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Abstract
Motivated by an application in automated manufacturing, the present thesis studies optimiza-
tion problems arising in several areas of computer vision. We investigate the largest common
point set measure in Euclidean space, the computation of the Gromov-Hausdorff distance of
metric spaces, and the dense k-subgraph problem. A mathematical analysis of these problems
yields computational complexity results as well as algorithms which permit an approximate
solution of large instances that cannot be solved by traditional methods.

Zusammenfassung
Die vorliegende Arbeit untersucht mehrere Optimierungsprobleme die in dem Gebiet Computer
Vision auftreten und durch eine Anwendung im Bereich der Automatisierten Fertigung motiviert
sind. Wir untersuchen das Largest Common Point Set Maß im Euklidischen Raum, die
Berechnung der Gromov-Hausdorff Distanz von metrischen Räumen und das Dense k-Subgraph
Problem. Eine mathematische Analyse dieser Probleme liefert Komplexitätsresultate sowie
Algorithmen zur approximativen Lösung von sehr großen Instanzen, die nicht mit klassischen
Methoden gelöst werden können.
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Chapter 1

Introduction

Computers and data processing have long superseded human capabilities in many sectors and
revolutionized our daily lives. In areas which deal with context sensitive information, however,
there is still a lot of room for improvement. One of these areas is computer vision, a discipline
in computer science which deals with visual information and other high-dimensional data.
In the present thesis, we investigate the possibility of automatizing a traditionally manual

manufacturing process in engineering. To achieve this, we study variants of the shape matching
and mesh segmentation problem from computer vision using mathematical tools, mainly based
on combinatorial optimization.
At first, we give a short overview of the interdisciplinary project in whose periphery this

thesis originated. Next, the main mathematical challenges are identified and subsequently
addressed in the following chapters, where we give several original results on the complexity of
these problems as well as algorithms which give at least approximate solutions.

1.1 An Application in Sheet Metal Forming

While the introduction of industrialized mass production was a major breakthrough in produc-
tion technology in the early 20th century, the demand in the beginning of the 21st century is
shifting gradually towards individualized products. This poses a major challenge for established
production methods, which usually require individualized tool sets and a significant amount
of manual labour for each product line. For small batch or individualized production, these
processes cannot be used economically.
To adapt to this demand, alternative methods which are more suitable for these require-

ments have been investigated. In the joint research project [Vol+13] with the Institute of
Metal Forming and Casting at Technische Universität München, the goal was to investigate
possibilities for the automation of a traditionally manual method for the individualized forming
of sheet metal parts. This method is described in Section 1.1.1
A first step towards the automation of this method, a manufacturing system called copied

driving, was introduced in the preceding project [Hof+10]. The manual crafting process is
tracked by a camera system and suitably processed for a robot controlling the process, which
can subsequently reproduce the manufacturing steps performed by the worker. This data
set is referred to as manufacturing strategy. Due to the manual production process required
initially, copied driving is not suitable for individual or prototypic applications and still requires
a specialized operator. In the follow-up project [Vol+13], the main goal was to overcome
these limitations in a joint effort of mechanical engineering and mathematics. By deriving
manufacturing strategies for new component shapes from known strategies, a new concept
enabling automated production of individualized components is realized. The system utilizes a

1



2 1.1. An Application in Sheet Metal Forming

database of already crafted components and their manufacturing strategies, which we further
on refer to as standard elements. In addition to the exact reproduction of sheet metal parts,
one of the goals in the engineering part was to enable the production of transformed standard
elements for a class of feasible transformations to increase the utility of the process.

The overall approach is illustrated in the flow diagram depicted in Figure 1.1. After digitizing
the desired component geometry, it is segmented into parts of suitably transformed standard
elements. Since the number of standard elements is limited, it is necessary to be able to handle
a wide bandwidth of possible transformation strategies for these parts in the segmentation step
as well as the production process. The main mathematical challenges arise in the segmentation
step and are described in Section 1.2.

Input
CAD-data

Segmentation
Subdivision into segments

Engineering Process

matching
standard
element?

Craft and Copy
Craft segment
Track strategy

Transform and Produce
Transform strategy

Automated production

Database
Standard

elements with
corresponding
manufacturing

strategies
and feasible

transformations

Assembly
Join segments

yes

no

Figure 1.1: Flow chart for the automated driving concept utilizing a database of manufacturing
strategies.

An appropriate manufacturing strategy can then be devised and applied for automated
production. For parts which cannot be produced using the current database, the corresponding
segment is crafted manually while recording the manufacturing strategy and immediately
included in the database. Hence, a learning strategy is implemented which increases the power
of the pool of standard geometries sustainably.
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1.1.1 Forming Method
In the field of sheet metal forming, the demand for individualization is attended to mostly
by incremental methods. In contrast to conventional methods, which allow for the forming
of a sheet metal part in one passage, incremental methods employ a series of consecutive
shaping steps to form the desired component geometry. These can be implemented with
general purpose tools independent of the target geometry, while traditional methods rely on
custom-built dies for each produced form as well as expensive machinery. By eliminating the
need for these one-of-a-kind tool sets for each component geometry, incremental methods can
be used economically for small batch sizes, where the longer production time for individual
parts can be tolerated.

We consider a special kind of incremental forming process — called driving process — which
enables the production of almost any desired component shape. The process is carried out on
simple and inexpensive gap frame presses and solely makes use of universal tool sets for the
deformation of the sheet metal. Each tool set consists of a pair of top and bottom tools, which
are small compared to the sheet metal part. A single forming step consists of clamping the
sheet metal part between the top and bottom tools at a certain position. From an engineering
point of view, the tool sets that can perform local stretching and local shrinking in the deformed
zone are of particular interest.

top tool part

bottom tool part

Figure 1.2: A schematic sketch1of the principle of local material stretching (left) and shrinking (right)
with appropriate tool sets for the driving process.

The principle of these tools is schematically shown in Figure 1.2. There are mounting parts
in the top and bottom tool which enable a transfer of the vertical stroke force into a horizontal
motion. Hence, the split tool jaws are actuated while the sheet metal is clamped through
the vertical pressure and the resulting friction. The jaws of the stretching tool move apart
and thus cause local stretching of the material, whereas the shrinking tools provoke localized
shrinking by movement of the jaws towards each other.

The shrinking and stretching operations do not only cause obvious local deformations of the
sheet metal, but also alter intrinsic properties like tension and density of the material which
results in a global deformation of the geometry. While a theoretical analysis and simulation of
a single individual forming step has been considered [HHP05], the driving process in general
has not yet been fully understood.

In practice, desired sheet metal parts are manufactured in an interactive process of consecutive

1Image courtesy of Daniel Opritescu, Institute of Metal Forming and Casting, Technische Universität
München
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evaluation and refinement of the part in production. Both steps are generally carried out in
manual labour and the process heavily relies on the skills of the operator. Since there is no
auxiliary material besides gauges, the experience and eye sight of the operator are crucial for
the evaluation and refinement step.
This process allows the creation of almost any geometry, but being an interactive, manual

production method, it suffers from drawbacks like poor reproducibility and high manual
effort. Due to the complexity of the process and the need for highly trained operators, this
manufacturing process is to date used mainly in technical areas where only small batches
are produced and the high amount of manual labour can be tolerated. Examples include
prototyping, restoration of vintage cars, and the manufacturing of ships and (small) aircraft.

1.1.2 Transformation of Standard Elements

The presented concept of automated driving strongly depends on an efficient use of the database,
i. e., it should contain few elements which suffice to produce a great variety of geometries.
Hence, it is inevitable to consider standard elements in a parameterized way. The process
should not only allow for the exact reproduction of parts stored in the database but should
also enable geometric variations of the parts.

The copied driving system only allows for the exact reproduction of parts using the tracked
manufacturing strategy in the specific dimensioning. In a first step, we analyse the employed
manufacturing strategy and subsequently approximate it by an analytic parameterized de-
scription, cf. Figure 1.3. The second step consists in recreating the component geometry by
utilizing a generated manufacturing strategy with an appropriate setting of parameters in order
to allow for substitution of the tracked manufacturing strategy by the analytic description,
see [Opr+12; OV14]. Additionally, further variations, such as scaled or sheared components,
can be wrought by a transformation of the manufacturing strategy and suitable adjustment of
parameters, cf. [Vol+13].

y

x

(a) Tracked manufacturing strategy

y

x

(b) Analytically generated manufacturing
strategy

Figure 1.3: Manufacturing strategies for a sample component in sheet metal part coordinate system1;
dots represent stroke positions correlating to strokes on the component with the tool set.
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This approach has been validated by adopting the method on a sheet metal part serving as
a sample standard geometry. Scaled variants of the sample geometry can be reproduced within
system tolerances for scaling factors ranging from 0.80 to 2.00. The tolerances are strongly
system dependent, as the main contributions arise from deviations in robot positioning and
from digitizing and measuring the part geometry by the optical system.

A suitable adjustment of the process parameters with respect to the scaling factors enables
the manufacturing system to produce user-defined scaled components. The adoption of other
geometric variation types, including a subclass of common scaling and shearing, has also been
implemented. A detailed description of the procedure is given in [Vol+13]. A mathematical
characterization of the achievable transformations is given in Section 2.5.

1.2 Related Mathematical Problems

The mathematical challenge in this engineering problem lies in the suitable segmentation of a
possibly complex part, such that each segment can be produced by a feasible transformation of
one of the given standard elements. The parts are represented as 2-dimensional mesh surfaces.
We present a three stage method for this problem, which takes the specific requirements of the
problem setting into account.
Considering the restriction of the manufacturing system to a relatively small number of

standard elements in the database, it is inevitable to incorporate information about which parts
of the component can be represented by transformed standard elements in the segmentation
step. Therefore, the first step consists of determining occurrences of transformations of
standard elements in the component, see Figure 1.4.
This task, usually referred to as registration or shape matching, has numerous applications

in various scientific and economical fields. The parts are reduced to point clouds for the
registration step. This allows for faster computational methods and the loss of accuracy is
negligible in practice. The task can then be formulated as follows: given two point clouds
P,Q ⊆ Rd representing a standard element and the desired sheet metal part, the goal is to
find a transformation optimally aligning P to Q with respect to a given measure, such as
the Hausdorff distance. Numerous approaches for various types of transformations have been
considered. One of the best-known is described in [BM92], which tries to find an aligning
transformation which is Euclidean, i. e., consists of a combination of translation, rotation and
reflection, of two point clouds by iterative refinement. Unfortunately, this method depends
on an approximate initial alignment of the data to obtain correct results and is thus not
suitable for our purposes. In this thesis, we develop a method which computes an aligning
affine transformation with certain additional properties for two point clouds with bounded
error. These transformations also represents the current state of the art concerning feasible
transformations of manufacturing strategies of sheet metal parts, see [Vol+13]. The theory
and implementation of this algorithm are detailed in Chapter 2 and partly based on joint work
with Peter Gritzmann and Michael Ritter [GRS14].

The success of shape matching methods in applications has also sparked a lot of interest in
the more general problem of so-called non-rigid shape matching. In contrast to traditional
(rigid) shape matching, where one tries to find a (typically Euclidean or affine) transformation
of the ambient space that minimizes the Hausdorff distance of the given point clouds, non-rigid
shape matching is concerned with the similarity of shapes in a more general context. Consider
the two shapes depicted in Figure 1.5. For a human, it is clear that these shapes are very



6 1.2. Related Mathematical Problems

Shape matching

Recognition of standard
elements and allocation to the
desired sheet metal part.

Minimal covering

Identification of a minimal
subset of standard elements
that still covers the whole
component surface.

Subdivision

Dissection of the overlapping
parts of the selected standard
elements.

Figure 1.4: Flow chart of the segmentation process.

similar. In fact it is the same person, just in different poses. But this similarity is not reflected
by the usual measures used for rigid shape matching.

An approach to this problem, which was pioneered by [EK01; Bro+04; MS05], is to consider
the shapes as separate metric spaces and not as subsets of a common ambient space. This is
motivated by the observation that the surface (e. g., skin, sheet metal, etc.) of the objects we
intend to compare is usually not too elastic. Therefore, the geodesic distances between points
on the surface do not change too much under the transformations we consider feasible. This
could also be of interest for the original problem of sheet metal forming in future projects:
computing a matching between two surfaces yields the amount by which parts of one surface
need to be stretched or shrunk to be transformed to the other surface. These results could be
used as basis for subsequent research investigating more general transformations of the shapes
in the database, which would render the method even more effective. Chapter 3 investigates
the computational complexity of measuring the difference between metric spaces and gives
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Figure 1.5: A human shape2 in different poses.

algorithms that compute a correspondence with low distortion between two metric spaces. The
results presented in this chapter are based on the manuscripts [Sch14b; Sch14a].

Furthermore, we observe a connection between non-rigid shape matching and a well-known
problem in combinatorial optimization. In Chapter 3, we show that the non-rigid shape
matching problem can be formulated as dense k-subgraph problem, which asks for a subgraph
with maximal edge weight on exactly k vertices of a given graph. This problem is investigated
in Chapter 4, which is based on joint work with Steffen Borgwardt [BS14]. We present a
(non-polynomial time)

(
1 + 1

k−1

)
-approximation algorithm, which exploits the fact that many

nodes can be disregarded for a solution in certain graphs. Moreover, we present an additional
application in forestry, for which this approach is very successful.
After surface registration has been performed, we assume that the desired geometry is

covered by appropriately transformed standard elements. Otherwise, suitable parts are added
to the database. As a next step, Section 5.1 details how to compute a minimal covering,
i. e., a subset of the standard elements that still covers the whole surface. Note that the
selected standard elements may still have overlapping parts. A segmentation of the component
geometry and hence a suitable manufacturing strategy can then be derived by subdivision,
which is described in Section 5.2. Overlapping parts are assigned to exactly one of the fitting
standard elements, while taking the difficulty of cutting the specific geometry of the sheet
metal parts into account.

1.3 Background and Notation
To describe the above mentioned problems rigorously, we first introduce some notation which
is used throughout this thesis.

2Surface mesh distributed as part of the TOSCA project, see [BBK08].
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The number of elements in a set X is denoted by |X|. The power set 2X of X is defined
as the set of all subsets of X, i. e., 2X := {A | A ⊆ X}. The symmetric difference of two sets
X, Y is denoted by X4Y := (X \ Y ) ∪ (Y \X). For a set X and a function f : X −→ R, we
denote by argminx∈X f(x) the set of all points which minimize f . We also use

x∗ := argmin1
x∈X

f(x)

to denote an arbitrary but fixed element x∗ ∈ argminx∈X f(x); argmax and argmax1 are
defined accordingly. For A ⊆ X, we use the notation f |A to refer to function f restricted to A.

Euclidean Geometry

Furthermore, we denote by ei := (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rd the ith unit vector of Rd and use
1d to refer to the d-dimensional vector (1, . . . , 1)T ∈ Rd. The d-dimensional identity matrix is
denoted by Id ∈ Rd×d and the scalar product of Rd is denoted by 〈·, ·〉, i. e., the scalar product
of v, w ∈ Rd is given by

〈v, w〉 := vTw =
d∑
i=1

viwi.

The Euclidean norm on Rd is defined by ‖x− y‖2 := 〈x− y, x− y〉 and ‖·‖ denotes an
arbitrary norm on Rd. For p ∈ N ∪ {∞}, the vector space Rd endowed with the p-norm
‖x‖p := p

√
|x1|p + . . .+ |xd|p, x ∈ Rd, is referred to as Lp.

For a set A ⊆ Rd, we use A⊥ :=
{
x ∈ Rd | 〈x, a〉 = 0 ∀a ∈ A

}
to denote the set of normals

of A. The affine hull of A is given by

aff(A) :=
{∑
a∈A

λaa | λa ∈ R ∀a ∈ A,
∑
a∈A

λa = 1
}

and

conv(A) :=
{∑
a∈A

λaa | λa ∈ [0, 1] ∀a ∈ A,
∑
a∈A

λa = 1
}

defines the convex hull of A. The dimension dim(A) of a A denotes the dimension of the affine
subspace spanned by A

dim(A) := dim(aff(A)),

and A is called affinely independent if dim(A) = |A| − 1.
In the context of shape matching, we use the notion of Euclidean or rigid transformations,

which are characterized as isometric maps from Rd to Rd. These transformations are a
combination of a rotation, translation and reflection.

Similarity of Shapes

In rigid shape matching, the Hausdorff distance and its directed version are some of the
most commonly used measures for the similarity of shapes. Intuitively, two sets have a small
Hausdorff distance if each point in either set is close to some point in the other set. To be
able to measure the distance between two points, we consider metric spaces.
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Definition 1.1 (Metric space)
Let X be a set and dX : X ×X −→ R. The tuple (X, dX) is called metric space if dX is a
metric on X, i. e., if the following properties hold for all x, y, z ∈ X:

i) dX(x, y) ≥ 0 and dX(x, y) = 0⇔ x = y

ii) dX(x, y) = dX(y, x) (symmetry)

iii) dX(x, z) ≤ dX(x, y) + dX(y, z) (triangle inequality).

We call a metric space (X, dX) rational if X is finite and dX(x, y) ∈ Q for all x, y ∈ X. A ball
with centre x ∈ X and radius ε ≥ 0 is denoted by Bx(ε) := {x′ ∈ X | dX(x′, x) ≤ ε} .

The maximal distance of two elements of X is called the diameter of X:

diam(X) := sup
x,y∈X

dX(x, y)

Two metric spaces are called isometric if there exists an isometry φ : X −→ Y , i. e., if φ is
bijective and

dX(x1, x2) = dY (φ(x1), φ(x2))

holds for all x1, x2 ∈ X.

The original definition of the Hausdorff distance was supposedly given by Felix Hausdorff in
his famous book “Grundzüge der Mengenlehre” [Hau14].

Definition 1.2 (Hausdorff distance)
Let P,Q ⊆ X be subsets of a metric space (X, dX). The directed Hausdorff distance of P and
Q is given by

dh(P,Q) := sup
p∈P

inf
q∈Q

dX(p, q).

The Hausdorff distance is then defined by

dH(P,Q) := max{dh(P,Q), dh(Q,P )}.

If (X, dX) is compact, dH is a metric on the set of compact subsets of X.
In computer vision, another measure which is frequently used is the so-called bottleneck

distance introduced in [EI96]. In contrast to the Hausdorff distance, it requires a one-to-one
mapping from P to Q.

Definition 1.3 (Bottleneck distance)
Let P,Q ⊆ X be subsets of a metric space (X, dX) with |P | = |Q|. The bottleneck distance of
P and Q is defined by

dB(P,Q) := inf
{

sup
p∈P

dX(p, π(p)) | π : P −→ Q is a bijection
}
.

In Chapters 2 and 3, we investigate other measures for the (partial) similarity of shapes.
Therefore, it is necessary to describe which point in one shape corresponds to which point
in the other shape. In general, it is not sufficient to model this by maps. We use relations
instead.
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Definition 1.4 (Relation)
Let X,Y be two sets. A subset R ⊆ X × Y is called a relation between X and Y . We refer to
an element (x, y) ∈ R as an assignment of x to y and we say that x is matched or assigned to
y. Further, we denote by

P1(R) := {x ∈ X | ∃y ∈ Y such that (x, y) ∈ R}
and

P2(R) := {y ∈ Y | ∃x ∈ X such that (x, y) ∈ R}

the projection of R to X and Y, i. e., the subsets of X and Y covered by R, respectively.
A relation R ⊆ X × Y which matches a point x ∈ X to at most one point in Y and a point

y ∈ Y to at most one point in X is referred to as bottleneck relation.
A relation which covers both X and Y is called correspondence.
Definition 1.5 (Correspondence)
Let X,Y be two sets. A relation R ⊆ X × Y is called correspondence between X and Y if

P1(R) = X and P2(R) = Y,

i. e., if both X and Y are covered by R. The set of all correspondences is denoted by R(X,Y ).
A correspondence R ∈ R(X,Y ) which is also a bottleneck relation, i. e.,

∀x ∈ X ∃1y ∈ Y such that (x, y) ∈ R
∀y ∈ Y ∃1x ∈ X such that (x, y) ∈ R

is called bottleneck correspondence. In this case, each point x ∈ X is assigned to exactly one
point y ∈ Y and vice versa, i. e., R induces the bijection π : X −→ Y , π(x) = y ⇔ (x, y) ∈ R.
The set of bottleneck correspondences is denoted by Π(X,Y ).
The Hausdorff distance and bottleneck distance can be easily formulated using this notation:
Lemma 1.6
Let P,Q ⊆ X be compact subsets of a compact metric space (X, dX), then

dH(P,Q) = inf
R∈R(P,Q)

sup
(p,q)∈R

dX(p, q)

and
dB(P,Q) = inf

R∈Π(P,Q)
sup

(p,q)∈R
dX(p, q).

Proof. For compact P,Q ⊆ X, a correspondence inducing the Hausdorff distance is given by

R :=
{

(p, q) | p ∈ P, q = argmin1
q′∈Q

dX
(
p, q′

)}

∪
{

(p, q) | q ∈ Q, p = argmin1
p′∈P

dX
(
p′, q

)}
and this is best possible. The existence of argmin1

q′∈Q
dX(p, q′) and argmin1

p′∈P
dX(p′, q) is guaranteed

since P and Q are compact.
An optimal bottleneck correspondence R ∈ Π(X,Y ) induces the bijective map π : P −→ Q,

π(p) = q ⇔ (p, q) ∈ R, which minimizes the maximal distance between a point and its image
and vice versa. 2
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The following lemma shows that it is sufficient to consider correspondences whose size is
bounded by the sum of the sizes of the metric spaces.

Lemma 1.7
Let X,Y be finite sets and R ∈ R(X,Y ) a correspondence. There exists R′ ∈ R(X,Y ) with
R′ ⊆ R and |R′| ≤ |X|+ |Y |.

Proof. For each x ∈ X, there exists yx ∈ Y with (x, yx) ∈ R. Similarly, for each y ∈ Y , there
is xy ∈ X such that (xy, y) ∈ R. Therefore,

R′ := {(x, yx) ∈ X × Y | x ∈ X} ∪ {(xy, y) ∈ X × Y | y ∈ Y }

is a correspondence with R′ ⊆ R and |R′| ≤ |X|+ |Y |. 2

The thickness of the sheet metal parts we consider is very small in relation to their surface
and can therefore be neglected. The objects we deal with in the engineering applications can
then be represented as 2-dimensional surfaces. For the use in algorithms, we assume that they
are given as mesh surfaces, which are defined in the following.

Meshes

A mesh surface is a discrete representation of a surface used in computer graphics. In this
thesis, we consider only triangle meshes, but generalizations are easily possible. A triangulation
of a set in Rd is given by a simplicial complex, see [Mau96, p. 33].

Definition 1.8 (Simplicial complex)
Let n ∈ N ∪ {0} and S ⊆ Rd be an affinely independent set with cardinality |S| = n + 1,
i. e., dim(S) = n. The convex hull σ := conv(S) of S is called n-simplex. For T ⊆ S and
m := dim(T ), the m-simplex τ := conv(T ) is called m-face of σ. A finite collection S of
simplices in Rd is called (geometric) simplicial complex if

• σ ∈ S and τ ⊆ σ is an m-face of σ for some m ∈ N ∪ {0} =⇒ τ ∈ S

• σ, τ ∈ S =⇒ σ ∩ τ is either the empty set or an m-face of both σ and τ for some
m ∈ N ∪ {0}.

The union of all simplices U(S) := ⋃
σ∈S

σ is called underlying space of S.

A topological space X for which there is a simplicial complex S and a homeomorphism
φ : U(S) −→ X from the underlying space U(S) of S to X is called polyhedron. The tuple
(S, φ) is called triangulation of X.

A mesh is a special case: if the underlying space U(S) of a simplicial complex S is a surface
in R3, S is called triangle surface mesh or mesh, cf. [Hop96].

Definition 1.9 (Mesh)
Let S be a simplicial complex in R3. S is called triangle surface mesh or mesh if its underlying
space U(S) is a surface in R3. A point v ∈ Rd is called vertex of the mesh if {v} is a 0-simplex
in S, i. e., {v} ∈ S. The 1-simplices are referred to as edges and the 2-simplices are called
faces of the mesh. Two faces σ1, σ2 ∈ S are called adjacent if they meet in an edge, i. e.,
dim(σ1 ∩ σ2) = 1.
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An example is depicted in Figure 1.6. For the goals pursued here, it is sufficient to consider
meshes as structures which define shortest paths between points of the mesh (see Chapter 3)
and specify adjacency and common borders of faces of the mesh (Chapter 5). Topological
properties of meshes and simplicial complexes are studied in the area of computational topology
[EH10], but are not crucial for the problems considered here.

Figure 1.6: A mesh surface representing a car body3.

A segmentation of a mesh is given by a subdivision of the mesh into submeshes.

Definition 1.10 (Mesh segmentation)
Let S be a mesh. A segmentation of S in k ∈ N submeshes is a subdivision S1 ∪ . . . ∪ Sk = S
of S such that

• Si is a mesh for all i ∈ {1, . . . , k}

• σ ∈ Si ∩ Sj =⇒ dim(σ) ≤ 1 for all i, j ∈ {1, . . . , k}, i 6= j,

i. e., each face of the mesh is contained in exactly one submesh Si, i ∈ {1, . . . , k}.

Graphs and Ordered Sets

In the following chapters, we use ordered sets S := (v1, . . . , vt) to suitably describe certain
algorithmic aspects. We use the common set operations and definitions on such ordered sets,
e. g., we use S ⊆ V to denote that S only contains elements in V, and for A ⊆ V, S \A is the
ordered subset of S for which all v ∈ A are deleted. Further, for S ⊆ Rd the dimension of S
is given by dim(S) := dim({v1, . . . , vt}). For a convenient notation, we write S ← S ∪ {v} to
denote that we append the element v to the end of the ordered set.
An undirected graph with vertex set V := {v1, . . . , vn} and a set of undirected edges

E := {e1, . . . , em} is denoted as tuple G := (V,E). The edges are denoted as sets {vi, vj} ∈ E.
To emphasize that a subgraph has exactly k vertices, we sometimes denote it as k-subgraph (e. g.,

3Figure generated from a surface mesh included in the matlab package “Toolbox Graph” by Gabriel Peyré.
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a k-forest is a forest on exactly k vertices). The neighbourhood of a vertex v or a set of vertices
A is referred to as NG(v) or NG(A). Here, NG(A) := {w ∈ V \A | ∃v ∈ A with {v, w} ∈ E}
does not contain any vertices in A. The set of vertices covered by a set of edges E′ is denoted
by V (E′), and E(V ′) and G(V ′) := (V ′, E(V ′)) denote the edge set and subgraph induced
by a vertex set V ′, respectively. For the sake of simplicity, we sometimes refer to subgraphs
(V (E′), E′) by their inducing edge set E′, and to subgraphs (V ′, E(V ′)) by the inducing vertex
set V ′.

A graph can also be considered as metric space by using the shortest paths between vertices
as distances.

Definition 1.11 (Shortest path distance)
Let G := (V,E) be a graph on n := |V | vertices. We denote by dG(v, w) the minimal number
of edges of a path from v to w if v and w are connected, and n+ 1 otherwise.

The shortest path distance defines a metric on a graph G and can be computed in polynomial
time, see [Gri13].
In many cases, we consider weighted graphs G := (V,E,w), where w : E −→ R assigns a

weight to each edge of the graph.
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Chapter 2

Affine Shape Matching

Recognizing special structures in certain objects is a key problem in computer science and
in computer vision in particular. The applications for this task are manifold. The problem
has been considered in computational biology, where one tries to match and classify molecule
structures for synthetic drug design and biomolecular recognition [CB99] or in palaeobiology for
the analysis of modern and ancient taxa [Mac99]. In computer vision, applications include the
reconstruction of partially occluded objects [AMCO08], segmentation and sparse representation
of point clouds [AFS06] and image analysis and segmentation in medical imaging [MV98].
Several approaches for this task have been considered, including matching local (e. g.,

curvature, characteristic curves [SS87], spin images [Joh97; JH99]) and global (eigenshapes
[GT98], complex extended gaussian images [KI93], harmonic maps [ZH99]) features which are
usually computed in a preprocessing step. A very active field of research is the alignment
of point clouds, where one tries to find a transformation of a certain type (e. g., translation,
Euclidean or affine transformation) which best aligns the point clouds with respect to a given
measure. Countless algorithms have been proposed for problems of this type, where the works
[BM92; GMO99; SWK07; AMCO08] seem to be the most relevant.
While plenty of measures for comparing matched point clouds have been considered, see

[Vel01], the Hausdorff distance and the bottleneck distance are prevalent.
In this chapter, we present an analysis of a simple algorithm for this problem, which produces

a transformation by aligning small subsets of both sets. The remaining part of the chapter is
dedicated to adaptions of the algorithm to slightly modified problem settings. In Section 2.4, we
describe a generalization of the algorithm for a multi-criteria optimization problem. Section 2.5
highlights a specific problem setting and tailor-made algorithm for a problem occurring in
the application in mechanical engineering, cf. Chapter 1. The obtained results are partly
based on joint work with Peter Gritzmann and Michael Ritter and currently in preparation
for publication [GRS14].

2.1 The Largest Common Point Set Problem

For our application in engineering, it is unavoidable to allow only partial matching, i. e., we
need to measure the amount by which the sets we try to align overlap. To assess the overlap
of two point sets P and Q, several measures referred to as largest common point set (LCP)
measure have been proposed for various settings. Akutsu, Tamaki, and Tokuyama [ATT98]
give a definition with respect to congruence, which is generalized by Ambühl, Chakraborty, and
Gärtner [ACG00] for approximate congruence. The largest common point set measure with
respect to the set of Euclidean transformations T and the Hausdorff distance (Definition 1.2)

15
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is given by

Lδ(P,Q) := max
{∣∣P ′∣∣ | P ′ ⊆ P, Q′ ⊆ Q ∧ ∃T ∈ T with dH

(
T (P ′), Q′

)
≤ δ

}
. (2.1)

Unfortunately, this measure is not meaningful if the set of admissible transformations T is
extended to the set of affine transformations. The degenerate transformation T : Rd −→ Rd,
T (x) := y for an arbitrary but fixed y ∈ Q, yields a largest common point set of cardinality
|P |, irregardless of P and Q.

To avoid this problem, we use a slightly modified definition using relations which also allows
us to describe the measure with respect to both the Hausdorff distance and the bottleneck
distance with the same notation. At first, we consider the error of a relation with respect to a
transformation. Throughout this chapter, ‖·‖ denotes an arbitrary norm on Rd, cf. Section 1.3.

Definition 2.1 (Error of a relation)
Let P,Q ⊆ Rd be two sets, T : Rd −→ Rd a transformation, and R ⊆ P ×Q a relation between
P and Q. We denote by

∆(R, T ) := sup
(p,q)∈R

‖T (p)− q‖

the error of R with respect to the transformation T .

The largest common point set measure can then be defined as follows:

Definition 2.2 (Largest common point set)
Let P,Q ⊆ Rd be finite point sets and δ ≥ 0. The δ-largest common point set measure for a
set T of transformations and a set of relations R is given by

Lδ(P,Q) := max
T∈T

max
R∈R

∆(R,T )≤δ

min{|P1(R)|, |P2(R)|}.

The transformations T ∈ T are called admissible transformations.
If the set of relations is unrestricted, i. e., R = 2P×Q, we refer to the problem as δ-largest

common point set problem with respect to the Hausdorff distance.
If R is the set of bottleneck relations (cf. Definition 1.4), Lδ(P,Q) yields the δ-largest

common point set with respect to the bottleneck distance.

Using the notation employed in the literature, the δ-largest common point set measure with
respect to the Hausdorff distance can be expressed as

Lδ(P,Q) = max
{
min

{∣∣P ′∣∣, ∣∣Q′∣∣} | P ′ ⊆ P,Q′ ⊆ Q′ ∧ ∃T ∈ T with dH
(
T (P ′), Q′

)
≤ δ

}
.

