisms, the designer D imposes
on a price anticipating user i ∈ A a (possibly user-specific)

• resource allocation rule, Qi(x),

• resource pricing, Ci(x),

based on user bids x. In auctions, f(x) = (Q1(x), Q2(x), · · · , QN (x), C1(x), C2(x), · · · , CN (x)).

The users who are price anticipating decide on their bid by minimizing their individual
costs.

Definition 2.11 (Pricing Mechanism). In pricing mechanisms, the price taking users
decide on their allocation as a best response to the (user-specific) price Pi induced by
the designer and there is no explicit allocation rule dictated.

In the pricing mechanism case, the cost function is

Ji(x) = Pixi − Ui(x)∀i. (2.4)

The designer objective, e.g. maximization of aggregate user utilities or social wel-
fare, can be formulated using an objective function

V (x, Ui(x), Ci(x)) : X → <,

where Ci(x) and Ui(x), i = 1, . . . , N are user-specific pricing terms and player utilities,
respectively. Thus, the objective function V characterizes the desirability of an outcome
x from the designers perspective. In some cases when the designer objective is to satisfy
certain minimum performance constraints such as players achieving certain quality-of-
service levels, the objective can be characterized by a region (a subset of the game
domain X ). For the net utility maximization, the designer objective is

V (x) =
∑
i∈A

Ui(x), (2.5)

The properties of a mechanism and their corresponding game counterparts are sum-
marized in Table 2.1.1 and in the following definitions. Now we formally define the
properties of the mechanisms.
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Table 2.1: Mechanism Design Objectives

Mechanism Property Corresponding Game
Property

Efficiency NE coincides with maxi-
mum of objective function

Strategy-Proofness Game admits a truth re-
vealing dominant strategy
equilibrium

Budget balance No net payments at the NE

Individual Rationality Utility of all agents should
be greater than or equal to
zero

Definition 2.12 (Efficiency). Efficient mechanisms maximize designer objective at the
equilibrium point of the corresponding game, i.e. they solve the problem,

x∗ = arg max
x∈X

V (x, Ui(x), Ci(x)).

Definition 2.13 (Strategy-proof). A mechanism is said to be strategy-proof, if and only
if, the corresponding game admits a DSE that reveals the true user types (preferences).

Ci(x
D)− Ui(xD) ≤ Ci(xD)− Ũi(xD), ∀Ũi,∀i. (2.6)

where U is the true utility and Ũ is the misrepresented utility.

Definition 2.14 ( Individual Rationality (or) Voluntary Participation (VP)). This prop-
erty ensures that the utility of all agents at the NE should be greater than or equal to
the utility they would get by dropping out of the mechanism. The utility that agents
get by not participating in the mechanism is usually taken to be zero, i.e.

Ji(x
∗) ≤ 0, ∀i ∈ A . (2.7)

Definition 2.15 (Budget Balance). A mechanism is called budget balanced if the net
payments at the NE add up to zero regardless of user preferences, i.e.

∑
i∈A Ci(x

∗) = 0.

The mechanisms need not satisfy some of these properties. A metric which is widely
used in the literature to measure the efficiency loss in a mechanism is PoA.

Definition 2.16 (Price of Anarchy(PoA)). The metric Price of Anarchy(PoA) [71] of a
mechanism M is defined as:

PoA(M ) :=

∑
j∈A Uj(x

∗∑
j∈A Uj(x′)

,

where x′ is the efficient point and x∗ is the Nash equilibrium.
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2.1.2 Interference Function Model

Signal-to-Interference and Noise Ratio (SINR) of the received signal is

γi(x) =
xi
Ii(x)

, (2.8)

where Ii(x) denote the interference function. In the next chapters we consider SINR
based utility functions for users.

Yates in [119] proposed standard interference functions using an axiomatic approach.
A different class of functions known as general interference functions were proposed in
[24] and defined as follows.

Definition 2.17 (General interference functions). These are interference functions,
I : <K+1

+ → <+, which satisfy following properties,
A1 conditional positivity: I(x) > 0 if x > 0
A2 scale invariance: I(αx) = αI(x),∀α ∈ <+

A3 monotonicity: I(x) ≥ I(x̃) if x ≥ x̃
A4 strict monotonicity: I(x) > I(x̃) if x ≥ x̃, xN+1 ≥ x̃N+1.

In [25], both the framework in [119] and the framework of general interference func-
tions were compared and it was proved that every standard interference function is a
special case of general interference functions. This means that any problem involving
standard interference functions can be reformulated in terms of the general framework
axioms A1, A2andA3. Therefore, the structural results obtained for general interference
functions in [23] and [22] can be applied also for standard interference functions.

The class of log-convex interference functions [22] are a subset of general interference
functions. They satisfy A1−A3 and additionally I(ex) is log-convex on <N+1. In [23], it
was proven that every convex interference function is a log-convex interference function,
however the converse is not true.

Most resource allocation problems such as weighted utility maximisation are found
to be not jointly concave or convex in the power domain. So the aim is to character-
ize a strictly monotonic increasing and twice continuously differentiable transformation
ψ(s) = x which can convexify these resource allocation problems.

The linear interference functions which is a sub-class of log-convex interference func-
tion is given by,

Ii(x) =
∑
j 6=i

xj + σ2,

where σ represents the background noise. In the case of linear interference functions the
transformation xi = exp(si) is the unique transformation which transforms the weighted
utility maximisation and other commonly occurring optimization problems to be jointly
convex or concave [20]. Now we check whether this exponential transformation works
or not when we relax the condition of linear interference functions to other kinds of
interference coupling.
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The largest class of interference functions, which preserves concavity of resource al-
location strategies of interference coupled wireless systems is the family of log-convex
interference functions [20].

Now we define certain class of utility functions of users.

Definition 2.18. Conc is the family of monotonically increasing, differentiable and con-
cave utility functions. EConc is the family of monotonically increasing and differentiable
functions U for which U(exp{x}) is concave.

Based on the results obtained for linear interference functions and utility functions
in the family Conc, we consider a subset EConc of Conc. It was shown that the fam-
ily of exponential transformation is the unique transformation, such that relevant and
frequently encountered problems in interference coupled wireless systems are jointly con-
cave on the s- domain [20]. This is true for linear interference functions and for all utility
functions in the class EConc. In this thesis, we focus on linear interference functions
based utility functions in the class EConc.

2.1.3 Mechanism Design Model with Heterogeneous Users

We consider mechanisms with malicious users from Chapter 6 onwards. In this section,
we introduce the utility function model of the heterogeneous users. The utility functions
of malicious users can be very different depending on their nature and goals. One subset
of users have ’abnormal’ utility functions compared to the remaining set of ‘regular’
selfish users. The disrupting nature of malicious users, who want to cause a loss to other
users even at the cost of their own benefit, and the altruistic nature of some users, who
want to care for the social welfare at their own cost, are captured using modified utility
functions. One such modified utility function is obtained by a convex combination of
user utilities

Umi (x, θi) = Ui(x) + θi
∑
j 6=i

Uj(x), (2.9)

where the parameter θi is between −1 and 1, and captures the range of behavior of user
i. This utility function can be modified by taking the average of the utilities of all the
users in the second term ([31]). Unlike in [10], where the Degree of Cooperation of a user
as a vector of values corresponding to all other users is used to model altruism, we use
one scalar value θ to model the behavior of users ranging from altruism to maliciousness.
The table below lists the values of θ and corresponding user behavior.

θ Behavior

θ > 0 altruistic
θ = 0 selfish
θ < 0 malicious

Let us define the set of selfish users as S ⊂ A . In addition, the set of both malicious
and altruistic users, i.e. users with θi 6= 0 is defined as B := A \S . When the set B
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has only malicious users, the utility function of malicious users can be modified as

Umi (x, θi) = Ui(x) + θi
∑
j∈S

Uj(x), ∀i ∈ B. (2.10)

A formal definition of malicious user is given next.

Definition 2.19. A malicious user is a user who has a utility function given in (2.10)
with degree of maliciousness −1 ≤ θ < 0.

A jammer transmits with higher power in the same band as regular users to create
interference to other users. The impact of the interference a jammer creates, on other
users, is modeled by the second term of Equation 2. Note that the interference power
comes in the denominator of the second term and the jammer tries to increase that while
maximizing the utility in the Equation 2. The equation can not model all the jamming
scenarios especially when the jammer does not want to have useful transmission for
himself or any other users as in [101].

In the physical layer secrecy problem, the malicious user jams the wireless network such
that both the regular and malicious transmission cannot be decoded at the receiver[101].
The malicious users identities can not be detected by the network because the whole
network is jammed. The kind of extreme behavior, where the malicious users are not
selfish and rational, cannot be modeled by the SINR model in equation (2.9). This is
because the malicious users do not want to have useful transmission for themselves or
any other users. Even if there is positive SINR at the base station receivers, the secrecy
capacity is zero and no one is able to have successful reception[102]. In our model, we
assume that the malicious users want to transmit something useful in the same way as
the regular users with positive capacity. This kind of weak malicious behavior enables
the malicious users to act like regular users without being detected.

Note that, even if the utility function Ui is concave in xi, the malicious user utility
function Umi may not be concave in xi for some utility functions and values of θ. For
concavity the utility functions should satisfy following condition:

d2Ui
dx2i

+ θi
∑
j 6=i

d2Uj
dx2i

≤ 0, for− 1 ≤ θi ≤ 1, ∀i. (2.11)

We start our analysis with general concave utility functions for the users. However, in
order to ensure the existence of at least one NE, we use the utility functions which satisfy
the condition in equation (2.11).

Assumption 2.20. The modified utility function of the ith user, Umi (x) is jointly con-
tinuous in all its arguments and twice continuously differentiable, nondecreasing and
strictly concave (utility function Ui(x) satisfies the condition in equation (2.11)) in xi.

The utility function of malicious user without self utility is

Umi (x, θi) = θi
∑
j∈S

Uj(x), ∀i ∈ B, (2.12)
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An alternate utility function,

Umi (x, θi) = (1− |θi|)Ui(x) + θi
∑
j∈S

Uj(x), ∀i ∈ B, (2.13)

models the user behavior with a gradual decrease in the self utility when |θ| increases. In
the case of network resource allocation, the malicious users take disproportionate higher
share of resources and thereby reduce the utility of other users. This model does not
capture such a malicious behavior because it will not yield to a disproportionate higher
share of resource to malicious user. This observation is demonstrated for a specific
example later in Section 6.2.3. In the case of network resource allocation, equation
(2.13) is not appropriate for modeling malicious behavior and therefore the malicious
modeling in equation (2.10) is adopted in this thesis. Nevertheless, the model in equation
(2.13) is still a useful one for modeling extreme altruistic behavior.

The extreme selfishness or greedy nature of malicious users can be also captured with
a monotonically increasing convex self utility function. In this case the malicious users
will take the maximum possible share of the resource constrained by either physical layer
limits or a level that leads to immediate detection.

Price of Malice (PoM(M )) is another form of PoA metric, defined in Definition 2.16,
which does not focus on the overall efficiency but the efficiency loss of the set of selfish
users. We redefine the metric PoM(M ) of mechanism M in order to make it suitable
for resource sharing mechanisms. In [12], for congestion games with malicious flow
concentrated on one malicious player, Price of Malice was defined, based on the delay
experienced at Nash equilibrium point with and without the malicious player. We now
redefine PoM for network games and mechanisms with discrete set of players similar to
the definition given in [12].

Definition 2.21 (Price of Malice(PoM)). The metric Price of Malice(PoM) of a mech-
anism M is defined as:

PoM(M ) :=

∑
j∈S Uj(x̃)−

∑
j∈S Uj(x

∗)∑
j∈S Uj(x̃)

,

where x̃ is the Nash equilibrium when none of the users are malicious and x∗ is Nash
equilibrium in the presence of malicious users.

2.2 Information and Infrastructure Assumptions

The users share and compete for limited resources in the given environment under its in-
formation, infrastructure and communication constraints. Now we list the assumptions
we take in different chapters of this dissertation about the information available to differ-
ent agents of the mechanism and the infrastructure available in the network. Throughout
the dissertation, we assume that there is a central authority (designer) which can be the
base station or operator, who exerts some level of control over the users. The users and
the designer are assumed to have complete channel state information in the chapters 3,
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5 and 6. We consider adhoc wireless networks with CDMA or OFDM scheme and single
hop in most part of the dissertation. In Section 3.6, we consider multihop wireless net-
work where the network has Femto cell relays which forward the data from the Macro
base station to the macro users. We assume that designer does not know the utility
functions of users but compute the prices and allocations using the one dimensional sig-
nals from them. In Chapter 5, we consider a case where the designer learns the utility
functions of users from their signals.

In chapters 3, 4 and 5, the network has only regular selfish users who are interested
only in their own utilities. In chapters 6 and 7, we consider network with heterogeneous
users. Till the Chapter 6, the users and the designer know exactly the nature of the
users and the identities of the malicious user. In the chapter 7, we relax this assumption
and analyze the case where the users and the designer have Bayesian information about
the nature.

Chapter Kind of Mechanism

3, 4, 6 and 7 Distributed, indirect mechanism with price taking users

6 and 7 Centralized, indirect mechanism with price anticipating users

7( Section 7.6) Centralized, direct mechanism with price anticipating users

Table 2.2: Different Kinds of Mechanisms in the Dissertation

Table 2.2 gives the different kinds of mechanisms we consider in the different chapters
of the dissertation. In direct mechanisms, the users report their type directly and get
power allocation and pricing in return. In indirect mechanisms, the users bid a value
and power allocation and pricing are computed by the designer based on their bids.
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Allocation in Wireless Networks

In this chapter, we consider resource allocation in interference coupled wireless networks
with strategic price taking users.

3.1 Introduction

The users decide independently on their power levels without revealing their utility func-
tions, so as to maximize their individual utilities. Concurrently, the base station has a
social goal such as weighted social welfare (weighted sum of user utility) maximization or
energy minimization, which may not be achieved due to this strategic behavior of users.
This is because at the Nash Equilibrium (NE) point of the underlying noncooperative
power control game, there is a misalignment of social and individual user objectives.
This phenomena is known as Price of Anarchy is defined in the previous chapter. To
counter this scenario, the base station acts as a mechanism designer and uses pricing
schemes [55] to incentivize the users.

A single cell multi-carrier CDMA system is depicted in the Figure 3.1. The symbol
of different users are spread over multiple subcarriers which are phase shifted according
to orthogonal code values. We study distributed pricing schemes in which the users
decide on their power levels over each channel depending on their utility functions and
the designer sets the prices over different channels.

We consider a general convex constraint set but concentrate on individual power con-
straints for each user, which make the power allocation non-trivial even for single carrier
systems due to the interference coupling between the users. In comparison, the separable
user utility function in wireline case results in full allocation for all. Additional constraint
on the total power over each channel and total power constraint on all the channels and
users, are considered for multi-carrier systems. The designer iteratively adjusts the dual
variables Lagrange multipliers corresponding to different power constraints, which are
used to modify the prices, to bring the system to an efficient point. In this work we
extend Kelly pricing mechanism [70] which are for network with uncoupled utilities, for
interference coupled systems. Author in [64] proves that in a network with price taking
users with uncoupled utilities, there exists a market clearing price which ensures efficient
resource allocation. In this chapter, we propose optimal prices for wireless network with
price taking users with interference coupled utilities.
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Figure 3.1: A multiuser multi-carrier single cell wireless system where users choose power
level over different carriers and the base station assigns prices to the users.

We propose mechanisms for multi-carrier systems, where the designer without knowing
users utility functions achieve different designer objectives through appropriate pricing.
The pricing mechanisms obtained here can be implemented through a distributed itera-
tive algorithm rather than existing heuristic suboptimal or centralized algorithms.

In this chapter, we propose mechanisms for multi-carrier systems, where the designer –
without knowing users utility functions– achieves two different global objectives through
appropriate pricing. The pricing mechanisms obtained here can be implemented through
a distributed iterative algorithm rather than existing heuristic suboptimal or centralized
algorithms. Unlike Kelly mechanism [70], the prices obtained in this chapter are not
just the Lagrange multipliers but are solution of a linear program which has system
parameters and Lagrange multipliers as coefficients.

We investigate mechanisms in which the user utility functions satisfy the Assumption
2.2. The users do not report their utility functions and just decide on their own power
level. The users are not considered to be price anticipating here because in a distributed
network there is an information asymmetry between the users and the designer. The
users do not know the action and utility function of other users or the nature of pricing
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function. Thus, they just adopt a best response strategy by taking the price given by
the designer as a constant.

The work in this chapter is an extension of the work in [5] for multi-carrier systems
with general concave user utility functions which is unknown to the designer and with
individual user power constraints, individual channel constraint and a global power con-
straint.

In addition to pricing user transmit powers for obtaining social welfare, the designer
may like to maximize the revenue obtained from these prices. We also design pricing
mechanisms for designer revenue maximization which may lead to non optimal social
welfare.

We consider in this chapter the scenario that the users care only for getting maximum
throughput, but an external mechanism designer imposes prices to the users such that
their energy consumption is decreased to improve overall energy efficiency of the system.
Thus, the designer encourages users to be more energy conscious. We model energy
efficiency objective by subtracting a general convex function of the power levels of users
from the social welfare (sum of utilities of all users). This additional term is multiplied by
a tuning parameter which allows smoothly varying the emphasis from the social welfare
to the system energy efficiency.

We also consider multihop wireless network, where Femto Base Stations (FBSs) act
as relay nodes, and are incentivized to carry traffic from a Macro Base Station (MBS)
to Macro Users (MUs). Due to their ability to bring about massive spatial reuse of
frequency, small cell base stations such as Femto Base Stations (FBS) or Pico Base
Stations (PBS) are increasingly important for improving network capacity. At the same
time, FBSs also give better data rate to end users due to short transmission range and
fewer users per cell. FBSs are normally deployed in indoor home or office environments
owned or rented by second parties other than the service provider, and are normally
underutilized. One way to better utilize the capacities of FBSs is to employ the FBSs as
relays. In this scenario, FBSs carry traffic from the Macro Base Station (MBS) to Macro
Users (MUs), in addition to serving Femto Users (FUs). The relaying generates revenue
for the owner of the FBSs. Moreover, the relaying extends the coverage of FBSs to
outdoor environments [51], thereby reducing the burden on the MBS. We first examine
the the global problem of jointly optimal allocation of traffic flow and transmission power
in the multihop wireless network. We then examine a game in which selfish and strategic
relays submit charging functions to the source and choose transmission powers over a
MAC channel from the relays to the user. Relay charging functions are considered which
yield efficient allocation at the Nash Equilibrium (NE) of the game.

In this chapter, we first consider different designer objectives and design appropriate
mechanisms. Then we consider multihop small cell relay network and solve the power
and rate allocation problem using pricing.
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3.2 Pricing Mechanisms for Net Utility Maximization

We consider pricing mechanisms for net utility maximization in this section. We assume
that in the global objective, different users are given weights according to their priorities.

3.2.1 Pricing Mechanism for Multi-carrier Systems

Let the superscript (n) is associated with the nth carrier. Let each user i receive power

x
(n)
i and has price for transmission P

(n)
i , over a total of K carriers. Therefore, the total

transmitted power of user i is
∑

n
x
(n)
i

h
(n)
i

where h
(n)
i is the channel gain user i experience

over carrier n. For MC- CDMA system, with random spreading sequences, the output
SINR of the the user with a Matched Filter (MF) receiver is given by [78],

γ
(n)
i (x) =

x
(n)
i

1

L

∑
j 6=i x

(n)
j + σ2

, (3.1)

where L is the processing gain.
The net utility maximization objective of the designer is given in equation (2.5) of

previous chapter. In multi-carrier systems with individual user, channel and total power
constraint, the weighted net utility maximization objective of the designer is to solve
the optimization,

max
x

∑
i

wi
∑
n

(Ui(γ
(n)
i (x)),

subject to ∑
n

x
(n)
i

h
(n)
i

≤ Xmax, ∀i,
∑
i

x
(n)
i

h
(n)
i

≤ Xc, ∀n, (3.2)

and total power constraint given by

∑
i

∑
n

x
(n)
i

h
(n)
i

≤ Xtotal,

where Xmax is the power constraint over each channel, Xc is the power constraint over
each channel, Xtotal is the total power limit and wi is the weight of user i. So the
Lagrangian function of designer can be written as:

L = V (x)−
∑
i

λi(
∑
n

x
(n)
i

h
(n)
i

−Xmax)−
∑
n

νn(
∑
i

x
(n)
i

h
(n)
i

−Xc)− π(
∑
i

∑
n

x
(n)
i

h
(n)
i

−Xtotal),(3.3)

where λi’s, νn’s and π are nonnegative Lagrangian multipliers. The Karush-Kuhn-Tucker
(K.K.T) conditions are given by:

wi
dUi(γ

(n)
i (x))

dx
(n)
i

+
∑
j 6=i

wj
dUj(γ

(n)
j (x))

dx
(n)
i

− λi + νn + π

h
(n)
i

= 0, ∀ i, n, (3.4)
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λi(
∑
n

x
(n)
i

h
(n)
i

−Xmax) = 0, ∀i,
∑
n

x
(n)
i

h
(n)
i

≤ Xmax∀i.

νn(
∑
i

x
(n)
i

h
(n)
i

−Xc) = 0, ∀i,
∑
i

x
(n)
i

h
(n)
i

≤ Xc∀n.

π(
∑
i

∑
n

x
(n)
i

h
(n)
i

−Xtotal) = 0,
∑
i

∑
n

x
(n)
i

h
(n)
i

≤ Xtotal∀n.

To solve the designer problem at the NE of the game prices are designed by the designer.

Let P
(n)
i be the price per received power of the user i on the nth carrier. For multi-carrier

systems the user optimization problem from equation (2.1) will be,

max
xi

∑
n

(Ui(γ
(n)
i (x))− x(n)i P

(n)
i ).

The user best response obtained from first order derivative is

dUi(γ
(n)
i (x))

dx
(n)
i

− P (n)
i = 0, and x

(n)
i = (

dU
(n)
i

dx
(n)
i

)−1(P
(n)
i ),∀ i ∈ A,∀ n. (3.5)

The equation (3.5) can be also written in terms of individual SINR as,

dU
(n)
i

dγ
(n)
i

=
P

(n)
i

dγ
(n)
i /dx

(n)
i

, ∀ i ∈ A . (3.6)

Using equation (2.8),
dUi

dγ
(n)
i

= P
(n)
i I

(n)
i , ∀ i ∈ A , ∀ n. (3.7)

The equation (3.4) can be rewritten as,

wi
dUi

dx
(n)
i

+
∑
j 6=i

wj
dUj

dγ
(n)
j

dγ
(n)
j

dx
(n)
i

− λi + νn + π

h
(n)
i

= 0, ∀i, n. (3.8)

Aligning both the user problems and the global objective of the base station by substi-
tuting from the user equations in (3.5), the above equation becomes

wiP
(n)
i −

∑
j 6=i

wj
dU

(n)
j

dγ
(n)
j

x
(n)
j

(I
(n)
j )2

− λi + νn + π

h
(n)
i

= 0, ∀i, n. (3.9)

By knowing the structure of user cost function and using (3.7), the designer can obtain
the prices by solving

wiP
(n)
i −

∑
j 6=i

wj
P

(n)
j x

(n)
j

I
(n)
j

− λi + νn + π

h
(n)
i

= 0, ∀i ∈ A , n (3.10)
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The above system of equations can be written in matrix form as,

A(n) · P (n) = B(n) · L, ∀n, (3.11)

where A(n) and B(n) are defined accordingly.

A(n) :=


w1 −w2γ

(n)
2 · · · −wNγ(n)N

−w1γ
(n)
1 w2 · · · −wNγ(n)N

...
. . .

...

−w1γ
(n)
1 −w2γ

(n)
2 · · · wN

 , (3.12)

B(n) :=



1

h
(n)
1

0 · · · 0
1
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(n)
1

1
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(n)
1

0
1
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2

· · · 0
1
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2

1

h
(n)
2

...
. . .

