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Abstract—1In this paper we analyze the propagation of input
signals in a large-scale network of dynamical systems. Using
vector Lyapunov functions, the individual multidimensional
subsystems are first reduced to an approximating scalar rep-
resentation in the form of the evolution of their weighted
norm. The norm simultaneously qualifies as a local Lyapunov
function for the isolated subsystem. Employing properties of M-
matrices, we then derive linear system dynamics which provide
an upper bound for the evolution of the original system, and
use them to investigate the decay between hops from subsystem
to subsystem of the steady state magnitude. Two input signals
are considered: Constant input, and a sinusoidal input. The
results are demonstrated using numerical simulations.

I. INTRODUCTION

The analysis of large-scale interconnected systems has re-
cently become a focus of research in the field of system and
control theory with the goal of solving new technological
challenges in terms of ever-increasing system sizes and
stricter performance requirements. This system class encom-
passes a large number of practical applications, including
traffic systems, vehicle formations, the power system and
other types of distribution and infrastructure networks, just
to name a few.

One important question of interest for interconnected systems
which we address in this paper is under which conditions a
disturbance at one node will have little effect at another node
that is far away in terms of the number of hops between
the nodes. The investigation of this question is relevant
for several reasons. First, it will help in understanding
how disturbances, or changes in system dynamics at one
subsystem, affect the behavior at distant nodes. In other
words, it is of interest how the performance of a distant
node is affected by local disturbances. This will lead to
an intuition regarding how networks should be designed,
e.g. with regards to disturbance attenuation, since it will
clearly be preferred in most applications that local changes
in dynamics should not have a large effect at large distances.
Second, a property of this type would allow the agents more
freedom even though they are connected, and since privacy
is becoming an important issue, subsystems may not want
all other participants in an interconnected system to be able
to sense their state. Last, it would help in the development
or modification of a local control design at one agent with
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limited model information from the overall system, see
e.g. [1], and may enable local control law adaptations without
significantly sacrificing overall system performance.

Even though this problem is practically relevant and far from
trivial, the authors are not aware of many previous results
in the literature that treat it directly. However, the decay
property for constant disturbances turns out to be related to
a decay property of entries of the inverse of a matrix, whose
structure captures that of the underlying system graph, with
a path graph corresponding to a tridiagonal matrix. In [2],
for a symmetric tridiagonal matrix, a decay property along
the rows and columns of the inverse is developed. In this
paper a similar result is derived but for much more general
matrix structures. Also related are the results in [3] where the
authors investigate properties of M-matrices in the context of
linear systems of equations, and the sensitivity of the solution
to changes in the entries of the M-matrix. For the special
case of directed lattices with leader-follower-dynamics, the
authors in [4] derive transfer functions from disturbances
to the states of nodes. This goes in a similar direction as
this paper, however we consider more general dynamics and
graphs. System analysis of positive systems, the type of
dynamics that is eventually considered here, is treated in [5].
Also, a similar research direction is taken in [6] where a local
average consensus algorithm is developed which involves
both temporal and decaying spatial behavior. Our goal is
to take that viewpoint of considering both temporal and
spatial behavior as well, and investigate how physical signals
propagate spatially through a dynamical system and if the
gain over a multihop path can be bounded in terms of the
hop count.

The main contribution of this paper is an analytical in-
vestigation of the decay between subsystems in response
to a steady state disturbance. We consider the case of
a constant input at a single node, and then look at the
generalization to a sinusoidal input. It is shown that the
value of the steady state response at a node can be bounded
by a linear combination with positive weights of steady
state values at nodes closer to the source node, and that
the coefficients in that combination sum to less than one.
The results are illustrated using numerical simulations. In
order to obtain meaningful results, certain assumptions on
the system parameters need to be made. Therefore, in this
paper we consider stable systems whose stability can be
shown using a vector-Lyapunov-function. The concept and
the idea of vector-Lyapunov functions is summarized well
in [7]. We think this assumption is reasonable on several
grounds. First, the analysis in this type of setup is known



to remain valid even if interaction gains change, a property
which makes the results more robust. Second, it allows the
analysis of nonlinear large-scale systems using linear system
tools. Last, it is an old and in a sense tested theory with
many established results.

