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Abstract. We study the pricing of spread options and we obtain a Margrabe type for-
mula for a general bivariate jump diffusion model. Moreover we study the robustness of
the price to model risk, in the sense that we consider two types of bivariate jump diffu-
sions: one allowing for infinite activity small jumps and one not. In the second one an
adequate continuous component describes the small variation of prices. We illustrate our
computations by several examples.

1. Introduction

Recent considerations in finance have led to an increasing interest in multidimensional
models with jumps taking into account the dependence between components (see for in-
stance Cont and Tankov [9]). In this context one is interested in finding closed form for-
mulas for the value of options written on such models. Eberlein et al. [15, 14] introduced
the so-called duality principle. This principle aims at simplifying valuation problems that
depend on several variables by associating them to the corresponding dual option pricing
problem. Their approach allows in particular, to reduce an option pricing problem involv-
ing two random variables to an option pricing problem involving just one random variable
under a dual measure.

In this paper we focus on spread options. These are options written on the difference of
two underlying assets. As illustration, the holder of such a European call option receives
at maturity T a payoff given by

max(S(1)(T )− S(2)(T )−K, 0),

where S(1)(t), S(2)(t), 0 ≤ t ≤ T are the asset prices and K is the strike.
Specifically, we assume that the price process (S(1)(t), S(2)(t))0≤t≤T is a bivariate jump-

diffusion and the strike K = 0. In this case these options are also called exchange options
(see e.g. Margrabe [22]). We derive a Margrabe-type formula for the spread option price
using the approach of Eberlein et al. [15] and specifically, we provide explicit formulas when
the underlying price process is a two-dimensional stochastic volatility model and when the
price process is a two-dimensional exponential Lévy model driven by a bivariate normal
inverse Gaussian (NIG) distributed Lévy process. Both cases are popular models in the
finance and energy literature (see e.g., Barndorff-Nielsen and Shephard [3] and Benth et
al. [4]).
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timization and Simulation” (EMMOS) funded by the Norwegian Research Council under grant eVita:
205328. Asma Khedher thanks the KPMG Center of Excellence in Risk Management for the financial
support.
We thank an anonymous referee for suggestions improving the paper.
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Moreover, we study the robustness of the option price towards model risk, in the sense
that we consider two types of jump-diffusion models: one allowing for infinite activity small
jumps and one not. In the second case, an adequate continuous component models the
small variations of prices. Our results show that the pricing of spread options is stable to
such model risk.

The Margrabe formula is based on an appropriate change of measure which allows to
move from pricing the spread option written on a bivariate process to pricing a European
option written on a one-dimensional process. In Margrabe [22] spread options are evaluated
assuming that the asset prices are geometric Brownian motions and using a measure change
induced by treating one of the assets as numéraire. See also Carmona and Durrleman [10]
for an overview about spread options in continuous models. In our case, we choose the
price processes to be modeled by bivariate jump-diffusions since such models describe better
some features of prices in financial and commodity markets. See, e.g. Cont and Tankov
[9] and Benth et al. [4], for the use of models with jumps.

The pricing of financial derivatives is set in the non-arbitrage framework and technically
is performed under a risk neutral pricing measure. Under this measure the discounted prices
of the underlying primaries are martingales. However, in the context of energy derivatives,
the underlying may be electricity which cannot be stored. Then the classical non-arbitrage
arguments by hedging cannot be performed. Hence pricing of energy derivatives does not
require that the pricing measure is a risk neutral measure as in classical financial markets
(see e.g. Benth et al. [4] for more details on this). Thus in our computation we first
value the option as the discounted expectation of the terminal payoff under the real-world
measure, then we use the duality measure to derive a Margrabe type formula for the spread
option price. This accommodates the pricing of energy derivatives on electricity. Following
the approach by Eberlein et al. [15], we describe the density between the original and the
dual measure by an Esscher change of measure (see Kallsen and Shiryaev [20]).

On other hand, when pricing derivatives in a financial market, the real-world measure
must first be transformed into a risk neutral measure, and then a second appropriate mea-
sure change is performed to find the Margrabe formula. We recall that a market modeled by
a jump-diffusion process is in general incomplete and there exist many equivalent martin-
gale measures. A specific martingale measure is usually chosen according to some criterion
minimizing the risk associated with (partial) hedging of the derivative. See Schweizer [26]
for an overview about equivalent martingale measures in incomplete markets. In our ex-
amples we choose risk-neutral Esscher measures as they are structure preserving (see e.g.,
Gerber and Shiu [16]) and for consistency with the duality methods for spread options
introduced above.

From the modeling point of view, one can approximate the small jumps of a jump-
diffusion by a continuous martingale appropriately scaled. This was introduced by As-
mussen and Rosinski [1] in the case of Lévy processes. Benth et al. [6, 8] studied con-
vergence results of options written in one-dimensional jump-diffusion models. They also
studied the robustness of the option prices after a change of measure where the measure
depends on the model choice. From a simulation point of view, one may truncate off the
small jumps and use an appropriate compound Poisson process to approximate a Lévy
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process. However, when the Lévy process has infinite variation, it was proved in Cohen
and Rosinski [11] that adding a small-variance Brownian motion to a compound Poisson
process improves the approximation in general.

The main contribution of this paper is to apply the Margrabe formula to prove the
robustness of the spread option prices towards model risk. By approximating the small
jumps by a two-dimensional Brownian motion appropriately scaled, we compute a rate for
the convergence of the approximating spread option price to the underlying option price.
This rate turns out to be proportional to the variance of the small jumps.

The paper is organised as follows: in Section 2 we define our market model and recall
a Margrabe type formula for the spread option written on a bivariate jump-diffusion price
dynamics. Moreover, we present several examples in which we give explicit formulas for
spread option prices. In Section 3 we prove the robustness of the spread option prices and
compute the convergence rate in the case the price process is driven by a bivariate Lévy
process.

2. Pricing of spread options in a jump-diffusion framework

In this section we describe our model for the financial market and introduce necessary
notation. Let R2 denote the 2-dimensional Euclidean space. The Euclidean scalar product
between two vectors u, v ∈ R2 is denoted by 〈u, v〉 or u?v, where .? denotes the transpose of a
given vector. The Euclidean norm is denoted by |u|. Let (Ω,F ,P) be a complete probability
space equipped with a filtration {Ft}t∈[0,T ], (T > 0) satisfying the usual conditions (see
Protter [23]). Consider a process Y = Y (t), 0 ≤ t ≤ T , with left continuous (càg)
trajectories. We denote by P the σ-algebra on Ω × [0, T ] generated by all càg adapted
processes Y and byMloc(P) the space of P local martingales M , with M(0) = 0. Heareafter
we follow the notation of Jacod and Shiryaev [18]. We consider a 2-dimensional general
semimartingale H = (H(1)(t), H(2)(t))?, 0 ≤ t ≤ T , on the given probability space. Every
semimartingale has the canonical representation (see II.2.34 in Jacod and Shiryaev [18]).

H(t) = H(0) +B(t) +Hc(t) +

t∫
0

∫
R2

h(z) d(µ− ν) +

t∫
0

∫
R2

(z − h(z)) dµ ,

where

(1) H(0) is finite-valued and F0-measurable,
(2) h : R2 → R2 is a truncation function, i.e. a bounded function with compact support

that behaves like h(z) = z in a neighborhood of zero. A canonical choice of h is
h(z) = z1{|z|≤a} , (for some a > 0),

(3) B = B(t), 0 ≤ t ≤ T , is an R2-valued predictable process of bounded variation,
(4) Hc = Hc(t), 0 ≤ t ≤ T , is the continuous martingale part of H, Hc has the

predictable quadratic characteristic 〈Hc〉 = C, which is a predictable R2×2-valued
process of bounded variation, whose values are nonnegative symmetric matrices,

(5) ν = ν(ω; dt, dz) is a predictable random measure on [0, T ]× R2. It is the compen-
sator of the random measure of jumps µ = µ(ω; dt, dz) of H.
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The processes B, C, and the measure ν are called the triplet of predictable characteris-
tics of the semimartingale H associated to the truncation function h with respect to the
probability measure P and will be denoted by

T(H|P) = (B,C, ν) .

In addition there exists an increasing predictable process A, predictable processes b, c, and
a predictable kernel F from (Ω× [0, T ],P) into (R2,B(R2)) such that

B(t) =

t∫
0

b(s) dA(s), C(t) =

t∫
0

c(s) dA(s) ,

ν([0, t]× E) =

t∫
0

∫
E

F (s, dz) dA(s) , E ∈ B(R2)

(see Proposition II.2.9 in Jacod and Shiryaev [18]).
If the characteristics (B,C, ν) are absolutely continuous, which means A(t) = t, then the

triplet (b, c, F ) is called the differential characteristics of the semimartingale H.
Notice that an R2-valued Lévy process L, is a semimartingale with L(0) = 0 which

has a version with differential characteristics (b, c, F ) that does not depend on (ω, t) (see
Prop. 2.3 in Kallsen [19]). That is, T(L|P) = (B,C, ν), where

B(ω; t) = bt, C(ω; t) = ct, ν(ω, dt, dz) = dtF (dz) .