...

0 0 · · · 1

h
(n)
N

1

h
(n)
N

1

h
(n)
N


, (3.13)

and L = [λ1, . . . , λN , νn, π]T .

Remark 3.1. The implementation of this mechanism requires minimum information over-
head. The designer only needs to observe the received power level vector x and the in-
dividual SIRs, γ, of players both of which are already available. The player i, in return
only needs to know the price Pi . Finally, the computation of actual uplink power levels
p can be carried from x using the measured channel gains.

3.2.2 Iterative Distributed Algorithm for Multi-Carrier Systems

We propose a gradient update iterative distributed algorithm to implement the pricing
mechanism obtained above. A best response update of power levels by each user will
require lot of system level information which may not be available to individual users. In
the algorithm, the users are assumed to have bounded rationality property in which the
decision for updates are taken based on previous decision, gradually and heuristically
in a distributed fashion. In this case, the users just need to know the prices set by the
designer according to (3.11) and pi(k + 1) = T (pi(k)) where T (.) is the transformation
and k is the time step. We now define pricing mechanism Mb, for which the prices and
bids from user for each carrier can be obtained using iterative methods as following.

P (n)(k + 1) = (A(n))−1B(n) · L(k), ∀n (3.14)

p
(n)
i (k + 1) = [p

(n)
i (k)− κi

h
(n)
i

∂Ji

∂x
(n)
i

]+ ∀i ∈ A , (3.15)

λi(k + 1) = [λi(k) + κD
(∑

n

p
(n)
i (k)−Xmax

)
]+, ∀i ∈ A (3.16)
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νn(k + 1) = [νn(k) + κD
(∑

i

p
(n)
i (k)−Xc

)
]+, ∀n. (3.17)

and
π(k + 1) = [π(k) + κD

(∑
i

∑
n

p
(n)
i (k + 1)−Xtotal

)
]+ (3.18)

Since the designer optimization problem can be convexified and thus admits a unique
solution, we can find unique λ’s which align it to the user convex optimization problems.
Hence, there exist corresponding prices, obtained from the matrix transformation given
in (3.11), which will determine the optimal power levels. The algorithm which also shows
the information flow for the iterative method is given below in Algorithm 1. It can be
observed that the designer updates the prices after some time slots of power update.
The convergence analysis of this algorithm is given in Chapter 5.

Algorithm 1: Iterative Pricing Mechanism Mb

Input: Designer (base station): Maximum power levels Xmax and the designer
objective

Input: Players (users): Utilities Ui
Result: Optimum power levels p∗ and SIRs γ∗

1 Initial power levels p(0) and prices Pi(0) ;
2 repeat
3 begin Designer:
4 Observe player power levels p ;

5 Compute the matrices A(n) and B(n) Update λ’s according to (3.16) ;
6 foreach Channel n do

7 Update prices P (n) according to (3.14).
8 end

9 Send each user i respective channel prices P
(n)
i . begin Players:

10 foreach Player i do
11 foreach Channel n do

12 Estimate marginal utility ∂Ui(x)/∂x
(n)
i ;

13 Compute power level p
(n)
i from (3.15) ;

14 end

15 end

16 end

17 end

18 until end of iteration;

Remark 3.2. The general setting considered here is also applicable to cognitive radio
systems, where individual mobiles have the ability to sense their environment, and act
strategically as independent decision makers[82]. While allocating power it is made
sure that the receiver SINR from each primary user to the base station is kept above
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a minimum level by limiting the interference caused by the secondary users. Here, the
primary base station can act as the designer and employ pricing mechanisms to align
power selection decisions so as to achieve a global objective.

3.2.3 Numerical Simulation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Player Received Power Levels, x(n)

Time Step, n

x

Figure 3.2: The evolution of user power levels x in pricing mechanism Ma for a single
carrier.

First, numerical simulation results are presented for the case, Ui(x) = ρi
∑

n log(γ
(n)
i ), ∀ i,

to establish the efficiency and convergence of the proposed mechanisms. The iterative
pricing mechanism for social welfare maximization for multi carrier systems is illustrated
numerically. We simulate this scenario with 10 users and the following arbitrarily chosen
utility parameters

ρ = [0.23 , 1.33 , 0.73 , 0.28 , 1.13 , 1.65 , 1.35 , 2.00 , 1.92 , 0.12].

The users update their power levels according to (3.15) at each time step k ≥ 1 with
a step size of κi = 0.2,∀i. The designer, on the other hand, updates the Lagrangian
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Figure 3.3: The evolution of Lagrange multiplier λ in pricing mechanism Ma for a single
carrier.

multipliers λ’s and price vector P based on (3.16) and (3.14), where Xmax = 1 and
κD = 0.5. The background noise parameter is σ = 0.5.

The convergence of the mechanism Ma is depicted in Figures 3.2 and 3.3.
The power levels for multi carrier system with number of carriers M = 5 and number

of users N = 10 are plotted in Figure 3.4. The other parameters are same as above. For
demonstration purpose the curves are shown for 3 users.
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Figure 3.4: The evolution of user power levels x in pricing mechanism for multiple
carriers.

3.3 Revenue Maximization in Wireless Networks

In this section, we consider a scenario in which in addition to pricing user transmit powers
for obtaining social goals, the designer may like to maximize the revenue obtained from
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these prices.

3.3.1 Revenue Maximization Mechanism

We next introduce pricing mechanisms for designer revenue maximization which may
lead to non optimal social welfare. There are optimal auctions introduced by Myerson
[86] in which the designer knowing the distribution of private values of players maximizes
the expected revenue. In [45], revenue maximization of the operator is considered and an
iterative algorithm is proposed for single carrier systems. The users are charged for the
throughput they obtain in which the prices are not functions of the Lagrange multipliers.

In this section, the global objective of the designer aims to maximize her total revenue
as a monopolistic entity, while trying to limit the user power levels to Xmax. The total
revenue of the designer will be,

V (x) =
∑
j

∑
n

P
(n)
j (x)x

(n)
j .

The designer D solves the constrained optimization problem

max
x

∑
j

∑
n

P
(n)
j (x)x

(n)
j such that

∑
n

x
(n)
i

h
(n)
i

≤ Xmax ∀i, n, and
∑
j

∑
n

x
(n)
j

h
(n)
j

≤ Xtotal.

As in previous case, we obtain a matrix form solution for optimal prices. Also an iterative
method which uses Lagrangian multipliers can give the prices and powers. Next section
gives the numerically obtained power levels and value of λ which maximizes revenue.

3.3.2 Numerical Simulation
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Figure 3.5: The evolution of user power levels x in pricing mechanism Md for revenue
maximization.

For the revenue maximizing mechanism, the convergence of power levels and lambda
levels are plotted in Figures 3.5 and 3.6. A boundary solution behavior is observed as
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similar to efficiency maximizing mechanisms, but with different number of users touching
the power constraint.
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Figure 3.6: The evolution of Lagrange multiplier λ in pricing mechanism Md for revenue
maximization.

3.4 Energy Minimization in Networks

3.4.1 Introduction

There has been significant amount of work in the context of Ad-hoc [46] and sensor
networks [81] to obtain energy efficient protocols. In game theoretic model is proposed
for energy efficient power control by defining utility of users as the ratio of throughput
(goodput) and power (with unit bit/J) We note that most of the previous works on game
models for energy efficiency modify user utilities by incorporating a power term into the
user utility function[79, 78, 16], assuming that users care for their energy usage in uplink
transmission. In contrast, we consider here the alternative scenario and assume that the
users care only for getting maximum throughput, but an external mechanism designer
imposes prices to the users such that their energy consumption is decreased to improve
overall energy efficiency of the system. Thus, the designer encourages users to be more
energy conscious. In addition, we also consider user utility dependence on higher layer
parameters.

We model energy efficiency objective by subtracting a general convex function of the
power levels of users from the social welfare (sum of utilities of all users). This additional
term is multiplied by a tuning parameter which allows smoothly varying the emphasis
from the social welfare to the system energy efficiency. The energy efficiency objective
is,

V (x) =
∑
i

Ui(x)− φR(x). (3.19)
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where 0 ≤ φ ≤ 1 is the tuning parameter and R(x) is any convex function on x that
captures the cost on energy usage. It is similar to cost of control in other settings.
Due to the convexity of the additional term, we can see that the users sacrifice much
on their net utility if they transmit with higher power. A specific example function is,
R(x) =

∑
iRi(xi), where Ri(xi) can be any convex function of xi. The underlying game

of the mechanism converges to a Nash equilibrium iteratively in a way that the users
respond to the prices set by the designer.

3.4.2 Energy Efficient Mechanism

In pricing mechanisms, the designer charges the players for their resource usage and
players take actions in response to that. Pricing mechanisms are applicable to many
networked systems where an explicit allocation of resources brings a prohibitively ex-
pensive overhead or simply not feasible, e.g. due to participating players being selfish
or located in a distributed manner.

The global objective of designer with individual user power constraint is to solve the
optimization,

max
x

∑
i

Ui(x)− φ
∑
i

Ri(xi) such that
∑
n

x
(n)
i

h
(n)
i

≤ Xmax,

where Xmax is the maximum allowable power to individual users. The constraint on the
maximum allowable power level will be set by the regulating authority due to the limit
on total interference. The designer, apart from this requirement, is concerned about the
total energy consumption in the cell. The nature of the designer, i.e, the extend to which
she cares about energy efficiency, is captured in the parameter φ. Thus, the Lagrangian
function of the designer problem can be written as:

L = Ui(x) +
∑
j 6=i

Uj(x)− φ
∑
i

Ri(xi)

−
∑
i

λi(
∑
n

x
(n)
i

h
(n)
i

−Xmax), (3.20)

where λi’s are the Lagrangian multipliers.
This problem can be solved by convexification as described in [26]. The corresponding

Karush-Kuhn-Tucker (KKT) conditions are:

dUi

dx
(n)
i

+
∑
j 6=i

dUj(x)

dx
(n)
i

− φ dRi

dx
(n)
i

− λi

h
(n)
i

= 0, ∀ i, n,

λi(
∑
n

x
(n)
i

h
(n)
i

−Xmax) = 0.

We next align the solution of both designer and user problems, and obtain the price
and action vectors that solve all of them concurrently. By combining the above KKT
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conditions and the conditions of user best response from equation (3.5) in the previous
section, we obtain the prices as:

P
(n)
i = φ

dRi

dx
(n)
i

−
∑
j 6=i

dUj(x)

dxni
+

λi

h
(n)
i

∀i, n. (3.21)

Consider for demonstration purpose that the users have their utility as total Shannon
capacity over all the channels in high SIR region, i.e.,

Ui(x) = ρi
∑
n

log(γ
(n)
i (x))

where ρ is user preference vector unknown to the base station and energy cost term as

Ri(xi) =

∑
n(p

(n)
i )2

2
=

1

2

∑
n

(x
(n)
i )2

(h
(n)
i )2

.

Notice that due to the weighting by channel coefficients, good channels are encouraged
in this case while bad ones are discouraged. Then,

dUi
dxni

=
ρi
xni

= P
(n)
i , (3.22)

and
dUj
dxni

=
−ρj

(
∑

k 6=j x
(n)
j + σ)

.

In this special case, the prices from (3.21) can be written as

P
(n)
i = φ

x
(n)
i

(h
(n)
i )2

+
∑
j 6=i

ρj

(
∑

k 6=j x
(n)
j + σ)

+
λi

h
(n)
i

∀i, n. (3.23)

Using (3.22) and definition of γnj ,

P
(n)
i =

∑
j 6=i

γnj P
n
j + φ

x
(n)
i

(h
(n)
i )2

+
λi

h
(n)
i

, ∀i, n. (3.24)

The above set of equations can also be written in matrix form like in the social welfare
maximization case as,

A(n) · P (n) = B(n) · L(n), ∀n,

where the matrices A(n) and B(n) are defined as

A(n) :=


1 −γ(n)2 · · · −γ(n)N

−γ(n)1 1 · · · −γ(n)N
...

. . .
...

−γ(n)1 −γ(n)2 · · · 1

 , (3.25)
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B(n) :=


1

h
(n)
1

· · · 0 φ

(h
(n)
1 )2

· · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...

0 · · · 1

h
(n)
N

0 · · · φ

(h
(n)
N )2


and L(n) = [λ1, . . . , λN , x

(n)
1 , . . . , x

(n)
N ]T .

3.5 Pricing Games in Multihop Wireless Networks under
Interference Constraints

3.5.1 Introduction

In this section, we consider joint power and rate allocation in multihop wireless networks.
We consider a wireless network scenario where an MBS (Source) uses multiple relay nodes
owned by some second parties to give better service to the MUs. A specific instance of
the problem is given in Figure 3.7, with an MBS, two relays and an MU. The MU at the
cell edge is better served using the two relays, an FBS and a PBS, which are rewarded
by the MBS for forwarding the traffic to the MU. The practical scenario we consider is
one in which the Femto or Pico cells are used as relays by their owners to get additional
revenue apart from self usage. In this wireless network setting, selfish and strategic relays

FBS

MBS

PBS

Regulator

MU

Figure 3.7: A Pico Base Station (PBS) and a Femto Base Station (FBS) acting as relays
for the Macro Base Station (MBS) to give service to user at the cell edge.

engage in a game where each relay strategize on the charging function they submit to
the source, as well as the transmission power to the end user. The transmissions on
different wireless links in this multihop network interfere with each other, with the link
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capacities dependent on the power allocation on all links. Each relay designs its best
response based on its cost, according to the traffic flow rate and transmission power
allocated by the source, as well as the charging functions and power selections of the
other relays. We examine the Nash Equilibria (NE) which result from this game, which
may not yield an efficient resource allocation from a social welfare standpoint. We use the
Price of Anarchy (PoA)[65] as the metric to characterize the inefficiency of the resource
allocation at the NE, as compared with the socially optimal allocation.

Within the game setting discussed above, we introduce the concept of interference tax
which the relays should pay to an external regulator as compensation for the interference
they create to other relays. We prove that inefficient NE occur when the price is a
function only of the traffic flow rate through the relays. On the other hand, we prove that
there exists at least one NE which is efficient when the charging function depends on both
the traffic flow rate and the transmission powers from the relays to the destination. Our
result highlights the importance of interference coupling among the relays in determining
network resource allocation in a selfish and strategic context.

3.5.2 Game Model for Multihop Wireless Networks

We consider a network in which a Source transmits to a destination through {1, · · · , i, · · ·N}
parallel relays. The model is depicted in Figure 3.8. The cost on link (s, i) from Source
s to relay i, denoted by Jsi, is the sum of two components: the congestion cost Dsi and
the power cost αsxsi. The congestion cost Dsi is a function of the capacity Csi of link
(s, i), and the traffic flow rate Fi on link (s, i). The power cost αsxsi consists of the
balancing parameter αs ∈ <+ and the transmission power xsi from Source s to relay i.

Unlike the case for wireline networks, the capacity of a wireless link is not fixed, but
rather depends on the channel conditions and the transmission powers. The joint power
and rate allocation for the links from the Source to the relays is carried out by the
Source.

For the case of spread spectrum CDMA, the Shannon capacity Csi is given by

Csi(xs) =
Rs
2

log

(
1 +

Khsixsi∑
j 6=i hsjxsj + σ

)
,

where xs ≡ (xs1, . . . , xsN ), hsi is the channel gain from Source s to relay i, Rs is the
symbol rate, K is the code gain, and σ is the noise power at the receiver of i. Since the
code gain K is typically high, we assume that the operation is in the high SINR regime,
where the capacity can be approximated by

Csi(xs) ≈
Rs
2

log

(
Khsixsi∑

j 6=i hsjxsj + σ

)
. (3.26)

This approximation, along with the following assumption, facilitates the convexification
of the optimization problems arising later in this chapter.
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Figure 3.8: Multihop wireless network model with N relays. Fi is the flow rate on link i;
xsi is the transmission power from Source s to relay i; xi is the transmission
power from relay i to destination d; Dsi is the congestion cost from s to i;

Di is the congestion cost from i to d; B
(1)
i is the payment paid by s to relay

i; Regulator R receives the payments B
(2)
i from the relays.

Assumption 3.1. The congestion cost Dsi(Csi, Fi) is a twice differentiable, convex and
increasing function of Fi, and a twice differentiable, convex and decreasing function of
Csi.

Let the payment made by the Source to the relay i be Bi. As discussed below, Bi can
be a function of the flow rate Fi carried by relay i, as well as other variables. Thus, the
Source incurs the total cost

Js(xs,F) =

N∑
i=1

[Dsi(Csi(xs), Fi) + αsxsi +Bi] . (3.27)

We assume that the source-to-relay communication channel is orthogonal to the relay-
to-destination communication channel. Let x ≡ (x1, . . . , xN ), where xi is the transmis-
sion power from relay i to the destination. The capacity of the wireless link from relay
i to the destination is approximated by

Ci(x) ≈ Rs
2

log

(
Khixi∑

j 6=i hjxj + σ

)
,

where hi is the channel gain from relay i to the destination, and σ is the noise power at
the destination receiver. Therefore, each relay i has a total cost of transmission Ji to
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the destination, given by

Ji(x, Fi) = Di(Ci(x), Fi) + αixi −Bi. (3.28)

where Di satisfies Assumption 3.1 and αi is a balancing parameter. Note that the total
cost over parallel path i is given by

Dsi(Csi(xs), Fi) +Di(Ci(x), Fi) + αsxsi + αixi. (3.29)

The power allocation from the Source to the relays is accomplished centrally at the
Source, whereas the transmission powers from the relays to the destination are selected
in a distributed manner by the relays. Each relay i competes with all other relays by
selecting the payment function Bi and transmission power xi, in order to maximize its
net profit, which is equal to the revenue generated by forwarding a share of the traffic
from the Source to the destination, minus the power expense required for forwarding the
traffic. This is the basis of the game among the relays.

All relays should gain positive net utility by participating in the game, a condition
usually known as the Individual Rationality (IR) property [38]. The IR constraint in the
relay problem is given by: Ji(xi) ≤ 0 for all i = 1, . . . , N . The IR constraint is satisfied
through the following process. First, the relays submit charging functions. Then, the
source decides on the optimal flows in response to these payment functions, without
taking into account the IR constraint on each relay. Given this, some relays may find
that they cannot find a positive finite power which will ensure negative cost, for the
flow given by the source and power chosen by other relays. This might happen, for
instance, if the channel gains from those relays to the destination are very low compared
to others. In this case, these relays will opt out of the game and will report this to the
source. Subsequently, the source will reallocate its flows excluding the non-participating
relays. This process continues until a stable subset of relays satisfying the IR constraint
emerges.

3.5.3 Pricing Function for Efficient NE in Multihop Wireless Networks

The aggregate network cost is the sum of the costs on all parallel paths. Therefore, the
global optimization for obtaining the socially optimal (efficient) operating point is given
by

min
xs,x,F

N∑
i=1

[Dsi(Csi(xs), Fi) + αsxsi +Di(Ci(x), Fi) + αixi]

s.t.
∑
i

Fi = F , Fi ≥ 0, xi ≥ 0, xsi ≥ 0, ∀i. (3.30)

This problem can be shown to be jointly convex in the log power variables Ss = log(xs),
S = log(x), and the flow vector F using the high SINR assumption and Assumption 3.1.

55



3 Pricing Mechanisms for Resource Allocation in Wireless Networks

After the log transformation, the global optimization becomes

min
Ss,S,F

N∑
i=1

[
Dsi(Csi(Ss), Fi) + αse

Ssi +Di(Ci(S), Fi) + αie
Si
]

s.t.
∑
i

Fi = F , Fi ≥ 0, ∀ i. (3.31)

The above problem leads to the following KKT conditions for global optimality. For
each i = 1, . . . , N ,

∂Dsi

∂Fi
+
∂Di

∂Fi

∣∣∣
F=Fg

= dg if F gi > 0,

∂Dsi

∂Fi
+
∂Di

∂Fi

∣∣∣
F=Fg

> dg if F gi = 0, (3.32)

∂Dsi

∂Ssi
+
∑
j 6=i

∂Dsj

∂Ssi
+ αse

Ssi
∣∣∣
Ss=Sgs

= 0, (3.33)

∂Di

∂Si
+
∑
j 6=i

∂Dj

∂Si
+ αie

Si
∣∣∣
S=Sg

= 0, (3.34)

where xgs,xg,F
g are the globally optimal source transmission power vector, relay trans-

mission power vector, and flow rate vector, respectively, and dg is a constant which
corresponds to the optimal operating point. We analyze the pricing game in which the
relays compete with each other for the traffic allocation from the Source by strategizing
on the charging function and the power of transmission to the destination. Each relay
sends a charging function Bi to the Source, which performs the flow allocation and power
allocation to the relays according to the charging function.

As a first step, as in [117], we assume that the Source is charged as a function of the
flow rates it sends through the relays, i.e., the charging functions are given by Bi(Fi).
The Source optimization problem is to minimize the cost given by (3.27), i.e.,

min
xs,F

∑
i

(Dsi(Csi(xs), Fi) + αsxsi +Bi(Fi)), (3.35)

s.t.
∑
i

Fi = F , Fi ≥ 0 ∀i and xsi ≥ 0 ∀ i

The Source decides on the flow and power vectors on each link to the relays by solving
the above problem for every set of charging functions given by the relays. This problem
can be shown to be jointly convex in high SINR region, in the log power variables
Ss = log(xs) and the flow vectors F if the payment is a convex function of the flow. The
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Source KKT conditions are:

∂Dsi

∂Fi
+
∂Bi
∂Fi

∣∣∣
F=F∗

= d∗ if F ∗i > 0,

∂Dsi

∂Fi
+
∂Bi
∂Fi

∣∣∣
F=F∗

> d∗ if F ∗i = 0, ∀i (3.36)

∂Dsi

∂Ssi
+
∑
j 6=i

∂Dsj

∂Ssi
+ αse

Ssi
∣∣∣
Ss=S∗s

= 0, ∀i (3.37)

where x∗s = eS
∗
s and F∗ give the solution of the Source optimization and d∗ corresponds

to the Source optimal operating point.
In the associated game, relays strategize using the charging functions, B, and the

transmission power to the end user, x. The relays are implicitly competing over the
transmission powers due to the interference they cause to each other. The relays also
compete for the traffic flow using the payment they charge from the Source. Due to the
coupling in the cost term Di(Ci(x),Fi), we can think of the relays as deciding on the
charging function and the transmission powers at the same time. The strategy space of
each relay is infinite dimensional in general.

The NE of this game can be obtained from the intersection of the best responses of
all relays, given by

(S∗i ,B
∗
i ) ∈ arg min

Si,Bi
Ji(Si, Bi,S−i,B−i), ∀ i. (3.38)

Definition 3.2. A NE is efficient if the flow rate allocation and power allocation at the
NE solves the global optimization.

In the multihop wireless problem we consider, an NE is efficient when S∗ = Sg,F∗ =
Fg,S∗s = Sgs, where (S∗s,F

∗) is the solution to the source optimization problem when the
relays present the NE charging functions B∗ from (3.38) to the Source. The following
Proposition shows that this situation cannot obtain when the charging function depends
only on the traffic flow rate.

Proposition 3.3. A Nash Equilibrium of the pricing game cannot be efficient when the
relay charging functions depend only on the traffic flow rate carried by the relays.

Proof. Suppose that there exists an efficient Nash equilibrium S∗,B∗ with the charging
function Bi(Fi). The Source solves the following optimization problem to find the Source
optimal power and flow

(S∗s,F
∗) = arg min

Ss,F

∑
i

(Dsi(Csi(Ss), Fi) + αse
Ssi +B∗i (Fi))

s.t.
∑
i

Fi = F , Fi ≥ 0 ∀i
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This results in the following KKT conditions.