The remainder of the paper is organized as follows. In the
next section, the considered system model is introduced and
the problem is formulated. In Section III the main analytical
results are presented. Section IV provides numerical demon-
stration and illustration of the results. Last, a concluding
remark is given in Section V.

Notation: We shall use the notation X > 0 to denote
that X is a positive definite matrix, for vectors d € RN,
d > 0 denotes positivity of all entries. Furthermore, the
notation X = (X;;) means that the matrix X is made
up of several matrix blocks X;;. The minimum and max-
imum eigenvalue of a matrix X are denoted by \,,(X)
and Aps(X), the maximum singular value is o7 (X).

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, we introduce the considered problem, and
review the concept at the core of this work, namely vector
Lyapunov functions.

We begin with an important Lemma.

Lemma 1: [8, §6.2] A matrix M is a non-singular M-
matrix if it has positive diagonal elements, nonpositive oft-
diagonal elements and if it satisfies the following equivalent
conditions:

o There exists a vector d > 0 such that Md > 0.

o There exists a positive diagonal matrix D =
diag(dy,...,dn) such that M D is strictly diagonally
dominant, i.e. d; M;; > Z]#l d]|M”| Vi=1,...,N.

In this paper, we consider an interconnected large-scale linear
system which consists of N subsystems. The dynamics of
the ith subsystem, including any local controller, are given
by

N
5 ZAiiOCi-FZAijl‘j, (D
j=1
J#i
where x; € R™, and A;; € R™*",
The interconnection structure of the subsystems is described
by a directed graph G = (V,&), where the node set V
represents the subsystems, and there is an edge (i,j) € £
iff A;; # 0. That means that an edge (¢,j) in the graph
means that 7 accesses j to update its state. We denote the set
of neighboring nodes of node i, i.e. those nodes that affect
it, by Ni = {jl(i, ) € €}
The overall system is a concatenation of the individual
subsystems, i.e.

T = Az, 2)
where z=[2],...,2k]T e R", A= (4;;)eR™",
and n = vazl n;. We assume that the isolated, decoupled
subsystems described by

Ty = Ayx 3)

are asymptotically stable. Hence, for any @Q); > O there is
a P; > 0 such that

PAii + AP, = ~Q, “
and then clearly
is a local Lyapunov function for the iso-
lated  subsystem ¢, where with (4) we have
that 7 j50 = f%(z?}%xi)’%m?Qixi < 0 1is the isolated
derivative of v; along the dynamics (3).
With the following bounds
VA (Po)llzil| < vilzi) < v Au (P24
0 i A Pi
ol H(%TPﬂi)_%Pﬂi < Au(P)
[Aijz; || < onr(Aj)ll]|
we can write the coupled derivative of v; as
N
1
v, = yz}iso + (m?Pixi)_ixiTPi Z Aijxj
j=1
J#i
( )‘M ZJ)
< - %II il + oyl ©
2 Z m (Pz)
J#l
N
< =i+ Y vy, )
j=1
i
Am(Qi) =~ A (Pi)on(Aij)

Where ozm- = 72AA[(P7;)7 Oéz,j = —f\m(Pi) ,;A'rn(Pj).
Theorem 1: [7], [9] Consider system (2), and the local

Lyapunov functions (5) with P; and @Q;; from (4). If the
matrix —A with elements from (7)
ifi=j

7 —Qq

Ais = {di,j if i
is a non-singular M-matrix, then the system (2) is sta-
ble and V(z)=dTv(z), where d=][dy,...,dy]" >0
and v = [vy(21),...,vn(zn)]" is a Lyapunov function for
the system. Furthermore, we call v with 7 < Av a vector
Lyapunov function of system (2).
There are several other ways to set up a vector Lyapunov
function to show stability but since stability investigations
are not the focus of this paper, we refer the reader to [7, §2]
for more details. !
In the following, we use the dynamics of v; to investigate
signal decay in the interconnected system. By the compar-
ison principle [9, §1.4], instead of the inequality (7) we

