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Abstract

The main contribution to the (anomalous) cross field transport in tokamaks is known to be due
to turbulence and numerical codes are essential tools in order to predict transport levels and
understand physical mechanisms. Whereas for the interior closed field line region sophisticated
turbulence codes are already quite advanced, the outer region of a tokamak, i.e. the edge and
scrape-off layer (SOL), still lacks such tools to a large extent. The presence of many spatio-
temporal scales and the complex geometry in diverted machines pose a huge challenge for the
modelling of the edge/SOL.

In this work the newly developed code GRILLIX is presented, which is aimed to set a first
milestone in the development of a 3D turbulence code for the edge/SOL. GRILLIX uses a simpli-
fied physical model (Hasegawa-Wakatani), but is capable to treat the complex geometry across
the separatrix. The usually employed field aligned coordinate systems are avoided by using a
cylindrical grid (R,Z, ϕ) which is Cartesian within poloidal planes. The discretisation of per-
pendicular (w.r.t. the magnetic field) operators is straight forward and parallel operators are
discretised with a field line map procedure, i.e. field line tracing from plane to plane and in-
terpolation. Via a grid-sparsification in the toroidal direction the flute mode character of the
solutions can be exploited computationally. Ultimately, tokamak geometries with an arbitrary
poloidal cross section, including a separatrix, can be treated with GRILLIX.

In non-field-aligned grids numerical diffusion, i.e. a spurious perpendicular coupling depending
on parallel dynamics, arises unavoidably. This numerical diffusion can be fatal for codes, since
the parallel dynamics is usually orders of magnitude faster than perpendicular dynamics in
tokamaks. A new numerical scheme is developed and applied in GRILLIX which maintains
the self-adjointness property of the parallel diffusion operator on the discrete level and reduces
numerical diffusion drastically. Many benchmarks in several geometries are presented to validate
the field line map approach in general and GRILLIX in special.

First effects of the geometry in diverted machines on drift wave turbulence were studied with
GRILLIX. Field aligned structures get strongly distorted as they enter the X-point region. Their
perpendicular spatial extent decreases thereby drastically towards the X-point and are thus
subject to enhanced dissipation. Since ultimately close to the X-point fluctuations die out, the
X-point constitutes a kind of barrier for fluctuations. This mechanism is similar to the previously
found resistive X-point mode.
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Zusammenfassung

Radialer (anormaler) Transport in Tokamaks wird hauptsächlich durch turbulente Prozesse getra-
gen und numerische Simulationsprogramme sind heutzutage ein unverzichtbares Werkzeug, um
Vorhersagen über das Transportlevel zu treffen und um physikalische Mechanismen zu verstehen.
Während für den inneren Bereich geschlossener Feldlinien, hochentwickelte Programme bereits
zur Verfügung stehen, gibt es für den äußeren Bereich (Rand und Abschälschicht) von Tokamaks
kaum Ansätze. Das Vorhandensein vieler raumzeitlicher Skalen und eine komplexe Geometrie in
Divertormaschinen stellen eine grosse Herausforderung beim Modellieren des Randbereiches dar.

In dieser Arbeit wurde das Simulationsprogramm GRILLIX entwickelt, welches einen er-
sten Meilenstein bei der Entwicklung eines 3D Turbulenzprogrammes für den Rand und die
Abschälschicht setzt. GRILLIX basiert noch auf einem vereinfachten physikalischen Model
(Hasegawa-Wakatani), aber kann dafür auf die komplexe Geometrie angewandt werden, z.B.
sind Simulationen über die Separatrix hinweg möglich. Durch das Verwenden eines zylindrischen
numerischen Gitters (R,Z, ϕ), welches kartesisch innerhalb poloidaler Ebenen ist, werden die
üblicherweise verwendeten Feldlinien-angepassten Koordinaten umgangen. Zur Diskretisierung
senkrechter (im Bezug auf die Magnetfeldlinien) Operatoren können damit Standardmethoden
herangezogen werden. Die Diskretisierung paralleler Operatoren erfolgt mittels Feldlinienabbil-
dung, d.h. Feldlinien werden von Ebene zu Ebene verfolgt und Werte an den entsprechenden
Stellen interpoliert. Strukturen sind üblicherweise stark elongiert entlang Magnetfeldlinien und
diese Eigenschaft wird ausgenutzt durch eine Ausdünnung des Rechengitters in toroidaler Rich-
tung. Tokamak Geometrien mit beliebigem poloidalen Querschnitt, einschließlich einer Separa-
trix, können mit GRILLIX behandelt werden.

In Rechengittern, die nicht Feldlinien angepasst sind, tritt numerische Diffusion auf, d.h. eine
fälschliche numerische senkrechte Kopplung, die von der parallelen Dynamik abhängt. Diese nu-
merische Diffusion kann fatal sein für Simulationsprogramme, da die parallele Dynamik üblicher-
weise Größenordnungen schneller ist als die senkrechte. Ein neues numerisches Schema wurde
daher entwickelt und in GRILLIX angewendet, welches die Selbstadjungiertheit das paralle-
len Diffusionsoperators auf der diskreten Ebene erhält und die numerische Diffusion drastisch
reduziert. Viele Tests in verschiedenen Geometrien werden präsentiert, um das Konzept der
Feldlinienabbildung im Allgemeinen und GRILLIX im Speziellen zu verifizieren.

Erste Geometrieeffekte in Maschinen mit Divertor auf Drift-Wellen Turbulenz wurden mit
GRILLIX untersucht. Feldlininen ausgerichtete Strukturen werden stark deformiert in der Nähe
des X-Punktes. Deren senkrechte Ausdehnung nimmt zum X-Punkt hin stark ab und Dissipation
wird dominant. Der X-Punkt stellt letztlich eine Art Barriere für Fluktuation dar, da diese in
der Nähe des X-Punktes praktisch verenden. Der Mechanismus ähnelt damit der bereits zuvor
gefundenen resistiven X-Punkt Mode.
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Chapter 1.

Introduction

Feynman states in volume 1 of his famous lectures at the end of chapter 4 where he introduces
the concept of energy [1, p. 4-8]:

”Finally, we remark on the question of where we can get our supplies of energy today.
Our supplies of energy are from the sun, rain, coal, uranium, and hydrogen. The sun
makes the rain, and the coal also, so that all these are from the sun. [...] We have
already obtained energy from uranium; we can also get energy from hydrogen, but
at present only in an explosive and dangerous condition. If it can be controlled in
thermonuclear reactions, it turns out that the energy that can be obtained from 10
quarts of water per second is equal to all of the electrical power generated in the
United States. With 150 gallons of running water a minute, you have enough fuel to
supply all the energy which is used in the United States today! Therefore it is up to
the physicist to figure out how to liberate us from the need for having energy. It can
be done.” [1 quart = 1/4 gallons ≈ 0.95 litres, authors annotation]

Since this statement dating back to the 1960s the global energy problem has continued to get
worse and the development of sustainable energy sources will become more and more important
for humankind to raise or even just maintain its level of living. As it happens in the core of the
sun, in fusion reactions of light nuclei a large amount of energy is liberated. The most promising
fusion reaction for a future fusion power plant is [2]:

2
1D + 3

1T −→ 4
2He (3.5MeV) + 1

0n (14.1MeV), (1.1)

The rest mass of the products is smaller than the rest mass of the reactants and the difference
is released in terms of kinetic energy of the products, denoted with the numbers given in the
brackets. The fuel, i.e deuterium and tritium, can be won from water and from lithium whose
amount on earth suffice for millions of years.

The reactants must have a high temperature of several million Kelvin in order to overcome
the Coulomb barrier which originates from their electrical repulsion. In such an environment
the reactants are in a plasma state. A plasma consists of electrically charged particles, but
is electrically neutral above a certain spatial scale. Around a small positive test charge put
into a conglomerate of electrons and ions, the negatively charged electrons will accumulate and
screen the extra charge above the Debye length λD =

√
Te/(4πnee2), where Te, ne is the electron

temperature, respectively density. Outside of a sphere with radius of a Debye length around this
test particle, other particles do not feel this individual test charge but interact in a collective long
ranging manner. This is what characterizes a plasma and thus one may ideally speak of a plasma
if the number of charged particles within a Debye sphere is much larger than one, i.e. neλ

3
d � 1.

The spatial dimension of a plasma must be also large compared to the Debye length (L� λD).
In addition, the typical frequency of plasma oscillations ωpe =

√
4πnee2/me, which characterizes

an oscillation of an electron cloud with respect to the fixed ions, must be large compared to the
plasma-neutral collision frequency (ωpeτ � 1) (see e.g. [3, 4]).
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Chapter 1. Introduction

1.1. Tokamaks

In order to reach and sustain the required high temperatures, the plasma has to be confined and
insulated against thermal losses. For the sun gravity acts as the confining force. On the surface
of the earth, where gravity is negligible against the appearing electromagnetic forces, magnetic
fields can be used to confine a plasma. In a strong homogeneous magnetic field a charged particle
performs a helical orbit with a perpendicular extent of the Larmor radius ρL = mcv⊥/(|Ze|B),
where Ze is the charge of the particle, m its mass and v⊥ its velocity perpendicular to the
magnetic field B. Assuming that the particle has a thermal velocity of v⊥ =

√
T/m, leads to

ρL = c
√
Tm/(|Ze|B). Whereas the charged particles of the plasma can still stream freely along

magnetic fields, their motion in the perpendicular direction is constrained which leads to the
idea of magnetic confinement concepts.

Among various magnetic fusion concepts the tokamak (see fig. 1.1) has proven to be the
most successful configuration, which utilizes magnetic fields in a toroidal topology to confine
the plasma. A strong toroidal field is created by a set of planar coils. However, the resulting
inhomogeneity of the toroidal magnetic field Btor ∝ R−1 would cause a charge dependent ver-
tical drift of the particles perpendicular to the magnetic field lines. The resulting electric field
would in turn cause a charge independent radial drift and lead to a fast loss of the plasma. To
compensate for this effect, a poloidal field is created additionally via a toroidal current induced
in the plasma, which owing to its composition of charged particles, is a good electric conductor.
The poloidal magnetic field component is usually much smaller than the toroidal component and
the resulting magnetic field runs helically in toroidally nested flux surfaces. In such a geometry
parallel compensation currents (Pfirsch-Schlüter currents) can now short-circuit the vertical elec-
tric field and the plasma remains confined. It is important to note that the whole configuration
is axisymmetric. A set of vertical magnetic field coils balances the radially outwards acting hoop
force and is also used for plasma shaping. The finite resistivity of the plasma requires a con-
tinuous toroidal current drive to maintain the poloidal magnetic field. This is achieved via the
principle of a transformer, where the plasma column plays the role of a secondary winding. In
the primary winding a rising current has to flow which constrains the whole concept to a pulsed
operation (see e.g. [2, 4, 5, 6]).

a) b)

Figure 1.1.: Concept of tokamak: a) Coil system, b) geometry and magnetic field line
topology

Given this qualitative picture, the macroscopic plasma behaviour is well described by Magne-
tohydrodynamics (MHD, see e.g. [7]), which models the plasma as a single neutral fluid which
can nevertheless carry an electric current. Any confined state has to fulfil perpendicular force

2



1.2. Stability and transport

balance according to MHD:

J×B = c∇p, (1.2)

i.e. a pressure gradient (∇p) can be maintained with currents (J) perpendicular to the magnetic
field. In an axisymmetric toroidal topology the force balance can be recast to the Grad-Shafranov-
Schlüter equation (GSS), which is introduced in more detail in section 3.1. The solution to the
GSS equation defines then the toroidally nested flux surfaces on which the pressure is constant,
and in which currents and magnetic field lines run. An important quantity for tokamaks is the
safety factor q which gives the numbers of toroidal turns of a magnetic field line as it turns once
poloidally.

The tokamak is currently the most advanced confinement concept and the ITER [8] experi-
ment, which is planned to start operation from the year 2020, is expected to obtain for the first
time a net power output, i.e. where more energy through fusion reactions is produced than is
needed to heat and sustain the plasma. Also possibilities of steady state or at least long pulse
operation, where the current is driven also by alternative mechanisms, are being investigated.
The demonstration power plant DEMO, which is planned to start operation around 2040, is
presently also based on the tokamak concept [9].

1.2. Stability and transport

A state in which the force balance 1.2 is fulfilled does not automatically imply confinement, since
also stability against perturbations has to be taken into account. Numerous types of plasma
instabilities exist: Some might saturate non-linearly on a nearly constant turbulence level and
cause just an increase in transport of heat and particles. A slight modification of the profiles is
the result [6, 10]. Others are fatal, since they can lead to a fast collective motion of the plasma
towards the first wall which might in turn be even damaged severely.

The control of macroscopic ideal MHD instabilities is mostly crucial [5]. A practical outcome
of MHD stability considerations is e.g. that for suppression of fatal instabilities (disruptions)
tokamaks are limited to a certain operational regime in (qa, n̄) parameter space, where qa is the
safety factor at the edge and n̄ the mean electron density [11]. Moreover, tokamaks should be
operated below a certain β which is defined as the ratio of plasma pressure to magnetic pressure:

β :=
p

B2/8π
< βN

I[MA]

a[m] ·Btor[T ]
, (1.3)

where I is the plasma current and a the minor radius of the tokamak. βN is a numerical value
for which the Troyon limit (βN = 0.028) is common [5, 4, 11], but it can be raised by properly
shaping the plasma cross section [12]. β gives also a rough estimate for the economic efficiency
of a reactor and should be above ≈ 0.05, which is just realistically reachable [5, 12]. Another
class of important instabilities enters as resistivity is taken into account. In contrast to ideal
MHD, resistive MHD allows also a change of the magnetic field line topology, i.e. reconnection
of field lines. Magnetic islands can form at low order rational surfaces (q = m/n) across which
the profiles flatten due to the quick parallel transport. An overall degradation of confinement is
the result [6, 10].

The absolute minimum cross field transport of particles and heat, which even arises in an MHD
stable plasma, is caused by diffusive processes due to Coulomb collisions. MHD assumes that
the plasma is always highly collisional, such that the underlying distribution function is always a
local Maxwellian. However, transport processes arise from non-Maxwellian modifications to the
underlying distribution function [5] and require thus a more comprehensive model to compute
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Chapter 1. Introduction

the desired transport coefficients. The most prominent among them is certainly the Braginskii
model [13] which will be introduced in chapter 2, but transport coefficients can also be estimated
with a simple random walk model: In a magnetised plasma particles are displaced by a distance
of the Larmor radius ρL in the perpendicular direction as they undergo an effective collision1.
Particle diffusion (Dn) can only be caused by unlike particle collisions, whereas heat diffusion
(χi, χe) is caused also among like particle collision [5, 4, 14]:

Dn ∼
ρ2
Le

τei
, χi ∼

ρ2
Li

τii
, χe ∼

ρ2
Le

τee
, (1.4)

where τii, τee, τei are ion-ion, electron-electron, electron-ion effective collision times. Ion heat
diffusivity is usually dominant over electron heat diffusivity. This classical transport has to
be corrected for toroidal systems to the neoclassical transport if the time between collisions is
sufficiently large that particles feel the global geometry of the system (banana regime). The 1/R
dependence of the magnetic field gives rise to a magnetic mirror. A particle located at the outer
low field side with a low ratio of v‖/v⊥ is repelled from the inner high field side of the tokamak
and remains trapped on the torus outside2. It ultimately undergoes an orbit which is in poloidal
projection shaped like a banana. Though only a small fraction of particles (∼ √ε :=

√
a/R0)

is trapped, their perpendicular step size (banana width) and the effective collision frequency
between trapped and passing particles is enhanced. This enlarges each diffusion coefficient in
expression 1.4 by a factor q2ε−3/2 [5, 15].

However, experimental measurements of confinement times in tokamaks suggest that the trans-
port in the electron channel greatly exceeds the neoclassical prediction and is comparable to the
ion flux. The flux in the ion channel is often around a factor of ≈ 2 − 3 larger than predicted
by neoclassical theory [4, 14]. Hence, transport is said to be anomalous. It is now commonly
accepted that the cause for the anomalous transport are microscopic fluctuations which lead to
a plasma and heat exhaust by microscopic advective E × B flows. Moreover, turbulent flut-
ter of magnetic field lines, along which transport takes place rapidly, can contribute to this
phenomenon. The fluctuations are driven by microscopic instabilities which are in turn fed by
pressure gradients. Heuristic arguments (see e.g. [16]) lead to a diffusivity coefficient, known as
the Gyro-Bohm scaling:

DGB ∼ c Te
16 eB

ρs
Lp
, (1.5)

where Lp ∼ p/ |∇p| denotes a pressure gradient length and ρs = c
√
TeMi/(eB) the sound radius

which gives a rough estimate for the spatial scales of the fluctuations. ρs is introduced in more
detail in chapter 2. For a deuterium plasma with Te = 1keV, B = 2.5T and Lp ∼ a = 50cm one
obtains DGB = 1.25m s−2, which matches roughly experimental conditions of current tokamaks.

1.3. Turbulence basics

Although scaling laws derived from experiments can be used to predict the performance of a
future fusion reactor (see e.g. [17]), a first principles prediction and understanding of anomalous
transport requires computations of self consistent models. The description usually has to take
into account quadratic non-linearities which give rise to turbulent dynamics. Turbulence involves
many degrees of freedom and is characterised by an unpredictable behaviour which is highly

1An effective collision by 90◦ is the result of many small angle scatterings.
2The magnetic mirror effect can also be illustrated with the conservation of the adiabatic invariants of the

particle, i.e its energy and magnetic moment, in an inhomogeneous magnetic field.
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1.3. Turbulence basics

sensitive to initial and boundary conditions. However, in a saturated state, where the interactions
among the various degrees of freedom are in a statistical balance, the fluctuation levels and also
the transport level remain statistically stationary. This saturated transport level is what is called
anomalous transport.

However, turbulence is in general a very complex and yet unsolved problem as the following
citation of Horace Lamb from the year 1932 shall illustrate (see [18, p. 24]):

”I am an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other is
the turbulent motion of fluids. And about the former I am rather optimistic.”

Kolmogorov’s theory of 1941 (K41) is one of the few exceptions where an analytic result for
the incompressible 3D Navier-Stokes equation is available. It would be beyond the scope of
this thesis to give a review about turbulence theory in general and K41 in special, but due to
its importance the main ideas and results of K41 are illustrated here very briefly (For a more
general introduction to turbulence and K41 see textbooks like [19, 18, 20]).

A paradigm for turbulence is the incompressible Navier-Stokes equation:

∇ · v = 0,
∂

∂t
v + v · ∇v = f + ν∇2v, (1.6)

where v is the velocity of the fluid, ν a viscosity constant and f some force (stirring) term which
maintains the fluid motion. An important number in fluid theory is the Reynolds number which
gives the ratio of inertial forces to viscous forces:

Re =
vl0
ν
, (1.7)

with v a mean velocity and l0 a characteristic scale length.
The basic picture behind K41 is that energy is introduced (stirring) at some large scale k0 ∼ l−1

0

into the system. As illustrated in fig. 1.2a, large eddies then break up into two smaller eddies
of comparable size which break up then again and again towards smaller and smaller scales
until they are dissipated at the smallest scales kν . Energy is thereby transferred down in a so
called Richardson Cascade. It is assumed that for sufficiently high Reynolds numbers there is an
inertial range which is not affected by the details of the energy input or the dissipation. Within
this inertial range it is assumed that the dynamics is statistically isotropic and the statistical
behaviour of the system is uniquely determined by the spatial scale k itself and the spectral
energy flux ε, which is statistically constant. Even in the limit of vanishing viscosity ν → 0,
the rate at which energy is dissipated remains finite and is just shifted to ever smaller scales.
It is equal to the energy flux and also equal to the energy which is pumped into the system.
By dimensional arguments the spectral energy must then follow a remarkably simple power-law
dependency (see fig. 1.2b):

E(k) = Cε2/3k−5/3, (1.8)

with C a universal constant. This result has been confirmed in experiments, but there are
also other predictions of K41 concerning higher order structure functions where deviations to
experiments arise.

As shown in chapter 2 simple paradigms for turbulence in tokamaks are also based on fluid
models (e.g. Hasegawa-Mima or Hasegawa-Wakatani). In magnetic fusion devices the dominant
E×B non-linearity acts in planes perpendicular to the magnetic field, such that the momentum
equation looks very similar to a 2D incompressible Navier-Stokes equation. 2D incompressible
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Chapter 1. Introduction

a) b)

Figure 1.2.: a) Scheme of Richardson Cascade. Energy is injected at some scale l0 ∼ k−1
0

at rate ε. Eddies break up in subsequent steps (r) into roughly always two eddies of
comparable size. The spectral energy throughput is thereby constant and equal to ε. At
the smallest scale eddies and energy are dissipated also at rate ε, independent on ν (Figure
taken from [19]). b) Resulting energy spectrum predicted by Kolmogorov (K41) (Figure
taken from [20]).

Navier-Stokes turbulence is quite different from 3D, since a simultaneous conservation of energy
and also enstrophy3 leads to a dual cascade in which energy is transferred at constant rate
towards larger scales and enstrophy at constant rate towards smaller scales. On the other hand,
the thermal energy content related with passively advected quantities (passive tracers), e.g. the
density, obeys a direct cascade [20]. Without any coupling between the flow and the density
they would develop apart from each other. The third dimension is now of importance, since a
coupling mechanism between both quantities along the magnetic field lines leads ultimately to a
common development [21].

Although analytic results for turbulence are of major importance and helpful for understanding,
in practice a prediction for the absolute value of anomalous transport in magnetic fusion devices
based on first principles is currently only possible with numerical simulations.

1.4. Edge and SOL

Before this work can finally be motivated, the divertor concept has to be introduced. Ideally, a
fusion plasma consists only of deuterium, tritium and also helium ash which has to be removed
constantly, but in reality there is also always a small fraction of impurities present. Especially,
highly charged impurity concentrations have to be minimized, since they can significantly dilute
the plasma and contribute substantially to radiation losses [22].

At some place the plasma has contact with a material surface, where the particles sputter
impurities from the material which can then flow back into the main plasma region. In order
to avoid damage of the wall during a possible disruption and to have a controlled contact with
the wall, a limiter can be used at the outer boundary of the plasma (see fig. 1.3a). The outer
confined region, i.e. outer flux surfaces that contain closed field lines is called edge. Magnetic field
lines which have contact with the limiter form the scrape-off layer (SOL). The edge is separated

3Enstrophy is the integral of the square of vorticity: U = 1/2
∫
V

dV (∇× v)2.
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from the SOL by the separatrix, sometimes also called last closed flux surface (LCFS)4. Due
to the fast loss of plasma along magnetic field lines to the target plates of the limiter, the
perpendicular plasma density and temperatures decay roughly exponentially with a half width
of λSOL ∼

√
D⊥Lc/cs, where D⊥ is an (anomalous) cross field diffusion coefficient, Lc the

connection length to the target plate and cs =
√
Te/Mi the sound speed. λSOL is typically of

the order of mm to few cm [2, 23, 22].
Modern day tokamaks and also future devices like ITER are based on the divertor concept (see

fig. 1.3b). With additional coils a poloidal magnetic field null is created at one point (sometimes
also two), denominated X-point and the contact with the target plates occurs remotely from the
confined region. In comparison to the limiter concept the influx of impurities into the confined
region is reduced. Moreover, impurities and helium ash can be removed constantly from the
divertor region with additional pumps. Consequently, the confined plasma is more pure in a
divertor configuration. A new mode of improved confinement, called the H-mode, has been
found in 1982 for the first time at ASDEX [24] also in a divertor configuration.

As pointed out in [11], the physics of the edge and SOL is in many ways more complicated and
difficult to model (see e.g. [23, 22, 25]) than the rest of the plasma. Atomic processes, radiation
losses and sheath physics have to be taken into account. Parallel transport to the plates is
important, leading eventually to strong gradients along magnetic field lines. Also perpendicular
gradients are steep (few cm). Turbulent fluctuations are of the order of unity, i.e. δne ∼ ne, which
prohibits a splitting into background quantities and fluctuations in the modelling. The complex
geometry in diverted geometries, which is the main issue of this work, introduces additional
complexities to the modelling.

On the other hand the edge and SOL is of high importance, since its influence on the core can
be large. The plasma and impurity densities are often largely set by conditions in the plasma
boundary [23]. Moreover, high heat fluxes on the divertor target plates of the order of 5MW m−2

[25] can be expected for ITER in steady state operation and a precise prediction of such numbers
is from the engineering point of view of high importance.

1.5. Motivation and outline

As pointed out in the previous sections, the prediction of anomalous turbulent cross field trans-
port and the understanding of turbulent phenomena based on first principles models is of major
importance for the construction and operation of magnetic fusion devices. At present, sophis-
ticated models and codes are available mainly for the core and to a certain extent also for the
edge region. However, the edge and SOL, especially the region around the separatrix in diverted
devices, is under this aspect still a rather untouched area of research. Roughly speaking, two
major problems related to this region can be identified: Firstly, the physical model which has to
be retained is rather complex. Secondly, the geometry which is imposed by the magnetic field
is also rather complex in diverted devices. As also discussed chapter 3, the usually employed
field aligned coordinates become ill defined on the separatrix in diverted devices. This makes
the numerical treatment difficult.

In the past, several approaches have been dedicated to parts of these problems5: The SOLPS
package [25] uses a 2D model where the anomalous diffusion is modelled with effective diffusion
coefficients which remain an input to the model, i.e. they are not computed self consistently.
Physics of impurity and radiation losses can be included in the modelling. In Tokam2D [27] and

4The nomenclature for separatrix is not definite in literature. Some might use separatrix only for diverted devices
(e.g. [22]).

5In the following, only fluid approaches are listed without claiming to be complete.
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a) b)

Figure 1.3.: Poloidal cross section of tokamak in limiter (a) and divertor (b) configuration.
The scrape-off layer (SOL) is formed by field lines that end on limiter or divertor plates.
The separatrix denotes the flux surface which is at the boundary between SOL and edge
(closed field line region). In divertor configuration a null in the poloidal field determines
the X-point and ensures that the first contact with the divertor plates is remote from the
confined region. (Figure taken from [26]).

ESEL [28] turbulence and transport in the edge/SOL is approximated only with a 2D model
where the parallel dynamics is parametrized. The GBS code [29, 30] and Tokam3D [31] simulate
turbulence and transport in 3D. However, they rely still on a field aligned coordinate system.
This makes simulations across the separatrix in diverted geometry impossible and only limiter
configurations can be treated. A limiter configuration was also investigated with a gyrofluid
model based on the GEM model [32, 33]. Open and closed field lines in a divertor configuration
have been studied separately in [34]. BOUT [35, 36, 37, 38, 39, 40] is capable to treat diverted
geometries by avoiding field aligned coordinate systems. However, the approach is still based
on a flux aligned grid. Due to the change of topology, the X-point region remains still some-
what exceptional in this approach as illustrated in fig. 1.4. In the worst case, this might even
lead to numerical artefacts. Moreover, there is a huge resolution imbalance within the poloidal
plane, which is in contrast to the turbulent dynamics tending to be isotropic within poloidal
planes. Several attempts have also been pursued by the stellerator community who have to deal
unavoidably with complex geometries [41, 42, 43, 44, 45, 46, 47]. FINDIF [47], as one of the
most recent approaches, creates the computational grid by putting grid points along magnetic
field lines. However, the grid creation is cumbersome and one has only little control over the
grid quality. Moreover, whereas the discretisation of parallel operators is straight forward, the
numerical treatment of perpendicular operators is difficult.

This work is mainly dedicated to the development of a numerical concept which is able to
accurately treat the full 3D geometry in diverted devices. The supplied numerical tools and
performed tests set a first milestone for the future development of a edge/SOL turbulence code
which shall ultimately retain the full geometry as well as a valid physics model. Due to the huge
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a) b)

Figure 1.4.: a) Numerical grid as used in the BOUndary Turbulence code BOUT [37].
Note the special role of the X-point in the grid, which is connected to eight cells, instead as
the usual four cells. Moreover there is a huge resolution imbalance between midplane and
X-point region. b) Numerical grid as used in the here newly developed code GRILLIX.
The X-point is treated as any other grid point and the resolution is homogeneous within
poloidal planes.

complexity of such a possible future project, the developed methods are here only applied to a
simple and well established turbulence model (Hasegawa-Wakatani) which is in general not valid
in the edge/SOL. This approach makes sense, since later on a modification of the equations in
a numerical code is usually easier then a modification of the geometry. Nevertheless, the used
model is self consistent and already suited to study first effects of the complex diverted geometry
on turbulence. The results here might thus also help to understand future results obtained with
a more complex physical model.

In chapter 2 the target model, Hasegawa-Wakatani, is derived and its implications are dis-
cussed. It is emphasized which assumptions of the model might be broken in the edge/SOL.
Starting from a kinetic model which accurately describes the plasma dynamics, each reduction
is reviewed in the context of its validity in the edge/SOL region. Hence, one can trace always
back to a ’more’ valid model.

In chapter 3 the numerical concept is presented. As an introduction, a short review of field
and flux aligned coordinates and why they fail in diverted geometries at the separatrix is given.
The numerical concept is presented which is based on a field line map. The advantage of this
approach over previous ones is that axisymmetric geometries with arbitrary poloidal cross sections
can be treated where the X-point is treated like any other grid point and is not exceptional any
more (An example numerical grid is shown in fig. 1.4b). Simultaneously, the property of the
solutions to be strongly elongated along magnetic field lines is exploited computationally. The
axisymmetric constraint is thereby not a general restriction of the method but used in this work
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simply for convenience. A field line map approach was recently proposed [48] and applied to
the FENICIA code [49, 50, 51], but as is shown in chapter 3 and appendix A their motivation
for the method was initially based on field aligned coordinates which become ill defined at the
separatrix. Therefore, the field line map approach is motivated in this work differently. This
work was performed independently and is complementary to FENICIA which is devoted to the
discretisation of the parallel gradient operator, whereas this work is mainly concerned with the
parallel diffusion operator. A new scheme, which is a generalisation of [52, 53], is presented
which reduces spurious numerical cross field diffusion drastically, arising unavoidably with non
field aligned grids.

The numerical concept is applied in the newly developed code GRILLIX. The full set of equa-
tions which can be solved with GRILLIX are the 3D Hasegawa-Wakatani equations in tokamaks
with an arbitrary poloidal cross section. Isolated benchmarks of the code on the perpendicular
dynamics are presented in chapter 2 and on the parallel diffusion operator in chapter 3. Some
additional benchmarks can be found in appendix B and D. In chapter 4 the code is finally pre-
sented in detail. GRILLIX is written in Fortran, MPI parallelised over the poloidal planes and
OpenMP parallelised within poloidal planes. Some additional details on the implementation are
also given in appendix C.

The full set of equations is applied in chapter 5 to axial circular geometry. The results of
this chapter establish the basis in order to understand later results in more complex geometry.
Moreover, GRILLIX can still be tested and benchmarked on analytic predictions, self consistency,
convergence and against other field aligned codes. Several diagnostic tools are presented. Also a
recently found parameter threshold for zonal flow production in the Hasegawa-Wakatani model
is confirmed with GRILLIX.

Finally, GRILLIX is applied to the complex diverted geometry in chapter 6. The effects of
an X-point are discussed with a simple model and GRILLIX is applied to a geometry where the
effects of an X-point can be studied in isolation and as purely as possible. It will be shown that
field aligned structures are strongly damped as they enter the X-point region and fluctuations
practically die out near the X-point. Hence, the X-point tends to disconnect structures along
the parallel direction.

The main result of this work is the provision of a numerical concept and numerical tools which
can cope accurately with a diverted geometry. Moreover, global tokamak or even Stellerator
simulations, which include also a magnetic axis, pose no substantial problems to the concept, in
contrast to the widely used field and flux aligned codes.
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Chapter 2.