2.1. Description of the model. We choose H = (H(1), H(2))? to be of the form

H(t) = H(0) +

t∫
0

b(s) ds+

t∫
0

c
1
2 (s) dW (s) +

t∫
0

∫
R2

h(z) (µ− ν) (ds, dz)

+

t∫
0

∫
R2

(z − h(z))µ (ds, dz) ,(2.1)

where H(0) = (0, 0)?, b(t) = b(ω; t) ∈ R2, c
1
2 (t) = c

1
2 (ω; t) ∈ R2×2 is given by

(2.2) c
1
2 (t) =

(
σ11(t) σ12(t)
σ12(t) σ22(t)

)
, 0 ≤ t ≤ T ,

W = W (t), 0 ≤ t ≤ T , is a standard 2-dimensional Brownian motion, and the jump-
measure µ is a compound Poisson process with compensator ν([0, t]×E) = t

∫
E
F (dz), for

E ∈ B(R2). The Lévy measure F satisfies
∫

R2(|z|2 ∧ 1)F (dz) <∞. Notice that the triplet
T(H|P) is absolutely continuous with differential characteristics (b, c, F ). We assume for
i = 1, 2,

T∫
0

(
|bi(s)|+

2∑
j=1

|σij(s)|2
)

ds <∞ , P− a.s.(2.3)
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The latter condition implies that the integrals in (2.1) are well defined.
We consider a price process given by the stochastic exponential of the semimartingale

H (see Shiryaev [27]). That is

S(t) = S(0)E(H)t

= S(0) exp

{
H(t)− 1

2
〈Hc〉t

} ∏
0≤s≤t

(1 + ∆H(s)) e−∆H(s) , 0 ≤ t ≤ T.(2.4)

Here 〈·〉 denotes the predictable quadratic variation and S(0) ∈ R2
+. To ensure positive

prices we restrict our attention to semimartingales H for which ∆H(s) > −1 for all s. In
this case there exists a semimartingale X with X(0) = 0 such that

S(t) = S(0)E(H)t = S(0)eX(t) , 0 ≤ t ≤ T.

X is called the logarithmic transform of H and it is explicitly given by

(2.5) X = log E(H) = H − 1

2
〈Hc〉+

∑
0<s≤·

[log (1 + ∆H(s))−∆H(s)] .

The latter may be written in the form

X = H − 1

2
〈Hc〉+ (log(1 + z)− z) ∗ µ ,

where µ is the random measure of jumps of H and ξ∗µ denotes the stochastic integral with
respect to µ. Later we shall use ξ ∗ (µ− ν) to denote the stochastic integral with respect
to the compensated random measure µ−ν. From (2.5), one can see that the characteristic

triplet of X is absolutely continuous, that is, T(X|P) = (B̃, C̃, ν̃), with

B̃(t) =

t∫
0

b̃(s) ds , b̃ = b− c

2
+ (h(log(1 + z))− h(z)) ∗ F ,

C̃(t) =

t∫
0

c̃(s) ds , c̃ = c ,

ν̃(dt, dz) = dt F̃ (dz) , 1A ∗ F̃ = 1A(log(1 + z)) ∗ F , A ∈ B(R2 \ {0}) .(2.6)

The process X can be expressed for i = 1, 2 as follows

dX(i)(t) =

bi(t)− 1

2
(σ2

i1(t) + σ2
i2(t)) +

∫
R2

[hi (ln(1 + z))− hi(z)]F (dz1 , dz2)

 dt

+ σi1(t) dW (1)(t) + σi2(t) dW (2)(t) +

∫
R2

hi(z)(µX − ν̃)( dt , dz1 , dz2)

+

∫
R2

(zi − hi(z))µX(dt , dz1 , dz2) , 0 ≤ t ≤ T ,(2.7)
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X(i)(0) = H(i)(0) = 0 ,

where µX is the jump measure of X.

The semimartingale X with triplet T(X|P) = (B̃, C̃, ν̃) can be associated to the Laplace
cumulant process denoted by K(u) = K(u)t , 0 ≤ t ≤ T , defined for u ∈ R2 by

K(u) := 〈u , B̃〉+
1

2
〈u , C̃ u〉+

(
e〈u ,log(1+z)〉 − 1− 〈u , h(log(1 + z)〉

)
∗ ν .

Moreover, we have that K(u)t =
∫ t

0
κ(u)sds , where

(2.8) κ(u) = 〈u , b̃〉+
1

2
〈u , c̃ u〉+

∫
R2

(
e〈u ,log(1+z)〉 − 1− 〈u , h(log(1 + z))〉

)
F (dz) .

The Laplace cumulant process satisfies the following property

(2.9)
eu
?X

E(K(u))
∈Mloc(P) ,

for all u ∈ R2, assuming that E(K(u)) never vanishes (see Cor II.2.48 in Jacod and

Shiryaev [18]). Moreover, K̃(u) denotes the logarithmic transform of the cumulant process

K(u), that is E(K(u)) = exp(K̃(u)).
Note that the cumulant of a Lévy process is continuous and deterministic. We denote it

by KL. Hence E(KL(u)) = eKL(u) and never vanishes. In addition, we have for all t ∈ [0, T ]
and u ∈ R2

E[ei〈u,L(t)〉] = eKL(−iu)t .

2.2. Margrabe formula. In the sequel, we consider a spread option of European type
written on the difference of two underlying assets whose values are driven by the jump-
diffusion (2.4). Eberlein et al. [15] simplify the valuation problem of an option written on
two random variables to a problem involving just one random variable exploiting a change
of measure technique. We state the following result from Eberlein et al. [15] in which the
density between the original and the dual measure is described by an Esscher transform.

Theorem 2.1. Let X be as in (2.5), (2.7), and u, v ∈ R2. Define the measure P̃v via the
Radon-Nikodym derivative

dP̃v
dP

= exp
{
v?X(T )− K̃(v)T

}
,

assuming that ev
?X− eK(v) ∈ M(P). Then the process Xu with Xu := u?X, is a one-

dimensional semimartingale with absolutely continuous characteristic triplet (with respect

to a truncation function h) T(Xu|P̃v) = (Bu
v , C

u
v , ν

u
v ) having differential characteristics

given by

buv = u?b̃+ u?c̃v +
(
h (u? log(1 + z)) ev

? log(1+z) − u?h (log(1 + z))
)
∗ F ,

cuv = u?c̃u ,

F u
v (E) = 1E (u? log(1 + z)) ev

? log(1+z) ∗ F , E ∈ B(R \ {0}) .(2.10)
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The spread is defined by the difference of the two underlying asset prices S(1)(t)−S(2)(t),
t ≥ 0. Thus, the payout function of a European call spread option with strike K = 0 at
maturity date T (sometimes called a zero-exercise spread option) is given by

max(S(1)(T )− S(2)(T ), 0) .(2.11)

This means that the buyer has the right to be paid at the maturity date T the difference
S(1)(T ) − S(2)(T ) whenever it is positive and zero otherwise. We choose the risk-free
instantaneous interest rate r(t) = r(t, ω) to be an Ft-adapted stochastic process. Moreover
we assume that it is Lebesgue integrable on any compact subset of the positive real line.
We denote the value of the spread option by

M(S(1)(T ), S(2)(T )) = E
[
e−

R T
0 r(s)ds max

(
S(1)(T )− S(2)(T ), 0

)]
.

In the following, we state a Margrabe type formula for a spread option written on the
process (2.4). The result is taken from Eberlein et al. [15].

Theorem 2.2. Assume that the asset price process evolves as in (2.4). Then we can relate
the value of a spread option and a put option via the following duality

(2.12) M(S(1)(T ), S(2)(T )) = S(1)(0)EeP
[
e−

R T
0 (r(s)−a(s))ds max(1− Su(T ), 0)

]
,

where Su := S(2)/S(1), a(s) = b1(s) +
∫

R2{z1 − h1(z)}F (dz) , the measure P̃ = P̃v , and the

characteristics (Bu
v , C

u
v , ν

u
v ) of Xu = log

(
SuS(1)(0)/S(2)(0)

)
are given by Theorem 2.1 for

v = (1, 0)? and u = (−1, 1)?.

Applying Theorem 2.1 with v = (1, 0)?, we get the density for the dual measure associ-

ated with X as dP̃/dP = exp {Y (T )}, where

Y (t) = −1

2

t∫
0

(
σ2

11(s) + σ2
12(s)

)
ds+ t

∫
R2

[h1 (ln(1 + z))− z1] F (dz1 , dz2)

+

t∫
0

σ11(s) dW (1)(s) +

t∫
0

σ12(s) dW (2)(s)

+

t∫
0

∫
R2

h1(z) (µX − ν̃)(ds , dz1 , dz2)

+

t∫
0

∫
R2

(z1 − h1(z)) µX(ds , dz1 , dz2) , 0 ≤ t ≤ T .(2.13)
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Furthermore, the dynamics of Xu = X(2) −X(1) under the measure P̃ are given by

Xu(t) =

t∫
0

{b2(s)− b1(s)} ds− 1

2


t∫

0

(σ11(s)− σ12(s))2 ds+

t∫
0

(σ12(s)− σ22(s))2 ds


+ t

∫
R2

{
h

(
log(

1 + z2

1 + z1

)

)
(1 + z1) + h1(z)− h2(z)

}
F (dz1 , dz2)

+

t∫
0

(σ12(s)− σ11(s)) dW
(1)eP (s) +

t∫
0

(σ22(s)− σ12(s)) dW
(2)eP (s)

+

t∫
0

∫
R

h(z)(µu − νuv )(ds , dz) +

t∫
0

∫
R

(z − h(z)) µu(ds , dz) , 0 ≤ t ≤ T ,

where WeP is a two-dimensional Brownian motion under the dual measure P̃ and µu is the
jump measure of Xu.

Remark 2.3. In the calculations above we have applied P as pricing measure, without
assuming that the underlying discounted price process S is a martingale under P. This
means that we are not assuming that P is a risk neutral measure. In this case the Margrabe
type formula (2.12) is suitable for markets in which the underlying is not tradable in the
usual sense. This is the case, for example, of weather or electricity markets. See e.g. Benth
et al. [4] for more details.