The corresponding decision problem for a given set of transformations T and relations R is
the following:

Problem 2.3 (Largest common point set (LCP))
Input: Dimension d ∈ N, point sets P,Q ⊆ Qd, δ ≥ 0, L ∈ N.
Question: Is Lδ(P,Q) ≥ L?

If one considers T to be the set of Euclidean transformations, it is known that the parameterized
problem with the dimension d as parameter is W [1]-hard in L2, even for δ = 0 [CGK06].
This implies that it is unlikely that there exists an exact algorithm for this problem with
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running time of the form O
(
2d poly(|P |, |Q|)

)
; see [Nie06] for an introduction to parameterized

complexity. More generally, the problem is shown to be NP-hard in [ACG00] if the set
of admissible transformations T is restricted to translations or linear, Euclidean, or affine
transformations with respect to the bottleneck distance. The authors also present exact
algorithms for various sets of admissible transformations. These include an exact algorithm
for affine transformations in L∞ with running time (|P ||Q|)2d2+O(d), i. e., polynomial for fixed
dimension d. However, this algorithm is computationally too expensive for our application in
dimension d = 3. We therefore focus on an approximation algorithm, which yields very good
results in practice.

2.2 Wide Bases
In the following, we analyse the approximation ratio of an elementary algorithm, which
computes a transformation matching point sets P and Q based only on small (ordered) subsets
— called bases — of both sets. Note that the approach is similar to a result by Akutsu
[Aku96], who presents an algorithm and analysis for the special case considering Euclidean
transformations in dimension d = 3 with respect to the Hausdorff distance, see Equation (2.1).
Given P and Q, the algorithm finds subsets P ′ ⊆ P, Q′ ⊆ Q with dH(P ′, Q′) ≤ 8δ such that
P ′ is at least as large as the δ-largest common point set, i. e., |P ′| ≥ Lδ(P,Q). A modified
algorithm for this particular problem setting with improved approximation ratio 2 is given in
[CB99].
In this chapter, we present results on Problem LCP where the admissible transformations

are the set of affine transformations

A :=
{
T : Rd −→ Rd | T (x) = Ax+ t, A ∈ Rd×d, t ∈ Rd

}
in arbitrary dimension. Note that degenerate transformations, i. e., with rank(A) < d, are not
excluded. In the following algorithm, we utilize the fact that affine transformations can be
defined by appropriate ordered sets:

Definition 2.4
Let BP := (p0, . . . , pn) ⊆ Rd be affinely independent and BQ := (q0, . . . , qn) ⊆ Rd an ordered
set. We denote by TBP ,BQ ∈ A an arbitrary affine transformation such that

TBP ,BQ(pi) = qi ∀i ∈ {0, . . . , n}.

The existence of such a transformation is a basic result from linear algebra.

Remark 2.5
Denoting MP := (p1 − p0, . . . , pn − p0) ∈ Rd×n and MQ := (q1 − q0, . . . , qn − q0) ∈ Rd×n, a
transformation as in Definition 2.4 is given by TBP ,BQ(x) := Ax+ t where A ∈ Rd×d satisfies
AMP = MQ and t := q0 −Ap0. The transformation is unique if dim(BP ) = d, i. e., n = d. In
this case we have A = MQM

−1
P .

While it is obvious that a transformation which matches arbitrary ordered subsets of P and
Q may yield an arbitrarily bad alignment of P and Q in general, cf. Figure 2.1, the error
can be bounded for bases with certain properties. Intuitively, it is clear that the points of a
base should be far apart in order to minimize the influence of noise. This has already been
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Q

P

(a) Point sets P and Q which can be aligned with low error by a
translation.

Q

P

(b) Point sets TBP ,BQ (P ) and Q for the transformation defined by
the bases BP , BQ.

Figure 2.1: Unfavourable choice of bases BP , BQ (depicted in red) of P (grey) and Q (black).

mentioned in [AMCO08] and appropriate sets are referred to as a wide bases. We introduce a
rigorous characterization of this term in Definition 2.6.
The algorithm can then be stated in the form of Algorithm 2.1. For all pairs of bases of P

and Q, a transformation T matching these bases and a corresponding relation are computed
and evaluated. Note that

R := {(p, q) ∈ P ×Q | ‖T (p)− q‖ ≤ δ} ⊆ P ×Q

is an optimal relation with respect to the Hausdorff distance. An optimal bottleneck relation
can be obtained by solving a maximal bipartite matching problem. The best of these relations
and the corresponding transformation is then returned.
The fact that this algorithm computes an approximation of an optimal solution is based

on two key properties: A transformation obtained by matching a wide base of P with an
appropriate base of Q is an approximation of the transformation best aligning these sets, see
Theorem 2.13. Furthermore, Theorem 2.7 guarantees the existence of such wide bases.

The running time of the algorithm is dominated by the O
(
d(|P ||Q|)d+1

)
loop iterations for

the elementary version stated in Algorithm 2.1. In practice, more sophisticated methods can
be used to drastically improve the running time of the algorithm. This is usually achieved
by heuristically disregarding certain bases, while sacrificing quality of approximation. For
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Input: P,Q ⊆ Rd finite point sets, δ ≥ 0
Output: Transformation T, relation R

1 L← −1
2 for n = 0 to d do
3 for all affinely independent ordered sets BP ⊆ P with |BP | = n+ 1 and all ordered

multisets BQ ⊆ Q with |BQ| = n+ 1 do
4 T ′ ← TBP ,BQ
5 R′ ← argmax{min{|P1(R′)|, |P2(R′)|} | R′ ∈ R, ∆(R′, T ′) ≤ δ}
6 if min{|P1(R′)|, |P2(R′)|} > L then
7 L← min{|P1(R′)|, |P2(R′)|}
8 T ← T ′

9 R← R′

10 end
11 end
12 end

Algorithm 2.1: affineBaseMatching

the problem considering Euclidean transformations in dimension d = 3, Schnabel, Wahl, and
Klein [SWK07] use probabilistic methods to significantly reduce the number of bases which
are considered. Aiger, Mitra, and Cohen-Or [AMCO08] use slightly refined bases, which allow
for a further reduction of pairs of bases which have to be evaluated. These concepts can also
be transferred to the problem concerning affine transformations, see Section 2.5.

In the following discussion, it turns out that, in the case of affine transformations, a suitable
formal definition of a wide base B := {b0, . . . , bd} of P is the following: after choosing a centre
b0 ∈ P, each point of P can be expressed as an affine combination of vectors in the base, such
that the absolute values of the coefficients of b1, . . . , bd are less than or equal to 1. This is
equivalent to the statement that P is contained in the parallelotope b0 + ∑

b∈B
[−1, 1](b− b0)

centred in b0 and spanned by the vectors b− b0 for b ∈ B.
Definition 2.6 (Wide base)
Let P ⊆ Rd. We call a subset B ⊆ P with |B| = dim(P ) + 1 wide base of P if there exists
b0 ∈ B such that

P − b0 ⊆ par(B − b0) :=

∑
b∈B

λb(b− b0)
∣∣ λb ∈ R, |λb| ≤ 1 ∀b ∈ B


=
∑
b∈B

[−1, 1](b− b0).

The point b0 is called centre and the vectors b − b0 are called basis of the parallelotope
par(B − b0) or B. We refer to B as ordered wide base if B is an ordered subset of P .
For an example, consider the circle P :=

{
x ∈ R2 | ‖x− e1‖ = 1

}
, cf. Figure 2.2, and b0 := 0.

Then the regular simplex B := {b0, b1, b2} where b1 :=
(3

2 ,
√

3
2
)T and b2 :=

(3
2 ,−

√
3

2
)T is a wide

base of P containing b0.
An essential result for our analysis of the approximation ratio of Algorithm 2.1 is the

following, which states that each finite point set contains such a wide base.
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0

b1

b2

par(B)

P

Figure 2.2: Wide base of a unit circle.

Theorem 2.7
For each compact set P ⊆ Rd, n := dim(P ), and each b0 ∈ P , there are b1, . . . , bn ∈ P such
that {b0, . . . , bn} is a wide base of P with centre b0.

We use a supporting lemma to prove Theorem 2.7, but first we show that the restriction to
compact sets is indeed necessary.

Remark 2.8
The set P obviously has to be bounded, since it could not be contained in a bounded
parallelotope otherwise.
If P is not closed, Theorem 2.7 does not hold in general: Consider the open interval

P := (0, 1) = {x ∈ R | 0 < x < 1} and assume B := {b0, b1} ⊆ P is a wide base with centre b0.
We have

par(B − b0) = [−|b1 − b0|, |b1 − b0|] = {x ∈ R | − |b1 − b0| ≤ x ≤ |b1 − b0|}

and P − b0 = (−b0, 1 − b0). If b0 ≤ b1, we have 1 − b0 > b1 − b0 = |b1 − b0|. For b0 > b1, it
holds −b0 < −b0 + b1 = −|b1 − b0|. Combined, this yields P − b0 6⊆ par(B − b0), and therefore
P does not contain a wide base.

The following lemma states that each full-dimensional compact set P contains d points which
span a parallelotope that contains the set P itself.

Lemma 2.9
Let P ⊆ Rd be compact and full-dimensional. P contains a linearly independent subset B ⊆ P
with |B| = dim(P ) = d such that

P ⊆ par(B) =
∑
b∈B

[−1, 1]b.

Proof. Let det(b1, . . . , bd) denote the determinant of the matrix consisting of the columns
b1, . . . , bd ∈ Rd. Since P is compact and the volume volp : Rd × . . .×Rd −→ R≥0,

volp(b1, . . . , bd) := vol(par(b1, . . . , bd)) = 2d|det(b1, . . . , bd)|
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is a continuous function, there exists a set B := {b1, . . . , bd} ⊆ P of d points in P which span
a parallelogram of maximal volume:

vol(par(B)) = max
B′⊆P
|B′|=d

vol(par(B′)).

Since dim(P ) = d, we have vol(par(B)) > 0, i. e., B is linearly independent. Assume now that
there exists p ∈ P \ par(B) 6= ∅. There are λ1, . . . , λd ∈ R such that

p =
d∑
i=1

λibi

and we can assume |λ1| ≥ . . . ≥ |λd| without loss of generality. Since p ∈ P \ par(B), we have
|λ1| > 1. This situation is illustrated in Figure 2.3a.

P

par(B)

λ1

λ2

0

b1b2

p

(a) A linear combination p ∈ P \ par(B) of vectors
b ∈ B must have at least one coefficient |λ1| > 0.

P

par(B′)

0

b1
b2

p

(b) The volume of the parallelotope can be increased
by exchanging b1 and p: B′ := (B \ {b1}) ∪ {p}.

Figure 2.3: Illustration of the proof of Lemma 2.9.

Consider A := (B \ {b1}) and let u ∈ A⊥ 6= ∅, ‖u‖ = 1 be a unit normal of the linear
subspace spanned by A. We have

|〈u, p〉| =
∣∣∣∣
〈
u,

d∑
i=1

λibi

〉∣∣∣∣
=
∣∣∣∣λ1〈u, b1〉+

d∑
i=2

λi 〈u, bi〉︸ ︷︷ ︸
=0

∣∣∣∣
= |λ1||〈u, b1〉|
> |〈u, b1〉|.
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Let volaff(A) denote the volume in the affine subspace aff(A). For B′ := A ∪ {p} we have

vol(par(B′)) = 2|〈u, p〉| · volaff(A)(par(A))
> 2|〈u, b1〉| · volaff(A)(par(A))
= vol(par(B)),

cf. Figure 2.3b. This is a contradiction to the maximality of the parallelogram spanned by B,
implying that indeed P ⊆ par(B). 2

This proof also establishes that a parallelotope with centre 0 and basis in P of maximal volume
contains all points of P .

Corollary 2.10
Let P ⊆ Rd and B ⊆ P be the basis of a parallelotope with maximal volume, then P ⊆ par(B).

Note that the opposite statement does not hold in general. Consider, for example, the point
set P := {e1, e2, e1 + e2,−e1 + e2} ⊆ R2. We obviously have P ⊆ par({e1, e2}) and also
P ⊆ par({e1 + e2,−e1 + e2}), but vol(par({e1 + e2,−e1 + e2})) = 8 > 4 = vol(par({e1, e2})),
compare Figure 2.4.

0
e1

e2
e1 + e2−e1 + e2

par(e1, e2)

par(e1 + e2, e1 − e2)

Figure 2.4: Wide bases need not induce parallelotopes of maximal volume.

It is now straightforward to prove Theorem 2.7, by a suitable translation of the point set P
and Lemma 2.9.

Proof (Theorem 2.7). For P ⊆ Rd, n := dim(P ) and b0 ∈ P, consider the point set
P ′ := {p− b0 | p ∈ P} ⊆ Rd. We can consider P ′ as a full-dimensional set in the linear
subspace spanned by P ′. In this setting, Lemma 2.9 states that there are b′1, . . . , b′n ∈ P ′
such that P ′ ⊆ par(b′1, . . . , b′n). Thus, B := {b0, b′1 + b0, . . . , b

′
n + b0} is a wide base of P . This

concludes the proof of Theorem 2.7. 2
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2.2.1 Finding a wide base
While the existence of wide bases will prove sufficient for the bound on the approximation ratio
of Algorithm 2.1, the computation of a wide base for a given finite point set is an interesting
problem in its own right. The problem is loosely related to containment problems, cf. [GK94],
but does not belong to any of the categories described in the survey.

Considering Corollary 2.10, an intuitive idea for computing a wide base with centre b0 of a
point set P ⊆ Rd would be to determine a basis B which induces a parallelotope of maximal
volume

max
B⊆P−b0
|B|=d

vol(par(B)).

This more general problem is similar to the problem of computing the volume of the zonotope
Z := ∑

p∈P
[−1, 1](p− b0) spanned by P − b0, which can be stated as

∑
B⊆P−b0
|B|=d

vol(par(B)),

and is #P-hard, see [DGH98]. However, the proof can not easily be transferred to the problem
of computing a parallelotope of maximal volume. To the best of our knowledge, no results on
the computational complexity of computing a basis B inducing a polytope of maximal volume
or determining a wide base can be found in the literature.
However, the proofs of Lemma 2.9 and Theorem 2.7 also disclose an algorithmic idea for

constructing a wide base.
We start with an arbitrary (affinely independent) base. If there exists a point p ∈ P which

is not contained in the parallelotope corresponding to the current base, the volume of the
parallelotope can be increased by exchanging an element of the current base with p. This
procedure is iterated until a wide base is found. Since there is only a finite number of possible
bases and each base is visited at most once (the volume of the parallelotope increases in each
iteration), the procedure computes a wide base in finitely many iterations.

To formally describe this algorithm, we investigate representations which are more suitable
for this purpose.
Remark 2.11
For a finite point set P := {p1, . . . , pk} ⊆ Rd with dim(P ) = d, Theorem 2.7 can also
be stated as follows: For i0 ∈ {1, . . . , k}, let A := (p1 − pi0 , . . . , pk − pi0) ∈ Rd×k. There
are mutually distinct indices B := {i1, . . . , id} ⊆ {1, . . . , k} \ {i0}, such that the matrix
AB := (pi1 − pi0 , . . . , pid − pi0) ∈ Rd×d consisting of the columns i1, . . . , id of A is non-singular,
and we have

∣∣∣∣(A−1
B A

)
r,s

∣∣∣∣ ≤ 1 for all r ∈ {1, . . . , d}, s ∈ {1, . . . , k}.

Algorithm 2.2 implements the algorithmic idea described above, using the notation introduced
in Remark 2.11. Note that this algorithm is very similar to the tableau form of the dual
simplex algorithm, the only difference being the pivoting rule. The algorithm can therefore be
implemented in the same very efficient way as the simplex tableau. Since A−1

B A is known and
|B4B′| = 2, A−1

B′A can be computed with d row operations after the first iteration.
Another way to see the similarity to the simplex algorithm is to consider the procedure of

Algorithm 2.2 as an edge walk on the matroid base polytope IP associated with the matrix A:

IP := conv
({
e ∈ {0, 1}k | 1Td e = d ∧ {pi − p0 | ei = 1} is linearly independent

})
.
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Input: P := {p1, . . . , pk} ⊆ Rd with dim(P ) = d, indices of initial (non-wide) base
B := {i0, . . . , id} ⊆ {1, . . . , k}

Output: Indices of wide base B
1 A← (p1 − pi0 , . . . , pk − pi0)
2 repeat
3 Find indices (r, s) of maximal element of

∣∣∣A−1
B A

∣∣∣
4 m←

∣∣∣(A−1
B A)r,s

∣∣∣
5 B ← (B \ {ir}) ∪ {s}
6 until m ≤ 1

Algorithm 2.2: constructWideBase

There is a one-to-one correspondence between the vertices of this polytope and the bases B
of A: two bases B,B′ are connected by an edge of the polytope if and only if they differ in
exactly one element, i. e., |B4B′| = 2. This is a direct consequence of Theorem 40.6 and
Corollary 40.2d of [Sch03]. The coefficients of a linear combination ps − p0 of pir − p0, ir ∈ B,
can be considered as directed edge weights: the weight of the directed edge from B to B′ with
B′ = B \ {ir} ∪ {s} for r ∈ {1, . . . , d}, s ∈ {1, . . . , k} is given by (A−1

B A)r,s.
The diameter of this polytope is bounded from above by d, since it is a 0-1-polytope, cf.

[Nad89]. This bound can also be concluded directly using Steinitz’ exchange lemma [Str03].
Combined with computational experiments, this motivates the following conjecture:

Conjecture 2.12
During a run of Algorithm 2.2, each element may enter the base at most d− 1 times. Thus, at
most (d− 1)n loop iterations are performed.

2.3 An Approximation Algorithm
We are now ready to prove the main result of this chapter, namely that aligning a wide base
of P with a suitable base of Q yields an approximation for the best alignment of these sets.

Theorem 2.13
Let P,Q ⊆ Rd be compact sets, T ∈ A an affine transformation, R ⊆ P ×Q a relation, and
n := dim(P1(R)). For each ordered wide base BP of P1(R), there exists an ordered multiset
BQ ⊆ P2(R) ⊆ Q with |BQ| = n+ 1 = |BP | such that

∆
(
R, TBP ,BQ

)
≤ 2(n+ 1)∆(R, T )

for the affine transformation TBP ,BQ introduced in Definition 2.4.

Proof. Let b0, . . . , bn ∈ P be such that BP = (b0, . . . , bn) and ∆ := ∆(R, T ). There exists an
optimal aligning transformation consisting of Ao ∈ Rd×d, to ∈ Rd such that

‖Aop+ to − q‖ ≤ ∆ ∀(p, q) ∈ R.

Let q0, . . . , qn ∈ Q be such that (bi, qi) ∈ R, i ∈ {0, . . . , n} and denote BQ := (q0, . . . , qn).
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Since BP is affinely independent, there exist A ∈ Rd×d and t ∈ Rd with

‖Abi + t− qi‖ = 0 ∀i ∈ {0, . . . , n},

i. e., TBP ,BQ consists of the linear transformation A and translation t.
Let c ∈ {0, . . . , n} be such that bc is a centre of the wide base BP , cf. Definition 2.6.

We can assume bc = 0 without loss of generality by translating P . Since bc = 0, we have
qc = Abc + t = 0 + t = t and therefore

‖Ap+ t− q‖ = ‖Ap+ qc − q‖
≤ ‖Aop− (q − qc)‖+ ‖(A−Ao)p‖
= ‖Aop+ to − q − (to − qc)‖+ ‖(A−Ao)p‖
≤ ‖Aop+ to − q‖+ ‖Aobc + to − qc‖+ ‖(A−Ao)p‖
≤ 2∆ + ‖(A−Ao)p‖

for all (p, q) ∈ R. Thus, the distance between the transformation of the point p and q is
bounded by a term of 2∆ plus the deviation of the linear transformation.
Next, we note that the error of the linear transformation of the points bi ∈ BP in the base,

i ∈ {0, . . . , n}, is bounded by 2∆: since qc = t and (bc, qc) ∈ R, we have ‖t− to‖ ≤ ∆ and
therefore

‖(A−Ao)bi‖ ≤ ‖(Abi + t)− (Aobi + to)‖+ ‖t− to‖
≤ ‖qi − (Aobi + to)‖+ ∆
≤ 2∆.

Since BP is a wide base of P1(R) with centre bc = 0, each p ∈ P1(R) can be represented as

p =
∑
i 6=c

λipbi with
∣∣∣λip∣∣∣ ≤ 1

for suitable λip ∈ R, i ∈ {0, . . . , n} \ {c}. The error of the linear transformation of p ∈ P1(R)
can now be bounded as follows:

‖(A−Ao)p‖ =

∥∥∥∥∥∥(A−Ao)
∑
i 6=c

λipbi

∥∥∥∥∥∥
≤
∑
i 6=c

∣∣∣λip∣∣∣‖(A−Ao)bi‖
≤
∑
i 6=c

∣∣∣λip∣∣∣2∆

≤ 2n∆. 2

Substituting in the above result yields ‖Ap+ t− q‖ ≤ 2(n+ 1)∆ for all (p, q) ∈ R.

Furthermore, the bound on the approximation ratio stated in Theorem 2.13 is tight.
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Lemma 2.14
For each d ∈ N, there exist finite point sets P := {p0, . . . , pd+1}, Q := {q0, . . . , qd+1} ⊆ Rd
with corresponding wide bases BP , BQ such that the affine transformation TBP ,BQ defined in
Definition 2.4 fulfils

∆
(
R, TBP ,BQ

)
= 2(d+ 1)∆(R, T )

for the identity transformation T := id and correspondence R := {(pi, qi) | i ∈ {0, . . . , d+ 1}}.

Proof. Let P := {p0, . . . , pd+1}, where p0 := 0, pi := ei for i ∈ {1, . . . , d} and pd+1 := −1d.
Similarly, for δ ≥ 0, we set Q := {q0, . . . , qd+1}, where q0 := δe1, qi := −δe1 + ei for
i ∈ {1, . . . , d} and qd+1 := −1d−δe1. We obviously have ‖pi − qi‖ ≤ δ for all i ∈ {0, . . . , d+ 1}
and therefore ∆(R, id) ≤ δ. Furthermore BP := {p0, . . . , pd} is a wide base of P, and
for BQ := {q0, . . . , qd}, the corresponding affine transformation T := TBP ,BQ is given by
T (x) = Ax+ t, where

A :=
(

1− 2δ −2δ1Td−1
0 Id−1

)
, t := δe1.

Further, we have

T (pd+1) = t+Apd+1 = δe1 + (−1 + 2δ + (d− 1)2δ)e1 −
d∑
i=2

ei

= −1d + (2d+ 1)δe1

which yields
‖T (pd+1)− qd+1‖ = 2(d+ 1)δ.

For sufficiently small δ we have

‖T (pd+1)− qi‖ ≥
√
d− 2 ≥ 2(d+ 1)δ

for all i ∈ {1, . . . , d} and therefore ∆
(
R, TBP ,BQ

)
≥ 2(d+ 1)δ. 2

The obtained results can now be combined to establish a bound on the approximation ratio of
Algorithm 2.1.
Corollary 2.15
For ∆ ≥ 0 and two finite sets P,Q ⊆ Rd, let δ := 2(d+ 1)∆. Algorithm 2.1 finds a relation
R ∈ R and a transformation T ∈ A such that

∆(R, T ) ≤ δ = 2(d+ 1)∆ and min{|P1(R)|, |P2(R)|} ≥ L∆(P,Q).

Proof. Let To ∈ A be an optimal transformation and Ro ⊆ P ×Q a corresponding optimal
relation with respect to the LCP measure. By Theorem 2.7, there exists an ordered wide base
BP ′ := (b0, . . . , bn) of P ′ := P1(R) ⊆ P, where n := dim(P ′). Theorem 2.13 states that there
exists an ordered set BQ′ ⊆ P2(R) ⊆ Q,

∣∣BQ′∣∣ = n such that ∆
(
Ro, TBP ′ ,BQ′

)
≤ 2(d+ 1)∆ for

an affine transformation TBP ′ ,BQ′ matching BP ′ to BQ′ . Since Algorithm 2.1 iterates over all
ordered multisets of up to d+ 1 points, the transformation matching BP ′ to BQ′ is considered
in the course of the algorithm. 2
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The transformation computed by Algorithm 2.1 is not necessarily a local optimum, since at
most d + 1 points were considered. In practical applications, it is therefore reasonable to
perform a local optimization of the transformation. In L2, this is possible in polynomial time.
Lemma 2.16
Let P,Q ⊆ Rd be finite point sets and R ⊆ P ×Q a relation. The problem

min
A∈Rd×d
t∈Rd

max
(p,q)∈R

‖q − (Ap+ t)‖2

can be approximated to any accuracy in polynomial time.
Proof. The problem can be formulated as the following second order cone program (SOCP),
and therefore approximated to any accuracy in polynomial time, cf. [MT00].

min δ
s.t. ‖q − (Ap+ t)‖2 ≤ δ ∀(p, q) ∈ R

A ∈ Rd×d

t ∈ Rd

This is indeed an SOCP: Let p1, . . . , pk ∈ P , q1, . . . , qk ∈ Q be (not necessarily distinct) points
such that R = {(pi, qi) | i = {1, . . . , k}}, Id ∈ Rd×d the identity matrix,

Mi :=


pTi 0 . . . 0

Id

0
0 pTi

. . . ... ...... . . . . . . 0
0 . . . 0 pTi 0

 ∈ Rd×(d(d+1)+1),

f := ci := ed(d+1)+1 ∈ Rd(d+1)+1

and
bi := −qi ∈ Rd

for i ∈ {1, . . . , k}. With this notation, the above program is equivalent to the following SOCP
in standard notation:

min fTx
s.t. ‖Mix+ bi‖2 ≤ cTi x ∀i ∈ {1, . . . , k}

x ∈ Rd(d+1)+1

where A and t and δ are given by

A :=

 x1 . . . xd
... . . . ...

xd(d−1)+1 . . . xd2

 ∈ Rd×d, t :=

 xd2+1
...

xd(d+1)

 ∈ Rd
and δ := xd(d+1)+1. 2

This process can of course be iterated in the same manner used in the classical ICP-Algorithm,
cf. [BM92]:

For a given relation, we use the overlapping point sets P ′ := P1(R) ⊆ P and Q′ := P2(R) ⊆ Q
to compute a transformation T which aligns these sets as described in Lemma 2.16. A relation R′
which maximizes min{P1(R),P2(R)} under the constraint ∆(R, T ) ≤ δ can then be computed.
This process yields the overlapping point sets P ′′ := P1(R′) ⊇ P ′ and Q′′ := P2(R′) ⊇ Q′, and
the process can be iterated.



28 2.4. Pareto Approximation

2.4 Pareto Approximation

In some applications, there is no canonical bound δ on the maximal acceptable error of a
relation. It is therefore desirable to strike a good balance between the opposing goals of
covering a big proportion of the sets and obtaining a relation with small error. Instead of
looking for maximal subsets of P and Q which can be transformed such that their Hausdorff
distance is below a threshold δ, we can also consider the problem as a multi-criteria or Pareto
optimization problem.

Definition 2.17 (Multi-criteria optimization)
Let D be a set. A map f : D −→ Rn is called multi-criteria objective function, where n is the
number of criteria considered.

Since a multi-criteria optimization problem usually does not have a single distinguished optimal
point, we are interested in the set of points where no individual criterion can be improved
without impairing other criteria. This set of points is usually referred to as Pareto front.
As we have seen in the introduction to this chapter, even the problem with a one-criterion
objective function is very involved, so the computation of the exact Pareto front is not feasible
for practical instances. Instead, we investigate an approximation.

Definition 2.18 (Approximate Pareto front)
Let D be a set, f : D −→ Rn a multi-criteria objective function, and α ∈ Rn≥0. A subset
F ⊆ D is called α-approximate Pareto front for the minimization of f if

i) for all q ∈ D there exists p ∈ F such that fi(p) ≤ αifi(q) for all i ∈ {1, . . . , n}

ii) f(p1) 6≤ f(p2) for all p1, p2 ∈ F .

An 1d-approximate Pareto front is called (exact) Pareto front.

The canonical criteria which determine the quality of a relation R ⊆ X × Y and corresponding
transformation T are the number of points in X and Y which are covered by R, i. e., P1(R)
and P2(R), and the error ∆(R, T ) induced by R and T . A reasonable multi-criteria objective
function for the largest common point set problem is given in the following definition:

Definition 2.19 (Multi-criteria largest common point set)
Let P,Q ⊆ Rd be two finite point sets, R a set of relations of P and Q, and T a set of admissible
transformations of Rd. We define the multi-criteria objective function f : R× T −→ R3 by

f(R, T ) := (−P1(R),−P2(R),∆(R, T ))T . (2.2)

To facilitate notation, we define a partial order � on the domain of f :

(R1, T1) � (R2, T2) ⇔ f(R1, T1) ≤ f(R2, T2) ⇔


P1(R1) ≥ P1(R2)
P2(R1) ≥ P2(R2)
∆(R1, T1) ≤ ∆(R2, T2).

We say that (R1, T1) dominates (R2, T2) when (R1, T1) � (R2, T2) and f(R1, T1) 6= f(R2, T2),
i. e., (R1, T1) is at least as good as (R2, T2) and better with respect to at least one criterion.
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If F ⊆ R× T is a set of combinations of a relation and a transformation, we use (R, T ) � F
to denote that (R, T ) � (R′, T ′) for all (R′, T ′) ∈ F .
Note that for an approximation ratio α ∈ R≥0 for the multi-criteria largest common point

set objective function, we have α3 ∈ [1,∞) and α1, α2 ∈ (0, 1] due to the negativity of f1, f2.
Using this notation, we can adapt Algorithm 2.1 to the multi-criteria largest common

point set problem, see Algorithm 2.3. As in Algorithm 2.1, all transformations obtained
from matching pairs of bases are considered. The approximate Pareto front is continuously
updated in the function updateParetoFront, which uses the auxiliary variable F. The front
F is augmented by solutions which are not dominated by any other element currently in
the approximate Pareto front. Furthermore, dominated elements are removed from it. An
implementation is given in Algorithm 2.4 and will be discussed in the following.

Input: Finite point sets P,Q ⊆ Rd
Output: Approximate Pareto front F ⊆ R×A

1 F ← ∅
2 F ∈ R|P |×|Q|
3 F (i, j)←∞ for all i ∈ {1, . . . , |P |}, j ∈ {1, . . . , |Q|}
4 for n = 0 to d do
5 for all affinely independent ordered sets BP ⊆ P with |BP | = n+ 1 and all ordered

multisets BQ ⊆ Q with |BQ| = n+ 1 do
6 T ← TBP ,BQ
7 (F , F )← updateParetoFront(F , F, T)
8 end
9 end

Algorithm 2.3: approximateParetoFront

Considering the results of the previous section, it is not surprising that this algorithm does
indeed deliver an approximation of the Pareto front of the problem with respect to the set of
affine transformations T := A.
Theorem 2.20
For finite point sets P,Q ⊆ Rd, Algorithm 2.3 is a (1, 1, 2(d+ 1))-approximation algorithm for
the Pareto front.
Proof. Let P,Q ⊆ Rd be finite point sets and (R, T ) ∈ R × A an arbitrary point in the
domain of the multi-criteria objective function f . For an ordered wide base BP of P1(R),
Theorem 2.13 states that there exists an ordered multiset BQ ⊆ P2(R) ⊆ Q with |BQ| = |BP |
such that ∆

(
R, TBP ,BQ

)
≤ 2(d + 1)∆(R, T ). Since the solution

(
R, TBP ,BQ

)
uses the same

relation as (R, T ), we have

fi(R, T ) = −Pi(R) = fi(R, TBP ′ ,BQ′ ) for i ∈ {1, 2}

and
f3(R, TBP ,BQ) = ∆

(
R, TBP ,BQ

)
≤ 2(d+ 1)∆(R, T ) = 2(d+ 1)f3(R, T ).