The Hasegawa-Wakatani model

The Hasegawa-Wakatani (HW) model, a simple model for plasma turbulence, is presented. Many
approximations of HW are not valid especially in the SOL of tokamaks. But since ultimately
the emphasis of this work is on the complex geometry and the establishment of a rather new
numerical concept, this model is chosen due to its simplicity and maturity. Containing all
necessary ingredients for a self consistent description of turbulence, HW serves as a perfect first
target model.

2.1. Braginskii equations

The dynamics of a plasma is accurately described with the Boltzmann equation. The distribution
function fα(t, r,v) for species α is evolved in time according to electromagnetic forces created
by external mechanisms like coils and fields created by the charged particles of the plasma itself.
The distribution function and the fields are thereby not exactly localized quantities but smoothed
entities. The interaction between the particles in a plasma is split up into a long ranging collective
interaction, described with electromagnetic fields, and a short range interaction described by a
collision term. The Debye length serves as a separation between both scales. The smoothed
electromagnetic fields are computed self-consistently from the distribution functions with the
Maxwell equations, leading to a non-linear integro differential equation [6, 54]. However, due
to the non-linear nature, the high dimensionality (6D phase space) and the retention of many
spatial and temporal scales the Boltzmann-Maxwell equation system is very complex to solve.
Several simplifications of the system have been developed quite successfully during the recent
years, e.g. Gyrokinetics (see. e.g. [55] and references therein), where the fast gyro motion is
averaged away, leading to a reduced 5D phase space description. Direct numerical simulations
of the plasma become possible (see e.g. [56]).

Passing to a fluid description is another simplification. In a fluid model the plasma is de-
scribed by functions which only depend on space and time and which can be identified with
intuitional quantities like the density nα(t, r), the velocity vα(t, r) and the temperature Tα(t, r)
of a fluid segment. They are much simpler to solve than kinetic models due to the decrease of
dimensionality (6D or 5D(Gyrokinetics) → 3D). Fluid models are based on the assumption that
the plasma is collision dominated and hence the distribution function is close to a Maxwellian
[54]. In situations where collisions are rare, such that a particle can feel the global geometry,
neoclassical effects might become important [14]. Nevertheless, in the edge and SOL of magnetic
fusion devices temperatures are usually low and collisions frequent, such that many phenomena
can be described accurately with fluid models.

There are two different ways to derive a self consistent fluid model: One is based on physical
intuition using conservation of mass, momentum and energy (see e.g. [5]). On the other way
the fluid model is derived from the kinetic model by taking velocity moments of the distribution
function [13, 54]. Since in this approach the evolution equations for a finite number of moments

11



Chapter 2. The Hasegawa-Wakatani model

always depend on higher order moments, some kind of closure of the system is needed which
expresses the unknown higher moments in terms of the available moments.

Based on the moment approach, a detailed derivation of a fluid model is given in [13] which is
quite comprehensive, well established and often used in the fusion community. A derivation of
this model here would go beyond the scope of this thesis and just the final result, the Braginskii
equations, for a single component hydrogen plasma (i.e. Z = 1 and the species index α has been
dropped) is presented.

The continuity equations for the electrons and ions express local conservation of mass:

∂

∂t
ni +∇ · (nivi) = 0, (2.1)

∂

∂t
ne +∇ · (neve) = 0. (2.2)

The equations of motion express conservation of momentum:

Mini
di
dt

vi = −∇pi −∇ ·Πi + eni

(
E +

1

c
vi ×B

)
−R, (2.3)

mene
de
dt

ve = −∇pe − ene
(

E +
1

c
ve ×B

)
+ R, (2.4)

where de,i/dt = ∂/∂t + ve,i · ∇ is called the advective derivative. The left hand sides describe
inertial forces and forces acting on the fluid segment appear on the right hand sides: A force
is exerted due to a pressure gradient pe,i = ne,iTe,i within the fluid and due to electromagnetic
forces, caused by external mechanisms (coils) and the smoothed long ranging collective interaction
of the plasma which has to be computed self consistently. The ion stress tensor Πi contains
besides collisional terms also collisionless finite Larmor radius contributions arising from the
strong anisotropy in magnetised plasmas. These terms are of importance later for the diamagnetic
cancellation (section 2.2.2). The electron stress tensor is neglected. Momentum transfer between
electron and ions is contained in R. The component of this drag force along magnetic field lines
(parallel) is given by:

R‖ = eneη‖J‖ − 0.71ne∇‖Te. (2.5)

The first term describes friction between the electron fluid and the ion fluid (η‖ = 0.51meνe/(e
2ne),

with νe the electron collision frequency) and the second term is a thermal force.
The heat equations express local conservation of energy:

3

2
ni
di
dt
Ti + pi∇ · vi = −∇ · qi −Πi · ∇ · vi +Qi, (2.6)

3

2
ne
de
dt
Te + pe∇ · ve = −∇ · qe +Qe, (2.7)

i.e. a change of internal energy can be caused by compression of the fluid segment, heat conduction
and heat sources/sinks. Explicit expressions for the heat fluxes qe,i, heat sources/sinks Qe,i and
the gyroviscous tensor Πi are ultimately not needed and the interested reader is referred to [13].
The electric and magnetic fields have to be computed self consistently from Maxwell’s equations.

∇ ·E = 4πρch, (2.8)

∇ ·B = 0, (2.9)

∇×E = −1

c

∂

∂t
B, (2.10)

∇×B =
4π

c
J +

1

c

∂

∂t
E, (2.11)
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with ρch = e(ni − ne) the charge density and J = enivi − eneve the current density. The
Braginskii equations constitute a self consistent fluid model for collision dominated plasmas with
a rather wide range of validity. However, since practically no assumptions on time and space
scales of interest and the fluctuation levels have been done, this model is still rather complex.
Further simplifications are advisable.

2.2. Derivation

The HW equations are derived from the Braginskii equations. At the beginning approximations
are performed which are usually well justified, but towards the end of the derivation assumptions
are made which are usually not satisfied in the edge/SOL region. However, the present scope of
this work is the establishment and investigation of a new numerical concept derived in chapter
3. Therefore, these strong approximations are performed in order to obtain a turbulence model
which is still self consistent, but as simple as possible and already well established.

2.2.1. Robust simplifications

Simplifications which are usually satisfied very well by many orders of magnitudes in fusion plas-
mas [5] rely on the fact that the frequencies of interest are much smaller than the characteristic
frequencies of the electron motion and the frequencies of light:

ω � ωpe,Ωe, ck, (2.12)

with ωpe =
√

4πnee2/me the plasma frequency, which describes an oscillation of the electrons
with respect to the fixed (due to their inertia) ions and Ωe = eB/(mec) the electron gyro fre-
quency, which describes the gyro-motion of the electrons around a magnetic field line. Under
the assumptions 2.12 the displacement current in Maxwell’s equations is neglected and the cur-
rent density is divergence free. This is called the quasi-neutral approximation, since a direct
consequence of ∇ · J = 0 is that for the charge density it holds that ρch = ∇ · E/4π � ene and
thus ne ≈ ni. Another implication of 2.12 is that the inertial terms in the electron momentum
equation 2.4 can be neglected.

The scale of frequencies of interest is introduced in the next section 2.2.2 (expression 2.13) and
conditions 2.12 are satisfied for typical edge parameters (see e.g. section 5.1, expressions 5.3) by
roughly 5 orders of magnitude.

2.2.2. Drift approximation

In this subsection a brief synopsis of the drift approximation is given, a detailed derivation and
discussion can be found e.g. in [57, 58, 59] and references therein. Very close is also a model
called reduced MHD [60, 61, 57], which is actually a subset of the more general two fluid drift
model and contained in the presented model.

Plasma confinement in tokamaks is largely determined by low frequency drift-wave fluctuations
[62, 63]. A significant non-linear interaction among the individual drift waves results in a tur-
bulent vortical motion transporting particles and energy down the gradients. The characteristic
temporal scale of these motions is the electron diamagnetic frequency which is low in comparison
to the ion cyclotron frequency, and the characteristic perpendicular spatial scale is given by the
drift scale, i.e.:

ω ∼ cs
L⊥
� Ωi, k−1

⊥ ∼ ρs � L⊥, (2.13)
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where cs =
√
Te/Mi is the sound speed, reflecting that the electrons provide the pressure and the

ions inertia. L⊥ is some characteristic background gradient scale length and Ωi = eB/(Mic) the
ion cyclotron frequency. The sound radius ρs = c

√
MiTe/(eB) has the form of a Larmor radius,

but keeps its relevance also in the limit of cold ions Ti → 0 and massless electrons me → 0. Due
to the strong guiding field the dynamics along the magnetic field lines is much faster than the
perpendicular dynamics leading to spatial scales which are strongly elongated along magnetic
field lines:

k⊥ � k‖. (2.14)

This property, called flute mode character, implies that the compressional Alfvén wave, propa-
gating in the perpendicular direction, has a much higher frequency than the shear Alfvén wave,
propagating in the parallel direction. Usually, the frequency of the compressional Alfvén wave is
on a much higher level than the characteristic frequency of the fluid drift motion, whereas the
frequency of the shear Alfvén wave is of the same order. Another assumption of the drift ap-
proximation is that the plasma pressure should be much lower than the magnetic field pressure.
Summarizing, the following ordering is used in the drift approximation:

ω ∼
[
cs
L⊥

, k‖vA

]
∼ δ [Ωi, k⊥vA] , (2.15)

βe :=
4πpe
B2

∼ δ, (2.16)

where δ � 1 is introduced as an ordering parameter. Note that assumption 2.15 automatically
implies ρs/L⊥ ∼ δ. Using again typical edge parameters (section 5.1, expressions 5.3) and
estimating k‖ ∼ R−1

0 , one obtains cs/(Lnk‖vA) ≈ 0.49, cs/(LnΩi) = ρs/Ln ≈ 0.014, k‖/k⊥ ≈
3.1 · 10−4 and βe ≈ 1.2 · 10−4, which is consistent with the ordering 2.15 and 2.16.

Within this framework the perpendicular motion remains dynamically incompressible and a
quasi-static force balance is established in the perpendicular direction, i.e. only inertia and the
magnetic field inhomogeneity contribute as small corrections to the otherwise incompressible
perpendicular motion. The fast dynamical perpendicular oscillations, i.e. the compressional
Alfvén waves are not involved in the balancing of the perpendicular forces. The advantage
of the drift approximation is that parallel and perpendicular dynamics are separated and the
perpendicular dynamics can be expressed with stream functions. Instead of the partial differential
equations (PDEs) 2.1-2.7 which evolve vector quantities in time, the system can be reduced to a
PDE system which describes the temporal evolution of just scalar functions.

In the quasi-static perpendicular force balance the perpendicular electric field remains electro-
static and the magnetic field perturbations are perpendicular:

E⊥ = −∇⊥φ, E‖ = −1

c

∂

∂t
A‖ −∇‖φ. (2.17)

To leading order in δ the inertial terms and the stress tensor can be neglected in the perpendicular
ion momentum balance. Multiplying eq. 2.3 and eq. 2.4 with c/(eneB

2)B×, yields as leading
terms for the perpendicular velocities:

vi⊥ = vE + vdi =
c

B2
B×∇φ+

c

eneB2
B×∇pi, (2.18)

ve⊥ = vE + vde =
c

B2
B×∇φ− c

eneB2
B×∇pe. (2.19)

The E×B velocity vE is equal for both ions and electrons describing a common flow and vdi,de
is the ion respectively electron diamagnetic velocity. By inserting the obtained zero order ion
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2.2. Derivation

velocities again into the ion momentum equation 2.3, the first order in δ polarisation velocity is
obtained:

vpol =
1

Ωi
b×

{[
∂

∂t
+ (vE + vdi + vpol + vi‖) · ∇

]
(vE + vdi) +

1

neMi
∇ ·Πi0

}
, (2.20)

where Πi0 denotes that the zeroth order velocities according to eq. 2.18 have to be used in
the computation of the ion stress tensor. The stress tensor incorporates a collisionless finite
Larmor radius term which cancels the advection with the diamagnetic velocity, i.e. ∇ ·Πi0 ∼
−neMivdi ·∇vi (diamagnetic cancellation [64, 65, 66]). This reflects the fact that the diamagnetic
velocity cannot cause a guiding center drift in a homogeneous magnetic field. It is immediately
obvious from expression 2.20 that |vpol| / |vi⊥| ∼ ω/Ωi ∼ δ. However, the polarisation velocity
must be kept, since, although the polarisation velocity itself is small compared to the zeroth order
velocities, its divergence is not. The only terms contributing to the divergence of the zeroth order
flow enter through the background magnetic field gradient, which is small in tokamaks. Finally,
it is noted that it seems unusual that the polarisation velocity appears also in the advection
of eq. 2.20 , since it is one order lower with respect to vE , but it must be kept for energy
conservation [58].

The net result at this stage is that the originally vector-valued velocities can be replaced in
favour of scalar stream functions vi → pi, φ, vi‖. Analogously, the temporal evolution of the
magnetic field can replaced in favour of a scalar potential ∂B/∂t→ ∂A‖/∂t. Obtaining now the
reduced Braginskii equations is in principle straight forward, but the resulting expressions are
lengthy and the interested reader is referred to [57, 58, 59, 67]. The resulting equation system
consists of six partial differential equations for ne, φ,A‖, vi‖, Te, Ti.

Certain approximations applied up to this point might become questionable in the edge/SOL
region: There are e.g. objections that the distribution function in the edge/SOL is not close
enough to a Maxwellian, such that a fluid approach is not justified. There are also projects like
COGENT [68, 69], TEMPEST [70] and XGC1 [71, 72, 73] which are based on a full-f gyrokinetic
model. However, the price of these approaches is the complexity and the computational intensity.
Another objection might be that the presence of open field lines causes stronger parallel gradients,
such that the flute mode ordering 2.14 breaks down.

Furthermore, a subtle point in the drift approximation is the treatment of finite Larmor radius
(FLR) effects which appear somewhat hidden in the ion stress tensor Πi. Such effects are
generally treated with a Taylor expansion in k⊥ρLi (see e.g. [65]) and the resulting models are
only valid for k⊥ρLi � 1. In the cold ion limit, which is taken later, this issue is automatically
resolved. FLR effects are treated more naturally with a gyrofluid model where moments of the
gyrokinetic equation are evolved in time. In the gyrokinetic approach the drift approximation is
performed consistently already at the kinetic level, which is valid also for k⊥ρLi > 1. As moments
are taken of the gyrokinetic equation, FLR effects are treated automatically, in contrast to the
normal fluid model where they have to be intricately reintroduced again. The final result is a
gyrofluid set of equations (see e.g. [74]). A discussion of these equations would be beyond the
scope of this work. Moreover, since in the cold ion limit, which will be applied later anyway,
fluid and gyrofluid models agree, it is not necessary here. However, in the future, as the physical
model might be extended, a gyrofluid model might be preferable.

Nevertheless, the reduced Braginskii model serves as a robust starting point to investigate
transport and turbulence derived by first principles in the edge/SOL region of a tokamak. In
fact, similar models are already applied in numerical codes to the edge/SOL [35, 36, 37, 38, 39,
40, 25, 27, 31, 28, 29, 30].

15



Chapter 2. The Hasegawa-Wakatani model

2.2.3. Strong approximations

The reduced Braginskii equations are still difficult to solve, and since the main emphasis of this
work is on a new numerical concept and on complex geometry, a simpler model is chosen as a
starting point. Therefore, the approximations presented in this section are clearly violated in
the edge/SOL region, but simplify the equations significantly.

The reduced Braginskii equations can in principle describe fluctuations of order unity, which
are present in the edge/SOL [75, 76]. A great simplification is to assume that the quantities
can be split in a fixed background with small gradients denoted with a zero subscript and small
fluctuations with strong gradients denoted by a tilde. So for some quantity, e.g. the density, we
apply the ordering:

ñe
ne0
∼ δ, ∇ñe ∼ ∇ne0. (2.21)

Under this ordering, direct non-linear contributions can be dropped, e.g. neTe ≈ ñeTe0 + ne0T̃e.
The strong drift ordering also implies that the E × B advection of a perturbed quantity (ω ∼
vE ·∇ñe ∼ vE ·∇ne0), a quadratic non-linearity, is kept. Neglecting explicitly parallel advection
(k‖cs � ω), only the E×B velocity remains in the advective derivative.

d

dt
=

∂

∂t
+ vE · ∇. (2.22)

The resulting partially linearised equation system can also be found e.g. in [58, 59].
Furthermore, magnetic induction is neglected, i.e. the dynamics is electrostatic. Magnetic

induction is important for spatial scales larger than the skin depth [77]. In the collisionless
regime the skin depth is determined by the electron inertia and in the collisional regime by
collisions. Both regimes can be summarized in a threshold for βe [78, 77]:

βe �(k⊥ρs)
2me

Mi
collisionless regime, (2.23)

βe �(k⊥ρs)
2 νe
ω

me

Mi
collisional regime. (2.24)

The dependence on (k⊥ρs) suggests that electromagnetic effects can be important for large
structures even in the edge/SOL where βe is usually very small [78]. The electrostatic limit is
obtained in the limit βe → 0.

In the derivation of the HW equations further approximations which are applied and not
necessarily valid are:

• Cold ions: The ions are assumed to be cold Ti = 0. The ion heat equation can be dropped.
The ion diamagnetic velocity and the ion stress tensor is zero.

• Isothermal electrons: The electron temperature is assumed to be constant Te = const. The
electron heat equation can be dropped.

• No parallel flows: The ion parallel flow is set to zero. The parallel ion momentum equation
can be dropped, the parallel current is given by J‖ = −eneve‖.

2.2.4. The equations

Under the approximations discussed in the previous sections, the HW equations can be obtained.
The equations were first derived in [79].
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2.2. Derivation

The electron continuity equation 2.2 becomes:(
∂

∂t
+ vE · ∇

)
(ne0 + ñe) = −ne∇ · vE −∇ · (nevde)−∇ ·

(
neve‖b

)
. (2.25)

The divergence of the E×B velocity can be written as:

∇ · vE = ∇ ·
( c

B2
B×∇φ

)
=

(
∇× cB

B2

)
· ∇φ =: −K(φ), (2.26)

showing indeed as before mentioned, that the only contribution to the divergence of vE is due
to the slowly varying inhomogeneity of the magnetic field. K has been defined as the magnetic
curvature operator. Similarly:

∇ · (nevde) =
1

e
K(pe). (2.27)

Noting that ne0 is time independent the electron continuity equation becomes:

d

dt
ñe = −vE · ∇ne0 + ne0K(φ)− 1

e
K(pe) +

1

e
∇ ·
(
J‖b

)
. (2.28)

To obtain now an equation for the electrostatic potential, one could use the ion continuity
equation 2.1 where the divergence of the polarisation velocity must be kept or instead make use
of the quasi-neutrality condition.

0 = ∇ · J = ∇ ·
(
J‖b

)
+∇ · (nievi⊥ − neeve⊥) = ∇ ·

(
J‖b

)
+∇ · [nee (vpol − vde)] , (2.29)

where now as stated before the polarisation velocity,

vpol =
1

Ωi
b× d

dt
vE = −Mic

2

eB2

d

dt
∇⊥φ, (2.30)

must be kept under the divergence. ∇⊥ = −b×b×∇ is the perpendicular gradient. Under the
strong drift ordering the quasi-neutrality condition takes finally the simple expression:

Mic
2ne0
B2

d

dt
∇2
⊥φ = −K(pe) +∇ ·

(
J‖b

)
, (2.31)

which is also called vorticity equation, since Ω := |∇ × vE | ≈ c/B∇2
⊥φ is the vorticity strength.

An expression for the parallel current follows by multiplying the ion momentum equation 2.3
with e/Mi and subtracting the electron momentum equation 2.4 multiplied with e/me:

R‖ = ∇‖pe − ene∇‖φ, (2.32)

where the electron inertia and magnetic induction has been neglected. Eq. 2.32 is Ohm‘s law.
The friction term is given as:

R‖ = neeη‖J‖. (2.33)

Inserting the parallel current density into the electron continuity equation and the vorticity
equation yields two partial differential equations:

d

dt
ñe + vE · ∇ne0 = ne0K (φ)− Te

e
K (ñe) +

Tene0
e2η‖

∇ ·
[(

1

ne0
∇‖ñe −∇‖

eφ

Te

)
b

]
, (2.34)

ρ2
sne0

d

dt
∇2
⊥
eφ

Te
= −Te

e
K(ñe) +

Tene0
e2η‖

∇ ·
[(

1

ne0
∇‖ñe −∇‖

eφ

Te

)
b

]
. (2.35)
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Chapter 2. The Hasegawa-Wakatani model

In contrast to the original equations of [79], curvature terms are included in eqs. 2.34 and 2.35
[80, 81, 82].

In order to normalise the equations, the following dimensionless quantities are defined:

t̂ :=
cs
L⊥

t, x̂⊥ :=
x⊥
ρ̂s
, x̂‖ :=

x‖
L‖
,

B̂ :=
B

B0
, n̂ :=δ−1 ñe

n0
, φ̂ :=δ−1 eφ

Te
, (2.36)

where the perpendicular coordinates are measured with coordinates x⊥ and the parallel coordi-
nate with x‖. n0 is some reference density and B0 a reference field strength where also the value

for ρ̂s = c
√
TeMi/(eB0) is taken. L⊥, L‖ are parameters reflecting perpendicular/parallel scale

lengths. In addition a factor of δ = ρ̂s/L⊥ was folded into the state variables. The normalized
operators become:

v̂E :=
B̂

B̂2
× ∇̂φ̂, K̂(f) :=−

(
∇̂ × B̂

B̂2

)
· ∇̂f. (2.37)

Moreover, the local limit is applied, i.e. the background density is assumed to be constant
(ne0(r) = n0) if it appears in front of any operator as coefficient, but in the advection the
background density gradient is assumed to be finite and to have the following form:

∇̂ne0
n0

= −wn∇̂ρ (2.38)

where ρ(x⊥) is some flux surface label and wn a parameter which controls the strength of the
background density gradient. The normalized HW equations are finally:

d

dt̂
n̂ =δ−1wnv̂E · ∇̂ρ(x̂⊥) + δ−1K̂(φ̂− n̂) +D∇̂ ·

[
∇̂‖
(
n̂− φ̂

)
b̂
]

+ νnĤk(n̂), (2.39)

1

B̂2

d

dt̂
∇̂2
⊥φ̂ =− δ−1K̂(n̂) +D∇̂ ·

[
∇̂‖
(
n̂− φ̂

)
b̂
]

+ νφĤk(∇̂2
⊥φ̂), (2.40)

with:

D :=
cs/L⊥
0.51νe

Mi

me

L2
⊥
L2
‖

(2.41)

as a parameter in the model. Dissipation terms Ĥk are added to the equations. These terms
model perpendicular viscosity which is needed to avoid a pile up of the spectrum at high k̂⊥ due
to the direct cascade process (see section 1.3). However, since the real perpendicular viscosity is
very small and would require very fine grids to be resolved, hyperdiffusion terms are used.

Ĥk(f) = (−1)k−1∇̂2k
⊥ f, (2.42)

with k = 1, 2, . . . . These terms act as a damping only at high k̂⊥, but leave the intermediate
and low k̂⊥ range practically unaffected.

If not stated differently, the hats above the quantities and operators are omitted in the follow-
ing.

Since the HW equations constitute one of the simplest plasma turbulence models, it has often
been analysed and numerically been solved1: A comprehensive analysis of HW in a 2D slab

1It is again not claimed that the following list of references is complete.

18



2.3. Linear dynamics

geometry with a constant parallel wave vector k‖ = const can be found e.g. in [83, 84]. A
modification to allow the development of zonal flows in 2D is presented in [85]. 3D drift wave
turbulence without curvature effects, i.e. K = 0 is treated e.g. in [86, 87, 88, 89, 90, 91]. 3D
drift-resistive-ballooning turbulence, i.e. with K 6= 0 is investigated in [80, 81, 82].

2.3. Linear dynamics

The main (K = 0) linear modes of HW are called drift waves and a physical picture of these
are given e.g. in [59, 63] and are discussed here briefly. The curvature terms K 6= 0 gives rise to
modes which are unstable if the pressure gradient is directed along the magnetic field gradient.

2.3.1. Drift waves

To illustrate the dynamics described by HW, a slab geometry with a uniform magnetic field
B = B0ez is considered. Drift planes perpendicular to the magnetic field are spanned by the
coordinates x, y. A constant density gradient pointing in the negative x−direction is assumed,
i.e. wn∇ρ = −ρs/Lnex. Thus x can be identified with a radial coordinate in a tokamak and y
with a poloidal coordinate. The setup is illustrated in fig. 2.1a.

a) b)

Figure 2.1.: Basic picture of a drift wave in slab model: a) A sinusoidal pressure per-
turbation pushes or pulls the electrons along the field lines until parallel force balance
is established (n = φ, normalized). b) Due to charge separation E × B drifts arise in
the perpendicular plane. Together with the background density gradient this causes the
whole structure to move with the diamagnetic velocity in the poloidal y−direction. Quasi-
neutrality is ensured at all times by the ion polarization drift.

Consider that on some drift plane a sinusoidal pressure perturbation arises. Due to their
small inertia the electrons move rapidly away from or towards the pressure perturbation along
magnetic field lines. In the same process a parallel electric field is built up until parallel force
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Chapter 2. The Hasegawa-Wakatani model

balance is established. In the adiabatic limit the motion of the electrons along the magnetic field
lines is unhindered and the pressure obeys a (linearised) Boltzmann distribution:

ñe
ne0

=
eφ

Te
(unnormalized), (2.43)

where due to the isothermal approximation, pressure and density can be used interchangeably.
The electric field gives rise to an E × B drift perpendicular to the electric and magnetic field,
which advects both ions and electrons equally. Simultaneously, the ion polarisation drift ensures
quasi-neutrality at all times. Under the background density gradient the E × B advection is
larger from the high density region than from the low density region, causing the whole structure
to propagate in the poloidal y−direction (see fig. 2.1b).

To describe the drift wave phenomenon quantitatively the linearised version of eqs. 2.39 and
2.40 are used, curvature and viscosity terms are neglected and a uniform background density is
assumed (L⊥ = Ln).

∂

∂t
n = − ∂

∂y
φ+D

∂2

∂z2
(n− φ) , (2.44)

∂

∂t
∇2
⊥φ = D

∂2

∂z2
(n− φ) . (2.45)

The adiabatic limit can be obtained by letting D →∞, i.e. the electrons move unhindered along
magnetic field lines which ties the potential and the density perturbation together (n = φ).
Finally, the system can be described by a single equation:(

1 +∇2
⊥
) ∂
∂t
φ+

∂

∂y
φ = 0. (2.46)

The solution to this equation is a purely oscillating wave with a frequency of:

ω =
ky

1 + k2
⊥
, (2.47)

propagating in the y direction. Note that due to the ion polarization drift a dispersive character
appears as a correction to the diamagnetic drift velocity2 for small scales.

An instability, i.e. a growing drift wave, develops if the response of the electrons to the den-
sity perturbation is not instantaneous but hindered by some effect (in the HW model this is
collisions, finite D). This causes a phase shift of the potential behind the density perturbation
n ∼ φ exp(−iα) and the shifted E × B advection acts now as to enhance the original pressure
perturbation. To analyse this in a simple model quantitatively, we assume α � 1 known and
fixed. The temporal evolution of the electrostatic potential can be written with a single equation:(

1− iα−∇2
⊥
) ∂
∂t
φ+

∂

∂y
φ = 0. (2.48)

The now complex frequency is:

ω =
ky

1 + k2
⊥

+ i
αky

(1 + k2
⊥)

2 . (2.49)

2In unnormalized units the diamagnetic drift velocity is: vd = cTe/(eBLn).
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In order to obtain a self consistent description, the dispersion relation of the complete system
of equations 2.44 and 2.45 is considered. The solution has two roots, one which corresponds to
a strongly damped mode and the other one describing the unstable drift wave (see e.g. [83, 84]):

ω = ωR + iγ, (2.50)

with: ωR =
λ

2

√
B − 1

2
, γ = −λ

2

[
1−

√
B + 1

2

]
,

λ =
Dk2

z(1 + k2
⊥)

k2
⊥

, B =

√
1 +

16 (Dk2
zky)

2

(k⊥λ)
4 .

The growth rate in dependence of wave vectors for D = 1 is illustrated in fig. 2.2a,b. The
maximum growth rate γmax ≈ 0.15 for D = 1 is roughly at kx = 0, ky = 1, kz = 0.5. It can be
seen that drift waves favour small radial mode numbers kx = 0 and poloidal mode numbers of
the order of ky = 1.

a) b)

Figure 2.2.: Growth rate γ of drift wave instability in dependence of a) ky and kz for
fixed kx = 0, D = 1, b) in dependence of kx and ky for fixed kz = 0.5 and D = 1.

2.3.2. Ideal interchange instability

In the previous section the effects of magnetic field inhomogeneities have been neglected. In this
section a complementary view completes the linear analysis of the target model. We neglect
collisions along magnetic field lines, so only the k‖ = 0 mode is considered, but the effects of
the magnetic field inhomogeneity and background density profile is included. We assume again
a slab model where the magnetic field is given as3 B = B(x)ez and ∂ log(B(x))/∂x = −ρs/LB
and the density profile as wn∇ρ = −ρs/Lnex. Under this assumption the linearised equation
system of 2.39 and 2.40 becomes:

∂

∂t
n = −ωn

∂

∂y
φ+ ωB

∂

∂y
(φ− n), (2.51)

∂

∂t
∇2
⊥φ = −ωB

∂

∂y
n, (2.52)

3We apply again the local approximation, i.e. B(x) = 1 is constant but ∂B/∂x 6= 0.
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with ωn = L⊥/Ln and ωB = L⊥/LB and L⊥ is left as a normalisation parameter. The dispersion
relation of this equation system is:

ω2 − ωωBky + ωB (ωn − ωB)
k2
y

k2
⊥

= 0. (2.53)

To get more insight, we consider the large scale limit k⊥ � 1, but k2
y/k

2
⊥ finite.

ω2 =
k2
y

k2
⊥
ωB (ωB − ωn) . (2.54)

Thus this mode is a growing mode if ωB < ωn and ωB > 0. For an instability to be present the
first condition implies that the gradient of the magnetic field must be weaker than the background
density gradient. This is usually true, because else the low β assumption of the equilibrium would
break down [59]. The second condition implies that an instability is present if the magnetic field
gradient is aligned with the pressure gradient. This is usually the case for the outboard side of
tokamaks. On the inboard side, where the magnetic field gradient is anti-parallel with respect
to the density gradient, the interchange mode encounters stabilizing effects.

Following a field line in a tokamak with a finite safety factor q, the contributions from the
stabilizing inboard region and the destabilizing outboard region alternate. Hence, the average
curvature on a flux surface has to be considered and for q > 1 the interchange mode is stable
[10]. However, perturbations with finite k‖ localized on the outboard side of a tokamak, called
ballooning modes, feel the fully destabilizing contribution of the curvature. This will be discussed
in section 5.3.2 when the full 3D system is considered.

2.4. Fluctuation free energy theorem

In this section the energy theorem of the HW model is derived. Since the model describes
fluctuations on a fixed background, the important quantity is the fluctuation free energy, which is
conserved by the nonlinear terms. In contrast to global energy (see e.g. [58, 57]) it is not composed
linearly from state variables (like p0) but quadratically from fluctuation state variables (p̃).
Background gradients appear as sources, driving the fluctuation free energy and dissipation as
sinks. This is contrary to global energy which is neither created nor destroyed but just transferred,
e.g. dissipation acts just as a channel from ordered motion to random motion, i.e. thermal energy
[59].