In the case we consider a financial market, then we work under a risk neutral measure,
say Q ∼ P, and the discounted price process S will be a martingale under Q and thus the
dynamics of S under Q correspond to (2.4) with

b1(t) + t

∫
R2

{z1 − h1(z)}F (dz) = b2(t) + t

∫
R2

{z2 − h2(z)}F (dz)

= r(t) , a.s. for all t .(2.14)

In that case we apply Theorem 2.2 with the dynamics of S written under Q and the price
of the spread option is given by the formula

(2.15) M(S(1)(T ), S(2)(T )) = S(1)(0)EeQ [max(1− Su(T ), 0)] ,

where dQ̃/dQ = exp{Y (T )} and the process Y is given by equation (2.13). Note that the

measure Q̃ with respect to the real world measure P can be defined by dQ̃/dP = dQ̃/dQ×
dQ/dP as a composition of two measure changes. We develop these arguments further in
Section 2.4 using the Esscher transform and we give an example where the logreturns follow
a normal inverse Gaussian process in Section 2.4.
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2.3. Application: Stochastic volatility model. We price a zero-strike spread option
in case of a two-dimensional stochastic volatility model for the price S. The dynamics of
the volatility are given by a Barndorff-Nielsen and Shephard model (see Barndorff-Nielsen
and Shephard [3]).

To this end, we assume that the price process S = (S(1), S(2)) is already given under
a risk neutral measure Q ∼ P, see Remark 2.3. Moreover, we assume S = S(0)E(H),
S(i)(0) = 1 , i = 1, 2 , where the differential characteristics of H are given by

b(t) =

(
r(t)
r(t)

)
, c

1
2 (t) =

(
σ1(t) 0

0 σ2(t)

)
, F ≡ 0 , 0 ≤ t ≤ T

and H(0) = (0, 0)?. The process r is the risk-free instantaneous interest rate and the
volatility is modeled by

(2.16) dσ2
i (t) = −λiσ2

i (t) dt+ dL(i)(t), σ2
i (0) ≥ 0, i = 1, 2, 0 ≤ t ≤ T ,

where λ1 and λ2 are positive constants and L = (L(1), L(2)) is a two-dimensional Lévy
subordinator, that is, a two-dimensional Lévy process which is non decreasing in each of
its coordinates. Note that the marginal Lévy processes L(1) and L(2) can be dependent. We
suppose that the Lévy process L has no drift and the Lévy measure has density ρ(z1, z2)

under Q, so that the Laplace cumulant functions KL(i)(θ) := KL(i)(θ)1 = log EQ[eθL
(i)(1)],

θ ∈ R, whenever they exist, take the form

KL(i)(θ) =

∫
R2

+

(eθzi − 1)ρ(z1, z2) dz1 dz2 , i = 1, 2 .

Notice that S = eX , where

X(i)(t) =

t∫
0

(r(s)− 1

2
σ2
i (s)) ds+

t∫
0

σi(s) dW (i)(s) , 0 ≤ t ≤ T .

We assume for simplicity thatW (1) andW (2) are independent. Note that a subordinator has
paths of finite variation since it is monotone increasing. It therefore has to be independent
of W (1) and W (2), which are processes with paths of infinite variation.

The solution of (2.16) is given by

σ2
i (t) = e−λitσ2

i (0) +

t∫
0

e−λi(t−s) dL(i)(s), i = 1, 2 , 0 ≤ t ≤ T .

We denote the integrated variance over the time period [0, T ] by σ∗2i (T ) :=
∫ T

0
σ2
i (t) dt. A

simple computation shows that

(2.17) σ∗2i (T ) = σ2
i (0)(1− e−λiT )λ−1

i +

T∫
0

(1− e−λi(T−u))λ−1
i dL(i)(u), i = 1, 2.
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The risk neutral valuation of the spread option price is given by

M(S(1)(T ), S(2)(T )) = EQ

[
e−

R T
0 r(s) ds max

(
S(1)(T )− S(2)(T ), 0

)]
.

In the context of Theorem 2.1, we define the measure Q̃ by

(2.18)
dQ̃
dQ

∣∣∣
Ft

= exp{Y (t)}, 0 ≤ t ≤ T,

where

Y (t) =
1

2

t∫
0

σ2
1(s) ds−

t∫
0

σ1(s) dW (1)(s) .

Notice that the processes L(1) and L(2) remain Lévy processes under the new measure Q̃.
In fact EeQ[ei〈θ,L(t)〉] = EQ[ei〈θ,L(t)〉]. To explain, we have

EeQ[ei〈θ,L(t)〉] = EQ

ei〈θ,L(t)〉 exp

1

2

t∫
0

σ2
1(s) ds−

t∫
0

σ1(s) dW (1)(s)


 .

Denote by FLT the σ-algebra generated by L up to time T . Therefore conditioning on FLT ,
we get

EeQ[ei〈θ,L(t)〉] = EQ

EQ

ei〈θ,L(t)〉 exp

1

2

t∫
0

σ2
1(s) ds−

t∫
0

σ1(s) dW (1)(s)


∣∣∣∣∣FLT


= EQ[ei〈θ,L(t)〉].

In particular the Laplace cumulant function is preserved: log EeQ[e〈θ,L(1)〉] = KL(θ) . We
obtain the following Proposition for the price of the spread option.

Proposition 2.4. Let f(x) = max ((1− ex), 0). Denote by ĥ the Fourier transform of a
given function h. Then for R < 0, the price of the spread option written on S is given by

M(S(1)(T ), S(2)(T ))

=
1

2π

∫
R

f̂(iR− u) exp
{
−σ2

1(0)g1(u, 0)− σ2
2(0)g2(u, 0)

}

× exp

 T∫
0

{KL(1)(g1(u, s)) +KL(2)(g2(u, s))}ds

 du,

where g1(u, s) := −1
2
(iu−R)(iu−R+ 1)(1− e−λ1(T−s))λ−1

1 , g2(u, s) := −1
2
(iu−R)(iu−

R+ 1)(1− e−λ2(T−s))λ−1
2 , and KL(1), KL(2) are the Laplace cumulant functions of L(1), L(2),

resp.
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Before stating the proof of this Proposition, let us recall a general result on pricing
options by the Fourier transform: suppose the payoff at time T of an option can be
expressed by functions f and φ such that

(2.19) f(Y (T )) = φ(eY (t), 0 ≤ t ≤ T ) ,

where φ is the option’s payoff function (a call, say) and S(t) = eY (t) = S(0)eX(t) , 0 ≤ t ≤ T ,
is the price process of the underlying asset of the option. Then the following result holds
(see Eberlein et al. [13] for this Theorem and its proof):

Theorem 2.5. Let Y be a jump-diffusion in R and L1
bc(R) denotes the space of bounded

continuous functions in L1(R). Let f be as in (2.19). Assume that for some R ∈ R we
have

(1) e−Rxf(x) ∈ L1
bc(R),

(2) u 7→ E[e(R−iu)Y (T )]f̂(iR− u) ∈ L1(R),

Then we have

E[f(Y (T ))] =
1

2π

∫
R

E[e(R−iu)Y (T )]f̂(iR− u) du .

Proof of Proposition 2.4. From Theorem 2.2 and Remark 2.3, the risk neutral formula for
the spread option price is given by

M(S(1)(T ), S(2)(T )) = EeQ [max(1− Su(T ), 0)] .

Here Q̃ is defined in (2.18) and Su = exp(Xu), where

Xu(t) = −1

2

t∫
0

(
−σ2

1(s) + σ2
2(s)

)
ds−

t∫
0

σ1(s) dW
(1)eQ (s) +

t∫
0

σ2(s) dW
(2)eQ (s).

Notice that the option price takes the form M(S(1)(T ), S(2)(T )) = EeQ[f(Xu(T )], where

f(x) = max(1 − ex, 0). Eberlein et al. [13] show that for R < 0, condition (1) holds true

and f̂(iR − ·) ∈ L1(R), for this particular choice of f . Thus to show (2), it is enough to
check that EeQ[e(R−iu)Xu(T )] is bounded in u by a constant. We have

|EeQ[e(R−iu)Xu(T )]| ≤ EeQ[eRX
u(T )] .

To check that the latter is finite is similar to analogous computations that we will perform
below, so we do not detail the argument here. Thus, applying Theorem 2.5, we get for
R < 0,

M(S(1)(T ), S(2)(T )) =
1

2π

∫
R

EeQ[e(R−iu)Xu(T )]f̂(iR− u) du.
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Therefore to compute the spread option price, we need to compute EeQ[e(R−iu)Xu(T )]. To
this end we see that

EeQ[e(R−iu)Xu(T )] = EeQ
exp

(R− iu)

−1

2

T∫
0

(σ2
1(s) + σ2

2(s)) ds−
T∫

0

σ1(s) dW
(1)eQ (s)

+

T∫
0

σ2(s) dW
(2)eQ (s)


 .

Conditioning on FLT , and recalling the expressions of σ∗21 (T ) and σ∗22 (T ) in (2.17), we get

EeQ[e(R−iu)Xu(T )]

= EeQ
[
exp

{
1

2
(iu−R)(σ∗21 (T ) + σ∗22 (T ))

}

×EeQ
exp

(iu−R)

 T∫
0

σ1(s) dW
(1)eQ (s)−

T∫
0

σ2(s) dW
(2)eQ (s)


∣∣∣∣∣FLT


= EeQ

[
exp

{
1

2
(iu−R)(iu−R + 1)σ∗21 (T ) +

1

2
(iu−R)(iu−R + 1)σ∗22 (T ))

}]
.

Thus we have

EeQ[e(R−iu)Xu(T )]

= exp

{
1

2
(iu−R)(iu−R + 1)σ2

1(0)(1− e−λ1T )λ−1
1

+
1

2
(iu−R)(iu−R + 1)σ2

2(0)(1− e−λ2T )λ−1
2

}

× EeQ
exp


T∫

0

g1(u, s) dL(1)(s) +

T∫
0

g2(u, s) dL(2)(s)


 .