'Note that due to the use of vector Lyapunov function theory, the
results in this paper are extendable to a wide class of nonlinear systems.
Necessary assumptions are the existence of constants ¢y ; > 0,c2,; > 0
such that ¢y ;||z;|| < vi < co4|lxi|], and the interconnection between
subsystems needs to be bounded. For ease of exposition we restrict our
attention in this paper to linear systems.



consider w(t) with w(0) = v(0) and
N
W = —d i + Y & i, (8)
j=1
J#i
or  w=Aw, &)

where @ eRY and AcRV*N. It is clear
that v;(¢t) < w;(t). That means that the system (8) in
a limited and special way approximates system (1) as a
scalar system, and we can consider w(t) as a super-state
for the actual system state x(¢). In particular, we will use
it to make estimates on the signal decay in interconnected
systems. As already mentioned in Section I, we make the
following assumption on system (9).
Assumption 1: —A is a non-singular M-matrix.
Then there is a positive diagonal matrix D such that the
matrix A := D=1 AD with elements oy is row diagonally

dominant [8], i.e.
- Z Qg g5 Z 0Vi.

JEN;
This also implies that the following condition holds
ieN; Xij
i — Ljen, % >0 V4, (10)
) 1 _ ,y

for a known 0 <~ < 1, where equality holds for at least
one ¢.

Hence, ~ can be seen as a measure of how row dominant
the matrix A is. If the original system does not lead to
satisfaction of Assumption 1, the authors in [10] present a
system class for which decentralized controllers can be de-
signed such that Assumption 1 is satisfied. The identification
of further system classes where distributed controllers lead to
Assumption 1 being satisfied is also current work. As a side
note: Using (10) and Gershgorin arguments, the eigenvalues
of A can easily be bounded.

III. ANALYSIS

In this section, we present the main analytical results, namely
the investigation of a way to describe the steady state of
system (9) for two cases: 1) The system has a scalar constant
input at a single node. 2) The system has a scalar sinusoidal
input at a single node. That way we want to develop an
insight as to how a physical signal propagates spatially from
system to system.

A. Steady state decay with constant input

In this subsection we investigate how the steady state of an
interconnected system behaves when there is one node with a
constant and positive external input and the remaining nodes
are not excited. The system dynamics (9) are transformed
according to Assumption 1 and then extended to include the

input and we obtain
w = Aw + bu, (11)

where b € RV is a vector consisting of only one nonzero
entry, namely a one, and for convenience of derivation and

presentation u > 0 € R. These are the system dynamics that
will be considered for the rest of the paper. Notice that the
graphical structure of A is identical to the graph G, i.e. there
is an edge from node ¢ to node 5 when ¢ uses information
from j to update its state, in other words when 7 is influenced
by j.

Remark 1: Since the setup is linear, by the superposition
principle the results are straightforward to expand to multiple
or negative inputs. Also since only the limit case ¢ — oo is
considered, the results also cover inputs that become constant
after a finite time.

In the following, we consider the steady state of w which
we denote by w, i.e. lim;_, o w(t) = w.

Definition 1: Let w; € R, w; € R for j € {j1,...,4}
where ¢ ¢ {j1,...,51}, and 0 <~y <1 from (10). If there
exist 3; ; for j € {j1,..., 71} such that

J
W; = E Bi kW,

k=31

where hejy Bik<1l—=v and0<f;; <1l-~ for
all je{ji,...,5}, then w@; is termed a steady
state  conic  combination (SSCC) of the steady
states w; with j € {j1,...,7;}. This is written as
as w; € C(wy,,...,w;).