The fluctuation free energy E is split into a thermal part En and a kinetic part Ev and is for
the target model of eq. 2.39 and 2.40 (see e.g. [79, 59]):

E = En + Ev =
1

V

∫
V

dV

[
n2

2
+

v2
E

2

]
=

1

2V

∫
V

dV

[
n2 +

1

B2
(∇⊥φ)

2

]
. (2.55)

The temporal change of the thermal part is to leading order in δ given by:

d

dt
En =

1

V

∫
V

dV

[
n
∂

∂t
n

]

≈ 1

V

∫
V

dV
{
δ−1wnnvE · ∇ρ+ δ−1nK(φ) +Dn∇ ·

[
∇‖(n− φ)b

]
+ νnnH(n) +∇ · [· · · ]

}
.

(2.56)
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2.5. Turbulence in a box

Terms under the total divergence describe transport effects through the boundaries which vanish
if the domain is assumed to be periodic or the quantities are assumed to be zero at the boundaries.
The temporal change of the kinetic part is given as:

d

dt
Ev =

1

V

∫
V

dV
1

2B2

∂

∂t
(∇⊥φ)

2 ≈ 1

V

∫
V

dV

{
φ
∂

∂t

[
− 1

B2
∇2
⊥φ

]
+∇ · [· · · ]

}

≈ 1

V

∫
V

dV
{
−δ−1nK(φ)−Dφ∇ ·

[
∇‖(n− φ)b

]
− νφφH(∇2

⊥φ)
}
. (2.57)

The complete fluctuation free energy theorem is:

d

dt
E =

d

dt
(En + Ev) = Q+D‖ +D⊥, (2.58)

with: Q :=
1

V

∫
V

dV
[
δ−1wnnvE · ∇ρ

]
,

D‖ :=
1

V

∫
V

dV
{
−D

[
∇‖(n− φ)

]2}
,

D⊥ :=
1

V

∫
V

dV
[
νnnH(n)− νφφH(∇2

⊥φ)
]
.

The only source for the total fluctuation free energy is the background density gradient appearing
in Q. Dissipation of the parallel current D‖ and small scale viscosity D⊥ can be identified as
sinks. The dissipated energy is simply lost in the model due to the isothermal approximation.
The background magnetic field does not act as a source, since both terms δ−1nK(φ) cancel in
eq. 2.56 and 2.57 but give a transfer channel between the kinetic and the thermal part of the
fluctuation free energy.

2.5. Turbulence in a box

Taking into account the non-linear E × B advection leads to turbulent dynamics. HW consti-
tutes a self consistent model for turbulence. The background gradients inject via the discussed
instabilities fluctuation free energy at a spatial scale of & ρs. The quadratic non-linear E × B
advections redistribute this energy via three wave coupling, i.e. single Fourier components ki
interact with each other satisfying k1 + k2 + k3 = 0 [59, 21]. The parallel dissipation of the
current and hyperviscosity at small scales constitute energy dissipation mechanisms. Due to the
vast possibility of interactions between different modes the system looses very quickly memory
of its initial state and makes the dynamics unpredictable. However, if the interactions between
the modes are in statistical equilibrium the system is in a statistically stationary state called sat-
uration. In this state characteristic quantities fluctuate around a constant mean and statistical
diagnostic tools can be used to describe the system. Based on the ergodic hypothesis ensemble
averages can be computed with time averages [19]. Therefore, we introduce for some quantity f :

〈f〉e = lim
t→∞

1

T

T∫
0

dt f, δf = lim
t→∞

√√√√√ 1

T

T∫
0

dt (f − 〈f〉E)
2
, (2.59)
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Chapter 2. The Hasegawa-Wakatani model

where 〈f〉e denotes the ensemble average of f . From the computational point of view only a finite
time frame over the saturated state can be taken, of course, which should cover many correlation
times.

In order to predict the performance of a fusion reactor one is mainly interested in radial fluxes.
In HW only the particle flux is of interest as the convective energy flux is trivially connected to
the particle flux in the isothermal approximation. The radial particle flux density is:

Γ := nvE · eρ, (2.60)

where eρ is a unit vector which is perpendicular to flux surfaces, pointing radially outwards. The
particle flux through a flux surface Γρ can be obtained by integrating Γ over the flux surface
and the averaged particle flux density ΓV is defined by averaging Γ over the whole simulation
domain. To predict such quantities for future reactors, numerical simulations are essential, since
no general analytic solution to the relevant non-linear equations is available.

In this section numerical simulations of the HW model in slab geometry are presented, where
a simplified model for the parallel dissipation was used. Although the model is unsatisfactory
and has already often been analysed and discussed in literature [79, 83, 84, 85, 92], it is presented
here because of two reasons: Firstly, it serves as a basis for interpretation of the results of later
chapters. Secondly, the simulations were performed with the newly developed code GRILLIX
and the implementation of the perpendicular dynamics can be benchmarked against several other
codes. Details on the implementation of GRILLIX are described in chapter 4.

We assume again a slab model with a uniform magnetic field pointing in the z-direction and a
uniform background density gradient pointing in the negative x-direction. y is identified with a
poloidal direction. It is assumed that there is only one single parallel mode kz = const present.
Thus the simplified two-dimensional HW model is given by:

∂

∂t
n+ [φ, n]x,y =− ∂

∂y
φ+ C (φ− n) + νn∇6

⊥n, (2.61)

∂

∂t
∇2
⊥φ+

[
φ,∇2

⊥φ
]
x,y

=C (φ− n) + νφ∇6
⊥
(
∇2
⊥φ
)
, (2.62)

where

L⊥ = Ln, ∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, and: [f, g]x,y :=

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

The constant C = Dk2
z is called the adiabaticity parameter. In the hydrodynamic limit, C � 1,

the system reduces to the 2D incompressible Navier-Stokes equations with the density as a
passively advected quantity. In this limit the flow part obeys a dual cascade distributing energy
towards larger scales, whereas the density obeys a direct cascade distributing energy towards
smaller scales. Ultimately, the flow and the density separate from each other [21] (see also
section 1.3). In the adiabatic regime, C � 1, n remains closely tied to φ and the system is
reduced to the Hasegawa-Mima equation [93].

In fig. 2.3 snapshots of a typical simulation with an intermediate value of C = 1 are shown.
The simulation was initialized with a small random noise (≤ 0.1) in the density perturbation.
After the hyperviscosity has smoothed the initial random noise, radially elongated drift waves
develop and propagate in the y direction. As soon as the amplitudes have reached a high enough
level, eddies begin to tear apart due to non-linear interaction and finally a saturated turbulent
state is reached. It is already apparent that the dynamics is adiabatic on a large scale (n ∼ φ).

In fig. 2.4a time trace diagnostics of this simulation is plotted. All quantities grow exponentially
from a small amplitude until the growth is stopped non-linearly at roughly t = 110. After a short
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2.5. Turbulence in a box

Figure 2.3.: Snapshots of a simulation in the linear phase (t = 50, left column) where
drift waves are apparent, at the onset of the turbulence (t = 75, middle column) where
eddy mitosis can be seen and in the saturated state (t = 800, right column). Shown is
the density perturbation (upper row), potential (middle row) and vorticity (lower row).
Parameter of the simulation are: C = 1, Lx = Ly = 41.89 with nx × ny = 512 × 512
grid points, νn = νΩ = 1.0 · 10−8. For units see eqs. 2.36. Time steps varied between
∆t = 2.0 · 10−2(linear phase) and ∆t = 2.432 · 10−3(saturated phase).
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Chapter 2. The Hasegawa-Wakatani model

transition phase all quantities saturate and fluctuate around a mean value. As can be also seen
in fig. 2.4b the temporal change of the fluctuation free energy in the saturated state is zero on
average and balanced by the transport4, the parallel and perpendicular dissipation. It is also
obvious that the main dissipation mechanism in this case is the parallel dissipation.
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Figure 2.4.: Time trace diagnostics of simulation described in fig. 2.3. a) Total fluctuation
free energy, thermal and kinetic parts. b) dE/dt, sources and sinks. The average values
are obtained by temporal average between t = 500 and t = 900.

To gain more insight into the spatial structure a spectral analysis of the saturated state is
performed. Since x shall mimic a radial coordinate and y a periodic poloidal coordinate, a
spectral analysis along y is most natural, i.e. fky (x). However, since also in x-direction periodic
boundary conditions are used and each radial position is equal, it makes sense to define only for
this section also radially averaged spectra and angle averaged spectra:

fky :=
1

Lx

Lx∫
0

dx fky (x), (2.63)

fk :=
∑
k

fkx,ky , k − k0

2
<
√
k2
x + k2

y < k +
k0

2
, (2.64)

where k0 = 2π/L is the smallest wave number5 allowed by the system. Besides the spectral
distribution of the amplitudes itself, it is also interesting to see in which scales the fluctuation
free energy of the system is distributed and at which scale the transport takes place. Therefore

4For the 2D HW model under the normalisation L⊥ = Ln the rate at which fluctuation free energy is injected
into the system due to the background gradient (see eq. 2.59) is equal to the transport, i.e. Q = ΓV .

5Only cases for which L := Lx = Ly are considered
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2.5. Turbulence in a box

we introduce:

Enkx,ky :=
1

2

∣∣nkx,ky ∣∣2 , (2.65)

Evkx,ky :=
1

2
(k2
x + k2

y)
∣∣φkx,ky ∣∣2 , (2.66)

Ekx,ky :=Enkx,ky + Evkx,ky , (2.67)

Γkx,ky :=
∣∣∣nkx,ky ikyφ∗kx,ky ∣∣∣ . (2.68)

In fig. 2.5 the spectra of various quantities are plotted in dependence of the poloidal wave vector
ky (fig. 2.5a) and the angular wave vector k (fig. 2.5b,c). From the angular spectra can be seen
that on large scales (k < 1) the dynamics is adiabatic, i.e. the density is tied to the potential and
on smaller scales (k > 1) the dynamics becomes more and more nonadiabatic. The amplitudes
and energy density peak around a value of k ≈ 1, where the energy injection takes place and
decays from there towards both directions. Towards high k an inertial range with power law
like dependencies can be observed (Ekx,ky ∝ k−3.0). At the higher end of the k spectrum a cut
off is present where the fluctuation free energy is dissipated due to hyperdiffusion. Since for
the transport the cross phase between n and φ is important, the transport is comparably low
in the adiabatic regime and peaks around k ≈ 1 where n and φ begin to decouple. Comparing
the angular and y amplitude spectra, an anisotropy for low k values can be observed. Since the
linear growth rate is also anisotropic (see fig. 2.2), this behaviour reflects that the low k end is
strongly influenced by linear dynamics, whereas the dynamics in the inertial range is isotropic
as the non-linearity acts also isotropically [84].
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Figure 2.5.: Spectral diagnostics averaged between t = 500 and t = 900. a) y-amplitude
spectra, b) angular amplitude spectra, c) angular energy spectra, total fluctuation free
energy (black), thermal part (blue), kinetic part (green), enstrophy (red). A reference line
(dotted black) indicates a k−3.0 power law.

The 2D HW turbulence model can be run in the framework of GRILLIX and compared against
results of other codes. Compared was against the code HW [94], which was available to me, and
against [84, 88, 95]. The result of the benchmark is listed in table 2.1. Overall the agreement is
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quantity GRILLIX HW [94] Camargo [84] Zeiler [88] Numata [95]

C = 1:
〈E〉e 3.97 3.82 4.4 6.1 n.a.
δE/ 〈E〉e 0.065 0.068 0.16 0.082 n.a.
〈Γ〉e 0.64 0.61 0.73 0.8 n.a.
exponent −3.0 −3.0 −2.9 n.a. −3.0(C = 0.7)

C = 0.1:
〈E〉e 13.43 13.33 17.9 23.8 n.a.
δE/ 〈E〉e 0.12 0.10 0.16 0.20 n.a.
〈Γ〉e 1.54 1.52 2.1 2.9 n.a.
exponent −1.6 −1.6 −1.6 n.a. −2.0

C = 5:
〈E〉e 7.18 6.91 8.3 12.6 n.a.
δE/ 〈E〉e 0.04 0.09 0.08 0.06 n.a.
〈Γ〉e 0.12 0.13 0.13 0.18 n.a.
exponent −3.5 −3.5 −3.5 n.a. −3.9(C = 10)

Table 2.1.: Saturated values and power exponent in dependence on adiabaticity param-
eter, obtained with different codes (n.a. = not available).

pretty well. The closest agreement is between GRILLIX and HW, which uses similar numerical
techniques. For larger values of C the results agree very well with Camargo’s. The reason for the
deviance to Camargo at C = 0.1 might originate from the different numerical methods. Camargo
uses a dealiased pseudospectral algorithm which could be better suited to resolve also the small
scales.
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Chapter 3.

Field line map

In the last chapter the target model HW has been derived and has already been discussed
in a simple geometry, where the equations have been solved numerically for a single parallel
mode k‖ = const. In this chapter the discretisation of the parallel diffusion operator arising in
eqs. 2.39 and 2.40 is presented. The main requirements of the developed numerical scheme are:
(1) it shall be able to treat rather general geometries with open and closed field lines present
simultaneously, e.g. a diverted geometry with an X-point, and (2) it shall exploit the flute mode
character (k‖ � k⊥) via an appropriate anisotropic grid resolution to lower the computational
costs. The main idea of the approach is to use a grid consisting of few poloidal planes and
a Cartesian grid within each poloidal plane. The strong toroidal field allows one to represent
perpendicular operators via a stencil within a poloidal plane. Parallel operators are discretised
with a field line map. From each grid point a field line tracing towards neighbouring planes is
performed and the value at the penetration points is obtained via interpolation. The parallel
operators are discretised with the interpolated values. Due to the flute mode character a few
poloidal planes already suffice to represent the dynamics well. Parts of this chapter have been
published [96].

3.1. Field and flux aligned coordinates

Field aligned and flux aligned coordinates are essential tools for the plasma physics community.
Therefore, a short overview over this topic is given here and for a general introduction the reader
is referred to [97]. Such coordinates have many advantages, especially in the closed field line
region of tokamaks, however, close to the separatrix they reach limits.

Any magnetic field arising from an axisymmetric ideal MHD equilibrium can be written as
[97]:

B = I(Ψ)∇ϕ+∇Ψ×∇ϕ, (3.1)

where ϕ is the toroidal angle and Ψ(R,Z) is the poloidal flux function, a solution to the Grad-
Shafranov-Schlüter (GSS) equation [98, 99]:

∆∗Ψ + I
∂I

∂Ψ
= 4πR2 ∂p

∂Ψ
, with ∆∗ := R2∇ ·

(
1

R2
∇Ψ

)
. (3.2)

I(Ψ) is proportional to the poloidal current through the surface enclosed by a flux surface and
p(Ψ) is the plasma pressure, which is constant on flux surfaces (see fig. 3.1a). The current and
magnetic field lines run on flux surfaces.

For the moment we assume that the flux surfaces are toroidally nested. If an X-point is present,
this is obviously not true and we come back to this point later. We can find an elementary
toroidal coordinate system ρ(Ψ), θe, ϕ, where ρ is any flux surface label and θe any angular
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poloidal coordinate. The main goal is to find a bijective transformation to a coordinate system
(ρ, ξ, ζ) in which the magnetic field lines are aligned along a coordinate and B can be written in
Clebsch form [100], such that the parallel derivative becomes a derivative with respect to only
one coordinate:

B ∝ ∇ρ×∇ξ → ∇‖ ∝
∂

∂ζ
. (3.3)

An intermediate step is to find a transformation to a coordinate system in which the field lines
appear straight if rolled out on a flux surface. Due to the freedom to transform both the toroidal
and the poloidal coordinate, there is no unique straight field line coordinate system (ρ, θs, ϕs)
(e.g. Symmetry or Pest [97], Hamada [101], Boozer [102]), but all off them must satisfy [97]:

dθs
dϕs

=
1

q(ρ)
, where q(ρ) =

1

2π

2π∫
0

dθe
B · ∇ϕ
B · ∇θe

. (3.4)

The safety factor q gives the number of toroidal turns as one advances along a magnetic field line
one poloidal turn. In general, the obtained straight field line coordinate system is not orthogonal
any more.

A field aligned coordinate system can now be obtained in two ways. One can choose the
poloidal angle as the parallel angle:

ζ =θs, ξ = ϕs − qθs, (3.5)

or the toroidal angle as the parallel angle:

ζ =ϕs, ξ = θs −
1

q
ϕs. (3.6)

The first choice 3.5 allows a truncation of the domain in the toroidal direction, i.e. not the whole
flux surface has to be kept but only a fraction resulting in a flux tube which is representative
for the whole flux surface. The fact that the domain can be truncated and a comparatively
low resolution in the poloidal-parallel direction ζ can be used, results in a huge computational
gain. However, the size of the flux tube must be chosen carefully. Furthermore, for finite shear
(dq/dρ 6= 0) the flux tube becomes twisted as one follows the parallel coordinate and the parallel
boundaries have to be treated with care [103, 104]. The twisting along the parallel direction also
poses numerical problems, since it can result in a strong deformation of the grid, i.e. a strong
variation of the metric coefficients along the ζ direction. The non-orthogonal deformation can
be cured with the shifted-metric technique [105]. The topic of orthogonal deformation is treated
in [106]. The grid deformation becomes especially critical close to the separatrix.

The second choice 3.6 is motivated by the fact that transformation 3.5 is ill defined at the
separatrix. Since at the X-point the poloidal magnetic field vanishes, the safety factor diverges
at the separatrix. Close to the separatrix the safety factor runs like [10]:

q(Ψ) ∝ − ln(Ψs −Ψ), (3.7)

where Ψs is the poloidal magnetic flux at the separatrix. Since q → ∞ at the separatrix, the
transformation 3.5 becomes ill defined and has lead to the proposal [48] to use the toroidal angle
according to 3.6 as the parallel angle, where 1/q is bounded at the separatrix. However, also with
such a coordinate system a separatrix cannot be treated. The construction of a field aligned
coordinate system based on the toroidal angle as the field aligned angle is not possible, because
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already the construction of a straight field line coordinate system according to transformation
3.4 is not possible. Since 1/q → 0 at the separatrix, a transformation which fulfils eq. 3.4 cannot
be bijective any more and the resulting coordinate system becomes ill defined. This can also be
seen in fig. 3.1b, where the contours of the poloidal straight field line angle θs are sucked into
the X-point. One can construct separately a straight field line coordinate system, and thus a
field aligned coordinate system for the closed field line region and for the open field line region,
as was done in [34], but both regions cannot be treated simultaneously with this approach.

Hence, the statement appearing in [48, 49, 50] that with such a coordinate system a separatrix
can be treated is not correct by the reasons mentioned above. It is assumed in section 2 of
[48] that Hamada coordinates are already available, which become ill defined at the separatrix
and the failure of this coordinate system is also obvious in [51], where it is explicitly stated
that the constructed poloidal straight field line angle diverges at the separatrix - However, the
FENICIA code [49, 50, 51] is not based on field aligned coordinates but also on a field line map1,
as described in the next section 3.2, and therefore able to cross the separatrix. - These points
are quite subtle in [48, 49, 50, 51] and a detailed analysis of these papers, regarding the therein
constructed field aligned coordinate system, is therefore deferred to appendix A.

Concerning the problems of field aligned coordinate systems at the separatrix, one might give
up the concept of a field aligned grid, but at least keep flux surfaces, i.e. use the elementary
toroidal coordinate system ρ, θe, ϕ. As also illustrated in fig. 3.1b, the flux surfaces are strongly
compressed on the outboard side of a tokamak, whereas they are stretched apart in the region
near the X-point. The computational grid would finally have a resolution imbalance within
the poloidal plane. Since the perpendicular operators (∇2

⊥, vE · ∇) arising in typical plasma
turbulence models, act mainly isotropically in planes perpendicular to the magnetic field, which
are roughly poloidal planes, such a grid might not be advisable from a computational point of
view. Moreover, such a grid might lead to severe constraints for time integration schemes. If
the perpendicular dynamics is advanced with an explicit time stepping scheme, the very closely
spaced flux surfaces in the outboard midplane region might force one to very small time steps.
In addition, also in a flux aligned grid the X-point always is an exceptional grid point due to
the change of topology (see again fig. 1.4). This could in the worst case even lead to numerical
artefacts.

3.2. Field line map approach

However, the fact that the construction of a field aligned coordinate system across the separatrix
is impossible2 is irrelevant, since the operators are still well defined, of course. It is similar to the
situation of writing e.g. the Laplacian in polar coordinates (ρ, θ). Though the polar coordinate
system is ill defined at the origin, where the Jacobian vanishes, the Laplacian is still a well
defined operator. One should just not use a polar coordinate system to compute the Laplacian
at the origin, but e.g. a Cartesian coordinate system or a coordinate free method. Similarly one
should not use field aligned coordinate systems to compute operators at the separatrix.

For a tokamak a cylindrical coordinate system (R,Z, ϕ) is well defined everywhere in the region
of interest and we span our simulation domain with a cylindrical grid Ri, Zj , ϕk. Within each
poloidal plane k, the grid is Cartesian. It is bounded by two limiting flux surfaces Ψmin,Ψmax,
which is the only dependence on flux surfaces of the approach. The grid is illustrated in fig. 3.2.

1This becomes clear from references [49, 51]
2’impossible’ means here that there is not yet given in literature a way on how to construct a field aligned

coordinate system in presence of an X-point. I do not touch the question after the existence of such a
coordinate system in general, which is in my opinion a very academic problem. In any case, I think that from
a computational point of view such a coordinate system will be always problematic.
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a) b)

Figure 3.1.: a) Illustration of flux surfaces b) Contours of poloidal flux (black) and
poloidal straight field line coordinate (red, symmetry or Pest coordinates). Close to the
separatrix the contours of θs are sucked into the X-point. Flux surfaces are stretched
apart close to the X-point, and compressed in the outboard midplane region (Figure from
[107]).

Based on the assumption of a strong toroidal field, any perpendicular operator can be approxi-
mated with derivatives with respect to only R,Z, e.g. the perpendicular Laplacian is:

∇2
⊥ =

∑
i,j=R,Z,ϕ

1

J
∂j
[
J
(
gij − bibj

)
∂i
]
≈ 1

R
∂R (R∂R) + ∂2

Z , (3.8)

where J = R the Jacobian of the cylindrical coordinate system and gij the metric tensor. Since
the projection of the unit vector along the magnetic field on the poloidal plane is small (bR, bZ �
1), the derivatives with respect to ϕ can be neglected. The idea to neglect derivatives in the
toroidal direction with respect to the poloidal directions can be transferred to any perpendicular
operator, as such also the advection with the E×B velocity:

vE · ∇u ≈
1

B
[φ, u]R,Z . (3.9)

Thus the perpendicular operators act mainly within poloidal planes. Numerically, since the grid
within a poloidal plane is Cartesian, standard finite difference methods (see e.g. [108]) can be
used for the discretisation of any perpendicular operator, e.g. the perpendicular Laplace operator
becomes:

∇2
⊥u→

ui+1,j − 2ui,j + ui−1,j

h2
+

1

R

ui+1,j − ui−1,j

2h
+
ui,j+1 − 2ui,j + ui,j−1

h2
, (3.10)

where the subscript k which labels the toroidal direction has been dropped. h is the grid spacing
within the Cartesian poloidal plane.

A parallel derivative is given in terms of:

∇‖u = b · ∇u = lim
h→0

u(x + hb)− u(x)

h
, (3.11)
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where the last expression gives a motivation for the discretisation scheme. A parallel operator
is computed via a finite difference between two values on a magnetic field line. Due to the
strong toroidal field, any discrete parallel operator will connect points on neighbouring poloidal
planes. A high directional accuracy, which is important, is obtained by tracing from a given
grid point along a magnetic field line towards the neighbouring poloidal plane. The magnetic
field is thereby assumed to be static and given (electrostatic approximation). Since the obtained
penetration point does in general not coincide with another grid point, an interpolation within
the neighbouring poloidal plane has to be performed.

Finally, the toroidal resolution being the main determinant for the accuracy of parallel opera-
tors and the resolution within a poloidal plane for the perpendicular operators, allows the desired
scale separation for the grid resolution. Flute mode structures k‖ � k⊥ are well represented on a
grid with a comparatively low toroidal resolution, whereas a high resolution within the poloidal
planes has to be retained.

The field line map approach here is based only on the assumption of a strong toroidal field3.
Even if this assumption breaks down, it can be cured easily by respecting also derivatives with
respect to ϕ in the perpendicular operators and possibly adjusting the interpolation at the
discretisation of the parallel operators. In the worst case, one ends up simply with a discretisation
in purely cylindrical coordinates.

It is noted that the following methods are discussed at the example of toroidal equilibria, but
can also be applied to axial equilibria (x, y, z), where z ∈ [0, Lax] is a periodic axial coordinate.
The transition (R,Z, ϕ)↔ (x, y, z) is trivial. It is useful to perform for this chapter the following
normalisation:

R̂ :=
R

R0
, Ẑ :=

Z

R0
, B̂ :=

B

B0
, (3.12)

with B0 = B(R0, Z0) and define a normalized flux label:

ρ̂ :=

√
Ψ(R,Z)−Ψ(R0, Z0)√

Ψ(Rx, Zx)−Ψ(R0, Z0)
, (3.13)

where Rx, Zx is the position of the X-point. For axial equilibria:

x̂ :=
2πx

Lax
, ŷ :=

2πy

Lax
, ẑ :=

2πz

Lax
, B̂ :=

B

Bz
, (3.14)

where Bz is the axial field strength assumed to be constant. For axial circular flux surfaces we
define as flux label:

ρ̂ :=
√
x̂2 + ŷ2. (3.15)

If not stated differently, the hats above the quantities are omitted in the following.

3.3. Field line tracing

The first step of the field line map is a field line tracing procedure. The magnetic field is assumed
to be electrostatic (∂tB = 0), and therefore the field line tracing has to be performed only once
at the beginning of a simulation, though this is not a principle constraint of the approach. Due

3The k‖ � k⊥ is not a general assumption of the field line map approach but ultimately only exploited by
choosing a coarse toroidal resolution. It can be relaxed by increasing the number of poloidal planes.
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a) b)

Figure 3.2.: Computational grid: a) View of tokamak from above, Planes are taken at
equally spaced toroidal angles ϕk. b) Within each poloidal plane a Cartesian grid (Ri, Zj)
is used bounded by two extreme flux surfaces.

to axisymmetry, the field line tracing has to be performed only for a single plane. For 3D
equilibria, which are not discussed here, a separate field line tracing for each plane would have
to be performed. Starting from a grid point (Ri, Zj) the penetration points at the neighbouring
poloidal planes ±∆ϕ are obtained according to:

Rα,βi,j =Ri +

±∆ϕ∫
0

dϕ
BR

Bϕ
, Zα,βi,j =Zj +

±∆ϕ∫
0

dϕ
BZ

Bϕ
, (3.16)

where α, β denote the co/counter direction with the toroidal coordinate. The contravariant
components of the magnetic field vector can be obtained from eq. 3.1 and in the following it is
assumed that I(Ψ) = const→ Bϕ ∝ R−2.

For toroidal equilibria eqs. 3.16 are integrated via a fourth order Runge-Kutta scheme [109],
which has to be performed with a high accuracy in order to avoid numerical pollution. Since
the parallel dynamics is orders of magnitudes faster than the perpendicular dynamics, a small
erroneous displacement from the originating field line at the field line tracing process could result
in spurious perpendicular dynamics. To avoid spurious perpendicular dynamics arising from the
field line tracing, the following criterion must be satisfied for the erroneous displacement ∆trace

[47]:

∆trace � l‖

√
χ‖
χ⊥

, (3.17)

where l‖ is the length along a field line and χ‖, χ⊥ are parallel and perpendicular diffusion
coefficients of interest, whose ratio can be as big as χ‖/χ⊥ ∼ 1010 for heat diffusion processes
in the core region of a tokamak. For axial equilibria with circular flux surfaces the penetration
points can be computed analytically via a prescribed q-profile leaving thus no error due to the
field line tracing. Details of the field line tracing procedure and a description of various other
quantities which have to be computed for the field line map are given in appendix C.
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3.4. Parallel gradient

3.4. Parallel gradient

3.4.1. Finite difference method

A sketch of the discretisation of the parallel gradient is shown in fig. 3.3a. For some quantity u
the parallel gradient is computed at the positions half way along the magnetic field line towards
the neighbouring poloidal planes. The general structure of the magnetic field thereby gives rise
to two possible gradients according to co/counterdirection with ϕ denoted in the following with

α, β. The values at the penetration points uα,βi,j,k are computed via a 2D interpolation within the
poloidal plane. Currently a bilinear interpolation involving 4 points and a 3rd order polynomial
interpolation involving 16 points are implemented (see appendix B.1). For some grid point (i, j, k)
the discrete parallel gradients are:

∇α‖ui,j,k =
1

∆sαi,j

(
uαi,j,k − ui,j,k

)
, ∇β‖ui,j,k =

1

∆sβi,j

(
ui,j,k − uβi,j,k

)
. (3.18)

∆sα,βi,j are distances along the magnetic field line from plane to plane and are computed during
the field line tracing process (see appendix C). The parallel gradient at the grid point itself could
be obtained via a further interpolation between the α, β discrete values along the magnetic field
line. However, since in our target model no parallel gradient appears but a parallel diffusion, this
issue is left for future work. Some results for the parallel gradient can be found in [49, 50, 51].

For interpolation techniques which are linear in the grid values the discrete parallel gradient
can be expressed with a Matrix Qα,β , which will be useful later.

u =(u1,1,1, u2,1,1, · · · )T , qα,β =
(
∇α,β‖ u1,1,1,∇α,β‖ u2,1,1 · · ·

)T
, qα,β =Qα,βu. (3.19)

3.4.2. Coordinate free representation

Later on, especially for field lines which are strongly converging/diverging another discretisation
of the parallel gradient is useful based on a coordinate free representation. Instead of using
expression 3.11 to motivate a finite difference expression for the parallel gradient, we can write
also:

∇‖u =
1

B
∇ · (Bu) =

1

B
lim
V→0

1

V

∫
∂V

dS ·Bu, (3.20)

where V is an enclosed Volume. The surface integral can now be mimicked on the discrete
level. Flux boxes around the magnetic field line are taken as discrete finite volume elements (see
fig. 3.3b), such that the only contributions to the surface integral come from the toroidal ends
of the flux box:

∇α‖ui,j,k =
1

∆Vαi,jBV

[∑
n,m

(
un,m,k+1B

tor
n,m∆Aαi,j,n,m

)
− ui,j,kBtori,j h2

]
, (3.21)

where ∆Vαi,j the flux box volume and BV the magnetic field strength in the center of the flux
box. ∆Aαi,j,n,m is the surface overlap of grid point (n,m, k+ 1) with the toroidal end of the flux
box surface of grid point (i, j, k). The β discretisation can be achieved analogously.

Due to the fact that the magnetic field is divergence free, the computation of the flux box
volumes ∆Vαi,j can be performed during the field line tracing procedure with a high accuracy
(see appendix C). As illustrated in fig. 3.3b the mapped surface is obtained via field line tracing
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Chapter 3. Field line map

of the four corners of the initial square. The mapping can be done in principle also with a higher
accuracy by tracing more than just the four corners, yielding a polygon as mapped surface.
However, this shall not be pursued here. Since the integration is a linear operation, the parallel
gradient can also be written with matrices in the form of expression 3.19.

a) b)

Figure 3.3.: Sketch for computation of parallel gradient: a) Finite difference method. b)
Coordinate free representation (only α discretisation).