If there is no (R′, T ′) ∈ F which dominates
(
R, TBP ′ ,BQ′

)
, the computed solution is adjoined

to F in the function updateParetoFront. Consequently, i) of Definition 2.18 is fulfilled and
condition ii) is ensured in updateParetoFront. 2
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In the following, we examine the running time of the algorithm. Many multi-criteria optimiza-
tion problems cannot be solved efficiently simply because the size of the Pareto front is not
polynomial in the size of the input. Fortunately, we can give a low upper bound which is not
prohibitive for typical applications in our case.

Theorem 2.21
Let P,Q ⊆ Rd be two finite point sets, R ⊆ 2P×Q a set of relations of P and Q and T a set
of admissible transformations of Rd. The size of the Pareto front F of R× T with respect to
the objective function defined in Definition 2.19 is bounded by |P ||Q|.

Proof. Since the number of possible values for the first two coordinates of the objective
function is bounded by |P | and |Q|, respectively, there are no more than |P ||Q| possible
combinations. For each combination of possible sizes of subsets of P and Q, there is a minimal
error of a relation covering an appropriate amount of points. 2

If we use the set of relations R := 2P×Q, i. e., measure the error between common point sets
using the Hausdorff distance, the function updateParetoFront can be implemented particularly
efficiently, see Algorithm 2.4. We employ the idea used for the proof of Theorem 2.21. For
each combination of possible sizes of subsets of P and Q, we store the minimal error of a
relation covering an appropriate amount of points in the matrix F ∈ R|P |×|Q|. Instead of
examining just a single relation R which maximizes min{P1(R),P2(R)} for a given bound
δ and transformation T as in Algorithm 2.1, we investigate maximizing relations Rl for all
possible δ ≥ 0 in ascending order. This is possible since there are at most |P | + |Q| such
relations, cf. Lemma 2.22. Notice that we have ∆(Rl, T ) = ‖T (pl)− ql‖ due to the sorting of
Rl. A formulation of the algorithm in pseudo-code is given in Algorithm 2.4.
Position (i, j) of the matrix F ∈ R|P |×|Q| stores the currently best known bound F (i, j) on

the Hausdorff distance subject to which there exist common point sets P ′ ⊆ P and Q′ ⊆ Q
with |P ′| ≥ i and |Q′| ≥ j and a transformation T ∈ T with dH(T (P ′), Q′) ≤ F (i, j).

With this efficient way to maintain the current approximation of the Pareto front, a multi-
criteria approximation can be obtained with only a slight increase in computational effort
compared to Algorithm 2.1.

Lemma 2.22
The running time of Algorithm 2.3 is in O

(
d(|P ||Q|)d+2(|P |+ |Q|)

)
when using Algorithm 2.4

to maintain the current approximation of the Pareto front.

Proof. As in Algorithm 2.1, the main for loop in Algorithm 2.3 is iterated O
(
d(|P ||Q|)d+1

)
times. We can assume |P | ≥ d and |Q| ≥ d. The computation of the transformation
T := TBP ,BQ is in O

(
d3) and dominated by the running time of updateParetoFront. The

running time of Algorithm 2.4 is determined by evaluating the relations Rl ⊆ R for all
l ∈ {1, . . . , k}. Using Lemma 1.7, we can assume k = |R| ≤ |P |+ |Q|. This implies that the
running time of updateParetoFront is in O((|P |+ |Q|)|P ||Q|), which concludes the proof.2

2.5 Adaption to the Application in Mechanical Engineering
In this section, which is partly based on joint work with Andreas Schrottenloher [Sch13], we
investigate an approach which is tailored specifically towards our application in mechanical
engineering. We modify our approach to consider only a subset of affine transformations, which
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Input: F ⊆ R, F ∈ R|P |×|Q|, T ∈ A
Output: updated front F ⊆ R, current objective values F ∈ R|P |×|Q|

1 R←
{

(p, q) | p ∈ P, q = argmin1
q′∈Q

‖T (p)− q′‖
}

2 ∪
{

(p, q) | q ∈ Q, p = argmin1
p′∈P

‖T (p′)− q‖
}

3 Sort R such that R = {(pi, qi) | i = 1, . . . , k} with ‖T (pi)− qi‖ ≤ ‖T (pi+1)− qi+1‖ for
all i ∈ {1, . . . , k − 1}

4 for l = 1 to k do
5 Rl ← {(pi, qi) | i = 1, . . . , l}
6 δ ← ‖T (pi)− qi‖
7 if F (P1(Rl),P2(Rl)) ≥ δ then
8 F ← F ∪ {(Rl, T )}
9 for i = 1 to |P1(Rl)| do

10 for j = 1 to |P2(Rl)| do
11 if δ < F (i, j) then
12 F (i, j)← δ
13 end
14 end
15 end
16 end
17 end

Algorithm 2.4: updateParetoFront

corresponds to the deformations of sheet metal parts that can be achieved with the methods
developed in the scope of the research project, see [Vol+13] for an in-depth treatment.
All sheet metal parts considered in the scope of this project are manufactured by an

incremental forming process which forms an initially flat sheet metal part into a desired
shape. Due to manufacturing issues, the deformation strategies for this incremental process
are currently limited to specific affine transformations. It turns out that the LCP measure can
be computed more efficiently when restricted to this class of transformations. At first, we give
a formal definition.
Definition 2.23 (Flat transformation)
Let T : Rn −→ Rm, T (x) := Ax+ t where A ∈ Rm×n, t ∈ Rm, an affine transformation. T is
called flat if there exist u ∈ Rm, v ∈ Rn such that ‖u‖2 = 1 = ‖v‖2 = ‖Av‖2 and

〈Ax, u〉 = 〈x, v〉 ∀x ∈ Rn.

An example of such a transformation can be seen in Figure 2.5. The flat transformation aligning
the car door and the deformed car body is a combination of a rotation and a non-uniform
scaling: the door is scaled in vertical direction, rotated and translated to fit the car body. The
corresponding vectors u and v are normals to the plane containing the almost flat part of the
car door and transformed car door, respectively.

1Figure generated from a surface mesh included in the matlab package “Toolbox Graph” by Gabriel Peyré
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Figure 2.5: Alignment of a car door and body1 using a flat transformation.

These transformations are equivalently characterized by having a singular value of 1.

Theorem 2.24
Let T : Rn −→ Rm, T (x) := Ax+ t where A ∈ Rm×n, t ∈ Rm be an affine transformation. T
is flat if and only if A has a singular value of 1.

Proof. Let T be flat and u ∈ Rm, v ∈ Rn as above. Since ‖u‖2 = 1 = ‖v‖2, there exist
orthogonal transformations U1 ∈ O(m), V1 ∈ O(n) such that U1e1 = u and V1e1 = v. Since
1 = ‖Av‖2‖u‖2 ≥ 〈Av, u〉 = 〈v, v〉 = 1, we have Av = u. For D1 := UT1 AV1 ∈ Rm×n and
arbitrary s ∈ Rn we have

〈D1s, e1〉 =
〈
UT1 AV1s, e1

〉
= 〈AV1s, U1e1〉

= 〈AV1s, u〉 = 〈V1s, v〉 = 〈V1s, V1e1〉 = 〈s, e1〉,

which implies eT1 D1 = eT1 . Further, we have

D1e1 = UT1 Av = UT1 u = e1,

which means that D1 has the following block structure:

D1 =


1 0 · · · 0
0

A′
...
0


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with A′ ∈ R(m−1)×(n−1). Let A′ = U2D2V
T

2 be a singular value decomposition of A′. Then

U := U1


1 0 · · · 0
0

U2
...
0

, D :=


1 0 · · · 0
0

D2
...
0

, V := V1


1 0 · · · 0
0

V2
...
0


is a singular value decomposition of A with singular value 1.

For a singular value decomposition A = UDV T of A with singular value σi = 1, let v := V ei
and u := Uei. We have

〈Ax, u〉 =
〈
UDV Tx, u

〉
=
〈
V Tx,DTUTu

〉
=
〈
V Tx,Dei

〉
= σi〈x, V ei〉 = 〈x, v〉.

The other properties can be easily seen from the definition of u and v. 2

Since this class of transformations is a proper subset of the set of affine transformations, we
have to adapt Algorithm 2.1 for this new setting. Fortunately, there is a straightforward way
to achieve this. Instead of using d+ 1 affinely independent points contained in the set as bases,
we consider so-called flat bases.
Definition 2.25 (Flat base)
Let P ⊆ Rd. An ordered set BP := (p1, . . . , pd, p⊥) ⊆ Rd is called flat base of P if p1, . . . , pd ∈ P
are affinely independent and p⊥ ∈ {p1, . . . , pd}⊥, ‖p⊥‖2 = 1 is a unit normal of the hyperplane
spanned by p1, . . . , pd.

Note that the unit normal p⊥ is not required to be in P and is characterized by b1, . . . , bd up to
sign. Thus, we only need to consider ordered sets of d points in P and both their corresponding
unit normals in an adaption of Algorithm 2.1, see Algorithm 2.5. The point clouds and their
overlapping parts in the engineering application are known to be non-degenerate, so we do not
need to consider bases in lower dimensions.

Input: P,Q ⊆ Rd finite point sets, δ ≥ 0
Output: Flat transformation T, relation R

1 L← −1
2 for all affinely independent ordered sets FP ⊆ P , FQ ⊆ Q with |FP | = d = |FQ| do
3 for all unit normals p⊥ of FP , q⊥ of FQ do
4 BP ← FP ∪ {p⊥}, BQ ← FQ ∪ {q⊥}
5 T ′ ← TBP ,BQ
6 R′ ← argmax{min{|P1(R′)|, |P2(R′)|} | R′ ∈ R, ∆(R′, T ′) ≤ δ}
7 if min{|P1(R′)|, |P2(R′)|} > L then
8 L← min{|P1(R′)|, |P2(R′)|}
9 T ← T ′, R← R′

10 end
11 end
12 end

Algorithm 2.5: flatBaseMatching

Given flat bases BP , BQ of point sets P,Q ⊆ Rd, a flat transformation TBP ,BQ mapping BP
to BQ can be computed as in Remark 2.5:
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Lemma 2.26
Let BP := (p1, . . . , pd, p⊥), BQ := (q1, . . . , qd, q⊥) ⊆ Rd be flat bases. There exist A ∈ Rd×d
and t ∈ Rd such that

Api + t = qi ∀i ∈ {1, . . . , n} ∧ Ap⊥ = q⊥

and the resulting affine transformation is flat.

Proof. The existence of such a transformation is a direct consequence of Remark 2.5. Let
A ∈ Rd×d, t ∈ Rd be the accordant linear transformation and translation and consider x ∈ Rd.
Since p1, . . . , pd are affinely independent, there exist λi ∈ R, i ∈ {2, . . . , d} and λ⊥ ∈ R such
that

x =
d∑
i=2

λi(pi − p1) + λ⊥p⊥.

Using A(pi − p1) = qi − q1 for i ∈ {2, . . . , d}, we have

〈Ax, q⊥〉 =
〈
A

(
d∑
i=2

λi(pi − p1) + λ⊥p⊥

)
, q⊥

〉

=
〈

d∑
i=2

λi(qi − q1) + λ⊥q⊥, q⊥

〉
= 〈λ⊥q⊥, q⊥〉
= λ⊥

= 〈λ⊥p⊥, p⊥〉

=
〈

d∑
i=2

λi(pi − p1) + λ⊥p⊥, p⊥

〉
= 〈x, p⊥〉.

With u := q⊥ and v := p⊥, this is exactly the requirement stated in Definition 2.23. 2

Due to the special properties of flat transformations and the non-degeneracy of the parts in
our applications, the adapted algorithm terminates after O

(
(|P ||Q|)d

)
iterations of the main

loop.
Similar to the approach presented in [AMCO08], we can also extend our flat base B to

contain an additional point b0 such that {b0, b1, . . . , bd} is affinely dependent. While this
increases the number of bases to consider, many combinations of bases can be disregarded
since a transformation mapping d+ 2 affinely dependent points to d+ 2 affinely dependent
points is over-determined:
Aiger, Mitra, and Cohen-Or [AMCO08] show that in dimension d = 3, given an affinely

dependent set BP of P with |BP | = 4, it is easy to find all subsets Bi
Q, i ∈ {1, . . . , k} of Q with

cardinality 4 which admit an affine transformation mapping BP to Bi
Q. This is achieved by

considering properties of such sets which are invariant with respect to affine transformations.
Efficient specialized data structures, so-called range trees, are used to extract suitable sets
Bi
Q. Therefore, it is no longer necessary to consider all possible subsets of 4 points of Q as

possible bases, but candidates can be efficiently extracted. In practice, this effect outweighs
the increased number of possible bases and speeds up the algorithm considerably.
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In dimension d = 3, this concept can be transferred to flat bases with some modifications to
the algorithm. Technical details, implementation and computational results are described in
detail in the master’s thesis [Sch13], which was co-supervised by the author. The transformation
aligning the car door to the car body in Figure 2.5 was computed using this algorithm.

A possible generalization of this method to higher dimensions would be to consider affinely
dependent sets B = {b0, . . . , bd} ⊆ P with b1, . . . , bd affinely independent. The point b0 can
then be expressed in barycentric coordinates λ1, . . . , λd ∈ Rd,

∑d
i=1 λi = 1:

b0 =
d∑
i=1

λibi.

Since the barycentric coordinates are invariant with respect to affine transformations, it is
sufficient to consider only pairs of bases where the barycentric coordinates of the 0th point are
reasonably close. The efficient extraction of bases in both sets which can be matched by an
affine transformation is a possible direction for future research.





Chapter 3

Non-Rigid Shape Matching

Encouraged by recent advances in rigid shape matching, a lot of effort has been invested in
the more challenging problem of non-rigid shape matching. The most promising approach to
this problem is to compare metric spaces which are induced by the manifolds representing the
shapes. A suitable measure for the similarity of metric spaces is the Gromov-Hausdorff distance,
which has been extensively studied in the field of metric geometry [BBI01]. As mentioned in the
introduction, a correspondence between two surfaces yields the amount by which parts of one
surface need to be stretched or shrunk to be transformed to the other surface. Considering the
importance of the stretching and shrinking operations for the manufacturing process described
in Section 1.2, this information could be used as basis for subsequent research investigating
more general transformations of sheet metal parts and their manufacturing strategies.
After a short introduction to the problem setting and a few basic definitions, we present

several decision versions of the problem. In Section 3.2, we investigate the computational
complexity of these decision problems related to the computation of the Gromov-Hausdorff
distance. By exploiting connections to other well-known combinatorial optimization problems
like the maximum clique and the graph isomorphism problem, we show that the Gromov-
Hausdorff distance of two metric spaces is — under standard complexity theoretic assumptions
— not approximable within reasonable bounds in polynomial time. Section 3.3 deals with
overcoming the complexity issues for several classes of practical instances. The rough structure
of most metric spaces occurring in these instances can be described by a small number of
points. This can be used — similar in spirit to the method used in Chapter 2 — to compute
correspondences between metric spaces from a relation covering just a few points in each set.
Papers covering the achieved results are currently in preparation [Sch14b; Sch14a].

3.1 The Gromov-Hausdorff Distance

In traditional shape matching, shapes are usually represented as point clouds in an ambient
Euclidean space. An established measure for the similarity of such shapes is the Hausdorff
distance under certain transformations, see, e. g., the problem discussed in Chapter 2.
In non-rigid shape matching, however, we are interested in the similarity of shapes as

intrinsic properties of surfaces. There is a vast amount of approaches to this topic, including
embedding both shapes in an Euclidean space and minimization of various energy functionals,
see, e. g., [Tam+13] for a recent survey. Following the approach pioneered by [EK01; Bro+04;
MS05], we consider the shapes as metric spaces derived from 2-dimensional manifolds.

The metric is induced by the geodesic distances of points on the shape. Figure 3.1 illustrates
that these geodesic distances (and also the geodesics for that matter) are equal or at least
close to each other for corresponding points of the person in the two poses.

37
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Figure 3.1: Geodesic lines on shapes in different poses. The corresponding geodesic lines of the shapes
are very similar and therefore geodesic distances are approximately preserved by the
transformation depicted here.

Note that all mesh surfaces used for testing and displaying purposes have been taken from
the “Tools for Surface Comparison and Analysis” (TOSCA) project, see [BBK08] for reference.
Shape matching which is also robust with respect to topology changes can be realized by

using so-called diffusion distances [Laf04; CL06]. The diffusion distance between two points is
defined by properties of the heat diffusion process on manifolds and can be interpreted as an
average length of all paths between these points. The distances define a metric on a manifold
and have been employed in non-rigid shape matching by Bronstein et al. [Bro+10].

In non-rigid shape matching, we are usually given a shape as a mesh surface. In the following,
we derive metric spaces from meshes in the following way:

Definition 3.1
Let M be a mesh. A corresponding finite metric space (X, dX) is given by (a subset of) the
vertices of M and the (geodesic) distance of two points is given by a shortest path on the
mesh connecting these points.

Note that an error can be introduced by considering solely the vertices of the mesh, see
Lemma 3.8. Furthermore, a mesh is in general not uniquely characterized by its vertices and
their geodesic distances, see Figure 3.2.
Several efficient methods for the computation of geodesic distances on such objects in R3

are known. Exact algorithms for computing the geodesic distances of one source point to all n
vertices of a polyhedral surface are given by Mitchell, Mount, and Papadimitriou [MMP87] and
Chen and Han [CH96] with running time O

(
n2 log(n)

)
and O

(
n2), respectively. Surazhsky

et al. [Sur+05] present an efficient implementation of the algorithm given in [MMP87], along
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Figure 3.2: Two distinct meshes embedded in R2 which have identical geodesic distances between
corresponding vertices. Faces are depicted in grey, vertices and edges in black.

with a modification to obtain an approximation with bounded error in time O(n log(n)). Thus,
the corresponding metric space can be efficiently derived.

In this chapter, we solely use properties of metric spaces. Therefore, the methods developed
here are not limited to metric spaces derived from 2-dimensional surfaces which we use for
illustration.
The comparison of metric spaces is an established topic in metric geometry, see [BBI01],

where one is mostly interested in asymptotic results concerning the Gromov-Hausdorff distance.
The original definition is inspired by the idea of finding a suitable metric space in which both
metric spaces can be isometrically embedded. Thus, the Hausdorff distance can be used to
measure their similarity.

Definition 3.2
LetMX := (X, dX) andMY := (Y, dY ) be two compact metric spaces. The Gromov-Hausdorff
distance dGH(MX ,MY ) of MX and MY is defined as the minimal Hausdorff distance of
isometric embeddings ofMX andMY in a suitable metric space (Z, dZ), i. e.,

dGH(MX ,MY ) := inf{dH(φ(X), ψ(Y )) | (Z, dZ) metric space, φ ∈ Iso(X,Z), ψ ∈ Iso(Y, Z)},

where Iso(X,Z), Iso(Y, Z) denote the set of isometric embeddings ofMX andMY in (Z, dZ),
respectively. When the metrics of the spaces can be inferred from the context, we also use the
simpler notation

dGH(X,Y ) := dGH((X, dX), (Y, dY )).

While the idea formulated in the above definition is rather descriptive, the formula presented
in Definition 3.2 is suited mainly for the topics arising in metric geometry, but hard to
treat computationally. Throughout this chapter, we use a reformulation of this definition
which generalizes the concept of isometric maps. We use relations and correspondences (cf.
Section 1.3) instead of maps and define their distortion, which measures how close to an
isometry a correspondence is.

In contrast to the measures introduced in Chapter 2, we cannot specify the error introduced
by assigning a point x ∈ X to a point y ∈ Y directly, since there is no canonical metric space
in which these points can be compared.
Therefore, the distortion associated with a relation measures how much distances between

pairs of matched points differ:
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Definition 3.3 (Distortion)
Let (X, dX) and (Y, dY ) be two metric spaces. The distortion Γ(R) := Γ∞(R) of a relation
R ⊆ X × Y is defined as the maximal difference between distances of matched points

Γ(R) = Γ∞(R) := sup
(x,y)∈R

(x′,y′)∈R

∣∣dX(x, x′)− dY (y, y′)∣∣.
For p ∈ N and finite X and Y , the p-distortion of a relation is given by

Γp(R) :=
p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|p.

x

x′

y

y′

X Y

Figure 3.3: Illustration of the distortion induced by the relation R = {(x, y), (x′, y′)} ⊆ X×Y between
X and Y .

The normalizing factor in the definition of the p-distortion is motivated by Lemma 1.7. For
the application in mechanical engineering, it could be useful to study a measure which is also
invariant with respect to uniform scaling. For a range of scaling factors [a, b] ⊆ R≥0, consider
the generalized definition

Γ̂(R) := inf
α∈[a,b]

sup
(x,y)∈R

(x′,y′)∈R

∣∣dX(x, x′)− αdY (y, y′)∣∣.
As we will see in the following, finding a correspondence with minimal distortion is already
a very difficult problem. Therefore, a direct approach to this problem is not very promising.
However, an approximation for the scaling factor can be determined in advance by considering
certain properties of both metric spaces, like diameter and local distance sets introduced in
Section 3.3.1.
As the Hausdorff distance (see Lemma 1.6), the Gromov-Hausdorff distance can also be

expressed using correspondences. For a proof, see [BBI01, Theorem 7.3.25].
Lemma 3.4
Let (X, dX) and (Y, dY ) be compact metric spaces, then

dGH(X,Y ) = 1
2 inf
R∈R(X,Y )

Γ(R) = 1
2 inf
R∈R(X,Y )

sup
(x,y)∈R

(x′,y′)∈R

∣∣dX(x, x′)− dY (y, y′)∣∣,
i. e., the Gromov Hausdorff distance is given by one half the infimum of the distortion over all
correspondences R ∈ R(X,Y ) (cf. Definition 1.5) between X and Y .
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The factor of 1
2 is induced by the tight bound |dZ(x, x′)− dZ(y, y′)| ≤ dZ(x, y) + dZ(x′, y′)

which holds in every metric space (Z, dZ) and for all x, x′, y, y′ ∈ Z.
Similar measures for the similarity of metric spaces have also been investigated, see [Mé08].

Definition 3.5
For p ∈ N and finite metric spaces (X, dX), (Y, dY ), the p-Gromov-Hausdorff distance is
defined as

dGH,p(X,Y ) := 1
2 min
R∈R(X,Y )

Γp(R)

and the bottleneck p-Gromov-Hausdorff distance is given by

dBGH,p(X,Y ) := 1
2 min
R∈Π(X,Y )

Γp(R)

if there is a bijection from X to Y, i. e., |X| = |Y |, and dBGH,p(X,Y ) :=∞ otherwise. The set
of bottleneck correspondences Π(X,Y ) is defined in Definition 1.5.

As the Gromov-Hausdorff distance, the p-Gromov-Hausdorff distance can be considered as a
generalization of the concept of isometry of metric spaces.

Lemma 3.6
Two finite metric spaces (X, dX), (Y, dY ) are isometric if and only if dGH,p(X,Y ) = 0.

Proof. A correspondence R with Γp(R) = 0 must be a bottleneck correspondence, and each
bottleneck correspondence induces a bijection and vice versa. 2

As implied by the name, the (bottleneck) p-Gromov-Hausdorff distance defines a metric. This
is a well-known property of the Gromov-Hausdorff distance [BBI01, Theorem 7.3.30] and can
be easily generalized:

Lemma 3.7
The (bottleneck) p-Gromov-Hausdorff distance is a metric on the set of isometry classes of
finite metric spaces.

Proof. The p-Gromov-Hausdorff distance is non-negative by definition, and by Lemma 3.6 the
p-Gromov-Hausdorff distance of two metric spaces is zero if and only if the spaces are isometric.
Symmetry can be easily verified by “reversing” correspondences. Let (X, dX), (Y, dY ) and
(Z, dZ) be finite metric spaces and R1 ∈ R(X,Y ), R2 ∈ R(Y,Z) arbitrary correspondences.
Consider

R := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R1 ∧ (y, z) ∈ R2}

which is easily verified to be a correspondence in R(X,Z) and satisfies

|dX(x1, x2)− dZ(z1, z2)| ≤ |dX(x1, x2)− dY (y1, y2)|+ |dY (y1, y2)− dZ(z1, z2)|

for all (x1, z1), (x2, z2) ∈ R and any y1, y2 ∈ Y ; in particular for (x1, y1), (x2, y2) ∈ R1 and
(y1, z1), (y2, z2) ∈ R2. Substituting in the definition and using Minkowski’s inequality (triangle
inequality for p-norms) yields Γp(R) ≤ Γp(R1) + Γp(R2). Since R1 and R2 were arbitrary, this
proves the claim.
The proof for the bottleneck p-Gromov-Hausdorff distance is analogous. 2
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Since we are considering computational methods, we are restricted to a finite representation of
the investigated metric spaces. The metric property of the Gromov-Hausdorff distance implies
that the Gromov-Hausdorff distance of discretizations of metric spaces reflects the distance of
the original spaces if the discretization is sufficiently dense, see [MS05]. A generalization to
the p-Gromov-Hausdorff distance is again straightforward.

Lemma 3.8
Let (X, dX), (Y, dY ) be finite metric spaces, X ′ ⊆ X and Y ′ ⊆ Y such that

dH
(
X ′, X

)
≤ εX and dH

(
Y ′, Y

)
≤ εY

for εX , εY ≥ 0. For the induced metric subspaces (X ′, dX |X′) and (Y ′, dY |Y ′), we have

dGH,p(X,Y ) ≤ εX + εY + dGH,p
(
X ′, Y ′

)
.

Proof. First, we show dGH,p(X,X ′) ≤ εX . Consider the relation

R :=
{

(x′, x) ∈ X ′ ×X | x′ = argmin1
x∗∈X′

dX(x∗, x)
}
,

which is a correspondence since P2(R) = X by definition and we have (x′, x′) ∈ R for all
x′ ∈ X ′ and therefore P1(R) = X ′. Furthermore, the definition of argmin1 (cf. Section 1.3)
ensures |R| = |X|.

For (x′1, x1), (x′2, x2) ∈ R, the construction of R guarantees that dX(x′i, xi) ≤ εX for i ∈ {1, 2}.
We have

dX
(
x′1, x

′
2
)
− dX(x1, x2) ≤ dX

(
x′1, x1

)
+ dX(x1, x2) + dX

(
x2, x

′
2
)
− dX(x1, x2)

= dX
(
x′1, x1

)
+ dX

(
x′2, x2

)
≤ 2εX .

An analogous argument shows dX(x1, x2)− dX(x′1, x′2) ≤ 2εX , and thus∣∣dX(x′1, x′2)− dX(x1, x2)
∣∣ ≤ 2εX .

In summary, this yields dGH,p(X,X ′) ≤ 1
2Γp(R) ≤ εX and dGH,p(Y, Y ′) ≤ εY . This implies

dGH,p(X,Y ) ≤ dGH,p
(
X,X ′

)
+ dGH,p

(
X ′, Y ′

)
+ dGH,p

(
Y, Y ′

)
≤ εX + dGH,p(X,Y ) + εY ,

which proves the claim. 2

Next, we give precise definitions of the problems in question and investigate their computational
complexity.
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3.2 Computational Complexity
The measure usually considered in the context of non-rigid shape matching is the Gromov-
Hausdorff distance, where we seek a correspondence with minimal distortion. For computational
reasons, we only consider rational metric spaces (see Definition 1.1) in this section.
Problem 3.9 (Gromov-Hausdorff distance (GHD))
Input: Rational metric spaces (X, dX), (Y, dY ), δ ∈ Q
Question: Is there a correspondence R ∈ R(X,Y ) such that Γ(R) ≤ δ/2?

This problem is obviously a special case (for p =∞) of computing the p-Gromov-Hausdorff
distance for fixed p ∈ N ∪ {∞}.
Problem 3.10 (p-Gromov-Hausdorff distance (p-GHD))
Input: Rational metric spaces (X, dX), (Y, dY ), δ ∈ Q
Question: Is there a correspondence R ∈ R(X,Y ) such that Γp(R) ≤ δ/2?

Since the above problems proved to be hard to solve in practice, the related problem of
computing the bottleneck Gromov-Hausdorff distance has also been investigated [MS05]. For
fixed p ∈ N ∪ {∞}, this problem asks for a bottleneck correspondence whose distortion is
below a given threshold.
Problem 3.11 (Bottleneck p-Gromov-Hausdorff distance (p-BGHD))
Input: Rational metric spaces (X, dX), (Y, dY ), δ ∈ Q
Question: Is there a bottleneck correspondence R ∈ Π(X,Y ) such that Γp(R) ≤ δ/2?

Another problem of similar form is the subspace Gromov-Hausdorff distance problem, which
asks for the maximal induced subspaces of the given metric spaces whose p-Gromov-Hausdorff
distance is below a given threshold δ ≥ 0 for fixed p ∈ N ∪ {∞}.
Problem 3.12 (Subspace p-Gromov-Hausdorff distance (δ-p-SGHD))
Input: Rational metric spaces (X, dX), (Y, dY ), N ∈ N
Question: Is there a relation R ⊆ X × Y with Γp(R) ≤ δ/2 and |R| ≥ N?

Again, we also consider a variant of the problem which requires a bottleneck correspondence
between the subspaces.
Problem 3.13 (Subspace bottleneck p-Gromov-Hausdorff distance (δ-p-SBGHD))
Input: Rational metric spaces (X, dX), (Y, dY ), N ∈ N
Question: Is there a bottleneck relation R ⊆ X × Y with Γp(R) ≤ δ/2 and |R| ≥ N?

These problems are similar to the maximum subgraph matching problem [GJ79, p. 202], which
is known to be NP-hard. They also turn out to be important subproblems for the algorithms
developed in Section 3.3 to solve Problem GHD.

It is easy to see that all the above problems are contained in NP , since a non-deterministic
Turing machine can “guess” a suitable correspondence or relation for the problem. In order to
further evaluate their complexity, we consider the problem of deciding whether two metric
spaces are isometric. This can, in fact, be considered as a special version of all problems
mentioned above.
Problem 3.14 (Metric space isometry (MI))
Input: Rational metric spaces (X, dX), (Y, dY )
Question: Is there a correspondence R ∈ R(X,Y ) with Γ(R) = 0, i. e., are (X, dX) and
(Y, dY ) isometric?
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To compare the difficulty of the above problems, we use the notion of reducibility.

Definition 3.15 (Many-one reduction)
Let P1, P2 be two decision problems. Problem P1 is many-one reducible to P2 if there exists a
polynomial time algorithm AP1,P2 which, for each instance I1 of P1, computes an instance I2
of P2 such that I2 is a YES-instance of P2 if and only if I1 is a YES-instance of P1. In this
case, we write P1 ≤m P2.

A problem P1 which is many-one reducible to a problem P2 is considered to be not significantly
more difficult (and probably easier) than P2.

Definition 3.16 (m-Equivalence)
Two decision problems P1, P2 are m-equivalent if they are many-one reducible to one another,
i. e., if P1 ≤m P2 and P2 ≤m P1.

We show (Theorem 3.22) that Problem MI is m-equivalent to the well-known graph isomorphism
problem.

Problem 3.17 (Graph isomorphism (GI))
Input: Graphs G1 := (V1, E1), G2 := (V2, E2)
Question: Is there an isomorphism between G1 and G2, i. e., G1 ∼= G2?

The graph isomorphism problem is one of the 12 original problems mentioned in [GJ79] neither
known to be in P nor to be NP-complete, despite a considerable amount of work on this open
question. It is widely believed that Problem GI lies in-between P and the set of NP-complete
problems. An extensive treatment can be found in [KST93].
It is a common assumption that computing the Gromov-Hausdorff distance of two metric

spaces is an NP-hard problem [Mé07]. Bronstein et al. [Bro+10] claim NP-hardness, but we
were unable to trace a proof in the literature, despite extensive investigation and contacting
the author. The conjectures rely mostly on the observation that Problem GHD has similar
structure to other NP-hard optimization problems.
Mémoli [Mé07] observes that the formula for the Gromov-Hausdorff distance of two metric

spaces given in Lemma 3.4 is “reminiscent of” the quadratic assignment problem, which is
NP-hard [Bur84]. He states that this can be used to “loosely infer something about the
inherent complexity” of computing the Gromov-Hausdorff distance.