∂Dsi

∂Fi
+
∂B∗i
∂Fi

∣∣∣
F=F∗

= d∗ if F ∗i > 0,

∂Dsi

∂Fi
+
∂B∗i
∂Fi

∣∣∣
F=F∗

> d∗ if F ∗i = 0, ∀i (3.39)

∂Dsi

∂Ssi
+
∑
j 6=i

∂Dsj

∂Ssi
+ αse

Ssi
∣∣∣
Ss=S∗s

= 0,∀i (3.40)

Once the relays receive the allocation S∗s,F
∗ from the Source, they minimizes the relay

cost in equation (3.28) to find the best response.

S∗i = arg min
Si

Di(Ci(Si,S
∗
−i), F

∗
i ) + αie

Si −B∗i (F ∗i ) ∀i. (3.41)

The KKT conditions for the relay optimization w.r.t. S which give the NE S∗ are:

∂Di(Ci(Si,S
∗
−i), F

∗
i )

∂Si
+ αie

Si
∣∣∣
S=S∗

= 0,∀i (3.42)

From the Definition 3.2, for the NE point to be efficient, the solution of (3.32) (3.33)
and (3.34) and the joint solution of (3.39),(3.40), and (3.42) should be the same. We
observe that it is not enough to set

∂B∗i
∂Fi

∣∣∣
F=F∗

=
∂Di

∂Fi

∣∣∣
F=Fg

, ∀i

as in [117]. Indeed, we can see from the KKT conditions w.r.t. S in (3.34) and (3.42),
that the resulting solutions are different, as the second (interference) term in (3.34) is
not accounted for in (3.42). Therefore, the KKT conditions of the NE solution and
globally optimal solution are not aligned. In general, S∗ 6= Sg,F∗ 6= Fg,S∗s 6= Sgs and
the NE cannot be efficient.

We now consider an alternative approach. Assume that the charging function depends
on both the traffic flow rate forwarded by the relay and the power the relay spends
for the relaying, i.e. Bi(Fi, xi). Specifically, we split the charging function as follows:

Bi(Fi, xi) = B
(1)
i (Fi) − B(2)

i (xi). The payment B
(1)
i (Fi) is paid by the Source to the

relay, while the payment B
(2)
i (xi) is paid by the relay to a centralized controller.

Theorem 3.4. There exists an efficient NE in the pricing game where the charging

function is given by Bi(Fi, Si) = B
(1)
i (Fi)−B(2)

i (Si), satisfying

∂B
(1)∗
i

∂Fi

∣∣∣
F=F∗

=
∂Di(x, Fi)

∂Fi

∣∣∣
F=Fg

, ∀i (3.43)

and

∂B
(2)∗
i

∂Si

∣∣∣
S=S∗

=
∑
j 6=i

∂Dj(x, Fj)

∂Si

∣∣∣
S=Sg

, ∀i. (3.44)

where (S∗, B(1)∗, B(2)∗,F∗) is the NE and (Sg,Fg) is the global optimum.
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Proof. A standard result in game theory (Theorem 4.4, p.176, in [13]) for convex cost
functions which satisfy Assumptions 3.1, proves that the game we consider admits a NE.

Given the payment charge B(1)∗(Fi) from the relays, the Source cost becomes

Js =
∑
i

(Dsi(Csi(Ss), Fi) + αse
Ssi +B

(1)∗
i (Fi)). (3.45)

The KKT conditions for Source optimization are

∂Dsi

∂Fi
+
∂B

(1)∗
i

∂Fi

∣∣∣
F=F∗

= d∗ if F ∗i > 0,

∂Dsi

∂Fi
+
∂B

(1)∗
i

∂Fi

∣∣∣
F=F∗

> d∗ if F ∗i = 0, ∀i (3.46)

∂Dsi

∂Ssi
+
∑
j 6=i

∂Dsj

∂Ssi
+ αse

Ssi
∣∣∣
Ss=S∗s

= 0, ∀i (3.47)

where F∗,S∗s is the source-optimal solution. With this allocation from the Source, the
relays carry out their optimizations

S∗i = arg min
Si

Di(Ci, Fi) + αie
Ssi −B(1)∗

i (Fi) +B
(2)∗
i (Si), ∀i. (3.48)

The KKT condition for relay optimization is,

∂Di

∂Si
+ αie

Si +
∂B

(2)∗
i

∂Si

∣∣∣
Si=S∗i

= 0, ∀i (3.49)

In order to obtain an efficient NE, from (3.32) and (3.46), we obtain the condition in
(3.43). From (3.34) and (3.49), we obtain the condition in (3.44).

The relays receive payments from the Source for the traffic flow they carry, and are
charged for the interference they create to other relays. We introduce an outside regulator
which collects the interference tax payments from the relays. As an instance of the pricing
given in (3.44), we propose logarithmic pricing on power for the interference tax. The
logarithmic pricing is also similar to the universal pricing proposed in [19] for a different
setting other than multihop wireless networks and without flow variables. The authors in
[19] show that logarithmic pricing in power is universal pricing for systems with certain
class of interference coupled utility functions. We set

Bi(Fi, xi) = aiFi − bi log(xi).

According to (3.43) and (3.44), the coefficients are given by,

ai =
∂Di

∂Fi

∣∣∣
F=Fg

, ∀ i (3.50)

and

bi =
∑
j 6=i

∂Dj

∂Si

∣∣∣
S=Sg

, ∀ i. (3.51)

Note that due to the high SINR assumption, xi > 1 for any relay i, and the logarithmic
power price is positive.
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3 Pricing Mechanisms for Resource Allocation in Wireless Networks

3.5.4 PoA When Price is a Function Only of the Flow

We now examine the inefficiency of the NE when the charging function is a function only
of the traffic flow rate through the link.

The Price of Anarchy (PoA) in a multihop network at an NE denoted by (x∗s,x
∗,B∗,F∗)

is obtained from Definition 2.16 as

PoA =
Jg(x

∗
s,x
∗,F∗)

Jg(x
g
s,xg,F

g)

where Jg denotes the global cost and (xgs,xg,F
g) is the globally optimal solution.

For interference coupled systems, we have observed that efficiency loss results when
the charging function is a function only of the traffic flow rate, as in the case of [117]. We
now consider a two-relay example with charging functions which depend linearly on the
traffic flow rate, i.e. Bi(Fi) = aiFi, where ai is given by (3.50). In this case, x∗s1, x

∗
s2, F

∗
1

are obtained from (3.39) and (3.40), while x∗1, x
∗
2 result from the following relay KKT

conditions:

∂D1(S, F
∗
1 )

∂S1
+ α1S1

∣∣∣
S1=S∗1

= 0, (3.52)

∂D2(S, F
∗
1 )

∂S2
+ α2S2

∣∣∣
S2=S∗2

= 0. (3.53)

Since it is not easy to solve these equations analytically, we solve the equations numeri-
cally. The resulting PoA is plotted in the next section.
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Figure 3.9: The PoA and path flows as functions of the channel gain in path 1.
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3.5 Pricing Games in Multihop Wireless Networks under Interference Constraints

3.5.5 Numerical Simulation

We numerically simulate the range of values of PoA for the two-relay example described
in previous section. The F parameter is fixed at 6. First, the values a1 and a2 are
selected as the marginal cost w.r.t. to the flows at the globally optimal point. Then, the
source optimization problem is solved using a1 and a2 to find the flow and source power
vector at the NE point. At the values of F1 and F2 given by the source optimum, the
NE power vectors are found by the relays individually. The power vectors are different
from the global point and give rise to PoA values as shown in Figure 7.2. The channel
parameters hs2 = h2 are set to 5. The parameters h1 and hs1 are varied from 5 to 180.
We stop at h1 = hs1 = 180 since it is observed that after 180 the link from Relay 2 to
the destination cannot have positive capacity, and due to the IR constraint, Relay 2 opts
out from the game. The optimal flow allocation at the NE is also shown in Figure 7.2.
As the link to relay 1 has higher channel gain compared to the link to relay 2, there is
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Figure 3.10: The variation of PoA with the number of relays N .

more flow allocated to relay 1. We can observe that the PoA increases as the channel
gains become dissimilar. In the asymmetric case, when the Source finds the optimal
flow, it does not take into account the asymmetry of the channel gains from relays to
the destination, since the price is only a function of the flow. On the other hand, the
global allocation is affected by the asymmetry of the channel gains from relays to the
destination. For this reason, there is a higher PoA when the channel gains from the
relays to the destination are asymmetric. This is numerically shown in Figure 7.2.

Finally, we show the variation of PoA with the number of relays N in Figure 3.10.
The parameters are selected as above with hs1 = h1 = 20 and hs2 = h2 = 5, with the
number of relays varying up to 20. We can see that the PoA increases as the number of
relays increases.
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3 Pricing Mechanisms for Resource Allocation in Wireless Networks

3.6 Concluding Remarks

In this chapter, first pricing functions have been derived based on three global objectives
of the designer for an MC-CDMA system. The prices can be implemented with minimum
communication requirement since the designer needs to only calculate the Lagrange
multipliers of different constraints and measure the received SINR vector. An iterative
algorithm is also proposed of the implementation whose convergence is analytically dealt
in Chapter 5. For multihop network with Femto cell relays, the relays are made to pay
interference tax from the incenive which they get in proportional to the traffic they
carry to an external regulator. It has been observed that the PoA when price is only a
function of flow is higher in asymmetric networks.
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4 Location Privacy Mechanism for Mobile
Commerce with Entropy Utility Functions

4.1 Introduction

In this chapter, we apply the pricing mechanism which was proposed in the previous
chapter in a location privacy problem, with proper modifications. We consider a mobile
commerce environment in which the users or customers get benefits from a company
(service provider) by disclosing their location with certain degree of accuracy. At the
same time, disclosing their location information brings users certain risks and compro-
mises their privacy. Therefore, users have a motivation to maintain anonymity by giving
less granular information about their location or no information at all.

In [74], a game theoretic model of privacy in a community-based social networking
mobile applications is proposed, in which the users take decisions on the level of granu-
larity with which they share their location information to others. In that model, there
is no service provider and the individual members of the community use their collective
knowledge for personal or social goals. A Pareto improvement of the Nash equilibrium
is also achieved by making the users to contribute more information to the collective
knowledge, using a tit-for-tat mechanism. In this chapter, we propose a mechanism
design [72] approach in which the company acts as a designer and properly motivates
its users through the benefits in terms of payment[109] provided to them, in order to
obtain desired granularity of location information from all the users. We refer to the
mechanisms in this setting as privacy mechanisms.

The benefits offered by the company to the users can be the location based service
resources, discount coupons or monetary awards. It is assumed that the more accu-
rate the information, the more valuable it is for the company. For example, street level
information leads to contextual advertisements while city level granularity is less valu-
able. Concurrently, by being less anonymous, the users take a privacy risk. We take a
commodity view of the privacy here, where the users can trade their privacy to obtain
benefits from the company in an individual risk aware way. The model of the privacy
mechanism is given next.

4.2 Privacy Mechanism Model

Consider a mobile network composed of a set of mobile users with cardinality N . Around
user i at any time t, let a group of ni(t) mobile users, A , are in close proximity in an area.
The service provider gives location based applications to the mobile users. Therefore, it
asks for the location information from the mobiles.
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4 Location Privacy Mechanism for Mobile Commerce with Entropy Utility Functions

Table 4.1: Values of ni(t), N and g

ni(t) N g

101 103 2
3

103 106 1
2

106 109 1
3

We use an information theoretic approach to quantify the anonymity level of the
individual mobile users while giving the location information. The uncertainty of service
provider about the location information of user i is defined using the entropy term

Ai =

ni(t)∑
j=1

pj log2
1

pj
, (4.1)

where probability pj corresponds to the probability that a user j is in a location. The
parameter Ai concurrently quantifies the anonymity level of a users i. We can see that
pi = 1

log2 ni(t)
. Then Ai simply boils down to,

Ai = log2 ni(t).

We next define a metric called granularity of location information, gi, for the ith user as

gi = 1− Ai
log2N

.

The value of gi is between zero and one for each user. The anonymity level obtained
by user i by reporting with a granularity level gi is

Ai = (1− gi) log2N.

Here, gi = 0 means the user i keeps its location completely private and gi = 1 means the
user gives exact location to the mobile company. We can see that the more the value
of g, the less anonymous are the users. With a given value of gi the users specify the
size of the crowd it belongs to, i.e., ni(t). The Table 4.1 gives values of g for different
combinations of ni(t) and N . We can see that as the size of the population N increases
the more anonymous become the users.

The users decide on the value of g which they report to the company. In the scenario
considered in this model, the users have a continuous decision space resulting from
a risk-benefit trade-off optimization, i.e. the allowed decisions are not just full or null
information. This allows the designer to provide benefit based on the level of information
given by the users.
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4.2 Privacy Mechanism Model

There is a cost of perceived risk ci associated with the user’s privacy when they give
location information, which linearly increases with the granularity of information, i.e,

ci = rigi, ∀i,

where ri is the risk factor. The risk factor may result from disclosing your daily routine
or behavior to unknown parties. For example, the users may not like others to know
when they are in their office or home or they may simply care about their privacy on
principle. The users estimate or learn about their risk level from past experiences or
from reliable sources or by exchanging information with users like how much level of g
with which they report to the designer.

While gaining on location privacy, each user loses on the benefits of location based
applications/services due to the anonymity. For example, while depending on whether
users are in office, home or a particular street or city, they might be targeted with
different kinds of offers and services. When they give wrong information they are given
wrong services and offers. The total benefit obtained by user i can be quantified as

si = bi(g) log(1 + gi),

where bi(g) ∈ R+ is the benefit or subsidy factor provided by the company. Note
that the benefit factor bi provided for user i is designed based on the granularity level
chosen by all the users. In other words, the company provides benefits based on the
total available information in the actual “information market”. We model that the total
benefit increases logarithmically with the granularity level, since for low granularity
level marginal increase in the value of location information is higher. The logarithmic
assumption in this chapter can be generalized to any nondecreasing, concave function.

We now summarize the definitions of some of the terms discussed so far.

Definition 4.1 (Location Privacy). Location privacy of an individual user refers to how
she discloses and controls the dissemination of her personal (location) data.

Definition 4.2 (Anonymity (location)). Anonymity of a user i, Ai, is the uncertainty
of the service provider about the users location.

Ai =

ni(t)∑
i=1

pi log2
1

pi
.

Definition 4.3 (Granularity of Information). Granularity of information is the level of
granularity with which a user i reports its location.

gi = 1− Ai
log2N

.

Definition 4.4 (Perceived risk (cost)). It is the total cost perceived by user i as a
result of reporting her location with a certain level of granularity of information, which
is modeled as linear in gi,

ci = rigi.
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4 Location Privacy Mechanism for Mobile Commerce with Entropy Utility Functions

Definition 4.5 (Benefit). The total subsidy or reward user i obtains from the mo-
bile commerce company by disclosing her location with a certain level of granularity of
information,

si = bi(g) log(1 + gi).

In a mechanism design setting, there is a designer D at the center who influences
N players participating in a strategic (non cooperative) game. Let us define the
interaction of the users in the close proximity in the above setting as anN -player strategic
game, G , where each player i ∈ A has a respective decision variable gi such that

g = [g1, . . . , gN ] ∈X ⊂ <N ,

where X is the decision space of all players. The cost of each mobile user i will be the
risk it perceives minus the benefits it obtains from the company, i.e.,

Ji(g) = rigi − bi log(1 + gi) ∀i.

Each mobile user then solves her own optimization problem

min
gi

Ji(g). (4.2)

Note that from the price taking user perspective, the benefit bi is a constant designed
by the company, since each user has an information constraint to know the granularity
level of other users and calculate its benefit. The users just take best response given the
benefit provided by the company.

The company acts here as the mechanism designer and has the goal of obtaining a
desired level of location information granularity from the users. In this chapter, the
designer has an unconventional objective compared to other works in mechanism design
where the designer usually looks for social welfare or designer revenue maximization.
The designer or company here wants to improve the precision of location information
from each user, which is captured by a designer objective function that takes granularity
of information of all the users as its argument. The designer objective we consider here
is,

max
b

V = max
b

N∑
i=1

wi log(1 + gi(bi)), (4.3)

subject to a budget or resource constraint

N∑
i=1

bi ≤ B

where wi’s are the weights given to individual users as desired by the designer and B
is the total budget. The weights depend on how much the company values the location
information from different types of users.

It is important to note here that the designer (the mobile commerce company) tries
to achieves its objective indirectly by providing benefits to users b as it naturally does
not have control on their behavior, i.e. g. Essentially, the company tries to move the
NE point vector of g of the resulting game to a desirable point by using the benefits
provided to the users.
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4.3 Location Privacy Mechanism

4.3 Location Privacy Mechanism

In a privacy mechanism, each user decides on the location privacy level to be reported,
i.e., gi, depending on its risk level perception as a best response to the benefit set by the
company by minimizing individual cost. The underlying game may converge to a Nash
equilibrium, which may not be desirable to the service provider because the required
level of location information not obtained. Therefore, the designer employs a pricing or
subsidy mechanism to motivate the users by properly selecting the benefits delivered to
each user by solving a global objective. We obtain the optimum benefit for each user by
aligning user problems and designer problem as,

b∗i =
wi

ν∗ + λ∗i − µ∗i
, ∀i ∈ A , (4.4)

where ν∗, λ∗i , µ
∗
i are Lagrange multipliers. Then, the optimal granularity level of each

user will be,

gi =


0, if bi ≤ ri

wi
(ν∗ + λ∗i − µ∗i )ri

− 1, if ri ≤ bi ≤ 2ri

1, if bi ≥ 2ri.

The designer can obtain desired granularity of information from each user by properly
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Figure 4.1: Granularity of information of 5 users with the total budget.

selecting the functions in the global objective and the weights in the function. Note that
to formulate the objective and for imposing the constraints on the global problem, the
designer needs to know the user r’s.
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4.4 Numerical Analysis
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Figure 4.2: Variation of granularity of information of user 1 with the weight in the global
objective.

The privacy mechanism given in Section 4.3 is illustrated with a numerical example
in this section. We considered 5 users having logarithmic utilities and their risk factors
are randomly generated between 0 and 2. The risk vector in an instance is taken as

r = [0.18 0.45 0.89 0.98 1.1693].

The weights given to the users in the global objective is taken as

w = [1.78 0.945 0.99 1.098 0.869]

and assumed that the company has no control over these weights to manipulate them.
We first plotted the variation of the best response granularity level of the users with the
total budget of the company in Figure 4.1.

We can observe in Figure 4.1 that there is a critical budget below which the company
cannot extract any location information from the users. We could also observe from
Figure 4.1 that the company can extract more and more granularity of information by
increasing the total budget, as expected. The threshold level of granularity for all the
users which is the minimum level required to provide the service is taken to be 0.2. The
level of budget required for extracting more than this threshold level of granularity from
all the users, can be obtained from Figure 4.1. For the instance considered in the plot,
the critical level of budget is given as 6. Next, we consider the case where the company
can adjust the weight given to different users in the global objective. In Figure 4.2, the
setting remains as in the Figure 4.1 except that the company varies the weight of the
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Figure 4.3: Location of users: Actual and Reported.

first user. From this plot, the weight required to get the desired level of granularity of
information can be obtained. For user 1 the desired level of granularity of information
is obtained with w1 = 0.21.

4.4.1 Simulation Results

We construct the location of large number of users and the crowd around them from their
reported granularity level using real dataset here. We use the GPS trajectory dataset
([123, 121, 122]) which was collected in (Microsoft Research Asia) Geolife project by 167
users in a period of over three years from April 2007 to December 2010. These data sets
give context information to the systems and help to develop innovative mobile and web
application. They also help to infer the user transportation modes and mobility patterns.
But the users need to be incentivised to share their location for obtaining these data
sets. The data set which gives the latitude and longitude of 160 users at different times
from 2007 to 2010 is imported for a particular time. Using these latitude and longitude
information, the exact location of the users are plotted in the Figure 4.3. We obtained
the best response granularity level of the users from the privacy mechanism in Section
4.3 for the case of logarithmic utility function for a particular risk vector and budget.
These best response granularity levels are mapped back to the size of the crowd (ni(t))
from the equation (4.1) given in Section 4.2 and reported locations are constructed from
them.

The location anonymity of the users due to the granularity level they reported in
equilibrium are represented as the circles around the actual locations using the data set
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Figure 4.4: Anonymity levels of users.

in the Figure 4.3. The blue circle around a user contains the crowd of users around
that particular user. We can observe that users have different size of crowd around
them depending on the risk factor they have. From the plot we can understand that
if we consider the users does not share their actual location but act according to the
privacy mechanism, we get a map of users with the blue circles instead of the read
dots. The company will have to modify the location based application taking this into
consideration.

Next we plot the anonymity levels chosen by the users in the equilibrium. Depending
on the values of ni each user i will have a number of users around her and the anonymity
levels according to that. The anonymity levels of the 100 users are plotted as a bar graph
in the Figure 4.4.

4.5 Conclusion

I this chapter we modeled and analyzed the interaction of a mobile commerce company
with its users who obtain location based services, as a strategic game. A privacy mech-
anism has been designed where the company motivates its users to report their location
information at a granularity level desired by the company. In return, monetary benefits
are obtained by a user depending on the granularity level taken by them and on the
weight the designer gives for them in the global objective. It has been observed that,
the users report their location with nonzero granularity level of information when the
subsidy by the company exceeds their perceived risk factor.
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5 Iterative Algorithms and Learning for
Mechanisms

5.1 Introduction

We consider the implementation of pricing mechanisms which were proposed in the
earlier chapters in this chapter. We considered one shot games in the previous chapters
and now we consider that the users interact over a time to converge to the NE point. We
first consider the iterative and distributed algorithms in which the users and the designer
update their strategies and prices in a gradient manner. We prove the convergence of
the algorithm in Section 3.2.2 of Chapter 3.

Next, the mechanism designer learns these utility functions using regression techniques
based on the bids reported or actions taken by the users. Specifically, a Gaussian
process regression learning [92] technique is used to estimate the marginal utilities of
the players. The best response of the players to the prices and rules imposed by the
designer constitutes the training data set. Once the marginal utilities are estimated with
small number of training data points, the optimal point is searched in order to satisfy
the optimality conditions. The nature of the optimal point may depend on the specific
problem formulation. In the specific problem considered here, the optimality condition
becomes full utilization of the resource given the marginal utilities of the users.

In pricing mechanisms, the price taking players take best response actions to the the
price charged by the designer. We use Gaussian process regression learning to approx-
imate the utility function of players from the their actions, which are considered to be
the input data points. Once the marginal utilities of players are learned, the space of the
Lagrange multiplier of the total resource constraint in the designer problem is searched
to obtain the optimal point.

In auctions, the players bid as a response to the price and allocation designed by
the designer. In a similar way as in pricing, the marginal utilities are learned through
Gaussian process regression. Then, the reserve bid parameter in the price and allocation
functions is updated until the optimality conditions are satisfied.

5.2 Convergence Analysis of Iterative Algorithms

Here we analyze the convergence of the iterative distributed algorithm for the pricing
mechanism given in Section 3.2.2 of Chapter 3. . First, we consider an iterative algorithm
to iteratively compute the NE solution of the mechanism, with single carrier. Let the

71



5 Iterative Algorithms and Learning for Mechanisms

iterative distributed mechanism be M ′
c is defined by the following equations,

xi(k + 1) = xi(k)− κi
∂Ji
∂xi

∀i ∈ A, (5.1)

λ(k + 1) = [λ(k)− κD
(∑

i

xi(k + 1)−Xmax

)
]+, (5.2)

where [s]+ = max(0, s).

Theorem 5.1. In the iterative pricing mechanism M ′
c defined by the set of equations

(5.1) and (5.2) converges to a unique point in the constraint set individually if 0 < κi <
2

M1
,∀i and 0 < κD <

2

M2
, where M1 is the constant which bounds ||Γ(δJi(x))||,∀x ∈ A

and M2 is the constant which bounds ||Γ(δL(λ))||,∀λ ∈ <+
n and Γ is the Jacobian matrix.

The algorithm converges to a unique point assuming that the Lagrange multiplier update
in (5.2) happens in a slower time scale than the user action updates in (5.1).