3.5. Parallel diffusion

In this section the discretisation of the parallel diffusion operator is discussed:

Du := ∇ ·
[
(∇‖u)b

]
. (3.22)

3.5.1. Naive discretisation

Only in this section for the naive discretisation the contribution of ∇ · b, which is zero in axial
circular equilibria, is simply neglected. This approximation is not applied later in section 3.5.2
for the support operator method. The parallel diffusion operator can then be approximated as:

Du ≈ ∇2
‖u, (3.23)

which motivates a discretisation via a second application of a finite difference to the parallel
gradient:

∇2
‖uijk =

2

∆sαi,j + ∆sβi,j

(
∇α‖ui,j,k −∇β‖ui,j,k

)
. (3.24)

However, it will turn out that this scheme, called here the naive discretisation, exhibits a slow
convergence with respect to the poloidal resolution h.

3.5.2. Support operator method

In non-field aligned grids a directional discretisation error of the parallel diffusion operator intro-
duces unavoidably a spurious numerical perpendicular coupling. Due to the strong anisotropy
(χ‖ � χ⊥), the thereby arising numerical perpendicular dynamics could overwhelm the real
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3.5. Parallel diffusion

perpendicular dynamics and lead finally to wrong results. In [52, 53] a discretisation scheme
(symmetric scheme) is presented for a strongly anisotropic heat equation in a non-field aligned
Cartesian grid, which gave the motivation to generalize this method to the field line map ap-
proach, where an interpolation is involved. It is stated in [52] that a basic difference between the
asymmetric scheme, which causes a comparatively large numerical perpendicular transport, and
the symmetric scheme with low numerical perpendicular transport is, that the symmetric scheme
is self-adjoint on the discrete level. So also within the framework of the field line map approach
a better discretisation of the parallel diffusion operator with respect to the naive scheme is found
by conserving a ’good’ property, i.e. the self-adjointness of the parallel diffusion operator on the
discrete level.

Let u, v be two real valued arbitrary scalar fields, which vanish at the boundary of the domain.
We define a scalar product as an integration over the whole domain:

〈u, v〉 :=

∫
V

dV u v. (3.25)

The self-adjointness property is obvious:

〈u,Dv〉 =

∫
V

dV u∇ ·
[(
∇‖v

)
b
]

= −
∫
V

dV ∇‖u∇‖v = −
〈
∇‖u,∇‖v

〉
⇒ ∇†‖ = −∇ · [b◦] , D† = D. (3.26)

The method of support operators [110], which was also used in [52], gives an instruction how
second order operators can be constructed which conserve certain integral equalities like eq. 3.26
on a discrete level. The idea is that a first order operator is discretised, e.g. the gradient or the
divergence in general (in our case the parallel gradient) and the discrete second order operator is
constructed via a discretisation of a scalar product and the demand to conserve certain integral
equalities. We discuss in the following the scheme of the α discretisation. The β discretisation
follows completely analogous and a fusion of both is presented at the end of this section.

We choose as prime operator the parallel gradient, whose discrete analogue ∇α‖ is given by
expression 3.18 or 3.21, which can generally be written in matrix form according to expression
3.19 with a matrix Qα. Scalar functions u, v (e.g. temperature) are located on the scalar’s grid,
i.e. the basic grid made up of poloidal planes with a Cartesian grid. Fluxes pα, qα are located on
points half way along magnetic field lines between a grid point and the corresponding penetration
point (see fig. 3.3a). The discrete parallel gradient maps from the scalar’s grid (SG) to the flux’s
grid (FGα).

∇α‖ ,Qα : SG→ FGα. (3.27)

The parallel divergence ∇ · [b◦] as the derived operator is now constructed by requiring a con-
servation of the integral identity 3.26 on the discrete level. Therefore, we have to define scalar
products in the discrete spaces SG and FGα, which mimic both an integration over the same
whole domain.

〈u, v〉SG :=
∑
i

ui vi ∆Vi, 〈pα, qα〉FGα :=
∑
n

pαn q
α
n ∆Vαn , (3.28)

where in this section i, j, n,m are used as summation indices over all points and not as grid
indices as in the sections before. The finite volume elements ∆Vi and ∆Vαn are chosen as finite
flux box volumes around a magnetic field line as illustrated in fig. 3.4. ∆Vi is a flux box ranging
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Chapter 3. Field line map

Figure 3.4.: Illustration of flux box volumes ∆V and ∆Vα

around the field line toroidally limited by [ϕk −∆ϕ/2, ϕk + ∆ϕ/2] and Vα,βn toroidally limited
by [ϕk, ϕk ± ∆ϕ]. Again, these volumes can be computed to a high accuracy during the field
line tracing process. The discrete parallel divergence as the derived operator can now be derived
from the discrete parallel gradient, the discrete scalar products and by requiring the integral
equalities 3.26 on the discrete level. On the one hand:

〈u,Dv〉 → 〈u,Dαv〉SG =
∑
i,j

ui D
α
ij vj∆Vi, (3.29)

with Dα (and Dα as matrix) the discrete analogue to D. On the other hand:

〈u,Dv〉 = −
〈
∇‖u,∇‖v

〉
→ −

〈
∇α‖u,∇α‖ v

〉
FGα

= −
∑
n,m,k

Qα
nmum Qα

nkvk ∆Vαn . (3.30)

A relabelling of the indices m→ i, k → j and requiring the equality of expression 3.29 and 3.30
for arbitrary u,v, yields finally the desired expression for the discrete parallel diffusion operator.

Dα
ij = −

∑
n

Qα
niQ

α
nj

∆Vαn
∆Vi

. (3.31)

In the simplified case that all volumes are equal, this yields the simple expression

Dα = − (Qα)
T

Qα, (3.32)

where the self-adjointness on the discrete level is obvious. For axial equilibria the volume cor-
rection factor is negligible, since all points have the same flux box volume. However, in toroidal
equilibria due to geometry and the 1/R- dependence of the magnetic field strength the volumes
are different. The volume correction factor accounts for the effects of ∇ · b 6= 0. In addition,
the volume factor matters if the distances ∆sαi,j along magnetic field lines vary, i.e. if the grid
is non-equidistant in the parallel sense. This plays a role as parallel boundaries are taken into
account (see appendix B.4).

A further important point concerns numerical stability. If the discrete parallel diffusion op-
erator is used within a time evolution equation, e.g. a heat equation, a discretisation of the
parallel diffusion operator with the support operator excludes possible instabilities arising from
the interpolation, since it guarantees a strict decrease of the L2-norm on the discrete level:

〈u,Dαu〉SG = −
〈
∇α‖u,∇α‖u

〉
FGα

≤ 0, (3.33)
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which is in general not fulfilled with the naive discretisation method.
Finally, a small modification is applied to the scheme. A discrete parallel diffusion operator

can also be derived completely analogously by choosing the β discretisation (replace just all α‘s
with β‘s), which will end also in a consistent and convergent scheme by itself. However, it is
desirable that the final discrete scheme is independent on this initial arbitrary choice. To achieve
this, we simply take the average between both discretisations:

D → D :=
1

2

(
Dα + Dβ

)
. (3.34)

This modification does not alter the self-adjointness property on the discrete level in the sense
that the scalar product for fluxes is now defined as:

〈p, q〉FG :=
1

2
〈pα, qα〉FGα +

1

2

〈
pβ , qβ

〉
FGβ

, (3.35)

which still mimics one integration over the same whole domain.

3.6. A simple model problem

Expression 3.31 (respectively 3.34) and 3.24 are discretisation schemes for the parallel diffusion
operator in a quite general geometry. To get further insight into the difference of both schemes,
a simple 2D model problem is considered.

3.6.1. Stencil

We consider a minimum non-trivial 2D problem spanned by coordinates x, z which are assumed
doubly periodic. The setup is illustrated in fig. 3.5a. x plays the role of a coordinate within a
poloidal plane and z the toroidal/axial direction. The magnetic field is uniform with a slight
inclination with respect to the axial direction:

b =
1√

(fh)2 + ∆z2
[(fh)ex + ∆zez] , (3.36)

where on the continuous level (fh) is the distance in x-direction and ∆z the distance in z-
direction as one travels along a magnetic field line. The numerical grid is regular in x, z with
grid spacing h and index i in the x−direction and grid spacing ∆z and index k in the z−direction.
Using a linear interpolation to determine the value at the penetration points, the matrix for the

a) b) c)

Figure 3.5.: Model problem at the example of 9 grid points. a) Setup. b) Discrete stencil
of parallel diffusion operator for naive scheme, c) for support scheme.
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discrete parallel gradient matrix in the 9 point example is:

Qα = −
(
Qβ
)T

=
1

∆s



−1 1−f f
−1 1−f f

−1 [f ] 1−f
−1 1−f f

−1 1−f f
−1 [f ] 1−f

[1−f ] [f ] −1
[1−f ] [f ] −1

[f ] [1−f ] −1

 , (3.37)

where the quantity ui,k is stored into a vector according to u = (u1,1, u2,1, u3,1, u1,2, . . . )
T .

Entries, which are given in square bracket arise due to the periodic boundary conditions and are
of no importance for the final stencil of an inner point, which is in the example only i = 2, k = 2.
The distance along field lines is ∆s =

√
∆z2 + (fh)2. The flux box volumes are in this example

all equal (∆V = ∆V = h∆z) and the discrete parallel diffusion follows immediately. The stencils
of the inner grid point for the naive and support operator scheme are illustrated in fig. 3.5b,c.
First, if the displacement is set to zero (f = 0, 1), the interpolation becomes exact, both schemes
agree and yield the standard second order finite difference expression for the second derivative.
For finite displacement the most striking difference is that the naive scheme has a stencil which
involves the interpolating grid points in the neighbouring planes (k−1, k+1) and the considered
grid point itself, whereas the stencil of the support scheme comprises also neighbouring points
in the same plane (x-direction) as the considered grid point.

3.6.2. Numerical analysis

The discrete parallel diffusion operators are now investigated based on their action on a mode
u = exp(ikxx+ ikzz). The analytic result is:

Danu = − ((fh)kx + kz∆z)
2

∆s2
u =: −k2

‖u. (3.38)

On the discrete level the parallel diffusion operators are:

Dnaiveu =
2

∆s2

[
(1− f) cos(kz∆z) + f cos(kxh+ kz∆z)− 1

]
u, (3.39)

Dsuppu =
2

∆s2

[
(1− f) cos(kz∆z) + f cos(kxh+ kz∆z) (3.40)

− f(1− f) cos(kxh)− 1− f(f − 1)
]
u.

A Taylor expansion in (kxh, kz∆z) yields:

Dnaiveu ≈
[
−k2
‖ −

f(1− f)(kxh)2

∆s2
+O

(
(kxh, kz∆z)

4

∆s2

)]
u, (3.41)

Dsuppu ≈
[
−k2
‖ +O

(
(kxh, kz∆z)

4

∆s2

)]
u. (3.42)

By comparing the numerical results 3.41 respectively 3.42 with the analytic result 3.38, it is obvi-
ous that the error of the naive scheme for finite displacement is already of the order (kxh)2/∆s2,
whereas the support scheme yields an error of the order (kxh, kz∆z)

4/∆s2, indicating a faster
convergence of the support scheme with the poloidal resolution h. A similar analysis using a 3rd
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order polynomial interpolation (see appendix B.2) yields:

Dnaiveu ≈
[
− k2
‖ +

1

12
k4
‖∆s

2 − (kxh)4

∆s2

f(f − 1)(f + 1)(f − 2)

12

+O
(

(kxh, kz∆z)
6

∆s2

)]
u, (3.43)

Dsuppu ≈
[
− k2
‖ +

1

12
k4
‖∆s

2 + k‖O
(

(kxh, kz∆z)
5

∆s2

)
+O

(
(kxh, kz∆z)

8

∆s2

)]
u. (3.44)

The error term ∝ k4
‖ arises due to the discretisation in the parallel direction4 and could be

eliminated by choosing a higher order discretisation of the parallel gradient along the magnetic
field line. Since k‖ is dependent on kxh, kz∆z, the overall error for structures with finite k‖ is of
the order (kxh, kz∆z)

4/ds2.
The dangerous error terms are those which are purely dependent on kxh, since these introduce

a directional error and are responsible for the numerical perpendicular transport. In tokamaks
the parallel dynamics is usually much faster than the perpendicular dynamics, e.g. the heat
conductivity can reach ratios up to χ⊥/χ‖ ∼ 10−10. A small directional error of a discrete
parallel operator can thus overwhelm the real perpendicular dynamics. In terms of numerical
transport the support scheme with polynomial interpolation clearly performs best. Especially
for modes which have k‖ = 0, the numerical error is of the order (kxh)8/∆s2.

Embedding the discrete parallel diffusion operator into a parallel diffusion equation 3.45, a
mode which has initially k‖ = 0 decays numerically. This numerical decay can be quantified with
a decay exponent γnum of the L2-norm. As illustrated in fig. 3.6, the above derived scalings of
the decay exponent with resolution for the different schemes are perfectly obtained.
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Figure 3.6.: Numerical decay exponent γnum of L2-norm in dependence of poloidal res-
olution h for fixed z-resolution and fixed displacement (f = 0.2 or f = 0.8). The initial
state is a kx = 5, kz = −1 mode and the magnetic field pitch is tan θ = kz/kx, such that
the parallel gradient vanishes. The simulation domain was doubly periodic [0, 2π]× [0, 2π].

4Remember that a similar analysis of the standard second order finite difference expression in 1D (coordinate x,
grid spacing ∆x) for the second derivative yields: ∂2x exp(ikx) ≈

[
−k2 + k4∆x2/12 + · · ·

]
exp(ikx)
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3.7. Benchmarks in 3D

In this section benchmarks of the parallel diffusion operator in 3D are presented. As an example
problem the parallel diffusion equation serves:

∂

∂t
u = χ‖Du, (3.45)

which can be run within the framework of the GRILLIX code by just switching off certain terms,
i.e. it is also a direct test of the implementation. Since we are here interested in the spatial
error, the time step was chosen always sufficiently small, such that the temporal discretisation
error was always subdominant. Details of the temporal discretisation, the solver, computational
parallelisation etc. are discussed in chapter 4. For benchmarks, performed in axial geometry with
circular flux surfaces, an analytic solution is available. Let the initial state be characterised with
a poloidal and axial mode number (n,m) and an arbitrary radial structure:

u(t = 0) = f(ρ) sin(mθ + nz), (3.46)

then the analytic solution can be found via Fourier Transform methods:

uan(t) = f(ρ) exp(−γ(ρ)t), with: γ =
χ‖

1 + ρ2/q(ρ)2

(
m

q(ρ)
+ n

)2

. (3.47)

Hence, a characteristic time scale is given by the inverse decay rate t−1
e = γ((ρmax+ρmin)/2). If

not stated differently, χ‖ = 1, i.e. time is measured in units of R2
0/χ‖ respectively L2

ax/(4π
2χ‖),

and the radial structure is characterised with a radial mode number r, such that:

f(ρ) = sin

(
πr

ρ− ρmin
ρmax − ρmin

)
. (3.48)

The simulation domain is a flux shell limited5 by ρmin = 0.1, ρmax = 0.2. The error is measured
in the L2-norm:

δ2(t) =
||uan(t)− unum(t)||2

||uan(t)||2
. (3.49)

Five possible discretisations will be investigated:

• N-1: Naive scheme with bilinear interpolation.

• N-3: Naive scheme with 3rd order bipolynomial interpolation.

• S-1: Support scheme with bilinear interpolation.

• S-3: Support scheme with 3rd order bipolynomial interpolation.

• S-C: Support scheme with the parallel gradient discretised via the coordinate free repre-
sentation.

5For a better match of the radial mode with the perpendicular boundaries the flux shell is actually extended
about roughly one grid point, i.e. ρ = ρmin − h · · · ρmax + h
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3.7.1. Basic test q =∞
For the case q = ∞ the magnetic field is purely axial and the penetration points coincide with
grid points. The interpolation is exact, the discrete parallel gradient operator reduces to the
well known standard second order finite difference expression for all schemes and the numerical
error should depend on the poloidal resolution h. Hence, this case serves merely as check for
the correctness of the implementation of the schemes. In fig. 3.7 the error in dependence on
the number of poloidal planes (axial resolution) for a r = 1, m = 0, n = 1 mode is shown. The
numerical error decays like N−2

pol for all schemes, which shows the expected second order accuracy.
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Figure 3.7.: Numerical error in dependence on number of poloidal planes for a r = 1, m =
0, n = 1 mode with q =∞.

3.7.2. q 6=∞
In the next benchmark a finite safety factor of q = 3.4 is chosen. The penetration points do now
not coincide with grid points any more, and thus the numerical accuracy is also dependent on
the poloidal resolution h and the scheme.

In fig. 3.8 the difference between the analytic solution and the numerical solution for a m =
3, n = 1, r = 1 mode at the axial position z = 0 is shown for the different schemes on the
same colour scale. The basic behaviour is consistent with the predictions of the simple 2D model
problem. The error is largest for the N-1 scheme with an order of O(h2). The errors of the
other schemes are on a lower level O(h4). However, since at the boundaries the conditions for
the interpolation become worse, significant errors arise here. Especially for the N-3 scheme the
errors are significant.

The numerical error in dependence of the axial resolution for two different poloidal resolutions
is shown in fig. 3.9a,b. For low axial resolutions the error is dominated by the axial resolution
Npol and decays like N−2

pol ≈ ∆s2, showing the second order accuracy of the schemes. For high
axial resolution the error is dominated by the poloidal resolution h of the mode and deviates
from the line N−2

pol but increases. In agreement to the predictions of the simple 2D model, this
transition occurs first for the N-1 scheme and for the other schemes later at roughly the same
point. In fig. 3.9c,d the numerical error in dependence on the poloidal resolution h for a fixed
axial resolution Npol is shown. Again, the convergence is slowest for the N-1 scheme and for the
other schemes faster. The S-1 and S-3 scheme perform thereby slightly better than the N-3
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a) b) c) d)

Figure 3.8.: Difference between analytic and numeric solution uan(te) − unum(te) of a
r = 1, m = 3, n = 1 mode (te ≈ 0.3) at z = 0. a) N-1, b) N-3, c) S-1, d) S-3. Parameters
were q = 3.4, Npol = 32, h = 6 · 10−3. Colour code is from −0.01 (dark blue) to +0.01
(dark red).

scheme. In the end the N-1, S-1 and S-3 schemes converge to the same constant error of roughly
δ2 ≈ 1.25 · 10−2 for Npol = 32 respectively δ2 ≈ 3.5 · 10−3 for Npol = 64 which is determined
by the axial resolution. These values lie then again on the N−2

pol line indicated with a red point
in fig. 3.9b. As becomes especially apparent in fig. 3.9d, the N-3 scheme initially shows also a
smooth convergence to the same value as the other schemes, but then suddenly changes quite
abruptly at the highest resolution. The reason for this is not yet quite clear, but might have
to do with a numerical instability arising due to the interpolation process. This peculiarity is
not investigated here further, since a computation at a higher resolution could not be performed
presently with the available hardware and the N-3 scheme will ultimately not be used anyway.

Having analysed the numerical accuracy of the schemes for modes with k‖ 6= 0, it is worth
to analyse the numerical perpendicular transport for k‖ = 0 modes. In fig. 3.10a the temporal
evolution of the error is plotted for a zonal mode (r 6= 0, m = 0, n = 0). It can be seen that for
the N-1 scheme the error increases rapidly until after t ≈ 1000 the mode has decayed practically
completely. For the other schemes the error first increases also quite rapidly due to effects at the
boundary. After this initial transient phase the error increases on a much slower level. Due to
the worse conditioning of the 3rd order polynomial interpolation at the boundaries, the initial
error is slightly larger for the S-3 scheme than for the S-1 scheme. However, after the transient
phase the numerical error increases for the N-3 and S-1 faster than for the S-3 scheme. In
fig. 3.10b the temporal evolution of the L2-norm is shown. Whereas the mode has practically
decayed completely for the N-1 scheme after t = 1000 and a slow decay for the N-3 and S-1
can be seen, it remains practically stable with the S-3 scheme. From these curves a numerical
decay exponent γnum can be estimated.

Finally, the numerical decay exponent in dependence on the resolution is shown in fig. 3.11a,b.
By varying the resolution h and the mode number r independently, it is apparent that the
numerical decay exponent is solely dependent on kρh and Npol. The scalings which can be
derived from the graphs are roughly:

γnum =


(kρh)2N2

pol, for N-1,

(kρh)4N2
pol, for N-3 and S-1,[

A(kρh)8 +B(kρh)4
]
N2
pol, for S-3.

(3.50)

Recalling that Npol ≈ ∆s−1, the scalings derived for the simple model problem in section 3.6.2 are
obtained. Except for the S-3 scheme, where for low poloidal resolutions is as derived (kρh)8/∆s2
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Figure 3.9.: Numerical error δe(te) of a r = 1, m = 3, n = 1 mode (te ≈ 0.3) in
dependence on resolution with q = 3.4. In dependence on axial resolution for fixed poloidal
resolution of a) h = 8 · 10−3, b) h = 4 · 10−3. In dependence on poloidal resolution for
fixed axial resolution of c) Npol = 32 and d) Npol = 64. The error converges against
δ2 ≈ 3.5 · 10−3, which is indicated in fig. b) with a red circle.
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Figure 3.10.: Temporal evolution of a) error and b) L2-norm of a zonal mode with
r = 4, m = 0, n = 0. Resolution was h = 4 · 10−3, Npol = 2 and q = 3.4.

but then changes to (kρh)4/∆s2. This change of scaling is again explained by the boundary
conditions. It has been observed that the numerical transport is larger close to the boundaries
than in the center of the flux shell. This breaks the derived scaling of the simple 2D model
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problem.
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Figure 3.11.: Numerical decay exponent in dependence of a) poloidal resolution of mode
kρh for fixed axial resolution Npol = 2 and b) in dependence of toroidal resolution Npol
for fixed poloidal resolution kρh = 0.75.

3.8. Map distortion

So far, only axial equilibria with a constant safety factor have been considered, where the mag-
netic field lines are still pretty simple. In realistic tokamak geometry especially in presence of an
X-point, the magnetic field lines can become distorted strongly by converging in one direction,
while diverging in the other direction to maintain ∇ ·B = 0. As an example consider initially a
square of lateral length h on a poloidal plane close to the X-point. Tracing the edges as illustrated
in fig. 3.3b of this square towards e.g. the outboard midplane will distort the square such that
it becomes poloidally strongly elongated but radially compressed while preserving the toroidal
magnetic flux through the area. How does this distortion affect the numerical scheme?

To illustrate the effects of such a distortion, we consider a 2D example illustrated in fig. 3.12,
where x shall again mimic a direction within a poloidal plane and ϕ the toroidal direction. Close
to the separatrix the magnetic field lines behave ergodically, i.e. two field lines initially separated
by the poloidal grid distance h become separated by a distance g ∝ h exp(ϕ) as one advances a
distance ϕ in the toroidal direction. Let us further assume that there is some blob with finite
poloidal extent of the order of h at some plane. In reality the blob diffuses along field lines
and thus spreads across many points in the neighbouring poloidal plane. For the naive scheme
with any kind of interpolation this does not cause any problems, since the discrete parallel
diffusion operator at some grid point is just computed by ’taking’ values from neighbouring
poloidal planes. However, in the support scheme a value is not just ’taken’ from neighbouring
but also ’sent’ towards neighbouring poloidal planes. This might become clearer by recalling that
the support scheme roughly involves a multiplication with the transpose matrix of the parallel
gradient matrix (see eq. 3.32). If the parallel gradient is computed only via an interpolation at
the penetration points, grid points which lie in between the diverged field lines are not connected
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3.8. Map distortion

to the original points by the scheme. The blob does not spread properly over the grid points but
only diffuses to points which are connected by the scheme. Finally, spurious wiggles arise in the
neighbouring poloidal plane.

Figure 3.12.: Effects of map distortion on numerical scheme (2D). Magnetic field lines
are ergodic and separate according to g ∝ h exp(ϕ). In the illustration only the thick grid
points are connected by the support scheme with linear interpolation (S-1). As a result, a
blob which should in reality spread smoothly across many grid points in the next poloidal
plane only diffuses to those grid points which are connected by the scheme (marked thick).
Unphysical wiggles arise. With the naive discretisations this problem does not occur, since
here values are only ’taken’ from neighbouring poloidal planes.

As an example, in fig. 3.13 the temporal evolution of an initially Gaussian blob6,

u(t = 0) = exp

[
− (R−Rc)2

R2
w

− (Z − Zc)2

Z2
w

]
δ(ϕ), (3.51)

located close to the X-point is illustrated. The simulation was performed with two poloidal
planes. As just described, for the N-3 scheme the diffusion results in smooth structures, whereas
for the S-3 scheme unphysical small wiggles arise.

There are two possible remedies for the problem.

3.8.1. Remedy 1

The previous discussion suggests that the parallel gradient has to be discretised, such that the
map includes those points which should be connected. This is exactly achieved via the coordinate
free representation of the parallel gradient described in section 3.4.2. The result is shown in
fig. 3.15a, where the same computation as in fig. 3.13 has been performed with the support
scheme using the coordinate free representation for the parallel gradient (S-C). In the example
the map was performed with quads and the wiggles vanished. If the distortion becomes even
stronger, a map with quads might not suffice, but by tracing more than just the four edges of
the initial square a polygon map is needed. Due to this reason and since the implementation of

6On the discrete level the δ-distribution is modelled with a Kronecker δ: δ(ϕ)→ Npolδ0,k.
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a) b) c)

Figure 3.13.: Temporal evolution of Gaussian blob close to separatrix (ρmin =
0.9, ρmax = 0.95, equilibrium according to [111], see also section 4.1) with h = 1 · 10−3,
Npol = 2. a) Initial state is Gaussian blob at the first plane (ϕ = 0) with Rc = 0.88,
Zc = −0.29, Rw = Zw = 8 · 10−3. b) Snapshot at t = 10 of the second plane (ϕ = π)
computed with N-3 scheme. Part of the domain is enlarged. c) Computed with S-3
scheme. Due to the ergodic behaviour of the field lines, small scale wiggles arise. Colour
scale green to red: a) 0 · · ·+ 2, b,c) 0 · · ·+ 0.5

the method is cumbersome, though possible as has been shown here, this method is not pursued
further here. Moreover, concerning numerical transport, S-C has the same properties as the S-1
scheme.

3.8.2. Remedy 2

Instead of using the S-C method, we define a criterion for the S-1 and S-3 method up to which
they perform reasonably well. Starting with an initial square of lateral size h at one plane, as
the edges are traced to the neighbouring planes, the mapped quads at the neighbouring planes
will be distorted. Neglecting the weak dependence of Btor, the area of the square is thereby
preserved due to flux conservation. We can distinguish two types of distortion: A conformal
distortion where the quad is stretched in one direction and squeezed in the other resulting in
disparate lateral lengths, and an angular distortion where e.g. two angles become acute and the
other two obtuse resulting in a parallelogram. We quantify the distortion by:

dc = max
i,j

longest side of mapped quad i, j

shortest side of maped quad i, j
, (3.52)

da = max
i,j

largest angle of mapped quad i, j

smallest angle of maped quad i, j
. (3.53)

The distortion decreases as the number of poloidal planes is increased. It is evident that the S-1
and S-3 schemes still perform well if the mapped quad does not spread over more than two squares
in each direction within the neighbouring poloidal plane. Otherwise the map might jump over
grid points, which results in the appearance of the spurious wiggles and ultimately to a decrease
of the effective resolution. Applying this constraint, results in a threshold for the distortion (see
fig. 3.14) of dc ≤ 4 and da ≤ 3. This threshold is based on a reasonable argument, but soft, of
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course. Therefore, we require in all simulations that the toroidal resolution is sufficiently high,
such that for both distortions it holds:

dc, da ≤ 4. (3.54)

If this threshold value suffices for the individual case, could also be checked a posteriori with
convergence tests in Npol. Using in the example Npol = 20 reduces the distortion below the
specified threshold and the wiggles vanish (see fig. 3.15b).

a) b)

Figure 3.14.: Examples for distortion. Grey squares indicate base cells within the neigh-
bouring poloidal plane. Black quads are examples for mapped quads. The area is thereby
preserved. a) Examples for conformal distortion. A threshold of dc ≤ 4 ensures that
the mapped quad spreads at most over 2 squares. b) Examples for angular distortion, a
threshold of da ≤ 3 suffices.

a) b)

Figure 3.15.: Remedies for the map distortion: a) Same simulation as in fig. 3.13 per-
formed with S-C scheme. b) Simulation performed with S-3 and Npol = 20 poloidal
planes, i.e. the 11th plane is shown. The distortion from plane to plane is small and the
wiggles vanish.

An example for the map distortion around the X-point is plotted in fig. 3.16. For Npol = 4
(blue) the mapped quads are strongly distorted as they are squeezed in one direction and
stretched in the other. With increasing number of poloidal planes, the distortion reduces dras-
tically. This is also obvious from fig. 3.16b.

Finally, additional convergence tests which are discussed in appendix B.3 show that the sup-
port schemes also in general geometries exhibit a faster convergence and a lower numerical
perpendicular transport, proving its superiority over the naive scheme.
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Figure 3.16.: a) Example for map distortion around X-point. Obtained mapped quads
(α-direction) for toroidal resolutions Npol = 4 and Npol = 32. Initial squares are black. b)
Map distortion as function of Npol for region around X-point. A resolution of somewhat
less than Npol = 32 planes is needed to go below the desired threshold.

3.9. Conclusions

In this chapter the numerical approach has been presented. In the presence of an X-point a
transformation to field aligned coordinates, as it is routinely done, is not possible since the
poloidal field vanishes at the X-point. The construction of a straight field line coordinate system
is not possible. Therefore, a cylindrical coordinate system (R,Z, ϕ) is used with a grid which
is Cartesian within the poloidal planes. The discretisation of perpendicular operators is simple
and straight forward, whereas for the discretisation of parallel operators a sophisticated field line
map is used to exploit the flute mode character.

The main emphasis of this chapter was on the discretisation of the parallel diffusion operator.
Two distinct discretisations have been presented: A naive, but at first sight plausible method,
and a discretisation via the support operator method which conserves the self-adjointness on
the discrete level. It has been shown both, analytically with a simple 2D model problem and
by numerical measurements that the support operator method converges much faster being thus
the superior method. Moreover, the numerical transport is drastically reduced with the support
scheme. The origin of erroneous effects arising in a strongly distorted magnetic field have been
identified and can be resolved either via an elegant discretisation of the parallel gradient or by
introducing a reasonable resolution constraint. Additional topics related to the field line map
approach can be found in appendix B. Parts of this chapter have been published in [96].
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Chapter 4.

GRILLIX: A field line map based 3D
turbulence code

In this chapter the basic work flow and some details on the implementation of the GRILLIX code
is given. GRILLIX is written in Fortran and is hybrid parallelised with OpenMP and MPI. The
approach with the Cartesian grid and the field line map is rather uncommon and new in the fusion
community. To the knowledge of the author the only yet published code with a remotely similar
approach is FENICA [50, 49], which however solves a different set of equations and only contains
the parallel gradient but not the parallel diffusion. GRILLIX has been developed independently
and essentially in parallel to FENICIA. Due to this new approach, GRILLIX has been developed
completely from scratch by me.

4.1. Environment and data flow

The whole GRILLIX code is a closed package consisting of several programs which exchange
data among each other. The single programs and the data flow is illustrated in fig. 4.1.

First the equilibrium is established which is specified by parameter in equi params.in. Cur-
rently, the following equilibria can be created:

• Axial circular equilibria with prescribed q-profile.