In this section, we show that the Problems MI and GI are m-equivalent. Given the results on
the complexity of Problem GI, this establishes that it is unlikely that there is a polynomial time
algorithm for either of these problems; consequently, neither for the more general Problems
GHD, p-GHD and p-BGHD, since Problem MI can be easily reduced to any of these.
Moreover, much stronger results can be achieved for the latter problems. We show that

the optimization versions of Problem p-GHD and p-BGHD cannot be approximated within
any factor exponential in a polynomial of the size of the input, unless Problem GI is in P,
cf. Theorem 3.22. Furthermore, Corollary 3.26 gives an inapproximability result — under
the assumption that P 6= NP — for Problem GHD up to a factor less than 3, even when the
input is restricted to metric spaces which are induced by discretizations of plane 2-manifolds.
We also show that Problem δ-p-SBGHD is hard to approximate, even if the threshold δ is not
considered part of the input, see Theorem 3.28.
First, we establish that the metric space isometry problem is m-equivalent to the graph

isomorphism problem.
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Lemma 3.18
Problem MI is m-equivalent to Problem GI, i. e., Problem MI can be reduced to Problem GI
and vice versa.

Proof. First, we show that GI ≤m MI. Let G1 := (V1, E1) and G2 := (V2, E2) be two graphs
on n ∈ N vertices. We consider the shortest path metrics dG1 and dG2 on G1 and G2, see
Definition 1.11. The metric spaces (V1, dG1) and (V2, dG2) are isometric if and only if G1 and
G2 are isomorphic, as we show in the following.
By definition of dG1 , we have

dG1(v1, w1) = 1 ⇔ {v1, w1} ∈ E1

for any v1, w1 ∈ V1 and similarly
dG2(v2, w2) = 1 ⇔ {v2, w2} ∈ E2

for any v2, w2 ∈ V2. For an isometry φ from (V1, dG1) to (V2, dG2), this implies

{v1, w1} ∈ E1 ⇔ {φ(v1), φ(w1)} ∈ E2,

i. e., φ is an isomorphism between G1 and G2.
If φ : V1 −→ V2 is an isomorphism, a shortest path from v1 ∈ V1 to w1 ∈ V1 inG1 is mapped to

a shortest path in G2 from φ(v1) to φ(w1). Therefore, we have dG1(v1, w1) = dG2(φ(v1), φ(w1))
and this also holds if v1 and w1 are in different connected components. This implies that φ is
an isometry. In summary, we have GI ≤m MI.
Next, we establish that MI ≤m GI. This proof is similar to a sketch of a proof for a

related problem published in [PS05]. Given two metric spaces (X, dX) and (Y, dY ) with
X := {x1, . . . , xn} and Y := {y1, . . . , yn}, we construct graphs (cf. Figure 3.4) by “replacing”
distances dX(x, x′) and dY (y, y′) between two points by a path of length uniquely determined
by dX(x, x′) and dY (y, y′), respectively. Consider the set of distinct distances

D :=
{
dX
(
x, x′

)
∈ Q | x, x′ ∈ X

}
∪
{
dY
(
y, y′

)
∈ Q | y, y′ ∈ Y

}
occurring in the metric spaces. Let ι : D −→ {|D|, . . . , 2|D| − 1} ⊆ N be an arbitrary bijective
function, which determines the length of a path replacing a distance1. For k, l ∈ {1, . . . , n},
k > l and j := ι(dX(xk, xl)), we introduce vertices

{
x1
kl, . . . , x

j
kl

}
and set

Vkl :=
{
x1
kl, . . . , x

j
kl

}
and Ekl :=

{{
xk, x

1
kl

}
,
{
x1
kl, x

2
kl

}
, . . . ,

{
xj−1
kl , xjkl

}
,
{
xjkl, xl

}}
.

Similarly, for k, l ∈ {1, . . . , n}, k > l and j := ι(dY (yk, yl)), we introduce vertices
{
y1
kl, . . . , y

j
kl

}
.

Let

Wkl :=
{
y1
kl, . . . , y

k
kl

}
and Fkl :=

{{
yk, y

1
kl

}
,
{
y1
kl, y

2
kl

}
, . . . ,

{
yj−1
kl , yjkl

}
,
{
yjkl, yk

}}
and

V := X ∪
⋃
k>l

Vkl, E :=
⋃
k>l

Ekl

W := Y ∪
⋃
k>l

Wkl, F :=
⋃
k>l

Fkl.
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x1
x2

x3
x4

2.1

2.21.4 1.42.9

2.2

(a) Input metric space (X, dX) with dis-
tances L = {1.4, 2.1, 2.2, 2.9}.

x1 x2

x3x4

5

6
4 47

6

(b) Substitution of distances d by labels
ι(d).

x1 x2

x3x4

(c) Replacement of edges with label ι(d)
by paths with ι(d) inner vertices.

Figure 3.4: Construction of the graph G1 from the input metric space (X, dX) in the proof of
Lemma 3.18.

We show that G1 := (V,E) and G2 := (W,F ) are isomorphic if and only if (X, dX) and (Y, dY )
are isometric.
If G1 and G2 are isomorphic, there is an isomorphism φ : V −→W. Since

ι(d1) + ι(d2) ≥ |D|+ |D| = 2|D| ≥ ι(d) for all d, d1, d2 ∈ D,

the triangle inequality holds in Gi, i ∈ {1, 2}, and thus dG1(xi, xj) = ι(dX(xi, xj)) for all
xi, xj ∈ X and dG2(yi, yj) = ι(dY (yi, yj)) for all yi, yj ∈ Y.
This implies

ι(dX(xi, xj)) = dG1(xi, xj) = dG2(φ(xi), φ(xj)) = ι(dY (φ(xi), φ(xj)))

and, since ι is bijective, φ|X is an isometry of (X, dX) and (Y, dY ).
Suppose (X, dX) and (Y, dY ) are isometric and let π : {1, . . . , n} −→ {1, . . . , n} be such that

e : X −→ Y, e(xi) := yπ(i) is an isometry. Then the map

φ : V −→W, φ(v) :=

y
j
π(k)π(l), v = xjkl

yπ(i), v = xi

1A construction which uses slightly shorter paths is possible, but omitted here for the sake of simplicity.
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is an isomorphism between G1 and G2: First of all, it is well-defined since for xjkl ∈ V we have
j ≤ ι(dX(xk, xl)) = ι

(
dY
(
yπ(k), yπ(l)

))
and therefore yjπ(k)π(l) ∈W.

Furthermore, for arbitrary a, b ∈ V, we distinguish several cases:

• a = xk and b = x1
kl for some k, l ∈ {1, . . . , n}, k > l. We have

{a, b} =
{
xk, x

1
kl

}
∈ E and {φ(a), φ(b)} =

{
yπ(k), y

1
π(k)π(l)

}
∈ F

by definition of Ekl and Fπ(k)π(l).

• a = xjkl and b = xl for k, l ∈ {1, . . . , n}, k > l and j = ι(dX(xk, xl)) = ι
(
dY
(
yπ(k), yπ(l)

))
.

Again, it holds

{a, b} =
{
xjkl, xl

}
∈ E and {φ(a), φ(b)} =

{
yjπ(k)π(l), yπ(l)

}
∈ F.

• a = xjkl and b = xj
′

kl for some k, l ∈ {1, . . . , n} k > l and j, j′ ∈ N. We have

{a, b} =
{
xjkl, x

j′

kl

}
∈ E ⇔

∣∣j − j′∣∣ = 1

⇔
{
yjπ(k)π(l), y

j′

π(k)π(l)

}
= {φ(a), φ(b)} ∈ F.

• In all other cases, the definitions of E and F imply {a, b} /∈ E and {φ(a), φ(b)} /∈ F .

Therefore, we have {a, b} ∈ E ⇔ {φ(a), φ(b)} ∈ F , i. e., G1 ∼= G2. 2

Next, we study differences between the Gromov-Hausdorff distance and the bottleneck Gromov-
Hausdorff distance, which proves helpful for analysing the computational complexity of these
problems. The following lemma states that the bottleneck Gromov-Hausdorff distance is not
affected by increasing the distance between all points uniformly, while the Gromov-Hausdorff
distance may increase.
Lemma 3.19
LetMX := (X, dX),MY := (Y, dY ) be finite metric spaces and c ≥ 0. Consider the metrics

dcX
(
x, x′

)
:=
{
dX(x, x′) + c, x 6= x′

0, x = x′

and

dcY
(
y, y′

)
:=
{
dY (y, y′) + c, y 6= y′

0, y = y′

on X and Y . ThenMc
X := (X, dcX),Mc

Y := (Y, dcY ) are metric spaces,

dGH,p(MX ,MY ) ≤ dGH,p(Mc
X ,Mc

Y ) ≤ dGH,p(MX ,MY ) + c

2
and

dBGH,p(MX ,MY ) = dBGH,p(Mc
X ,Mc

Y ).
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Proof. It is easy to verify thatMc
X ,Mc

Y are metric spaces. For x, x′ ∈ X and y, y′ ∈ Y it
holds

∣∣dcX(x, x′)− dcY (y, y′)∣∣ =


0, x = x′ ∧ y = y′

|dX(x, x′)− dY (y, y′)|, x 6= x′ ∧ y 6= y′

|dX(x, x′)− dY (y, y′)|+ c, otherwise,

which proves the result for p =∞. For p ∈ N, using Lemma 1.7 and the triangle inequality for
the p-norm in second to last inequality, we have

dGH,p(MX ,MY ) = 1
2 min
R∈R(X,Y ) p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|p

≤ 1
2 min
R∈R(X,Y ) p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

|dcX(x, x′)− dcY (y, y′)|p

= dGH,p(Mc
X ,Mc

Y )

≤ 1
2 min
R∈R(X,Y ) p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

(|dX(x, x′)− dY (y, y′)|)p + c

2

= dGH,p(MX ,MY ) + c

2 .

Since a bottleneck correspondence R ∈ Π(X,Y ) satisfies x 6= x′ and y 6= y′ for all distinct
(x, y), (x′, y′) ∈ R, it holds

dBGH,p(MX ,MY ) = 1
2 min
R∈Π(X,Y ) p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|p

= 1
2 min
R∈Π(X,Y ) p

√√√√√ 1
(|X|+ |Y |)2

∑
(x,y)∈R

(x′,y′)∈R

|dcX(x, x′)− dcY (y, y′)|p

= dBGH,p(Mc
X ,Mc

Y ). 2

We use this result to show that the Gromov-Hausdorff distance can be employed to compute
the bottleneck Gromov-Hausdorff distance. By uniformly increasing the distances between
points, an optimal correspondence can be forced to be bijective, i. e., no single point can be
matched to two distinct points.

Lemma 3.20
Problem p-BGHD can be α-approximated given an α-approximation for Problem p-GHD, i. e.,
an α-approximation of an instance I of Problem p-BGHD can be obtained by computing an
α-approximation for a suitable instance of Problem p-GHD which can be derived in time
polynomial in the size of I and α.
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Proof. Let the metric spaces MX := (X, dX), MY := (Y, dY ) be an instance of Problem
p-BGHD for p ∈ N. We can assume |X| = |Y | without loss of generality. Consider the metric
spacesMc

X := (X, dcX),Mc
Y := (Y, dcY ) defined in Lemma 3.19 for c ∈ N with

c > 2 p
√

(|X|+ |Y |)2 · dBGH,p(MX ,MY ),

e. g., c := 2
⌈
p√(|X|+ |Y |)2 · (diam(MX) + diam(MY ) + 1)

⌉
. A correspondence R ∈ R(X,Y )

which is optimal forMc
X andMc

Y is a bottleneck correspondence: Suppose (x, y), (x, y′) ∈ R
with y 6= y′, then

Γp
({

(x, y), (x, y′)
})

= p

√
2

(|X|+ |Y |)2 ·
∣∣dcX(x, x)− dcY

(
y, y′

)∣∣ ≥ p

√
1

(|X|+ |Y |)2 · c

> 2 · dBGH,p(MX ,MY ) = 2 · dBGH,p(Mc
X ,Mc

Y ) ≥ 2 · dGH,p(Mc
X ,Mc

Y ),

which is a contradiction. An analogous argument shows that for (x, y), (x′, y) ∈ R we have
x = x′. Furthermore, using c > 2α p

√
(|X|+ |Y |)2 · dBGH,p(MX ,MY ), the above argument

also holds for any α-approximation of the optimal solution, which concludes the proof. In case
p =∞, the argument can be easily adapted. 2

On the other hand, the bottleneck Gromov-Hausdorff distance is obviously an upper bound
for the Gromov-Hausdorff distance, but in general no further information can be gained.

Remark 3.21
The bottleneck Gromov-Hausdorff distance does not admit a constant factor approximation
for the Gromov-Hausdorff distance, even for subsets of the reals: For ε ∈ (0, 1), let

X := {−ε, ε, 1} ⊆ R and Y := {0, 1− ε, 1 + ε} ⊆ R.

We have (cf. Figure 3.5)

dGH,p(X,Y ) = 1
2Γp(RGH) = 1

2
p

√
8
36 |2ε|

p ≤ ε

and

dBGH,p(X,Y ) = 1
2Γp(RBGH) = 1

2
p

√
4
36 |1− 3ε|p ≥ 1

18(1− 3ε),

i. e., the ratio dBGH,p(X,Y )
dGH,p(X,Y ) grows arbitrarily large for ε→ 0.

Next, we show that approximating the bottleneck Gromov-Hausdorff distance is at least as
hard as solving the graph isomorphism problem.

Theorem 3.22
For any p ∈ N ∪ {∞}, Problem p-BGHD cannot be approximated in polynomial time within
any factor α ∈ O

(
2poly(〈I〉)

)
, where 〈I〉 denotes the size of the instance of Problem p-BGHD,

unless Problem GI is in P.

Proof. We prove the result for p ∈ N. The proof for p =∞ can be obtained by a straight-
forward modification. Assume there is α ∈ N such that there exists a polynomial time
α-approximation algorithm for Problem p-BGHD. Let Gi := (Vi, Ei), i ∈ {0, 1} be two graphs
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−ε ε 1

0 1− ε 1 + ε

X

Y

(a) Optimal correspondence RGH ∈ R(X,Y ).

−ε ε 1

0 1− ε 1 + ε

X

Y

(b) Optimal bottleneck correspondence RBGH ∈
Π(X,Y ).

Figure 3.5: The Gromov-Hausdorff distance of X and Y can be made arbitrarily small for ε → 0
while their bottleneck Gromov-Hausdorff distance is bounded from below for small ε > 0.
The correspondences inducing these distances are depicted as dashed lines.

on n vertices. For β ∈ N, β > α · p
√

(|X|+ |Y |)2 + 1, consider the metric spacesMi := (Vi, di)
with metrics defined by

di(vk, vl) := β · dGi(vk, vl) + i for vk 6= vl,

and di(vk, vl) := 0 otherwise. An isomorphism φ : V0 −→ V1 between G0 and G1 induces a
bottleneck correspondence R := {(v, φ(v)) | v ∈ V0} with distortion

Γp(R) = p

√√√√ 1
(|V0|+ |V1|)2

∑
v0,v′0∈V0

∣∣d0
(
v0, v

′
0
)
− d1

(
φ(v0), φ(v′0)

)∣∣p︸ ︷︷ ︸
≤1

≤ 1.

This implies dBGH,p(M0,M1) ≤ 1/2.
Assume G0 and G1 are not isomorphic and let R ∈ Π(V0, V1) be a bottleneck correspondence.

Since G0 6∼= G1, there exist v0, w0 ∈ V0 with (v0, v1), (w0, w1) ∈ R for some v1, w1 ∈ V1, such
that either

{v0, w0} ∈ E0 ∧ {v1, w1} /∈ E1

or
{v0, w0} /∈ E0 ∧ {v1, w1} ∈ E1,

implying

Γp(R) ≥ |d0(v0, w0)− d1(v1, w1)|
p
√

(|X|+ |Y |)2 ≥ |β · 2− (β · 1 + 1)|
p
√

(|X|+ |Y |)2 = β − 1
p
√

(|X|+ |Y |)2 > α,

i. e., dBGH,p(M0,M1) > 1/2 · α.
An α-approximation algorithm for Problem p-BGHD could thus be used to decide Problem

GI. The construction is polynomial in 〈I〉 for α ∈ O
(
2poly(〈I〉)

)
since 〈α〉 = dln(α)e. 2

Using Lemma 3.20, a similar result for Problem p-GHD is an immediate consequence.
Corollary 3.23
Problem p-GHD cannot be approximated within any factor α ∈ O

(
2poly(〈I〉)

)
in polynomial

time, unless Problem GI is in P.
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Next, we show an inapproximability result for an approximation factor less than 3 under the
weaker assumption P 6= NP.
Theorem 3.24
For p = ∞, Problem p-BGHD cannot be approximated within any factor less than 3 in
polynomial time, unless P = NP. This result holds even if the input metric spaces are
restricted to discretizations of 2-manifolds embedded in R2.

Proof. We prove the theorem by reduction of the well-known 3-partition problem.

Problem 3.25 (3-partition)
Input: N,B ∈ N, S = {s1, . . . , s3N} ⊆ N a multiset, such that B/4 < si < B/2 and ∑

s∈S
s = NB.

Question: Is there a partition S1∪̇ . . . ∪̇SN = S of S such that |Si| = 3 and ∑
s∈Si

s = B for all

i ∈ {1, . . . , N}?

Since this problem is strongly NP-complete, we can assume that B ∈ N (and not just the
encoding length 〈B〉 = dln(B)e) is bounded by a polynomial in the size of the input, cf. [GJ79,
pp. 96–100], where an explicit bound is given.

For an instance I := (N,B, s1, . . . , s3N ) of 3-partition, we construct an instance of Problem
p-BGHD as follows:

For each i ∈ {1, . . . , N}, we introduce B distinct points xi1, . . . , xiB to encode the multiset Si.
Similarly, sk distinct points yk1, . . . , yksk encode the number sk for each k ∈ {1, . . . , 3N}. The
metric spaces are then defined by (X, dX) where X := {xij | i ∈ {1, . . . , N}, j ∈ {1, . . . , B}},

dX
(
xij , xi′j′

)
:=


0, i = i′ ∧ j = j′

δX , i = i′ ∧ j 6= j′

∆X , i 6= i′

and (Y, dY ) with Y := {ykl | k ∈ {1, . . . , 3N}, l ∈ {1, . . . , sk}},

dY (ykl, yk′l′) :=


0, k = k′ ∧ l = l′

δY , k = k′ ∧ l 6= l′

∆Y , k 6= k′,

where ∆X > δX > 0 and ∆Y > δY > 0 are constants to be determined later on. An illustration
of the spaces can be seen in Figure 3.7.
A bottleneck correspondence R ∈ Π(X,Y ) can then be interpreted as an assignment of

numbers sk to multisets Si, as we will see in the following.
We prove that

dBGH,∞(X,Y ) ≤ 1
2 max{|∆X −∆Y |, |∆Y − δX |, |δX − δY |}

if there exists a 3-partition of S. Otherwise, i. e., if the instance I does not admit a 3-partition,
we show that dBGH,∞(X,Y ) ≥ 1

2 |∆X − δY |. Therefore, a polynomial time approximation
algorithm for Problem p-BGHD with approximation factor less than

|∆X − δY |
max{|∆X −∆Y |, |∆Y − δX |, |δX − δY |}
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would imply a polynomial time algorithm for 3-partition. This yields a factor of 3 for
∆X := 4,∆Y := 3, δX := 2, δY := 1.

Let S1∪̇ . . . ∪̇SN = S be a 3-partition of S and σik := ∑
k′∈{1,...,k−1}

sk′∈Si

sk′ . Consider the relation

R := {(xij , ykl) ∈ X × Y | sk ∈ Si ∧ j = σik + l}.

The points yk1, . . . , yksk representing the number sk ∈ Si are assigned to points xij , . . . , xij′ ,
where j and j′ are chosen such that sk1 , sk2 , sk3 ∈ Si are assigned consecutively. An example
is given in Figure 3.6.
In fact, R is a bottleneck correspondence: for i ∈ {1, . . . , N}, j ∈ {1, . . . , B}, there is a

unique k ∈ {1, . . . , N} such that sk ∈ Si and l := j − σik ≤ sk.

X

S1

x11 x12 x13 x14 x15

S2

x21 x22 x23 x24 x25

Y

s1

y11 y12

s2

y21

s3

y31 y32 y33

s4

y41

s5

y51 y52

s6

y61

Figure 3.6: Depiction of the constructed metric spaces (X, dX), (Y, dY ) (in black) for the 3-partition
instance S := {s1, . . . , s6} := {2, 1, 3, 1, 2, 1}, B := 5 and the bottleneck correspondence R
(grey) associated with the valid 3-partition S1 := {s1, s2, s5}, S2 := {s3, s4, s6}.

Let (xij , ykl), (xi′j′ , yk′l′) ∈ R be two distinct elements, i. e., xij 6= xi′j′ and ykl 6= yk′l′ . We
consider two cases: For i 6= i′, we have dX

(
xij , xi′j′

)
= ∆X . Assume k = k′, then, by definition

of R, we have sk = sk′ ∈ Si∩Si′ . This is a contradiction to S1∪̇ . . . ∪̇SN = S being a 3-partition
of S.
For k 6= k′, dY (ykl, yk′l′) = ∆Y holds by definition and therefore∣∣dX(xij , xi′j′)− dY (ykl, yk′l′)

∣∣ = |∆X −∆Y |.

In case i = i′, we have dX
(
xij , xi′j′

)
= δX . This implies∣∣dX(xij , xi′j′)− dY (ykl, yk′l′)

∣∣ ∈ {|∆Y − δX |, |δX − δY |}.

Overall, we have dBGH,∞(X,Y ) ≤ 1
2Γ(R) ∈

{
1
2 |∆X −∆Y |, 1

2 |∆Y − δX |, 1
2 |δX − δY |

}
.

On the other hand, for a bottleneck correspondence R ∈ Π(X,Y ) with Γ(R) < |∆X − δY |,
let

Si := {sk ∈ S | ∃l ∈ {1, . . . , sk}, ∃j ∈ {1, . . . , B} such that (xij , ykl) ∈ R}.

First, we prove that

Si
∗= {sk ∈ S | ∀l ∈ {1, . . . , sk},∃1j ∈ {1, . . . , B} such that (xij , ykl) ∈ R}.
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Let sk ∈ Si, i. e., (xij , ykl) ∈ R for some j, l. As R is a bottleneck correspondence, for each l′
there are unique i′, j′ such that (xi′j′ , ykl′) ∈ R. We have∣∣dX(xij , xi′j′)− dY (ykl, ykl′)

∣∣ =
∣∣dX(xij , xi′j′)− δY ∣∣ ≤ Γ(R) < |∆X − δY |

and therefore i = i′, i. e., all points yk1, . . . , yksk representing the number sk are assigned to
the same set Si.

This also proves that S1, . . . , SN indeed defines a feasible 3-partition of S: Let sk ∈ Si ∩ Si′ ;
by (∗) we have for all l ∈ {1, . . . , sk}

∃j, j′ ∈ {1, . . . , B} such that (xij , ykl), (xi′j′ , ykl) ∈ R.

Since R is a bottleneck correspondence, we have i = i′.
In addition, for Si = {sk1 , . . . , skn} and using (∗) for the second equality, we have

∑
s∈Si

s =
n∑

m=1
skm

=
n∑

m=1

∣∣∣{(xij , ykml) | j ∈ {1, . . . , B}, l ∈ {1, . . . , skm}}∣∣∣
=
∣∣∣{(xij , ykml) | j ∈ {1, . . . , B},m ∈ {1, . . . , n}, l ∈ {1, . . . , skm}}∣∣∣

=
∣∣∣{xij | j ∈ {1, . . . , B}}∣∣∣ = B,

i. e., the constraint on the sums of the elements of the partitions is fulfilled. The upper and
lower bounds on each number si imply that each multiset Si contains exactly 3 elements.
To see that this result holds also for discretizations of 2-manifolds embedded in R2, first

note that (X, dX) and (Y, dY ) can be considered as discretizations of metric spaces (X ′, dX),
(Y ′, dY ) consisting of line segments in R2, see Figure 3.7, and the distances between points are
given by the length of a shortest path connecting them. The metric spaces (X ′, dX), (Y ′, dY )
are in turn subsets of the Euclidean plane.
This also proves the result for discretizations of plane 2-manifolds:

X ′′ := X ′ + εB2 =
{
x ∈ R2 | ∃x′ ∈ X ′ with

∥∥x− x′∥∥ ≤ ε}
and

Y ′′ := Y ′ + εB2 =
{
y ∈ R2 | ∃y′ ∈ y′ with

∥∥y − y′∥∥ ≤ ε}
are smooth 2-manifolds embedded in R2. The difference between distances of points in (X, dX),
(Y, dY ) and geodesic distances of corresponding points in X ′′, Y ′′ and can be made arbitrarily
small by means of ε. Furthermore, we have X ⊆ X ′ ⊆ X ′′ and Y ⊆ Y ′ ⊆ Y ′′, i. e., X and Y
can be considered as discretizations of 2-manifolds embedded in R2. 2

Again, Lemma 3.20 implies that an analogous result holds for Problem GHD.

Corollary 3.26
Problem GHD cannot be approximated within any factor less than 3 in polynomial time, unless
P = NP.
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Figure 3.7: Encoding of 3-partition in metric spaces.

In the literature, another definition of distortion and a corresponding matching problem are
also considered.
Remark 3.27
For an alternative definition of distortion for bottleneck correspondences given by

dist(R) := max
(x,y)∈R

(x′,y′)∈R

max
{
dX(x, x′)
dY (y, y′) ,

dY (y, y′)
dX(x, x′)

}
,

Papadimitriou and Safra [PS05] show — by a reduction of graph 3-colourability — that it is
NP-hard to approximate the minimal distortion of a bottleneck correspondence R ∈ Π(X,Y )
between finite point sets X,Y ⊆ R3 with Euclidean distances up to a factor less than 3.

Modifying the parameters in the proof from above, we can achieve an even stronger inapprox-
imability result for plane 2-manifolds (instead of subspaces ofR3): Using the definitions from the
proof, we have dist(R) = ∆X

δY
if there is no valid 3-partition, and dist(R) ≤ max

{
∆X
∆Y

, ∆Y
δX
, δXδY

}
otherwise. Parameters ∆X := α ·∆Y ,∆Y := α · δX , δX := α · δY yield that an approximation
ratio of α2 = α3

α is sufficient to decide 3-partition for an arbitrary α ∈ O
(
2poly(〈I〉)

)
, where 〈I〉

denotes the size of an instance I.

Not surprisingly, the problem of finding maximal subspaces of two metric spaces subject to a
bound on their (bottleneck) Gromov-Hausdorff distance is also hard.

Theorem 3.28
For any δ ≥ 0 and p ∈ N ∪ {∞}, Problem δ-p-SGHD and Problem δ-p-SBGHD cannot be
approximated in polynomial time within any factor less than (max{|X|, |Y |})1/2−ε for arbitrary
ε > 0, unless P = NP.

Proof. We prove the result for Problem δ-p-SGHD and p ∈ N by reduction of the maximum
clique problem. The maximum clique problem is known to be hard to approximate within any
factor less than |V |1/2−ε, unless P = NP, see [Hå99].
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Problem 3.29 (Maximum clique (MCQ))
Input: Graph G := (V,E)
Question: What is the biggest N ∈ N such that G contains a clique C of size |C| ≥ N?

Let G := (V,E) be an instance of maximum clique. Let β ∈ N, β > δ · p
√

(|X|+ |Y |)2,

MX := (V, β · dG) andMY := (V, β · dD),

where dD denotes the discrete metric

dD(v, w) :=
{

1, v 6= w

0, v = w

on V and dG again denotes the shortest path distance on G, cf. Definition 1.11.
We establish that C ⊆ V is a clique of G if and only if there is a relation R ⊆ X × Y which

satisfies Γp(R) ≤ δ.
First, let C ⊆ V be a clique of G and consider the (bottleneck) relation

R := {(x, x) ∈ V × V | x ∈ C}.

It holds ∣∣∣β · dG(x, x′)︸ ︷︷ ︸
=1

−β · dD
(
x, x′

)︸ ︷︷ ︸
=1

∣∣∣ = 0

for all x, x′ ∈ C and therefore Γp(R) = 0. The size of the relation R is obviously |C|.
On the other hand, if R is a relation with Γp(R) ≤ δ, we show that

C := P1(R) = {x ∈ V | ∃y ∈ V such that (x, y) ∈ R}

is a clique of size |C| = |R| in G. First of all, R is a bottleneck relation: Let (x, y), (x, y′) ∈ R
and suppose y 6= y′. We have

Γp(R) ≥ p

√
1

(|X|+ |Y |)2 ·
∣∣∣β · dG(x, x)︸ ︷︷ ︸

=0

−β · dD
(
y, y′

)︸ ︷︷ ︸
=1

∣∣∣ = β
p
√

(|X|+ |Y |)2 > δ,

which is a contradiction. The same argument can be used to show that (x, y), (x′, y) ∈ R
implies x = x′. Thus R is a bottleneck relation and therefore |C| = |R|.
Next, assume that x, x′ ∈ C, x 6= x′ are not adjacent, i. e., {x, x′} /∈ E. This implies

dG(x, x′) ≥ 2, and with dD(y, y′) ≤ 1 for all y, y′ ∈ V we have

Γp(R) ≥ p

√
1

(|X|+ |Y |)2

∣∣∣β · dG(x, x′)− β · dD(y, y′)∣∣∣ > δ ∀y, y′ ∈ V,

which is again a contradiction.
Therefore we can use an approximation algorithm for Problem δ-p-SGHD to approximate

Problem MCQ with the same approximation factor. The proof also shows the result for
Problem δ-p-SBGHD and / or p =∞ (using β > δ). 2

Despite these rather negative results, many metric spaces arising in practical applications
have rather nice structure. The basic structure of these spaces is defined by small subsets of
points. This decreases the complexity of these problems in practice dramatically. The next
section describes these attributes and presents algorithms for Problem GHD which exploit
these properties.
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3.3 Algorithmic Approaches

Much effort has been invested in methods for the computation of the Gromov-Hausdorff
distance as a measure for the similarity of shapes in computer vision. Bronstein, Bronstein,
and Kimmel [BBK06] and Elad and Kimmel [EK01] use a generalized multi-dimensional scaling
approach, which tries to embed both metric spaces in a common 3-dimensional Euclidean
space while preserving the distance matrices as well as possible. The resulting point clouds
can then be compared using measures for similarity in R3, see Chapter 2. They formulate
a corresponding nonlinear optimization problem and present a heuristic algorithm for this
particular task.

Mémoli and Sapiro [MS05] give conditions subject to which the bottleneck Gromov-Hausdorff
distance can be used to bound the Gromov-Hausdorff distance. Further, they present a heuristic
algorithm based on these considerations.
In [Mé07], the approximation of the Gromov-Hausdorff distance by a mass transportation

problem is studied. This leads to a generally non-convex quadratic optimization problem
which is heuristically solved by local optimization techniques.

Raviv, Dubrovina, and Kimmel [RDK12] formulate a slightly more general problem, incor-
porating a feature vector for each point, as quadratic integer programming problem. They
mention that the problem is computationally “almost infeasible” even for small instances of at
most 30 vertices. Therefore, they suggest relaxing the integrality constraints and rounding. For
a similar problem, Wang et al. [Wan+12] use a formulation introduced in [TKR08] and model
the problem as a graph labelling problem. This problem is heuristically solved by employing a
dual decomposition approach.

An approach where one tries to minimize the distortion of the area of surface patches induced
by a correspondence instead of the distortion of distances between points is considered by
Windheuser et al. [Win+11]. This results in an integer linear program which is dealt with via
relaxation and rounding.
Ruggeri and Saupe [RS08] propose an algorithm which estimates the difference between

distance matrices derived from surfaces by comparing their histograms of inter point distances.
The theoretical foundations for this method can be found in [BK07]. There, it is shown
that most weighted graphs can be reconstructed from their distribution of weights and the
distribution of sums of weights of adjacent edges.
In this section, we describe an algorithmic framework which performs very well in practice.