Proof. In [17], for analyzing constraint optimization problems, the infeasible points are
projected back to the feasible region. The projection mapping is defined as,

[x]+ = arg min
x∈X
||z− x||2

where X is the feasible set.
For the convergence of the gradient projection algorithm, the relaxations of Assump-

tions 3.1 given in [17] (pp. 213) are to be satisfied as sufficient conditions. The relaxed
Assumption 3.1 says that F (x) > c, ∀x ∈ X for a c ∈ < for any F to be minimized.
Both user cost function and the global objective satisfy this. The second assumption is
the Lipschitz continuity condition given by,

||δJi(x)− δJi(y)|| ≤ K||x− y||,∀x,y ∈X .

The user cost functions are twice continuously differentiable from the Assumption 2.4.
Therefore, we can use the mean value theorem for vector valued functions which states
that,

δJi(x)− δJi(y) = (

∫ 1

0
Γ(δJi(y + tρ)dt)) · (x− y),∀x,y ∈ X,∀i

where ρ = x − y ∈ X , 0 ≤ t ≤ 1 and Γ is the N × N Jacobian matrix. The Jacobian
matrix Γ is defined as,

Γ(δJi(x)) :=


c1 c12 · · · c1N
c21 c2 · · · c2N
...

. . .
...

cN1 cN2 · · · cN

 , (5.3)

where cm :=
∂2Ji
∂x2m

and clk :=
∂2Ji

∂xl∂xm
.
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5.2 Convergence Analysis of Iterative Algorithms

Using the Cauchy-Schwartz inequality,

||δJi(x)− δJi(y)|| ≤M1||x− y||,∀x,y ∈X , ∀i, (5.4)

where M1 is the constant which bounds ||Γ(δJi(x))||,∀x ∈ X . The set X is convex
here and (y + tρ) ∈ S for t between 0 and 1. For x ∈ X, M1 is bounded when the
boundaries of S are finite. Therefore, the action update according to equations (5.1)

converges if 0 < κi <
2

M1
,∀i ∈ A for given λ and thus prices.

Here we do the distributed implementation by the alignment of users and designer
problems. When the designer updates the prices according to (5.1),

dJi
dxi

= −dV
dxi

.

Therefore, the gradient update using user cost in (5.1) is according to the gradient update
of the global objective.

The Lagrange function of the global objective is given by

L(x) =
∑
i

Ui(x)− λ(
∑
i

xi −Xmax).

subject to the condition that λ ≥ 0, ∀i. The gradient descent equation for L(x) is given
by

λ(k + 1) = [λ(k) + κD
∂L

∂λ
]+ ∀i. (5.5)

It can be verified easily that the equation (5.2) is equivalent to equation (5.5).
Also, we need to prove the Lipschitz continuity of the Lagrange function of global

objective w.r.t. the λ. From the mean value theorem,

δL(λ(1))− δL(λ(2)) = (

∫ 1

0
Γ(δL(λ(2) + tν)dt)) · (λ(1) − λ(2)), ∀λ(1), λ(2) ∈ Rn+

and
||δL(λ(1))− δL(λ(2))|| ≤M2||λ(1) − λ(2)||, ∀λ(1), λ(2) ∈ Rn+.

Therefore, the Lagrange multiplier update according to equation (5.2) converges if

0 < κD <
2

M2
, for given action vector x. Gradient descent equations under the above

assumptions converges according to Prop. 3.4. in [17] (pp. 214).
Since user cost function and Lagrange function of the global objective are convex,

the equations converges to a unique point in the constraint set according to Prop. 3.5
in [17]. The action update happens in a faster timescale and it converges for any given
value of the Lagrange multiplier. Lagrange multiplier update happens in the direction of
global optimum once in several time step of the action update. Therefore, the algorithm
converges to a unique point.

Remark 5.1. The proof can be easily generalized to the multi-carrier systems and energy
minimization objective.
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5 Iterative Algorithms and Learning for Mechanisms

5.3 Regression Learning of Utility Functions

The users have utility functions private to them which are functions on their actions x.
Therefore, the designer can learn these utility functions from the actions taken by the
users. Consider any function f(.) and a set of M data points E = {x1, . . . , xM}, and the
corresponding vector of scalar values is {f(x1), f(x2)...., f(xM )}. A regression learning
algorithm uses the training data set to give a learned function f̂ which minimizes the
error from f and follows the real shape of f . Assume that the observations are distorted
by a zero-mean Gaussian noise, n with variance σ ∼ N(0, σ). Then, the resulting
observations is a vector of Gaussian y = f(x) + n ∼ N(f(x), σ).

A Gaussian Process (GP) is formally defined as a collection of random variables, any
finite number of which have a joint Gaussian distribution. It is completely specified by
its mean function m(x) and covariance function C(x, x̃), where

m(x) = E[f̂(x)]

and
C(x, x̃) = E[(f̂(x)−m(x))(f̂(x̃)−m(x̃))], ∀x, x̃ ∈ E .

Let us for simplicity choose m(x) = 0. Then, the GP is characterized entirely by its
covariance function C(x, x̃). Since the noise in observation vector y is also Gaussian,
the covariance function can be defined as the sum of a kernel function W (x, x̃) and the
diagonal noise variance

C(x, x̃) = W (x, x̃) + σI, ∀x, x̃ ∈ E , (5.6)

where I is the identity matrix. While it is possible to choose here any (positive definite)
kernel W (·, ·), one classical choice is

W (x, x̃) = exp

[
−1

2
‖x− x̃‖2

]
. (5.7)

Note that GP makes use of the well-known kernel trick here by representing an infinite
dimensional continuous function using a (finite) set of continuous basis functions and
associated vector of real parameters in accordance with the representer theorem.

The training set (E , y) is used to define the corresponding GP, GP (0, C(E )), through
the M ×M covariance function C(E ) = W + σI, where the conditional Gaussian distri-
bution of any point outside the training set, ȳ ∈ X, ȳ /∈ E , given the training data (E, t)
can be computed as follows. Define the vector

k(x̄) = [W (x1, x̄), . . .W (xM , x̄)] (5.8)

and scalar
κ = W (x̄, x̄) + σ. (5.9)

Then, the conditional distribution p(ȳ|y) that characterizes the
GP (0, C) is a Gaussian N(f̂ , v) with mean f̂ and variance v,

f̂(x̄) = kTC−1y and v(x̄) = κ− kTC−1k. (5.10)
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5.3 Regression Learning of Utility Functions

This is a key result that defines GP regression. The mean function f̂(x) of the GP
provides a prediction of the objective function f(x). Furthermore, the variance function
v(x) can be used to measure the uncertainty level of the predictions with the mean value
f̂ .

Here the designer learns the marginal utility functions U ′i of each user using their best
response bids or actions as data points.

5.3.1 Learning in Pricing Mechanisms

In this section, regression techniques are used to learn the user private marginal utilities
by the designer for implementation of pricing mechanisms.

We consider the case of a divisible resource of amount Xmax is allocated among users
having separable utility functions. The resource can be spectrum in wireless communi-
cation systems or bandwidth in the Internet. Due to the selfish nature of the individual
users, without designer intervention there will be an inefficient distribution of the divis-
ible resource (Price of Anarchy). The prices are designed to bring the Nash Equilibrium
of the resulting game to an efficient point.

The user optimization problem will be to find the action level which minimizes his
individual cost , i.e.,

min
xi

Pixi − Ui(xi).

Consequently, the general condition for player best response obtained from first order
derivative is

Pi −
dUi(xi)

dxi
= 0, ∀ i ∈ A. (5.11)

The best response will be,

xi = (
dUi
dxi

)−1(Pi), ∀ i ∈ A. (5.12)

The designer want to achieve the maximum social welfare, i.e the net utility of users
is to be maximized. Therefore, the social objective is,

V = max
x

∑
i

Ui(xi), such that
∑
i

xi ≤ Xmax.

The Lagrangian is given by

L =
∑
i

Ui(xi) + λ(
∑
i

xi −Xmax).

where λ > 0 is the unique Lagrange multiplier.
The resulting Karush-Kuhn-Tucker (KKT) conditions will give,

U ′i(xi) = λ, ∀i ∈ A, (5.13)

and
λ(
∑
i

xi −Xmax) = 0, ∀i,
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5 Iterative Algorithms and Learning for Mechanisms

Since the individual user utility functions are concave and non-decreasing, the optimum
point will ensure boundary solution. By comparing (5.13) and (5.11), we conclude that
for aligning designer and user objectives, the designer needs to set λ as the price for
every user for solving designer and user problems. Therefore, from the criterion of full
resource usage, it follows that∑

i

x∗i =
∑
i

(
U ′i
)−1

(λ∗) = Xmax. (5.14)

where x∗ and λ∗ are the optimal points.
Each user i sends a response to the sample prices {Pi1, · · · , PiM} set by the social plan-

ner which contains the action vector {xi1, · · · , xiM}. The corresponding scalar marginal
utility values at those points are U ′i(xi1, · · · , U ′i(xiM ) ,∀i. Assume that the observations
are distorted by a zero-mean Gaussian noise, n with variance σ ∼ N(0, σ). Now let the
Gaussian vector obtained in the case of user i is {yi1, · · · , yiM}, where

yim = U ′i(xim) + ni ∀i.

A Gaussian regression technique as described is used to estimate the marginal utility
functions Ũ ′i . After that, the λ values are obtained by an online learning algorithm. The
optimal points λ∗ and x∗ are selected at which

λ∗ = Ũ ′i = Ũ ′j , ∀i, j

and
∑

i x
∗
i = Xmax.

The algorithm which also shows the information flow for the regression learning
method is given below in Algorithm 2. First an initial estimation of marginal utili-
ties are obtained using M data points. Then the best value of λ is found using an
iterative search by the designer

λn+1 = λn + κD
(∑

i

xi −Xmax

)
, (5.15)

where n is the time step and κD is the step size. The corresponding values of x are
obtained using the estimated marginal utility curves by setting λn as the marginal utility
values. By checking the full utilization condition the converging value λnew is obtained.
It is important to note that this computation is done by the designer alone and does
not require any player involvement. The converged value λnew is sent to the players as
the new prices, and new actions xnew are observed. The noisy version of value of λnew
(which is the value of the function at xnew) and xnew are added next to the initial data
set. Using the regression this new data set gives a better estimate of marginal utilities
near the optimal point. From this new estimate of marginal utilities the iteration given
by equation (5.15) is run to obtain a new converging value of λ and corresponding values
of x. This online learning and estimation is repeated till end of iteration.

Remark 5.2. Note that by using the online learning algorithm as above, when the user
preferences or parameters in utility function change in the course of time, the designer
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5.3 Regression Learning of Utility Functions

Algorithm 2: Regression Learning of User Utilities in Pricing Mechanisms

Input: Designer : Global objective.
Input: Players (users): Utility functions Ui(xi)
Result: Learned utility functions Ũi(x) ∀i, optimal prices, and efficient

allocation vector x∗

1 Initialization: The designer obtains initial data points by selecting values for the

Lagrangian λ and makes an initial estimate of Ũi for each user i using GP by
setting the prices accordingly and observing user responses;

2 repeat
3 begin Designer:
4 Update the value of λ using λn+1 = λn + κD

(∑
i xi −Xmax

)
;

5 Using Ũi, find the corresponding values of x;
6 Continue until

∑
i xi = Xmax and denote the corresponding λn as

λnew;
7 Set λnew as the user prices, Pi ;
8 begin Players:
9 foreach Player i do

10 Take action xinew as response to the prices Pi;
11 end

12 end
13 Observe the player actions xinew ∀i,m ;
14 Add the values of λnew and xnew to the initial data set points;

15 Update user utility estimates Ũi and variances vi for all the users based
on the updated data set using GP;

16 end

17 until convergence;
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5 Iterative Algorithms and Learning for Mechanisms

can estimate the new functions and can move the system to optimal point. The numerical
results which illustrate the learned functions and convergence of the algorithm are given
in Section 5.4. We observe that by using this online learning algorithm, the designer can
adapt the estimation if the utility functions or utility parameters of the players change
in the course of time.

5.3.2 Learning in Auctions

We consider next iterative auctions similar to iterative combinatorial auction or English
auction for a divisible good. The players decide on their bids or actions by minimizing
their cost which is a combination of their own utilities and prices imposed by the designer.
Specifically, the designer D imposes on a player i ∈ A a user-specific resource allocation
rule, Qi(x), pricing, Pi(x) from the the vector of player bids x. We consider here an
additive resource sharing scenario where the players bid for a fixed divisible resource
Qmax and are allocated their share captured by the vector Q = [Q1, . . . , QN ] subject to
the resource constraint

∑
iQi ≤ Qmax.

The total payment by the ith player is ci(x) = Pi(x)Qi(x). The player utility function
Ui is separable, i.e. it depends only on the individual allocation of the player. It is
also assumed to be continuous, strictly concave, and twice differentiable in terms of its
argument Qi.

From a player’s perspective, who takes myopic best response to the price and allocation
given by the designer and tries to minimize its cost in terms of the actual resources
obtained, the condition

∂Ji
∂Qi

=
∂ci
∂Qi

− ∂Ui
∂Qi

= c′i − U ′i

is necessary and sufficient for optimality. Suppressing the dependence of user cost on
bids x, for the cost minimization, it has to satisfy

Pi(Q) =
∂Ui(Qi)

∂Qi
∀i ∈ A. (5.16)

Furthermore, if additional assumptions are made on Ji(x), it can be shown that the
game admits a unique NE, Q∗ (or x∗) [13].

Different from players, the designer D has two objectives: maximizing the sum of
utilities of players and allocating all of the existing resource Qmax, i.e. its full utilization.
Hence, the designer D solves the constrained optimization problem

max
Q

V (Q)⇔ max
Q

∑
i

Ui(Qi) such that
∑
i

Qi ≤ Qmax, (5.17)

in order to find a globally optimal allocation Q that satisfies this efficiency criterion.
The associated Lagrangian function is then

L(Q) =
∑
i

Ui(Qi) + λ

(
Qmax −

∑
i

Qi

)
,
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5.3 Regression Learning of Utility Functions

where λ > 0 is a scalar Lagrange multiplier. Under the convexity assumptions made,
this leads to

∂L

∂Qi
⇒ U ′i(Qi) = λ, ∀i ∈ A, (5.18)

and the efficiency constraint

∂L

∂λ
⇒
∑
i

Qi = Qmax. (5.19)

In the specific resource sharing setting defined, an auction-based mechanism, Ma, can
be defined based on the bid of player i,

xi := Pi(x)Qi(x), (5.20)

the pricing function

Pi :=

∑
j 6=i xj + ω

Qmax
, (5.21)

for a scalar ω > 0 sufficiently large such that
∑

iQi ≤ Qmax, and the resource allocation
rule

Qi :=
xi∑

j 6=i xj + ω
Qmax. (5.22)

which is differentiable. It is also possible to interpret the scalar ω as a reserve bid [57].
Note that the bid of each player is her willingness to pay i.e. the total amount she pays
is her bid ci(x) = xi. The cost function for the mechanism Ma becomes in this case,

Ji(x) = xi − Ui(Qi(x)). (5.23)

Let us denote
Si =

∑
j 6=i

xj + ω,

and then equations (5.21) and (5.22) become

Pi :=
Si

Qmax
, (5.24)

and
Qi :=

xi
Si
Qmax. (5.25)

We obtain the best response as,

Q∗i =

(
∂Ui
∂Qi

)−1
(
Si

Qmax
), (5.26)

where Si/Qmax is the argument of the inverse marginal utility function.
From the general condition in equation (5.16), the marginal utility is equal to the price

∂Ui
∂Qi

=
Si

Qmax
=

∑
j 6=i xj + ω

Qmax
. (5.27)
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This equation can be rewritten as following

∂Ui
∂Qi

(xi) = ψ(x)− xi
Qmax

. (5.28)

where

ψ(x) =

∑
j xj + ω

Qmax
. (5.29)

As in pricing, GP regression learning is used now to learn the marginal utilities in
auctions. For an initial value of ω, an initial estimate of the marginal utilities of players
are constructed. The values of Qi’s will give the corresponding values of xi’s for this
initial value of ω.

Next, the value of ψ is varied over space of all possible values, by changing the value of
the reserve bid ω. This search algorithm provides the value of λ for which

∑
iQi = Qmax

for any general utility function and the corresponding value of ω. This ω is then used
to set the price and allocation, using which the bids will converge to the efficient point.
Since the reserve bid is an independent parameter which does not depend on user bids,
the incentive compatible property of the mechanism still holds.

To illustrate the approach, consider the case of logarithmic utility function weighted
by a positive scalar parameter α, i.e.,

Ui = αi logQi ∀i ∈ A.

The best response is x∗i = αi. The unknown α’s are then learned in single step from the
bid which corresponds to optimal point.

Consider next the alternative case of exponential user utilities,

Ui = 1− e−αiQi ∀i ∈ A.

In this case

x∗i =
Si

Qmaxαi
log

Qmax
Si

.

So to learn α’s an iteration is needed and the optimal prices based on these correct α’s
will take the system to approximately efficient point.

In the case of general user utilities, however, multiple steps of the Algorithm 2 are
required in order for the designer to characterize user utilities with sufficient accuracy
and the outcome converges to the optimal solution.

5.4 Numerical Results

In this section we provide some numerical results that illustrate our theoretical analy-
sis. We consider a system with 5 users having scalar parametrized logarithmic utility
functions in order to visualize the results.

In Figure 5.1, the actual marginal utility curves for 3 users with logarithmic utilities
are compared with marginal utility curves constructed using initial data points and the
online algorithm given in Algorithm 2. We can observe that near the optimal lambda
value the estimation of the function is better with the online algorithm than with only
initial data points, as expected.
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Figure 5.1: Marginal Utility curve for logarithmic utilities constructed using initial data
points and the online algorithm given in Algorithm 2.

5.5 Conclusion

The convergence of the iterative algorithm, which was proposed in Cahpter 3, has been
proven for a single carrier case. The rest of the chapter has analyzed a scenario in which
the mechanism designer uses learning techniques as a tool for estimating the utilities of
the players. We have considered the problem of allocation of a divisible resource by a
designer to a number of players having infinite dimensional utility functions and designer
employing Gaussian process regression method to obtain the marginal utility functions
of the players. In the pricing mechanisms, the Lagrange multiplier of the total resource
constraint, which is set as the price for all the users, has been used to navigate the
allocation to the efficient point using the estimated marginal utilities. In auctions, the
reserve bid parameter in the pricing and allocation rule has been varied for obtaining
near efficient point. We have also proposed an online algorithm which uses the best
response action of users in each time instance to give a better estimate of the utilities,
near the efficient point.
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6 Mechanism Design with Malicious Users

6.1 Introduction

In this chapter, we model the coexistence of altruistic, selfish and malicious players by
introducing an overarching noncooperative game-theoretic framework. Specifically, we
adopt a mechanism design ([72], [4]) approach in which a set of rules and incentives are
used to control the outcome of the underlying game between the players. Within the
framework developed, we study the effect of malicious players on mechanisms where the
regular players exhibit selfish behavior. Here, we assume that malicious users mainly
stay within the rules of the system. Hence, the are modeled by assigning different utility
functions than the selfish players, for example a common selfish utility minus the sum of
utility of other users in the system or a convex one in contrast to the usually concave util-
ity functions of selfish users. Thus, we map their destructive behavior such as jamming
other players and launching Denial-of-Service(DoS) attacks to rational incentives.

The classical Vicrey-Clarke-Groves (VCG) mechanism [112] is an efficient and strategy-
proof (truth revealing) mechanism in the presence of selfish players. We first show the
effect of the adversarial behavior of some users on the efficiency of VCG mechanism for
allocation of divisible resources, which is used to motivate the need for quantifying the
effect of adversarial behavior on network mechanisms.

To quantify the effects of adversarial behavior, we analyze the robustness of some
known network mechanisms with respect to the adversarial behavior of (some of) their
participants. The metric called Price of Malice [84]-[12] is modified for network resource
allocation games and applied to two different network problems studied here. In the
cases analyzed, the malicious players are assumed to take the maximum resource share
possible without detection and that way try to disrupt others.

Another behavior which is adversarial and specific to the context of mechanisms arises
when some of the malicious users form a group or collusion in order to disrupt mech-
anisms. The mechanisms that are resistant to collusion are called group strategy-proof
mechanisms. In Section 6.4.1, we investigate the group strategy-proof property of one
of the mechanisms proposed for network resource sharing setting and in Section 6.4.2
quantify the effect of adversarial behavior resulting from collusion.

To counter the adversarial behavior, we design mechanisms in which the prices are
varied differentially to punish the malicious players after detecting them using a threshold
detection technique based on the bids of users. Clearly, when the malicious users do
not abide by the rules and vandalize the system, a stronger response such as blocking
the users suspected of malicious behavior after detection is required. We employ a
differentiated pricing scheme in which both aggressively selfish and malicious players
with disproportional usage of resources are made to pay higher prices than regular selfish
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players. The vulnerability of this method is quantified using a specific trade-off metric.
We consider two different types of network problems in this thesis which differ in

coupling of users and resource sharing methods. The first one is rate (congestion) control
with additive resource sharing, e.g. sharing of bandwidth at a link with fixed capacity.
The second one is interference management, e.g. uplink power control in CDMA wireless
networks with interference coupling. While allocating these divisible resources to selfish
users, a loss in social welfare is caused at the resulting Nash equilibrium due to the
selfish nature, which is often referred as Price of Anarchy. Mechanisms such as auctions
and pricing schemes have been proposed to shift the Nash equilibrium point to efficient
point. In these mechanisms and underlying games, the selfish nature of rational users
have been modeled with concave utility functions. In practical situations, however, there
are altruistic users who care for the welfare of all the users as well as adversarial users who
may deviate from equilibrium point even if it causes a loss to them or will show extreme
selfishness, i.e. they behave ’irrationally’ if modeled using this class of utility functions.
We retain the rationality assumption by associating them with different utility functions.
In the presence of these altruistic and adversarial agents, the mechanisms employed will
have Nash equilibrium different from the efficient point and this deviation is captured
in the metric Price of Malice.

This chapter studies the effects of and countermeasures against adversarial behavior
in network resource allocation mechanisms such as auctions and pricing schemes. It
models the heterogeneous behavior of users, which ranges from altruistic to selfish and
to malicious, within the analytical framework of game theory. A mechanism design
approach is adopted to quantify the effect of adversarial behavior, which ranges from
extreme selfishness to destructive maliciousness. First, the well-known result on the
Vicrey-Clarke-Groves (VCG) mechanism losing its efficiency property in the presence of
malicious users is extended to the case of divisible resource allocation to motivate the
need to quantify the effect of malicious behavior. Then, the Price of Malice of the VCG
mechanism and of some other network mechanisms are derived. The resistance of a
mechanism to collusion is investigated next and the effect of collusion of some malicious
users is quantified. Differentiated pricing as a method to counter adversarial behaviors
is proposed and briefly discussed. The results obtained are illustrated with numerical
examples and simulations in Section 6.6.

We focus on two basic types of resource sharing and coupling in this chapter, which
are often encountered in a variety of networking problems:

1. Additive resource sharing: The players share a finite resource Qmax such that

N∑
i=1

Qi = Qmax.

This type of coupling is encountered in bandwidth sharing and rate control in
wireline networks.

2. Interference coupling (linear interference): The resource allocated to player i, γi,
is inversely proportional to interference generated by others. Interference coupling
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occurs in wireless networks where γ represents signal-to-interference-plus-noise ra-
tio(SINR). For example, in a single carrier CDMA system, SINR is given by

γi(Q) =
Qi

1

L

∑
j 6=iQj + σ2

, (6.1)

from equation (3.1). The individual power of the users will be
Qi
hi

where hi ∀i are

the channel gains.