• Axial geometry composed by superposition of a magnetic field from an axial circular ge-
ometry with prescribed q-profile and the magnetic field created by a wire in a prescribed
divertor region. This results in an axial diverted magnetic configuration with an X-point
(see section 6.2).

• Toroidal geometry with a magnetic field configuration which is an actual solution to the
Grad-Shafranov-Schlüter equation (see eq. 3.2). The magnetic field is available in terms of
analytic functions [111].

The file equi params.in and grid params.in, where parameters for the resolution of the grid are
specified, serve as input for the program create grid@GRILLIX, which is described separately in
appendix C. create grid@GRILLIX creates the file grid cart.in where the Cartesian grid data,
i.e. the position of the grid points, the results from the field line tracing, etc., is stored. Mainly
for diagnostics purposes also the file grid polar.in is created where grid information of a polar
grid is stored. Due to axisymmetry, this data is identical for each plane.

The files grid cart.in and grid polar.in, together with init params.in is taken as input for the
program create init@GRILLIX which creates the initial state. Several different possibilities as
initial state can be created such as a random noise, Gaussian blobs, (m, n, r) modes and to a
certain extent even field aligned structures. As main@GRILLIX, create init@GRILLIX is MPI
parallelised over the planes, such that each rank takes the same information from grid cart.in
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and grid polar.in and writes its data to its own file snapsX.out, where X stands for the rank
of the MPI process or the number of the plane. In addition, it creates the header of the files
diagnostics.out and diagnostics radial.out in which the diagnostics output from the program
main@GRILLIX is stored.

Figure 4.1.: Content of GRILLIX package and data exchange among different subpro-
grams.

In the file params.in the parameters for the simulation have to be specified by the user.
Besides physical constants, e.g. the adiabaticity (parameter D) or the hyperviscosities νn, νφ,
also numerical parameters are specified, e.g. the desired size of the time step dtmax, dtmin. The
maximum equation system which can be solved yet is the Hasegawa-Wakatani equations with
curvature (see eqs. 2.39, 2.40). Each term can be switched off and on via parameters separately,

52



4.2. main@GRILLIX

such that e.g. also the parallel diffusion equation or only linear dynamics can be studied.
The program main@GRILLIX consists of an initialization phase and a time stepping phase.

During the initialization phase the input from params.in and the grid data (grid cart.in, grid polar.in)
is read. The last frame from the file snapsX.out is taken as start frame, such that the simulation
can be restarted at any time. In the initialization an indexing is performed where for each grid
point its neighbours are found and the operators (matrices) are built, which remain constant in
time.

The initialization phase is followed by the time stepping phase where the quantities are evolved
in time. At certain time points, specified by the user in params.in via dtsnaps, the code writes
a full snapshot of the quantities to snapsX.out, performs a basic (scalar) diagnostics (dtdiag1)
and writes the result to diagnostics.out, or performs a zonal diagnostics (dtdiag2) and writes the
result to diagnostics radial.out.

Several post processing routines are available which perform more elaborate diagnostics, e.g. com-
puting spectra. 2D visualisation routines are available as MATLAB [112] scripts and a separate
program can transform the raw data from snapsX.out to the SILO [113] format, which can be
visualized in 3D with e.g. VISIT [114]. All programs and diagnostics tools have been developed
by me from scratch.

4.2. main@GRILLIX

In this section the program main@GRILLIX is described in more detail.

4.2.1. Paralellisation scheme

The idea of the parallelisation of main@GRILLIX (and also many other programs/tools of GRIL-
LIX) is a MPI parallelisation over the poloidal planes, i.e. each MPI process, rank, works on its
own poloidal plane. The number of MPI processes is thus constrained to the number of poloidal
planes. Communication between the ranks appears only if global quantities have to be computed
or if parallel operators have to be evaluated. Within each poloidal plane loops are OpenMP par-
allelised, respectively multi threaded libraries are used.

There are few exceptions of this parallelisation scheme in the initialisation phase. For huge
grids the indexing routines which find for each grid point the perpendicular/parallel neighbours
can take very long (in the worst case this can result in N2-loops). Due to axisymmetry, this
information is the same for each plane, and instead that each rank computes the same information
by itself, this work is also split into chunks to the single ranks and finally gathered at all ranks.

4.2.2. Initialisation phase

A work flow of the initialisation phase of main@GRILLIX is illustrated in fig. 4.2 as a Jackson
Diagram [115], as it is executed by a rank.

After the input has been read, a perpendicular indexing is performed, i.e. for each grid point
the indices of the 12 next poloidal neighbours are searched. These 12 neighbours are involved in
finite difference expressions for the perpendicular neighbours (perpendicular stencil). In addition,
if some grid point misses at least one direct neighbour, it is indicated to be a boundary point,
on which all quantities are set to zero.

Next, the matrix for the perpendicular Laplace operator ∇2
⊥ is built, which is approximated
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as:

∇2
⊥ ≈

∑
i,j=R,Z

1

J
∂j
[
J
(
gij − bibj

)]
∂i, (4.1)

with J = 1 for axial and J = R for toroidal equilibria. gij = δij is the metric tensor and b is
the unit vector of the magnetic field. Due to the assumption of a strong toroidal field and the
smallness of the structure, the perpendicular Laplace operator could be simplified even more to
∇2
⊥ = ∂2

R + ∂2
Z . However, this approximation is not applied here, since the additional terms

in eq. 4.1 do not introduce a significant complexity from the computational point of view. The
derivatives are discretised via standard second order finite difference methods (9 point stencil).
During the time stepping phase equations of the kind ∇2

⊥x = z, with z known have to be solved
for x. This is easily and rapidly done via a back substitution with the LU decomposition of
∇2
⊥. The LU decomposition is done with the multi-threaded PARDISO solver from the MKL

library [116]. Experience has shown that PARDISO is compared to several tested libraries fast
and economic in memory with respect to the matrices used in GRILLIX. It exhibits a reasonable
scaling with the number of threads even for the time critical back substitution phase.

The parallel gradient matrices can be stored as blocks on each rank. An off-diagonal block
which acts on points in the neighbouring poloidal plane (on plane k + 1 for Qα and on plane
k − 1 for Qβ) and a diagonal block acting on points of the same plane. Due to axisymmetry,
the blocks are identical for all ranks. Parallel neighbours, i.e. grid points which are involved
in the interpolation process, are found via another indexing routine. The blocks of the parallel
gradient matrices are then filled up with the interpolating coefficients (see appendix B.1). It is
also possible to compute the parallel gradient matrices with the coordinate free representation.
To this aim, overlaps between quads have to be computed, which is done by the routine given
in [117]1. However, the development of the coordinate free representation is still experimental
and not yet optimized (at the moment for N2 grid points the overlap is computed which is very
slow). During the time stepping phase parallel gradient matrices are involved in matrix vector
multiplications, i.e. z = Qα,βx, with x known. The Recursive Sparse Block library (LIBRSB)
[118] is used which performs cache efficient multi-threaded sparse matrix vector operations.

For operations in the buffer zones, close to the boundary, and for diagnostics purposes, flux
surface averaged quantities have to be computed in the closed field line region [97]:

〈u〉 (ρ) =

2π∫
0

2π∫
0

dθedϕJe u

2π∫
0

2π∫
0

dθedϕJe

, (4.2)

where J−1
e = ∇ρ · (∇θe × ϕ) is the Jacobian of an elementary toroidal coordinate system. In

grid polar.in the coordinates of a polar grid and the Jacobian Je are given as computed by cre-
ate grid@GRILLIX (see appendix C). To perform flux surface averages, the quantity is mapped
from the Cartesian grid to the polar grid via an interpolation. In analogy to the establishment
of the parallel gradient matrix, first a polar indexing is performed, i.e. for each polar grid point
the Cartesian neighbours involved in the interpolation are searched. Afterwards, the matrix P
is filled with the interpolating coefficients. Also for the Matrix P the LIBRSB library is used.

1Slight errors have been found in the given source code which have been corrected.

54



4.2. main@GRILLIX

F
ig

u
re

4
.2

.:
W

or
k

fl
ow

of
in

it
ia

li
sa

ti
on

p
h

as
e

of
m

a
in

@
G

R
IL

L
IX

a
s

J
a
ck

so
n

D
ia

g
ra

m
[1

1
5
].

T
h

e
p

ro
g
ra

m
,
i.

e.
ea

ch
ra

n
k
,
ex

ec
u

te
s

th
e

b
lo

ck
s

fr
om

le
ft

to
ri

gh
t.

D
ow

n
w

ar
d

s,
co

n
n

ec
te

d
w

it
h

li
n

es
,

su
b

st
ru

ct
u

re
s

o
f

a
b

lo
ck

a
re

d
es

cr
ib

ed
.

A
b

ox
w

it
h

a
ci

rc
le

in
th

e
u

p
p

er
ri

gh
t

co
rn

er
d

en
ot

es
an

’i
f’

b
ra

n
ch

.
A

b
ox

w
it

h
a

st
a
r

in
th

e
u

p
p

er
ri

g
h
t

co
rn

er
d

en
o
te

s
a

lo
o
p

.

55



Chapter 4. GRILLIX: A field line map based 3D turbulence code

4.2.3. Time stepping phase

Time stepping scheme

The time stepping scheme was adopted from the 2D Hasegawa-Wakatani code HW [94].
For time propagation a 3rd order backward differentiation formula (BDF3) is used [119]. Tests

with several other methods have shown that this scheme exhibits a robust numerical stability
and energy conservation. The temporal discretisation of ∂tu = f(t, u) is expressed as:

ut+1 =
18

11
ut −

9

11
ut−1 +

2

11
ut−2 +

6

11
dt f(t+ 1, ut+1). (4.3)

Hence, three time points have to be stored in memory. BDF3 is an implicit scheme, since f has
to be evaluated at time point t + 1. Due to the non-linearity, a strict evaluation at time point
t+ 1 is difficult and we split f into a part fimp which is still treated strictly implicitly and a part
fexp which evaluates the function f at the time point t+ 1 via a polynomial extrapolation from
the three old time steps. For a constant time step dt the final method becomes:

ut+1 −
6

11
dt fimp(t+ 1, ut+1) =

18

11
ut −

9

11
ut−1 +

2

11
ut−2 +

6

11
dt fexp(t+ 1, ut+1), (4.4)

with: fexp(t+ 1, ut+1) = 3 fexp(t, ut)− 3 fexp(t− 1, ut−1) + fexp(t− 2, ut−2). (4.5)

Most terms of the HW equations are treated explicitly in fexp, background gradient source,
hyperviscosity, non-linear advection, curvature and sources/sinks in the buffer zones. Due to the
fast dynamics along magnetic field lines, the parallel diffusion has to be treated treated implicitly
in fimp [120]. Especially in the vorticity equation the effective parallel diffusion coefficient can

be large (∼ D/k2
⊥). Introducing for notation the vector y(t) = (nt, φt)

T
, where nt and φt are

vectors containing the discrete values of the density and the potential at the grid points at time
point t, the algebraic equation system to be solved in each time step is:

Ay(t+ 1) =
18

11
y(t)− 9

11
y(t− 1) +

2

11
y(t− 2) +

6

11
dt fexp [y(t),y(t− 1),y(t− 2)] . (4.6)

The right hand side with fexp can be easily evaluated and the matrix A has the structure:

A =

(
1− 6

11 dtDD 6
11 dtDD

− 6
11 dtDD ∇2

⊥

)
. (4.7)

Work flow

The work flow of a time propagation step of main@GRILLIX is illustrated in fig. 4.3. The
temporal driver works via a reverse communication interface which controls the task. Output
is written and/or diagnostics of the data are performed at fixed time intervals. The maximum
allowed time step dtmax must be supplied by the user and must be chosen small enough to ensure
numerical stability for the linear terms. During the simulation the time step is dynamically
adjusted according to the maximum E×B velocity:

0.1 < max(vE/h)dt < 0.3. (4.8)

With these criterions fulfilled, there was no run where a numerical instability occurred. The HW
equations 2.39 and 2.40 are advanced one time step according to the algebraic equation system
4.6. First the change due to the explicitly treated dynamics is computed (fexp):
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• Linear advection of the background:

δ−1wnvE · ∇ρ = δ−1wn
Btor
B2

[φ, ρ]R,Z . (4.9)

The parameter wn can be set by the user to control the background density gradient. The
Jacobi bracket is discretised with a second order Arakawa scheme [121].

• Non-linear advection:

vE · ∇n =
Btor
B2

[φ, n]R,Z , (4.10)

B−2vE · ∇∇2
⊥φ =

Btor
B4

[
φ,∇2

⊥φ
]
R,Z

. (4.11)

• Hyperviscosity:

νn∇2Nn, νφ∇2N∇2
⊥φ, (4.12)

with N = 1, 2, 3 the desired order. The computation for N = 3 is an application of the
discrete ∇4 comprising a 13 point stencil [108] and a successive application of the discrete
∇2. Points involved in the stencil which are outside the grid are assumed to be zero.

• Curvature terms: For toroidal geometries only the terms arising from the 1/R dependence
of the toroidal field are respected:

δ−1K(f) = wcv
2δ−1

B4

B3
tor

R
∂Zf, (4.13)

where wcv = ρs/R0 is left as a parameter which can be set by the user to control the
strength of the curvature. For axial geometry a curvature can be modelled.

δ−1K(f) = wcvδ
−12∂Zf (4.14)

• Buffer zones: Near the boundaries buffer zones are added in which the zonal averaged
density perturbation is damped in order to maintain the profile. Also the zonal averaged
potential can be damped after the solve step to avoid a spurious poloidal flow creation due
to boundary effects.

∂tn = · · · − g(ρ) 〈n〉 , φ→ φ− dt g(ρ) 〈φ〉 , (4.15)

g(ρ) = wbff1 exp

[
− (ρ− ρmin)2

(pbff (ρmax − ρmin))2

]
+ wbff2 exp

[
− (ρ− ρmax)2

(pbff (ρmax − ρmin))2

]
.

wbff1, wbff2, pbff can be set independently by the user to control the strength of the
damping for the density and the potential in the buffer zones. 〈n〉 and 〈φ〉 are computed
via the map to the polar grid and an integration along flux surfaces on the polar grid (see
eq. C.11).

As the right hand side of eq. 4.6 has been computed, the linear equation system is solved.
An iterative GMRES algorithm is applied from CERFACS [122]. CERFACS works as a re-
verse communication interface and the programmer has to supply instructions for matrix vector
multiplication, preconditioning and a dot product.
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The preconditioning matrix M is obtained simply by neglecting all terms ∝ dt in A:

M =

(
1
∇2
⊥

)
. (4.16)

Thus n and φ are decoupled in M, the preconditioning operation remains local on each plane
and no communication between the poloidal planes is necessary. The equation ∇2

⊥x = z, with z
known is solved via a back substitution of the previously (initialisation phase) LU-decomposed
∇2
⊥ with MKL PARDISO.
For the matrix vector product z = Ax, with x known, the parallel diffusion operator has to

be evaluated, which involves a communication across the poloidal planes. The parallel diffusion
operator is computed stepwise and involves in total four communications of the whole data for
the support scheme and two communications for the naive scheme. For the local matrix vector
multiplication the multi-threaded LIBRSB library [118] is used.

The evaluation of the dot product is first computed locally on each rank and the global dot
product is obtained via a call to MPI Allreduce. If the absolute error ||Ax−z||2 and the relative
error ||Ax− z||2/||x||2, with z known, is below a desired threshold, x is returned as solution.

Finally, a damping of the zonal potential φt+1 in the buffer zones is applied and the vorticity
at the time step t+ 1 is computed.

4.3. Computational resources and efficiency

Typical runs of GRILLIX were performed with up to few tens of poloidal planes Npol ∼ 2 . . . 32,
and depending on resolution and size of the simulation domain around ∼ 106 grid points within a
poloidal plane. The time critical phase is the time stepping and the size of the time step adjusts
automatically according to eq. 4.8, which was depending also on resolution around dt ∼ 1 · 10−2

(in units of Ln/cs). Typical execution times for a single time step were around ≈ 1− 10s with a
reasonable number of Nomp = 10 OpenMP threads.

For the demonstration simulation presented in section 5.2.1 the execution time for a single
time step was ≈ 4s with 60 cores (6 MPI processes × 10 OpenMP threads). The simulation
was carried out to t ≈ 1.5 · 104, such that the computation took 71d, i.e. ≈ 105CPU hours.
The memory usage per node was ≈ 10GB. However, most simulations were only carried out to
t ≈ 3000 and a typical run required roughly ≈ 2·104CPU hours. The total spent resources within
this work can only be estimated to around ≈ 3 · 106CPU hours, which were performed mostly
on HYDRA and TOKP at Rechenzentrum Garching (RZG). Few test runs were also performed
on HELIOS at the Computational Simulation Centre (CSC).

To benchmark GRILLIX on its computational efficiency, a problem of typical size as described
in section 5.1 and section 5.2.1 is considered. Per plane 1 752 291 grid points are used. The
time critical part in the execution is the time stepping phase which is investigated here. The
performance benchmarks were executed on the TOKP cluster at RZG.

4.3.1. MPI scaling

Since the number of MPI processes is constrained to the number of poloidal planes, a strong
scaling scan with respect to the MPI parallelisation cannot be performed. Instead the number of
grid points per plane is kept constant and the number of poloidal planes is varied together with
the number of MPI-processes (weak scaling). The number of OpenMP threads was held thereby
constant (NOMP = 8) and 2 processes per node were used.

In fig. 4.4 the execution time for various phases of the time stepping in dependence of the
number of poloidal planes is shown. It is obvious that the solve phase (step implicit) is the
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Chapter 4. GRILLIX: A field line map based 3D turbulence code

dominant contribution. With increasing number of poloidal planes, the parallel dynamics gets
stiffer and the GMRES algorithm requires more iterations for convergence. Therefore, also the
execution time increases with the number of poloidal planes. The execution time of the explicit
terms and the single parts involved in the GMRES algorithm, i.e. preconditioning, multiplication
and dot product, remain roughly constant with the number of poloidal planes, since the workload
per process for a single execution of these parts remains also constant.
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Figure 4.4.: MPI (Npol) scaling of GRILLIX for fixed grid size per poloidal plane. a)
Execution time of time stepping phase. b) Execution time for explicit time stepping, and
single execution time of preconditioning (back substitution), matrix vector multiplication
and dot product performed within GMRES algorithm.

4.3.2. OpenMP scaling

The OpenMP parallelisation is benchmarked at fixed problem size (strong scaling). In fig. 4.5
the execution time for various phases is shown in dependence of the number of OpenMP threads
NOMP . Since the parallelisation of the explicit time stepping phase is trivial, a very good
scaling of nearly N−1

OMP is obtained. However, the total execution time is determined by the
solve phase which scales worse. Within the GMRES algorithm the time critical parts are the
preconditioning and the matrix vector multiplication. The parallelisation of the preconditioning,
which constitutes a back substitution into the initially LU decomposed matrix M, is a difficult
task in principle and is left to the MKL-PARDISO library. The matrix vector multiplication
z = Ax involves MPI communications between neighbouring poloidal planes and local sparse
matrix vector multiplications. The local multiplications are performed with LIBRSB [118] which
was especially for multiplications with the transposed matrix (Qα,β)T up to a factor 1.8 faster
then the sparse BLAS routines from MKL [123].
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execution time of preconditioning (back substitution) and matrix vector multiplication
performed within GMRES algorithm in loglog-plot.
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Chapter 5.

Axial circular geometry

In this chapter results of GRILLIX turbulence simulations in axial circular geometry are pre-
sented. Phenomena of the 3D HW drift wave system are presented and illustrated with example
simulations. A large part of this chapter is devoted to benchmarks and consistency checks of
GRILLIX, which is still possible for such a simple geometry. Due to the rather uncommon
numerical approach, many benchmarks have been performed during the development of GRIL-
LIX. However, only the most important ones are shown in this chapter and further selected
benchmarks are presented in appendix D.

5.1. Comparison with sheared slab geometry and standard
parameters

Advanced results of the HW model are available for sheared slab geometry [88, 90, 91]. This
geometry can be approximated in the framework of GRILLIX by using a sufficiently large flux
annulus as simulation domain, i.e. Wρ := ρmax − ρmin � ρmin. It was found (see especially
[91]) that in 3D sheared slab geometry there is only one single dimensionless parameter1 which
determines the turbulent transport as well as all other physical characteristics of HW2.

CHW =
ρs

LDW
, with: LDW :=

[
Mi Te n0 η‖ L2

s

eLnB3

]1/3

, (5.1)

where Ls is the magnetic shear length. In the parameter CHW all physical relevant parameters
are combined (Te, n0, B, Ln, νe, Ls). In the 2D simulations performed in section 2.5 the parameter
C was still sufficient to describe the whole system. However, as one introduces shear into the
system, it is obvious that also the magnetic shear length (or something similar) must enter into
such a single dimensionless parameter. Via a proper normalisation of the 3D HW equations [88]
the parameter CHW can then be motivated. CHW can be regarded as measuring the effect of
the magnetic shear or the Larmor radius.

A circular axial geometry can be mapped to sheared slab geometry by expressing the magnetic
shear length as Ls = qLax/(2πŝ), where ŝ = ρ/q dq/dρ. The knowledge about the existence of
such a single dimensionless parameter is very helpful in choosing a reasonable q-profile for first
test simulations with GRILLIX. Having fixed all other parameters, the q-profile should be chosen
such that the parameter CHW is constant across the whole domain. With such a q-profile the
turbulent transport is expected to be constant at each radial position and no initially needless
complication is introduced into the system. Requiring a constant parameter CHW radially across

1The original nomenclature from [88, 91] is ρ̂s or ρ = (2π)2/3ρ̂s [90]. I will follow in this thesis the convention
of [90], but call the parameter CHW instead of ρ, since it might lead to confusion with the flux surface label.

2As in the original papers, SI units have to be used here for the computation of LDW .
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the flux annulus, leads to q-profiles of the form3:

q(ρ) =
1

1/q0 − α ln(ρ/ρ0)
with: α =

(CHW ρsB)3/2√
Mi Te n0 η‖/(eLn)Lax/(2π)

, (5.2)

where ρ0 = (ρmax + ρmin)/2 and q0 = q(ρ0) a desired value for the safety factor in the center of
the flux shell.

If not stated differently, the following standard parameters and standard resolution are used
within this chapter. This standard test case models the edge region of a tokamak with roughly
the following parameters:

Te =80eV, n0 =4.5 · 1013cm−3, B0 =2.5T, R0=̂
Lax
2π

=165cm,

a =30cm, Ln =3.65cm, Mi =3670me, q0 =1.5. (5.3)

The q-profile is chosen such that the parameter CHW = 0.8 is constant across the whole domain,
which yields α ≈ 0.464. The standard resolution is Npol = 6 poloidal planes and h = 2/3ρs. A
third order hyperviscosity (∇6) with coefficients of νn = νφ = 1 · 10−3 is used. The standard
radial width of the flux shell is Wρ = 210ρs. At the radial edges of the domain (buffer zones) the
zonal averaged density is damped to keep up the gradient drive. The zonal averaged potential
is also damped in the buffer zones to avoid a spurious momentum input into the system due
to boundary effects [91] (wbff1 = wbff2 = 1, pbff = 0.02). The simulations were initialized
with a small random noise in the density perturbation (n < 0.1). Flux surfaces are labelled

with ρ =
√
x2 + y2 (in units of ρs). The background density is assumed to be constant on flux

surfaces with a uniform background density gradient and the normalisation length is chosen to
be equal to this density gradient length, i.e. L⊥ = Ln. In terms of GRILLIX parameters this
yields finally D = 2.4 (see eq. 2.41) and wn = δ = 0.014 (see eq. 2.38). The results are presented
in dimensionless units and can be translated to physical units via eqs. 2.36. By default, the
simulations are performed with the S-3 scheme for the parallel diffusion operator, i.e. support
scheme with 3rd order polynomial interpolation.

It is not the goal of this chapter to supply precise quantitative results but to present the
basic physical mechanisms of the 3D HW model and show that these can also be obtained with
GRILLIX. Therefore, many simulations presented here were not run until a full saturated state
and might be slightly under resolved. Mostly qualitative results are shown, for which in many
cases a run with a moderate resolution and a moderate simulation time sufficed. Details about
the convergence behaviour for a demonstration run is given in section 5.5.2. Obtaining precise
quantitative results with GRILLIX would be overkill and for such geometries other codes and
approaches exist which are computationally much less expensive, since these do not keep the full
flux surface but only a small representative part of it.

5.2. No curvature

In this section results of simulations which were performed without curvature, K = 0, are pre-
sented..

5.2.1. Demonstration run

Snapshots of the density perturbation and the potential at different stages of a simulation per-
formed with the standard parameters are shown in fig. 5.1. During the initial linear phase

3Also for the computation of α SI units have to be used.
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unstable drift waves develop which propagate poloidally around the annulus. The electron dia-
magnetic drift direction is counter-clockwise. Due to the finite shear, the structures are not as
radially elongated as in the simplified 2D model of section 2.5 (compare with fig. 2.3) but are
tilted with respect to the flux surfaces, yielding crossed structures. At the boundaries of the
domain all quantities are set to zero (n = 0, φ = 0, ∇2

⊥φ = 0), which models an impenetrable
wall. Therefore, an accumulation of drift waves can be observed close to the boundaries. The
final result was found to be largely independent on the effects close to the boundaries as long as
the radial width of the flux shell was sufficiently large (see section 5.5.3).

At some later stage a turbulent state developed where mainly isotropic structures can be seen
in the density fluctuations. In the potential already a strong shearing of the vortices is apparent
yielding poloidally elongated structures. Some structures repeat along the poloidal direction,
indicating resonant surfaces for which k‖ ∝ n −m/q ≈ 0, where m is a poloidal and n an axial
mode number. This becomes clearer as spectra in section 5.2.3 are discussed.

5.2.2. Zonal flows

In the final saturated state of the simulation (fig. 5.1 lower row) a robust zonal flow has developed.
Zonal flows [124, 125] are electric field fluctuations which are constant on flux surfaces, but
radially varying, i.e. m = n = 0, r 6= 0, where r is a radial mode number. Zonal flows are fed
or damped non-linearly by the drift wave turbulence, where the turbulence itself is fed by the
background gradients. The Reynolds stress acts as a mediator between drift waves and the zonal
flow. They do not contribute to the transport but may influence it by shearing the turbulent
eddies apart as they propagate radially.

By taking the flux surface average of the vorticity equation 2.40, the temporal evolution of the
zonal flow velocity in the sheared slab limit4 can be derived as [126]:

∂

∂t
〈vθ〉 = − ∂

∂ρ
〈vθvρ〉+ (−1)k−1νφ

∂2k

∂ρ2k
〈vθ〉 , (5.4)

where ρ, θ are polar coordinates and vθ = ∂φ/∂ρ and vρ = −ρ−1∂φ/∂θ. The quantity Πρθ :=
〈vθvρ〉 is called the Reynolds stress. The right term describes collisional dissipation of the flow.
Within the HW model, anisotropic velocity fluctuations can cause an acceleration or deceleration
of a large scale poloidal flow. Since the advective derivative, the origin of the force term for the
poloidal velocity, does not act as an energy source/sink but merely as a transfer of energy
between different modes, this mechanism can be viewed as a transfer process for energy from
the turbulence to the zonal flow and back. Hence, in an ad hoc model the turbulence/zonal-flow
system is described by a 0-D predator-prey model (Lotka-Volterra equations) [127, 128], where
the interaction is described with scalar parameters. A sketch of the turbulence/zonal-flow system
is illustrated in fig. 5.2a.

Under the influence of a radially sheared poloidal flow, a radially propagating eddy is stretched
and distorted since different parts of the eddy are advected at different velocities (see fig. 5.2b).
This may result in a breakup of the eddy reducing its radial extent and a stronger coupling to
small scale dissipation. The correlation length of the eddy is reduced and thus the effective step
size of turbulent transport [124, 129]. It is this quenching of turbulent transport which drives
a large interest of the fusion community into zonal flow research, being a crucial element in the
transition from the low confinement regime (L-mode) to the high confinement regime (H-mode)
in tokamaks [130].

4Taking the circular shape of the flux surfaces into account yields: ∂
∂t
〈vθ〉 = − 1

ρ2
∂
∂ρ

[
ρ2 〈vθvρ〉

]
+

(−1)k−1νφ
∂
∂ρ

〈
∇2k−2∇2

⊥φ
〉
.
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Figure 5.1.: Snapshots of density perturbation n (left column) and potential φ (right
column) of demonstration simulation. Upper row: Late linear phase (t = 100), middle
row: turbulent phase (t = 400), lower row: saturated final state (t = 14000). For units
see eqs. 2.36 and 5.3.
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a) b)

Figure 5.2.: a) Paradigm of zonal flow drift wave turbulence. Figure taken from [131].
b) Shearing of vortex, figure taken from [124].

5.2.3. Diagnostics

The simulations of GRILLIX can be diagnosed with several tools. In fig. 5.3a the evolution of
the fluctuation free energy of the system is plotted, which can be split into a thermal and a
kinetic part (see eq. 2.55). The kinetic part can again be split up into kinetic energy contained
in the zonal flow and kinetic energy contained in the turbulence. The fluctuation free energy
rises initially due to the linear instability until the non-linear terms cause a stop of the growth.
Shortly after this transition the zonal flow energy rises. The turbulent kinetic energy is the
difference between total kinetic energy and the zonal flow energy. On a very long time scale
energy is continuously pumped from the gradient source into the turbulence into ultimately the
zonal flow until at roughly t = 5000 a stationary saturated state has been reached. The thermal
part of the fluctuation free energy remains roughly on the same level after the first transition
and only a small evolution of the density profile was be observed.

In fig. 5.3b the temporal evolution of the time rate of the fluctuation free energy is plotted.
It is balanced by transport (= gradient drive), parallel/perpendicular dissipation (see eq. 2.59)
and sources/sinks which have been added in the buffer zones (see eq. 5.11). The transport rises
until t ≈ 300 during the linear phase, drops slightly with the rise of the zonal flow and saturates
quickly. The fact that the transport is saturated, while the zonal flow energy still rises shows
that the zonal flow does not contribute to the transport. As discussed in the previous section, the
zonal flow might merely influence the transport by shearing the drift wave eddies apart, therefore
the shear of the poloidal flow velocity ∂vθ/∂ρ being of importance for the final transport level.
The flow shear saturated also on a comparable time scale as the transport.

To gain more insight into the development of the zonal flow and its saturation, we consider
the temporal evolution of the zonal flow velocity in fig. 5.4a. In an early phase the zonal flow
is small in amplitude but has a large radial mode number. The zonal flows subsequently merge
together to form structures of lower radial mode number storing a larger kinetic energy. The
flow shear is not appreciably altered during this process explaining the fast saturation of the
transport. In fig. 5.4b zonal averages of various quantities are shown at the final time point of
the simulation. The radial dependence of the zonal averaged flow shear (〈dvθ/dρ〉) is sawtooth
like, and it can be deduced that the zonal flows have steep minima and broad maxima. This
characteristic asymmetric zonal flow shape was also found previously [90, 91] with a flux aligned
code. It is explained by a self-focusing mechanism where drift waves are repelled from negative
(with respect to the electron diamagnetic drift direction) flows and attracted by positive flows.
The zonal averaged density perturbation is more irregular but a slight density corrugation in
accordance with the zonal flow pattern can be seen. Moreover, 〈n〉 is slightly hollow, which
reflects a small transport imbalance between the inside and outside of the flux shell. This might
be an effect of the circular geometry (finite shell width) which is not taken into account in the
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Figure 5.3.: Scalar diagnostics for demonstration simulation: a) Components of fluctu-
ation free energy, b) temporal change of fluctuation free energy, transport, dissipation,
sources/sinks. For units see again eqs. 2.36 and 5.3.

parameter CHW . Even hollower profiles for 〈n〉 were obtained in annuli with larger ratios of
Wρ/ρ0, where the effects of the circular geometry are stronger.
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Figure 5.4.: a) Temporal evolution for radial profile of zonal averaged poloidal flow
velocity. b) Flux surface averaged quantities at the end of the simulation t = 14 448.