At first, we investigate a simple point signature for general metric spaces — so-called local
distance sets — in Section 3.3.1. Furthermore, we present exact algorithms (Section 3.3.2) for
the problems related to the Gromov-Hausdorff distance mentioned in Section 3.2. Next, we
develop the theoretical foundations and algorithms to drastically reduce the complexity of the
problem, by identifying a small number of points in the metric spaces which capture their
essential structure. A correspondence between those points can be extended to a correspondence
between the whole spaces with low error, see Section 3.3.3. These methods can also be used
for partial non-rigid shape matching, which is discussed in the last part of this chapter.
As mentioned above, a straightforward way to compare metric spaces is by examining the

distances occurring in the spaces. Ruggeri and Saupe [RS08] compare the histograms of inter
point distances of both spaces. To achieve a a meaningful comparison, the metric spaces must
have the same cardinality and the points should be “evenly distributed”: consider the metric
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spaces

X := {−1, 0, 1} ⊆ R
for N ∈ N and

Y := {−1, 0, 1− ε/1, . . . , 1− ε/N, 1, 1 + ε/N, . . . , 1 + ε/1} ⊆ R

with metrics induced by the Euclidean distances. We have dGH(X,Y ) = ε, but there is
no obvious measure subject to which the histograms of distances reflect this similarity, cf.
Figure 3.8.
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(a) Histogram of distances of (X, dX).
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(b) Histogram of distances of (Y, dY ), for N = 2
and ε = 0.05.

Figure 3.8: Histograms of distances of metric spaces with low Gromov-Hausdorff distance are not
necessarily similar.

Another approach with more discriminatory power is to consider distance histograms of
each point and to match vertices with similar such histograms. This is similar to attempts in
the literature to estimate the similarity of shapes by comparing point signatures.

3.3.1 Local Distance Sets

To identify corresponding points in surfaces, several methods for computing local characteristics
of a point on a surface —so-called point signatures — for 2-dimensional Riemannian manifolds
have been considered. Sun, Ovsjanikov, and Guibas [SOG09] use properties of the heat
diffusion process on a Riemannian manifold to derive a multi-scale point signature — referred
to as heat kernel signature — which is invariant with respect to isometries. Other signatures
with this property have also been considered [GSCO07; Rus07].

Since we are concerned with the Gromov-Hausdorff distance of arbitrary metric spaces, we
do not consider these signatures for Riemannian manifolds in the following and concentrate on
properties of general metric spaces. Local distance sets have been considered by Grigorescu
and Petkov [GP03] and Mémoli [Mé12].



58 3.3. Algorithmic Approaches

Definition 3.30 (Local distance set)
Let (X, dX) be a metric space and n := |X|. The local distance set at x ∈ X is the ordered
multiset

DX(x) := (d1
x, . . . , d

n−1
x ) ⊆ R≥0

where dix := dX(x, xi) for some xi ∈ X \ {x}, i ∈ {1, . . . , n} and dix ≤ djx for all i ≤ j.

Unfortunately, this approach is not sufficient to distinguish metric spaces in general, see
Figure 3.9, and also failed in several practical examples investigated.
However, [Mé12] shows that the Hausdorff distance of local distance sets can be used to

obtain a lower bound for the Gromov-Hausdorff distance of two metric spaces: for metric
spaces (X, dX), (Y, dY ), we have

dGH(X,Y ) ≥ 1
2 inf
R∈R(X,Y )

sup
(x,y)∈R

dH(DX(x), DY (y)).

We generalize this observation to the (bottleneck) p-Gromov-Hausdorff distance in Corol-
lary 3.34, but first establish a related instrumental property of local distance sets.
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Figure 3.9: Local distance sets are not sufficient to characterize metric spaces: (X, dX) and (Y, dY )
have identical sets of local distance sets; the local distance set of x1, y1, x3 and y3 is
(1, 2, 2, 2) while x2, y2, x4, y4, x5 and y5 have local distance set (1, 1, 2, 2) in their respective
metric spaces. However, the Gromov-Hausdorff distance of (X, dX) and (Y, dY ) is 1/2.

Local distance sets can be used as point signatures which enable the a priori exclusion of
assignments which necessarily induce correspondences with high distortion. To compare these
distance sets, we introduce the histogram distance:

Definition 3.31 (Histogram distance)
Let (X, dX) and (Y, dY ) be finite metric spaces and p ∈ N ∪ {∞}. The histogram distance of
x ∈ X and y ∈ Y is given by

dHI,p(x, y) := 1
2 min
RH∈R(DX(x),DY (y))

p

√√√√ 1
(|X|+ |Y |)2

∑
(dx,dy)∈RH

|dx − dy|p
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for p ∈ N and

dHI,∞(x, y) := 1
2 min
RH∈R(DX(x),DY (y))

max
(dx,dy)∈RH

|dx − dy|.

The bottleneck histogram distance can analogously be defined as

dBHI,p(x, y) := 1
2 min
RH∈Π(DX(x),DY (y))

p

√√√√ 1
(|X|+ |Y |)2

∑
(dx,dy)∈RH

|dx − dy|p

for p ∈ N and

dBHI,∞(x, y) := 1
2 min
RH∈Π(DX(x),DY (y))

max
(dx,dy)∈RH

|dx − dy|.

It is easy to see that dHI,p ≤ dBHI,p for all p ∈ N ∪ {∞}.

For p =∞, the (bottleneck) histogram distance is the Hausdorff distance of the local distance
sets:
Remark 3.32
We have

dHI,∞(x, y) = dH(DX(x), DX(y))
and similarly

dBHI,∞(x, y) = dB(DX(x), DX(y)),
i. e., the bottleneck histogram distance is given by the bottleneck distance of the local distance
sets, cf. Lemma 1.6. Both can be easily computed, see, e. g., [EI96].

As mentioned, the histogram distance can be used to identify assignments which cannot
be contained in a relation R with small distortion. This is crucial for the exact algorithms
presented in the following, since it allows to reduce the complexity of the input considerably.
Lemma 3.33
Let (X, dX) and (Y, dY ) be finite metric spaces, p ∈ N ∪ {∞}, and R ∈ R(X,Y ) a correspon-
dence. For x ∈ X, y ∈ Y, and (x, y) ∈ R we have

dHI,p(x, y) ≤ 1
2Γp(R).

Similarly, for a bottleneck correspondence R ∈ Π(X,Y ) with (x, y) ∈ R we have

dBHI,p(x, y) ≤ 1
2Γp(R).

Proof. We show dHI,p(x, y) ≤ 1
2Γp(R). The proof for the other cases is analogous.

Given R ∈ R(X,Y ), a correspondence RH ∈ R(DX(x), DY (y)) between DX(x) and DY (y)
is induced by R in the following way: For each x′ ∈ X there exists y′ ∈ Y such that (x′, y′) ∈ R
and similarly for each y′ ∈ Y there is x′ ∈ X with (x′, y′) ∈ R. Hence

RH :=
{(
dX
(
x, x′

)
, dY

(
y, y′

))
∈ R×R | (x′, y′) ∈ R

}
is a correspondence in R(DX(x), DY (y)). With this correspondence, we have

dHI,p(x, y) ≤ 1
2
p

√√√√ 1
(|X|+ |Y |)2

∑
(dx,dy)∈RH

|dx − dy|p ≤
1
2Γp(R) 2
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A lower bound for the p-Gromov-Hausdorff distance of two metric spaces in terms of the
histogram distance is an immediate consequence:
Corollary 3.34
Let (X, dX) and (Y, dY ) be finite metric spaces and p ∈ N ∪ {∞}. We have

min
R∈R(X,Y )

max
(x,y)∈R

dHI,p(x, y) ≤ dGH,p(X,Y )

and
min

R∈Π(X,Y )
max

(x,y)∈R
dBHI,p(x, y) ≤ dBGH,p(X,Y ).

In contrast to the (bottleneck) Gromov-Hausdorff distance, the bottleneck histogram dis-
tance can be efficiently computed. Before giving an optimal bottleneck correspondence in
Theorem 3.36, we prove a technical supporting lemma.
Lemma 3.35
Let x1, x2, y1, y2 ∈ R be real numbers with x2 ≥ x1 and y2 ≥ y1. For any p ∈ N we have

|x2 − y1|p + |x1 − y2|p ≥ |x2 − y2|p + |x1 − y1|p

and

max{|x2 − y1|, |x1 − y2|} ≥ max{|x2 − y2|, |x1 − y1|}.

Proof. For the first inequality, let a := x1−y1, b := x2−y2 and δx := x2−x1. Considering the
symmetry of the inequality, we can assume a ≥ 0 (otherwise exchange x and y). The constraint
x2 ≥ x1 can be rewritten as δx ≥ 0 and y2 ≥ y1 can be reformulated as 0 ≤ y2−y1 = a− b+ δx,
which is equivalent to δx ≥ b− a. The inequality in question can then be obtained from the
inequality

|a+ δx|p + |b− δx|p ≥ |a|p + |b|p for a, b, δx ∈ R, a ≥ 0, δx ≥ max{0, b− a}

by substitution, and is proved in the following. For given a, b ∈ R, a ≥ 0, consider the real
function

f : R≥0 −→ R, f(δx) := |a+ δx|p + |b− δx|p.

It is continuous on R≥0 and continuously differentiable for δx ∈ R>0 \{b} (since a+δx ≥ a ≥ 0,
i. e., −a /∈ R≥0 ) with derivative

f ′(δx) = p
(
(a+ δx)p−1 + sign(b− δx)p(b− δx)p−1

)
.

To prove the correctness of the inequality, we show

min
δx≥b−a
δx≥0

f(δx) ≥ |a|p + |b|p.

First, we consider the case b ≥ a ≥ 0. In this case, we have

a+ δx ≥ a+ (b− a) = b ≥ b− δx
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and
a+ δx ≥ δx ≥ δx − b = −(b− δx),

i. e., a+ δx ≥ |b− δx| and therefore f ′(δx) ≥ 0. Therefore, the minimal value of f for δx ≥ b−a
is attained at δx := b− a and f(b− a) = |a|p + |b|p.
In case b < a, consider first −b > a ≥ 0. We have |a+ δx| = a+ δx ≥ |a| and additionally
|b− δx| = δx − b ≥ −b = |b|. In consequence, the inequality holds.
Otherwise, i. e., if −b ≤ a, we have

a+ δx ≥ a > b ≥ b− δx

and
a+ δx ≥ −b+ δx = δx − b,

i. e., a + δx ≥ |b− δx|. This implies f ′(δx) ≥ 0 for δx ≥ 0, and the minimal value of f for
δx ≥ 0 is therefore attained at δx := 0 with f(0) = |a|p + |b|p, which proves the claim.
For the second inequality, we first show

|x1 − y1| ≤ max{|x1 − y2|, |x2 − y1|}.

Since we assume (without loss of generality) x1 ≥ y1, we have

|x1 − y1| = x1 − y1 ≤ x2 − y1 = |x2 − y1|.

To show that
|x2 − y2| ≤ max{|x1 − y2|, |x2 − y1|}

holds, we consider the case x2 < y2, which implies

|x2 − y2| = y2 − x2 ≤ y2 − x1 = |x1 − y2|

and x2 ≥ y2, yielding
|x2 − y2| = x2 − y2 ≤ x2 − y1 = |x2 − y1|. 2

The next theorem states that the p-norm of the vector of differences induced by a correspondence
between two sets of real numbers is optimal if it respects the ordering of the sets. This property
can easily be used to construct an optimal correspondence between ordered sets such as local
distance sets.
Theorem 3.36
Let (X, dX), (Y, dY ) be metric spaces with n := |X| = |Y | and x ∈ X, y ∈ Y . Consider the
local distance sets DX(x) := (d1

x, . . . , d
n−1
x ) and DY (y) := (d1

y, . . . , d
n−1
y ) with d1

x ≤ . . . ≤ dn−1
x

and d1
y ≤ . . . ≤ dn−1

y . Then

RH :=
{

(dix, diy) | i ∈ {1, . . . , n− 1}
}
∈ Π(DX(x), DY (y))

is an optimal bottleneck correspondence with respect to the bottleneck histogram distance, for
any p ∈ N ∪ {∞}.
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Proof. Consider an arbitrary bottleneck correspondence R ∈ Π(DX(x), DY (y)). A crossing of
R is given by indices 1 ≤ i < j ≤ n− 1 and 1 ≤ k < l ≤ n− 1 such that (dix, dly), (djx, dky) ∈ R,
compare Figure 3.10. Let RC be an optimal bottleneck correspondence with a minimal number
of crossings and assume RC 6= RH . Then RC must contain a crossing 1 ≤ i < j ≤ n − 1,
1 ≤ k < l ≤ n− 1, and Lemma 3.35 states that∣∣∣dix − dky∣∣∣p +

∣∣∣djx − dly∣∣∣p ≤ ∣∣∣dix − dly∣∣∣p +
∣∣∣djx − dky∣∣∣p

for p ∈ N and

max
{∣∣∣dix − dky∣∣∣, ∣∣∣djx − dly∣∣∣} ≤ max

{∣∣∣dix − dly∣∣∣, ∣∣∣djx − dky∣∣∣}
for p =∞, i. e., replacing the assignments (dix, dly), (djx, dky) in RC with (dix, dky), (djx, dly) yields
a correspondence R′C ∈ Π(X,Y ) with Γ(R′C) ≤ Γ(RC) and fewer crossings, which is a
contradiction. 2

DX(x)
d1
x dix djx dn−1

x

DY (y)
d1
y dky dly dn−1

y

Figure 3.10: There is an optimal correspondence between local distance sets which does not contain
crossings.

As mentioned above, see Lemma 3.33, these point signatures are an efficient instrument to
determine tuples of points which cannot be matched in a correspondence with low distortion.
This is of great help for the exact algorithm presented in the next section, as it allows for a
preprocessing step that significantly decreases the input sizes of this algorithm in practice.

3.3.2 Exact Algorithms

In the following, we give integer linear programming formulations for the Problems GHD,
p-GHD and p-BGHD introduced in Section 3.2 on finite metric spaces (X, dX), (Y, dY ) with
X := {x1, . . . , xm}, Y := {y1, . . . , yn}. We also show that the optimization version of Problem
δ-p-SGHD for p =∞ can be recast in the form of the maximum clique problem (Problem MCQ).
For this problem, sophisticated algorithms which work well on reasonably sized instances are
known [Bom+99; Ös02].

To see the similarity between these problems, recall that in order to solve Problem δ-p-SGHD,
we have to find a relation R ⊆ X × Y such that Γijkl := Γ({(xi, yk), (xj , yl)}) ≤ δ for all
(xi, yk), (xj , yl) ∈ R and |R| ≥ N , or prove that no such R exists. This can be solved by the
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integer linear program (ILP)

max
m∑
i=1

n∑
j=1

ξik

s.t. ξik + ξjl ≤ 1 ∀i, j ∈ {1, . . . ,m}, k, l ∈ {1, . . . , n} with Γijkl > δ

ξik ∈ {0, 1} i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}.

The binary variables ξik, i ∈ {1, . . . ,m}, k ∈ {1, . . . , n} represent whether (xi, yk) is in R or
not, i. e., for a solution ξ ∈ {0, 1}m×n the corresponding relation is given by

Rξ := {(xi, yk) | ξik = 1} with |Rξ| =
m∑
i=1

n∑
k=1

ξik.

This is exactly the ILP formulation for Problem MCQ. Consider the graph G := (V,E), where

V :=
{

(xi, yk) ∈ X × Y | dHI,∞(xi, yk) ≤
1
2δ
}

is the set of all possible pairs of points of X and Y which can be contained in a correspondence
with distortion no more than δ, see Lemma 3.33. The set of edges is given by

E := {{(xi, yk), (xj , yl)} | (xi, yk), (xj , yj) ∈ V, Γijkl ≤ δ}.

The construction is similar to the so-called modular product of graphs, which is used to
transform the maximum common subgraph isomorphism problem to Problem MCQ, see
[BB76]. Two assignments (xi, yk), (xj , yl) ∈ V are connected by the edge {(xi, yk), (xj , yl)} if
and only if Γijkl = Γ({(xi, yk), (xj , yl)}) ≤ δ. This means that two assignments can be in the
same relation only if the distances of the points in the respective metric spaces are within the
specified tolerance δ. An implementation in pseudo-code is given in Algorithm 3.1.

Input: Rational metric spaces (X, dX), (Y, dY ), upper bound on their
Gromov-Hausdorff distance δ ≥ 0

Output: Relation R ⊆ X × Y of maximal cardinality with Γ(R) ≤ δ

1 V ←
{

(xi, yk) ∈ X × Y | dHI,∞(xi, yk) ≤ 1
2δ
}

2 E ← {{(xi, yk), (xj , yl)} | (xi, yk), (xj , yj) ∈ V, Γijkl ≤ δ}
3 G← (V,E)
4 R← maximumClique(G)

Algorithm 3.1: computeSGHD

Furthermore, it is straightforward to adapt this approach to Problem δ-p-SBGHD. In this
modified model, the vertex set is given by

V :=
{

(xi, yk) ∈ X × Y | dBHI,∞(xi, yk) ≤
1
2δ
}

and two assignments (xi, yk), (xj , yl) ∈ V are connected only if they do not share a common
point, i. e., xi 6= xj and yk 6= yl, in addition to incurring a distortion less than δ. The bottleneck
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Gromov-Hausdorff distance is less than or equal to δ/2 if and only if there exists a clique of
size |X| = |Y | in the corresponding graph.
The maximum clique problem is a fundamental problem in combinatorial optimization

and has therefore been subject to a substantial amount of research. While the problem is
— as mentioned in the previous section — hard to approximate, there are algorithms which
yield exact solutions for practical instances in a reasonable running time, see [Ös02]. In our
experiments, we could solve instances with up to 60 points in each metric space.
The Gromov-Hausdorff distance of (X, dX) and (Y, dY ) can also be computed exactly by

the integer linear program

min δ

s.t.
n∑
k=1

ξik ≥ 1 ∀i ∈ {1, . . . ,m}

m∑
i=1

ξik ≥ 1 ∀k ∈ {1, . . . , n}

ξik + ξjl ≤ 1 + δγijkl ∀i, j ∈ {1, . . . ,m}, ∀k, l ∈ {1, . . . , n}
ξik ∈ {0, 1} ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n}.

Again, ξik ∈ {0, 1} indicates whether xi ∈ X is matched to yk ∈ Y in an optimal correspondence
R ∈ R(X,Y ), i. e.,

Rξ := {(xi, yk) ∈ X × Y | ξik = 1}
and

γijkl := 1
Γijkl

= 1
Γ((xi, yj), (xk, yl))

denotes the inverse of the distortion induced by two assignments.
Similarly, Problem p-GHD can also be computed using an integer linear program:

z = min
m∑

i,j=1

n∑
k,l=1

(Γijkl)pζijkl

s.t.
m∑
i=1

ξik ≥ 1 ∀k ∈ {1, . . . , n}

n∑
k=1

ξik ≥ 1 ∀i ∈ {1, . . . ,m}

ζijkl ≥ ξik + ξjl − 1
ζijkl ∈ {0, 1} ∀i, j ∈ {1, . . . ,m}, ∀k, l ∈ {1, . . . , n}
ξik ∈ {0, 1} ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n},

In addition to the variables used in the previous program, we introduce the decision variables
ζijkl ∈ {0, 1}. These indicate whether both xi is matched to yk and xj is matched to yl, such
that the distortion induced by these assignments can be summed up in the objective function.
The p-Gromov Hausdorff-distance is then given by

dGH,p(X,Y ) = 1
2
p

√
z

(n+m)2 .
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Both ILP formulations can be easily adapted to compute an optimal bottleneck correspondence
by requiring equality in the “assignment constraints”, i. e.,

m∑
i=1

ξik = 1 ∀k ∈ {1, . . . , n}

n∑
k=1

ξik = 1 ∀i ∈ {1, . . . ,m}.

Unfortunately, the LP-relaxation of first formulation is rather weak and the number of binary
variables in the second formulation is huge. Therefore a solution via standard ILP solvers is
generally only possible for very small instances.

Problem p-BGHD can also be reformulated as another well-known problem in graph theory.
Similar to the graph constructed for the clique problem, we consider the complete graph
G := (V,E) on the vertex set V := X × Y with edge weights Γijkl for i 6= k, j 6= l, and
Γijkl := M for M ∈ N with M ≥ diam(X) + diam(Y ) otherwise. The problem is now
equivalent to finding a subset of n := |X| = |Y | nodes of G which induce a subgraph of minimal
weight.

Since we search for an induced subgraph on exactly n nodes, i. e., with exactly n(n−1)
2

edges, this can be transformed into a dense k-subgraph problem by using the weight function
Γ̂ := M − Γ. A more thorough treatment of this problem is given in Chapter 4.
Since our focus is mainly on the Gromov-Hausdorff distance of metric spaces which are

rather large in practice, we also investigate methods to reduce the size of an instance.

3.3.3 Extension of a Relation

Usually, shapes in practice have few distinctive feature points and it is intuitively clear that a
relation between these feature points suffices to construct a correspondence with low distortion
of all points. The example shown in Figure 3.11 depicts two shapes with highlighted feature
points. The methods described in this section suffice to extend a relation between these feature
points to a correspondence, while keeping the distortion low.

Similar to the approach we used in Chapter 2, we try to identify bases, i. e., small subsets of
metric spaces, such that a correspondence between bases of two spaces naturally induces a
correspondence between the spaces themselves.
It is well-known that each point in Euclidean 3-space is uniquely characterized by its

distances to 4 arbitrary affinely independent fixed points, see e. g., [Dat05]. This fact, often
referred to as trilateration or triangulation [HB01], is used in manifold positioning applications
in practice, such as satellite navigation [Tho98], location services for mobile devices based on
wireless connections [Pat+03; Nag04] and many others.

For the problem at hand, we introduce a generalization of this concept to metric spaces.
We are interested in subsets of a metric space for which points can be, at least approximately,
distinguished by their distances to the points in these subsets.

Definition 3.37 (Base of a metric space)
Let (X, dX) be a metric space and ε ≥ 0. A subset B ⊆ X is called ε-base if for each x, x′ ∈ X
there exists b ∈ B such that

dX
(
x, x′

)
≤ ε+

∣∣dX(x, b)− dX
(
x′, b

)∣∣.
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Figure 3.11: Feature points of a shape in different poses, which allow for a correspondence which can
be extended with low error.

For finite X, Y and B ⊆ X, we denote by εX(B) ≥ 0 the minimal real value such that B is
an εX(B)-base.

Intuitively, Definition 3.37 requires that two points with similar distances to all points in the
base cannot be far apart. Therefore, the distances to points in the base can be considered as
“coordinates” of a point. As an example, consider Figure 3.11. By specifying the distances of
a point on the surface to all highlighted feature points, its position can be located with small
error. Another example is given in Figure 3.12, in which {x4, x5} is a 0-base.

x1

x2

x3

x4 x5

1

1

1
2

2

2 1

2
3

3

Figure 3.12: Example of a metric space with small 0-base {x4, x5} depicted in red.

Next, we observe that the distance between two points is determined (up to an error of ε)
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by these coordinates.

Lemma 3.38
For an ε-base B of a metric space (X, dX), we have

sup
b∈B

∣∣dX(x, b)− dX
(
x′, b

)∣∣ ≤ dX(x, x′) ≤ ε+ sup
b∈B

∣∣dX(x, b)− dX
(
x′, b

)∣∣
for all x, x′ ∈ X due to the triangle inequality.

This is also similar in spirit to sparse sampling and matrix completion [CT10], where one
tries to reconstruct a matrix of low rank from a fraction of the entries: for a finite metric space
(X, dX) with an ε-base B ⊆ X, the distance matrix DX can be approximately reconstructed
from the knowledge of the columns (or rows) of DX which correspond to the points of B.

Note, however, that the distance matrices we consider here can in general not be approximated
by low rank matrices within an acceptable tolerance, even if they admit small ε-bases: Consider
the metric space depicted in Figure 3.12. The corresponding distance matrix

DX =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 3
1 2 2 0 3
2 1 3 3 0


has full rank, but the metric space contains a 0-base of cardinality 2, as shown above.
Furthermore, the metric spaces depicted in Figures 3.9, 3.13 and 3.19 all have full rank, but
have smaller 0-bases.
Unfortunately, unlike the bases used in Chapter 2, where the existence of wide bases with

size bounded by the dimension of the surrounding space is proven in Theorem 2.7, the size of
the ε-bases defined here cannot be easily bounded for fixed ε:
Consider the discrete metric space (X, dD), where dD(x, x′) := 1 for all x, x′ ∈ X with

x 6= x′, and dD(x, x′) := 0 otherwise. It is easy to see that this space does not contain an
ε-base of size less than |X| − 1 for ε < 1. Note that the metric spaces constructed in the proof
of Theorem 3.24 are constructed in a similar way, and also do not admit an ε-base of size
less than |X| − 1 for sufficiently small ε, but can be considered as discretizations of manifolds
embedded in R2.
An important feature of ε-bases is that this property is, at least approximately, conserved

by correspondences.

Lemma 3.39
Let (X, dX), (Y, dY ) be two metric spaces and BX ⊆ X an εX-base of X. Let R ∈ R(X,Y ) be
a correspondence, RB ⊆ R a relation with P1(RB) = BX , and let BY := P2(RB). Then BY is
an εY -base of Y with εY ≤ εX + 3Γ(R), and this bound is tight.

Proof. Let y, y′ ∈ Y. Since R is a correspondence, there exist x, x′ ∈ X with (x, y), (x′, y′) ∈ R.
As BX is an εX -base of X, there exists bx ∈ BX such that

dX
(
x, x′

)
≤ εX +

∣∣dX(x, bx)− dX
(
x′, bx

)∣∣.
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Furthermore, there exists by ∈ BY such that (bx, by) ∈ RB. We use∣∣dX(x, bx)− dX
(
x′, bx

)∣∣ ≤ |dX(x, bx)− dY (y, by)|+
∣∣dY (y, by)− dY

(
y′, by

)∣∣
+
∣∣dY (y′, by)− dX(x′, bx)∣∣

≤ 2Γ(R) +
∣∣dY (y, by)− dY

(
y′, by

)∣∣,
to show

dY
(
y, y′

)
≤ dX

(
x, x′

)
+ Γ(R)

≤ εX + Γ(R) +
∣∣dX(x, bx)− dX

(
x′, bx

)∣∣
≤ εX + 3Γ(R) +

∣∣dY (y, by)− dY
(
y′, by

)∣∣,
which concludes the proof.

x1 x2

x3

2

1 3

(a) (X, dX)

y1 y2

y3

3

2 2

(b) (Y, dY )

Figure 3.13: Worst case example for the bound on bases given in Lemma 3.39.

For the tightness of the bound, consider the metric spaces depicted in Figure 3.13. An optimal
correspondence is given by R := {(x1, y1), (x2, y2), (x3, y3)} with Γ(R) = 1 and BX := {x3} is
a 0-base of X. The corresponding set BY := {y3} is not an ε-base of Y for ε < 3. 2

The generalization of the localization of a point by its distances to the points of an ε-base
introduced in Definition 3.37 and Lemma 3.38 can now be used to extend a correspondence
between subspaces to cover the whole spaces.
Definition 3.40 (Extension of a relation)
Let (X, dX) and (Y, dY ) be compact metric spaces and RB ⊆ X × Y a relation. A correspon-
dence R ∈ R(X,Y ) such that RB ⊆ R is called extension of RB to R(X,Y ).
A greedy extension of RB is defined by

RG := RB∪
{

(x, y) ∈ X × Y | x ∈ X \ P1(RB), y = argmin1
y′∈Y

sup
(bx,by)∈RB

∣∣dX(x, bx)− dY
(
y′, by

)∣∣}

∪
{

(x, y) ∈ X × Y | y ∈ Y \ P2(RB), x = argmin1
x′∈X

sup
(bx,by)∈RB

∣∣dX(x′, bx)− dY (y, by)
∣∣}

and is denoted by E(RB). The error occurring in the extension is given by

ζ(RB) := max
{

max
x∈X

min
y∈Y

sup
(bx,by)∈RB

|dX(x, bx)− dY (y, by)|,

max
y∈Y

min
x∈X

sup
(bx,by)∈RB

|dX(x, bx)− dY (y, by)|
}
.
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It is easy to see that a greedy extension is in fact an extension of RB.
Lemma 3.41
In the setting of Definition 3.40, RG := E(RB) is an extension of RB.

Proof. The greedy extension is well-defined: an elementary argument shows that the function

f : X × Y −→ R≥0, f(x, y) := sup
(bx,by)∈RB

|dX(x, bx)− dY (y, by)|

is continuous on {x} × Y for fixed x ∈ X and on X × {y} for fixed y ∈ Y . Since {x} × Y
and X × {y} are compact, the existence of argmin1y′∈Y f(x, y′) and argmin1x′∈X f(x′, y) is
guaranteed. Furthermore, we have RB ⊆ RG and X = P1(RG), Y = P2(RG) by definition.2

Combining the above definitions, we are able to bound the error introduced by a greedy
extension of a correspondence.
Lemma 3.42
Let (X, dX), (Y, dY ) be two compact metric spaces with ε-bases BX and BY , RB ∈ R(BX , BY )
a correspondence, and RG := E(RB) ∈ R(X,Y ) a greedy extension. We have

Γ(RG) ≤ ε+ 2ζ(RB).

Proof. Let (x, y), (x′, y′) ∈ RG. We can assume dX(x, x′) ≥ dY (y, y′) without loss of generality.
Using Lemma 3.38, we have

dX
(
x, x′

)
− dY

(
y, y′

)
≤ ε+ sup

bx∈BX

∣∣dX(x, bx)− dX
(
x′, bx

)∣∣− dY (y, y′)
≤ ε+ sup

bx∈BX

∣∣dX(x, bx)− dX
(
x′, bx

)∣∣
− sup
by∈BY

∣∣dY (y, by)− dY
(
y′, by

)∣∣
≤ ε+ sup

(bx,by)∈RB

∣∣∣∣∣dX(x, bx)− dX
(
x′, bx

)∣∣
−
∣∣dY (y, by)− dY

(
y′, by

)∣∣∣∣∣
≤ ε+ sup

(bx,by)∈RB

∣∣∣dX(x, bx)− dX
(
x′, bx

)
− dY (y, by) + dY

(
y′, by

)∣∣∣
≤ ε+ sup

(bx,by)∈RB

(
|dX(x, bx)− dY (y, by)|

+
∣∣dX(x′, bx)− dY (y′, by)∣∣)

≤ ε+ 2ζ(RB). 2

Lemma 3.42 shows that the distortion of a greedy extension of a correspondence between
ε-bases can be bounded by the maximal error occurring in the extension. In fact, one can
prove that a greedy extension is a 2-approximation of an optimal extension for ε = 0.
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Theorem 3.43
Let (X, dX), (Y, dY ) be two compact metric spaces with ε-bases BX and BY , respectively. Let
RB ∈ R(BX , BY ) be a correspondence and RG := E(RB) a greedy extension according to
Definition 3.40. Then

Γ(RG) ≤ ε+ 2ζ(RB) ≤ ε+ 2 inf
R∈R(X,Y )
RB⊆R

Γ(R)

and this bound is tight.

Proof. Let R ∈ R(X,Y ) be a correspondence with RB ⊆ R. Using Lemma 3.42, we have
Γ(RG) ≤ ε + 2ζ(RB). Further, we have ζ(RB) ≤ Γ(R), as we will see in the following. Let
(x, y) ∈ RG and assume

y = argmin1
ỹ∈Y

sup
(bx,by)∈RB

|dX(x, bx)− dY (ỹ, by)|.