6.1.1 Adversarial behavior in VCG Mechanism

First, we show the effect of malicious behavior in VCG mechanism, which is a direct
mechanism where the users submit their entire utility function to the designer. For
this case the strategy space X is infinite dimensional. We consider logarithmic utility
functions,

Ui(x) = αi log(Qi(x)), ∀i. (6.2)

For the case where user utility functions are parametrized by a scalar value α, each user
reports its α and θ, i.e.,X ⊂ <2N . Unlike in the classical VCG mechanism, where all
the users are selfish, we consider some users as malicious who reports a malicious utility
function Umi (x) to the designer, instead of a regular selfish utility Ui(x). We show in this
section, the effect of malicious behavior in VCG mechanism for allocation of divisible
resources and here we do not follow a Bayesian approach as in [87].

When allocating a single divisible resource of quantity Qmax, the efficient allocation
and total VCG payment for a user i, in the presence of other heterogeneous users, is

Q∗ = arg max
Q

∑
j∈A

Umj (Qj(x))

and
CV CGi = −

∑
j 6=i

Umj (Q∗j (x)) +
∑
j 6=i

Umj (Qij(x)), ∀i, (6.3)

where
Qi = arg max

Q

∑
j 6=i

Umj (Qj(x)),∀i

is the efficient allocation when user i is out of the system. The optimizations above are
subject to the constraint

∑
iQi = Qmax.

As result of this allocation and payment the individual cost of the users become

Ji = CV CGi − Umi (Q∗i (x)),∀i.

In the case of logarithmic user utility functions parameterized by a scalar value, when
none of the user is malicious, the allocation and payment become

Q∗i =
αiXmax∑

j αj
,
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CV CGi =
∑
j 6=i

αj log

( ∑
m αm∑
m6=i αm

)
.

Consider the case where only user k is malicious and reports Umk to the designer to
reduce the share of resource allocation to the other selfish users. Then, the optimal
allocation becomes

Q∗ = arg max
Q

(Uk(Qk) + (1 + θk)
∑
j 6=k

Umj (Qj(x))).

Again, in the case of logarithmic user utility functions, we have

Qm∗ = arg max
Q

αk log (Qk) + (1 + θk)
∑
j 6=k

αj log (Qj(x)) .

The individual user allocations are given in the malicious case as

Qm∗k =
αkXmax

αk + (1 + θk)
∑

j 6=k αj
, (6.4)

Qm∗j =
αj(1 + θk)Xmax

αk + (1 + θk)
∑

j 6=k αj
,∀j 6= k. (6.5)

We observe that the allocation to malicious user increases and that of other users
reduce when θk decreases from 0 towards −1 compared to the case where none of the
users are malicious. Therefore the malicious user is able to destroy the efficiency property
of the VCG mechanism. Therefore, we conclude that the VCG mechanism is vulnerable
to malicious behavior in the case of divisible resource allocation too like in indivisible
case proved in [27].

Furthermore, in the malicious case when user i is not in the system, we have

Qik =
αkXmax

αk + (1 + θk)
∑

j 6=k,i αj
, i 6= k, (6.6)

Qij =
αj(1 + θk)Xmax

αk + (1 + θk)
∑

j 6=k,i αj
,∀j 6= k, i, (6.7)

Qkj =
αjXmax∑
m6=k αm

. (6.8)

By substituting equations (6.4), (6.5), (6.6),(6.7) and (6.8) in (6.3), the VCG payment
for the malicious case is

CV CGmi =
∑
j 6=i

αj log

(
αk + (1 + θk)

∑
m 6=k αm

αk + (1 + θk)
∑

m6=k,i αm

)
,

CV CGmk =
∑
j 6=k

αj log

(
αk + (1 + θk)

∑
m 6=k αm

(1 + θk)
∑

m6=k αm

)
.

We observe that the payment of malicious users increases and that of selfish users de-
creases as θk changes from 0 to −1. However, the higher payment is not sufficient to
prevent malicious behavior.
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6.2 Price of Malice in Mechanisms

We quantify in this section, the resilience of some network mechanisms to malicious
behavior. For this purpose, we use the definition of PoM in the Definition 2.21. Now,
we proceed to estimate the value of Price of Malice parameter for different network
mechanisms. First, we start with the direct VCG mechanism which was shown to be
nonresistant to malicious behavior in the previous section.

6.2.1 Price of Malice in VCG Mechanism

The case where user k is malicious and users have logarithmic utility function we could
obtain analytical expression for PoM in VCG Mechanism which can be generalized to
other cases.

Proposition 6.1. For the additive resource sharing with user utility functions given in
equation (6.2), the Price of Malicious of VCG mechanism PoM(V CG) is

PoM(V CG) =

∑
j 6=k αj log

(
αk + (1 + θk)

∑
j 6=k αj

(1 + θk)
∑

m αm

)
∑

j 6=k αj log

(
αjXmax∑

m αm

)
For the case where users are symmetric αi = α, ∀i, and only one user is malicious or
all the malicious user coordinate to form one entity, this simplifies to

PoM(V CG) =

log

(
N−1+ 1

1+θk
N

)
log
(
Xmax
N

) .

Proof. PoM(V CG) is derived directly by substituting the equations (6.7) and (6.6) in
Section 6.1.1 to the Definition 2.21 given above.

We could observe that when the maliciousness of users increase, i.e., as θ decreases
from 0 to −1, we can see that the Price of Malice increases. We could observe that the
PoM(V CG) can be bounded for different possible values of θk and is unbounded when
θk reaches -1.

6.2.2 Price of Malice in Indirect Auction Mechanisms

Here we present indirect auction mechanisms ([72]) for two network coupling schemes,
rate control in wired networks and power allocation in interference coupled wireless
networks, and quantify the Price of Malice for both cases. In the indirect mechanisms,
instead of reporting their utility function to the designer, the players take a best response
to the actions of other players and to the allocation and pricing rules set by the designer.
Therefore, the allocation and pricing rules are not a function of utility functions unlike
direct VCG mechanism, but rather fixed functions of the player strategies. We consider
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indirect auction mechanisms with scalar bid here since they have only one dimensional
communication requirement which is suitable for network resource allocation. The ma-
licious behavior considered in this section is that the malicious players take maximum
possible share of the resources according to their θ value. This way the malicious players
aim to disrupt other players by denying their fair share of resources.

6.2.3 Auctions for Rate Control in Networks

We consider the rate sharing problem with users having separable utility function of
their allocation and quantify the effect of the adversarial behavior on it. Let users with
utilities Ui(Qi) share a fixed bandwidth Qmax such that

∑N
i=1Qi(x) ≤ Qmax, where

xi ∈ (0, xm). The vector x in this case denotes player flow rates and Q the capacity
allocated to them ( [109, 2]). Consider the utility function given in (2.10) and the cost
of ith user is then given by,

Jmi (x, θi) = Ci(x)− Ui(Qi(x))− θi
∑
j∈S

Uj(Qj(x)), ∀i. (6.9)

We consider the efficient proportional allocation auction mechanism Ma introduced
in [75] which is an indirect mechanism where the users submit a scalar bid. The propor-
tional allocation which is defined based on the bid vector of players x is

Qi(x) :=
xi∑

j xj + ω
Qmax, (6.10)

where ω can be seen as the reserve bid ([57]) and it removes the singularity of the
function. For ω = 0, we could see that the resource is completely utilized, i.e.,

∑
iQi =

Qmax.
We next briefly show how the pricing rule/function is designed with the use of a

generator function, as in [75]. In Section 6.5 of this chapter, we detail the procedure
with taking into consideration malicious behavior. Let us define t =

∑
j xj + ω as a

measure of demand for the resource and which allows us to characterize agent optimal
responses with respect to a parameter which is identical for all agents at equilibrium.
The generator function is g(.) is a function of t to R+ and plays the role of Lagrange
multiplier to generate the optimal pricing function. The total payment of ith user has
several choices, depending on the choice of generator function.

For g(t) = t2,the payment function is derived in [75] as

Ci(x) = xi
∑
j 6=i

xj + ω, (6.11)

which is convex payment function in xi and is sufficient to guarantee a unique Nash
equilibrium. We found a mistake in [75], when using g(t) = t. The payment function for
this case

Ci(x) = log

(
1 +

xi∑
j 6=i xj

)∑
j 6=i

xj ,
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is concave in xi and contradicts with the convexity result in Proposition 1 and 2 in [75].
Therefore, we do not use g(t) = t.

Being oblivious to the presence of malicious users, the designer employ the same al-
location rule and payment to ith user as the one obtained above for mechanism Ma

assuming all the users are just selfish. First, we characterize the modified Nash equilib-
rium if some of these users are malicious or altruistic. Let us check for the special case
of logarithmic utilities and the mechanism Ma.

Proposition 6.2. The mechanism Ma defined by (6.10) and (6.11) with users having
logarithmic utilities admits several Nash equilibria and one NE point is given as

x∗i =
αi

t(1 + θi)Qmax
, (6.12)

where −1 < θi ≤ αi(
1

xm
+

t

x2m
).

Proof. For the allocation in (6.10) the strategy space constrained by the set 0 ≤ xi ≤
xm ∀i satisfy the Assumption 2.1. Then by a standard theorem of game theory (Theorem
4.4, p.176, in [13]), the network game admits a NE.

For the payment given in (6.11), allocation in (6.10) and logarithmic utility function,
the cost functions satisfies Assumption 2.4 for θi < 0. For altruistic case, i.e. θi > 0, the
cost functions satisfies Assumption 2.4 only for

θi ≤ αi(
1

xm
+

t

x2m
).

This is obtained by checking for
d2Jmi
dx2i

≥ 0. We consider in the game only altruistic

users satisfying this condition, in order to obtain an equilibrium. Since the cost function

satisfies Assumption 2.4 for all the users with −1 < θi ≤ αi(
1

xm
+

t

x2m
), the best response

points obtained from first order conditions gives a Nash equilibrium.
The best response of user becomes

∂Jmi
∂xi

= 0 =⇒ x∗i =
αi

t(1 + θi)Xmax
,

by using the fact that selfish users will have the Nash equilibrium point x∗i =
αi

tQmax
,

from the incentive compatibility property of the mechanism Ma.

Remark 6.1. In [94], the conditions for existence of a unique NE for an N−person game
is given. In addition to Assumption 2.4, the cost functions should satisfy diagonal strict
concavity of the weighted nonnegative sum of the cost functions as given in Theorem 2 of
[94]. The cost function does not necessarily satisfy this condition in our case. Therefore,
the NE is not unique.
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We can observe that malicious users having−1 < θ < 0, will have the Nash equilibrium

point as x∗i >
αi

tQmax
. Therefore, the malicious users bid higher than the selfish users

and obtain a disproportionate higher share of resource.
If we use the the modeling in equation (2.13), the Nash equilibrium point of the

mechanism Ma with logarithmic utilities is obtained in similar way as above is

x∗i =
(1− |θi|)αi
t(1 + θi)Xmax

. (6.13)

We can observe that for malicious users having −1 < θ < 0, the NE point is same as

the all selfish case (x∗i =
αi

tQmax
), i.e., no malicious effect. But it can be observed that

there is a higher effect of altruistic users on selfish users in the case of (6.13) compared

to (6.12). For example, with θ = 1, NE point of altruistic user is x∗i =
αi

2tQmax
according

to (6.12) but x∗i = 0 according to (6.13), i.e, the altruistic user leaves the entire resource
for the selfish users usage. Therefore, modeling in equation (2.13) is useful to capture
extreme altruistic behavior.

The allocation for the regular selfish users, i.e., users with θi = 0 in the presence of
malicious users can be written as

Q′i =

αi
tQmax

Qmax∑
j∈S

αj
tQmax

+
∑

k∈B

αk
t(1 + θk)Qmax

+ ω
. (6.14)

Let

ri =
Qi
Q′i

=

∑
j∈S αj +

∑
k∈B

αk
(1 + θk)

+ ω∑
j αj + ω

(6.15)

be the ratio of allocation of selfish users before and after the presence of malicious
users. Now we obtain the value of PoM of the mechanism Ma at the NE point given in
Proposition 6.2.

Proposition 6.3. For the additive resource sharing case , the Price of Malicious PoM(Ma)
is

PoM(Ma) =

∑
j∈S αj log(rj)∑

j∈S αj log
(
αjQmax∑
i αi+ω

) .
For the case where users are symmetric αi = α, ∀i and only one user is malicious or all
the malicious user coordinate to form one entity, this simplifies to

PoM(Ma) =

log

(
α(N−1+ 1

1+θk
)+ω

Nα+ω

)
log
(
αQmax
Nα+ω

) .

Proof. The results follow directly by using the allocation given in equation (6.10) and
the value of ri in equation (6.15) to the definition of PoM in Definition 2.21.
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Remark 6.2. We could see that PoM(Ma) is equal to PoM(V CG) when ω = 0 for the
special case of the utility function considered. It is because the proportional allocation
coincides with the VCG allocation for this case. But we get very different PoM(Ma) and
PoM(V CG) in the case of the other utility functions, for example Ui(Qi) = αi log(1+Qi).

We also present another auction-based mechanism, M ′
a, for the case when the bid is

equal to the payment. The approximately efficient and strategyproof mechanism, M ′
a,

can be defined based on the bid of player i as,

xi := Pi(x)Qi(x), (6.16)

the pricing function

Pi :=

∑
j 6=i xj + ω

Qmax
, (6.17)

and the resource allocation rule

Qi :=
xi∑

j 6=i xj + ω
Qmax. (6.18)

for a scalar ω > 0 sufficiently large such that
∑

iQi ≤ Qmax.
Consider now the mechanism M ′

a for the logarithmic case. The cost function in this
case is,

Jmi (x, θi) = xi − αi log

(
xi
Ii

)
− θi

∑
j∈S

αj log

(
xj
Ij

)
,

where Ii =
∑

j 6=i xj + ω. The best responses of each user will lead to a set of equations,

αi
xi

= 1− θi
∑
j∈S

αj
xi +

∑
k/∈i,j xk

, ∀i.

We can see that for the selfish users, xi = αi. Therefore, for the case in which there is a
single malicious user, the following polynomial of N th degree is solved by the malicious
user i,

αi
xi

= 1− θi
∑
j∈S

αj
xi +

∑
k/∈i,j xk

.

A Nash equilibrium point could be obtained from the intersection of all these points
since the cost function satisfies Assumption 2.4 for θ ≤ 0. But it is not possible to
have analytical result for the NE in this case. As above in the case of Ma, the PoM
can be calculated in this case also but numerically. Therefore, the variation of values of
PoM(M ′

a) for different values of θ is given in the simulation section.

Remark 6.3. From the Propositions 6.3 and 6.1, we could see that the Price of Malice
of a mechanism can be obtained knowing system parameters and user preferences and
can be bounded above and below (if possible) depending on the range and distribution
of these values for the specific setting.
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6.2.4 Auctions for Interference Coupled Systems

Consider an auction mechanism in the context of a wireless network and uplink power
control setting ([38, 57]) where due to the interference coupling the resource sharing is
inherently competitive. Let the user utilities be taken as Ui(γi(Q)) and the individual
power levels, Q, satisfy

∑N
i=1Qi ≤ Qmax, where the SINR received by the base station

is given in equation (6.1). We propose an auction-based mechanism Mb, defined by
equations (6.11) and (6.10) with ω = 0 for interference coupled systems.

Proposition 6.4. The auction-based mechanism, Mb, is an ε-efficient mechanism for
system having users with interference coupled utility functions Ui(γi(Q) if

|U ′′i |
Ui

(γi + L) > 2. (6.19)

Proof. We decouple the user utilities by rewriting γi as

γi(Qi) =
Qi(x)

Qmax −Qi(x) + σ
, (6.20)

using the full utilization property of the mechanism Ma when ω = 0.
In [57], it is observed that in systems with sufficiently high SINR satisfying the As-

sumption 2 given in equation (6.19)

Ui(γi(Qi)) = Ui(
Qi

Qmax −Qi + σ
)

is concave in Qi. It can be also seen that Ui(γi(Qi)) is monotonically increasing and
twice differentiable in Qi. Therefore, the sufficient condition for the existence of an ε-
efficient unique NE is satisfied along with allocation given in (6.11) and pricing given in
(6.10).

For the allocation given in (6.10), the SINR at NE point x∗ is

γi(x
∗) =

x∗iQmax∑
j x
∗
j (Qmax + σ)− x∗iQmax

. (6.21)

In the presence of malicious and altruistic users, let the SINR obtained by the regular
users be γi(x

′) where x′ is the new NE point. Now we give the value of PoM(Mb) in
the following proposition for the interference coupled wireless system.

Proposition 6.5. The PoM of the mechanism Mb for the interference coupled wireless
system is given as

PoM(Mb) =

∑
j∈S αj log(

γj(x
∗)

γj(x′)
)∑

j∈S αj log(γj(x∗))
.

where x′ and x∗ are the NE points with and without the presence of malicious users.

The numerical results for variation of PoM(Mb) for the interference coupled wireless
system is given in the simulation section for a specific set of wireless system parameters
for different values of θ.
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6.2.5 Price of Malice in Pricing Mechanisms

In pricing mechanisms the users choose their allocation as their strategy or action. Pric-
ing mechanisms do not have explicit allocation rule. Their actions reveal only some
information about their utility function. The pricing mechanisms are more appropriate
for modeling distributed systems where we cannot expect a central authority to allocate
resource to the users.

A counterpart of the Price of Malice metric in Definition 2.21 for pricing mechanisms,
which differ from auctions by their lack of an explicit resource allocation scheme, can be
obtained by replacing Q(x) and Q(x′) with the action vector without malicious users x
and with malicious users x′, respectively.

In the case of additive resource sharing, the users with utilities Ui(xi) = αi log xi share
the fixed resource

∑N
i=1 xi = Xmax, and xi ∈ (0, xm). Consider an efficient mechanism

Mc, for which the efficient allocation is

xi =
αi
λ
, (6.22)

where λ is the Lagrange multiplier. In the case of all selfish users λ =
∑

i αi/Xmax and
it will be set as price to the users.

We can observe that in the case of pricing, the utility function of the malicious user
is given by,

Jmi (x, θi) = Pixi − Ui(xi)− θi
∑
j∈S

Uj(xj). (6.23)

We can see that the additional third term does not have direct dependence on xi and
does not play a role in malicious user cost minimization. But, that term is indirectly
a function of xi due to the additive coupling in the global objective. The effect of the
additive coupling in the global objective is brought by Lagrange multiplier which acts
as the price in the user objective.

Let each malicious user take a share xm which should be less than xmax, the maximum
share they can use without detection, according to their utility function, in order to
disrupt others. Let λ′ be the Lagrange multiplier in this case which will be a different
point than λ =

∑
i αi/Xmax. The remaining resource (Xmax −

∑
B xm) will be shared

among good users, under the efficient mechanism Mc, i.e., xi = αi
λ′ .

Proposition 6.6. In the additive sharing case PoM(Mc) is,

PoM(Mc) =

∑
j∈S αj log

(
Xmaxλ′∑

i αi

)
∑

j∈S αj log
(
αjXmax∑

i αi

) .
For symmetric case, where αi = α ∀i, it becomes

PoM(Mc) =
log
(
Xmaxλ′

Nα

)
log(XmaxN )

.
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Remark 6.4. For the interference-coupled case, pricing mechanism is proposed in Chap-
ter 3. Let us denote the mechanism as Md for the interference-coupled case. In the
mechanism Md, the price is not the same for all the users as Lagrange multiplier un-
like Mc. Discriminated prices are obtained for the users which as functions of channel
parameters and received SINRs, as a result of interference-coupling.

6.3 Additional metrics to quantify the effect of malicious
behavior

Our PoM definition is similar to the externality-price definitions in [6] in the context
of altruistic behavior, since we quantify the effect of malicious players on selfish play-
ers. Now we introduce additional metric definitions to quantify the effect of malicious
behavior.

6.3.1 Maliciousness Price

Here we first define and quantify maliciousness price based on social welfare of all the
players including malicious ones.

Definition 6.7 (Social Maliciousness Price(SMP)). The ratio between the social welfare
of players, at equilibrium before and after the presence of malicious players.

SMP (M ) :=

∑
j∈A Uj(Q

′
j(x
′))∑

j∈A Uj(Qjx))
, (6.24)

Consider mechanism Ma and the special case and the additive sharing case with
logarithmic utilities with ω = 0. Now we give the Social Maliciousness Price of the
mechanism Ma which is proposed for additive rate sharing in the subsection 6.2.2 above.

Proposition 6.8. In the additive sharing case SMP (Ma) is,

SMP (Ma) =
SWm∑

j∈A αj log
(
αjXmax∑

i αi

) ,
where

SWm =
∑
j∈S

αj log

 αjXmax∑
j∈B αj +

∑
k∈S

αk
(1 + θk)

+
∑
k∈B

αk log


αk

(1 + θk)
Xmax∑

j∈S αj +
∑

k∈B

αk
(1 + θk)

 .

For symmetric case, where αi = α ∀i, it becomes

SMP (Ma) =

α log

(
(1 + θk)

N−1XN
max

((N − 1)(1 + θk) + 1)N

)
α log

(
XN
max

NN

) .
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Proof. From equation (6.12), the allocation for malicious users and social welfare with
the presence of malicious users in the set B would be:

Q′k =

αk
t(1 + θk)Xmax

Xmax∑
j∈S

αj
tXmax

+
∑

k∈B

αk
t(1 + θk)Xmax

, (6.25)

SWm =
∑
j∈S

αj log

 αjXmax∑
j∈S αj +

∑
k∈B

αk
(1 + θk

+
∑
k∈B

αk log


αk

(1 + θk)
Xmax∑

j∈S αj +
∑

k∈B

αk
(1 + θk)

 .

(6.26)
In the case of symmetric users and one user is malicious user among them, the social

welfare will turn out to be

SWm = α log

(
(1 + θk)

N−1XN
max

((N − 1)(1 + θk) + 1)N

)
. (6.27)

The social welfare with all selfish users from (6.10) is

SW =
∑
j∈S

αj log

(
αjXmax∑
j∈S αj

)
, (6.28)

and for symmetric case

SW = α log

(
XN
max

NN

)
. (6.29)

The value of SMP (Ma) can be obtained directly by substituting (6.26) and (6.28) in
(6.24). For the symmetric case, by substituting (6.27) and (6.29) in (6.24).

Remark 6.5. For the symmetric case, it can be observed that the social welfare with
malicious user is higher if the value of θk satisfies the following inequality.

(1 + θk)
N−1 > (

(N − 1)(1 + θk) + 1

N
)N

For example with θk =
−1

2
the above inequality holds for all the values of N > 2. This is

a Braess type paradox since the presence of a malicious user improves the social welfare.
But it should be noted that this higher social welfare happens at the expense of the
utility of the regular users. Also, the paradox is obtained for the specific case and may
not be true in general.

Now we define another metric to quantify the malicious behavior.

Definition 6.9 (Individual Maliciousness Price(IMP)). The ratio between the total util-
ity of malicious players at equilibrium, before and after they become malicious players.

IMP (M ) :=

∑
j∈B Uj(Q

′
j(x))∑

j∈B Uj(Qj(x))
,
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The value of this metric for a mechanism can be easily obtained from the value of PoM
and SMP . Since the malicious players always have more utility by being malicious this
metric does not create any paradox.

6.4 Collusion behavior in Network Mechanisms

Some of the players can form a collusion(group of players) to manipulate the network
mechanisms by carefully coordinating their actions in order to minimize their individual
cost. A mechanism is group strategy-proof if it can resist this group forming tendency of
the selfish players to cheat the designer. In this section, we investigate group strategy-
proofness of a particular mechanism. Price of Collusion quantifies the effect of collusion
on the malicious players in a mechanism. In this section, Price of Collusion and related
metrics are also defined to quantify the effect of collusion and expressions are obtained
for some of them. This section follows the same framework as given in the Section 2.1.1,
with all the users having θ = 0 for equation (2.10) in Subsection 6.4.1 and the users in
collusion having θ < 0 for equation (2.10) in Subsection 6.4.2.

6.4.1 Group Strategy-proofness of Mechanisms

We assume here that all the users are selfish who are interested only about their indi-
vidual utility but by forming the coalition they try to punish the other non-colluding
users without any individual utility loss. The group-strategyproof property checks the
resistance of a mechanism to collusion tendency of the kind of users who reduce the
resource share of non-colluding users but care also about their self utility. We consider
the collusion behavior of malicious users in the next subsection.