Note that C(...) is a special case of a conic combination
of steady state values. With this notion of SSCC, it can
be shown that if w; is an SSCC of the steady states of
some nodes ji,...,7J;, and if the steady state of one of
those nodes w;, is an SSCC of the steady states of 7 and
other nodes ki,...,ky, then w; can be replaced in the
SSCC of w; by the steady states of nodes ki, ..., k,. We
summarize this more formally in the following lemma.
Lemma 2:

If w; € C(’lf)jl,...,
then w; € C(w]‘l,. e
{gi, - i}

Proof:

(12)

wjl) and wjl € C(wi’wklv"'7wkm)7
Wj,_\, Wiy -+ -, Wy, ) for i &

Using (12) we start with

Wi = B j, Wy, + ..+ Big Wy,

+ Biji (Bjr,iwi + Bjy by Why + -+ + Bjy ke Wk, )
and obtain
_ Bijx _ Bigqia -
Wy = ——2— W, + .. ——— Wy,
1= BB 1— BB
BiiiBji ks - BijiBivem -
+ g, .+ ey, . (13)
L= BiiBji 1= Bi B

Using the conditions of the lemma and (12) one can easily
see that all coefficients on the right in (13) and their sum are
smaller than 1 — 7, i.e.

6 3 (Zﬂz,y, +szlzﬁjz, ) <1l-7,
5,51 F g1, r=1

Pij. M

—Phie o
1= BijiBiii 1= BijiBiii

<1l-—7, (14)



Fig. 1: Example graph. The number denotes the nodes, the
index denotes the distance to the source node. Note that the
input is not an edge of the graph and does not follow the
edge direction convention of the rest of the graph.

for 1<r<l—1 and 1<s<m. Notice that based
on Definition 1, the lemma also subsumes the case
where we only have @, € C(Wg,,..., W, ) instead
of wj, € C(w;, Wy, ..., W, ). The reason is that this is
equivalent to setting 3;,; to zero, which only decreases the
coefficients in the right hand side of equation (13). This
concludes the proof. [ ]
Definition 2: [11] A directed path in a directed graph G is a
sequence vo, €1, V1, . - ., €n, Uy such that v; € V and v; # v;
for all 0 <4,j <, and such that e; € £ is a directed edge
from v;_1 to v; for every 1 < i <r.

For example, in Figure 1, the node sequence (7,4,3) with
its corresponding edges does not constitute a directed path,
but the node sequence (7,6,3) does.

Definition 3: Given a designated source node in the in-
terconnection graph G associated with the system dynam-
ics (11), the distance of a node is the least number of directed
edges across all paths between the node and the source node.

Definition 4: Given a designated source node in the in-
terconnection graph G associated with the system dynam-
ics (11), and given a node v with distance d from the
source node, the unique (d — 1)-paths are those paths starting
at v and ending at a node with distance (d — 1) without
containing any other node with distance (d — 1). The set of
nodes that can be reached via a unique (d — 1)-path from
node v are called the unique (d — 1)-nodes and is denoted
by Vv,d71~

Seen from a different point of view, if there is a path
from v; with distance d to the source node, and that path
has only strictly decreasing distance after reaching a node vo
with distance (d — 1), vy belongs to the set V,, 4—1. For
example, in Figure 1, we have the sets Vs 41 = {3,4},
V77d71 = {3,4} and V51d,1 = {2}

In the following, there will be a slight abuse of no-
tation: When w; is an SSCC of the steady states of
some set of nodes V = {ji,...,5}, instead of having to
write w; € C(wj,,...,w;,), , where w;, is the steady state
of node jj, we will just write w; € C(V).

Theorem 2: Given the system dynamics (11), Assumption 1
with (10), and a constant input v > 0 at a designated source

node, the steady state value of a node v with distance d from
the source node is an SSCC as defined in (12) of the steady
state values of unique (d — 1)-nodes of node v, i.e.

W, € C(V/U’d_l).

Proof:

Given a designated source node, we denote the set of
nodes with distance d from that source node by V,;. The
maximum distance in the network is d,s. All the nodes on
level djs from the source node either have only neighbors
in the set Vy,,_1 or additionally in the set Vg,,. For any
node vg,, € Vg,,, because of (10) we have

wT)dM € C(NdM,vdMaNdM—l,vdM)v (15)

where the set N, ., ~denotes the neighboring nodes
of node wvq,, with distance djp; from the source node,
and it could be the empty set, while Ny, o, , de-
notes those with distance djp; — 1. In this case we
have w,, ay € c (NdM_LU dM) and the result of Theorem 2
is obvious. Otherwise, suppose node vq4,, is connected to
nodes v1,4,,;---,Un,dy- Then we will have