In fig. 5.5a the amplitude spectrum of the potential taken along the poloidal direction is plotted
in dependence of the flux label. Peaks in the spectrum can be seen clearly in accordance with
resonant surfaces, i.e. at the center of the flux shell for example q = 3/2 and therefore structures
with a poloidal mode number of m = 3, 6, 9, . . . are dominant. These modes represent structures
with k‖ ≈ 0 which encounter only weak parallel dissipation. Accordingly also at other low
rational surfaces peaks arise. In fig. 5.5b amplitude spectra are shown for the central flux surface
where q = 3/2. Clearly, the k‖ ≈ 0 structures are visible for all quantities. At higher kθ these
resonant modes are weaker, but rudimentary an inertial range is visible where the spectra might
follow power law like dependencies. However, due to the low resolution of only 2/3ρs, the energy
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input range and the viscous range might not be well separated, such that an inertial range might
not have developed sufficiently. There could be still a significant contribution of the even smaller
scales to the transport, which peaks around ≈ ρs and falls off only slowly towards high kθ. The
spectra are a first indication that the field line map works. In contrast to field aligned codes,
the computational grid of GRILLIX has no information about the magnetic field line structure.
The autonomous development of field aligned structures, which are also radially well resolved, is
a consequence of the discrete parallel diffusion operator, which gives qualitatively the expected
result.
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Figure 5.5.: Poloidal amplitude spectra of demonstration simulation averaged between
t = 10 000 − 14 000 over 801 snapshots. a) Poloidal spectrum of potential, log |φkθ |2, in
dependence on flux surface label. b) Poloidal amplitude spectra at center of flux shell
(ρ = ρ0).

The structures can also be illustrated along the parallel direction. In fig. 5.6 the fluctuating
part of the nonadiabaticity (n−φ−〈n− φ〉) is plotted on flux surfaces, i.e. at fixed ρ in dependence
on the axial coordinate z and the geometrical poloidal angle θ. For the establishment of these
plots the quantities were assumed to be piecewise constant along magnetic field lines half way
towards neighbouring poloidal planes. The transition between poloidal planes is indicated with
dotted black lines. It is obvious that the nonadiabaticity is smooth along magnetic field lines and
there are no jumps at the transition between neighbouring planes. This shows that the field line
map does not introduce any numerical artefacts, but the field alignment happens automatically
during the simulation. On rational surfaces (fig. 5.6b) the structures seem to be slightly broader
in the poloidal direction than on irrational surfaces (fig. 5.6a). This might be explained again by
the fact that on rational surfaces poloidally smooth structures with k‖ ≈ 0 can develop which
encounter only weak parallel dissipation.

In fig. 5.7 the fluctuating nonadiabaticity is plotted along a sample magnetic field line running
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in an irrational surface. For the establishment of this plot a magnetic field line was traced a
fixed distance and at every intersection with a poloidal plane the value is interpolated, which is
indicated with crosses. Note again that the structure is smooth (in the numerical sense) along
the magnetic field line.

a) b)

Figure 5.6.: Fluctuating part of nonadiabaticity (n − φ − 〈n− φ〉) on flux surfaces at
t = 14 000 on a) irrational surface ρ − ρ0 = −53.4, q = 1.41 and b) on rational surface
ρ = ρ0, q = 1.5. Dashed lines indicate transitions between poloidal planes.

5.2.4. Parameter scan over CHW

To show the qualitative behaviour of the system in dependence of the parameter CHW , the
q-profile is modified according to:

q(ρ) =
1

1/q0 − α ln(ρ/ρ0)
+ β (ρ− ρ0) , (5.5)

such that the parameter CHW is not radially constant across the flux shell but varies. In fig. 5.8a,b
the temporal evolution of the zonal averaged density perturbation and the poloidal flow velocity
is shown for a simulation with α = 0.464 and β = −4. For all other quantities the standard
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Figure 5.7.: Fluctuating part of nonadiabaticity along sample magnetic field line running
in ρ − ρ0 = −53.4, q = 1.41 flux surface at t = 14 000. The parallel coordinate x‖ is
measured in L‖ = Lax/(2π) (see eqs. 2.36).

parameters were used, except for Npol = 12, which makes no difference for a qualitative discus-
sion. The parameter CHW varies from 0.39 at the inner limiting flux surface to 0.62 at the outer
limiting flux surface. It is immediately apparent that in the region of low CHW there are no
zonal flows produced or at least their growth is strongly impeded. This result is consistent with
the findings of [90, 91] where a bifurcation in the parameter CHW was found via numerical sim-
ulations. Starting a simulation from initial random noise, below a critical value of CHW = 0.4,
no zonal flows were produced, whereas for larger values zonal flows were produced. As shown in
the previous section, for CHW = 0.8 a regular zonal flow was obtained also with GRILLIX. The
result of this section together with the result of appendix D.1, where simulations with different
but radially constant CHW are shown, indicate also a bifurcation in CHW at a value of around
≈ 0.4 . . . 0.5, which is in very good agreement.

Moreover, the zonal averaged density perturbation develops towards a positive bump. The
turbulent radial transport on the inside of the flux shell, where CHW is small, is larger, whereas
it is smaller on the outside of the flux shell, where CHW is bigger and the density perturbations
pile up to a positive bump. This picture is also consistent with the findings of [88, 90, 91]
which found a larger turbulent transport5 for lower CHW . It is also supported by the results of
appendix D.1. Since the evolution of the density profile is a process which takes place on a long
time scale, the simulation is not run until complete saturation but only trends are shown here.

5.3. Curvature

The major contribution to the curvature in a tokamak is usually due to the 1/R dependence of
the dominant toroidal field. We model this curvature in axial circular geometry without affecting
the geometry. Therefore, still the same axial circular equilibrium with Bz = 1 is used to compute
the field line map (parallel operators), but the curvature term K is modelled as obtained from a
1/R dependence of the toroidal field. This leads to a curvature term of

K(f) = 2wcv
∂

∂y
f, (5.6)

where wcv = L⊥/R0 with R0 the major radius of the tokamak to be modelled.

5Actually, according to [88, 90, 91] the turbulent particle flux increases with decreasing CHW in units of DDW :=

LDW /t0 ∝ L2/3
s (see [90] for definition of t0). Leaving all parameters except the shear length Ls constant, as

was done here, yields also a larger turbulent particle flux at lower CHW ∝ L
−2/3
s in physical units and also

in GRILLIX units (Ls does not enter the normalisation 2.36).
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a) n:

b) 〈vθ〉:

Figure 5.8.: Zonal averaged density perturbation (a) and poloidal flow velocity (b) of
simulation performed with α = 0.464, β = −4. The parameter CHW varies from ≈ 0.39
at the inner limiting flux surface to ≈ 0.62 at the outer limiting flux surface.

5.3.1. Geodesic acoustic mode

The geodesic part of the curvature introduces a coupling of the zonal flow to pressure pertur-
bations, which leads to an oscillation between kinetic and thermal energy, called the Geodesic
Acoustic Mode (GAM) [132]. The dispersion relation of this mode is derived in the framework
of the HW model. Therefore, we consider the linearised HW equations in the limit of a large
thin annulus, where poloidal derivatives (∂θ) are neglected against radial derivatives (∂ρ), and
assume that the electrons are adiabatic. This yields the model [133, 134]:

∂

∂t

[
n− ∂

∂ρ2
φ

]
= −2 sin θ

∂

∂ρ
φ, n = φ− 〈φ〉 , 〈n〉 = 0, (5.7)

where L⊥ = R0 is now used as normalisation scale length. We write the system in Fourier mode
representation, i.e. n, φ ∼ nm, φm exp(ikρρ + imθ + ikzz + iωt), where only the mode subscript
m is kept in the Fourier coefficients, since the geodesic curvature causes a coupling of adjacent
poloidal modes:

φm =am (φm+1 − φm−1) , with: am =

{
−i 1

ωkρ
for: m = 0,

−i kρ
ω(1+k2ρ) for: m 6= 0,

(5.8)

All poloidal modes m are involved in principle, but in the limit kρ � 1 it follows that a0 �
am, m 6= 0 and therefore it is a good approximation to cut off the spectrum at some finite m.
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An expansion to order k2
ρ where modes up to m = ±2 are kept, yields as dispersion relation:

ω ≈
√

2

(
1− k2

ρ

4

)
, for: kρ � 1. (5.9)

This result agrees with [133, 134] where the exact analytic result is obtained as6 ω = 2(2+k2
ρ)−1/2.

Physically, due to the geodesic curvature the zonal flow encounters a compression, which
causes a density perturbation at the top/bottom of the tokamak proportional to −∇ · v. These
pressure perturbations create a diamagnetic current which cause a charge separation and acts
to reverse the electric field [132]. Ultimately, an oscillation between kinetic energy and thermal
(perturbation) energy takes place at the GAM frequency (in physical units: ωGAM =

√
2cs/R0).

To verify the implementation of the curvature terms in GRILLIX, this GAM mechanism has
been benchmarked in a thin cylinder with ρ0 = 623 and Wρ = 32. Only Dirichlet boundary
conditions in the perpendicular directions are available in GRILLIX and therefore a Gaussian
structure of φ(ρ) = exp

[
−(ρ− ρ0)2/(0.2Wρ)

2
]

for the potential was chosen as initial state. Non-
linear terms, density gradient and perpendicular viscosity were switched off. A run with perfect
adiabaticity (D → ∞) is not possible within GRILLIX, but simply a high value of D = 100
was chosen and the q-profile was set constant to q = 3.4. In fig. 5.9a the temporal evolution
of the zonal flow velocity is shown. Besides a dominant oscillation at the GAM frequency, a
radial dispersion of the Gaussian structure can be observed. The evolution of a single radial
mode r is studied in appendix D.2 with the flux aligned code GRILLIX FA, where also periodic
boundary conditions are available. A comparison between GRILLIX and GRILLIX FA proves
then that the distortion of the structure in fig. 5.9 happens due to dispersion and not due to
some numerical artefact.

Figure 5.9.: Zonal averaged poloidal velocity in GAM benchmark. t is here given in units
of Lax/(2πcs) (see eqs. 2.36 with L⊥ = Lax/(2π)). Dashed red lines indicate periods with
angular frequency ωGAM , i.e the analytically predicted oscillation in the limit kρ → 0.

5.3.2. Ballooning

For a demonstration simulation with curvature again the standard parameters 5.3 were used,
except that the toroidal resolution was increased to Npol = 12 and the radial width of the flux
shell was decreased by a factor of 2/3 to Wρ = 140ρs. The curvature strength models a tokamak

6In [133, 134] the curvature strength is modelled without the factor of 2 in eq. 5.7. Therefore, the cited dispersion
relation has been multiplied by a factor of 2 here.
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Chapter 5. Axial circular geometry

of major radius R0 = 165cm. The normalisation scale length was again set to L⊥ = Ln yielding
a value for wcv = 0.022, respectively ωGAM = 0.031 in units of cs/Ln.

In fig. 5.10 a comprehensive summary of the simulation is shown. In the linear phase the
perturbations are stronger on the outside of the torus in the region of unfavourable curvature
and weaker on the inside as expected from the simple 2D model of section 2.3.2. During the
simulation the zonal flow drive, i.e. the zonal averaged divergence of the Reynolds stress, is
balanced by perpendicular dissipation (see eq. 5.4) and the geodesic transfer to m = ±1 pressure
perturbations, which are in turn depleted by non-linear transfer of energy back to turbulence
[135]. Thus, in contrast to simulations performed without curvature, zonal flows are strongly
suppressed and simulations with curvature saturate faster. The final transport level is slightly
higher than for the case without curvature.

To illustrate the ballooning character of the turbulence, the root mean square (RMS) of the
density perturbation averaged over time and the axial coordinate is shown in fig. 5.11. If the
curvature terms are switched off, the turbulence is independent of the poloidal angle and lower
in amplitude, whereas for increasing strength of the curvature a ballooning towards the outboard
side can be seen. For a curvature strength of twice the nominal curvature (wcv = 0.044) the
zonal flows died out completely.

5.4. Limiter

GRILLIX can also be applied to a situation where a limiter is present. A thin axisymmetric
limiter was introduced half way radially into the domain at the bottom. Dirichlet boundary
conditions (perpendicular and parallel) were set at the limiter plates (n = 0, φ = 0, ∇2

⊥φ = 0).
Again, all other simulation parameters were standard parameters, as described in section 5.1,
except that Npol = 12 poloidal planes were used. Curvature terms were again switched off.

A snapshot of the simulation is shown in fig. 5.12. Though the computational grid is not aligned
with the flux surfaces, a clear and sharp distinction between the open and closed field line region
is evident. In the closed field line region (edge) zonal flows develop, which is similar to the
previous simulations where no limiter was present (compare with fig. 5.1). In the open field line
region (SOL) no zonal structures can be observed any more but a variation of the structures with
the poloidal angle can be seen. Starting from the limiter and following the electron diamagnetic
drift direction, i.e. counter-clockwise, drift waves develop and the perturbations are small in
amplitude. Going further on in the poloidal direction, the structures become isotropic within
the poloidal plane indicating isotropic turbulent dynamics. Finally, the eddies impound in front
of the limiter plate (left side), which is modelled as an impenetrable wall, and are ultimately
dissipated.

A conspicuous feature is an early and rather strong development of a negative potential dip
just inside the last closed flux surface (LCFS) indicating a positive (with respect to the electron
diamagnetic drift direction) poloidal flow. A strong radial variation of the Reynolds stress across
the LCFS drives the poloidal flow. The abrupt change of the parallel dynamics from open to
closed field lines is responsible for anisotropic velocity fluctuations which caused a strong variation
of the Reynolds stress across the LCFS. Ultimately, edge and SOL and a sharp transition became
apparent by itself as a consequence of the field line map. Poloidal flows just inside the LCFS
were also obtained from more sophisticated models [136, 137, 33], but the mechanisms described
therein might differ. One has to keep in mind that the HW model used here is a too poor
approximation to the situation.
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Figure 5.10.: Simulation with curvature wcv = 0.022. Upper and middle row: Snapshots
of density perturbation (left) and potential (right) in late linear phase at t = 100 (upper
row) and in saturated state at t = 7670 (middle row). Lower row: Temporal evolution of
fluctuation free energy (left) and temporal evolution of energy change, transport, sources
and sinks of system (right). For units see again eqs. 2.36 and 5.3.
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a) b) c)

Figure 5.11.: Root mean square density fluctuation level averaged over time and axial
coordinate. a) No curvature effects (wcv = 0), b) nominal curvature (wcv = 0.022), c)
twice the nominal curvature (wcv = 0.044).

a) b)

Figure 5.12.: Snapshot of GRILLIX simulation performed without curvature and with
axisymmetric limiter ranging radially half way into the domain. a) Density perturbation,
b) electrostatic potential. For units see again eqs. 2.36 and 5.3.

5.5. Benchmarks

Before GRILLIX is applied to more complex geometries, several intrinsic benchmarks and con-
vergence checks are performed for the circular geometry. These benchmarks comprise intrinsic
consistency checks, i.e. the conservation of integral properties, convergence checks and effects of
the boundaries.
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5.5.1. Consistency checks

Fluctuation free energy

To check the fluctuation free energy theorem, its temporal change was computed by a finite
difference between two time steps (LHS) and compared against the sources/sinks of the system
(RHS).

dE

dt
= Q+D‖ +D⊥ +Qbuff , (5.10)

where Q, D‖, D⊥ are defined in eq. 2.59 and Qbuff is a source/sink term due to the damping
of the zonal averaged density perturbation and the zonal averaged potential in the buffer zones
(see eq. 4.15):

Qbuff =

∫
V

dV

[
−g(ρ)n 〈n〉 − 1

2B2
∇⊥ (g(ρ) 〈φ〉) · ∇⊥φ

]
(5.11)

In fig. 5.13 the temporal change of the fluctuation free energy computed directly (LHS) and
computed by sources/sinks (RHS) is shown for the demonstration simulation from section 5.3.2
(Fig. 5.10). Except for some spikes, which indicate positions where the simulation was restarted,
both curves agree very well. At start or continuation of a simulation, the temporal change was
not computed self consistently, due to the lack of previous time points. The numerical error
which is defined here as the difference between LHS and RHS divided by the root mean square
averaged over time of the LHS was always below 1% (except at restarts of simulation).
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Figure 5.13.: Check of fluctuation free energy theorem with demonstration simulation.
For simulation details refer to section 5.3.2 (fig. 5.10).

Zonal flow drive and numerical diffusion

For simulations performed without curvature the integral equation. 5.4 for the zonal flow drive
(corresponding footnote 4 on page 65) can be checked. In fig. 5.14 the temporal change of the
poloidal flow velocity, computed via a finite difference between two time steps (LHS), and the
drive/dissipation of the poloidal flow (RHS) is plotted for the demonstration simulation from
section 5.2.1 at three different time points. Except from the buffer regions, where additional
contributions to eq. 5.4 due to the sources/sinks have not been taken into account, the agreement
between both curves is good. A substantial mismatch between both curves could indicate spurious
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effects of the field line map, like a wrong implementation or a too high numerical diffusion.
The mismatch here however, might very well also arise from the discretisation of perpendicular
operators. In section 5.5.3 it is shown that the same shape and size of zonal flows were obtained
also with a flux aligned code. Moreover, as also shown in appendix D.3, zonal flows with similar
size and shape have been obtained in a simulation performed with doubled resolution within the
poloidal plane. This suggests that the numerical diffusion indeed is negligibly small for this case
and had no effect on the simulation.

Also different schemes for the parallel diffusion were tried (see appendix D.3). With the S-1
scheme similar results were obtained as with the standard S-3 scheme. No zonal flows were
produced with the N-1 scheme and only smaller zonal flows with the N-3 scheme. This shows
the need and the superiority of the developed support schemes.

a) t = 300:

b) t = 1000:

c) t = 10 000:

Figure 5.14.: Check of zonal flow drive with demonstration simulations from section 5.2.1
at time a) t = 300, b) t = 1000 and c) t = 10 000.

5.5.2. Convergence

The achievement of saturation for simulations without curvature is very elaborate, since it re-
quires very long run times and a large radial width of the domain for the condensation of zonal
flows. Moreover, the final state is dependent on the initial state also in a statistical sense [91, 90].
Therefore, convergence checks with respect to resolution were only performed for a simulation
with curvature where zonal flows are suppressed. The convergence behaviour with respect to
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resolution and domain size were performed only for the transport, since it is the quantity one is
usually most interested in, in practice. It is noted that among all the simulations performed at
different resolutions, no qualitative but just quantitative differences were observed.

Standard parameters were used with a curvature strength of wcv = 0.022. For the convergence
studies the radial width of the domain Wρ, the number of poloidal planes Npol and the poloidal
grid resolution h were varied. The strength of the hyperviscosity was adapted to the poloidal
grid resolution to damp always only the smallest scales (νn,φ(h = 0.66) = 1 · 10−3, νn,φ(h =
0.33) = 1 · 10−4, ν(h = 0.17) = 1 · 10−6).

In fig. 5.15 the time trace of the transport computed with various resolutions is plotted. The
blue group of lines show the convergence with the toroidal resolution Npol. Since the curves
with Npol = 24 and Npol = 30 are very close, a good convergence was achieved here. To save
computational resources further resolution scans were performed with Npol = 12 poloidal planes,
which is already close to the converged result. The green group of lines shows the convergence
with respect to the radial width of the domain. The agreement between the Wρ = 140 and
Wρ = 210 is very good and only a small difference to Wρ = 70 can be seen, such that further
resolution scans were performed with Wρ = 70 to save again computational resources. The
red group shows the convergence with the poloidal resolution h. A good agreement between
h = 0.33 and h = 0.17 proves convergence also with respect to h. Among the curves, there is
also a noticeable difference during the transitional phase. Curves with low toroidal resolution
and high poloidal resolution exhibit a small overshoot or bump of the transport, whereas other
curves rise in a more monotonic manner. However, the saturated value is again close among all
curves.

5.5.3. Boundary effects

Another peculiarity of GRILLIX is that the (perpendicular) boundaries of the Cartesian grid
do not coincide with the limiting flux surfaces but are only approximated stepwise by the grid
points. A priori it is not clear if this mismatch of the boundary introduces spurious numerical
effects. As apparent from fig. 5.1 (at t = 100) there is a dubious accumulation of small scale
eddies close to the boundaries. Thus, it has to be investigated if these wiggles are caused by the
shape of the boundaries or by the physical boundary conditions (n = 0, φ = 0, ∇⊥φ = 0) itself
and which effect these wiggles might have on the overall simulation.

To accomplish this, another completely new code GRILLIX FA has been developed by me
from scratch which solves the HW equations on a polar flux aligned grid in a circular axial
geometry (ρ, θ, z). Therefore, the shape of the boundaries matches exactly with the limiting flux
surfaces. GRILLIX FA uses the same numerical techniques as GRILLIX (time stepping scheme,
perpendicular operators) and can thus be directly compared to GRILLIX. The parallel diffusion
operator is also discretised with the support scheme, but the interpolation is reduced to a 1D
interpolation within a flux surface. In GRILLIX FA there is no spurious numerical coupling
across flux surfaces by parallel derivatives. Hence GRILLIX FA is also a very useful tool for
benchmarking GRILLIX.

A simulation with GRILLIX FA with the same parameters and comparable resolution as to
the standard case was performed. A direct comparison between both codes as a snapshot of
the density perturbation during the late linear phase is shown in fig. 5.16a,b. The agreement
between both codes is excellent. The accumulation of drift waves at the boundaries is observed
also with GRILLIX FA, which shows that not the shape of the boundaries but the boundary
condition itself, being an impenetrable wall, caused the wiggles. Therefore, the already discussed
buffer zones were introduced. Also the development of zonal flows is in good agreement between
both codes as illustrated in fig. 5.16c,d and the obtained saturated transport level is with both
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Figure 5.15.: Time trace of transport computed with various resolutions. The nomen-
clature of the legend is poloidal grid distance in units of ρs, number of poloidal planes and
radial width of the domain in units of ρs (h /Npol /Wρ). For other simulation parameters
see text. Blue group + magenta: Scan in Npol, green group + magenta: Scan in radial
width, red group + magenta: scan in h)

codes ΓV = 0.41. This suggests that the numerical diffusion, which would manifest itself in a
difference between both codes, is so low that it did not affect the simulations in any manner.

5.6. Conclusions

In this chapter the application of GRILLIX to a circular axial geometry has been presented. The
basic physical mechanisms of 3D resistive drift wave (ballooning) turbulence in the presence of
shear have been discussed and could also be obtained with GRILLIX. Several diagnostics tools
have been implemented to analyse the simulations.

In the sheared slab limit, which is approximated as a large thin annulus with GRILLIX, the
results are in very good agreement to the results obtained with field aligned codes aimed for
a sheared slab. The previously found parameter CHW is here also the single dimensionless
parameter of the system and roughly the same onset for zonal flow production at CHW ≈ 0.4
has been verified with GRILLIX and the correct behaviour of the transport with CHW . The
implementation of the (artificial) curvature terms has been tested with the analytically predicted
GAM oscillation that was also obtained with GRILLIX. In the presence of curvature, zonal flows
are suppressed and the well known ballooning behaviour has been obtained. The introduction of
an axisymmetric limiter into the system caused an abrupt change of the dynamics between the
open and closed field line region. Zonal structures dominate the edge, whereas the dynamics in

80



5.6. Conclusions

a) b)

c) d)

Figure 5.16.: Snapshot of simulation performed with a) GRILLIX (Cartesian grid) and
with b) GRILLIX FA (flux aligned grid) at a comparable resolution. Temporal evolution
of poloidal flow velocity with GRILLIX (c) and GRILLIX FA (d).

the SOL region is described by drift waves propagating in the electron diamagnetic direction.
Several benchmarks showed that GRILLIX intrinsically conserves important integral relations,

like energy conservation and zonal flow drive. By use of the newly developed support schemes for
the discretisation of the parallel diffusion operator, the numerical diffusion was always low enough
at the used resolutions to not affect the results. It has also been shown that possible spurious
effects arising from the mismatch of the boundaries were of no importance. The convergence at
least for one simulation has been analysed. However, due to constraints of the available hardware
many results of this chapter might not be converged quantitatively but only qualitatively, i.e. the
main effects were captured correctly.

All in all, this proves that the Hasegawa-Wakatani equations have been correctly implemented
in GRILLIX and that the numerical scheme, i.e. the field line map, works. The same results as
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with a flux aligned codes are obtained. Hence, GRILLIX is now ready to be applied to more
complex geometry for which it was designed and where only few results are available.
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Chapter 6.

Diverted geometry

Having benchmarked GRILLIX extensively in the previous chapters, it is finally applied to di-
verted geometry where the simulation domain covers a region across the separatrix. As already
pointed out, the separatrix cannot be simulated with most present turbulence codes or is only
treated poorly, in the sense that the X-point is an exceptional grid point, which might in the
worst case even lead to numerical artefacts. Within GRILLIX the X-point is treated naturally
as any other point.

The aim of this chapter is to discuss and validate effects of the complex geometry, even though
the underlying turbulence model is not suited to model the edge/SOL of fusion devices accurately.
Since the region of interest is rather large, the presented simulations might again be not well
resolved due to constraints of computational resources. However, at this early stage one is anyway
mainly interested in qualitative and not quantitative results, for which the used resolutions suffice.
Therefore, convergence checks only in a qualitative sense have been performed.

6.1. Theoretical background

To illustrate the effects of an X-point, we consider a model geometry [138] illustrated in fig. 6.1a,
where x, y label directions perpendicular to a reference field line and z a coordinate parallel. The
reference field line is assumed to start at z = 0 somewhere in a nominal region, like outboard
midplane of a tokamak, and approaching with increasing z the X-point which is at z =∞. Along
z we separate the domain in two regions, z < zx, where the magnetic field lines are practically
unaffected by the X-point and a region z > zx where the magnetic field lines are influenced by
the X-point. At the X-point the poloidal flux function has a saddle point and for the X-point
region we use the lowest order approximation for the poloidal magnetic field [139, 140]:

B = Bzez + [αxex − αyey] Θ(z − zx), (6.1)

where Θ is the Heavyside step function and α a constant. A flux box around the reference
magnetic field line becomes strongly distorted as it enters the X-point region.

wx(z) = w0 exp (−αξ(z)) , wy(z) = w0 exp (αξ(z)) , (6.2)

where wx, wy are the perpendicular lateral lengths of the flux box and ξ measures the penetration
length into the X-point region, i.e. ξ(z) = (z−zx)Θ(z−zx). w0 is the lateral length of the initial
square and its cross section area is preserved along z. In reality a small distortion of the flux
box occurs also without X-point due to the canonical shear for z < zx, which is not taken into
account here. The affinity of this simple model to the tokamak geometry becomes clear by
fig. 6.1b, where the distortion of the flux box cross section is shown within the poloidal plane.
The initial circular cross section becomes strongly distorted, as the flux box enters the X-point
region.
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a) b)

Figure 6.1.: a) Scheme of simple X-point model. b) Distortion of cross section of flux
tube entering with a circular shape the X-point region.

Consequently, a flute mode perturbation will encounter the same distortion along the magnetic
field lines and its perpendicular wave number will change along the parallel direction according
to:

kx → kx(z) = k0x exp (αξ(z)) , ky → ky(z) = k0y exp (−αξ(z)) , (6.3)

where k0x , k0y are perpendicular wave numbers at z = 0. Note also that k2
⊥ increases drastically

as a field aligned structure enters the X-point region.

k2
⊥(z) = k2

0x exp (2αξ(z)) + k2
0y exp (−2αξ(z)) −−−−−→

ξ�α−1
k2

0x exp (2αξ(z)) . (6.4)

One may thus anticipate that within the framework of the HW model perpendicular dissipation
becomes dominant in the X-point region as it scales with k6

⊥. Even if the strong k6
⊥ dependence

arises from the ad hoc introduced hyperdiffusion model, the perpendicular dissipation is for large
k⊥ also in reality the dominant term (∝ k2

⊥).
Based on this observation, also Farina et al. [139] (see also [141]) conclude that flute mode like

perturbations cannot penetrate the X-point region, since their spatial extent in one perpendicular
direction can easily become smaller than the ion gyration radius and is thus subject to dissipation.

Myra et al. [142, 143, 144] use a reduced Braginskii model which takes into account electromag-
netic effects to derive the resistive X-point mode. This mode is mainly driven on the midplane
outboard side of a tokamak, the region of unfavourable curvature, and has there characteristics
of an electromagnetic ideal MHD mode. As the mode approaches the X-point, it becomes elec-
trostatic with the resistivity being dominant. The mode is damped in the X-point region, which
leads to an enhancement of the parallel wave vector. Since the X-point resistively disconnects
structures along the parallel direction, the mode does not encounter the stabilizing effect from
the inboard side (good curvature). In cases of a configuration with a second upper X-point in the
near SOL the mode remains even confined on the outboard side between both X-point regions.
The resistive X-point mode is thus the result of synergism between resistivity and X-point ge-
ometry. It has also been validated numerically with the BOUT code and found to be dominant
for typical parameters [37, 38, 40]. However, the BOUT code uses a flux aligned grid, where
the X-point is an exceptional point, and might ultimately thus not be the best approach to
investigate dynamics around the separatrix. On the other hand, GRILLIX is capable of treating
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the X-point geometry accurately as will be shown, but its physical model is yet insufficient to
describe these modes, since electromagnetic effects are not taken into account. This will be a
goal of future investigations. But as will be shown in section 6.3 with linear runs, there seems to
be a remote analogue also within the HW model. Drift waves are found to be most unstable in
regions of strong density gradients, i.e. where flux surfaces are closely spaced. The fluctuations
are then distributed via the parallel current along the magnetic field lines also to regions of
reduced density gradient. At the X-point these perturbations encounter a strong perpendicular
dissipation, which also damps the mode towards the X-point, leading to a disconnection of the
modes across the X-point.

Assuming the prescribed dependence 6.3 for k⊥(z), also reduced models were proposed [144,
145, 146, 138] which treat the outboard midplane and the X-point region with separate models.
The idea is that fluctuations are mainly created in the outboard midplane region constant along
magnetic field lines. Fluctuations in the X-point region are driven due to the parallel current and
the strong shear is taken into account via an ordering procedure according to the z-dependence
of the perpendicular operators. Ultimately, effective boundary conditions can be formulated
at some intermediate z coordinate which could be used for an effective 2D outboard midplane
model.

6.2. Axial diverted configuration

GRILLIX could be applied now to a realistic toroidal equilibrium, as obtained from a solution
of the Grad-Shafranov-Schlüter equation 3.2 or even from an experimental input. This is only
performed in section 6.5 as a proof of ability of GRILLIX. However, at this stage this approach
would be pointless, since due to the lack of data and the poor turbulence model the results
for such complicated equilibria would be questionable and very hard to interpret. Instead, it
is highly desirable to study the effects of an X-point in isolation as purely as possible and to
be able to compare the results against available results. To this aim a simpler magnetic field
configuration was established which fulfils these requirements. This magnetic field configuration
is not necessarily an equilibrium in the sense of MHD but just a solution to Ampere’s law, which
suffices as input for GRILLIX.