Using an extension of the key formula in Eberlein and Raible [12], it holds that

EeQ[e(R−iu)Xu(T )] = exp
{
−σ2

1(0)g1(u, 0)− σ2
2(0)g2(u, 0)

}
× exp

 T∫
0

{KL(1)(g1(u, s)) +KL(2)(g2(u, s))} ds


and the result follows. �

Next we consider a spread option written on an asset price dynamics defined by an
exponential bivariate Lévy process.
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2.4. Application: Exponential Lévy processes and Esscher transforms. We sup-
pose that the risk-free rate of return is given by a positive constant, that is r(t) = r > 0 ,
for all 0 ≤ t ≤ T . We consider a price process

(2.20) S(t) = S(0)eL(t) 0 ≤ t ≤ T ,

where S(0) = (1, 1) and L is a bivariate Lévy process with differential characteristics
(b, c, F ) . We define a probability Pθ by means of the Esscher transform of a parameter
θ ∈ R2 as follows (see Gerber and Shiu [16])

dPθ
dP

= exp{θ?L(T )−KL(θ)T} ,(2.21)

where KL(θ) is the cumulant function of the Lévy process L. We first apply an Esscher
transform with parameter θ such that the corresponding measure Pθ is risk neutral for the
price dynamics (see Gerber and Shiu [16]) and the spread option price M(S(1)(T ), S(2)(T ))
can be written as an expectation under Pθ. Afterwards, we apply the Margrabe formula as
in Theorem 2.2 and Remark 2.3 and we write M(S(1)(T ), S(2)(T )) as an expectation under

the dual measure P̃θ. Furthermore, we explore the relations between the real world measure

P, the risk neutral measure Pθ and the dual measure P̃θ in terms of Esscher transforms. In
fact, the dual measure can be specified with respect to P directly through a single Esscher
transform with parameter θ + 11, where 11 denotes the first unit vector as we see in the
computations below.

Suppose there exists a constant c > 0 such that

(2.22)

∫
R2

e〈x,z〉 F (dz) <∞ , for all |x| ≤ c.

This condition ensures finite exponential moments for L(1) up to order c. Thus the Radon-
Nikodym derivative in (2.21) is well defined. We define the parameter θ such that, for
i = 1, 2, the discounted price process e−rtS(i)(t) is a martingale. We denote by Eθ the
expectation under the new measure Pθ. Hence

S(i)(0) = 1 = Eθ[e
−rtS(i)(t)] ,

which is equivalent to

ert = Eθ[e
L(i)(t)] = EP

[
exp{L(i)(t) + θ?L(t)−KL(θ)t}

]
= exp (KL(1i + θ)t −KL(θ)t) ,

(2.23)

where 1i denotes the ith unit vector. The existence and uniqueness of the parameter θ
which verifies (2.23) is proved in Gerber and Shiu [17]. By the risk neutral valuation rule,
the price of the spread option is then given by

M(S(1)(T ), S(2)(T )) = e−rTEθ

[
S(1)(T ) max (1− Su(T ), 0)

]
.

Let v = 11. We define

dP̃θ
dPθ

= exp{v?L(T )−Kθ
L(v)T} ,(2.24)
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where Kθ
L(v)T = log Eθ[e

v?L(T )]. Using (2.23), we deduce dP̃θ/dPθ = exp{−rT + L(1)(T )} .
Furthermore, we get

dP̃θ
dP

=
dP̃θ
dPθ

dPθ
dP

= exp{−rT + L(1)(T )} exp{θ?L(T )−KL(θ)T}
= exp {(11 + θ)?L(T )−KL(11 + θ)T}

=:
dPθ+11

dP
.

Thus P̃θ corresponds to the measure Pθ+11 defined through an Esscher transform with
respect to the real world measure P . Then applying Theorem 2.2 and Remark 2.3, it
follows

M(S(1)(T ), S(2)(T )) = Eθ+11 [max(1− Su(T ), 0)] ,(2.25)

where Su = eL
u

, Lu := u?L, and u = (−1, 1)? . The differential characteristics of Lu under
the new measure Pθ+11 are given by (buθ+11

, cuθ+11
, F u

θ+11
), where (see Theorem 2.1)

buθ+11
= u?b+ u?c(θ + 11) +

(
h(u?z)e(θ+11)?z − u?h(z)

)
∗ F ,

cuθ+11
= u?cu ,

F u
θ+11

(E) = 1E(u?z)e(θ+11)?z ∗ F , E ∈ B(R \ {0}) .(2.26)

Now we consider an example in which we apply the Esscher transform approach pre-
sented above for the evaluation of spread options.

Example: Normal inverse Gaussian Lévy process. Given the parameters of the distri-
bution of a normal inverse Gaussian (NIG) Lévy process under the real world measure P,
one can derive parameters under a risk neutral measure Pθ using the Esscher transform
as in Benth and Henriksen [5]. The bivariate NIG distribution has parameters α > 0,
β ∈ R2, µ ∈ R2, δ > 0, and ∆ ∈ R2×2, where ∆ is a positive definite matrix with de-
terminant 1 (see Barndorff-Nielsen [2] and Rydberg [24] for more about bivariate NIG
distributions). Let L be a Lévy process such that L(1) ∼ NIG(α, β, µ, δ,∆) under P. In
this case L(t) ∼ NIG(α, β, tµ, tδ,∆), for all t > 0. The density function of L(1) takes the
form

ζ(z) =
δ√
2

(
α

πq(z)

) 3
2

exp(p(z))K 3
2
(αq(z)) ,(2.27)

where K 3
2

is the modified Bessel function of second kind of order 3
2

and

p(z) = δ
√
α2 − β?∆β + β?(z − µ),

q(z) =
√
δ2 + (z − µ)?∆−1(z − µ).

The parameters have the following interpretation: α corresponds to the tail heaviness of
the marginals and δ is the scaling of the distribution. The centring is described by µ and
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β controls the skewness. The dependency structure between the marginals is modelled by
∆. We define ψL(s) := KL(−is)1 = log E[ei〈s,L(1)〉], s ∈ R2 , to be the exponent of the
characteristic function of L(1) . Then ψL is given by

ψL(s) = δ
√
α2 − β?∆β − δ

√
α2 − (β + is)?∆(β + is) + is?µ .(2.28)

The price dynamics for the stocks are given by S(1)(t) = exp{L(1)(t)} and S(2)(t) =
exp{L(2)(t)}, i = 1, 2. Define a probability measure Pθ ∼ P, for θ ∈ R2 through the
Esscher transform as in (2.21). Calculating the characteristic function, it follows that
under Pθ,

L(1) ∼ NIG(α, β + θ, µ, δ,∆) .

We choose the parameter θ such that we have risk neutral dynamics. In this case the
discounted price process is a Pθ martingale, where discounting is done using the risk-free
interest rate r > 0. Hence from (2.23), we have

ψL (i(1i + θ))− ψL(iθ) = r , i = 1, 2 .

The latter condition is equivalent to the following system of equations,

r = µ1 − δ

√
α2 − [β1 + 1 + θ1, β2 + θ2]∆

[
β1 + 1 + θ1

β2 + θ2

]

+ δ

√
α2 − [β1 + θ1, β2 + θ2]∆

[
β1 + θ1

β2 + θ2

]
,

r = µ2 − δ

√
α2 − [β1 + θ1, β2 + 1 + θ2]∆

[
β1 + θ1

β2 + 1 + θ2

]

+ δ

√
α2 − [β1 + θ1, β2 + θ2]∆

[
β1 + θ1

β2 + θ2

]
.

We define the measure Pθ+11 = P̃θ as in (2.24). Notice that dPθ+11/dPθ = e−rT+L(1)(T ) . It
follows that under Pθ+11

(L(1)(1), L(2)(1)) ∼ NIG(α, βθ+11 , µ, δ,∆) ,

where βθ+11 = β+θ+11. We are interested in the characteristics of Su = exp{L(2)−L(1)}
under the measure Pθ+11 . We observe that

ψθ+11

L(2)−L(1)(s) := ln Eθ+11 [e
is(L(2)(1)−L(1)(1))] = ψθ+11

(L(1),L(2))
(−s, s) ,

where ψθ+11
L (s1, s2) is given by (2.28) with skewness βθ+11 . Thus we have

ψθ+11

L(2)−L(1)(s) = δ̃

√
α̃2 − β̃2

θ − δ̃
√
α̃2 − (β̃θ + is)2 + isµ̃ ,(2.29)

where δ̃ = δ
√
z1 , α̃2 = 1

z1
(α2 − β?θ+11

∆βθ+11 + β̃2
θ ) , β̃θ = z2

2z1
, µ̃ = µ2 − µ1 , z1 = u?∆u ,

z2 = u?∆βθ+11 + β?θ+11
∆u , and u = (−1, 1)?. Hence ψθ+11

L(2)−L(1)(s) is the exponent of a
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characteristic function of a NIG-distribution with parameters α̃, β̃θ, µ̃, δ̃. We conclude that
L(2) − L(1) is a NIG Lévy process under Pθ+11 and one can compute the price of the
European spread option by means of Fourier transform. We can follow the same approach
as in Proposition 2.4, however, with a different characteristic function for (L(1), L(2)).

3. Robustness of spread options

In this section we consider two models to describe the dynamics of the price process. The
first model is a jump-diffusion dynamics, where the driving Lévy process may be of infinite
activity. In the second model we replace the small jumps by a continuous martingale
which is chosen such that the variance is preserved with respect to the original model. The
second model can be viewed as an approximation of the first one. The aim is to study the
robustness of spread option prices towards the model choice of jumps. We refer to Benth
et al. [6] Section 3.2 for a discussion on the relationship between the Brownian motion
in the price dynamics and the Brownian motion of the approximating dynamics from the
point of view of an efficient computation of option prices.