Wy, € C(Woy 4 5oy Wop g s Ny —1,04,,)- (16)

Applying Lemma 2 to the w,, , ~replaces them with their
neighbors, all of which again belong to the sets Vg,
or V4,,—1, and all can be reached from node vq,, via a
directed path. Eventually, Lemma 2 can be used repeatedly to
cancel out all nodes on the layer djy, i.e. those belonging to
the set Vg,,, and replace them by nodes from the set Vg,, 1.
In the end w,, is an SSCC of nodes on the level dp; — 1
that can be reached from wvg,, via a directed path through
its multihop neighbors on the level dj;. However, note that
there may be nodes on the level d; — 1 that do not have
neighbors in the part of the layer dj; that can be reached
from vq,, via several hops. Furthermore, there are nodes on
the level dp; — 1 that can only be reached through nodes
on the level dj; — 1, i.e. nodes, not belonging to Vvd,M,dfl-
Both types of nodes do not occur in any of the SSCCs of
the multihop neighbors and thus we obtain

wUdM EC(Ndm—L’UdM deM—LULdM LA
Nd]\l_lavn,dju’
NdM—l-,NdM,ul’dM P aNdM—l,NdM,u

)

so we have the result of Theorem 2 for the nodes with
maximum distance.

We proceed to the level with distance dj; — 1, and choose a
node of interest, call it v4,,—1. On this level, each node can
have neighbors on the current level, the one below and the
one above, i.e.

n,dpyr

@Ude1 € C(NdM—l,'Udel ’Ndlwﬂ)d]u—l 7NdM—27vde1 )

Using the results applying to nodes from level dp; and
Lemma 2, the neighboring sets of nodes from level dj,



can be replaced by multihop neighborhood nodes from the
current level, i.e.

“_}UdM—1 € C(Ndel,vdMq7NdM*17/\/'dM,vdM,17

NdM—277)de1 )

The second term in the parentheses describes those nodes in
the set Vg,,—1 that are not direct neighbors of node vq,,—1,
ie. Ndh{il’Nd]vIv“dlw—l NNy, = 0, but which can be
reached from vq,,—; through nodes from the set V;,, via
a directed path. We proceed by reasoning the same way
as previously and replace all dependencies on nodes from
the current level dy; — 1 with nodes from the set Vg, 2
using Lemma 2 repeatedly. All these neighborhoods on
layer dj; — 2 contain nodes that can be reached either
directly from wvq,,—1 or through other nodes on the cur-
rent layer dy; — 1 or the previous layer dj;. Notice again
that there may be nodes with distance dj; — 2 that cannot
be reached from vg,,_; or any of its multihop neigh-
bors and therefore never occur in their neighborhoods and
their SSCCs. Thus they can never enter the description
of vg,,—1 and the result of Theorem 2 is achieved. The
levels dpr —2<d <1 can be treated in the same way
which concludes the proof. [ ]
Example 1: Tridiagonal systems

For tridiagonal systems represented by a line graph as shown
in Figure 2a it can easily be shown that the gain from one
node to the next as we move away from the source node is
less than 1 — ~. At the end of the line we have

_ AN N—-1 _

Wy = ———wn-1=PrnnN-1 < (I —=7)wn_1
an,N

a7

and for all other nodes with ¢ =2,..., N — 1

Qg i1

w; = Wi—1 = Biic1 < (1 —4)W;—1.

Q4 — ai,z‘ﬂﬂiﬂ,i
Furthermore, at the source node, one has

_ 1
w = —————————"N™U.
a1 — 041,2ﬂ2,1

Clearly, there is a strict decay from w; as we step through
each one of the nodes to wy and the gain is bounded
by 1 — « per hop, or by (1 —7)?, where d is the distance of
a node from the source node.