To obtain such a diverted magnetic field configuration, the magnetic field of an axial circular
equilibrium with prescribed q-profile was taken and superposed with the magnetic field created
by a wire located in the divertor region. Performing this for the logarithmic q-profile described
in section 5.1 and a wire located at (x = 0, y = ywire), one obtains as poloidal flux function:

Ψ(x, y) =

(
1

2q0
+
α

4

)
ρ2 − α

2
ρ2 ln

(
ρ

ρ0

)
+
cwire

2
ln

(
1− 2y

ywire
+

ρ2

y2
wire

)
, (6.5)

where the parameter cwire is proportional to the current through the wire. The magnetic axis
is an extreme point of Ψ and the X-point a saddle point. The resultant poloidal flux function,
which was created based on the standard parameters of section 5.1 with some reasonable choice
for cwire and ywire, is shown in fig. 6.2a. The magnetic configuration is simple in the sense that it
exhibits a left-right symmetry and at the position opposite to the X-point (top) the flux surfaces
are nearly circular. Furthermore, far enough inside the closed field line region the equilibrium
is similar to the simple axial-circular equilibrium which allows comparisons to the results from
chapter 5. The resulting q-profile is shown in fig. 6.2b. Far enough inside the separatrix the
q-profile runs similar to the axial circular equilibrium, but approaching the separatrix (ρ = 1) a
logarithmic divergence [10] appears.

q(ρ) ∝ − ln(1− ρ) for: ρ . 1. (6.6)
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Figure 6.2.: a) Contours of poloidal flux function of axial diverted configuration. Pa-
rameters are (in units of Lax/2π): ρ0 = 0.182, q0 = 1.5, α = 0.464, cwire = 0.015, ywire =
−0.45. Coordinates of magnetic axis are xo = 0, yo = −0.021 and of X-point xx = 0, yx =
−0.333. b) Corresponding q-profile in the edge region.

For the aim of comparison to the axial circular cases, similar parameters as the standard test
case given in section 5.1 were used. However, some things must be respected: The flux label ρ
is now defined to range from 0 at the magnetic axis to 1 at the separatrix according to eq. 3.13.
The background density was assumed to be constant on flux surfaces and the radial background
density gradient is not homogeneous any more. To allow for a comparison, the background
density profile was modelled to match roughly the circular axial one at the top where the flux
surfaces are nearly circular. The perpendicular normalisation length was chosen to be equal to
the background density gradient length at the top, i.e. L⊥ = Ln(top). Concerning resolution,
a higher toroidal resolution had to be chosen to meet the requirements 3.54. With Npol = 18
planes the distortion remained below the threshold of 4, except for a few grid points in the deep
private flux region which exceeded this limit slightly. It was also checked qualitatively for map
distortion effects by doubling the resolution to Npol = 36.

6.3. Linear runs

6.3.1. Isolated blob

To elucidate the distortion of a vortex near the separatrix, a linear simulation was performed with
an initial nonadiabatic Gaussian blob located at the top of the equilibrium on the separatrix.
Sources/sinks in the buffer zones were switched off and all other parameters were as described
in section 6.2. The result is shown in fig. 6.3.

The snapshot at t = 0.5 as an overlay of the planes shows nicely the expected behaviour.
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The initial nonadiabatic blob at the top (position 0) drives rapidly fluctuations along the field
lines via the parallel current. The blob becomes only slightly distorted due to the canonical
shear towards the left and right sides. As the structure enters the X-point region (bottom), it
becomes strongly distorted increasing its k2

⊥ (Compare also with fig. 6.1b). Due to the enhanced
perpendicular dissipation and the infinite (parallel) distance, the blob is not able to pass or even
reach the X-point but lingers close to it. On flux surfaces close to the separatrix, the blob is
hardly able to pass the X-point with drastically reduced amplitude. On a much slower time scale
the blob also propagates in the electron diamagnetic drift direction.

In fig. 6.3b the nonadiabaticity is shown on a flux surface which is very close to the separatrix.
In the X-point region (around θ = 3π/2) the structure is bent along the axial direction and is
damped drastically. It is not able to pass through the X-point region. For the establishment of
this figure the quantity was assumed to be piecewise constant along magnetic field lines within
two poloidal planes, i.e. between two black lines. Thus, the obvious smoothness of the structure
between two vertical black lines is constructed, but across the black lines is a result of the
numerics (field line map). The interpolation at the evaluation for the discrete parallel operators
did not introduce spurious wiggles or any other numerical artefacts, which proves that the field
line map approach works very well even in such complex geometry.

Finally, in fig. 6.3c the nonadiabaticity as a function of the distance along a magnetic field line
is shown at various times. The considered field line starts at x‖ = 0 at the top (position 0) just
inside the separatrix goes to the left and at roughly x‖ = 7 the field line passes at the bottom
the X-point, where it lingers long and comes back up on the right at roughly x‖ = 12. Due to
the enhanced perpendicular dissipation, the structure cannot pass the X-point region and loses
its Gaussian structure.

6.3.2. Most unstable mode

In order to figure out where the fluctuations are mainly created and how they are distributed
along the magnetic field lines, a linear simulation with a small random noise in the density
perturbation as initial state was performed. Non-linear terms and source/sink terms in the buffer
zones were again switched off. The result is shown in fig. 6.4 and it might be worth to compare it
against the linear mode structure in axial circular geometry (fig. 5.1, upper row). It is apparent
that the structures are regular at the top, i.e. the drift waves are elongated perpendicular to
the flux surfaces. This is the region of the largest background density gradient, since the flux
surface are most closely spaced here. Hence, perturbations are created mostly in this region and
distributed via the parallel current towards the sides, where they become slightly sheared due
to the canonical shear but are still comparable in amplitude. On flux surfaces still far enough
inside the separatrix the perturbations, though lower in amplitude, can still exist at the bottom
and have a very fine grained chequerboard pattern there that can hardly be resolved by the
grid. The chequerboard pattern is the footprint of the regular structures at the top and a result
of the already strong local shear in that region. A similar fine grained chequerboard pattern
has also been obtained with double resolution in the axial direction, i.e. Npol = 32 and is thus
not a numerical artefact of the map distortion. Moreover, Hariri [49] has performed also with
a field line map approach a parallel sound wave propagation across the separatrix in absence of
any dissipation mechanisms. Also in these simulations appear very fine grained chequerboard
structures as a result of the footprint of the modes to the X-point which could not be resolved
with the available poloidal resolutions. Near the X-point the perturbations practically die out
completely due to the infinite connection length to the top and the enhanced perpendicular
dissipation.

In fig. 6.5 the nonadiabaticity along a field line running close to the separatrix in the flux
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Figure 6.3.: a) Snapshot of drift wave blob (nonadiabaticity n− φ) at t = 0.5. For units
see eqs. 2.36 with parameters given in expressions 5.3 (For further simulation details see
also last paragraph of section 6.2). Initial state was nonadiabatic blob at top (position
0). Picture shows overlay of all (Npol = 18) poloidal planes, where the grey numbers n
indicate the position along the axial coordinate, i.e. z = (n mod 18) · 2π/18. Black lines
indicate separatrix (solid: ρ = 1) and ρ = 0.996 surface (dashed). b) Illustration on flux
surface ρ = 0.996. Dashed black lines indicate transition between neighbouring planes. c)
Nonadiabaticity at different times in dependence of length along field line, starting from
the top (position 0). Corresponding poloidal positions are indicated with text in boxes.

surface ρ = 0.996 is shown. A clear correlation between the nonadiabaticity and the geometry
is obvious. Whenever the field line passes close to the X-point, the nonadiabaticity is damped
practically to zero and the mode remains confined from one side of the X-point to the other.
Also an abrupt change in the slope of the curve in the X-point region shows that the X-point
virtually disconnects the structures. This is somewhat similar to the resistive X-point mode
(compare e.g. fig. 3b in [143]) which remains also confined between X-points, though the physical
mechanisms of driving and damping here is different.

6.4. Non-linear runs

Next, non-linear terms were switched on to allow turbulence. An imperfect zonal average operator
has been implemented only for diagnostic purposes also for the open field line region but it might
be not suited for computational purposes. Therefore, the source/sink term in the buffer zones
was only switched on for the inner closed flux surface region. This will be improved in future.
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a) b)

c) d)

Figure 6.4.: Snapshot at z = 0 and t = 285 of linear simulation initialized with random
noise. a) Nonadiabaticity n − φ, b) nonadiabaticty enlarged (note the different colour
scales). c) Density perturbation n and d) potential φ.

The buffer zones are mainly important for the approach towards a fully saturated state where
the density profile and the zonal flows have fully developed. This requires long simulation times,
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Figure 6.5.: Nonadiabaticity of linear simulation at t = 285 along magnetic field line
which runs in ρ = 0.996 flux surface starting at the top. Transitions through X-point
region are marked with crosses and transition through top region are marked with circles

a large domain and also high resolution for quantitative statements, which might be hard to
achieve presently with GRILLIX for the used geometry. Moreover, in the open field line region
an implementation of better parallel boundary conditions which take into account Debye sheath
physics instead of buffer zones might make more sense.

At this early stage we are mainly interested in the shape and the structure of turbulent eddies
in the presence of a separatrix. For such a rough qualitative discussion, some robust turbulent
state, dominated by non-linear dynamics, suffices. A snapshot of such a turbulent state is shown
in fig. 6.6a,b. On a rough scale the picture looks similar to the limiter case (compare fig. 5.12).
Within the closed flux surface region zonal structures develop and again a negative potential dip
just inside the separatrix is present. Note again that the computational grid does not know about
flux surfaces or the X-point at all. The automatic development of flux surface aligned structures,
the appearance of the X-point and the sharp transition between open and closed flux surfaces is
a consequence of the field line map, which produces very well the expected result. In the open
field line region drift wave type structures propagate in the electron diamagnetic direction and
accumulate in front of the left divertor plate. No perturbations arise in the private flux region1

which is dominated by the parallel boundaries. In fig. 6.6c the evolution of the fluctuation free
energy of the system is shown. The simulation is not yet saturated and the density profile and the
zonal flows still develop. Fig. 6.6d shows zonal averages of various quantities at t = 1500. A sharp
transition at the separatrix is obvious. In the closed field line region zonal flows develop with
the characteristic steep minima and broad maxima (see section 5.2.3) and in accordance density
corrugations. The potential exhibits a deep dip just inside the separatrix. In the open field line
region also the zonal nonadiabaticity 〈n− φ〉 is small, since the parallel boundary conditions tie
also the zonal density to the zonal potential. Due to the absence of a sink for the perturbations
on the outside, the turbulence screens its drive, the background density gradient, and a shallow
density profile develops in the open flux surface region.

In fig. 6.7a the nonadiabaticity is shown on a flux surface well in the closed field line region.
The structures are very elongated along the magnetic field lines even through the near X-point

1There is also a background density gradient in the private flux region present in the simulation.
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Figure 6.6.: Comprehensive summary of turbulence simulation in axial diverted geom-
etry. For units see again eqs. 2.36 with parameters given in expressions 5.3 (For further
simulation details see also last paragraph of section 6.2). Snapshot of a) density pertur-
bation and b) electrostatic potential in the turbulent phase at t = 1500. c) Temporal
evolution of energies of system. d) Zonal averages of density perturbation, poloidal flow
velocity, vorticity and potential at t = 1500.

region, where a small bending of the field lines in the axial direction can be observed. On a
flux surface very close to the separatrix (fig. b) the structures cannot pass the X-point region
but are disconnected. Figs. c,d show correspondingly the nonadiabaticity along a magnetic field
line running in these surfaces. On the inner surface the structures can pass often unaffected
(undamped) the X-point region. On near separatrix surfaces the structures are always strongly
damped in the X-point region which leads to a disconnection across the X-point region. Note
again that in all cases the structures are smooth (in numerical sense) along magnetic field lines..
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Figure 6.7.: a) Nonadiabaticity n− φ on flux surface (ρ = 0.848) at t = 1500 well inside
the separatrix. b) For ρ = 0.996 close to separatrix. c) Nonadiabaticity along magnetic
field line running in c) ρ = 0.848, and d) ρ = 0.996 flux surface. Black crosses mark
regions where magnetic field line passes X-point region.

6.5. Full toroidal geometry

Finally, just as a proof of ability, GRILLIX was applied to a more realistic toroidal geometry.
For the equilibrium an analytic solution to the Grad-Shafranov-Schlüter equation with dissimilar
source functions [111] was used which models roughly ASDEX Upgrade (q(ρ = 0.95) = 1.93).
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The background density was assumed to be constant on flux surfaces, which have now a complex
shape. The perpendicular scale for normalisation was again the background density gradient,
which was taken at the outboard midplane side, i.e. L⊥ = Ln(om). The used parameters again
mimic the standard parameters given in expressions 5.3, except that the resistivity was doubled
to save computational resources which yielded D = 1.2 in terms of GRILLIX parameters (This
reduced the stiffness of the problem). Curvature terms were still switched off. To further save
computational resources for this simulation, which covered a large domain, a resolution of only
h = 4ρs/3 with νn = νφ = 0.01 was used. Npol = 20 poloidal planes were used to bring the map
distortion below the desired threshold. To also emphasize the work done at the visualisation
a 3D snapshot of this simulation at some robust turbulent state is shown in fig. 6.8. At most
planes an amplitude filter was applied, which shows only the strongest structures. Again open
and closed flux surfaces and the X-point are apparent. The structures are obviously field aligned
across the poloidal planes.

Figure 6.8.: 3D snapshot of nonadiabaticity n− φ at t = 400 of simulation performed in
realistic geometry. On most planes an amplitude filter is applied, which shows only the
highest values. Colourscale is from blue (low) to red (high).

6.6. Conclusions

In this chapter the effects of an X-point in the domain have been discussed. A flux tube ap-
proaching the X-point encounters an exponential compression in one perpendicular direction and
an exponential expansion in the other conserving its cross section. For field aligned structures
this results in a strong increase of k2

⊥ towards the X-point region and within the HW model the
perpendicular dissipation becomes dominant near the X-point.

GRILLIX has then been applied to a domain which spans across the separatrix. A particular
simple magnetic field configuration was created to validate and study the effects of an X-point in
isolation as purely as possible. The expectations discussed in advance have been validated with
GRILLIX. Structures cannot pass or even reach the X-point, since the X-point is infinitely far
away (parallel direction) and the structures become strongly distorted near the X-point and are
thus subject to an enhanced perpendicular dissipation. They remain ultimately confined from
one side of the X-point to the other, which is remotely similar to the resistive X-point mode,
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though details of the mechanism differ.
A simulation also with non-linearities switched on has been performed. Though the computa-

tional grid is neither field nor flux aligned, the X-point and flux surfaces, with a sharp transition
between edge and SOL, became apparent by itself. The structures were at all times smooth (in
numerical sense) along magnetic field lines across the poloidal planes, which showed that the
field line map, especially the interpolation, did not introduce any numerical artefacts even in
such complicated geometry. On a rough scale the result seemed not to differ significantly from
the limiter case. Under the influence of turbulence non-zonal perturbations died also out near
the X-point. Just as a proof of ability an application to a more realistic equilibrium with a
complicated shape of flux surfaces has been presented.

All results are yet qualitative in nature. A short term target which does not need significant
further development of GRILLIX could comprise parameter scans in the parallel resistivity and
the background density gradient to possibly define a threshold when X-point effects become
significant. Also effects of curvature could be studied in the near future. The perturbations are
then expected to be driven strongest on the midplane outboard side and the X-point disconnects
these modes from the good curvature region. Since the curvature breaks poloidal symmetry it
would then be of importance where the X-point is located poloidally.
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Chapter 7.

Summary and outlook

7.1. Summary and conclusions

The new 3D turbulence code GRILLIX based on the Hasegawa-Wakatani equations has been
developed by me from scratch. The main goal was to build a proof of concept for a turbulence
code aimed to investigate and predict anomalous transport in the edge and scrape-off layer in
diverted magnetic fusion devices, which pose a special numerical challenge due to the complex
geometry. With the exception of FENICIA, which uses a different physical model and which
has been developed independently and essentially in parallel to GRILLIX, all present turbulence
codes are either not able to cross the separatrix or treat the X-point, as an exceptional grid
point, poorly. GRILLIX has been designed to cope with these complex geometries and as such
has been shown to be successful and to fulfil the desired requirements.

In chapter 3 the numerical approach, i.e. the field line map, has been presented. A Cartesian
grid within poloidal planes is used and the character of the solutions, namely being elongated
along magnetic field lines, is exploited by a sparsification of the grid in the toroidal direction and
a field line following discretisation of parallel operators. Field or flux aligned coordinate systems,
which become ill defined in the presence of a separatrix, are thereby avoided. In contrast to
[48, 49, 50], who initially motivated the field line map approach still via a field aligned coordi-
nate system which becomes ill defined at the separatrix, the field line map approach has been
motivated here by the observation that the existence of a field aligned coordinate system is irrel-
evant, since the operators are anyway well defined. This achievement removes possible confusion.
Within the field line map approach the flute mode character is exploited at the discretisation
step by allowing a lower toroidal resolution without relying on a complicated coordinate system.
For the evaluation of parallel operators an interpolation within the perpendicular directions has
to be performed, which introduces unavoidably spurious perpendicular coupling. To reduce these
spurious effects the parallel diffusion operator has been discretised to maintain its self-adjointness
on the discrete level. This was achieved via the application of the method of support operators,
which was also previously applied in [52, 53], but in a much simpler environment. A numeri-
cal analysis and code benchmarks showed the superiority of this newly developed scheme with
which the numerical diffusion can be brought below controllable limits. Effects of a strong map
distortion on the numerical scheme have been identified and elegant remedies to these problems
have been formulated. Parts from chapter 3 of this thesis have been published [96].

In chapter 5 GRILLIX was applied to axial circular geometry. This simple geometry allowed
for extensive benchmarks and comparisons against available codes. The benchmarks have all
been passed successfully. Perpendicular operators were benchmarked successfully already in
section 2.5 in a periodic box against many other available codes. The support operator method
guaranteed that numerical diffusion was subdominant and zonal flows were obtained correctly.
The bifurcation of zonal flow production (CHW = 0.4), which was recently found with a flux
aligned slab code, could also be reproduced with GRILLIX. With a separate also newly developed
flux aligned code GRILLIX FA spurious effects arising from the specific shape of the boundaries
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were found to be irrelevant and it could be shown once more that numerical diffusion is well
controlled.

Finally, in chapter 6 effects of an X-point were discussed and validated with GRILLIX. For
the first time the X-point was investigated systematically with a turbulence code, where the
X-point was not treated as an exceptional point. Due to the strong shear near the X-point, the
absolute perpendicular wave number increases drastically as a field aligned structure enters the
X-point region. Hence, within the Hasegawa-Wakatani model perpendicular dissipation plays
the dominant role around the X-point, which led to a confinement of the structures from one
side of the X-point to the other. Although the numerical grid of GRILLIX has no knowledge
about field lines at all, the X-point and flux surfaces with a sharp transition between open and
closed flux surfaces became apparent by itself. Structures which are smooth along magnetic field
lines developed automatically also in these complex geometries as a consequence of the field line
map. This indicates that the field line map approach is very well suited for studies of this region.

All in all, this proves that the field line map approach in general and GRILLIX in particular are
successful. This work sets a milestone for the development of codes whose goal it is to simulate
magnetic fusion devices with a separatrix present. Moreover, global tokamak or even stellerator
simulations which include also a magnetic axis pose no substantial problems to the field line map
approach, in contrast to the widely used flux and field aligned codes.

7.2. Outlook

As has been shown, GRILLIX is already fully able to study effects of a complex geometry on
a simple turbulence model. A continuation of this study in a more quantitative manner, which
could involve also different kinds of equilibria (e.g. two X-points), is ready to be started. The
effects of curvature within the HW model is also left here as a short term target.

For a realistic prediction of anomalous transport in the edge/SOL, the physical model has to
be extended. As discussed in detail in chapter 2, a possible target model could be the reduced
Braginskii equations which take into account electron/ion temperature fluctuations and which
can cope with strong gradients and perturbations of order unity. Moreover, a gyrofluid model
(total-f) might be even better suited as a target model, in order to account for small structures
(k⊥ > ρ−1

Li ).
The work presented here puts a basis for such a longer term project, since it provides already

many of the necessary numerical tools and numerical investigations. Additionally, results for the
parallel gradient operator and a parallel advection type equation, which has not been touched
here, can be found in [49, 50, 51]. The discretisation of any perpendicular operator is straight
forward and simple. But it is e.g. not yet clear how to handle electromagnetic effects in detail,
which would lead to a temporal change of the field line map. However, since a temporal variation
of the magnetic field does not pose a fundamental problem to the field line map approach, an
elegant solution to this problem can certainly be found. It might also be worth to invest some
effort to treat the shape of the perpendicular boundaries in a cleaner way, although it did not
seem to have big effects on the final result. This could allow also other boundary conditions in
the radial direction (e.g. Neumann).

In parallel, continuous work at the algorithms has to be performed. The current constraint
of binding the number of MPI processes to the number of planes, might have to be given up
at some point. In terms of memory and computational effort, a domain decomposition also
within poloidal planes might be inevitable for grids of realistic size. A domain decomposition
according to flux surfaces would be on the one hand advantageously to reduce the communication
at the evaluation of parallel operators, but on the other hand cumbersome to implement for the

96



7.2. Outlook

Cartesian grid. Moreover, a better preconditioning which also takes into account the implicitly
treated parallel dynamics would be a huge gain. First tests showed already that the number
of GMRES iterations could be reduced, by using a preconditioning matrix, where the parallel
operators are approximated with just one and the same plane. However, the LU-decomposition
and the back substitution of this preconditioning matrix turned out to be too costly. Eventually,
this could be resolved automatically by abandoning direct solvers at all. A multigrid method for
the solution of the elliptic problem in each time step arising from the vorticity equation, could
lead to a substantial improvement. Ongoing work on this problem can already found, e.g. in
[147], which take into account also non-Boussinesq flows.

Hence, there is still a lot of work ahead in order to establish a field line map based code which
can compute anomalous transport from first principles for the edge/SOL of magnetic fusion
devices in complex geometry. Concrete plans to address various of the discussed problems are
already on the way at IPP Garching. CPU time at the computer centre IFERC-CSC in Japan
has already been applied for and a collaboration with the NMPP division (Numerical Methods
in Plasma Physics) and the HLST (High Level Support Team) might be started (partly also
continued) in the near future.
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Appendix A.

A detailed analysis of references [48,50]
with regard to the therein constructed
coordinate system at the separatrix

In references [48, 49, 50] it is claimed that the therein constructed coordinate system can deal
with diverted magnetic field configurations where a separatrix is present. It has already been
discussed in section 3.1 that this statement is not correct, but it shall again be pointed out
that the FENICIA code [49, 50, 51] does not rely on the constructed coordinate system, but is
ultimately also based on a field line map. Hence, the results presented in [49, 50, 51] are valid
and FENICIA is able to treat diverted geometries with a separatrix present. In section 2 of [51]
the approach of FENICIA with a field line map is presented.

Nevertheless, to avoid possible confusion in future related to the field line map approach, these
papers are analysed here in detail. As was already pointed out in section 3.1, their constructed
field aligned coordinate coordinate system becomes ill defined at the separatrix, since already
the underlying straight field line coordinate system is ill defined at the separatrix. In section
2 of [48] it is assumed that the coordinates (r, ϕ, θ) are already available as a set of straight
field line coordinates (Hamada), which are ill defined at the separatrix. They propose then a
transformation to a field aligned coordinate system1 according to:

ξ = θ − 1

q(r)
ϕ, s = ϕ, ρ = r. (A.1)

Thus, the parallel gradient becomes ∇‖ = ∂/∂s. It is claimed that this coordinate system can
be applied across the separatrix, since the transformation now involves 1/q, which is bounded at
the separatrix. However, this coordinate system is ill defined at the separatrix, since already the
poloidal straight field line angle θ is ill defined. This manifests itself as one considers the metric
tensor of the coordinate system, which is not discussed in these papers. The radial derivative
becomes (eq. 9 of [48], eq. 10 in [50]):

∂

∂r
=

∂

∂ρ
− q′(r)
q2(r)

ϕ
∂

∂ξ
. (A.2)

This derivative is ill defined since the factor q′/q2 diverges at the separatrix. Close to the
separatrix the safety factor runs like [10]:

q(r) ∝ − ln(rs − r), (A.3)

1The transformation which they actually propose involves several local coordinate systems Nϕ at different
toroidal positions ϕk. However, for a strict mathematical treatment we can assume without loss of generality
Nϕ = 1 and ϕ1 = 0.
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where rs is the flux label at the separatrix. Applying L’Hospital’s rule yields:

lim
r→rs

q′(r)
q2(r)

= lim
r→rs

(rs − r)−1

(ln(rs − r))2
= lim
r→rs

1

2(rs − r)
→∞, (A.4)

which shows that A.2 is ill defined and with such a coordinate system no derivatives can be
computed at the separatrix.

In appendix A of [48], section 4 of [50] and section 2.2 of [49] the construction of a field aligned
coordinate system based on a flux coordinate independent approach is presented. Similarly also
this coordinate system is ill defined at the separatrix, which is shown in the following. An
axisymmetric magnetic field of the form:

B = Bpol(x, y) + ez (A.5)

is considered, where (x, y, z) is a Cartesian reference frame and the magnetic field strength is
normalized to the uniform axial magnetic field strength. The poloidal magnetic field is given in
terms of a flux function:

Bpol = ∇× (Ψ(x, y)ez) =
∂Ψ

∂y
ex −

∂Ψ

∂x
ey. (A.6)

The parallel gradient is ∇‖ = B · ∇+ ∂/∂z. A transformation is proposed:

ξα = V α(x, y) + Cα(x, y)z, s = z, (A.7)

where α = 1, 2 and the coefficients V α and Cα are yet undetermined. In the new coordinate
system the parallel gradient becomes:

∇‖ = Bβpol
∂V α

∂xβ
∂

∂ξα
+ sBβpol

∂Cα

∂xβ
∂

∂ξα
+ Cα

∂

∂ξα
+

∂

∂s
, (A.8)

where a summation over α, β is assumed. The coefficients V α and Cα are chosen such that the
fast varying derivatives vanish, i.e. ∇‖ → ∂/∂s. One must satisfy for this:

Cα = [Ψ, V α] , [Ψ, Cα] = 0, (A.9)

where [a, b] = ∂xa∂yb− ∂ya∂xa. It can be further summarized as:

[Ψ, [Ψ, V α]] = 0, (A.10)

Next they consider a function χ(x, y), such that

[Ψ, χ] = 1. (A.11)

This is the critical point in the derivation. At the X-point the poloidal magnetic field vanishes
(∇Ψ = 0) and it is obvious that for condition A.11 to be valid (∇χ)2 → ∞. Since χ plays
ultimately the role of a poloidal straight field line angle, this illustrates that the problem at the
X-point is the construction of a straight field line coordinate system. However, if one assumes
that the function χ can be found, the field aligned coordinate system is given as:

ξα = fα(Ψ) + hα(Ψ) (χ+ z) , s = z, (A.12)

where gα and hα are arbitrary functions which only depend on Ψ. At this point references
[48, 49, 50] do not investigate if the coordinate system is well defined, which is done in the
following. The Jacobian of the transformation is:

J−1 = ∇s ·
(
∇ξ1 ×∇ξ2

)
=
(
A1h2 −A2h1

)
[Ψ, χ] = A1h2 −A2h1, (A.13)
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with Aα = fα′ + hα′(χ+ z). The metric tensor is given as:

gαβ = AαAβ (∇Ψ)
2

+ (Aαhβ +Aβhα)∇Ψ · ∇χ+ hαhβ
[
1 + (∇χ)

2
]
, (A.14)

gα3 = g3α = hα, g33 = 1. (A.15)

For a finite Jacobian it must at least hold for one of the coefficients hα 6= 0. Since at the X-point
(∇χ)2 →∞, this results in at least one divergent entry in the metric tensor gαα →∞ and thus
the coordinate system is ill defined. E.g. a construction of the Laplacian, in which the metric
coefficients enter is not possible.

In section 4.2 of reference [50] and section 2.2.1 of [49] they claim to have obtained a solution
for the function χ for an X-point configuration where the poloidal flux is chosen such that
Ψ(x, y) = Ψ0(x) + A cos(kyy). Actually, in a recent paper [51] this solution is shown. Taking
A = 1, ky = 1 and Ψ0(x) = x2, there are X-points at x = 0, y = 0 and x = 0, y = 2π and a
magnetic axis at x = 0, y = π. Indeed the function χ can be obtained in terms of elliptic integrals
as:

χ(x, y) =
1√

1−Ψ(x, y)
F

(
x√

1 + Ψ(x, y)
,

√
−(1 + Ψ(x, y))

1−Ψ(x, y)

)
, (A.16)

with F the incomplete elliptic integral of the first kind. The condition for a point (x, y) to be on
the separatrix is Ψ(x, y) = 1. Hence, it becomes apparent that the function χ diverges on the
whole separatrix, which is also noted in section 5 of [51]. In fig. A.1 the contours of the poloidal
flux function Ψ and of the function χ are plotted. Similarly to fig. 3.1b in chapter 3 the contours
of the straight poloidal field line angle are sucked into the X-points and χ is not well defined at
the separatrix.
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a) b)

Figure A.1.: a) Contours of potential for problem posed in section 4.2 of reference [50]
with A = 1, ky = 1. b) Contours of corresponding function χ which fulfils [Ψ, χ] = 1.
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Supplements to field line map

B.1. Interpolation

For the computation of the parallel gradient described in section 3.4.1 the values of the quantity
at the penetration points (Rα,β , Zα,β) are computed via a bilinear or a 3rd order polynomial
interpolation. This section describes the interpolation process (see also e.g. [109]).

As shown in fig. B.1, the interpolation involves 2 × 2 neighbouring grid points around the
penetration points for bilinear respectively 4 × 4 for 3rd order polynomial interpolation. The
collocation points for each penetration point is found by a separate routine (see block Parallel
Indexing in work flow of GRILLIX, fig. 4.2) by evaluating the distance to the penetration point1

(R,Z). For some penetration point we label the collocation points with the indices un,m, with
n,m = 1, 2 respectively n,m = 1 . . . 4.

a) b)

Figure B.1.: a) Interpolation grid for bilinear interpolation, b) for 3rd order bipolynomial
interpolation.

1The superscript α, β is dropped in the following. The subsequent discussion is valid for both.
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A bilinear interpolation consists of two interpolations along one direction (R):

u(R,Z1) =
1

h
[(R2 −R)u1,1 + (R−R1)u2,1] , (B.1)

u(R,Z2) =
1

h
[(R2 −R)u1,2 + (R−R1)u2,2] , (B.2)

followed by one interpolation along the other direction:

u(R,Z) =
1

h
[(Z2 − Z)u(R,Z1) + (Z − Z1)u(R,Z2)] (B.3)

resulting in:

u(R,Z) =
(R−R2)(Z − Z2)

h2
u1,1 −

(R−R1)(Z − Z2)

h2
u2,1

− (R−R2)(Z − Z1)

h2
u1,2 +

(R−R1)(Z − Z1)

h2
u2,2. (B.4)

It is obvious that the interpolation is linear in the collocation points and can thus be written as
matrix with the interpolating coefficients as entries. Therefore, the parallel gradient can also be
written in matrix form Qα,β as proposed in eq. 3.19.