3.1. Robustness of a bivariate Lévy process. We first consider a pure-jump bivariate
Lévy process (L(1), L(2)) with differential characteristics (0, 0, F ). From now on we choose
the truncation function h(z) = z1{|z|≤1}. We assume that the Lévy measure satisfies∫

R2

z2
i F (dz1, dz2) <∞ , i = 1, 2 .

We define Fε(dz) = 1{|z|>ε}F (dz) and F̄ε(dz) = 1{|z|≤ε}F (dz). We can write (L(1), L(2)) as
the sum of the two following Lévy processes

(3.1)

(
L(1)(t)
L(2)(t)

)
=

(
L

(1)
1,ε(t)

L
(2)
1,ε(t)

)
+

(
L

(1)
2,ε(t)

L
(2)
2,ε(t)

)
, 0 ≤ t ≤ T ,

where (L
(1)
1,ε, L

(2)
1,ε), (L

(1)
2,ε, L

(2)
2,ε) have the differential characteristics (0, 0, F̄ε) , (0, 0, Fε) , resp.

We allow the processes L(1) and L(2) to be dependent. Thus the processes L
(1)
1,ε and L

(2)
1,ε are

dependent. The same holds true for L
(1)
2,ε and L

(2)
2,ε. We denote the characteristic function

of a bivariate Lévy process L by

ΦL(t)(x) := E[ei〈x,L(t)〉], ∀x ∈ R2, 0 ≤ t ≤ T .

It is easy to see that the characteristic function of the process (L(1), L(2)) is given by

Φ(L(1)(t),L(2)(t))(x1, x2) = Φ
(L

(1)
1,ε(t),L

(2)
1,ε(t))

(x1, x2)Φ
(L

(1)
2,ε(t),L

(2)
2,ε(t))

(x1, x2) ,(3.2)

from which we conclude that the couples (L
(1)
1,ε, L

(2)
1,ε) and (L

(1)
2,ε, L

(2)
2,ε) are independent. The

variance-covariance matrix of (L
(1)
1,ε, L

(2)
1,ε) is given by

(3.3) Σ(ε) =

∫
R2

(z1, z2)(z1, z2)? F̄ε(dz1, dz2) =

(
σ2

11(ε) σ12(ε)
σ12(ε) σ2

22(ε)

)
.



18

We approximate the Lévy process L by a two-dimensional Lévy process (L
(1)
ε , L

(2)
ε ) with

differential characteristics (0, c(ε), Fε) . We choose c(ε) = Σ
1
2 (ε) . The approximating Lévy

process is thus given by

(3.4)

(
L

(1)
ε (t)

L
(2)
ε (t)

)
= c(ε)

(
W (1)(t)
W (2)(t)

)
+

(
L

(1)
2,ε(t)

L
(2)
2,ε(t)

)
, 0 ≤ t ≤ T ,

where W (1) and W (2) are two independent standard Brownian motions.
In Asmussen and Rosinski [1] it is shown that the jumps smaller than ε of a one-

dimensional Lévy process behave (asymptotically) very similar in distribution to a Brow-
nian motion scaled with the standard deviation of the small jumps. Cohen and Rosinski
[11] extended this result to a multidimensional setting. Kohatsu-Higa and Tankov [21]
showed that for many Lévy processes, replacing the small jumps by a scaled Brownian
motion, gives better convergence rates for the related option prices compared with simply
truncating the small jumps in the approximation. This provides a rationale for our choice
of the matrix c(ε). Indeed our aim is to keep unchanged the variance-covariance matrix of

(L
(1)
1,ε, L

(2)
1,ε).

We first show that the coefficients of the matrix c(ε) vanish when ε goes to 0. We have

Var

((
c1(ε) c2(ε)
c2(ε) c3(ε)

)(
W (1)(t)
W (2)(t)

))
= tΣ(ε) .(3.5)

Since W (1) and W (2) are two independent Brownian motions, (3.5) is equivalent to

Var

((
c1(ε)W (1)

c2(ε)W (1)

))
+ Var

((
c2(ε)W (2)(t)
c3(ε)W (2)(t)

))
= tΣ(ε)

and we get the following set of equations for the coefficients c1(ε), c2(ε), and c3(ε)

c2
1(ε) + c2

2(ε) = σ2
11(ε) ,

c1(ε)c2(ε) + c2(ε)c3(ε) = σ12(ε) ,

c2
2(ε) + c2

3(ε) = σ2
22(ε) .(3.6)

We know that σ2
11(ε), σ2

12(ε), and σ2
22(ε) vanish when ε goes to 0. Therefore c1(ε), c2(ε),

and c3(ε) converge to 0 when ε goes to 0. We use this fact to prove the following result.

Proposition 3.1. Let the process L,Lε be as defined in (3.1), (3.4), resp. Then, for every
0 ≤ t ≤ T ,

lim
ε→0

(L(1)
ε (t), L(2)

ε (t)) = (L(1)(t), L(2)(t)) , P− a.s.

In fact, the limit above also holds in L1(Ω,F ,P) with

E
[
|L(1)

ε (t)− L(1)(t)|
]
≤ (c1(ε) + c2(ε) + σ11(ε))

√
t ,

E
[
|L(2)

ε (t)− L(2)(t)|
]
≤ (c2(ε) + c3(ε) + σ22(ε))

√
t , 0 ≤ t ≤ T(3.7)
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Proof. The P-a.s. convergence follows directly from the proof of the Lévy-Kintchine formula
(See Theorem 19.2 in Sato [25]). Concerning the L1-convergence, we argue as follows.
Applying the triangle and Cauchy-Schwarz inequalities, we get

E
[
|L(1)(t)− L(1)

ε (t)|
]

= E

∣∣c1(ε)W (1)(t) + c2(ε)W (2)(t)−
t∫

0

∫
|z|≤ε

z1 (µ− ν)(ds, dz1, dz2)
∣∣


≤ c1(ε)E
[
|W (1)(t)|

]
+ c2(ε)E

[
|W (2)(t)|

]
+ E

∣∣ t∫
0

∫
|z|≤ε

z1 (µ− ν)(ds, dz1, dz2)
∣∣


≤ c1(ε)E
[
|W (1)(t))|2

] 1
2 + c2(ε)E

[
|W (2)(t))|2

] 1
2

+ E

∣∣ t∫
0

∫
|z|≤ε

z1 (µ− ν)(ds, dz1, dz2)
∣∣2


1
2

≤ (c1(ε) + c2(ε) + σ11(ε))
√
t .

We can prove (3.7) in the same manner and the result follows. �

3.2. Robustness of the price process. Recall the expression of H in (2.1). We ap-
proximate H by a process Hε which has differential characteristics under P given by
(b, c+ Σ(ε), Fε) , where Σ(ε) is as in (3.3) and Fε(dz) = F (dz)1{|z|>ε}. That is

Hε(t) =

t∫
0

b(s) ds+

t∫
0

c
1
2 (s) dW (s) + Σ

1
2 (ε)W̃ (t) +

t∫
0

∫
R2

h(z) (µε − νε) (ds, dz)

+

t∫
0

∫
R2

(z − h(z))µε (ds, dz) , 0 ≤ t ≤ T ,(3.8)

where W̃ is a two-dimensional standard Brownian motion independent of W , µε is a Poisson
random measure with compensator νε([0, t] × E) = t

∫
E
Fε(dz) , E ∈ B(R2) . We consider

the approximating price process

(3.9) Sε(t) = S(0)E(Hε)t , 0 ≤ t ≤ T .

We know that it exists a semimartingale Xε such that

(3.10) Sε(t) = S(0)eXε(t) , 0 ≤ t ≤ T .

The differential characteristics of Xε are given by

b̃ε = b− 1

2
(c+ Σ(ε)) + (h(log(1 + z))− h(z)) ∗ Fε ,
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c̃ε = c+ Σ(ε) ,

1A ∗ F̃ε = 1A(log(1 + z)) ∗ Fε , A ∈ B(R2 \ {0}) .(3.11)

We state the following lemma which shows the boundedness of S and Sε. The proof is
similar to the proof of Lemma 3.2 in Benth et al. [6].

Lemma 3.2. Let S, Sε be as in (2.4), (3.9), resp. Then we have

‖S(i)(t)‖2
2, ‖S(i)

ε (t)‖2
2 ≤ C(T ) , ∀ 0 ≤ t ≤ T , i = 1, 2 ,

where C(T ) is a positive constant depending on T and independent of ε.

In the following proposition we prove the convergence of S
(i)
ε to S(i) in L2(Ω) with rate

σ2
ii(ε), i = 1, 2.

Proposition 3.3. Assume

(3.12) sup
0≤s≤T

|bi(s)| < C1, sup
0≤s≤T

|σij(s)| < C2, i, j = 1, 2 , P− a.s. ,

where C1 and C2 are positive constants. Let S, Sε be the solutions of (2.4), (3.9), resp.
Then we have, for every 0 ≤ t ≤ T <∞

‖S(1)(t)− S(1)
ε (t)‖2

2 ≤ A1(T )σ2
11(ε) ,

‖S(2)(t)− S(2)
ε (t)‖2

2 ≤ A2(T )σ2
22(ε) ,

and A1(T ) and A2(T ) are positive constants depending on T and independent of ε.

Proof. We prove the result for the process S(1). The proof for S(2) follows the same lines.

From Protter [23], Chapter II, we know that we can write S(1) and S
(1)
ε as follows

S(1)(t) = S(0) +

t∫
0

S(1)(s−) dH(1)(s) ,

S(1)
ε (t) = S(1)(0) +

t∫
0

S(1)
ε (s−) dH(1)

ε (s) , 0 ≤ t ≤ T .