Note that this result can easily be generalized to having the
input at an arbitrary node ¢ as depicted in Figure 2b. One

u ul
i D@ D (DD
(a) Input at node 1 (b) Input at node i

Fig. 2: Line graph topology

obtains the relationships

o Qi i+1 _
w; = Wi+1
0 — Qi 1Bi—1,
= ﬁi,i+1wi+l < (1 — ’y)wi+1, 7= 1, - 72' — 1,
_ Q-1 _
w; Wi;—1

i — i1 Biv1
= Bm_lwi_l < (1 — ")/)’Lf)z'_h 7 =1+ 1, .. .,N.

For 7 = 7, 1.e. the node with excitation, we have
1
w; = Uu.
i e - - Ay
Qg3 Oéi,iJrlﬂl“rlﬂ ai,iflﬂl—lﬂ

This shows that we have the same result as before, only that
now the decay is in both directions, and in steady state each
direction is essentially independent of the other one. Again,
it is straightforward to extend this result to more general but
related topologies like stars or trees.

B. Steady state magnitude decay with sinusoidal input

In this subsection we examine the same scenario as in
the previous one only now instead of u(t) = |u| we con-
sider u(t) = |ule?™, i.e. we have a sinusoidal input. While
in one sense the results of the previous subsection are a
special case corresponding to w = 0 of the results of this
subsection, we will see here that the results for general w
are best viewed in the light of those for w = 0. Because
the system is stable, the steady states of the subsystems will
also be of sinusoidal form with the same frequency but with
a constant phase shift, so we have

w;(t) = |, |e? @He) (18)

for ¢ after an initial settling time, and we define the vec-

tor Y = [@1, . 7@]\[]
For a start, we only consider the line graph case. Starting at

the end, only considering the magnitudes and by using the
differential equation (8) as well as the assumed solutions (18)
we get the relationship

QN N—-1

lon| = - lon—1] = Bn,n—1(w, )| WN_1]

19)
For the other nodes with ¢ = 2,..., N — 1 the bounds on the
gain are given by
Q1| Wi—1]
\/(am — @i i1 Bip1,i(w, ) cos(pig1 — ¢i))?
+(w = aiip1Birni(w, @) sin(pit1 — ¢i)?
= Bii—1(w, )[wi—1| < (1 —7)[wi—1].

|w;| =

The relationship for the source node is
1

(1,1 — a1,262,1(w, ) cos(p2 — @1))2u
+(w — a1,282,1(w, ) sin(pz — ¢1))?

|1I)1| <

By inspection, it can easily be noticed that with w = 0 and
all p;11 —@; =0, we get that 3; ;(0,0) correspond to f3; ;



from the constant input case such that the results from the
constant input are recovered, and are in fact generalized here.
Notice also that the constant input case j3; ;(0,0) is always
an upper bound for the sinusoidal case.

If we consider the general dynamics of subsystem i de-
scribed by (8) with sinusoidal input and neighbors in the

set {j1,...,71} one obtains for the steady state magnitude
that
Ji
(i gy @, | + > i jlwj] cos(; — ¢5,))?
Jj=J2
Ji
+(O o jlws|sin(p; — 95,))
|1D | J=Jj2
i =
V azzi + w?
Ju
<

> D .

J=ij1 Qi

We can see that the major difference to the case with constant
input is that one cannot express the steady state magnitude
as a linear combination of the neighboring steady state
magnitudes, but that it can be bounded by the same linear
combination obtained in the constant input case. Hence,
the steady state magnitude in the sinusoidal case is always
bounded by the steady state of the constant input case.
Therefore, we can state the following corollary, omitting the
proof.

Corollary 1: Given the system dynamics (11), and a sinu-
soidal input u(t) = sin(wt) at a designated source node, the
steady state magnitude of a node v with distance d from the
source node is upper bounded by an SSCC as defined in (12)
of the steady state magnitudes of the unique (d — 1)-nodes
of node v.

IV. NUMERICAL EXAMPLE

In this subsection, we will illustrate the obtained results in
a numerical example.