In a similar way also the 3rd order bipolynomial interpolation is conducted. First four 3rd order
polynomial interpolations in R-direction are performed to the positions u(R,Zm) and finally one
3rd order interpolation along the Z-direction, which finally yields:

u(R,Z) =

4∑
n=1

4∑
m=1

(−1)n+m cn,m
h6

4∏
i=1,
i 6=n

4∏
j=1,
j 6=m

(R−Ri)(Z − Zj)

un,m. (B.5)

Again, this expression is linear in the collocation points with the expression in brackets being
the interpolating coefficients. The constants cn,m are given according to:

c1,1 = c1,4 = c4,1 = c4,4 =
1

36
, (B.6)

c1,2 = c1,3 = c2,1 = c2,4 = c3,1 = c3,4 = c4,2 = c4,3 =
1

12
, (B.7)

c2,2 = c2,3 = c3,2 = c3,3 =
1

4
. (B.8)

Finally, it is noted that if a point of the interpolating grid is missing, which is the case for field
lines close to the boundaries, ghost points with a value zero are implicitly assumed for the missing
points.

B.2. 2D model problem with polynomial interpolation

Similarly to section 3.6.1 the stencil for the support scheme with a 3rd order polynomial in-
terpolation is derived. Since more points than for the bilinear interpolation are involved, the
minimum problem which contains at least one inner point is a nx×nz= 7×3 grid. The indexing
is as in section 3.6.1 with u = (u1,1, u2,1, · · ·u7,1, u1,2 · · · )T , and the only inner point is u4,2. The
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parallel gradient matrix is:

Qα = −
(
Qβ
)T

=
1

∆s



−1 c b a [d]
−1 d c b a
−1 d c b a
−1 d c b a
−1 d c b a
−1 [a] d c b
−1 [b] [a] d c
−1 c b a [d]
−1 d c b a
−1 d c b a
−1 d c b a
−1 d c b a
−1 [a] d c b
−1 [b] [a] d c

[c] [b] [a] [d] −1
[d] [c] [b] [a] −1

[d] [c] [b] [a] −1
[d] [c] [b] [a] −1

[d] [c] [b] [a] −1
[a] [d] [c] [b] −1
[b] [a] [d] [c]


(B.9)

with:

a =
f2(f − 1)

6
, b = −f(f + 1)(f − 2)

2
, c =

(f2 − 1)(f − 2)

2
, d =

f(f − 1)(f − 2)

6
, (B.10)

and the rectangular brackets denote a connection across the periodic boundaries of the domain.
Again, the stencil for the naive scheme and the support scheme follow immediately for the
inner grid point and is illustrated in fig. B.2a,b Observe again that if the displacement is zero

a) b)

Figure B.2.: Stencil for the 2D minimum non-trivial problem with 3rd order polynomial
interpolation: a) Naive scheme, b) support scheme.

(f = 0, 1) both schemes yield the standard finite difference expression for the second derivative.
Again, the naive method involves only the considered grid point itself and points involved in the
interpolation at the neighbouring poloidal planes, whereas the support scheme has a big stencil
covering many points also within the considered plane.

B.3. Benchmarks of field line map in shaped geometry

For general shaped geometry an analytic solution to the parallel diffusion equation is in general
not available. Moreover, rigorous convergence checks in the interesting region close to the sep-
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aratrix are elaborate due to the complex field line structure and computationally costly due to
the size of the domain. Therefore, only rough convergence tests are performed here.

For the first benchmark the blob as described in section 3.8 with a δ-peak in the toroidal
direction is considered as the initial state.

u(t = 0) = exp

[
− (R−Rc)2

R2
w

− (Z − Zc)2

Z2
w

]
δ(ϕ). (B.11)

Some snapshots which illustrate the diffusion of the blob can also be found in section 3.8 (fig. 3.13
and fig. 3.15). Convergence is checked by simply evaluating the obtained maximum value of u
at the toroidally opposed plane at the time t = 10.0 (||u(t = 10.0, ϕ = π)||∞) in dependence on
resolution and the numerical scheme. The time step was held constant at ∆t = 1E−2 regardless
of spatial resolution. It is noted that as discussed in section 3.8 for resolutions Npol . 8 spurious
wiggles are observed with the S-1 and S-3 scheme, which vanish for higher toroidal resolution
resulting in smooth structures.

In fig. B.3a the maximum value at the opposed plane is plotted against the toroidal resolution
Npol for fixed poloidal resolution and in fig. B.3b in dependence on poloidal resolution h for fixed
toroidal resolution. Similar to the results obtained in simple cylindrical geometry in section
3.7.2, the convergence for the support schemes is faster. Both S-1 and S-3 converge for the fixed
toroidal resolution quickly against the same value of ∼ 0.4. Since the naive schemes discretise
∇2
‖, whereas the support schemes discretise ∇ ·

[
b∇‖

]
, we expect a convergence against slightly

different values for the naive schemes. Thus the N-3 scheme firstly shows a smooth convergence
against a slightly different value of roughly ∼ 0.43. Again, at the highest resolutions an abrupt
jump is present which might arise from some numerical instability and is not yet fully understood.
For the N-1 scheme a convergence could not be achieved with the available hardware, but the
curve tends also to converge against a slightly higher value of ∼ 0.43.

a) b)
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Figure B.3.: Convergence test with blob. The maximum value at the opposed plane
||u(t = 10.0, ϕ = π)|| of the initial blob (Rc = 0.88, Zc = −0.29, Rw = Zw = 8 · 10−3)
is plotted against resolution. a) In dependence on toroidal resolution for fixed poloidal
resolution of h = 5 · 10−4, b) in dependence on poloidal resolution for fixed toroidal
resolution of Npol = 32. Time step was held constant at ∆t = 1 · 10−2. For snapshots
which illustrate the diffusion of this blob see also figs. 3.13 and 3.15 in section 3.8.

The second benchmark addresses the numerical decay of zonal modes. In fig. B.4 the error in
dependence of time is shown for a zonal mode located at the edge. The toroidal resolution was
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chosen Npol = 32, such that the map distortion is well below the desired threshold. Basically,
the same behaviour as was obtained for axial equilibria (see section 3.7.2, fig. 3.10) is shown.
After a very short time the mode has decayed practically completely for the N-1 scheme. For
the N-3 scheme the decay is slower due to the higher interpolation order and the decay is even
a bit slower for the S-1 scheme. Due to boundary effects for the S-3 scheme, the error is first
slightly higher as compared to the S-1 scheme, but then the mode decays on a much slower level.
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Figure B.4.: Temporal evolution of error δ2(t) for a zonal mode r = 2,m = 0, n = 0. The
simulation domain covered ρ = 0.9 . . . 0.95. The simulations were resolved with Npol = 32
and h = 5 · 10−4 being roughly 20 points per radial wavelength at the LFS and roughly
40 points at the HFS. Time step was ∆t = 1.0

We pass on a scan of the numerical decay rate γnum with poloidal/toroidal resolution, since
it is computationally very expensive. The decay rate for the S-3 scheme exhibits a very strong
scaling with poloidal resolution. The determination of the decay rate thus requires extremely
long run times with a large grid. The results shown here should be evidence enough that the
support operator method is by far the superior with respect to the naive method also in shaped
geometry.

B.4. Parallel boundary conditions

For open field lines hitting divertor or limiter plates parallel boundary conditions at the intersec-
tion of the field line with the plates have to be supplied. At present Dirichlet boundary conditions
u|plate = 0 are available.

Field lines which hit divertor plates are identified during the field line tracing procedure. In
each integration step it is checked if field lines intersect with the divertor plates. At the parallel
boundaries the discrete parallel gradient is computed at the position half way along a magnetic
field line between the considered grid point and the plates via a finite difference. For the naive
scheme the parallel diffusion operator follows as usual via a further finite difference between the
parallel gradients (α and β).

For the support scheme the situation is a bit more cumbersome and is illustrated in fig. B.5.
For closed field lines the Dα and Dβ discretisation of the parallel diffusion operator are equally
valid and both scalar products 〈pα, qα〉α and

〈
pβ , qβ

〉
β

cover the same domain. Thus for the final

parallel diffusion operator just the average is taken D = 1/2
(
Dα + Dβ

)
(see expression 3.34).

However, in the presence of a parallel boundary field lines end in plates and the scalar products
in α and β cover a different volume. Hence, the combined scalar product for fluxes, according to
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eq. 3.35 has to be modified:

〈p, q〉FG :=
∑
i

fαi q
α
i p

α
i ∆Vαi + fβi q

β
i p

β
i ∆Vβi , (B.12)

where fα,βi = 1/2 if the field line originating from grid point i in α, β direction does not intersect

with a plate and fα,βi = 1 if it intersects with a plate. Accordingly, the parallel diffusion operator
for some point i changes to:

Dij = fαi Dα
ij + fβi Dβ

ij . (B.13)

As can be also seen in fig. B.5, the distinction of the domain which is counted once or twice is not
perfect, but an error remains only for single grid points. In the limit h→ 0 the flux box volumes
reduce essentially to lines and the distinction becomes perfect showing indeed the convergence
of this approach.

Figure B.5.: Sketch of field line map with parallel boundary conditions. Illustrated are
two planes (2D) with a plate in between, e.g. a limiter plate. The magnetic field lines
are assumed for simplicity straight. Blue (red) points indicate positions where the parallel
gradient α (β) is computed for plane k−1 (k). Blue (red) boxes indicate flux box volumes
around parallel gradients ∆Vα (∆Vβ) belonging to plane k−1 (k). Note that more or less
the closed field line region is covered twice (red + blue) by the flux box volumes, whereas
the open field line region is covered only once (either red or blue).

To perform a benchmark of the boundary conditions, an axial equilibrium is considered with
a toroidally axisymmetric limiter at the poloidal angle θ = 0. The limiter extends radially into
the whole domain and is assumed to be infinitely thin in the poloidal direction. An approximate
analytic solution can be found. We imagine the magnetic field lines rolled out from the one side
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of the limiter to the other side as illustrated in fig. B.6a. x‖ shall be a coordinate along a field
line starting from a limiter plate and x⊥ coordinates perpendicular to the magnetic field line.
The parallel diffusion equation reduces then to a simple 1D diffusion equation along x‖. Let the
initial state be characterised by a parallel wave number n‖, i.e.:

u(t = 0) = u(x⊥) sin

(
n‖π

L‖
x‖

)
, (B.14)

where L‖(ρ) = 2πq(ρ)
√

1 + ρ2/q(ρ)2 is the connection length from plate to plate. The repre-
sentation of such a structure on the GRILLIX grid is shown in fig. B.6b,c. The solution of the
parallel diffusion equation can again be found via Fourier transform methods:

u(t) = u(t = 0) exp(−γt), with: γ(ρ) =
n2
‖π

2χ‖

L‖(ρ)2
. (B.15)

For the benchmark a constant safety factor is assumed and the width of the flux shell is assumed
to be small such that in a good approximation γ(ρ) ≈ γ((ρmax + ρmin)/2) can be assumed.

a) b)

Figure B.6.: a) Sketch of rolled out field lines in presence of an axisymmetric limiter.
b) Example of a n‖ = 1 mode on the GRILLIX grid at ϕ = 0 and ϕ = π. The structure
is in the perpendicular direction a Gaussian of size wρ = 0.03, wθ = 0.2, centred around
a magnetic field line, which runs from plate to plate. The safety factor is q(ρ) = 3 with
ρ = 0.4 . . . 0.5.

In fig. B.7 the relative error of the numerically obtained decay exponent is plotted in depen-
dence on toroidal resolution Npol for two different parallel mode numbers. Due to the fact that
the analytic solution is only approximate, the finite poloidal resolution and the non-equidistant
grid (in the parallel sense), the error does not follow a straight line but is slightly irregular.
Overall the error goes down and scales somewhat in between N−1

pol and N−2
pol in contrast to the

benchmarks performed in section 3.7.2 for closed field lines (see fig. 3.9), where the error scaled
like N−2

pol for a sufficiently high poloidal resolution. The reason for this break of scaling here is

that the presence of the limiter breaks the equidistant property of the grid, i.e. ∆sα 6= ∆sβ for
grid points next to the plates, and in the worst case only a first order accuracy can be expected
[110].

A final test concerns the simultaneous presence of open and closed field lines. An axial equi-
librium with an axisymmetric limiter half way radially into the flux shell is considered. A zonal
mode extending across the separatrix (r = 1, m = 0, n = 0) flows in the open field line region
to the limiter plates and decays there, whereas in the closed field line region it should remain
stable. Finally, a jump at the LCFS remains. This behaviour is obtained also in a simulation
performed with the S-3 scheme (see fig. B.8). Due to the interpolation, the jump across the
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Figure B.7.: Numerical error ∆γ/γ = |γnum − γan| / |γan| of a n‖ = 1 and n‖ = 2
mode in dependence on toroidal resolution Npol for fixed poloidal resolution h = 5 · 10−4

computed with S-3. Perpendicular structure of initial state was a Gaussian (wρ = 0.02,
wθ = 0.2, see fig. B.6) around a magnetic field line. Other parameters: q = 3, ρmin = 0.4,
ρmax = 0.5, dt = 2 · 10−4. γan(n‖ = 1) = 2.72 · 10−2, γan(n‖ = 2) = 0.109.

LCFS is not perfectly obtained, of course. In fig. B.9 the values of the grid points cut radially
trough the domain (x < 0, y = 0, z = 0) are shown at an intermediate time and at a late time,
where the mode has decayed nearly completely in the open field line region. For the N-1 scheme
the region around the LCFS becomes smeared out and the numerical perpendicular transport in
this region is high resulting in a fast decay of the overall mode. For the N-3, S-1 and S-3 scheme
in the region around the LCFS over swings arise due to the interpolation of a discontinuity. For
the regions well away from the LCFS the structures are smooth and the mode remains stable
in the closed field line region. The numerical transport is lowest for the S-3 scheme and thus
the jump is steepest for this scheme. For practical applications a finite physical perpendicular
transport/diffusion process will always smooth structures in the region around the LCFS.
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a) b) c)

Figure B.8.: Snapshots of a simulation (S-3 scheme performed with Npol = 16, h =
5 · 10−4, ρmin = 0.4, ρmax = 0.5, dt = 1 · 10−2, here shown plane z = 0) with an
axisymmetric limiter ranging radially half way into the domain. The initial state (a)
decays in the open field line region (b). In the final state (c) the mode has decayed
completely in the open field line region, whereas it remains stable in the closed field line
region leaving a jump in the radial direction.
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Figure B.9.: Values of quantity u on grid points at x, y = 0, z = 0 (radial cut at opposed
position to limiter at a) t = 15, b) t = 590. Simulation details as in fig. B.8
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Field line tracing and grid creation

In this appendix the field line tracing procedure and the creation of the grids is described.
The creation of the grids is performed with the program create grid@GRILLIX which is run in a
advance to main@GRILLIX. The input of create grid@GRILLIX is the file equi params.in, where
parameters of the equilibrium are set (axial or toroidal, q-profile,...), and the file grid params.in,
where parameters of the grid (resolution, limiting flux surfaces,...) are set. The output are two
files, grid cart.in, where grid information for the Cartesian grid is stored, and grid polar.in, where
grid information for a polar grid is stored which is mainly needed for diagnostic purposes (see
fig. 4.1). Due to axisymmetry the information is identical for each plane.

Within the poloidal plane only one grid index l is used for the Cartesian grid going from the
lower left point of the grid to the upper right grid point. The information which is established
and stored in grid cart.in is:

• Position of the grid points: Rl, Zl.

• Cartesian indices of the grid points to find poloidal neighbours: il, jl.

• Flux label: ρl.

• Magnetic field: BR l, BZ l, Btor l and its derivatives with respect to R,Z.

• The penetration points and lengths along field lines towards neighbouring poloidal planes:
Rα,βl , Zα,βl ,∆sα,βl .

• The flux box volumes: ∆Vl,∆Vα,βl .

• To compute the distortion and for the coordinate free representation of the parallel gradient,
the four edges of the mapped quad.

Given Rmin, Rmax, Zmin, Zmax, a Cartesian rectangular grid Ri, Zj with given grid spacing h is
established. For each point the flux label is computed via a given function ρ(R,Z). Only those
grid points are kept for which ρmin < ρ(Ri, Zj) < ρmax, where ρmin, ρmax are the flux labels
of the limiting flux surfaces. From this results the basic grid Rl, Zl, il, jl, ρl, with l the index
running within the poloidal plane.

For each point the magnetic field BR l, BZ l, Btor l, normalized to the magnetic field strength
at the magnetic axis is computed. For toroidal geometries the computation of the poloidal field
components is performed via derivatives from a given poloidal flux function Ψ(R,Z) (see eq. 3.1).

BR = − 1

R

∂Ψ

∂Z
, BZ =

1

R

∂Ψ

∂R
. (C.1)

The derivatives of Ψ are given as an analytic function. The toroidal field is approximated with
the vacuum field Btor = 1/R. For axial circular geometry the axial field is assumed constant and
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Appendix C. Field line tracing and grid creation

uniform Bz = 1 and the poloidal field components are computed via a given q-profile

Bx = −ρ sin(θ)

q(ρ)
, By =

ρ cos(θ)

q(ρ)
, (C.2)

where ρ =
√
x2 + y2 the radial coordinate and tan θ = y/x the poloidal angle. For axial geom-

etry with an X-point the magnetic field is obtained by superposition of the axial circular field,
prescribed by a q-profile and the magnetic field Bwire created by a wire in the divertor region.

Bwire x = − cwire
x2 + (y − ywire)2

(y − ywire), Bwire y =
cwire

x2 + (y − ywire)2
x, (C.3)

where cwire is a constant proportional to the current through the wire and ywire is the y-position
of the wire. xwire is assumed to be zero. The computations of the derivatives of B with respect
to R,Z (x, y for axial geometry) is straight forward.

For axial circular geometries the computation of the penetration points (xα,β , zα,β) needed for
the field line map can be performed analytically. For each grid point l the corresponding radial
coordinate and poloidal angle ρl, θl is computed. Going a distance ∆z along a field line only
changes the value of the poloidal angle to:

θα,βl = θl ±
∆z

q(ρl)
. (C.4)

The penetration points are obtained by a back transformation from the polar coordinate to the
Cartesian coordinate (ρl, θ

α,β
l ) → (xα,β , zα,β). The lengths along the magnetic field lines are

∆sα,βl = ∆z
√

1 + (ρl/q(ρl))2 and the flux box volumes are all constant ∆Vl = ∆Vα,βl = h2∆z.
For more general geometries (toroidal, axial-diverted) the field line tracing has to be performed

numerically. To obtain the penetration points the following ordinary differential equations have
to be solved:

Rα,βl =Rl +

±∆ϕ∫
0

dϕR
BR
Btor

, Zα,βl =Zl +

±∆ϕ∫
0

dϕR
BZ
Btor

(C.5)

for toroidal geometry, respectively for axial geometry:

xα,βl =xl +

±∆z∫
0

dz
Bx
Bz

, yα,βl =yl +

±∆z∫
0

dz
By
Bz

(C.6)

The integration of these equations is performed with a 4th order Runge-Kutta scheme (see
e.g. [109]). The routines D02PVF and D02PCF from the NAG library [148] are used. The
lengths along the magnetic field lines can be computed similarly according to:

∆sα,β =

±∆ϕ∫
0

dϕR

√
1 +

(
BR
Btor

)2

+

(
BZ
Btor

)2

(C.7)

for toroidal geometry, respectively for axial geometry:

∆sα,β =

±∆z∫
0

dz

√
1 +

(
Bx
Bz

)2

+

(
By
Bz

)2

(C.8)
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Due to ∇ ·B = 0, the magnetic flux through the initial square is conserved as one goes along a
magnetic field line, i.e. Btor(s)A(s) = const, where s is a coordinate along a magnetic field line.
Based on this fact, the flux box volumes can be computed as:

∆V (ϕ) =

ϕ∫
0

dϕ
Ψtor

0

Btor(s)

eϕ
|eϕ|

· ds(ϕ), (C.9)

where s is the curve along a magnetic field line and Ψtor
0 = Btor(s = 0)h2 the toroidal flux

through the initial square at the start of the field line tracing. The flux box volumes can be
computed to high accuracy by recursive addition of volumes in each integration step during the
field line tracing procedure: V0 = 0, Vt = Vt−1 + Ψtor

0 /(Btor(Rt, Zt))Rtdϕ, where Rt, Zt are the
coordinates of the position during the field line tracing at integration step t and dϕ the step size
of integration.

The computation of the mapped quads which are given by the penetration points of the
corners of the square around a grid point (see fig. 3.3b) is simple as a field line tracing algorithm
is available. The computation of the distortion of the mapped quads is also straight forward.

Mainly for diagnostic purposes also a polar grid ρ, θ is established for closed field lines. The
needed information, which is stored in the file grid polar.in, is:

• Position of polar grid points: Rip,jp, Zip.jp.

• The Jacobian for the polar grid: Jip,jp.

The polar grid is chosen to be equidistant in ρ in between ρmin < ρip < min(ρmax, 0.99ρseparatrix)
and equidistant in the geometrical polar angle θ in between 0 < θjp < 2π and is thus logically
rectangular with grid indices ip, jp. The grid distances dρ, dθ are chosen, such that the resolution
of the grid points corresponds roughly to the resolution of the Cartesian grid. For each point
ip, jp the position Rip,jp, Zip,jp is computed. A map between the Cartesian and the polar grid
is ultimately achieved via an interpolation.

For axial circular geometry the Jacobian of the polar coordinate system is simply J = ρ. For
complex geometry it is obtained by locally computing the coefficients of the metric tensor and
computing the determinant. The Jacobian is needed to compute the flux surface average which
is actually a volume average [97]:

〈f〉 (ρ) =

2π∫
0

2π∫
0

dϕdθ J f

2π∫
0

2π∫
0

dϕdθ J

, (C.10)

which becomes on the discrete level:

〈f〉 (ρip)→

∑
jp,k

fip,jp,k Jip,jp∑
jp,k

Jip,jp
, (C.11)

where fip,jp,k is the function mapped from the Cartesian grid to the polar grid via interpolation.
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Appendix D.

Further results for axial circular geometry

In this appendix selected additional results of GRILLIX simulations for axial circular geometry
are shown which support the results of chapter 5.

D.1. Bifurcation in CHW

As stated in section 5.2.4, a bifurcation was found in [90, 91] in the parameter CHW . Starting
a simulation from small random noise no zonal flow was produced for CHW < 0.4 and above it
was produced. This non-trivial1 result was also obtained with GRILLIX as is presented in the
following.

In contrast to the magnetic configurations used in chapter 5 where a q = 3/2 surface was
present in the center of the domain, resonant surface effects have been excluded in [90, 91], i.e. the
turbulent eddies had no opportunity to bite their tails. For low CHW (< 0.4) an exponential
growth of a poloidal flow at resonant surfaces was obtained with GRILLIX and also by A.
Kammel [149] which is different from the usual zonal flow picture and is not investigated here
further on. Hence, to reproduce the bifurcation result of [90, 91] with GRILLIX a non or at least
less resonant surface with q0 = 19/7 is chosen in the center of the domain and the parameter α
is accordingly adjusted to yield the desired value of CHW . Otherwise standard parameters are
used according to the details given in section 5.1, except for the toroidal resolution which was
increased to Npol = 12 and the radial width of the domain which was reduced to Wρ = 140ρs.

In fig. D.1 the temporal evolution of the poloidal flow velocity for three different values of CHW
is shown. For CHW = 0.6 a robust zonal flow was developing continuously. For CHW = 0.3 no
zonal flows was produced within the available simulation time and for CHW = 0.5 a transitional
regime was found where zonal flows were partly produced and broke up again from time to time.
Fig. D.2 supports this result where the temporal evolution of the ratio of zonal flow energy
divided by the total kinetic energy is shown.

The values of the transport, which saturates comparably fast, are roughly:

ΓV (CHW = 0.3) ≈ 1.9, ΓV (CHW = 0.5) ≈ 0.8, ΓV (CHW = 0.5) ≈ 0.6.

The trend is in good agreement with the results in [88, 90, 91], though we pass on a quantitative
comparison, since the absolute value of the transport might be very sensitive to resolution. The
task of a direct code comparison, as it is elaborate work and involves a close collaboration between
the authors of the different codes, is left for future work.

Hence, also with GRILLIX the same non trivial result as in [90, 91], a bifurcation in CHW ,
was found. The onset for zonal flow production is around CHW = 0.4 . . . 0.5 which is in very
good agreement.

1’Non-trivial’, because it could only be obtained from numerical simulations.
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a) CHW = 0.3 b) CHW = 0.5 c) CHW = 0.6

Figure D.1.: Temporal evolution of zonal flow velocity for a) CHW = 0.3 (α = 0.1065),
b) CHW = 0.5 (α = 0.2291) and c) CHW = 0.6 (α = 0.3013).
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Figure D.2.: Ratio of kinetic energy contained in the zonal flow to total kinetic energy
in dependence on time for different values of CHW .

D.2. GAM benchmark

In section 5.3.1 the GAM oscillation is presented as a benchmark for the correct implementation
of the curvature terms in GRILLIX. The benchmark in section 5.3.1 was not performed with a
pure radial mode r, but with a Gaussian structure in the radial direction to be in accordance
with the Dirichlet boundary conditions. A Gaussian structure involves many modes r, which led
to a distortion of the structure due to dispersion. To show that really dispersion was the cause
for the distortion of the structure and not a wrong implementation or a misunderstood numerical
effect, this issue is investigated here in more detail. The flux aligned code GRILLIX FA is a very
useful tool for this investigation, since it can be run also with periodic boundary conditions in
the ρ-direction.

GRILLIX FA is used with the same parameters as described in 5.3.1. In order to test the pure
GAM oscillation, periodic boundary conditions in the radial direction were used and a radial
mode r = 2 (kρ ≈ 0.197) was used for the potential as initial state. The temporal evolution
of the zonal flow velocity is shown in fig. D.3a. Red dashed line indicate periods of the GAM
oscillation without finite kρ corrections and and green dashed lines indicate periods with finite
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D.3. Simulations with different schemes

kρ correction (see eq. 5.9). The obtained oscillation is in perfect agreement with the analytic
prediction and therefore, GRILLIX FA has passed the GAM benchmark

The same simulation as presented in section 5.3.1, where a Gaussian

φ(ρ, t = 0) = exp

[
− (ρ− ρ0)2

(0.2Wρ)2

]
was used as initial state, was repeated with GRILLIX FA. The result is shown in fig. D.3. In
comparison the result of GRILLIX is shown again in fig. D.3c (fig. D.3c is the same as fig. 5.9).
A distortion of the mode due to dispersion is obvious and the agreement between GRILLIX and
GRILLIX FA is very good. This shows in conclusion that the curvature terms are implemented
correctly in GRILLIX and also the GAM mechanism is obtained correctly with GRILLIX.

a) GRILLIX FA, periodic boundary conditions, r = 2 mode:

b) GRILLIX FA, Dirichlet boundary conditions, Gaussian:

c) GRILLIX, Dirichlet boundary conditions, Gaussian:

Figure D.3.: Benchmark of GAM oscillation. a) Poloidal flow velocity simulated with
GRILLIX FA, periodic boundary conditions in ρ, r = 2 (kρ ≈ 0.197) mode. Red dashed
line indicate periods of ω = ωGAM =

√
2, green dashed lines indicate periods of ω =

ωGAM (1−k2
ρ/4) ≈ 0.990

√
2, i.e. with finite kρ correction. Poloidal flow velocity simulated

with GRILLIX FA (b) and GRILLIX (c) with Dirichlet boundary conditions and Gaussian
as initial state.

D.3. Simulations with different schemes

The results of turbulence simulation obtained with the different schemes for the parallel diffusion
operator is presented. Curvature terms were switched off. The standard parameters (see section
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5.1) were used for simulations with the N-1, N-3 and S-1, except for the radial width of the
flux shell which was reduced to Wρ = 140ρs. The simulation with the non-standard schemes can
be compared directly to the simulation of section 5.2.1, where the S-3 scheme was used.

The temporal evolution of the zonal flow velocities for the different schemes is shown in fig. D.4.
With the N-1 scheme the numerical diffusion is too high and no zonal flows were produced. The
agreement among the N-3, S-1 and S-3 scheme is good. However, for the S-1 and S-3 schemes,
the zonal flows seem to merge a bit stronger together towards larger radial structures at later
times. Since larger radial structures exhibit a stronger parallel damping within the HW model,
this might indicate already an effect of the numerical diffusion on the N-3 scheme. To check
further on effects of numerical diffusion the same simulation is repeated for the S-3 scheme with
double resolution within the poloidal plane (h = 1/3 instead of h = 2/3). The result is shown in
fig. D.5 and no qualitative difference to the results obtained with the S-1 and S-3 scheme with
lower poloidal resolution (fig. D.4c,d) can be observed.

Overall this shows again the superiority of the newly developed support schemes over the naive
schemes. At the available resolutions the numerical diffusion is such high for the naive schemes
to affect the results qualitatively, which shows also the need for the superior support schemes.

Figure D.4.: Temporal evolution of poloidal flow velocity as obtained with different
numerical schemes for the parallel diffusion operator. a) N-1, b) N-3, c) S-1 and d) S-3
(Wρ = 210ρs).
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Figure D.5.: Temporal evolution of poloidal flow velocity as obtained with S-3 scheme
and high resolution (h = 1/3ρs) within poloidal planes. No qualitative difference to
fig. D.4c,d can be observed.
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List of publications

1 A. Stegmeir, Anwendung der Beam Tracing Methode zur Diagnostik von Fusionsplasmen,
diploma thesis, Technische Universität München, 2011.

2 A. Stegmeir, Diagnostics of fusion plasmas with the Beam Tracing Method, IPP TOK Sem-
inar, Garching, Germany, 15th January, 2011, (talk).

3 A. Stegmeir, G. D. Conway, E. Poli and E. Strumberger, Analysis of ITER low field side
reflectometer employing the Beam Tracing method, Fusion Engineering and Design, 86:2928,
2011.

4 G. D. Conway, A. Stegmeir, E. Poli and E. Strumberger, Optimization studies of Doppler
reflectometry on ITER, Proceedings of the 10th International Reflectometry Workshop -
IRW10, Padova, Italy, 4-6th May, 2011.

5 E. Poli, A. Stegmeir, G. D. Conway and E. Strumberger, Application of the paraxial beam-
tracing method to the diagnostics of fusion plasmas, 14th European Fusion Theory Confer-
ence, 26-29th September, 2011, (poster).

6 A. Stegmeir, Anomalous transport in the Scrape off Layer, HEPP Kick-off Colloquium,
Garching, Germany, 26-28th October, 2011, (poster).

7 A. Stegmeir, D. Coster, K. Hallatschek, O. Mai and K. Lackner, Numerical simulations of
edge and scrape of layer: diffusion and outlook to turbulence, HEPP Colloquium, Greifswald,
Germany, 26-28th September, 2012, (poster).

8 A. Stegmeir, Development of a Turbulence Code for the SOL, IPP Ringberg Theory Meeting,
14th November, 2012, (talk).

9 A. Stegmeir, Development of a 3d turbulence code with a flux surface independent approach,
HEPP Colloquium, Strausberg, Germany, 16-19th September, 2013, (talk).

10 A. Stegmeir D. Coster, O. Maj and K. Lackner, Development of a 3d turbulence code with
a flux surface independent grid, 14th International Workshop on Plasma Edge Theory in
Fusion Devices, Cracow, Poland, 23-26th September, 2013, (poster).
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11 A. Stegmeir D. Coster, O. Maj and K. Lackner, Numerical Methods for 3D Tokamak Sim-
ulations Using a Flux-Surface Independent Grid, Contributions to Plasma Physics, 54:549,
2014.

12 A. Stegmeir, D. Coster, O. Maj, K. Hallatschek and K. Lackner, Development of a 3d
turbulence code with a flux surface independent grid, 78th Annual Meeting of the DPG and
DPG Spring Meeting, Berlin, Germany, 17-21st March, 2014, (poster).

13 A. Stegmeir, Development of a 3D turbulence code with a flux surface independent approach,
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