First, we formally define group strategy-proofness of a mechanism.

Definition 6.10 (Group Strategy-proofness). A mechanism is group strategy-proof if
individual players do not gain anything by making a coalition among them and misre-
porting their true values, i.e.

Jk(x1, ..., xK , x−O) ≤ J̃k(x̃1, ..., x̃K , x−O), ∀ k = 1, ...,K ∈ O, x̃k ∈ Xk, x−O ∈X−O.

where O is the set of players who formed coalition, x is the original values, x̃k is the
“misrepresented” value and X−O is the action set of regular players who do not join the
coalition.

If a mechanism is not group strategy-proofness it can still be ε-group strategy-proof
which is defined as follows.

Definition 6.11 (ε-Group Strategy-proofness). A mechanism is ε-group strategy-proof
if,

Jk(x1, ..., xK , x−O)− J̃k(x̃1, ..., x̃K , x−O) ≤ ε, ∀ k = 1, ...,K ∈ O, x̃k ∈ Xk, x−O ∈X−O

and ε > 0.
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We analyze group strategy-proofness of the approximately efficient and strategy-proof
mechanism M ′

a defined above by equations (5.20) and (5.21) in Section 6.2.

Theorem 6.12. The mechanism M ′
a is resistant to overbidding by a coalition and is

ε-group strategy-proof where

ε = max
k∈E

αk(
τ2k − τ3k

τ2k − τk + 1
), (6.30)

τk =
(m− 1)αk∑
j 6=k αj + ω

and E = {j : τj < 1}.

Proof. Consider m adversarial users out of N total form a coalition O to cheat the
system and get higher share of resources together. Let us assume that these agents bid
higher than their best response together and the bid from these agents be x̃k = xk + δ
where −xk ≤ δ ≤ ∞. Now the allocation for the colluding users will be,

Q̃k =
xk + δ∑

j 6=k xj + (m− 1)δ + ω
Xmax, ∀ k ∈ O

and others will be

Qi =
xi∑

j 6=i xj +mδ + ω
Xmax, ∀ k ∈ A \O.

We obtain costs for the colluding users as,

J̃k = xk + δ − αk log

(
xk + δ∑

j 6=k xj + (m− 1)δ + ω
Xmax

)
∀ k ∈ O.

The condition for ε-group strategy-proofness is

Jk − J̃k ≤ ε, ∀ k ∈ O.

Jk − J̃k = αk log

(
xk∑

j 6=k xj + ω
Xmax

)

− δ + αk log

(
xk + δ∑

j 6=k xj + (m− 1)δ + ω
Xmax

)
≤ ε, ∀ k ∈ O. (6.31)

This will result in the following inequality given as,

(1 +
δ

xk
)(

1

1 + (m−1)δ∑
j 6=k xj+ω

) ≤ exp
δ+ε
αk ∀ k ∈ O.
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From the utility function and resulting best response criteria, the true bid of the users
is xk = αk. Thus the ε-group strategy-proof condition for this mechanism is,

(1 +
δ

αk
)(

1

1 + (m−1)δ∑
j 6=k αj+ω

) ≤ exp
δ+ε
αk ∀ k ∈ O.

If this condition is satisfied for ε = 0, the mechanism is group strategyproof.
Let us denote, µ = δ

αk
and

(m− 1)αk∑
j 6=k αj + ω

= τk.

Let us check above condition for different cases.

1. Case 1, µ > 0: It can be observed that, for µ > 0,

1 + µ

1 + µτk
≤ (1 + µ) < expµ .

Thus for µ > 0, ε = 0. Therefore, the mechanism is group strategyproof for
overbidding, i.e., δ > 0.

2. Case 2, µ ≤ 0: It can be noted that, if µ ≤ 0, then 0 ≤ |µ| ≤ 1 because the bid
from agents x̃k = xk + δ should be always positive. Thus, for −1 ≤ µ ≤ 0, in the
symmetric case the ε− group strategyproof condition becomes

1− |µ|
1− µ|τk|

≤ exp−|µ| exp
ε
αk .

This can be rewritten as

exp|µ|
1− |µ|

1− µ|τk|
≤ exp

ε
αk .

For a given value of τk, maximum value of left hand side is achieved when

µ =
τk

τ2k − τk + 1
.

By substituting this value in the above equation, it becomes

exp
τk

τ2
k
−τk+1 (1− τk) ≤ exp

ε
αk .

It can be observed that for τk ≥ 1, above condition is satisfied for ε = 0. For
τk < 1, we know that,

exp
τk

τ2
k
−τk+1 (1− τk) < exp

τk
τ2
k
−τk+1 exp−τk .

Thus the value of ε is obtained as,

ε = max
k∈E

αk(
τ2k − τ3k

τ2k − τk + 1
)

where E = {j : τj < 1}.
Hence proved.
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6.4 Collusion behavior in Network Mechanisms

6.4.2 Price of Collusion of Mechanisms

We didn’t quantify the effect of collusion on the network games and mechanisms with
malicious users, we checked only if they are resistant to collusion of the selfish users in
Section 6.4.1. If a mechanism is group strategyproof, when the malicious users form a
collusion and bid higher individually they loose individually if they are considered selfish
as from the Definition 6.10. But the malicious users might still form collusion to gain
individually according to their modified utility function in (2.10) and as a group reducing
the share of resource to the other regular users outside collusion. Here we define and
calculate metrics to quantify the effect of collusion in network mechanisms which can be
group strategy-proof or not in the presence of malicious colluding users.

In [54], the Price of Collusion defined for any game G is at most the maximum price
of anarchy of G(O) over all coalitions O. In other words, it is the worst possible ratio
between the social cost at equilibrium before and after the collusion scenario. The PoC
defined in [54] will be redefined for our framework now.

Definition 6.13 (Price of Collusion). Price of Collusion of a mechanism is defined as

PoC(M ) := max
O

∑
j∈A Uj(Q

c
j(x))∑

j∈A Uj(Qj(x))
,

where Qcj is the allocation after the collusion formation.

Now we quantify the PoC of the mechanism Ma defined in Section 6.2.2.

Proposition 6.14. Price of Collusion of the mechanism Ma is given by

PoC(Ma) := max
O

∑
k∈O αk log

(
αk+δ∑

j∈A αj+mδ+ω
Xmax

)
+
∑

i∈S αi log
(

αi∑
j∈A αj+mδ+ω

Xmax

)
∑

k∈A αk log

(
αkXmax∑
j αj + ω

) .

(6.32)

Proof. Consider m adversarial users out of N total form a coalition O to cheat the
mechanism Ma. Let us take that the bid from these agents be x̃k = αk + δ. Now the
allocation of the users in the presence of the coalition according to (6.10) will be,

Qck =
αk + δ∑

j∈A αj +mδ + ω
Xmax, ∀ k ∈ O

and
Qci =

αi∑
j∈A αj +mδ + ω

Xmax, ∀ i ∈ S.

The utility obtained by each user in the collusion is,

Uk(Q
c
k) = αk log

(
αk + δ∑

j∈A αj +mδ + ω
Xmax)

)
∀ k ∈ O. (6.33)

From this result we could obtain Price of Collusion of the mechanism Ma using the
Definition 6.13 above.
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6 Mechanism Design with Malicious Users

In addition, we consider other metrics to quantify the effect of collusion on the set of
colluding users and regular users, similar to the different Collusion Prices defined in [6].

Definition 6.15 (Collusion Externality Price (CEP)). Collusion externality price is
defined as the worst possible ratio between the total cost of players who collude at
equilibrium before and after the collusion scenario.

CEP (M ) := max
O

∑
j∈S Uj(Q

c
j(x))∑

j∈S Uj(Qj(x))
,

Definition 6.16 (Individual Collusion Price (ICP)). Individual collusion price is defined
as the worst possible ratio between the total cost of players who collude at equilibrium
before and after the collusion scenario.

ICP (M ) := max
O

∑
j∈O Uj(Q

c
j(x))∑

j∈O Uj(Qj(x))
,

Remark 6.6. These metrics are similar to the PoM related metrics in Section 6.2 . But
collusion is a different malicious behavior since they act together for the total utility of
the collusion, for maximum possible harm to the non-colluding users and for their own
individual utilities. The malicious users optimize over possible coalitions and find the
best coalition in terms of size, members and δ. Therefore, the PoC related metrics are
defined as the maximum over possible coalitions.

Using the equation (6.33) above, we could also directly calculate the ICP (Ma).

Proposition 6.17. Individual collusion price of the mechanism Ma is given by

ICP (Ma) := max
O

∑
k∈O αk log

(
αk+δ∑

j αj+mδ+ω
Xmax

)
∑

k∈O αk log

(
αkXmax∑
j αj + ω

) . (6.34)

6.5 Auctions Resistant to Malicious Users

The robustness analyses of mechanisms and quantification of PoM in the Section 6.2 only
measure the effect of malicious users but does not provide a way to encounter them. In
[87] it was shown that the Second Price auction can be made robust to interdependent
preferences corresponding to altruistic or malicious behavior by changing just the pricing
to that of a First Price auction, augmented by bonus payments. Similar to this approach,
in this section we consider a possible response schemes to adversarial behavior, based on
a softer punishment scheme using differentiated pricing.

6.5.1 Differentiated Pricing

We propose a softer response scheme than blocking towards malicious users after explicit
detection based on any well known (threshold) detection scheme. There are numerous
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6.5 Auctions Resistant to Malicious Users

methods of detection already available as given in PART IV of [3]. The response mech-
anism is implemented by the designer by deploying a differentiated pricing. First, we
define a trade-off metric T (M ) for quantifying the vulnerability of a pricing-based re-
sponse to a mechanism M . This metric provides a way to measure the trade-off between
the damage due to malicious users and how much effort (price) it costs them to create
this damage.

Definition 6.18. A metric for quantifying vulnerability of a pricing-based response
mechanism against a set of malicious users B ⊂ A is defined as:

T (M ) ≥
∑

j∈S Uj(Q
′
j(x))−

∑
j∈S Uj(Qj(x))∑

k∈B ck(x)
,

and the lower bound is achieved in the best case scenario of perfect differentiation in
terms of pricing.

Now we utilize this metric to evaluate the properties of the differentiated pricing
scheme on example networks. A necessary assumption we make in this subsection is
that malicious users stay within the system and do not have any means to evade the
pricing mechanisms imposed by the designer. This assumption is relaxed in the next
subsection.

6.5.2 Auctions for Additive Sharing

We consider the network mechanism Ma proposed for network rate sharing in Section
6.2.2 and modify it with a new payment function. We propose now a differentiated pay-
ment function to counter the malicious behavior of users and propose a new mechanism
using this payment function. We first assume here that the designer knows the value of
θ of malicious user. In practical problems, this is not realistic and the designer needs
to make the decision on payment function entirely based on user bids. Therefore, we
assume that after detecting the malicious user using a threshold detection scheme based
on the bids, the designer punishes the malicious users with a price function assuming
θ = −1, i.e, extreme maliciousness. Alternatively, once can couple this parameter with
the confidence of the detection scheme used, i.e. low θ values for high probability of ma-
licious behavior and vice versa. We propose mechanism Mm in the following proposition
which is efficient in the presence of malicious users, i.e., PoM(Mm) = 1.

Proposition 6.19. The mechanism Mm defined by the allocation in (6.10) with ω = 0
and the payment

Ci(x) = xi
∑
j 6=i

xj − θi(N − 1)tXmax log

(
1 +

xi∑
j 6=i xj

)
, (6.35)

is efficient in the presence of malicious users and makes the malicious user take the

strategy x∗i =
αi

tXmax
for network rate sharing with users having logarithmic utility func-

tions.
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Proof. The cost function of users from equation (6.9) for the proportional allocation
given in (6.10) with ω = 0 and logarithmic utility function is

Jmi (x) = Ci(x)− αi log

(
xi∑
k xk

)
− θi

∑
j 6=i

αj log

(
xj∑
k xk

)
,∀i. (6.36)

The best response of the ith user who tries to minimize her cost in terms of the signal
or bid to be sent is obtained by computing

∂Jmi
∂xi

=
∂Ci
∂xi
− ∂Ui
∂Qi

∑
j 6=i xj

(
∑

k xk)
2

+ θi
∑
j 6=i

αj
xj
∑

k xk
= 0. (6.37)

This gives,,

∂Ui(Qi)

∂Qi
=

(
∑

k xk)
2∑

j 6=i xj

∂Ci
∂xi

+ θi
∑
j 6=i

αj
xj
∑

k xk

 .

Let us denote t =
∑

j xj , then xi =
tQi
Xmax

and

∑
j 6=i

xj = t− xi = t

(
1− Qi

Xmax

)
.

Doing the substitutions,

∂Ui(Qi)

∂Qi
=

t

1− Qi
Xmax

∂Ci(Qi, t)
∂xi

+ θi
∑
j 6=i

1

t


:= f(Qi, t). (6.38)

The designer should solve the constrained optimization problem

max
Q

V (Q)⇔ max
Q

∑
i

Ui(Qi) such that
∑
i

Qi = Qmax, (6.39)

in order to find a globally optimal allocation Q that satisfies this efficiency criterion.
The associated Lagrangian function is then

L(Q) =
∑
i

Ui(Qi) + λ

(
Qmax −

∑
i

Qi

)
,

where λ > 0 is a scalar Lagrange multiplier. Under the convexity assumptions made,
this leads to

∂L

∂Qi
⇒ U ′i(Qi) = λ, ∀i ∈ A, (6.40)
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and the efficiency constraint

∂L

∂λ
⇒
∑
i

Qi = Qmax. (6.41)

and Qi = 0 for users with U ′i(Qi) < λ.
When we compare (6.38) and (6.40), we can see that f(Qi, t) is equal to the Lagrange

multiplier λ. Since f(Qi, t) is a function of Qi, there will be unequal marginal valuations
at equilibrium. For efficient allocation we need to obtain a price function which will
induce a f(Qi, t) which will give identical marginal valuations at equilibrium [75]. For
this we make f(Qi, t) independent of Qi and derive the corresponding price function.
Let f(Qi, t) = g(t) where g(t) is the generator function and

∂Ci
∂xi

=

∑
j 6=i xjg(t)

(
∑

k xk)
2
− θi

1∑
k xk

∑
j 6=i

αj
xj
.

By integrating over xi, we obtain

Ci(x) =

∫ xi

0

g(s+
∑

j 6=i xj)

(s+
∑

j 6=i xj)
2
ds
∑
j 6=i

xj − θi
∫ xi

0

ds

s+
∑

k 6=j xk

∑
j 6=i

αj
xj
. (6.42)

For g(t) = t2, we obtain

Ci(x) = xi
∑
j 6=i

xj − θi log

(
1 +

xi∑
j 6=i xj

)∑
j 6=i

αj
xj
. (6.43)

Let us assume that the users except ith user are merely selfish due to the payment

function of the mechanism they report xi =
αi

tXmax
. Then, we obtain (6.35) as the

payment function which corresponds to the efficient allocation. If the malicious user
takes best response using the payment (6.35) in (6.9), the best response is obtained as

xi =
αi

tXmax
.

Remark 6.7. If the designer punishes the users who are detected as malicious with a
payment in which θi = −1, without knowing the exact θ value in a more realistic
situation, the pricing function becomes

Ci(x) = xi
∑
j 6=i

xj + log

(
1 +

xi∑
j 6=i xj

)
(N − 1). (6.44)

For this cost function to be convex, in order to take the best response, from the second
order conditions we get

N ≤
∑

j 6=i αj

Q2
max

+ 1.
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6 Mechanism Design with Malicious Users

Note that in this differentiated pricing scheme, the malicious users who will try to bid
something higher than its private value will have to pay an additional amount propor-
tional to their bid as in (6.44). Even if the cost function is not convex, it does not affect
the equilibrium, since anticipating the additional payment the malicious user will bid
taking the best response according to the cost with payment given by equation (6.11)
which is convex.

The tradeoff-parameter of mechanism Mm is given by,

T (Mm) ≥
∑

j∈S αj log (rj)∑
i∈B xi

∑
j 6=i xj + log

(
1 +

xi∑
j 6=i xj

)
(N − 1)

.

Such a differentiated pricing scheme is widely used today in various settings, such
as network access. For example, if some users of an Internet Service Provider (ISP)
are creating burden to the network by using much higher amount of resources above a
pre-determined cap, they are priced differentially higher compared to other users. This
reality is captured in our model since the higher usage above a threshold is punished
even if it is not coming from the disproportionate use due to malicious nature.

In a similar way, a differentiated pricing mechanism can be also derived for interference
coupled CDMA systems.

6.5.3 Differentiated Pricing for Additive Sharing

Let us consider the counterpart of pricing mechanism in additive sharing given in the
previous section and study the effect of the differentiated pricing in that case. A malicious
user takes a share of xm ∈ (x+ε, xmax), where x is the mean and ε is some integer multiple
of standard deviation of the demand vector x.

In order to counter the malicious behavior, the designer deploys differentiated pricing
as part of a new mechanism Me, which is a modified version of Mc. It is characterized
by the pricing function

P di =

{
f(κi(xi − (x+ ε))) for xi ≥ b
Pi for xi ≤ b

,

where b is determined by a statistical method, for example b = x+ kσx, where x is the
mean and σx is standard deviation and Pi is the pricing function in the original mecha-
nism. The function f(.) is selected suitably depending on the utility functions of selfish
and malicious users. If it is assumed that selfish users have continuous and differentiable
concave utility function and malicious users have convex utility functions, then f(.) can
be a continuous and differentiable convex function. For the logarithmic utility function
assumed here for selfish users, we take f(.) as exponential function. The value of b
can be obtained alternatively from a clustering method or another Maximum-likelihood
algorithm. Note that, the designer punishes the malicious players by employing a price
function which increases exponentially with the share of resource taken by them, i.e. if
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they deviate too much from the mean behavior and create a significant burden on the
system.

For the case of exponential pricing function, T (Me) is obtained as,

T (Me) ≥

∑
j∈S αj log

(
Xmaxλ′∑

i αi

)
∑

i∈B e
κi(xi−(x+ε))

.

In the symmetric and only one malicious user case, it becomes

T (Me) ≥
log
(
Xmaxλ′

Nα

)
eκi(xi−(x+ε))

.

6.5.4 Differentiated Pricing for Interference Coupled Systems

Consider the case of pricing in interference coupled systems given in Section 6.2.5. To
counter the malicious behavior, the designer introduces a new mechanism Mf which
employs the differentiated pricing given by

P di =

{
f(κi(γi(xi, x−i)− γi(x+ ε, x−i))) for xi ≥ b
Pi for xi ≤ b

,

In the case of logarithmic utility, Pi = λ+
∑

j 6=i
αj
Ij

, where λ is the Lagrange multiplier

of the associated optimization problem and Ii :=
∑

j 6=i xj+σ is the interference affecting
player i [5, 18]. For the mechanism Mf , the trade-off metric T (Mf ) can be obtained in
similar way as for additive sharing case. The variation of values of T (Me) and T (Mf )
for different number of users is given and compared with each other in the simulation
section.

6.6 Simulations

In this section, computer simulation results are presented to show the different parame-
ters of the proposed mechanisms.

First, the Price of Malice PoM(Ma) and PoM(Mb) of auction mechanism for additive
sharing Ma and interference coupling Mb, is plotted, using the setup in Section 6.2 by
varying the value of θ from −1 to 0. The number of users N = 50 out of which 10
users are taken to be malicious with same θ value. The other system parameters are
Xmax = 30 and σ = 1. The simulations are done by generating the player preferences α’s
according to a uniform distribution on the support set [0, 10] and plotted in Figure 6.1.
It can be observed that value of PoM(Ma) and PoM(Mb) decreases as θ varies from -1
to 0 as expected.

We next compute the Price of Malice PoM(M ′
c) and PoM(M ′

d) for the pricing mech-
anism for additive sharing M ′

c and interference coupling M ′
d respectively, by varying

the number of users from 8 to 15. The simulations are done by generating the player
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Figure 6.1: Price of Malice PoM(M ) of the auction mechanism for additive coupling
Ma and interference coupling Mb in Section 6.2.2 for varying values of θ.
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Figure 6.2: Price of Malice PoM(M ) of the pricing mechanisms for additive coupling
M ′

c and interference coupling M ′
d for varying number of users.
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Figure 6.3: Variation of value of ε with number of malicious users for the ε-group strat-
egyproof mechanism M ′

a in Section 6.4.1.
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Figure 6.4: Trade off parameter T (M ) of auction mechanism Mm with differentiated
pricing for additive sharing given in Section 6.5 for varying values of θ.
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Figure 6.5: Trade off parameter T (M ) of pricing mechanisms for additive coupling Me

and interference coupling Mf given in Section 6.5 with varying number of
users.
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preferences α’s according to a uniform distribution on the support set [0, 2] and repeated
100 times. Then, the mean and standard deviation of the obtained PoM(M ) values are
plotted in Figure 6.2. The number of malicious users is fixed at 3, Xmax = 5, σ = 0.5 and
xmax = 1. The malicious users take an allocation xmax and remaining share is allocated
using respective iterative algorithms among good users. The quantities PoM(M ′

c) and
PoM(M ′

d) are plotted in Figure 6.2. It can be observed that, for a fixed number of
malicious users, as number of users increases the mechanisms become more robust, as
expected.

Next the variation of value of ε for the ε-group strategyproof mechanism M ′
a is sim-

ulated. The variation of value of ε defined in (6.30) with number of malicious users for
the mechanism M ′

a is plotted in Figure 6.3. The total number of users including the
malicious users is fixed at 20. We can observe that the value of ε increases as the portion
of malicious users increases, as expected.

Next, the trade-off parameter T (M ) is plotted for auction mechanism Mm in Sec-
tion 6.5 for additive sharing for different values of θ in Figure 6.4. The users having
x > x+ 2 σx are priced differentially as described in Section 6.5.

Finally, the trade-off parameter T (M ) is plotted for pricing mechanisms Me and Mf

given in Section 6.5, in Figure 6.5. An iterative algorithm as given in [18] is used to
obtain allocation and prices. The other parameters remain the same as those used to
generate the Figure 6.2. It can be seen from Figure 6.5 that mechanism Mf performs
better than Me in this case, possibly due to the coupling involved.

6.7 Conclusion

In this chapter first we have showed the efficiency loss in VCG mechanism for allocation
of divisible resources, in the presence of malicious users. Then we calculated the NE of
different indirect mechanisms with malicious users for wireline and interference limited
wireless networks. The PoMs for different mechanisms are calculated at these NEs, also
for the symmetric case. In the interference coupled case, PoMs of different mechanisms
have been observed to be unbounded for different values of degree of parameter. The
additional price for the malicious users compared to the regular users has been observed
to be proportional to their respective degree of maliciousness.
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7 Bayesian Mechanisms and Detection
Methods for Wireless Network Security

7.1 Introduction

In this chapter, we model malicious users in an ad-hoc wireless network, where compro-
mised devices act like regular (selfish) users accepting the mechanism rules, which are
the prices and allocation determined by the network (designer). This way, they avoid
immediate detection and continue having access to resources such as transmission power
and spectrum. The legitimate users and the designer know only the probability with
which a mobile device could be a bot and study the effect of this scenario on the wireless
network (mechanism). The observation of the network over a long period of time gives
the designer and the regular users probabilistic information about malicious behavior of
some of the users.

In the mechanisms under consideration, the users are also uncertain about the nature
of other users, i.e. whether others are regular users or bots (malicious users). In this
chapter, we study the conditions under which uncertainty in the network is beneficial
for regular users. The boundary conditions are based on wireless system parameters. A
malicious user does not want to harm other malicious users by unnecessarily spending
more energy and paying more price for the extra power. Therefore, by creating the
uncertainty about their nature by hiding, the regular users confuse the malicious users.
The uncertainty created in the network is a way for the regular users to counter the
malicious users and have better utility for themselves. Windfall of malice [95] is a
paradoxical situation in which the presence of the malicious user becomes beneficial for
the regular users. This is achieved in some situations due to the lack of information in the
network about the nature of users, compared to the case where all the users are regular.
Windfall of malice can be also achieved by pricing the malicious user comparatively very
high compared to the regular users.