Since R is a correspondence, there is ŷ ∈ Y such that (x, ŷ) ∈ R. For arbitrary ε′ > 0, there
exists (bx, by) ∈ RB ⊆ R such that

|dX(x, bx)− dY (y, by)| ≤ |dX(x, bx)− dY (ŷ, by)|+ ε′

Analogous arguments can be applied for the cases (x, y) ∈ RB and (x, y) ∈ RG with

x = argmin1
x̃∈X

sup
(bx,by)∈RB

|dX(x̃, bx)− dY (y, by)|.

This implies ζ(RB) ≤ Γ(R).

−1 1

−1 −ε ε 1

X

Y

(a) Optimal extension RGH of RB .

−1 1

−1 −ε ε 1

X

Y

(b) Greedy extension RG of RB .

Figure 3.14: Worst case error of a greedy extension of a correspondence.

To prove the tightness of the bound, consider the metric spaces depicted in Figure 3.14 as
subspaces of R for arbitrary 0 < ε < 1. The sets BX := {−1} and BY := {−1} (depicted in red)
are 0-bases of X and Y, respectively, and RB := {(−1,−1)} ∈ R(BX , BY ) is a correspondence
between them. The correspondence RGH , depicted as dashed lines in Figure 3.14a, is an
optimal extension of RB with distortion Γ(RGH) = 1 + ε. The greedy extension RG := E(RB)
of RB has distortion Γ(RG) = 2(1− ε), cf. Figure 3.14b. 2
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However, the Gromov-Hausdorff distance of two metric spaces X and Y cannot be bounded
in terms of the Gromov-Hausdorff distance of bases BX ⊆ X and BY ⊆ Y . Assume X and
Y are discretizations of the same manifold with differing different sampling densities, e. g.,
consider the metric spaces depicted in Figure 3.15. The points of the sets depicted in red are
0-bases with Gromov-Hausdorff distance 0, but the Gromov-Hausdorff distance of the sets is
α/2, and therefore arbitrary.

−α α

−α 0 α

X

Y

Figure 3.15: The Gromov-Hausdorff distance cannot be bounded by the Gromov-Hausdorff distance
of bases (depicted in red).

Still, we can prove a result similar to Theorem 2.13.
Theorem 3.44
Let (X, dX), (Y, dY ) be compact metric spaces and BX an εX-base of X. For arbitrary ε > 0,
there exists a base BY ⊆ Y of Y and a correspondence RB ∈ R(BX , BY ) such that

dGH(X,Y ) ≤ 1
2Γ(E(RB)) ≤ εX

2 + 5dGH(X,Y ) + ε.

Proof. For a correspondence Ro ∈ R(X,Y ) with Γ(Ro) ≤ 2dGH(X,Y ) + ε
5 , let

RB := {(x, y) ∈ Ro | x ∈ BX} and BY := P2(RB).

Lemma 3.39 guarantees that BY is an εY -base of Y with

εY ≤ εX + 3Γ(Ro) = εX + 6dGH(X,Y ) + 3
5ε.

Theorem 3.43 implies that the distortion of a greedy extension RG := E(RB) of RB is bounded
by

Γ(RG) ≤ max{εX , εY }+ 2Γ(Ro)
≤ εX + 10dGH(X,Y ) + ε. 2

These results can be combined to obtain an algorithm similar in spirit to Algorithm 2.1 in
Chapter 2. At first, we find a base BX of X and then evaluate optimal correspondences
between BX and BY for every BY ⊆ Y with |BY | = |BX |. Note that we are not interested in
matching a subset of X to a subset of Y, i. e., we do not need to consider all possible subsets
BX of X.
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Input: Rational metric spaces (X, dX), (Y, dY ), δ ≥ 0
Output: Correspondence R ⊆ X × Y , distortion γ

1 BX ← findBase(P)
2 γ ←∞
3 for all BY ⊆ Q with |BY | = |BX | do
4 R′ ← computeSGHD((X, dX), (Y, dY ), BX , BY , δ)
5 R′ ← extendCorrespondence((X, dX), (Y, dY ), R)
6 if Γ(R′) < γ then
7 R← R′

8 γ ← Γ(R′)
9 end

10 end

Algorithm 3.2: nonrigidBasisMatching

In contrast to the situation in Chapter 2, we cannot guarantee that this algorithm yields an
approximation of the optimal solution. Consider the metric spaces depicted in Figure 3.16,
where a possible solution computed by Algorithm 3.2 is depicted. While the metric spaces X
and Y are isometric, the distortion of the computed correspondence is 2/3α for an arbitrary
α ≥ 0, although the bases are chosen as in the proof of Theorem 3.44. The problem occurs since
Algorithm 3.2 computes an arbitrary optimal correspondence (we do not consider ordered bases
here!) between the bases, while the proof of the theorem requires a specific correspondence
between the bases. This could be remedied by considering all relations between BX and BY
instead of an optimal correspondence, but the computational cost is prohibitive in practice.

−α −α
3 α

−α α
3

α

X

Y

(a) Correspondence RGH with distortion
Γ(RGH) = 0.

−α −α
3 α

−α α
3

α

X

Y

(b) Greedy (and optimal) extension RG
with distortion Γ(RG) = 2/3α.

Figure 3.16: A greedy or even optimal extension of an optimal correspondence between bases (depicted
in red) can yield a correspondence with arbitrarily high distortion.

Even Algorithm 3.2 is not suitable for practical instances of greater size, since an NP-hard
problem has to be solved in each iteration.
In the following, we try to further reduce the number of bases to consider and develop an

algorithm which is able to determine whether a relation can be extended with little error or
not.
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3.3.4 Extreme Points
An approach to reduce the number of bases to consider is to require certain additional properties.
This idea can also be transferred from Euclidean geometry, where extreme points suffice to
characterize the class of compact convex sets. In case of metric spaces, a generalization of
extreme points can be defined.
Definition 3.45 (Extreme point)
Let (X, dX) be a metric space and γ, η ≥ 0. A point x ∈ X is called (γ, η)-extreme point of X
if

dX(x1, x2) < dX(x1, x) + dX(x, x2)− γ
for all x1, x2 ∈ X \Bx(η) = {x′ ∈ X | dX(x′, x) > η}.
The definition requires that going through an extreme point x is a detour of length at least
γ for any source and destination point which are not in the vicinity of x. All feature points
highlighted in Figure 3.11 are extreme points for suitable γ and η, since they are at “remote”
locations of the shape.
In case that (X, dX) is an induced subspace of an Euclidean space, the extreme points are

just (0, 0)-extreme points of the associated metric space.
Unfortunately, it is not always possible to find extreme points that also form an ε-base

for small ε. Consider, for example, the unit sphere X :=
{
x ∈ R2 | ‖x‖ = 1

}
with the metric

induced by geodesic distances. This metric space does not have any (γ, η)-extreme points,
for any γ ≥ 0, η ∈ [0, π2 ). For η ≥ π

2 , every point x ∈ X is (0, η)-extreme. In many practical
examples however, a set of extreme points for suitable parameters is also an ε-base with
small ε.

Similar to the property of bases shown in Lemma 3.39, extreme points are also approximately
maintained by a correspondence.
Lemma 3.46
Let (X, dX), (Y, dY ) be two metric spaces, R ∈ R(X,Y ) a correspondence, and x ∈ X a
(γX , ηX)-extreme point of X. Each y ∈ Y with (x, y) ∈ R is a (γY , ηY )-extreme point of Y if
0 ≤ γY ≤ γX − 3Γ(R) and ηY ≥ ηX + Γ(R).
Proof. Let y ∈ Y with (x, y) ∈ R. If Y \ By(ηY ) = ∅, then y is a (γ, ηY ) extreme point for
any γ ≥ 0. Otherwise, consider y1, y2 ∈ Y \By(ηY ). Since R is a correspondence, there exist
x1, x2 ∈ X such that (x1, y1), (x2, y2) ∈ R. We have

dX(xi, x) ≥ dY (yi, y)− Γ(R) > ηY − Γ(R) ≥ ηX
for i ∈ {1, 2}, i. e., x1, x2 ∈ X \Bx(ηX). Using the fact that x is (γX , ηX)-extreme, we have

dY (y1, y2) ≤ dX(x1, x2) + Γ(R)
< dX(x1, x) + dX(x, x2)− γX + Γ(R)
≤ dY (y1, y) + dY (y, y2)− (γX − 3Γ(R)),

which implies that y ∈ Y is (γY , ηY )-extreme in Y .
As an example of metric spaces X and Y where this bound is best possible, consider

the metric spaces given in Figure 3.17 for 0 < ε < 1 and the (optimal) correspondence
R := {(x1, y1), (x1, y4), (x2, y2), (x3, y3)} with Γ(R) = 1. The point x1 is (4, 0)-extreme in
X while the corresponding point y1 is (1, 1)-extreme in Y but not (γ, η)-extreme for any
(γ, η) ∈ ([1 + ε,∞)× [0, 2)) ∪ ([0, 1)× [0, 1)). 2
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x1 x2
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Figure 3.17: Worst case example for the bound on extreme points given in Lemma 3.46.

We can now combine our results to give an approximation algorithm for Problem GHD.
Theorem 3.47
Let (X, dX), (Y, dY ) be two finite metric spaces and m := |X|, n := |Y |. Let BX ⊆ X be a
set of (γX , ηX)-extreme points in X and BY ⊆ Y be the set of all (γY , ηY )-extreme points in
Y , where γX ≥ 0, ηX ≥ 0, 0 ≤ γY ≤ γX − 6dGH(X,Y ), and ηY ≥ ηX + 2dGH(X,Y ). We can
compute a correspondence R ∈ R(X,Y ) with

dGH(X,Y ) ≤ 1
2Γ(R) ≤ εX(BX)

2 + 5dGH(X,Y )

in time O
(
2kl(m2 + n2)(k + l)

)
for k := |BX |, l := |BY |, i. e., the problem is fixed parameter

tractable with respect to the parameter kl.

Proof. We evaluate all relations RB ⊆ BX ×BY . Each such correspondence RB is assigned a
score

S(RB) := max{εX(P1(RB)), εY (P2(RB))}+ 2ζ(RB).
Let RS ∈ argminRB⊆BX×BY S(RB). By Theorem 3.43, we know that the distortion of a greedy
extension RG := E(RS) of RS is bounded by

Γ(RG) ≤ max{εX(P1(RS)), εY (P2(RS))}+ 2ζ(RS) = S(RS).

Let Ro ∈ R(X,Y ) be an arbitrary correspondence with minimal distortion. Consider a
(γX , ηX)-extreme point x ∈ BX and a point y ∈ Y such that (x, y) ∈ Ro. Lemma 3.46 and the
definition of γY and ηY ensure that y is (γY , ηY )-extreme, i. e., y ∈ BY . Therefore, the relation

RB := {(x, y) ∈ Ro | x ∈ BX}

satisfies P1(RB) = BX and P2(RB) ⊆ BY . Lemma 3.39 shows εY (BY ) ≤ εX(BX) + 3Γ(Ro)
and Theorem 3.43 yields S(RB) ≤ max{εX(P1(R)), εY (P2(R))}+ 2Γ(Ro).
Combining the mentioned partial results and using Γ(Ro) = 2dGH(X,Y ) yields

Γ(RG) ≤ S(RS) ≤ S(RB) ≤ εX(BX) + 10dGH(X,Y ).

The running time of the algorithm is determined by the evaluation of all relations RB ⊆
BX ×BY , which are at most 2kl. It is sufficient to consider relations RB with |RB| ≤ k+ l, see
Lemma 1.7. The computational cost of computing of ζ(R) is in O(nm|RB|) and εX(P1(RB))
and εY (P2(RB)) can be determined in O

(
m2k

)
and O

(
n2l
)
, respectively. 2
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Since the complexity of computing a correspondence between bases is determined almost
solely by their size, we need to be able to precisely control the number of points in the bases.
Suitably adjusting the parameters γ and η of extreme points is not easy — and sometimes not
feasible, see the example after Definition 3.45 — in practice. Furthermore, it is easy to see
that all points in a sufficiently small neighbourhood (depending on γ and η) of an extreme
point are extreme points as well.
Lemma 3.48
Let (X, dX) be a metric space, x ∈ X a (γ, η)-extreme point for γ, η ≥ 0, and x′ ∈ Bx(ε) for
ε ≥ 0 such that γ − 2ε ≥ 0. Then x′ is a (γ − 2ε, η + ε)-extreme point.

Proof. Due to the triangle inequality, we have Bx(η) ⊆ Bx′(η + ε). Consider the points
x1, x2 ∈ X \Bx′(η + ε) ⊆ X \Bx(η). Since x is (γ, η)-extreme, we have

dX
(
x1, x

′)+ dX
(
x′, x2

)
≥ dX(x1, x)− 2ε+ dX(x, x2) > dX(x1, x2) + γ − 2ε,

i. e., x′ is (γ − 2ε, η + ε)-extreme. 2

As an example, consider the metric space given in Figure 3.18. The points x3 and x4 are both
(2, ε)-extreme. Since the points are close to each other, it is not necessary to consider both
points to approximately describe the essential structure of the metric space.

x1 x2

x3

x4

1

2 1 + ε

2 1 + ε

ε

Figure 3.18: Points in the neighbourhood of an extreme point are also extreme points, cf. Lemma 3.48.

In practice, this problem is also prevalent. Consider, e. g., the feature point on the woman’s
toe in Figure 3.11. It is obvious that this point and all points in a reasonably small neigh-
bourhood (depending on the parameters γ and η) are extreme points. However, for an
approximation of the shape matching problem, we are satisfied with matching the toe to a
suitable part in a corresponding shape. Thus, for a relation which can be extended with low
error, it is sufficient to include only one of these points.
Therefore, we are also interested in the slightly modified concept of extreme sets, which

allow us to specify the size of the bases we want to consider and do not contain multiple points
of each “cluster” of extreme points.
Definition 3.49 (Extreme set)
Let (X, dX) be a metric space, γ > 0 and E ⊆ X. E is called γ-extreme set if for each x ∈ X
there exist x1, x2 ∈ E such that

dX(x1, x) + dX(x, x2) ≤ γ + dX(x1, x2).

Informally, the definition of an extreme set requires that for each point x ∈ X there are two
points x1, x2 ∈ E in the extreme set, such that going from x1 to x2 over x is not a big detour.
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This ensures that no point in X is “very extreme” with respect to E and therefore all “clusters”
of extreme points are represented by E for a given accuracy.

For the metric space given in Figure 3.18, {x1, x3} and {x1, x3, x4} are ε-extreme sets, while
{x3, x4} is not γ-extreme for any γ ≤ 4− ε.

As with bases, it is not possible to bound the error induced by extending an optimal corre-
spondence between extreme sets. Figure 3.19 shows a metric space (X, dX) which contains the
0-extreme sets B1 := {x2, x3, x5} and B2 := {x1, x3, x5} which are also 0-bases. An optimal
correspondence between these sets is given by RB := {(x2, x5), (x3, x1), (x5, x3)} with distortion
Γ(RB) = 0. Furthermore, the local distance sets of all x ∈ X \ {x4} are equal, i. e., RB ad-
ditionally respects the local distance sets. RG := {(x2, x5), (x3, x1), (x5, x3), (x4, x4), (x1, x2)}
is a greedy extension of RB with Γ(RG) = 1. Theorem 3.43 implies that there cannot be an
extension of RB with distortion 0, while obviously dGH(X,X) = 0.

x1

x2

x3

x4 x5

1

2

2
3

3

2 2

1
2

1

Figure 3.19: The error induced by extending an optimal correspondence between extreme sets cannot
be bounded: {x2, x3, x5} and {x1, x3, x5} are 0-extreme sets and 0-bases of the depicted
metric space and {(x2, x5), (x3, x1), (x5, x3)} is a correspondence with distortion 0 be-
tween them which also respects local distance sets. However, it cannot be extended to a
correspondence of the whole space without distortion.

In general, extreme sets must not necessarily induce ε-bases with small ε. An example is
given in Figure 3.20.

However, extreme sets work extremely well for selecting relevant feature points on practical
examples (see Figures 3.11, 3.21 and 3.22). Furthermore, a relation between extreme sets can
often be extended to a near optimal correspondence. This is demonstrated in the following.

3.3.5 Implementation
To achieve good results on practical instances in an acceptable running time, efficient techniques
for the reduction of the size of the instances are essential. At first, rather small extreme sets
of both shapes are computed greedily, see Algorithm 3.3. In each iteration, we determine the
point x ∈ X \E which is “most extreme” with respect to E (line 3) and add it to the extreme
set E.
Lemma 3.50
Let (X, dX) be a finite metric space with cardinality m := |X| and se ∈ N. Algorithm 3.3
computes an extreme set of size se in time O

(
s3
em+m2).
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x1

x2

x3

x4 x5

1

1
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1
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α 1

1
2

1

Figure 3.20: Extreme sets do not necessarily induce ε-bases with small ε: {x3, x5} is 0-extreme, but
no ε-base for ε < α, 1 < α < 2; x3, x5 are (2− α− η, 0) extreme for 0 < η < 2− α.

We proceed by computing an optimal solution to Problem δ-p-SGHD, using the metric
spaces induced by the extreme sets and an estimate δ for the minimal distortion as input for
Algorithm 3.1.

Input: Metric space (X, dX), size of extreme set se ∈ N
Output: γ ≥ 0 and γ-extreme set E

1 E ← {x1, x2} for diameter inducing points x1, x2 ∈ X
2 for k ∈ {3, . . . , se} do
3 e← argmax1

x∈X\E
min
e1,e2∈E

dX(e1, x) + dX(x, e2)− dX(e1, e2)

4 E ← E ∪ {e}
5 end
6 γ ← max

x∈X\E
min

e1,e2∈E
dX(e1, x) + dX(x, e2)− dX(e1, e2)

Algorithm 3.3: extremeSet

If the estimate for the minimal distortion δ is good enough, we obtain a correspondence
with low distortion between two subsets of the extreme sets which are ε-bases with small ε.
This correspondence is then extended greedily, see Definition 3.40. An exemplary version of
this algorithm in pseudo-code is shown in Algorithm 3.4.

Lemma 3.51
Let (X, dX), (Y, dY ) be finite metric spaces with m := |X|, n := |Y | and RB ⊆ X × Y a
relation. Algorithm 3.4 computes a greedy extension RG of RB in time O(nm|RB|).

As we have seen in the preceding part, the extension of a correspondence can introduce an
error of at most a factor of 2 in addition to the additive term ε. Reconsidering the worst-case
example from Figure 3.14 and the proof of Theorem 3.43, it is evident that this is caused
by focusing solely on the distances of a point to the base and neglecting points which have
already been included in the correspondence. Algorithm 3.5 tries to mitigate this problem by
taking all currently added points into account for the search of a suitable match y ∈ Y and
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Input: Metric spaces (X, dX), (Y, dY ), bases BX ⊆ X, BY ⊆ Y, correspondence
RB ∈ R(BX , BY )

Output: Greedy extension RG := E(RB) ∈ R(X,Y ), ζ ≥ 0
1 ζ ← 0
2 RG ← RB
3 for x ∈ X \ P1(RG) do
4 y∗ ← argmin1

y∈Y
max

(x′,y′)∈RB
|dX(x, x′)− dY (y, y′)|

5 c← max
(x′,y′)∈RB

|dX(x, x′)− dY (y∗, y′)|

6 RG ← RG ∪ {(x, y∗)}
7 ζ ← max{c, ζ}
8 end
9 for y ∈ Y \ P2(RG) do

10 x∗ ← argmin1
x∈X

max
(x′,y′)∈RB

|dX(x, x′)− dY (y, y′)|

11 c← max
(x′,y′)∈RB

|dX(x∗, x′)− dY (y, y′)|

12 RG ← RG ∪ {(x∗, y)}
13 ζ ← max{c, ζ}
14 end

Algorithm 3.4: extendCorrespondence

x ∈ X for all points x′ ∈ X ′ ⊆ X and y′ ∈ Y ′ ⊆ Y, respectively. Thus, the correspondence is
incrementally extended to cover at least X ′ and Y ′. Setting X ′ := X and Y ′ := Y results in a
correspondence R ∈ R(X,Y ). It is easy to see that this does not enhance the approximation
ratio in theory, but yields improved results for most instances in practice.
Unfortunately, this algorithm is computationally much more expensive for larger sets X ′

and Y ′, since all assignments (x, y) ∈ R have to be included in the evaluation of an additional
assignment in the later stages of the algorithm.

Lemma 3.52
Let (X, dX), (Y, dY ) be finite metric spaces with m := |X|, n := |Y |, RB ⊆ X × Y a relation
and X ′ ⊆ X,Y ′ ⊆ Y . For k := |X ′|, l := |Y ′|, Algorithm 3.5 computes a relation R with
RB ⊆ R, X ′ ⊆ P1(R) and Y ′ ⊆ P2(R) in time O((kn+ lm)(k + l + |RB|)).

Proof. We have |R| ≤ k + l + |RB| by construction, which yields the result. 2

For the problem sizes we consider in practice, this can lead to running times which are in general
not acceptable. Therefore, we also implemented a multi-resolution approach. In Algorithm 3.6,
we first compute sufficiently dense subspaces X ′ ⊆ X and Y ′ ⊆ Y of a prescribed size sr of
both spaces with P1(RB) ⊆ X ′ and P2(RB) ⊆ Y ′. Algorithm 3.5 is used to compute a relation
covering all points of X ′ and Y ′. This relation is then extended using Algorithm 3.4.

As a last step, we can now iteratively refine the resulting correspondence RG. The improved
correspondence is initialized by RI ← RG. Algorithm 3.7 determines an assignment (x̂, ŷ) ∈ RI
inducing the distortion of the improved correspondence RI (line 3) and evaluates several options
for improvement. At first, the assignment (x̂, ŷ) is removed from RI . If x̂ is no longer covered
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Input: Metric spaces (X, dX), (Y, dY ), BX ⊆ X, BY ⊆ Y and correspondence
RB ∈ R(BX , BY ), X ′ ⊆ X,Y ′ ⊆ Y

Output: Relation R with RB ⊆ R, X ′ ⊆ P1(R), Y ′ ⊆ P2(R), ζ ≥ 0
1 ζ ← 0
2 R← RB
3 for x ∈ X ′ \ P1(R) do
4 y∗ ← argmin1

y∈Y
max

(x′,y′)∈R
|dX(x, x′)− dY (y, y′)|

5 c← max
(x′,y′)∈R

|dX(x, x′)− dY (y∗, y′)|

6 R← R ∪ {(x, y∗)}
7 ζ ← max{c, ζ}
8 end
9 for y ∈ Y ′ \ P2(R) do

10 x∗ ← argmin1
x∈X

max
(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

11 c← max
(x′,y′)∈R

|dX(x∗, x′)− dY (y, y′)|

12 R← R ∪ {(x∗, y)}
13 ζ ← max{c, ζ}
14 end

Algorithm 3.5: incExtendCorrespondence

Input: Metric spaces (X, dX), (Y, dY ), BX ⊆ X, BY ⊆ Y, correspondence
RB ∈ R(BX , BY ) and size of reference set sr

Output: Greedy extension RG = E(RB) ∈ R(X,Y )
1 Compute evenly distributed subspace X ′ of X with |X ′| = sr and P1(RB) ⊆ X ′
2 Compute evenly distributed subspace Y ′ of Y with |Y ′| = sr and P2(RB) ⊆ Y ′
3 R← incExtendCorrespondence((X, dX), (Y, dY ), RB, X ′, Y ′)
4 RG ← extendCorrespondence((X, dX), (Y, dY ), R)
5 RI ← improveCorrespondence((X, dX), (Y, dY ), RG, 10−5)

Algorithm 3.6: extendCorrespondenceRef

by RI , i. e., there exists no y′ ∈ Y with (x̂, y′) ∈ RI , we compensate by computing y∗ ∈ Y such
that the distortion of RI ∪ {(x̂, y∗)} is minimized and set RI ← RI ∪ {(x̂, y∗)}. We proceed
analogously in case y is no longer covered. In case both x̂ and ŷ are already matched, the
assignment (x̂, ŷ) can be removed without substitute. If the resulting correspondence has higher
distortion than the preceding correspondence, we retract the changes. This process is iterated
until the improvement of a single substitution falls below a specified tolerance τ . In conjunction
with the aforementioned algorithm, this produces results comparable to Algorithm 3.5 in
practice, while being significantly faster.
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Input: Metric spaces (X, dX), (Y, dY ) and correspondence RG ∈ R(X,Y ), tolerance
τ > 0

Output: Improved correspondence RI ∈ R(X,Y )
1 RI ← RG
2 repeat
3 R← RI
4 (x̂, ŷ)← argmax

(x,y)∈RI
max

(x′,y′)∈RI
|dX(x, x′)− dY (y, y′)|

5 RI ← RI \ {(x̂, ŷ)}
6 if x̂ /∈ P1(RI) then
7 y∗ ← argmin1

y′∈Y
max

(x,y)∈RI
|dX(x̂, x)− dY (y′, y)|

8 RI ← RI ∪ {(x̂, y∗)}
9 end

10 if ŷ /∈ P2(RI) then
11 x∗ = argmin1

x′∈X
max

(x,y)∈RI
|dX(x′, x)− dY (ŷ, y)|

12 RI ← RI ∪ {(x∗, ŷ)}
13 end
14 ι← Γ(R)− Γ(RI)
15 if ι < 0 then
16 RI ← R
17 end
18 until ι > τ

Algorithm 3.7: improveCorrespondence

3.3.6 Results
The algorithms discussed in the previous section can now be combined to compute an ap-
proximation of the Gromov-Hausdorff distance of metric spaces with thousands of points.
Algorithm 3.8 computes extreme sets which comprise many of the relevant features of the
metric spaces if their cardinalities are chosen suitably. We compute a maximal relation between
these extreme sets with Algorithm 3.1 for a given estimate for the minimal distortion δ. This
step also ensures that we can construct a good correspondence if the extreme sets of both
metric spaces do not overlap completely, i. e., only a subset of the extreme set in both spaces is
approximately matched by an optimal correspondence. The obtained relation is then extended
by Algorithm 3.6.
Applying this framework to some shapes included in the TOSCA project [BBK08] on a

standard laptop2, we notice that the results are satisfactory and well resemble the expected
results when matching different poses of a shape, see Figure 3.21. Note, however, that the
right leg and arm of the shape on the left in Figure 3.21a are matched to the left leg and
arm of the shape on the right, respectively. This is due to the fact that the distortion is
invariant under isometric transformations of the spaces, i. e., self-symmetries of the shapes
cannot be distinguished by our approach. Detecting and classifying (approximate) full and

2Intel Dual Core i5 CPU at 2.5 GHz and 8 GB of RAM; algorithms implemented in Matlab
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(a) David

(b) Wolf

Figure 3.21: Relations between extreme sets of shapes in different poses. Green and red points
represent matched and unmatched points of the extreme set. The green lines illustrate
assignments between extreme points, while the blue lines depict assignments inducing
the maximal distortion of the relation.
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Input: Metric spaces (X, dX), (Y, dY ), size of extreme sets se, size of reference set sr,
estimate for Gromov-Hausdorff distance δ ≥ 0

Output: Correspondence R ∈ R(X,Y ), relation RB ⊆ BX ×BY
1 BX ← extremeSet((X, dX), se)
2 BY ← extremeSet((Y, dY ), se)
3 RB ← computeSGHD((BX , dX), (BY , dY ), δ)
4 RE ← extendCorrespondenceRef((X, dX), (Y, dY ), RB, sr)
5 R← improveCorrespondence((X, dX), (Y, dY ), RE)

Algorithm 3.8: computeCorrespondence

partial symmetries of shapes is an active field of research on its own, see [Mit+13] for a recent
survey.
Numeric results for several combinations of input parameters se and δ (cf. Table 3.1) are

shown in Table 3.2. Since the meshes from the TOSCA project [BBK08] which represent
different poses of the same shape are obtained by modifying an original mesh, there is
a canonical correspondence RC := {(xi, yi) | i ∈ {1, . . . , n}}, where X := {x1, . . . , xn} and
Y := {y1, . . . , yn}. It constitutes a good estimate for an optimal correspondence. Note that
Algorithm 3.8 does not use any information on the sorting of the sets and therefore does
not benefit from this special setting, but is able to find a better correspondence for several
combinations of parameters.

Input se Cardinality of extreme sets
δ Bound on the distortion of RB

Output RB Relation between extreme sets
R Correspondence between X and Y

Table 3.1: Notation used in Algorithm 3.8 and in the following tables.

The time needed for each run depends mostly on the size of the metric spaces; the parameters
se and δ do not have a big impact. This is due to the fact that the computational cost for the
computation of an optimal relation between the extreme sets in both shapes is usually less
than 10ms, and therefore negligible, for the range of parameters supplied here. The running
time is dominated by the extension of the correspondence, which depends almost solely on the
size of the metric spaces. On the other hand, the distortion of the computed correspondence
depends heavily on the input parameters. The quality of the relation RB between the extreme
sets has a major impact on the final solution, and is rather unstable with respect to these
parameters.
When matching similar — but not identical — shapes, the computational results are still

well within realistic boundaries, see Figure 3.22 and Table 3.3. Although in this case there is
no canonical correspondence, we can use the difference between diameters of shapes as a trivial
lower bound for the distortion of a correspondence. For the results presented in Table 3.3, this
yields an a posteriori bound on the approximation ratio of 1/2Γ(R)

dGH(X,Y ) ≤
Γ(R)

|diam(X)−diam(Y )| ≤ 3/2
for the results produced by Algorithm 3.8 for a suitable choice of parameters.
However, the results shown in Figure 3.22 suggest that the Gromov-Hausdorff distance is

not necessarily the most suitable measure to compute visually satisfying correspondences.
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se δ |RB| Γ(R) time
6 10.0 6 18.62344 122.7 s
6 12.0 6 28.02216 132.2 s
6 14.0 6 20.22373 127.2 s
9 10.0 7 24.59136 131.8 s
9 12.0 7 14.88461 123.9 s
9 14.0 7 14.88461 124.8 s
12 10.0 11 21.15703 125.2 s
12 12.0 11 21.15703 126.0 s
12 14.0 11 21.68575 125.3 s
15 10.0 12 15.97880 130.6 s
15 12.0 13 16.31404 141.0 s
15 14.0 14 17.12237 122.5 s

(a) (X, dX) and (Y, dY ) derived from shapes de-
picted in Figure 3.21a with 5000 points, diam-
eters diam(X) = 206.01, diam(Y ) = 206.68
and Γ(RC) = 18.03 for the canonical corre-
spondence RC .

se δ |RB| Γ(R) time
6 10.0 6 16.49248 89.4 s
6 12.0 6 19.14281 87.2 s
6 14.0 6 19.14281 87.7 s
9 10.0 7 43.63896 100.1 s
9 12.0 8 30.77307 104.7 s
9 14.0 8 18.88477 95.9 s
12 10.0 9 31.71154 100.6 s
12 12.0 10 18.57190 98.9 s
12 14.0 10 18.12550 124.7 s
15 10.0 11 15.03307 95.7 s
15 12.0 13 15.98435 96.2 s
15 14.0 13 15.60199 130.1 s

(b) (X, dX) and (Y, dY ) derived from shapes de-
picted in Figure 3.21b with 4344 points, diam-
eters diam(X) = 179.91, diam(Y ) = 178.99
and Γ(RC) = 15.67 for the canonical corre-
spondence RC .