Hence,

S(1)(t)− S(1)
ε (t)

=

t∫
0

{S(1)(s)− S(1)
ε (s)} b1(s) ds− c1(ε)

t∫
0

S(1)
ε (s)dW̃ (1)(s)− c2(ε)

t∫
0

S(1)
ε (s)dW̃ (2)(s)

+

t∫
0

{S(1)(s)− S(1)
ε (s)}σ11(s) dW (1)(s) +

t∫
0

{S(1)(s)− S(1)
ε (s)}σ12(s) dW (2)(s)
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+

t∫
0

∫
|z|>ε

{S(1)(s−)− S(1)
ε (s−)}h1(z)(µ− ν)(ds, dz)

+

t∫
0

∫
R

{S(1)(s−)− S(1)
ε (s−)}(z1 − h1(z))µ(ds, dz)

+

t∫
0

∫
|z|≤ε

S(1)(s−)h1(z)(µ− ν)(ds, dz) .

We denote σ2
11(∞) =

∫
R z

2
1F (dz1, dz2). Applying Hölder’s inequality and the Itô isometry

we get

‖S(1)(t)− S(1)
ε (t)‖2

2

≤ TE

 t∫
0

{S(1)(s)− S(1)
ε (s)}2 b2

1(s) ds

+ {c2
1(ε) + c2

2(ε)}E

 t∫
0

(S(1)
ε (s))2 ds


+ TE

 t∫
0

{S(1)(s)− S(1)
ε (s)}2 (σ2

11(s) + σ2
12(s)) ds

+ σ2
11(ε)E

 t∫
0

(S(1)(s))2ds


+ (2σ2

11(∞) + σ2
11(∞))E

 t∫
0

{S(1)(s)− S(1)
ε (s)}2ds

 .

From (3.12) we know it exists a positive constant C such that

‖S(1)(t)− S(1)
ε (t)‖2

2 ≤ C

t∫
0

‖S(1)(s)− S(1)
ε (s)‖2

2 ds+ (c2
1(ε) + c2

2(ε))

t∫
0

‖S(1)
ε (s)‖2

2 ds

+ σ2
11(ε)

t∫
0

‖S(1)(s)‖2
2 ds .

Observing that c2
1(ε) + c2

2(ε) = σ2
11(ε) (see (3.6)) and applying Lemma 3.2 and Gronwall’s

inequality, the result follows. �

3.3. Robustness of the Margrabe formula: jump-diffusion. We suppose that we
work under a martingale measure Q and that the dynamics of the price process S, Sε are
given under Q by (2.4), (3.9), resp. We assume S(0) = (1, 1)?. Thus the parameters of S
verify (2.14) and the value of the spread option written in S is given by (2.15). Let Xε

be as in (3.10). Denote by Kε the cumulant process of Xε. Define the measure Q̃v,ε, for
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v ∈ R2, via the Radon-Nikodym derivative

dQ̃v,ε

dQ
= exp{v?Xε(T )− K̃ε(v)T )} ,

where K̃ε(v) denotes the logarithmic transform of the cumulant process Kε(v). Applying
Theorem 2.2 and Remark (2.3), the value of the spread option written in Sε is given by

M(S(1)
ε (T ), S(2)

ε (T )) = EeQε [max(1− Suε (T ), 0)] ,(3.13)

where Q̃ε = Q̃v,ε, for v = (1, 0)?, Suε := S(2)(0)eX
u
ε /S(1)(0), Xu

ε = uXε, and u = (−1, 1)? .
From Theorem 2.1, the differential characteristics (buv,ε, c

u
v,ε, ν

u
v,ε) of Xu

ε are given by

buv,ε = u?b̃ε + u?(c+ Σ(ε))v

+
(
h (u? log(1 + z)) ev

? log(1+z) − u?h (log(1 + z))
)
∗ Fε ,

cuv,ε = u?(c+ Σ(ε))u ,(3.14)

F u
v,ε(E) = 1E (u? log(1 + z)) ev

? log(1+z) ∗ Fε , E ∈ B(R \ {0}) .
We present the following technical lemma which is used in the forthcoming convergence
result for spread option prices.

Lemma 3.4. Let X, Xε be as in (2.5), (3.10), resp. Assume

(3.15) EeQε [e|R|Xu
ε (t)
]
,EeQε [e|R|Xu(t)

]
<∞ .

Then for t ∈ [0, T ] and u, R ∈ R, we have

EeQε [e(R−iu)Xu
ε (t)
]
≤ C(T,R) , EeQ [e(R−iu)Xu(t)

]
≤ C̃(T,R) ,

where C(T,R) and C̃(T,R) are positive constants depending on T and R.

Proof. From the characteristics of Xu
ε in (3.14), we deduce∣∣∣EeQε [e(R−iu)Xu

ε (t)
] ∣∣∣

≤ EeQε [|eRXu
ε (t)|

]
≤ exp

{
tR

∫
R2

[
h
(

log(
1 + z2

1 + z1

)
)
(1 + z1) + h1(z)− h2(z)

]
Fε(dz1 , dz2)

+ t

∫
R2

[(1 + z2

1 + z1

)R − 1−Rh
(

log(
1 + z2

1 + z1

)
)]

(1 + z1)Fε(dz1 , dz2)

+
tR

2
(R− 1)

[
σ2

11(ε) + σ2
22(ε)− 2σ12(ε)

] }
E

exp

R
 t∫

0

(b2(s)− b1(s))ds− 1

2

t∫
0

(σ11(s)− σ12(s))2ds
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− 1

2

t∫
0

(σ11(s)− σ12(s))2ds+

t∫
0

(σ22(s)− σ12(s))2dW (1)(s)

+

t∫
0

(σ22(s)− σ12(s))2dW (2)(s)




≤ exp
{

2T |R||R− 1|

+ T |R|
∫
R2

∣∣∣(1 + z1)
(

(
1 + z2

1 + z1

)R − 1
)

+ h1(z)− h2(z)
∣∣∣F (dz1 , dz2)

}

E

exp

R
 t∫

0

(b2(s)− b1(s))ds− 1

2

t∫
0

(σ11(s)− σ12(s))2ds

− 1

2

t∫
0

(σ11(s)− σ12(s))2ds+

t∫
0

(σ22(s)− σ12(s))2dW (1)(s)

+

t∫
0

(σ22(s)− σ12(s))2dW (2)(s)


 ,

and the result follows for Xu
ε since the latter expectation is finite. Moreover, the statement

follows for Xu by observing that |EeQ [e(R−iu)Xu(t)
]
| ≤ EeQ [|eRXu(t)|

]
. �

We conclude now with the following convergence result.

Proposition 3.5. Let S, Sε, be as in (2.4), (3.9), resp. Assume (3.15) holds. Then

lim
ε−→0

M(S(1)
ε (T ), S(2)

ε (T )) = M(S(1)(T ), S(2)(T )) .

Proof. We first write the Margarbe formula in terms of Fourier techniques as in Theorem
2.5. Let f(x) = max(1 − ex , 0) . We know that for R < 0, condition (1) of Theorem 2.5

holds true and f̂(iR − ·) ∈ L1(R) (see Eberlein et al. [13]). Moreover from Lemma 3.4,
we know that EeQε [e(R−iu)Xu

ε (T )] is bounded uniformly in u by a constant. Thus we have,
for R < 0

M(S(1)
ε (T ), S(2)

ε (T )) =
1

2π

∫
R

f̂(R− iu)EeQε [e(R−iu)Xu
ε (T )] du .(3.16)

Applying Lemma 3.4 again we know that EeQε [e(R−iu)Xu
ε (T )] is bounded uniformly in ε. Next,

applying the dominated convergence theorem we can take the limit inside the integral in
(3.16) to obtain

lim
ε−→0

M(S(1)
ε (T ), S(2)

ε (T )) =
1

2π

∫
R

f̂(R− iu)EeQ[e(R−iu)Xu(T )]du .
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Hence, the result follows easily from Lemma 3.4.
�

The convergence in Prop. 3.5 can be quantified with a rate in terms of ε, which is
reported in the next proposition:

Proposition 3.6. Let S, Sε, be as in (2.4), (3.9), resp. Assume (3.15) holds for R = 2.
Then

|M(S(1)
ε (T ), S(2)

ε (T ))−M(S(1)(T ), S(2)(T ))| ≤ C(T )ξ(ε) ,

where C(T ) is a positive constant depending on T and

ξ(ε) = σ2
11(ε) + σ2

22(ε) + |σ12(ε)|+ |c1(ε)|+ |c2(ε)|+ |c3(ε)|

+
∣∣∣ ∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1) + z1 − z2

}
F (dz)

∣∣∣
+

∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1)

}2

F (dz) .

Proof. Recall the function f(x) = max(1− ex, 0). Note that we can write

EeQε [f(Xu
ε (T ))]− EeQ[f(Xu(T ))] = E[f(Xu

ε (T ))− f(Xu(T ))] ,

where the characteristics of Xu, Xu
ε are given under Q̃, Q̃ε by (2.10), (3.14), resp. The

function f(x) is not differentiable in 0. However since the expectation is null in a negligible
set, we can apply the mean value theorem to f(x) and we know there exists a random
variable Zε(t) ∈ LXu

ε (t),Xu(t) , i.e. the line connecting Xu
ε (t), Xu(t), such that

|EeQε [f(Xu
ε (T ))]− EeQ[f(Xu(T ))]|

≤ E[eZε(T )|Xu
ε (T )−Xu(T )|]

≤ E[e2Zε(T )]
1
2 E[|Xu

ε (T )−Xu(T )|2]
1
2 .