We consider Jamming [99] which is a Denial of Service (DoS) attack on the Medium
Access (MAC) of a power controlled wireless network. In a distributed power controlled
network, where every user selects its own transmitting power, the regular users maximize
their SINR subject to energy constraint. The jammers, even at the expense of their
energy spending, creates interference to other regular transmitters.

In [98], Bayesian jamming games are considered and the NE points for different jam-
ming scenarios are obtained. Unlike the work in [98], we propose a mechanism design
framework for pricing mechanisms and auctions[35] in the presence of malicious users
(bots) and modify the mechanisms to counter malicious behavior. Our model captures
the fact that, in addition to the resource allocation the malicious users affect the regular
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users through the prices charged to the users. In the scenario considered in this chapter,
bots hide among the crowd of regular users accepting the prices and allocations from
the designer, but use resources for their purpose and harm others. Unlike in [98], we
consider a more realistic setting where none of the users have incentive to reveal their
nature. This is also important in the botnet setting we consider in this thesis. We find
the conditions under which the incomplete information in the network is beneficial for
the users and designer, by comparing the incomplete information case to the complete
information case. We extend the Kelly mechanism given in [70] for interference coupled
networks in the presence of users with unknown nature and obtain the prices. We also
analyze the effect of uncertainty about the presence of malicious users in auction mech-
anisms and modify them to counter the scenario. Truthfully implementable mechanism
in Nash equilibrium where the base station elicits truthful signals from the noncooper-
ative mobiles is proposed in [68]. Truthful mechanisms for wireless ad-hoc networks is
also proposed in [91]. We study truthful Bayesian mechanisms for the wireless network
scenario in Section 7.7 and quantify the effect of malicious users.

Anomaly-based detection techniques try to detect bots based on network traffic anoma-
lies such as high network latency, high volumes of traffic, traffic on unusual channels,
and unusual network behavior that could indicate the presence of malicious bots in the
network [44]. Our detection technique to detect bots, using the prices corresponding
to unusual network traffic with a pattern, falls under the class of anomaly-based de-
tection techniques. We employ Bayesian hypothesis testing[89] or a machine learning
based technique for existence of a bot [50], in the network layer. In [89], a decentralized
Bayesian detection for sensor networks is analyzed. There are N sensors which perform
decentralized hypothesis testing to check if another user is a regular user or bot.

We analyze Bayesian mechanisms [48] which have a designer (network) who designs
allocation and prices based on information expressed as a probabilistic distribution over
the type of the users. The utility a user derives is a function of the Signal-to-Interference
plus Noise Ratio (SINR) which is a Quality of Service (QoS) metric in wireless network.
The impact of the malicious behavior in interference limited wireless network is quantified
within a Bayesian framework and malicious behavior resistant mechanisms are designed.
We analyze an incomplete information case where the malicious behavior is countered
without explicit detection of malicious users or learning their nature. The designer
knows the probability of malicious user’s existence and counters them by updating the
prices using the probabilistic information. The additional pricing by the designer and
the hiding strategy of the regular users in the pricing mechanism counter malicious
activities. The pricing is given such that the BR power converges to achieve the QoS
requirement of each user and the malicious behavior of the users is prevented.

In addition to well known jamming or denial-of-service attacks, an emerging scenario is
when the mobile devices such as tablets or smart phones are used as bots by a malicious
agent (botmaster). Botnets[124] are software programs which compromise the networked
devices (bots) and carry out Distributed Denial of Service (DDoS) attacks in the network.
DDoS attacks use the overall network bandwidth and other resources of the bots, to deny
the legitimate access to resources. The high inter-connectivity of the wireless network
with the Internet makes these networks highly vulnerable to botnet attacks. A small
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number of mobiles can be used as bots to geo-locate majority of users in the network
during significant fraction of the users travel with their devices[62]. We consider Botnets
as a specific instance of the general wireless network security problem, which we consider
in this chapter, and numerical analysis is carried out with real Botnet data.

7.2 Bayesian Mechanism Model

First, we give the model of the mechanism with an arbitrary number of regular and
malicious users. Let µm(N,Nm) and µs(N,Nm) be the joint probability mass function
(pmf) of N and Nm as observed by malicious and regular user respectively. The users
do not know the nature of the users around them and evaluate their costs based on the
pmfs. In addition to the price, the users have battery energy cost for transmission in
the uplink of a wireless link. Let a user spends energy B for transmission per unit of
transmit power.

The cost function of the regular user will be,

Jsi (xs, xm) = Csi (x) +B
xsi
hi
−

N∑
Nm=0

µs(N,Nm)U(γsi (N,N
m)). (7.1)

For the symmetric case, when the channel gains of all the regular users and malicious
users are equal to hs and hm respectively, the SINR of regular users become

γs(N,Nm) =
xs

1

L
((N −Nm − 1)xs +Nmxm) + σ2

, (7.2)

where xs and xm are the symmetric power strategies for selfish and malicious users
respectively.

The utility function of malicious user will be

Umi (x) =
N∑

Nm=0

µm(N,Nm)

(
U(γmi (N,Nm)) + θi

∑
k∈S

U(γsk(N,N
m))

)
. (7.3)

For the symmetric case,

γm(N,Nm) =
xm

1

L
((N −Nm)xs + (Nm − 1)xm) + σ2

(7.4)

is the SINR of malicious user.
Then the cost function of the malicious user for the symmetric case with θi = θm, ∀ i

is

Jm(x) = α(Cm(x) +B
xm

hm
) −

N∑
Nm=0

µm(N,Nm)(U(γm(N,Nm))

+ θm(N −Nm)U(γs(N,Nm))). (7.5)
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Next, as a special case we propose the model for the mechanism with two users and
obtain the utility functions and cost functions. Let the probability belief of a regular
user that another user is malicious be ψs and the probability belief of a malicious user
that another user is regular be ψm. The total cost of regular user i including the price
and energy cost will be,

Ji =
Bxsi
hi

+ ψs(Ci(x
s
i , x

m
j )− Ui

(
γi(x

s
i , x

m
j )
)
) + (1− ψs)(Ci(xsi , xsj)− Ui

(
γi(x

s
i , x

s
j)
)
).(7.6)

The case when ψs = 0 will be the one with complete information. The cost function of
malicious user i ,

Jmi (xs, xm) = αiB
xmi
hi

+ ψm(αiCi(x
m
i , x

s
j)− Ui

(
γi(x

m
i , x

s
j)
)

− θiUj
(
γj(x

m
i , x

s
j)
)

+ (1− ψm)αiCi(x
m
i , x

m
j ), j 6= i. (7.7)

We first analyze the complete information case for the comparison.

7.3 Pricing Mechanisms with Complete Information

With complete information and for the single carrier case, the optimal prices are given
in equation (3.11) of Section 3.2.1. The prices with n = 1, in the N user case, modified
with the energy cost B, are obtained by the matrix equation,

A ·P = D · L−B1, (7.8)

where

A :=


1 −γ2 · · · −γN
−γ1 1 · · · −γN

...
. . .

...
−γ1 −γ2 · · · 1

 , D :=



1

h1
0 · · · 0

1

h1

0
1

h2
· · · 0

1

h2
...

. . .
...

0 0 · · · 1

hN

1

hN


, (7.9)

For the two-users case, the price for User 1 turns out to be,

P1 =
1

1− γ1γ2

(
Bγ1γ2 +

γ2(λ1 + µ)

h1
+

(λ2 + µ)

h2

)
(7.10)

and similarly for User 2.

7.3.1 NE power allocation

Let us consider the case of linear SINR utility function Ui(γi) = γi(x), ∀i.
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Case 1: All users are regular

From the cost function given in equation (2.4), we obtain the KKT conditions for BR of

user i as, Pi +
B

hi
− 1

1

L

∑
j 6=i xj + σ2

= 0 and xi ≥ 0, ∀i. The powers of all the users at

the NE is obtained as follows, by centrally solving this system of equations.

xi =
1

N − 1

∑
j 6=i

L

Pj +
B

hj

− (N − 2)

 L

Pi +
B

hi

− Lσ2

+

, ∀i. (7.11)

Case 2: Nm users are malicious

The cost functions of all the Nm malicious users will be,

Jmk = αk(Pkx
m
k +B

xmk
hk

)− γk(x)− θk
∑
j 6=k

γj(x), ∀k. (7.12)

The NE power can be only calculated numerically for the general case. Next we obtain
the NE points analytically for the two-users case.

Proposition 7.1. For the case, where N = 2 and Nm = 1, the NE power of User 2
who is malicious is

xm2 =

 L

P1 +
B

h1

− Lσ2


+

, (7.13)

and NE power of User 1 who is regular is

θ2(x
s
1)

2 + xs1

θ2Lσ2 − α2L
2

(
P2 +

B

h2

)
(
P1 +

B

h1

)2

− (1 + σ2)L3

(
P2 +

B

h2

)
(
P1 +

B

h1

)2 = 0. (7.14)

Proof. The cost function of the malicious user is given by equation in (7.12), but for
N = 2 and Nm = 1. The cost function of the regular user is same as (7.39). The powers
of both the users at the NE is obtained by centrally solving the system of equations from
the KKT conditions of BR.

When the malicious user does not care about his self utility, the NE power of User 1
who is regular is

xs1 =

α2L

(
P2 +

B

h2

)
|θ2|

(
P1 +

B

h1

)2 . (7.15)
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We could observe that when the User 2 is highly malicious, i.e. |θ2| is high, the regular
User 1 has less power. Apparently, both malicious and regular users takes less power
when faced with higher price per unit power. Next, we obtain the PoM using the NE
points obtained above.

Proposition 7.2. For the two-users case with linear utilities for the case where the
malicious user is interested in the self utility, PoM is given by,

PoM(M ) := 1−


α2

(
P2 +

B

h2

)2

(1− σ2
(
P1 +

B

h1

)
)

|θ2|
(
P1 +

B

h1

)2

(1− σ2
(
P2 +

B

h2

)
)

 .

Proof. According to the Definition 2.21, for the two-users case,

PoM(M ) :=
γ1(x1, x2)− γ1(xs1, xm2 )

γ1(x1, x2)
,

where x1 and x2 are given by (7.11), xs1 by (7.15) and xm2 by (7.13). After the substitu-
tions, we obtain the above result.

Remark 7.1. We could observe that PoM increases when the user is highly malicious.
For the symmetric case with h1 = h2 and P1 = P2, the windfall of malice occurs when
α2 > |θ2|, i.e., when the malicious user cares more about the price and energy cost
compared to the maliciousness effect. For |θ2| = 1, i.e., when the malicious user is
extreme malicious, the windfall of malice never happens.

In the next section, we consider the Bayesian case with distributed pricing mechanisms.

7.4 Distributed Bayesian Pricing Mechanisms

In this section, we consider the Bayesian case where the users and designer have proba-
bilistic information about others natures. We assume that if a user is regular, it receives
the price P s and if it is malicious Pm. We consider symmetric assumption where each
user believes that other nodes of same type choose the same strategy.

7.4.1 BNE with an arbitrary number of malicious users

For an arbitrary number of malicious users with symmetry assumption, the cost function
of a user, if it is regular, is given in equation (7.35) and if malicious, in equation (7.36).
The BR of regular users is,

P s +
B

hs
−

N∑
Nm=0

µs(N,Nm)
LNmxm + Lσ2

((N −Nm − 1)xs +Nmxm + Lσ2)2
= 0.
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The BR of malicious user is,

α(Pm +
B

hm
)−

N∑
Nm=0

µm(N,Nm)L(
(N −Nm)xs + Lσ2

((N −Nm)xs + (Nm − 1)xm + Lσ2)2
−

θm(N −Nm)
Lxs

((N −Nm − 1)xs +Nmxm + Lσ2)2
) = 0.

The solution of the above two equations subject to xs ≥ 0, xm ≥ 0 gives the BNE with
an arbitrary number of malicious users.

Proposition 7.3. The BNE of the pricing game with an arbitrary number of malicious
users with symmetric assumption is the solution of the below two equations subject to
xs ≥ 0, xm ≥ 0;

N∑
Nm=0

µs(N,Nm)(γ′ +
B

hs
− Nmhmxm + Lσ2

γ1 ((N −Nm − 1)hsxs +Nmhmxm + Lσ2)2
) = 0, (7.16)

and

N∑
Nm=0

µm(N,Nm)L(γ′θ +
B

hm
− (N −Nm)hsxs + Lσ2

γ1 ((N −Nm)hsxs + (Nm − 1)hmxm + Lσ2)2
) = 0,(7.17)

γ′ =
BNmhmxm + Lσ2

((N −Nm − 1)hsxs +Nmhmxm + Lσ2)2
, γ1m = (1 + γm(N,Nm))) and

γ′θ =
(αB + θm)((N −Nm)hsxs + Lσ2)

((N −Nm)hsxs + (Nm − 1)hmxm + Lσ2)2
.

Proof. The BR of a regular user is obtained from the cost function in equation (7.35).
Similarly, the BR of malicious users is obtained from the equation (7.36). From the
definition of BNE in (3.38), we obtain the solution in the proposition.

7.4.2 BNE for two-users case

The following proposition gives the BNE power strategies of the regular user and the
malicious user with linear utilities.

Theorem 7.4. For the two-users symmetric case, in the Bayesian pricing mechanism
M, the symmetric power strategy of the regular user at the BNE point for linear SINR
utility functions is given by,

xs =
[
xs
′
]+
, (7.18)

and of the malicious user is the solution of

α(Pm +Bhm)− L2|θm|ψmxs′

(xm + Lσ2)2
− ψmL

xs′ + Lσ2
= 0, (7.19)
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where

xs
′

=

√√√√√ L2σ2(1− ψs)

P s +
B

hs
− ψsL

xm + Lσ2

− Lσ2. (7.20)

Proof. For the two-users case, the cost function of a user, if it is regular, is given by
equation (7.6) and if malicious, by equation (7.7). The BR from equation (7.6) gives the
result in (7.20). From the KKT conditions of the BR using the other cost functions, we
could obtain the BNE point.

Without self utility for malicious user, from (7.19),

xs
′

=
(xm + Lσ2)2α(Pm +

B

hm
)

L2|θm|
. (7.21)

We next compare the SINR obtained for the complete information case with xs1 from
equation (7.15) and xm2 from equation (7.13) and the SINR for the Bayesian information
case with xs from equation (7.18) and xm from equation (7.19). By this we obtain
the boundary conditions under which the Bayesian case is better for the regular user.
The conditions are not possible to obtain analytically but are numerically obtained in
Numerical Section 7.9.

Proposition 7.5. For the Bayesian pricing mechanism M with 2 users, one of the user
is malicious and does not care about self utility and both the users have linear utilities,
PoM is given by,

PoM(M) := 1−


αψs

(
Pm +

B

hm

)2

(1− σ2
(
P s +

B

hs

)
)

|θm|(
(
P s +

B

hs

)
− (1− ψs)L2σ2

(xs + Lσ2)2
)

(
P s +

B

hs

)
(1− σ2

(
Pm +

B

hm

)
)

 .

(7.22)

Proof. For this case,

PoM(M ) :=
γ1(x1, x2)− γ1(xs, xm)

γ1(x1, x2)
,

where x1 and x2 are given by (7.11), xs by (7.18) and xm by (7.19). After the substitution
we obtain the result in equation (7.22).

Remark 7.2. We could observe that for this case also PoM increases when the user is
highly malicious. PoM can be reduced by higher price for malicious user compared to
the regular user, i.e, Pm > P s. Windfall of malice happens when the second term on the
right is greater than 1, i.e., PoM < 0. We could observe that when value of θm is close
to 0 and ψs is close to 1, windfall of malice is possible. This is because the user is not
malicious enough to have an effect and the user has higher expectation that the other
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user is regular. At the same time, the regular user is aware that the other user can be
malicious. The windfall of malice is also possible when the malicious user is charged very
high compared to the regular user by the network and the user is highly price aware,
i.e., with high α.

Next, we consider a special case where we look from the perspective of a regular user
who tries to benefit from the uncertainty in the network. For this we analyze the case
with User 1 who is inherently regular but it is of unknown nature to malicious User 2.

7.4.3 Two-users case: User 1 of unknown nature

We consider a malicious User 2 who faces User 1 of unknown nature and User 2 has only
probabilistic information ψm about that user.

Proposition 7.6. The power strategies of and the User 1 of unknown type at the
Bayesian NE point for a game between two users of linear utility functions are given
by,

xm2 =

 L

P1 +
B

h1

− Lσ2


+

, (7.23)

xs1 given by solution of

ψmθ2(x
s
1)

2 +

ψmθ2Lσ2 − α2L
2

(
P2 +

B

h2

)
(
P1 +

B

h1

)2

xs1 − (1 + σ2)ψmL3

(
P2 +

B

h2

)
(
P1 +

B

h1

)2 = 0

(7.24)
and xm1 = 0, where xs1 and xm1 are the powers of User 1 when it is regular and malicious
user respectively, xm2 be the received power at the base station for malicious User 2 and
the prices P1 and P2 follow from (7.10).

Proof. The cost function of User 1 if it is regular is, Js1 = P sxs1 +B
xs1
h1
− γ2(xs1, xm2 ) and

the cost function of User 1 if it is malicious is,Jm1 = Pmxm1 + B
xm1
h1

. User 2 has the

utility function given in equation (7.7). The NE points can be obtained from the BRs.

Remark 7.3. When the SINR of User 1 calculated from BNE in equations (7.23) and
(7.24), is greater than the SINR it obtains from BNE in equations(7.13) and (7.14), the
regular user benefits from the uncertainty it creates to the malicious user.

7.4.4 Pricing Mechanisms Resistant to Malicious Users

We consider the case where, the designer has only probabilistic information about mali-
cious users and modifies the prices according to this information. Let µd(N,Nm) be the
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joint probability mass function (pmf) of N and Nm as observed by the designer. Let
us analyze how the designer can modify the pricing proposed in Section 7.3 using this
information. The designer adds the utility of a user in the global objective only if that
user is regular. Therefore, the designer maximizes the expected sum of utilities of selfish
users according to the pmfs.

Theorem 7.7. For the symmetric case, and µd(N,Nm) = µs(N,Nm) = µm(N,Nm),
we obtain the optimal price for the regular users P s as the same as in (7.8), but with
modified matrix Ds given as,

Ds :=
1

hs



1

(N − E[Nm])
0 · · · 0 1

0
1

(N − E[Nm])
· · · 0 1

...
. . .

...

0 0 · · · 1

(N − E[Nm])
1


, (7.25)

and the price for the malicious users Pm with the modified matrix Dm given as,

Dm :=
(1− θmγs)

hs



1

(N − E[Nm])
0 · · · 0 1

0
1

(N − E[Nm])
· · · 0 1

...
. . .

...

0 0 · · · 1

(N − E[Nm])
1


,

where E[Nm] =
∑N

Nm=0N
mµd(N,Nm).

Proof. For the symmetric case, when all users are of unknown type with arbitrary number
of malicious users, the global objective of the designer in (7.41) changes as,

max
xs,xm

N∑
Nm=0

(N −Nm)µd(N,Nm)U(γs(N,Nm)) (7.26)

s. t.
∑N

Nm=0(N −Nm)µd(N,Nm)xs ≤ Xmax, x
s ≥ 0xm ≥ 0

where γs(N,Nm) is given by (7.36). The prices are obtained as the same way of align-
ment of user and designer objective through prices as in [39] with the modified designer
objective.

We could observe that the users receive higher prices when there is a higher expectation
of number of malicious users in the network. Also, the price for the malicious users are
higher with higher degree of maliciousness.
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7.5 Centralized Bayesian Auctions with Malicious Users

Now we consider auction mechanisms in which the designer (base station) makes central-
ized decisions on the power level and price for all users. This is the case in the practical
wireless networks and standards now, like OFDMA with centrally controlled resource
coordination in 3GPP- LTE system [106]. We analyze, how the uncertainty about the
type of users, affect the user strategies in the auction mechanisms proposed in Section
6.2.4 of Chapter 6.

Consider the two-users symmetric case with both the users of uncertain type and log
utility for all the users. The cost function of the regular User i anticipating that it will
receive an SINR given in (7.31) is

Ji = ψs(B
xsi

hi(xsi + xmj )
Qmax + xsix

m
j − log(

xsiQmaxL

xmj (Qmax + σ2L) + xsiσ
2L)

)) (7.27)

+ (1− ψs)(B xsi
hi(xi + xsj)

Qmax + xsix
s
j − log

(
xsiQmaxL

xsj(Qmax + σ2L) + xsiσ
2L

)
)

where xsj and xmj are the strategies of User j when it is regular and bot respectively.
User i minimizes Ji subject to xsi ≥ 0. The cost function of User i if it is malicious is,

Jmi = ψm(xsjx
m
i +B

xmi
hi(xsj + xmi )

− log

(
xmi QmaxL

xsj(Qmax + σ2L) + xmi σ
2L

)
(7.28)

− θi log

(
xsjQmaxL

xmi (Qmax + σ2L) + xsjσ
2L

)
) + (1− ψm)(B

xmi
hi(xmj + xsj)

Qmax + xmi x
m
j ).

The strategies of the users can be obtained by solving the system of equations obtained
from the best responses. Since they are not analytically tractable, the numerical simu-
lation is given in Section 7.9.

7.5.1 Auction Mechanism Resistant to Malicious Users

In this section, we modify the pricing rule in the auction mechanism given in the previous
section, according to the individual probabilities of users being malicious ones. Let ψdj is
the probability of user j being malicious, which is constructed by the designer from the
detections given in the Section 7.8. The users will be discouraged from acting malicious,
when faced with pricing from the designer, using ψdj , ∀ j and θj , ∀ j. The same problem
for the complete information case is analyzed and a differentiated pricing for malicious
users is proposed in Proposition 6.19in Section 6.5. The auction mechanism resistant to
malicious users using Bayesian information is given next.

Proposition 7.8. For a wireless network with users having logarithmic utilities, the
auction mechanism with the allocation

Qj(x) =
xj∑

k xk + ω
Qmax, ∀ j. (7.29)
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and the pricing

Cj(x) = xj
∑
k 6=j

xk + ω

− ψdj (N − 1)θjtQmax log

(
1 +

xj∑
k 6=j xk

)
(7.30)

will force the users to act as regular users in the network, where t =
∑

k xk.

Remark: The proof of the proposition is similar to the proof of Proposition in Section
6.5. The allocation in equation (7.29) makes sure the full utilization of the powers when
ω = 0, i.e. ∑

j

Qj = Qmax.

Using the full utilization property of the proportional allocation,the SINR of a user can
be made function of allocation of only that user,

γi(Qi(x)) =
Qi(x)

C −Qi(x) + σ2
. (7.31)

To obtain the pricing rule, an additional pricing term is added to the prices in equation
(6.11), proportional to the degree of maliciousness of the users. To obtain the pricing
rule for the Bayesian case as in equation (7.30), we follow the same steps in the proof of
Proposition 6.19 in Section 6.5.