Table 3.2: Results of Algorithm 3.8 for a choice of parameters (cf. Table 3.1) for the metric spaces
(X, dX), (Y, dY ) derived from 2-dimensional manifolds representing a shape in different
poses, see Figure 3.21.

se δ |RB| Γ(R) time
6 15.0 4 114.60709 114.9 s
6 20.0 4 114.60709 112.3 s
6 25.0 4 34.27743 104.5 s
9 15.0 4 98.07209 106.8 s
9 20.0 4 34.27743 106.9 s
9 25.0 5 34.27743 107.4 s
12 15.0 6 102.07595 113.5 s
12 20.0 6 35.27883 105.3 s
12 25.0 7 46.68273 106.3 s
15 15.0 8 35.97512 104.1 s
15 20.0 8 34.73239 112.7 s
15 25.0 9 46.68273 106.4 s

(a) (X, dX) and (Y, dY ) derived from shapes de-
picted in Figure 3.22a with |X| = |Y | = 5000
and diam(X) = 206.68, diam(Y ) = 230.50.

se δ |RB| Γ(R) time
6 15.0 2 57.15253 141.9 s
6 20.0 3 67.16962 166.0 s
6 25.0 4 42.27561 150.3 s
9 15.0 4 70.92869 169.6 s
9 20.0 5 69.79849 135.7 s
9 25.0 6 70.40876 147.8 s
12 15.0 6 45.35137 143.3 s
12 20.0 7 50.15459 150.8 s
12 25.0 8 70.65079 154.8 s
15 15.0 8 68.54642 159.0 s
15 20.0 10 67.88702 150.0 s
15 25.0 10 65.09951 145.5 s

(b) (X, dX) and (Y, dY ) derived from shapes de-
picted in Figure 3.22c with |X| = |Y | = 5000
and diam(X) = 199.62, diam(Y ) = 172.00.

Table 3.3: Influence of base size and estimate δ on Algorithm 3.8 for metric spaces (X, dX), (Y, dY )
derived from 2-dimensional manifolds representing similar shapes, cf. Figure 3.22.
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While the correspondence shown in Figures 3.22a and 3.22b between a male and a female
person and a wolf and dog shape are as one would expect, the results shown in Figure 3.22c
reveal that this is not necessarily true for all shape pairings. Although this relation can be
extended to a near optimal correspondence (cf. Table 3.3b), the dogs right hind leg is matched
to the cats ear, while the dogs snout is matched to the cats tail. In case of Figure 3.22c it
is easy to see that, since all extremities have approximately the same length, these parts are
indistinguishable as metric spaces once a certain margin of error is accepted. In this case, the
distortion is induced by the assignment of the dogs front legs to the cats hind legs, thus the
assignment of the dogs hind legs and tail is almost arbitrary.
It is also interesting to note that the framework described above performs very favourably

for random metric spaces, given that an estimate of the Gromov-Hausdorff distance is known.
We tested the framework on metric spaces generated by first computing an undirected random
graph G1 := (V1, E1, w1) with probability γ for the existence of each edge and with uniformly
distributed edge weights. A second graph G2 := (V1, E1, w2) was derived from this graph by
adding a uniformly distributed random number to each edge weight

w2(e) := max{0, w1(e) + r} for r ∈ [−α/2, α/2] uniformly distributed

with the disturbance parameter α ≥ 0. We then computed the metric completion of these
graphs, i. e., the distance matrix consists of the length of shortest path between all vertices.
The results can be seen in Table 3.4.

se δ |RB| Γ(R) time
6 5.0 6 23.58297 0.1 s
6 10.0 6 27.65317 0.1 s
6 15.0 6 24.67791 0.2 s
9 5.0 8 26.00985 0.2 s
9 10.0 9 27.97525 0.2 s
9 15.0 9 25.43381 0.2 s
12 5.0 9 31.61614 0.3 s
12 10.0 12 30.93351 0.3 s
12 15.0 12 28.51344 0.3 s
15 5.0 11 28.70478 0.5 s
15 10.0 15 26.63995 0.5 s
15 15.0 15 25.38538 1.5 s

(a) |X| = |Y | = 250 with diameter
diam(X) = 64.92, diam(Y ) = 65.16 and
Γ(RC) = 24.62 for the canonical corre-
spondence RC .

se δ |RB| Γ(R) time
6 5.0 6 30.47338 0.2 s
6 10.0 6 33.50918 0.2 s
6 15.0 6 31.65600 0.2 s
9 5.0 9 40.02511 0.2 s
9 10.0 9 31.03226 0.3 s
9 15.0 9 36.39717 0.3 s
12 5.0 11 31.84973 0.4 s
12 10.0 11 32.65692 0.4 s
12 15.0 12 33.66973 0.4 s
15 5.0 11 25.15262 0.5 s
15 10.0 15 37.25498 0.6 s
15 15.0 15 35.33621 5.4 s

(b) |X| = |Y | = 300 with diameter
diam(X) = 87.33, diam(Y ) = 87.43 and
Γ(RC) = 28.20 for the canonical corre-
spondence RC .

Table 3.4: Influence of base size and bound on Algorithm 3.8 for random metric spaces (X, dX), (Y, dY ).

If the disturbance α is small, the canonical correspondence RC := {(v, v) | v ∈ V } is again a
reasonable estimate for an optimal correspondence, but Algorithm 3.8 finds a better corre-
spondence in both instances for several combinations of parameters. This is in accordance
with the results of various other tests performed on such random metric spaces, which, for the
sake a compact presentation, are not shown here. This suggests that the concepts of bases and
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(a) David and Victoria

(b) Wolf and dog

(c) Cat and dog

Figure 3.22: Relations between extreme sets of different shapes.
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extreme points are not only suitable for highly structured data sets like the ones obtained from
2-manifolds with few distinct attributes like extremities. Even large random metric spaces tend
to contain small characteristic subspaces. The last row in Tables 3.4a and 3.4b discloses the
impact of the running time of the exact solution of Problem δ-p-SGHD on the total running
time of algorithm. Once a certain size of the input for this problem is exceeded, the running
time increases drastically and, in this case, dominates the computational cost of extending the
correspondence.
Furthermore, a correspondence computed with this framework can be used as an estimate

for an optimal solution for the p-Gromov-Hausdorff distance problem for p ∈ N. In the cases
where a canonical correspondence is known, the results are comparable, and sometimes slightly
better, than the canonical correspondence. An interesting topic for further research is whether
results similar to Theorems 3.43 and 3.47 can be achieved for a greedy (or other suitable)
extension of a relation.

3.4 Partial Matching

Similar to the approach in Chapter 2, we can also consider non-rigid shape matching as a
multi-criteria optimization problem. As in the previous chapter, suitable criteria for the quality
of a relation R ⊆ X × Y are the distortion of the relation Γ(R) and the number of points of
X and Y covered by R.

While the algorithm presented in the proof of Theorem 3.47 is very similar to the algorithm
for aligning point clouds given in Chapter 2, it cannot be as easily modified to obtain an
approximation of the Pareto front. The main problem arising is that, rather counterintuitively,
subspaces of a metric space can have a more complex structure than the original space.
Consider Figure 3.23, in which a metric space with 1-base {x4} of cardinality 1 is depicted. In
the subspace obtained by removing x4, one needs 2 points to construct a 1-base.

x1

x2

x3

x4

4

2

3

4

6
2

Figure 3.23: The property of having small ε-bases is not necessarily preserved in subspaces of a
metric space: x4 is a 1-base of the depicted metric space, but there exists no 1-base of
cardinality 1 in the subspace induced by the points {x1, x2, x3}.

In contrast to the situation in Section 2.4, we cannot bound the cardinality of ε-bases of
subspaces we would need to consider. Consequently, it is not sufficient to evaluate all subsets
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of both metric spaces of cardinality bounded by the size of ε-bases of the metric spaces. As
pointed out in the counterexample given in Figure 3.23, these subsets may yield solely ε′-bases
with ε′ > ε.

The question whether at least a bound on ε′ can be given in terms of ε remains open:

Open question Let (X, dX) be a metric space which contains an ε-base of cardinality N ∈ N
for ε > 0. Is there a constant r ∈ R, such that each induced subspace (X ′, dX), X ′ ⊆ X
contains an r · ε-base of cardinality N?

Alternatively, a bound on the minimum cardinality of ε-bases of a subspace in terms of the
cardinality of an ε-base would be of interest.

Open question Let (X, dX) be a metric space which contains and ε-base of cardinality N ∈ N
for ε > 0. Is there a constant r ∈ R, such that each induced subspace (X ′, dX), X ′ ⊆ X
contains an ε-base of cardinality r ·N?

In the positive case, either of these bounds would enable a Pareto approximation of the problem
by a slight modification of the algorithm given in Theorem 3.47. As in Algorithm 2.3, the error
induced by including a point in the extension could be estimated and thus an approximation
of the Pareto front could be achieved.
Still, the machinery developed in the previous section for practical examples can be easily

adapted to the problem of partially matching metric spaces. Reconsidering Algorithm 3.8,
we already used a partial matching approach to account for the fact that extreme sets are
in general not unique and a chosen extreme set might contain points which have no suitable
matching partner in the other extreme set. By modifying the greedy extension to only include
points which have a suitable matching partner in the other space, we can greedily extend
a relation, see Algorithm 3.9. Algorithms 3.5 and 3.6 can be modified accordingly. Results
obtained with this slightly modified framework are presented in Figure 3.24 and Table 3.5.

se δ |RB| |P1(R)| |P2(R)| Γ(R) time
6 35.0 3 4087 2383 49.43997 96.3 s
6 40.0 3 4197 2533 47.55256 104.1 s
6 45.0 3 5000 3534 50.87202 125.5 s
9 35.0 5 5000 3442 42.37676 125.2 s
9 40.0 5 5000 3581 48.16567 139.3 s
9 45.0 5 5000 3728 51.57740 149.8 s
12 35.0 8 5000 3448 43.42775 126.7 s
12 40.0 8 5000 3583 47.84064 140.3 s
12 45.0 8 5000 3752 51.71773 143.4 s

Table 3.5: Partial matching of metric spaces (X, dX), (Y, dY ) with |X| = |Y | = 5000 points and
diam(X) = 225.68, diam(Y ) = 279.69.

The algorithm successfully detects the human part of the centaur and matches it to the
person. Table 3.5 shows that almost all relations computed cover the metric space (X, dX)
obtained from the mesh representing the person completely, cf. column |P1(R)|. The metric
space derived from the centaur is covered only partially, since not all parts can be matched to
the person with acceptable error. This can be seen in column |P2(R)| of Table 3.5.
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Input: Metric spaces (X, dX), (Y, dY ), correspondence RB ∈ R(BX , BY ),
estimate for the distortion δ ≥ 0

Output: Relation R ∈ R(X,Y )
1 R← RB
2 X ′ ← X \ P1(R)
3 for x ∈ X ′ do
4 c← min

y∈Y
max

(x′,y′)∈RB
|dY (y′, y)− dX(x′, x)|

5 if c ≤ δ then
6 y∗ ← argmin1

y∈Y
max

(x′,y′)∈RB
|dY (y′, y)− dX(x′, x)|

7 R← R ∪ {(x, y∗)}
8 ζ ← max{c, ζ}
9 end

10 end
11 Y ′ ← Y \ P2(R)
12 for y ∈ Y ′ do
13 c← min

x∈x
max

(x′,y′)∈RB
|dY (y′, y)− dX(x′, x)|

14 if c ≤ δ then
15 x∗ ← argmin1

x∈X
max

(x′,y′)∈RB
|dY (y′, y)− dX(x′, x)|

16 R← R ∪ {(x∗, y)}
17 ζ ← max{c, ζ}
18 end
19 end

Algorithm 3.9: extendRelation
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Figure 3.24: Relation between different shapes computed with Algorithm 3.8. The parts covered by
the relation are highlighted in yellow.





Chapter 4

Dense k-Subgraph Problem

The problem of identifying a subgraph with maximal weight subject to some sort of size
constraint in a given graph is a well-known and widely studied problem in operations research.
Various interpretations of this problem setting have been investigated in the literature, with
applications in such diverse fields as facility location [Pis06] and (social) network analysis
[AC09]. Furthermore, non-rigid shape matching can also be reduced to this problem. The
bottleneck p-Gromov-Hausdorff distance of two metric spaces (X, dX), (Y, dY ) can be expressed
as the maximal weight of a subgraph with cardinality |X| = |Y | in a weighted graph modelling
the error induced by pairs of matched points, cf. Section 3.3.2.

The corresponding optimization problem, which asks for the densest subgraph with exactly
k vertices of a weighted or unweighted graph is known as dense k-subgraph problem. It is a
natural generalization of the maximum clique problem (readily implying NP-hardness), and
has therefore been subject to a substantial amount of research.

Problem 4.1 (Dense k-subgraph (DkS))
Input: Weighted graph G := (V,E,w), k ≥ 2, N ≥ 0.
Question: Is there a set of vertices S ⊆ V such that |S| = k and ∑

e∈E(S)
w(e) ≥ N .

Variations of this particular problem, asking for the densest subgraph with at least (DalkS) or
at most (DamkS) k vertices have also been considered.
In the context of location problems, the weighted DkS problem is also often referred to as

maximal dispersion (or 1-dispersion) problem. As these problems usually arise from weighted
graphs representing distances in an Euclidean space, the weights are often assumed to satisfy
the triangle inequality. In addition to these applications, our interest in the DkS problem is
motivated by the problem of computing the bottleneck p-Gromov-Hausdorff distance and a
real-world application in forestry, for which this is not the case.
Not surprisingly, both heuristics and exact solution methods for the DkS problem benefit

significantly from smaller instances. As in the previous chapters, we investigate methods
which decrease the size of an instance significantly, while retaining an approximate solution.
The former methods try to identify few points which describe an instance accurately. To the
contrary, in this chapter, which is based on joint work with Steffen Borgwardt [BS14], we
present an approach which identifies and removes vertices which cannot contribute significantly
to a solution. The resulting graph retains a (1 + 1

k−1)-approximation1 for the DkS problem on
graphs that do not need to satisfy the triangle inequality.
The key result we use is that we can efficiently determine a so-called ∆-core of a graph

G, i. e., an induced subgraph of G in which each vertex has weighted degree no less than ∆,
that still contains such an approximate solution for a suitable threshold ∆. The threshold is

1In [BS14], the approximation factor is erroneously stated as (1 + 1
k

)
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dependent on the edge weight contribution of a vertex in the selection of a k-vertex subset
of the graph. Vertices whose possible contribution lies below the threshold are not vital for
an approximate solution for the DkS problem and can thus be dropped from the input graph
without deteriorating the objective value significantly.

If the resulting ∆-core is small enough, this enables us to find an exact solution (or
approximate solution with low error) to the problem on this ∆-core. We give an algorithm
which computes such a subgraph in polynomial time. Thus, the computational cost of finding
an approximate solution for the DkS problem in this way depends almost solely on the number
of vertices in the remaining ∆-core. Due to this, it is important to find a large threshold ∆ for
the graph reduction, since this allows for the pruning of more vertices. For this purpose, we
devise an efficient algorithm that computes a provably optimal threshold.
Unfortunately, the ∆-cores arising from the reformulation of Problem p-BGHD are usually

still rather large. The edge weights in these graphs are relatively evenly distributed, which
causes a low threshold. In combination with the huge size of the graphs obtained from the
construction in Section 3.3.2, this typically implies that not enough vertices can be pruned to
admit an exact solution of the problem on the resulting graphs with current methods.

However, we present an application in forestry which benefits considerably from the methods
introduced in this chapter, often allowing 90− 95% of all vertices of the graph to be removed.
At first, we briefly survey the relevant literature.

From a theoretical point of view, it is known that the DkS problem is NP-hard even for
bipartite graphs of maximal degree 3 [FS97], comparability graphs, chordal graphs [CP84] and
planar graphs [KB91]. Khot [Kho06] shows that there can be no PTAS for the dense k-subgraph
problem under the standard complexity theoretic assumption NP 6⊆ ⋂

ε>0 BPP(2nε) (see
[AB09, Definition 7.3] for a definition of BPP), but no stronger bound on the inapproximability
is known. In particular, it is unknown whether the problem is in APX or not.

Several approaches for solving the DkS problem exactly have been investigated. Macambira
and Souza [MS00] and Sørensen [Sø04] consider a mixed integer programming formulation for
the problem of finding a k-clique of maximal weight in a vertex- and edge-weighted complete
graph. They derive several facets of the underlying k-clique polytope, which are incorporated
in a branch-and-cut algorithm. Hunting, Faigle, and Kern [HFK01] propose an approach using
cutting planes in a Lagrangian relaxation of the integer linear programming formulation, while
[BEP09] describes a tight convex reformulation of a quadratic model for the problem. Due to
the difficulty of the problem, exact solutions are in general only possible for small instances.
Macambira and Souza [MS00] and Hunting, Faigle, and Kern [HFK01] consider weighted
complete graphs with up to 48 vertices and Sørensen [Sø04] reports results for graphs with at
most 61 vertices and k = bn/2c. Billionnet, Elloumi, and Plateau [BEP09] consider instances
with up to 100 vertices with varying densities and k =

⌊
in4
⌋
for i ∈ {1, 2, 3}.

For larger instances, an exact solution is computationally too expensive in most cases.
Several polynomial time approximation algorithms are considered in the literature. Asahiro
et al. [Asa+00] analyse a greedy algorithm for the maximal weight k-clique problem which
realizes an approximation ratio of O

(
n
k

)
. Feige and Langberg [FL01] present an algorithm

based on an SDP relaxation which achieves an approximation ratio of n
k , which is further

improved in [HYZ02], for a range of values of nk .
Kortsarz and Peleg [KP93] present an algorithm with approximation ratio O(nα) for a

constant α > 0 for the unweighted DkS problem, by combining several algorithms which
achieve good results on specific instances. The algorithms and their analysis are refined in
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[FPK01] and [Gol09]. The currently best known approximation ratio independent of k is
achieved by Bhaskara et al. [Bha+10] in the form of n1/4+ε. In [FPK01], it is also mentioned
that an approximation algorithm for the unweighted DkS problem can be generalized to the
weighted version, incurring an additional factor of log(n) for the approximation ratio.

Constant factor approximations are known for slight variations of the DkS problem: Goldstein
[Gol09] proposes a 2-approximation for the problem of finding the densest subgraph with
at least k vertices (DalkS) by transforming a relaxed version into a submodular function
minimization problem, which can be solved in polynomial time. This result also holds for the
weighted version with non-negative edge weights.

Hassin, Rubinstein, and Tamir [HRT97] construct a 2-approximation algorithm for the
problem of finding l disjoint induced subgraphs, each of size k, of a weighted graph satisfying
the triangle inequality, such that the sum of their weights is maximized. In [LMZ08], a
3-approximation algorithm for the DkS problem on chordal graphs is introduced. Furthermore,
the problem without size constraint can be transformed to a flow problem and is therefore
solvable in polynomial time [Gol84].
As in the previous chapters, the size of the instances arising in our applications is rather

large. Thus, established methods do not yield satisfactory results in reasonable running time.
We present an approach which is motivated by the special properties of the application in
forestry. Before we describe this application and its specific properties in detail, we introduce
the following basic graph theoretic notation in addition to that defined in Section 1.3. In a
weighted graph G := (V,E,w), w(E′) denotes the sum of weights of the edges in E′ and w(V ′)
the sum of weights of edges in E(V ′). The potential or weighted degree of a vertex v with
respect to a subgraph G′ of G is defined as the sum of the weights of adjacent edges:

pG′(v) :=
∑

v′∈NG′ (v)
w(
{
v, v′

}
).

If the subgraph G′ is clear from the context, we also use the notation p(v). For vi ∈ V , we also
write p(i) if it allows for a simpler notation. Let us now describe the application in forestry.

4.1 An Application in Forestry
In many forestry regions in Northern Bavaria, an efficient cultivation has become impossible
due to heritage law and frequent change of ownership. The average size of a lot is less than
0.3 hectares. Further, the lots themselves often have a shape badly suited for cultivation (e. g.,
several dozens of meters long, but only a few meters wide). Finally, even in small regions,
there are typically several hundred different owners of very small lots. Figure 4.1 depicts an
example2 consisting of 560 lots that belong to 227 owners.
With so many different owners, a classical land consolidation approach is difficult to

implement in practice. Instead, one initiates what is called a voluntary land exchange. In such
a process, the structural partition of the forestry region into lots remains unchanged, but the
ownership of the existing lots may be redistributed combinatorially. This approach is similar
to the exchange of lend-lease agreements in agricultural regions, see [BG04; BBG11].

2The figure was created using the licensed software “Arborchange”. To respect data privacy, the figure
does not depict the ownership structure of a real-world region, but instead an example specifically created for
visualization purposes. It shares all of the common and representative properties of the real-world regions
investigated.
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Figure 4.1: A typical forestry region. Different colours represent different owners.

To improve the cost-effective structure of the region by means of such a redistribution, larger
connected areas of lots that belong to a single owner should be created, i. e., adjacent lots
should be assigned to the same owner. Of course, the total value of the lots of the owners has
to remain about the same in the redistribution process.

Due to the high number of owners even in small forestry regions, it is not possible to contact
or negotiate with all owners in practice. Thus, one selects a small number of k owners that are
asked to participate on a voluntary basis. The criterion by which this choice is made is very
important. A natural approach is to try to find the k owners which provide maximal room for
improvement of the cost-effective structure in the region.

As mentioned above, the most significant measure for the improvement of the cost-effective
structure is the creation of larger areas of lots that belong to the same owner during such a
redistribution process. An intuitive way to judge how much potential an owner contributes
to a redistribution process is the total length of boundary between his own lots and other
owners’ lots. For example, consider two owners in a forestry region. One of them has only a
single, huge area of connected lots, and thus only shares a rather low total length of boundary
with other owners. Conversely, the second one owns many small lots that, in total, have the
same size as the other owner’s area of lots. The fragmented nature of these small lots typically
means that the boundary to other lots is much longer. In this case, the second owner would
be the better choice for participation in the land exchange process.

By assigning adjacent lots to the same owner, one might be able to get rid of their common
boundary. Further, large boundary lengths are often connected to unfavourable lot shapes:
a very long lot that is only a few meters wide may have a small area, but nonetheless the
boundary between it and another lot that belongs to a different owner can be very large. By
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preferring owners whose lots have large total boundary lengths, one also implicitly tries to
improve on these bad lot shapes.

The underlying mathematical problem can be modelled as follows. Let G := (V,E,w) be an
undirected weighted graph. Its vertices V := {v1, . . . , vn} correspond to the n owners in the
region. Further, there is an edge {vi, vj} ∈ E if and only if the owners vi and vj have at least
one common boundary between their lots. The weight function w : E −→ R denotes the total
length of all boundaries in between the respective owners’ lots.
As shown in our empirical studies, the graphs constructed in this way share some special

properties. On the one hand, the number of edges is typically bounded by 10n, and there are
vast differences in the edge weights and potential of their vertices. On the other hand, the
edge weights do not satisfy the triangle inequality.

In the following, we present algorithms which exploit the special properties of these graphs.

4.2 Threshold-based Pruning and Approximate Solution
The threshold of an ordered set of vertices in a graph takes a central role, as we can use it
to identify vertices which cannot contribute a lot of edge weight to a subgraph induced by k
vertices. Such vertices are not vital for a good solution of the DkS problem.

Definition 4.2 (Threshold)
Let S := (v1, . . . , vk) be an ordered set of k vertices in a weighted graph G := (V,E,w),
Vi := {v1, . . . , vi} for i ∈ {1, . . . , k} and V0 := ∅. The threshold ∆ := ∆(S) of this ordered set
is defined as

∆(S) := min
i=1,...,k−1

δi,

where
δi := max

{
w(Vi)− w(Vi−1), 1

2
(
w(Vi+1)− w(Vi+1 \ {vi})

)}
.

If the ordered set S is clear from the context, we use the shorter notation ∆ for the threshold.
When we have to distinguish several ordered sets, e. g., S1,S2 or So,Sg, we use the notation
δi1, δi2 and δio, δig to refer to the corresponding values of δi.

The threshold ∆ is a lower bound for the weight increase by sequentially adding vertices vi,
i ∈ {1, . . . , k} to Vi−1. Note that the threshold depends on the order of the set and that the
value for the last vertex is ignored, in the sense that there is no computation of a value δk. For
each vertex vi, we consider two values: The difference w(Vi)−w(Vi−1) represents the additional
edge-weight gained by adding vertex vi to Vi−1. The second term 1

2(w(Vi+1)− w(Vi+1 \ {vi}))
expresses the weight lost by removing vi from Vi+1, which is a lower bound for (one-half)
the contribution of vi and vi+1 combined. This ensures that the vertices of an ordered set
with a large threshold ∆ do not need to form a connected component. The vertex vi may be
disconnected from the preceding vertices (or have very low potential towards them), and this
may be compensated by a vertex vi+1 when the addition of both vi and vi+1 contributes at
least 2∆.
An example is given in Figure 4.2. The ordered set S := (v1, v2, v3, v4) has threshold 1/2:

Adding vertex v3 to (v1, v2) yields no gain in edge weight, but v3, v4 combined increase the
weight by 1. The per-vertex gain is thus 1/2 for these two vertices. The threshold of the
permutation (v1, v3, v4, v2) of the set is 0, since neither v1 nor (v1, v3) induce a positive weight.



96 4.2. Threshold-based Pruning and Approximate Solution

v1

v2

v3

v4

v53 1 1

1

Figure 4.2: The threshold of the ordered set S = (v1, v2, v3, v4) is given by ∆(S) = min{3/2, 3, 1/2, 1},
while ∆((v1, v3, v4, v2)) = min{0, 1/2, 1, 3}.

The bound on the approximation ratio of our approach greatly depends on the fact that
removing a subset B of m vertices from an ordered set S with threshold ∆ implies a loss of
edge weight of at least (m − 1)∆. In other words, adding the vertices in B to A := S \ B
yields a gain of weight of at least (m− 1)∆.

Lemma 4.3
Let S := (v1, . . . , vk) be an ordered set of vertices, ∆ the corresponding threshold, and let
A ⊆ S. Then we have

w(S) ≥ w(A) + (|S \A| − 1)∆.

Proof. Let Vi := {v1, . . . , vi}, t := |S \A| and j1 < . . . < jt such that (vj1 , . . . , vjt) = S \ A.
Consider i ∈ {1, . . . , t− 1}. By definition of the threshold, we have either w(Vji)−w(Vji−1) ≥ ∆
or w(Vji+1) − w(Vji+1 \ {vji}) ≥ 2∆. In the first case, adding vertex vji increases the
weight of A ∪

{
vj1 , . . . , vji−1

}
by at least ∆. In the second case, if vji+1 ∈ A, the weight

of A ∪
{
vj1 , . . . , vji−1

}
is augmented by at least 2∆ by adding vji . If vji+1 /∈ A, we have

ji + 1 = ji+1 and therefore adding vertices vji and vji+1 increases the weight by at least 2∆.
Since jt−1 < k, this argument holds for all i ∈ {1, . . . , t− 1}. 2

In the following, we show that vertices which have potential less than a certain threshold
cannot contribute significantly to a solution of the DkS problem, and can thus be removed
from the graph.

4.2.1 Threshold-based Pruning

In this subsection, we give an algorithm which computes a so-called ∆-core which still contains
a (1 + 1

k−1)-DkS approximate solution. At first, we give a definition.

Definition 4.4 (Weighted ∆-core)
Let G := (V,E,w) be a weighted graph and ∆ ≥ 0. A set of vertices C ⊆ V is a ∆-core of G
if each vertex has potential (or weighted degree) no less than ∆ in the subgraph induced by S:

pG(C)(v) ≥ ∆ for all v ∈ C.

Algorithm 4.1 is an adaption of a well-known algorithm which determines an unweighted
∆-core, see [Łu91]. It computes a ∆-core C of a graph G by removing vertices from G in
the following way: The set of residual vertices C is initialized as C ← V ; T is the set of
vertices which still have to be considered for removal and is initialized as T ← V . For each
vertex v ∈ T , the initial potential p(v) is the sum of weights of all adjacent edges (lines 2 – 4).



Chapter 4. Dense k-Subgraph Problem 97

Input: Size of subgraph k ∈ N, weighted graph G := (V,E,w), threshold ∆
Output: ∆-Core C ⊆ V

1 C ← V, T ← V
2 for v ∈ T do
3 p(v)← ∑

v′∈NG(v)
w({v, v′})

4 end
5 while T 6= ∅ and |c| > k do
6 choose vertex v ∈ T
7 T ← T \ {v}
8 if p(v) < ∆ then
9 for v′ ∈ NG(C)(v) do

10 p(v′)← p(v′)− w({v, v′})
11 T ← T ∪ {v′}
12 end
13 V ′ ← V ′ \ {v}
14 end
15 end

Algorithm 4.1: weighted-∆-Core

Trivially, the potential is an upper bound on how much this vertex can contribute to the total
edge weight of an induced k-vertex subgraph.
The main while loop (lines 5–14) is iterated until T contains no more vertices. In each

of the iterations, we choose and remove an arbitrary vertex v from the set. If its potential
is below the threshold (line 8), all of its neighbours v′ are added to T , and their potentials
are updated (lines 9–12). Since the neighbours of deleted vertices are added to T again, we
obtain a chain-reaction of deletions: At first, only vertices with a potential less than our
input threshold are deleted. Yet, with the deletion of a vertex, the potentials of some of the
remaining vertices are reduced, and may drop below the threshold as well. A vertex incident
to many vertices of low potential may be deleted at a late stage of the algorithm.

The vertices v1, . . . , vk−1 ∈ S are guaranteed to remain in G′, since — by definition — each
of them has potential no less than the threshold in the subgraph induced by S and therefore
also in each graph containing S.
The following lemma gives a lower bound for the absolute loss of edge weight with respect

to a set of vertices that we may introduce by performing these vertex deletions.

Lemma 4.5
Let G := (V,E,w) be a weighted graph, S ⊆ V a subset and C ⊆ V the ∆-core obtained by
Algorithm 4.1. Then we have

w(S ∩ C) ≥ w(S)− |S \ C| ·∆.

Proof. First, note that t := |S \ C| is the number of vertices in S that were deleted during
the run of Algorithm 4.1. Let D := (v1, . . . , vt) be the ordered set of these vertices, in the order
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in which they were deleted. We prove the claim by induction on i = 1, . . . , t, by showing that

w

(
(S ∩ C) ∪ {v1, . . . , vi}

)
≤ w(S ∩ C) + i ·∆.

For i = 1, we know that w((S ∩ C) ∪ {v1}) ≤ w(S ∩ C) + ∆, as pG(C)(v1) < ∆. Let us
assume that the claim holds for i − 1, and consider i. In the iteration in which vertex vi
is deleted during the course of Algorithm 4.1, its remaining potential p(vi) (line 8) satisfies
∆ > p(vi) ≥ w(Ei), where

Ei := {{vi, v} : v ∈ (S ∩ C) ∪ {vi+1, . . . , vt}}.

Informally, Ei consists of the edges that connect vi to those vertices in S ⊆ V which have not
been deleted yet.
Thus, deleting vertex vi after v1, . . . , vi−1 have already been deleted imposes only an

additional error of at most ∆, i. e.,

w

(
(S ∩ C) ∪ {v1, . . . , vi}

)
≤ w

(
(S ∩ C) ∪ {v1, . . . , vi−1}

)
+ ∆

≤ w(S ∩ C) + (i− 1) ·∆ + ∆
= w(S ∩ C) + i ·∆. 2

Using Lemma 4.5, we are now ready to prove that the subgraph remaining after a run of
Algorithm 4.1 still contains a (1 + 1

k−1)-approximate solution for the DkS problem.

Theorem 4.6
Let G := (V,E,w) be a weighted graph, k ∈ N, and S := (v1, . . . , vk) a k-vertex ordered set
in G with threshold ∆. Then Algorithm 4.1 computes a ∆-core C ⊆ V which contains a
(1 + 1

k−1)-approximate solution for the DkS problem.

Proof. Let SO ⊆ V be an optimal set of k vertices for the DkS problem on G and SC ⊆ C
an optimal DkS vertex set for the subgraph G(C) = (C,E(C)) induced by C.

If SO ⊆ C, we have w(SO) = w(SC), and are done. Otherwise, there is a set VD := SO\C 6= ∅
of t ∈ N vertices of the optimal solution that were pruned. By Lemma 4.5, we lose at most total
edge weight t ·∆ by removing these vertices from SO, i. e., w(SO∩C) ≥ w(SO)−t∆. Let further
l ∈ N and j1, . . . , jl ∈ N such that S \ SO = (vj1 , . . . , vjl), where js < js′ for s < s′. Since
S = (v1, . . . , vk) ⊆ C, we know that VD ⊆ SO \ S and thus l = |S \ SO| = |SO \ S| ≥ |VD| = t.
Using SO ∩ S ⊆ SO ∩ C, this implies

{v1, . . . , vjt} ⊆ (SO ∩ C) ∪ {vj1 , . . . , vjt} and {v1, . . . , vjt} ⊆ S.