Applying Lemma 3.4, we know that E[e2Zε(T )] ≤ C(T ). Moreover writing Xu(T ) and
Xu
ε (T ) explicitly in terms of their characteristics, we get

|EeQε [f(Xu
ε (T ))]− EeQ[f(Xu(T ))]|

≤ C(T )E
[∣∣∣− T (−1

2
σ2

11(ε)− 1

2
σ2

22(ε) + σ12(ε))− (c1(ε)− c2(ε))W̃ (1)(T )

− (c3(ε)− c2(ε))W̃ (2)(T ) +

T∫
0

∫
|z|≤ε

z(µu − νu)(ds, dz)

+ T

∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1) + (z1 − z2)
}
F (dz)

∣∣∣2] 1
2
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≤ C(T )
(
| − 1

2
σ2

11(ε)− 1

2
σ2

22(ε) + σ12(ε)|+ |c1(ε)− c2(ε)|E[|W̃ (1)(T )|2]
1
2

+ |c3(ε)− c2(ε)|E[|W̃ (2)(T )|2]
1
2 + E

[∣∣∣ T∫
0

∫
|z|≤ε

z(µu − νu)(ds, dz)
∣∣∣2] 1

2

+
∣∣∣ ∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1) + z1 − z2

}
F (dz)

∣∣∣)
≤ C(T )

(
σ2

11(ε) + σ2
22(ε) + |σ12(ε)|+ |c1(ε)|+ |c2(ε)|+ |c3(ε)|

+
∣∣∣ ∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1) + z1 − z2

}
F (dz)

∣∣∣
+

∫
|z|≤ε

{
log(

1 + z2

1 + z1

)(1 + z1)
}2

F (dz)
)

and the result follows. �

Notice that a Taylor series expansion around (0, 0) of z 7→ log(1+z2
1+z1

), shows that

log(
1 + z2

1 + z1

)(1 + z1) + z1 − z2 ≈ C1

(
σ2

11(ε) + σ2
22(ε) + σ12(ε)

)
{

log(
1 + z2

1 + z1

)(1 + z1)

}2

≈ C2

(
σ2

11(ε) + σ2
22(ε) + σ12(ε)

)
.

Thus ξ(ε) ≈ C (σ2
11(ε) + σ2

22(ε) + σ12(ε) + |c1(ε)|+ |c2(ε)|+ |c3(ε)|) , where C1, C2, and C
are positive constants.

So far we have considered the approximation of a general price process after having per-
formed a measure change. That is we approximated the jump-diffusion dynamics specified
under the martingale measure and then studied the robustness of the Margrabe formula.
In the following subsection we consider a more specific price processes, namely a two-
dimensional exponential Lévy process. For this model, we approximate the small jumps
under the real world measure before defining the martingale measure for the approximating
process through an Esscher transform. For this we can apply the duality measure to com-
pute the Margrabe formula, which is then used to prove the rate of convergence. We refer
to Benth et al. [8] for robustness studies of options under different martingale measures in
the univariate case.

3.4. Robustness of the Margrabe formula: geometric Lévy process. Let S be as
in (2.20). We approximate L by a Lévy process Lε that has differential characteristics
(b, c+ Σ(ε), Fε) , where Σ(ε) is given by (3.3) and Fε(dz) = F (dz)1{|z|>ε}. We consider the
price process

(3.17) Sε(t) = eLε(t) , 0 ≤ t ≤ T .
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For simplicity, we omit L in the notation of the cumulant function of the Lévy process.
Thus we denote K = KL and Kε = KLε . Let θε ∈ R2, for 0 < ε < 1 be such that

ert = exp (Kε(1i + θε)t −Kε(θ
ε)t) , 0 ≤ t ≤ T ,(3.18)

where r is the risk-free rate of return. Benth et al. [8] proved the existence and uniqueness
of the parameter θε when Lε is a one-dimensional Lévy process. With similar computations
one can prove the existence and uniqueness of the parameter θε in our case. We define a
new measure Pθε+11 as follows

(3.19)
dPθε+11

dP
:= exp {(11 + θε)?Lε(T )−Kε(11 + θε)T} .

Applying Theorem 2.2 and Remark 2.3, we get the price of the spread option written on
Sε as follows

M(S(1)
ε (T ), S(2)

ε (T )) = Eθε+11 [max(1− Suε (T ), 0)] ,(3.20)

where Suε = eL
u
ε , Luε := u?Lε, and u = (−1, 1)? . The differential characteristics of Luε under

the new measure Pθε+11 are given by (buθε+11
(ε), cuθε+11

(ε), F u
θε+11

), where (see Theorem 2.1)

buθε+11
(ε) = u?b+ u?(c+ Σ(ε))(θε + 11) +

(
h(u?z)e(θε+11)?z − u?h(z)

)
∗ Fε ,

cuθε+11
(ε) = u?(c+ Σ(ε))u ,(3.21)

F u
θε+11

(E) = 1E(u?z)e(θε+11)?z ∗ Fε , E ∈ B(R \ {0}) .
Before we prove the robustness of the Margrabe formula, we need the following lemma in
which we prove the convergence of the Esscher parameter θε to θ when ε goes to 0. Notice
that the same type of result was proved in a paper by Benth et al. [8] in the case of a
one-dimensional Lévy process. We present the proof for the sake of completeness.

Lemma 3.7. Let θ, θε be as in (2.23), (3.18), resp. Then |θεi |, i = 1, 2 is bounded uniformly
in ε ∈ (0, 1). Moreover, we have

|θεi − θi| ≤ Cθ(σ
2
11(ε) + |σ12(ε)|) , i = 1, 2 ,(3.22)

where Cθ is a positive constant depending on θ and σij(ε), i, j = 1, 2, are the components
of the matrix Σ(ε) defined in (3.3).

Proof. We introduce the function Gε(x), x ∈ R as follows

Gε(x) = σ2
11(ε)x+ σ12(ε)θ2 + (σ2

11 + σ2
12)x+ (σ11σ12 + σ12σ22)θ2

+

∫
R2

exz1+θ2z2(ez1 − 1− h1(z))Fε(dz) +

∫
R2

h1(z)(exz1+θ2z2 − 1)Fε(dz) .

By the dominated convergence theorem, we deduce that Gε(x) is differentiable and the
derivative is given by

G′ε(x) = σ2
11(ε) + (σ2

11 + σ2
12) +

∫
R2

z1exz1+θ2z2(ez1 − 1)Fε(dz) > 0 .
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It follows that Gε(x) is a strictly increasing function. Thus the inverse G−1
ε (x) exists and

its derivative is given by (G−1
ε (x))′ = 1/G′ε(x). From (2.23) and (3.18), we deduce that θ

and θε verify the following two equations

Gε(θ
ε
1) = r − b1 −

1

2
σ2

11(ε)− 1

2
(σ2

11 + σ2
12) ,

Gε(θ1) = r − b1 −
1

2
σ2

11(ε)− 1

2
(σ2

11 + σ2
12) + σ2

11(ε)θ1 + σ12(ε)θ2

−
∫
|z|≤ε

eθ1z1+θ2z2(ez1 − 1− z1)F (dz)−
∫
|z|≤ε

z1(eθ1z1+θ2z2 − 1)F (dz) .

Hence

|θ1 − θε1| =
∣∣∣G−1

ε

(
r − b1 −

1

2
σ2

11(ε)− 1

2
(σ2

11 + σ2
12) + σ2

11(ε)θ1 + σ12(ε)θ2

−
∫
|z|≤ε

eθ1z1+θ2z2(ez1 − 1− z1)F (dz)−
∫
|z|≤ε

z1(eθ1z1+θ2z2 − 1)F (dz)
)

−G−1
ε

(
r − b1 −

1

2
σ2

11(ε)− 1

2
(σ2

11 + σ2
12)
)∣∣∣ .

Let σ11 > 0 or σ12 > 0. In this case (G−1
ε (x))′ ≤ 1/(σ2

11 + σ2
12). Then applying the mean

value theorem to the function G−1
ε (x), we get

|θ1 − θε1| ≤
1

σ2
11 + σ2

12

∣∣∣σ2
11(ε)(θ1 +

1

2
) + σ12(ε)θ2

+

∫
|z|≤ε

{e(θ1+1)z1+θ2z2 − 1− z1(θ1 + 1)}F (dz)

−
∫
|z|≤ε

{eθ1z1+θ2z2 − 1− z1θ1}F (dz)
∣∣∣ .

Applying the mean value theorem to the function θ1 7→ eθ1z1+θ2z2−1− z1θ1, we know there
exists a1 ∈ Lθ1,θ+1 such that

|θ1 − θε1| ≤
1

σ2
11 + σ2

12

(
σ2

11(ε)|θ1 +
1

2
|+ |σ12(ε)||θ2|+

∫
|z|≤ε

|z1||ea1z1+θ2z2 − 1|F (dz)
)
.

Let U be an open set in R2. Suppose a1 and θ2 are two points of U such that U contains
the line segment from (0, 0) to (a1, θ2). Applying the mean value theorem to the function
(a1, θ2) 7→ ea1z1+θ2z2 − 1, we know there exists ã1, a2 such that

|θ1 − θε1| ≤
1

σ2
11 + σ2

12

(
σ2

11(ε)|θ1 +
1

2
|+ |σ12(ε)||θ2|
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+

∫
|z|≤ε

|z1|eã1z1+a2z2(|z1||θ1 + 1|+ |z2||θ2|)F (dz)
)

≤ C(θ)
(
σ2

11(ε) + |σ12(ε)|
)
,

which proves the result for θ1 in the case σ11 > 0 or σ12 > 0. In the case σ11 = σ12 = 0, we
derive the result using the fact that (G−1

ε (x))′ ≤ 1/
∫
|z|>1

z1eθ1z1+θ2z2(ez1−1)F (dz). Similar

computations lead to the result for θ2. �

In the following proposition we show that the drift of the Lévy process Luε converges to
the drift of the Lévy process Lu.