We consider the following system dynamics for the ith
subsystem

L1, = To

) s

Toi = —kosT1,i — bo T2 + E (k1im15 + b1ia ),
JEN;

and we assume that the interconnection topology is given
by the line graph shown in Figure 2. We consider N = 10
subsystems, and the parameters ky; and by ; are chosen
from the set {1, 2,3} while the parameters k; ; and b ; are
chosen randomly from the set {0.01,0.02,0.03,0.04,0.05}.
The parameters are chosen this way to ensure that a A
exists such that —A is an M-matrix. The system dynamics
can be imagined to represent a platoon of vehicles where
the velocity of the ¢th vehicle is influenced by the position
and the velocity of the preceding and the following vehicle,

e.g. through a control law, or because of an actual physical
connection.

Given the system matrix A, we first construct A where
we choose @Q; to be the identity matrix of size two. Then
we determine a diagonal matrix D such that A = D=1 AD
is row diagonally dominant. The resulting reduced system
dynamics are described by (11) where

[~0.96 086 0 0 0 0 o0 0 0
009 031 019 0 0 0 o 0 0 0
0 05 -057 001 0 0 0o 0 0 0
0 0 048 —114 005 0 0o 0 0 0
a_] 0 0 0 007 -097 022 0 0 0 0
=1 o 0 0 0 014 —038 015 0 0 0
0 0 0 0 0 031 —087 009 0 0
0 0 0 0 0 0 0l -Ll 02 0
0 0 0 0 0 0 0 006 —044 0.8
| o 0 0 0 0 0 0 0 044 —083]
and we choose b = [1,0,...,0]T.

In this case v = 0.1021. Therefore we expect the gain be-
tween hops from subsystem to subsystem to be at most (1 —
~v) = 0.8979. The response of the system to the constant
input signal u(¢) = 1 is shown in Figure 3. The steady state
values w; of the subsystems is shown in Figure 4. The
spatial decay can be clearly observed. The gain between hops

( wqul) lies between 0.0745 and 0.8808 and is shown in
Figure 5. It can be seen that the upper bound (1 — ) per
hop is clearly conservative in general but in one case it is
very close to the actual gain. Next, we apply a sinusoidal
input u(t) = sin(wt) to the system. The system response
for w =1 is shown in Figure 6 and one can easily see
1) the spatial decay between nodes, and 2) the phase shift
between hops. To illustrate the spatial decay, the steady
state magnitudes are also added to Figure 4. The gain
between hops, now described by i u"i‘ll , is between 0.0484
and 0.4316. All the values, in addition to the values of
the gain for w = 0.5 and w = 2, are shown in Figure 5.
Clearly, the constant input case is an upper bound for the
sinusoidal case, as expected from the general analysis. Also
it can be seen that while the bound is close in some cases,
it is quite conservative in others and it becomes more and
more conservative for increasing w. This is also expected.
However, it seems that at least for relatively small values
of w, the constant input case can be considered to be a good
approximation as a bound for the sinusoidal case and offers
easier computations.
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Fig. 3: Response to u(t) = 1 for line-graph



{ . u(t)=1
9| u(t) = sin(t)
E o
=0 i
0 [ ] & 0 |

Fig. 4: Steady state values showing spatial decay for line
graph
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Fig. 5: Actual gain between hops with upper

bound (1 — ) = 0.8979.
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Fig. 6: Response to u(t) = sin(t) for line-graph

V. CONCLUSIONS

In this paper we have investigated the propagation of an
input signal through a dynamical system. In order to achieve
this the individual subsystems are represented by a scalar
approximation such that the overall system is in the form of
a vector Lyapunov function. We then assume that the new
system dynamics matrix satisfies an M-matrix condition. For
two special cases, a constant input and a sinusoidal input,
analytical analysis of the steady state values has been carried
out to see what the gain is between hops from subsystem to
subsystem. The main result is that the steady state value of
a node with a specific distance d to the source node can be
expressed as a so-called steady state conic combination of
the steady state values of nodes with distance (d — 1) to the
source node. For special cases like line-graphs or trees, the
gain between hops can be bounded by a parameter v that is in
direct relation to the entries of the system dynamics matrix.
Also it has been seen that the constant input case can serve as
an upper bound to the case with sinusoidal input. The results
are validated and illustrated using numerical simulations.
Future work will include transient analysis and changes in
system parameters.
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