Applying Lemma 4.3 to the ordered set (v1, . . . , vjt) with threshold

∆((v1, . . . , vjt)) ≥ ∆(S) = ∆

yields
w((SO ∩ C) ∪ {vj1 , . . . , vjt}) ≥ w(SO ∩ C) + (t− 1)∆ ≥ w(SO)−∆.

The worst possible error is the additive absolute error of ∆. Note that

(SO ∩ C) ∪ {vj1 , . . . , vjt} ⊆ C
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and thus w(SC) ≥ w(SO)−∆. As w(SC) ≥ w({v1, . . . , vk}) ≥ (k − 1) ·∆, the relative error is
bounded from above by 1 + 1

k−1 :

w(SO)
w(SC) ≤

w(SC) + ∆
w(SC) ≤ 1 + ∆

(k − 1)∆ = 1 + 1
k − 1 ,

which proves the claim. 2

Finally, let us briefly turn to the running time of Algorithm 4.1.
Theorem 4.7
Let ∆ ≥ 0 and G := (V,E) be a graph with n := |V | and m := |E|. There is an implementation
of Algorithm 4.1 with running time O(m+ n).

Proof. The initialization of the potentials in lines 2–4 is possible in time O(m+ n), as each
edge only contributes to the potentials of the two incident vertices. Initially, T contains n− k
vertices, and at most m edges can be removed by the algorithm, as a result of losing one of
their incident vertices. Due to this, the while loop (lines 5–14) is iterated at most n− k +m
times.
The for loop in lines 9–12 is performed at most m times during a run of the algorithm,

initiated by the deletion of an edge. It consists of a single subtraction, and two set operations.
This proves the claim. 2

For the sake of a simple notation, we used a simplified definition of the potential in our proofs
and in Algorithm 4.1. In fact, a better way to define the potential of vertices is to only count
the k − 1 largest incident edges. Note that we then have to invest additional effort to identify
whether the removed edge was one of the k−1 largest ones or not. This information also has
to be updated. In practice, this extra effort is worthwhile, as it allows for the deletion of more
vertices, while the approximation ratio is maintained. In many cases, it is a much better (i. e.,
lower) estimate for how much a specific vertex can contribute to the total edge weight of an
induced k-vertex subgraph in a best-case scenario.

4.2.2 Approximate Solution
By combining threshold-based pruning with an exact algorithm, we obtain a (non-polynomial
time) algorithm for the DkS problem with approximation error of at most (1 + 1

k−1) in the
form of Algorithm 4.2. We determine an ordered set of vertices and a corresponding threshold
and use this threshold in an application of Algorithm 4.1 to reduce the size of the graph G.
On the reduced graph, we use a traditional branch-and-cut algorithm or solve a quadratic
model of the DkS problem.

Input: Size of subgraph k ∈ N, weighted graph G := (V,E,w)
Output: k-vertex set SC which is a (1 + 1

k−1)-DkS approximation for G

1 S ← maxThresholdSet(G)
2 C ← weighted-∆-Core(G,∆(S))
3 SC ← densekSubgraph(G(C), k)

Algorithm 4.2: approximateDkS
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Theorem 4.8
Let G := (V,E,w) be a weighted graph and k ∈ N. Then Algorithm 4.2 computes a (1 + 1

k−1)-
approximation for the DkS problem.

Proof. In line 3, the algorithm solves the DkS problem exactly for the graph G(C) induced
by the ∆-core C. This implies that it suffices to show that G(C) still contains a (1 + 1

k−1)-
approximate solution. Thus the claim follows by Theorem 4.6. 2

The bound given in Theorem 4.8 is also best possible. This is demonstrated by the worst
case example given in Figure 4.3. For k := 3, S := (v1, v2, v3) is an ordered set with (optimal)
threshold ∆ = 2 + ε. The ∆-core obtained by Algorithm 4.1 is C := {v1, . . . , v4}. An optimal
solution to Problem DkS for k = 3 on C is SC := {v1, v2, v3} with weight 4 + 2ε. The optimal
solution to the problem on G is SO := {v3, v4, v5} with objective value 6.

v1

v2

v3

v4

v54 + 2ε 4

1

1

Figure 4.3: Worst case example for the approximation ratio Algorithm 4.1. For arbitrarily small ε > 0
and k = 3, the algorithm removes vertex v5, and a densest 3-subgraph of the resulting
graph G(C) has weight 4 + 2ε.

Generally, the running time of the algorithm is dominated by the computation of an exact
solution to the problem for the reduced graph in line 3, and thus depends greatly on the size
of the threshold computed in line 1. The next section is dedicated to the computation of a
provably optimal threshold in polynomial time.

4.3 An Optimal Threshold

In this section, we devise a greedy-like algorithm for the construction of an ordered vertex set
with optimal threshold. Consider Algorithm 4.3, which describes the approach in pseudo-code.

The ordered set S is initialized with the largest edge in the graph (line 1). For all vertices
which are not covered by S, we compute their potential p(i) with respect to S (lines 2–4).
This value represents the difference w(S ∪ {vi})− w(S). Then, in lines 5–7, we compute the
S-potentials p(i, j), which represent the differences w(S ∪ {vi, vj})− w(S). This value is the
sum of the potentials p(i), p(j) and of w({vi, vj}).
In the main while loop (lines 8–27), we iteratively add vertices to S. To do so, we find a

vertex vi with highest S-potential p(i) and the pair of vertices vj , vl with maximal p(j, l). If
vi contributes more potential than 1

2p(j, l), we append vi to the end of the ordered set and
update the potentials of the other vertices in V \ S according to the edges incident with vi
(lines 12–17). Otherwise, i. e., if appending vj and vl yields at least twice the potential of p(i),
we add these two vertices to the end of S. When appending vj , vl to S, it does not matter
whether vj or vl is added first. Again, the potentials of the other vertices in V \ S are updated
(lines 18–23). In both cases, we also update the joint potentials of all pairs of vertices not in S
(lines 24–26).
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Note that by comparing the addition of a best single vertex with that of a best pair of
vertices, the operations in the main loop are tailored towards providing a greedy currently-best
value δi in the constructed ordered set.

After leaving the while loop, S contains either k or k − 1 vertices. If it contains k vertices,
we are done. Otherwise, we add a final vertex, best with respect to p(i). The ordered set S
and threshold ∆ are returned.

Input: Size of subgraph k ∈ N, weighted graph G := (V,E,w) with w : E −→ N

Output: Ordered set S ⊆ V with maximal threshold ∆
1 Find maximum-weight edge {vi, vj} ∈ E, S ← (vi, vj), ∆← 1

2w(e1)
2 for vi ∈ V \ S do
3 p(i)← ∑

v∈S
w({vi, v})

4 end
5 for vi, vj ∈ V \ S with i < j do
6 p(i, j)← p(i) + p(j) + w({vi, vj}
7 end
8 while |S| ≤ k − 2 do
9 Find vi ∈ V \ S with maximal p(i)

10 Find vj , vl ∈ V \ S with j < l, with maximal p(j, l)
11 ∆1 ← p(i), ∆2 ← 1

2p(j, l)
12 if ∆1 > ∆2 then
13 S ← S ∪ {vi}, ∆← min{∆,∆1}
14 for v′i ∈ V \ S do
15 p(i′)← p(i′) + w({vi, vi′})
16 end
17 end
18 else
19 S ← S ∪ {vj , vl}, ∆← min{∆,∆2}
20 for v′i ∈ V \ S do
21 p(i′)← p(i′) + w({vj , vi′}) + w({vl, vi′})
22 end
23 end
24 for vi′ , vj′ ∈ V \ S with i′ < j′ do
25 p(i′, j′)← p(i′) + p(j′) + w(

{
vi′ , vj′

}
)

26 end
27 end
28 if |S| = k − 1 then
29 Find vi ∈ V \ S with maximal p(i)
30 S ← S ∪ {vi}
31 end

Algorithm 4.3: maxThresholdSet

We prove that Algorithm 4.3 computes an optimal threshold for a given graph.
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Theorem 4.9
Let k ∈ N and G := (V,E,w) be a weighted graph. Algorithm 4.3 computes an ordered set Sg
of k vertices with maximal threshold among all ordered sets of k vertices of the graph.

Proof. Let So := (w1, . . . , wk) ⊆ V be an ordered set with maximal threshold ∆(So) and
let Sg := (v1, . . . , vk) be the ordered set computed by Algorithm 4.3 with threshold ∆(Sg).
Suppose ∆(Sg) < ∆(So) and let i ∈ {1, . . . , k − 1} be the minimal index such that δig < ∆(So)
and S := (wj1 , . . . , wjt) the ordered set obtained from So by removing all occurrences of vj for
all j ∈ {1, . . . , i− 1}.
Since i− 1 ≤ k − 2, S contains at least two vertices and (w1, . . . , wj2) is an ordered subset

of S2 := (v1, . . . , vi−1, wj1 , wj2). Therefore δi2 ≥ δj1o ≥ ∆(So). This is a contradiction to the
greedily-best choice of vertices in the while loop of the algorithm. 2

Next, let us consider the running time of an implementation of the algorithm along the lines
of the given pseudo-code.

Theorem 4.10
Let G := (V,E,w) be a weighted graph with n := |V |, m := |E| and k ∈ N. There is an
implementation of Algorithm 4.3 with running time O

(
kn2).

Proof. Finding the largest edge in the graph and computing the potentials of the vertices
can be realized in O(m+ n), as each edge has to be considered at most twice. Initialization
of the potential of the edges is in O

(
n2), as each pair of vertices and each edge have to be

considered at most once.
Further, each iteration of the main while loop can be achieved in O

(
n2): finding the maximal

p(i) is in O(n), finding the maximal p(i, j) is in O
(
n2), and the potential-updates are possible

in O
(
n2). In each iteration, at least one vertex is appended to the ordered set. Thus, the

while loop is iterated at most k − 1 times resulting in time O
(
(k − 1)n2) for the operations of

the while loop. Appending a final vertex to the set is possible in O(n).
In total, the running time is dominated by the initialization (O

(
n2)) and the while loop

(O
(
(k − 1)n2)), yielding a total running time of O

(
kn2). 2

By Theorems 4.9 and 4.10, Algorithm 4.3 is an efficient way of computing a provably optimal
threshold which is necessary for Algorithm 4.2. For graphs with properties like those occurring
in our practical application in forestry, this approach works very well.

4.4 Empiric Results
We applied Algorithm 4.2 on a total of 62 forestry regions in Northern Bavaria. The graphs
G := (V,E) — constructed as described in Section 1.2 — range from n = 64 to 684 vertices.
An interesting property of these graphs is that their number of edges is typically bounded from
above by 10n. This small number comes from the special way in which they are constructed:
Recall that there is an edge in between two vertices in our graph if the two owners cor-

responding to these vertices have lots that share a common boundary. The lot structure of
forestry regions allows us to model these neighbour-relations as a planar graph from which the
graph in question can be derived by identification of vertices. Each lot is represented by its
centre of gravity (or any arbitrary point in its interior), and there is an edge in between two
such points if the corresponding lots share a common boundary. Let s be the number of lots
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in the region. This planar graph then contains at most 3s− 6 edges, which is also an upper
bound on the number of edges |E|.
The number s is indirectly connected to n := |V |, as in most regions about 30–40% of the

lots are owned by owners that only have this single lot. On average for all regions, each owner
has about 5 lots, i. e., n ≈ 1

5s. Note further that many neighbourhood relations are in between
the same owners, so that the lengths of these boundaries contribute to the weight of a single
edge, and do not induce multiple edges. In practice, one arrives at the typical number of edges
mentioned above. Recall that, by this construction, this graph does not satisfy the triangle
inequality.
We performed Algorithm 4.2 for these graphs on a standard laptop3. Figure 4.4 depicts

the result of such a DkS approximation for k = 10, by only showing the selected k owners in
colour. The result is as expected: Some of the selected owners have many and very large lots,
e. g., those depicted in brown and purple. These are complemented by owners that have a long
common boundary with these owners’ lots, as well as lots with bad shape. Good examples
for this are the yellow and green owner (in the centre of the figure and to the upper right,
respectively).

Figure 4.4: The forestry region of Figure 4.1. Only the k := 10 owners selected by a run of Algo-
rithm 4.2 are coloured.

In these computations, the running time of our threshold-based pruning step never exceeded
1 second. In general, the total running time of Algorithm 4.2 depends almost solely on the final
step, and thus on the number of vertices remaining after pruning. In other words, it depends
greatly on the size of the computed threshold and the number of vertices whose potential falls

3Intel Dual Core i7 CPU at 2.0 GHz and 4 GB of RAM; algorithms implemented in Java 1.6
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below this threshold. All of these vertices of low potential are pruned during a first iteration
of Algorithm 4.1. Many of the vertices with a rather large original potential can be removed
during later iterations of the algorithm.

The key reason for the success of this approach for the graphs in this real-world application
is depicted in Figures 4.5 and 4.6. The black graph depicts the cumulative distribution of
edge weights and potentials in a representative selection of regions, i. e., the percentage of edge
weights and potentials less than or equal to edge weight w and potential p, respectively. In
Figure 4.6, the corresponding threshold is illustrated by a black vertical line. A cumulative
exponential distribution fitted to the data via a maximum likelihood estimator is shown in red
and reveals a tight correspondence.

region n m nP nP/n mP mP/m

1 100 283 22 22,0% 98 34.6%
2 236 739 12 5.1% 44 6.0%
3 540 3258 40 7.4% 253 7.8%
4 469 1689 10 2.1% 27 1.6%
5 597 6107 13 2.2% 36 0.6%
6 155 484 128 82.6% 392 81%
7 163 378 48 29.4% 77 20.4%
8 347 1904 24 6.9% 104 5.5%
9 145 555 31 21.4% 161 29.0%
10 477 1402 10 2.1% 30 2.1%
11 212 834 13 6.1% 49 5.9%
12 315 2445 10 3.2% 38 1.6%
13 454 2467 11 2.4% 32 1.3%
14 395 1650 23 5.8% 199 12.1%
15 684 2678 46 6.7% 443 16.5%
16 669 5755 140 20.9% 856 14.9%

Table 4.1: Results of Algorithm 4.2 for a representative choice of forestry regions. The values n
and m denote the number of vertices and edges of the original graph. The number of
residual vertices and edges in the ∆-core computed by Algorithm 4.2 is given by nP and
mP , respectively.

This “exponential character” of the distribution of edge weights is a key feature for the
success of our pruning approach. Even low thresholds with respect to the maximal potential
already cut off a significant portion of the graphs. Recall also that due to the iterative nature
of our pruning approach, many vertices whose potential in the original graph is much higher
than the threshold can be removed at a later stage of the algorithm, if their potential has
decreased enough. Therefore, in practice, we remove a lot more vertices than indicated by the
black line in Figure 4.6.
For 55 of our 62 instances, using k := 10, the graph-size reduction steps performed in

Algorithm 4.2 yield a graph G′ := (V ′, E′) for which our final exact computation terminated
in at most 1 minute. For 13 of these 55 successful instances, our pruning algorithms already
reduced the final graph to vertex-size exactly k, so that the final step was not entered at all. In
most other cases, we obtained a reduction of the number of vertices in between 90% and 95%.
When exceeding a running time of 1 minute (for the 7 remaining instances), we returned



Chapter 4. Dense k-Subgraph Problem 105

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

edge weight (w)

c
u

m
u

la
ti
v
e

 d
e

n
s
it
y

 

 

Data
ML Fit

(a) Region 1

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

edge weight (w)

c
u

m
u

la
ti
v
e

 d
e

n
s
it
y

 

 

Data
ML Fit

(b) Region 6
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(c) Region 8
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(d) Region 9

Figure 4.5: Cumulative distribution of edge weights for some representative forestry regions.

the greedy solution computed by Algorithm 4.3 for practical purposes. Even in these cases the
a posteriori approximation error was less than 2.5.

Table 4.1 sums up the reduction of the number of vertices of the graphs for 16 anonymized
representative regions. The original number of owners is denoted by n, while nP denotes the
number of owners after the pruning step, m the number of edges in the original graph, and
mP the number of edges in the induced subgraph after pruning. Note that for 14 of these 16
regions, we ended up with at most 48 vertices, so that the value of nP was small enough for
an exact solution of the problem for the reduced graph.
In conclusion, the empiric results exhibit that the special properties of the graphs derived

from our application in forestry allow our threshold-based approximation algorithm to solve
the DkS problem with a very good approximation ratio for almost all of our instances, despite
their large number of vertices. While one cannot expect similar numbers for general graphs,
our pruning steps are computationally cheap, and may prove helpful in many applications. In
general, the total running time is dominated by the solution of the reduced problem, for which
a sophisticated implementation along the lines of state of the art literature is essential.
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(b) Region 6
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(c) Region 8
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Figure 4.6: Cumulative distribution of potentials some for representative forestry regions.

Unfortunately, the graphs arising from the reformulation of Problem p-BGHD do not possess
similar structure. Usually, each point pair has low distortion to at least some other point pairs,
which overall results in a graph with roughly equally distributed weights. This is in contrast
to the assumptions which the algorithms presented above are based on and which are fulfilled
in the application in forestry. It is therefore not surprising that the approach above does not
yield satisfying results in this setting. The homogeneous distribution of weights causes a low
threshold and in turn only few vertices can be pruned. An exact solution on the reduced graph
is also complicated by the huge size of the original instances in question. By construction, the
graph representing the problem for metric spaces (X, dX) and (Y, dY ) has cardinality |X||Y |.
This is far beyond the capabilities of the exact methods for Problem DkS for the metric spaces
we consider in Chapter 3, even after the reduction achieved with our pruning approach.

A generalization of the approach presented here could be realized by considering the l ∈ N
next vertices in each step of the greedy construction of a sequence of maximal threshold,
instead of l := 2. The definition of the threshold could be adapted as well, allowing for a
higher threshold and thus smaller reduced graphs.



Chapter 5

Mesh Segmentation

Mesh segmentation can be formulated as a class of optimization problems with constraints
and objective functions adapted for various applications. In most cases, the constraints and
objective functions are formulated in terms of features of the mesh, which can be classified in
several groups. The survey [Sha08] gives an overview of commonly used methods and identifies
three major types of constraints:

Cardinality constraints confine the number of faces (or vertices) in a partition or the number
of segments in the partition.

Geometric constraints control geometric properties such as area and diameter but also con-
vexity and curvature of the segments.

Topological constraints require topological properties such as connectivity or equivalence to
certain objects, e. g., a disc.

Similarly, there are many properties of a mesh which can be of interest for a “good” segmentation
and therefore influence the objective function. Examples for such properties are planarity,
curvature, geodesic distances, symmetry, convexity, and many others.

An intuitive approach to segmentation, if the number of segments is known a priori, is using
methods based on clustering algorithms, specifically the so-called Lloyd’s or k-means algorithm
[Llo82]. Shlafman, Tal, and Katz [STK02] use centroids of the faces and their surface normals
to define distances between faces of an orientable mesh, while Cohen-Steiner, Alliez, and
Desbrun [CSAD04] and Kobbelt and Wu [KW05] consider the distance of segments to given
reference shapes — so-called shape proxies — to perform k-means clustering on the resulting
space.
A common way to perform segmentation of a mesh if the number of segments is unknown

is by so-called region growing methods, which are also commonly used in the related task of
mesh simplification, see e. g., [KT96; LDB05; Cha+95]. After determining some faces which
constitute initial regions in a first step, these regions are increased by adjoining adjacent faces.
The choice of the faces which are adjoined is usually based on a greedy evaluation of the
objective function, i. e., on (some of) the properties mentioned above.
A similar approach is taken by hierarchical clustering as introduced in [GWH01]. In its

basic form, the algorithm tries to identify large plane areas of the mesh. This is achieved
by a greedy heuristic operating on the dual graph of the mesh. In each step, the parts of
the mesh which admit the best approximation by a plane are joined. An advantage of this
method is that one run of the algorithm yields segmentations with a decreasing number of
segments (but increasing approximation error). Therefore, a suitable number of segments can
be chosen a posteriori such that constraints on the approximation error are respected. The
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algorithm has been extended to consider approximation of segments not only by planes, but
also by several other primitives, cf. [AFS06]. For each join of the mesh parts, one computes
(or estimates) the error of approximating the resulting part by the given primitives. Note
that one step of the algorithm requires that all possible join operations are evaluated by
fitting each given primitive to the resulting part. To be usable in practice, this requires very
fast methods for shape matching, i. e., for the fitting of these primitives. Consequently, only
select primitives which admit efficient algorithms for the shape matching procedure have been
considered by the authors. Investigations with respect to suitable primitives and respective
shape matching methods have also been considered in [Woh10]. Due to the very limited choice
of such primitives, this approach is not viable for the goal of the project.

5.1 Minimal Covering of a Mesh

In the preceding chapters, we developed the tools for recognizing parts of the component
which can be manufactured by elements in our database. In practice, however, this will not
result in the desired segmentation of the component. If the database is of reasonable size, we
can expect that the surface can be covered by several sets of standard elements. Thus, the
next step towards a segmentation is selecting a number of parts which are actually used to
construct the component.

To achieve this, we compute a minimal covering of the surface, i. e., a subset of the standard
elements that minimizes unnecessary overlap while still covering the whole component surface.
We model this problem as a variant of the weighted dominating set problem.

Recall that both the component surface and the standard elements are represented as meshes.
We construct a graph by assigning a so-called terminal node to each standard element and a
node to each point of the mesh. Each terminal is connected to all nodes that are covered by
the corresponding standard element by a so-called tn-edge. In addition, we connect any two
terminals whose corresponding standard elements overlap by an edge we refer to as tt-edge.
Each tt-edge is assigned a weight proportional to the overlapping area. Our goal is then to
find a subset of the terminals that dominates the nodes, i. e., where each node is adjacent to at
least one selected terminal, while minimizing the total edge weight between selected terminals.
This corresponds to finding a dominating set G with minimal induced edge weight.

Problem 5.1 (Minimal dominating set (MDS))
Input: Graph G := (V,E), set of terminals T ⊆ V, weight function w : E(T ) −→ N, L ∈ N.
Question: Is there a dominating set D ⊆ T of G with induced weight w(E(D)) ≤ L?

At first, we investigate the computational complexity of this problem.

Theorem 5.2
Problem MDS cannot be approximated in polynomial time within a factor of O

(
2poly(〈I〉)

)
,

where 〈I〉 denotes the size of an instance I of Problem MDS, unless P = NP.

Proof. We use an argument similar to the one employed in [Hal93] to establish the hardness
of approximating the minimal size of an independent set which cannot be extended. We show
that an approximation algorithm for Problem MDS can be used to decide the NP-complete
satisfiability problem SAT, cf. [GJ79, p. 259].
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Figure 5.1: Minimal covering: construction of the graph for the dominating stable set problem.
Terminals are represented by square nodes with colour corresponding to the standard
element, mesh nodes as black circles. The tt-edges are drawn in red, while tn-edges are
depicted in black.

Problem 5.3 (Boolean satisfiability (SAT))
Input: Variables x1, . . . , xn, clauses C1, . . . , Cm
Question: Is there a truth assignment {x1, . . . , xn} −→ {true, false} such that

C1 ∧ . . . ∧ Cm = true?

Given a SAT formula F with n variables x1, . . . , xn and m clauses C1, . . . , Cm, we construct
a graph G := (V,E) with 2n+m nodes V := C ∪̇ T , where the m nodes C := {C1, . . . , Cm}
represent the clauses and 2n terminals T := {x1, x̄1, . . . , xn, x̄n} represent the literals. We
construct the graph such that the subgraph induced by the terminals is complete, and each
clause is connected to the nodes representing the literals it consists of, i. e.,

E :=
{{
x̂, x̂′

}
| x̂, x̂′ ∈ T

}
∪ {{x̂, Ck} | x̂ ∈ T, Ck ∈ C and Ck contains x̂}.

Further, consider the weight function w : E(T ) −→ N with

w({xi, x̄i}) := M, for all i ∈ {1, . . . , n}
w({xi, xj}) := 1 =: w({xi, x̄j}), for all i, j ∈ {1, . . . , n}, i 6= j.

for a sufficiently large M ∈ N.
Each truth assignment f : {x1, . . . , xn} −→ {true, false} of the variables corresponds to a

subset Df := {xi ∈ T | f(xi) = true} ∪ {x̄i ∈ T | f(xi) = false} of terminals and vice versa.
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If f is a satisfying assignment for F , then Df is a dominating set of G, since each clause
contains at least one literal with value true. Since f is an assignment for F , Df cannot contain
the positive and negative literal of a variable, and therefore the weight of the graph induced
by Df is bounded by w(E(Df )) ≤ 2n(2n−1)

2 = n(2n− 1).
A dominating set D ⊆ S of G of weight w(E(D)) < M cannot contain both the positive

and negative literal of a variable and is therefore a satisfying assignment for F .
Since M was arbitrary and 〈M〉 = dln(M)e, this proves the claim. 2

For the solution of practical instances emerging in the engineering application, we developed
and implemented an integer linear programming approach. The set of mesh nodes and terminals
are denoted by VM and T , respectively. Since the number of standard elements which can be
fitted to the part, i. e., the number of terminals, is small in practice, the algorithm performed
efficiently in our tests. In addition, the formulation can also be adapted to handle slight
modifications, e. g., allow for small uncovered surface parts.

min
∑

{i,j}∈E(T )
cijxij

s.t. xij ≥ si + sj − 1 ∀{i, j} ∈ E(T )∑
s∈NG(v)

s ≥ 1 ∀v ∈ VM

s ∈ {0, 1}|T |

x ∈ {0, 1}|T |×|T |

The variables xij represent edges between the terminals. The corresponding edge weights cij
are given by the amount of overlap of the two transformed standard elements. The variables si
are decision variables for the terminals and represent which standard elements will be used to
cover the surface. The constraints ensure that an edge between two terminals must be chosen
if both terminals are chosen and that each vertex of the mesh must be adjacent to at least one
terminal.

5.2 Subdivision in Submeshes
Finally, each of the remaining overlapping surface areas has to be split between the covering
standard elements. This subdivision problem can be modelled as a so-called multi-terminal
cut problem. To obtain a mesh segmentation, we need to assign each face to exactly one part.
We will therefore consider the dual graph GD := (VD, ED) of the mesh, where VD is the set of
faces of the mesh, and two faces are connected by an edge e ∈ ED if and only if they intersect
in a common mesh edge. We will refer to the vertices of this graph as nodes and the edges as
nn-edges.

For the subdivision problem, we only have to consider faces of the mesh that are covered by
more than one of the selected standard elements. For each standard element involved, we create
a terminal node and each face node is connected to all terminals corresponding to standard
elements that cover the face. These edges are again referred to tn-edges in the following. To
represent the difficulty or cost of assigning two adjacent faces to different standard elements, we
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assign a weight to the corresponding nn-edge. The cost of separating adjacent faces is, on the
one hand, influenced by the curvature and material properties of the corresponding standard
elements, since these affect the difficulty of producing such a cropped standard element. For
example cropping along the directions of principal curvature is preferred. On the other hand,
the quality of the fit of the cropped standard elements determines the difficulty of assembly of
these parts and is thus also relevant for the computation of the edge weight.

The weight of a tn-edge is a measure for the quality of the alignment of the face corresponding
to the node and the standard element represented by the terminal. If the error of the alignment
of the corresponding parts is high, the weight on the corresponding edge is low and vice versa.
Therefore, faces which are well aligned with the target geometry are preferred.

Figure 5.2: Subdivision: construction of the graph for the multi-terminal cut problem. The nn-edges
are depicted in red, while the tn-edges are depicted in black. Terminals are represented by
square nodes with colour corresponding to the standard element and nodes representing a
face are drawn as black circles.

The problem is then to remove as few edges as possible with respect to their total weight
such that the terminals become disconnected. The solution yields a unique mapping of each
mesh face to one of the standard elements, hence all overlap is removed.
By the construction of the graph above, this is exactly a multi-terminal cut problem.

Problem 5.4 (Multi-terminal cut (MTC))
Input: Weighted graph G := (V,E,w), set of terminals T ⊆ V, L ∈ N.
Question: Is there a cut C ⊆ E, i. e., a subset of edges such that no two terminals are in a
common component of (V,E \ C), with weight w(C) ≤ L?

Dahlhaus et al. [Dah+94] establish that the problem is NP-hard for general graphs and
|T | ≥ 3 and also give a

(
2− 2

|T |

)
-approximation algorithm. Furthermore, Xiao [Xia08] shows

that the problem is fixed parameter tractable with respect to the parameter |T |.
In practice, the overlapping areas of elements are rather limited. As already mentioned,

the number of standard elements is usually small as well, such that the instances of this
problem are not too large in our application. Therefore, the methods mentioned above suffice
to produce satisfactory solutions in reasonable running time.
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5.3 Conclusion
The methods described in this thesis are a first step towards the fully automated production
of almost arbitrary target geometries from sheet metal parts. In conjunction with the results
obtained in the underlying engineering project (see Chapter 1), we show that the segmentation
of a target geometry in suitable standard elements is a viable approach to this challenging
task. Due to the complexity of the segmentation problem, we employ a three stage approach
consisting of shape matching, minimal covering and subdivision of the target geometry, cf.
Section 1.2. We show that the minimal covering of a mesh is not approximable in polynomial
time within any reasonable bound, unless P = NP , cf. Theorem 5.2. The subdivision problem
is also known to be hard, but the sizes of the instances of the problems occurring in the
engineering application are small enough to be solved with standard techniques.
The challenging part of the segmentation lies in the recognition of standard elements in a

target geometry. This topic is addressed in the main part of this thesis.
Chapter 2 examines a method for affine shape matching. The main contribution of this

chapter is the formal definition of wide bases (Definition 2.6) and a geometric proof (The-
orem 2.7) that shows that each compact set in Euclidean space contains a wide base. This
enables the analysis of the approximation ratio of an elementary algorithm (Theorem 2.13
and Corollary 2.15) and an extension for a related multi-criteria optimization problem. Sec-
tion 2.5 describes a method which is tailored to the specific set of transformations which can
currently be realized by the manufacturing method developed in the engineering part of the
project.

A further extension of this framework can be achieved by expanding the set of transformations
which can be applied to standard elements. This would enhance the utility of the process
considerably, since even fewer standard elements would be necessary to produce desired target
geometries. An interesting approach is related to the problem setting described in Chapter 3.
The stretching and shrinking operations which are necessary for forming a target surface are
captured by the distortion of a correspondence between the initial and target geometry.

We give several original results on previously open questions on the computational complexity
of identifying a correspondence with minimal distortion between two metric spaces. While the
results given in Theorems 3.22, 3.24 and 3.28 show that the problem cannot be approximated in
polynomial time under standard complexity theoretic assumptions, we introduce methods which
provide good results for several classes of instances. Section 3.3 establishes an approach which
enables the extension of a relation between few distinct points of the metric spaces — called
bases — with low error, see Theorem 3.43. We transfer ideas from convex geometry to identify
suitable bases. In conjunction, these methods can be used to obtain a fixed parameter tractable
approximation algorithm for the problem, see Theorem 3.47. This yields a promising direction
for further analysis and automation of the driving process from a mechanical engineering as
well as a mathematical point of view.

We also establish that the non-rigid shape matching problem can be reduced to the dense
k-subgraph problem, which asks for an induced subgraph on exactly k vertices of a given graph
and is considered in Chapter 4. Similar to the previous chapters, we substantiate that the size
of many practical instances can be markedly reduced without significantly deteriorating the
objective value of a solution. This results in a (non-polynomial time) (1 + 1

k−1)-approximation
algorithm for the problem (Theorem 4.8). We also present a real world application in forestry,
in which this approach works particularly well.
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