7.6 Bayesian Mechanisms for Security of Wireless Network
with QoS Requirements

In this section, we analyze pricing to satisfy the QoS requirements at the equilibrium
point of the game in the previous section. Each user reports a QoS (rate) requirement
ui to the base station. In this section, the Shannon rates are considered as the utility
functions in this section, i.e.,

Ui(xi, x−i) = log (1 + γi(x)) ∀i ∈ A . (7.32)

and every user receives a price µi per SINR. The QoS requirements are satisfied if

Ui(xi, x−i) ≥ ui, ∀i ∈ A . (7.33)

where ui is the QoS (rate) requirement of user i.
The power allocation to achieve the QoS requirement ui of each user is proved in [104]

as

xUi =
BN
hi
· 2ui − 1

2ui
, ∀ i,

where BN = 1∑N
j=1

1

2
uj
−N+1

is a constant for given uj , j = 1, · · · , N .
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The individual optimal prices which make the NE xNE equal to xU are obtained in
[105] as

µi =
hi
2ui

, ∀ i. (7.34)

The cost function of the regular user with SINR pricing will be,

Jsi (xs, xm) =
N∑

Nm=0

µs(N,Nm)(µiγ
s
i (N,N

m) +B
xsi
hi
− U(γsi (N,N

m)). (7.35)

For the symmetric case, when the channel gains of all the regular users and malicious
users are equal to hs and hm respectively, the SINR of regular users become

γs(N,Nm) =
hsxs

1

L
((N −Nm − 1)hsxs +Nmhmxm) + σ2

where xs and xm are the symmetric power strategies for selfish and malicious users
respectively.

The utility function of malicious user is

Umi (x) =

N∑
Nm=0

µm(N,Nm) (U(γmi ) + θiγ
m
i ) .

For the symmetric case,

γm(N,Nm) =
hmxm

1

L
((N −Nm)hsxs + (Nm − 1)hmxm) + σ2

is the SINR of malicious user.
Then the cost function of the malicious user for the symmetric case with θi = θm, ∀ i

is

Jm(x) =

N∑
Nm=0

µm(N,Nm)(α(µγm(N,Nm) +B
xm

hm
)− U(γm(N,Nm)) + θmγm(N,Nm)).

First we discuss the pricing with complete information and extend it to Bayesian case
later.

7.6.1 Differentiated Pricing with Complete Information

The price and NE power allocation, with QoS requirement and complete information
about the type of users and identities, are obtained in [105]. With the individual price
µi = αi

2ui , ∀ i, the Nash equilibrium power allocation xNEi (θi) of each user i in the
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noncooperative game G in the general MAC system with private type θi is higher than
or equal to xUi in (7.34), where

xNEi (θi, θ−i) =
1− θi − 2−ui

αi
∑N

j=1(2
−uj + θj)−N + 1

, ∀ i. (7.36)

The resulting rate Ui(θi) is

• Ui(θi) = ui, for selfish users with θi = 0

• Ui(θi) > ui, for malicious users with 0 < θi ≤ 1.

If all the users are selfish, the NE power allocation will be as in equation (7.36) but with
θi = 0, ∀ i.

In differentiated pricing, the malicious user is punished with price µm and the selfish
user by µs. In the N -user non-cooperative game G of general MAC system, no malicious
user will have incentive to behave maliciously if the punishment price [105] µmi is given
by

µmi ≥ µsi − θihi, ∀ i. (7.37)

To implement the pricing the designer need to know the exact identity of the malicious
user here. But this is not realistic. Therefore, we propose a Bayesian differentiated
pricing in the next section.

7.6.2 Bayesian Pricing with QoS Requirements

We assume that to implement Bayesian differentiated pricing, the designer observes each
user in the network and attach a probability that he is malicious [21]. Let ψdi be the
probability that user i is malicious and θdi be the estimate of degree of maliciousness of
user i by the designer. Since it is not realistic to estimate the exact value of the degree
of maliciousness θi by the designer, we assume that he gives the maximum punishment,
i.e., with θdi = −1. Each user’s Bayesian price according to the probabilities are;

µmi =
hi
2ui
− ψdi θdi hi. (7.38)

We consider also that there may be an error in the estimation of probability by the
designer. With the Bayesian pricing, for the two-users case, the cost of the regular user
becomes

Ji = B
xsi
hi

+ ψs((µsi − ψdi θdi hi)γsmi )

− Ui (γsmi )) + (1− ψs)((µsi − ψdi θdi hi)γi(xsi , xsj)− Ui
(
γi(x

s
i , x

s
j)
)
), (7.39)

and for malicious user

Jmi = αiB
xmi
hi

+ ψm(αi(
hi
2ui
− ψdi θdi hi)γi(xmi , xsj)

− Ui(x
m
i , x

s
j)− θiγi(xmi , xsj)) + (1− ψm)αi(

hi
2ui
− ψdi θdi hi)γi(xmi , xmj ), (7.40)
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where γsmi = γi(x
s
i , x

m
j ). The BNE can be obtained from these cost functions.

In the Section 7.8.3, we propose a way of detecting the malicious users observing
the anomalies in the utility function. For this purpose, the designer learns the utility
functions of all the users from their BR strategies.

In the numerical section, we calculate the BNE numerically with the prices given in
equation (7.38). Then we compare the Bayesian case, to the complete information case.

7.7 Truthful Bayesian Mechanism

Next, we study mechanisms in which the users report their type (θ which indicates if it is
regular or malicious) to the network designer in addition to bidding on its power. Every
user does two thing, reports its type (θ value) and responds to the power allocation and
pricing rule from the designer with a scalar bid. The designer asks the users to bid
their type and wants to make the users bid their true type. The designer additionally
has probability distribution of the types of users. We analyze mechanism for truthful
implementation in a Bayesian environment, which forces regular and malicious users
to report their true nature using the reported types, scalar bids and the probability
distribution of user types.

There is an efficient, budget balanced (sum of the payment is zero) and truthfully
implementable mechanism in Bayesian Nash equilibrium if the prices follow the classical
d’Aspremont Gerard-Varet Arrow (dAGVA) [41] pricing scheme. A truthfully imple-
mentable mechanism in Bayesian Nash equilibrium for wireless ad-hoc networks was
proposed in [91], without taking interference into account. We extend the dAGVA
mechanism to counter malicious users in an interference limited wireless network.

Proposition 7.9. For the truthful mechanism in the presence of malicious users, the
allocation is

Q∗(x, θ) = max
Q

∑
i

Ui(γi(Q(x)), θi), Qi(x) ≥ 0 ∀ i, (7.41)

Q∗ is the efficient allocation which maximizes the sum of expected user utilities and the
pricing is given by,

Ci(x, θ) = −Eθ−i

∑
k 6=i

Umk (γk(Q
∗
k(x),Q∗−k), θk)

−Mi(x, θ−i) (7.42)

where Mi(.) is any function of θ−i and the calculations are done using the reported types.
For the budget balance mechanism (which does not need external supply of money to the
designer), Mi(.) is taken as,

Mi(x, θ−i) =
−1

(n− 1)

∑
j 6=i

Eθ−j

∑
k 6=j

Umk (γk(Q
∗
k(x),Q∗−k), θk)

 (7.43)
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Here the total price Ci(x, θ) is the difference in sum of utilities of other users with
and without the presence of user i. The designer asks the users to report their θ values
which indicate their level of maliciousness. The above allocation and pricing makes them
report the true values if they are regular which can be proved in the line of proof in [41].
When the malicious user reports true θ value, he will be forced by the mechanism to
pay a higher price. Then the malicious user can choose to stay in the system paying
the price until he is removed from the network. Otherwise, the malicious user could
report that he is regular or report as a malicious user with less maliciousness. But in
the case of false reporting, the malicious user will have higher cost due to the allocation
and pricing of the truthful mechanism in Proposition 7.9. Therefore, if the malicious
user bear the higher individual cost, he can hide as a regular user or a malicious user
with small maliciousness capability. In the simulation section, we quantify the additional
price paid by the malicious user as a function of degree of maliciousness θ.

7.8 Malicious User Detection

We study the detection of botnets [49] observing the resource allocation and virtual prices
in the mechanism. The detection using the mechanism itself gives the network operator
a chance to avoid the burden of an additional detection scheme. The observation of
the network mechanism is performed over a long period of time by the network. The
resource usage when there are automatic queries (calls, texts, data traffic) by the bot
creates a pattern. The virtual prices in the pricing mechanism also reflect the use of
resources by the bots. The operator can detect bots observing these prices and after
the detection can inform the mobiles that they are being compromised. Detection and
prevention of the bots in the BS itself will reduce the possibilities of the congestion and
DoS at the network core.

7.8.1 Bayesian hypothesis testing

We perform hypothesis testing in this section. Let the hypothesis that a mobile is bot
or not are H1 and H0 respectively. Let the payment by the user i in the slot t is
Cit = Pitxit ∈ R and the allocation is xit ∈ R in the pricing mechanism. The rule for
testing, observing the allocation in one time instant, is given as follows:

γ0 = 1, if
p1
p0
≥ π0
π1

; γ0 = 0, otherwise,

where p1 = p(Xi = xit|H1) and p0 = p(Xi = xit|H0) and π0 and π1 are prior probabilities
of H0 and H1 respectively.

Now we use the time correlation of data for the test. We observe the allocation,
pricing and channel gains over T number of time slots and use them as the features
of the training set. The allocation and pricing are connected to the average and the
standard deviation of a number of sent/received packets. When a mobile is bot, the
data traffic is higher with a certain pattern. Therefore, we form an auto-correlation of
the training vector.
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7.8 Malicious User Detection

ri =

∑T−1
t=1 (xit − x̄)(xit+1 − x̄)∑T

t=1(xit − x̄)

The rule for the testing using the auto-correlation is given as follows: γ0 = 1, if
p1
p0
≥

π0
π1

; γ0 = 0, otherwise, where p1 = p(Ri = ri|H1) and p0 = p(Ri = ri|H0).

Next we propose a more decentralized approach in which some regular users also act
as detectors, in addition to the BS (designer). In this detection approach, N s regular
users do hypothesis testing to see if another user is a regular or a bot and send the

results to the designer. γ0 = 1, if
p1(l1, · · · , lsN )

p0(l1, · · · , lsN )
≥ π0
π1

; γ0 = 0, otherwise, where p1 and

p0 are conditional probability mass functions given H0 and H1 respectively.

7.8.2 Detection using machine learning

Detections using different machine learning classifiers [85] are discussed in this section.
To form the training vector, we could obtain traffic of users using our model or using
real data of bot and regular traffic. Using the training set, we perform the classification
of the test data into two classes; bot and regular. We consider here, pricing mechanisms
explained in Section 7.4. We first obtain channel gain, allocation and pricing over T
number of time slots using our model in Section 7.2 randomly. For a specific set of
channel gains, the allocation and pricing of regular user in slot t is given by equations
(7.13) and (7.14) respectively. Below is the list of classifiers we consider in this section.

1. Support Vector Machine (SVM): SVM is a good classifier to utilize the time
correlation in test data. In the numerical section, we plot the support vectors
obtained from the SVM method.

2. Naive Bayes: In this probabilistic classifier, the assumption is that the features
are conditionally independent.

3. K-Nearest Neighbor(KNN): It is a nonparametric classifier known for its sim-
plicity. A shortcoming of the KNN algorithm is that it is sensitive to the local
structure of the data.

In the numerical section, we compare the different classifiers.

7.8.3 Detection by learning the anomalies in the utility functions

The designer needs to know the utility functions to find the prices in the previous
sections. In addition, the designer needs to know the identities of the malicious user to
implement the pricing. In this section, regression techniques are used to learn the user
utilities by the designer. Here, the anomalies in the marginal utility curves are used to
obtain the identities of malicious users. The information about the identities of malicious
users with a possible error is used in the model in Section further for implementation of

129



7 Bayesian Mechanisms and Detection Methods for Wireless Network Security

the differentiated pricing mechanism. The detection uses the fact that the prices in the
pricing mechanism also reflect the use of resources by the malicious users. The utility
function of a user is not assumed to be Shannon rate in this section and it can be any
concave function of the SINR.

The regular user optimization problem will be to find the power level which minimizes
the regular individual cost , i.e.,

min
xi

Pixi +B
xi
hi
− Ui (γi(x−i, xi)) ,

Consequently, the general condition for player best response obtained from first order
derivative is

Pi +
B

hi
− dUi(x)

dγi

1

Ii(x−i)
= 0, ∀ i ∈ A . (7.44)

First, the designer gives sample values of prices P to all the users. Then the designer
observes the NE xNE and calculates the interference at the NE, INE of all the users. At
the NE,

Pi = U ′i
1

INEi

− B

hi
, ∀ i ∈ A , (7.45)

where U ′i =
dUi
dγi

, ∀ i. With different values of P, the designer can plot the curve of U ′i

against γi using a method like regression leaning given in [32].
For the malicious user,

Pi = U ′i
1

INEi

− B

hi
− θi

∑
k∈S

dUk(γk)

dγi
, ∀ i. (7.46)

The designer will obtain a completely different type of curve U ′i for the malicious users.
The designer uses this anomaly in the curve for the detection of malicious users and
punish them with higher price.

The detection and pricing is part of the mechanism and can be implemented online.
The learning process requires first a training phase where the users are given sample
prices and then their actions are observed. The exchange of prices and actions, which
are real numbers, can be done over the control channel with communication overhead
which is a function of the number of training slots. Then the marginal utility functions
can be updated online just by observing the user actions which are already available with
the designer. The computational overhead involves fitting the function using a method
like regression leaning given in [32]. In addition to the pricing and providing channel
information feedback to different users, the base station has a network security module
which detects the malicious users and update the probability beliefs. The designer can
first build the pmf by giving sample prices and observing the best responses for detection.
Then the pmfs can be updated in an online fashion every time slot or in every several
time slots. The detections facilitate the designer to update the probability beliefs with
the changing parameters in the wireless network.
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7.9 Numerical Results

Now, we numerically evaluate the results which were obtained in the previous sections.

7.9.1 Simulations for Bayesian mechanisms

First, we obtain the NE powers of regular and malicious user in pricing mechanism with
Bayesian information which is proposed in Section 7.4. We consider arbitrary number of
malicious users out of N = 50 users. We take the symmetric assumption given in Section
7.4. The distributions µs(N,Nm) and µm(N,Nm) are taken as binomial distribution.
The NE powers are plotted as a function of probability p in binomial distribution in
Figure 7.1. The wireless parameters are σ = 0.1 and L = 0.01. The malicious user
parameters are θ = −0.5 and α = 0.8. It is observed that when p = 0.8 the malicious
users have the highest impact on the power of regular users. Next, we simulate auction
mechanisms given in Section 7.5 with N = 20 users out of which only one user j is
of uncertain type and others are regular users. We take symmetric assumption with
all regular users have same channel gains. The NE points are obtained by solving the
BR obtained from the cost functions given in equations (7.27), (7.28). The system
parameters used are ψm = ψs = 0.5, ω = 0 and Xt = 1 . In Figure 7.2, the NE points
are plotted for complete information and Bayesian case as a function of θj . For the
complete information case, the user j is a malicious user and others are regular. We
could see that when θj > −0.42, the user j benefits from the uncertainty. The User j
benefit from the uncertainty when it is less malicious, i.e., when θj is close to 0.

Next for the truthful Bayesian mechanism given in Proposition 7.9, the difference in
prices for 19 regular users and a malicious user is obtained. The prices are plotted as a
function of the degree of maliciousness of the malicious user in Figure 7.4. In Figure 7.3,
we plot the additional cost the malicious user needs to incur if he does false reporting
as a regular user (θ = 0). We could observe that when the malicious user is originally
more malicious he receives higher cost for hiding as a regular user.

7.9.2 Simulations for Malicious User Detection

First, for the hypothesis testing, we obtain the conditional distribution of rate allocations
in the auction which was presented in Section 7.5 in Figure 7.5. The channel gains are
obtained as uniform random numbers. Other system parameters remain the same as in
the previous subsection. These conditional distributions form the basis for the hypothesis
testing given in Section 7.8.1.

Next, the plot of the SVM model is given in Figure 7.6. It is obtained using the training
data produced with the system model for the auction given in Section 7.5. Using this
SVM model, classification of the users can be done into bots and regular users. Now we
compare different machine learning schemes for detecting bots and the results are given
in Table 7.1. To evaluate each classifier, the 70-percent split validation method is used.
The results are expressed in terms of the following performance measurements. For
each classifier, true positive rate (TPR), which is the probability of correctly detecting
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Figure 7.1: The variation of NE points in pricing mechanism with Bayesian information
in Section 7.4, for an arbitrary number of malicious users, as a function of
probability λ in the binomial distribution.
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Figure 7.3: The plot of additional cost for the malicious user when he reports θ = 0, as a
function of his true degree of maliciousness, in truthful Bayesian mechanism.
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a mobile as bot, is calculated. Additionally, false positive rate (FPR) which is another
measurement defined as the false detection of regular mobile as bot, is also listed in Table
7.1. We could observe that KNN method has the lowest TPR and highest FPR among
the three methods. Also SVM has lower FPR and TPR compared to Naive Bayes.

Classifier TPR FPR

SVM 0.9871 0.063

Naive Bayes 0.98731 0.0729

KNN 0.9713 0.1629

Table 7.1: Detection performance of different machine learning schemes

7.9.3 Numerical analysis with real botnet data

Here, we use a real dataset, which is capture of bot and normal traffic in [47], as the
basis for the simulations. We add wireless model with interference to the regular and
bot IP addresses over this real dataset from wired IP addresses. We consider the pricing
mechanisms proposed in Section 7.4 for the simulation. Depending on the traffic, the
prices are obtained from the equation in equation (3.11) of Section 3.2.1. The file we
use here has the netflows generated by an unidirectional Argus. The dataset included
the date and time of capture, flow duration, protocol of transmission, source IP address,
destination IP address, flags, Type of Service (ToS), number of packet bytes and the
labels. The labels were assigned as follows:

1. Background; for the traffic from all the computers in the university.

2. Legitimate; for the traffic that matches some IP addresses which are checked prior
and made sure not infected. In the dataset there are 21 different legitimate IP
addresses.

3. Botnet; for the traffic that comes to or from the IP address 147.32.84.165.

The packet byte data is used as the amount of traffic from different IP addresses and
channel gains are added to them. Interference and prices are calculated as in Section 7.4.
We first train the detectors using the data from the Legitimate computers and botnet.
Then the data from different IP addresses, which are labeled background, are tested to
detect bots.

The conditional distributions of number of bytes from one of the Legitimate IP address
and bot IP address are plotted in Figure 7.7. Next, anomaly detection using the data
from Background data in [47] is carried out. In Figure 7.8, the result of the detection of
bot from the IP addresses in Background data, using KNN search method, is plotted.
The labels are given as −1 for Bot and 1 for regular IP addresses respectively for 50 IP
addresses.
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7.10 Concluding Remarks

Bayesian mechanisms and learning methods have been utilized in this chapter to allocate
the power in the wireless networks where malicious users exist. With partial information
about the user behavior, the Bayesian game using pricing is analyzed. Network with
arbitrary number of malicious users is considered and BNE points are obtained. It is
observed that the BNE points of the pricing game is not unique due to the nonlinear
non-convex nature of the BRs of the users. The user misbehavior is detected by learning
anomalies in the utilities and the malicious users are priced higher using the probabilistic
statistic from the detection. Then a CDMA system is considered where each user in the
system has an SINR-based QoS requirement. Numerically the BNE of the pricing game
is compared with the NE of complete information case.
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In this thesis, we have designed decentralized pricing and centralized auction mechanisms
for efficient power and spectrum allocation in interference constrained systems. We have
first designed pricing mechanism for efficient power allocation in a multiuser multicarrier
wirelss system uplink with sum transmission power constraint over the users and carriers.
The efficient prices for price taking users are obtained as functions of Legrange multipliers
of the multicarrier constraints and the received SINR vector at the base station. We
have also considered multihop heterogeneous wireless networks and pricing functions
for different Femto cell relays have been designed. We have proposed a concept of
interference tax which should be collected by an external regulator from the relays.
Unlike the wireline case, the charging function for efficient allocation has been observed
to be a function of the transmission power as well as the traffic flow rate.

In the location privacy mechanism for mobile commerce, the total budget required
to obtain the desired minimum level of granularity of location information from all the
users has been obtained. As expected, the granularity of location information selected by
the users decreases with increasing risk factor. We have used real GPS data on location
information to obtain the simulation results. A map of users has been constructed from
their reported granularity level of information and the actual GPS data. An iterative
algorithm has been proposed for the implementation of pricing mechanisms and its
convergence has been proved. Then a regression learning method has been used by
the designer to learn the utility functions of users from their actions, unlike in direct
mechanisms where the designer asks the users to report their utility functions. In the
simulations, we have shown that the functions can be approximated well by the Gaussian
regression method.

A new modeling of malicious user utility function has been proposed and a metric PoM
for quantifying the effect of malicious users has been defined. The PoM for pricing and
auction mechanisms has been obtained. We have observed a Braess type paradox in one
case, where the presence of malicious users improve the social welfare of a mechanism.
Next one of the mechanism for additive sharing has been proven to be ε-group strategy-
proof against the collusion behavior of malicious users. Both the pricing and auction
mechanisms have been extended for countering the malicious users. Next, we have
relaxed the assumption that the users and the designer know the nature of users and
designed Bayesian mechanisms. The conditions under which the uncertainty about the
nature of the users is beneficial for the regular users and designer have been obtained by
comparing to the complete information case. We have also obtained a truthful Bayesian
mechanism for wireless networks with malicious users, based on the allocation and pricing
of the dAGVA mechanism. In addition, we have observed through simulations that
when the malicious user is originally more malicious, it receives increasing cost from the
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truthful Bayesian mechanism for reporting as a regular user. We have used hypothesis
testing and machine learning methods to detect the bots in a wireless network. Three
machine learning techniques, SVM, Naive Bayes and KNN have been compared using
performance matrices. Finally, the optimal prices with malicious users for the complete
information case where each user submits an SINR-based QoS requirement are obtained.
Then these prices have been modified with Bayesian information.

We have not addressed in detail the problem of imperfect channel knowledge in this
thesis, which is important for the practicality of the mechanisms proposed in this thesis
to wireless systems. The prices proposed in the Section 3.2 can be implemented by
measuring the received power and received SINR at the receiver in the base station. In
the remaining part of the thesis, the channel knowledge is required for implementation
of the mechanisms. Therefore, the scenario where the users report false channel gains
to strategically influence the resource allocation is an important direction [117].

Bringing more dynamics to the system via stochastic games [88] is an interesting di-
rection for future work. Especially, in the context when users have imperfect information
[108]. The effect of malicious users in hierarchical games [63] is another interesting future
direction.
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[2] T. Alpcan and T. Başar. A Utility-Based Congestion Control Scheme for Internet-
Style Networks with Delay. IEEE Trans. on Networking, 13(6):1261–1274, Decem-
ber 2005.

[3] T. Alpcan and T. Basar. Network Security: A Decision and Game Theoretic
Approach. Cambridge, U.K, Cambridge Univ. Press, 2010.

[4] T. Alpcan, H. Boche, M. Honig, and H. V. Poor, editors. Mechanisms and Games
for Dynamic Spectrum Allocation. Cambridge University Press, 2013.

[5] T. Alpcan and L. Pavel. Nash Equilibrium Design and Optimization. In Proc.
of Intl. Conf. on Game Theory for Networks (GameNets 2009), Istanbul, Turkey,
May 2009.

[6] E. Altman, H. Kameda, and Y. Hayel. Revisiting collusion in routing games: A
load balancing problem. In Network Games, Control and Optimization (NetG-
CooP), 2011 5th International Conference on, pages 1 –6, oct. 2011.

[7] G. Aryal and M. F. Gabrielli. Revenue under collusion-proof auctions. Available
at SSRN, 2012.

[8] R. J. Aumann. Correlated equilibrium as an expression of bayesian rationality.
Econometrica, 55(1):1 – 18, 1987.

[9] K. Avrachenkov, E. Altman, and A. Garnaev. A jamming game in wireless net-
works with transmission cost. Lecture Notes in Computer Science, 4465:1–12,
2007.

[10] A. P. Azad, E. Altman, and R. E. Azouzi. From altruism to non-cooperation in
routing games. CoRR, abs/0808.4079, 2008.

[11] A. P. Azad and J. Musacchio. Unilateral altruism in network routing games with
atomic players. CoRR, abs/1108.1233, 2011.

[12] M. Babaioff, R.Kleinberg, and C. H. Papadimitriou. Congestion games with mali-
cious players. In Proceedings of the 8th ACM conference on Electronic commerce,
pages 103–112, San Diego, California, 2007.

147



Bibliography
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