Proposition 3.8. Let buθ+11
, buθε+11

(ε) be as defined in (2.26), (3.21), resp. Then we have

|buθε+11
(ε)− buθ+11

| ≤ Cθ(σ
2
11(ε) + σ2

22(ε) + |σ12(ε)|) ,
where Cθ is a positive constant depending on θ and σij(ε), i, j = 1, 2, are the components
of the matrix Σ(ε) defined in (3.3).

Proof. First, define

Fθ(dz) := e(θ1+1)z1+θ2z2F (dz) , Fθε(dz) := e(θε1+1)z1+θε2z2F (dz) ,

where θ, θε are as in (2.23), (3.18), resp. Let U be an open set in R2. Suppose that θε + 11

and θ + 11 are two points of U such that U contains the line segment L from θε + 11 to
θ + 11. Then applying the mean value theorem to the function θ 7→ e(θ1+1)z1+θ2z2 , we have

|e(θε1+1)z1+θε2z2 − e(θ1+1)z1+θ2z2| ≤ e(a1+1)z1+a2z2 (|z1||θε1 − θ1|+ |z2||θε2 − θ2|) ,
where (a1, a2) ∈ L. Applying Lemma 3.7, we get

|Fθε(dz)− Fθ(dz)| ≤ e(a1+1)z1+a2z2 (|z1|+ |z2|)Cθ(σ2
11(ε) + |σ12(ε)|)F (dz) ,(3.23)

where Cθ is a positive constant depending on θ.
Now, let U ′ be another open set in R2. Suppose that θ+ 11 and (−1, 0)? are two points

of U ′ such that U ′ contains the line segment L′ from (−1, 0)? to θ+ 11. Then applying the
mean value theorem to the function θ 7→ e(θ1+1)z1+θ2z2 , we get

|e(θ1+1)z1+θ2z2 − 1| ≤ e(a′
1+1)z1+a′

2z2 (|z1||θ1 + 2|+ |z2||θ2|) ,(3.24)

where (a′1, a
′
2) ∈ L′.

To prove the statement of the proposition, we compute

|buθε+11
(ε)− buθ+11

|
≤ |(σ11 − σ12)2 + (σ11σ12 − σ12σ22)||θε1 − θ1|

+ |(σ11 − σ12)2 + (σ11σ12 − σ12σ22)||θε2 − θ2|
+ [σ2

11(ε)− σ12(ε)]|θε1 − θ1|+ [σ2
22(ε)− σ12(ε)]|θε2 − θ2||

+
∣∣∣ ∫
R2

{h(z2 − z1)e(θε1+1)z1+θε2z2 + h2(z)− h1(z)}Fε(dz)
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−
∫
R2

{h(z2 − z1)e(θ1+1)z1+θ2z2 − (h2(z) + h1(z))}F (dz)
∣∣∣

≤ Cθ(σ
2
11(ε) + |σ12(ε)|) +

∫
|z|≤ε

|h(z2 − z1)e(θ1+1)z1+θ2z2 − (h2(z) + h1(z))|F (dz)

+

∫
|z|>ε

|h(z2 − z1)||Fθε(dz)− Fθ(dz)| ,

where in the latter we used Lemma 3.7. Observing that h(z2 − z2) = (z2 − z2)1{|z2−z2|≤1}
and {|z2 − z2| ≤ 1} ∩ {|z| ≤ ε} = {|z| ≤ ε} and applying (3.23) and (3.24), we get

|buθε+11
(ε)− buθ+11

|

≤ Cθ(σ
2
11(ε) + |σ12(ε)|) + C̃θ

∫
|z|≤ε

(|z2|2 + |z1|2)e(a′
1+1)z1+a′

2z2F (dz)

+ Ĉθ(σ
2
11(ε) + |σ12(ε)|)

∫
|z|>ε

(|z2|2 + |z1|2)1{|z2−z1|≤1}e
(a1+1)z1+a2z2F (dz) ,

where C̃θ and Ĉθ are two positive constants depending on θ. Moreover, since (a′1, a
′
2) ∈ L′,

then e(a′
1+1)z1+a′

2z2 ≤ eC
′
θ(|z1|+|z2|) ≤ e2C′

θ , for |z| ≤ ε. Finally a Taylor series expansion of
z 7→ e(a1+1)z1+a2z2 around the point (0, 0), shows that the function (|z2|2 +|z1|2)e(a1+1)z1+a2z2

is integrable in R2 with respect to F (dz) . Hence

|buθε+11
(ε)− buθ+11

|

≤ Cθ(σ
2
11(ε) + |σ12(ε)|) + C̃θ(σ

2
11(ε) + σ2

22(ε))

+ Ĉθ(σ
2
11(ε) + |σ12(ε)|)

∫
R

(|z2|2 + |z1|2)1{|z2−z1|≤1}e
(a1+1)z1+a2z2F (dz)

and we proved the statement. �

In the following proposition we show the robustness of the Margrabe formula and we
compute a convergence rate.

Proposition 3.9. Let S, Sε be as in (2.20), (3.17), resp. Then it holds that

lim
ε−→0

M(S(1)
ε (T ), S(2)

ε (T )) = M(S(1)(T ), S(2)(T )) .

Moreover

|M(S(1)
ε (T ), S(2)

ε (T ))−M(S(1)(T ), S(2)(T ))| ≤ C(θ, T )ξ(ε)

where ξ(ε) = σ2
11(ε) + σ2

22(ε) + |σ12(ε)|+ |c1(ε)|+ |c2(ε)|+ |c3(ε)| and C(θ, T ) is a positive
constant depending on θ and T .
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Proof. We follow the same steps as in the proof of Prop. 3.6. We apply the mean value

theorem to f(x) = max(1− ex, 0). Hence we know there exists a random variable L̃ε(t) ∈
LLuε (t),Lu(t) i.e., the line connecting Luε (t) and Lu(t) such that

|EeQε [f(Luε (T ))]− EeQ[f(Lu(T ))]|

≤ E[e2eLε(T )]
1
2 E[|Luε (T )− Lu(T )|] .

From the differential characteristics of Lu, Luε in (2.26), (3.21), resp., we get

|EeQε [f(Luε (T ))]− EeQ[f(Lu(T ))]|

≤ C(T )
{
|buθε+11

(ε)− buθ+11
|+
(
| − 1

2
σ2

11(ε)− 1

2
σ2

22(ε) + σ12(ε)|
)

+ |c1(ε)− c2(ε)|E[|W̃ (1)(T )|2]
1
2 + |c3(ε)− c2(ε)|E[|W̃ (2)(T )|2]

1
2

+ E
[∣∣∣ T∫

0

∫
|z|≤ε

z(µuθ − νuθ )(ds, dz)
∣∣∣2] 1

2
}
,

where µuθ is the jump measure of Lu. Hence from Prop. 3.8, we get

|EeQε [f(Luε (T ))]− EeQ[f(Lu(T ))]|

≤ C(θ, T )
(
σ2

11(ε) + σ2
22(ε) + |σ12(ε)|+ |c1(ε)|+ |c2(ε)|+ |c3(ε)|

+
∣∣∣ T∫

0

∫
R

(z2 − z1)e(θ1+1)z1+θ2z2F (dz)
∣∣∣) .

Applying the mean value theorem, we can show that

|
T∫

0

∫
R

(z2 − z1)e(θ1+1)z1+θ2z2F (dz)
∣∣∣ ≤ Cθ(σ

2
11(ε) + σ2

22(ε))

and the result follows. �

Example: Normal inverse Gaussian Lévy process. We consider the case where (L(1), L(2))
follows a bivariate normal inverse Gaussian Lévy process as in Subsect. 2.4. For this case
we investigate the behavior of σ2

11(ε) and σ2
22(ε), the entries of the variance-covariance

matrix (3.3) of the small jumps. Using Proposition 8.9 in Sato [25] we know that the Lévy
density of L(1) is given by

g(z) =
δ√
2

(
α

π
√
z′∆−1z

) 3
2

exp (βz)K 3
2
(α
√
z′∆−1z) .

Using the fact that for z → 0, K 3
2
(z) ∼ z−

3
2 , we deduce

g(z) ∼ (z′∆−1z)−3/2 .
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It follows

σ2
11(ε), σ2

22(ε) ∼ ε ln(ε) + ε ,

σ2
12(ε) ∼ ε ,

giving the speed of convergence in terms of the truncation level ε. With L’Hôpital’s rule
it is easy to see that ε ln(ε) vanishes when ε goes to 0.

4. Conclusion

In this paper we considered spread options written on a two-dimensional jump-diffusion
model. We applied the duality principle introduced by Eberlein et al. [14, 15] to express
the spread option price in terms of the price of a put option under the dual measure. We
applied this approach to derive an explicit formula for the value of a spread option in
the case of a bivariate geometric Brownian motion with stochastic volatility following the
Barndorff-Nielsen and Shephard model. In addition, we also considered a two-dimensional
geometric Lévy process for the dynamics of the price process. We first applied the Esscher
transform to derive a risk neutral measure. Then, we applied the duality principle to derive
the Margrabe formula.

As for the study of robustness, we approximated the small jumps in the Lévy process
by a two-dimensional Brownian motion scaled with the variance-covariance matrix of the
small jumps. We first considered the approximation under the martingale measure and we
proved the robustness of the Margrabe formula. Next, in the specific case of a geometric
Lévy process, we considered the approximation under the real world measure. In this
situation the Esscher transform as well as the duality measure become dependent on the
approximation. For this choice of dynamics, we proved the robustness of the Margarbe
formula and we computed the convergence rates.
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