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vector for the geometric state space of rounded particles
facet distance vector of a kernel polytope for rounded shapes
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total particle number
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matrix for mapping between vector spaces
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Introduction

1.1 Motivation

Particle Shape. Particle shape affects the processing of powders or dispersions and
influences various product properties as it is discussed by Briesen [2008] or Borchert
[2012]. The shape and shape distribution influences the filterability, dryability, washa-
bility and general solids handling during downstream processing. For the final product,
the bioavailability, catalyst efficiency, coating behavior or the efficiency of an active
pharmaceutical ingredient are affected by the shape of the respective particles. Be-
cause of the purity of crystalline products, crystallization processes are particularly
important for pharmaceuticals [Variankaval and Cote, 2008]. The above properties are
typically linked to crystals dispersed in fluids. In contrast, Adair and Suvaci [2000]
indicate the importance of particle shape for composite materials where particles with
anisotropic properties like crystals are embedded in either an anisotropic microstruc-
ture or an isotropic matrix.

State Spaces. Computing the geometrical properties of a crystal (e.g. volume or spe-
cific facet areas) is straightforward, once the crystal shape is measured or defined. Cor-
responding algorithms (e.g. volume computation of polytopes) are also efficient enough
to simulate the shape evolution of a single crystal while the complexity increases signif-
icantly when the disappearance of faces must be detected [Zhang et al., 2006]. However,
typical crystalline products are powders or dispersions. For the simulation of these crys-
tal populations, a speedup of computations is inevitable. To achieve this, the viewpoint
on a single crystal shape must be lifted to a broader viewpoint that overlooks all possible
crystal shapes of a certain crystal system. This new viewpoint looks on a geometrical
state space in which each point equals a specific crystal shape. Analyzing this space
would aim at revealing the subdomains in which certain crystal faces are present or
finding a shortcut to compute the particle volume. At the beginning of this work, this
analysis was in it’s infancy so that parallel developments are discussed later in section
1.4.

Joy. An alternative motivation for this work would be analogue to Boerrigter [2003]
whose introduction is mostly driven by the fascination for crystals and, therefore, in-
cludes many references to the early scientific interest in this field. Improving the un-
derstanding for the nature of things that are surrounding us (e.g. crystals) and discover-
ing new relations between different aspects (e.g. crystal structure, growth rates, shape
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and connected mathematical concepts) is a motivating prospect by itself. From my per-
sonal view, prior arguments to improve industrial processes and product properties are
(just) an economical driving force and a mere justification to follow a natural impulse of
humankind: enjoying to be curious and ambitious.

1.2 State of the Art

Crystal shape representation. The commonly accepted crystal shape representa-
tion is based on a finite selection of faces that can possibly appear during a crystal-
lization process. Since crystals always exhibit certain symmetry, these faces come in
groups called crystal forms. Figure 1.1 shows some examples for which the faces of such
groups are colored in equal shades. The shape and size of a crystal is then determined
by the distance of these faces from the origin of the coordinate system. Because of the
symmetry, only a few representative face distances must be considered for a sufficient
representation. These face distances constitute the geometric state space that is ana-
lyzed in this work.

The current state of the art for the modeling of growing crystal populations with the
aforementioned geometric detail is indicated by the dissertation of Christian Borchert
[2012]. Before that, similar analysis was only performed for the evolution of single
crystals, for crystal populations with constant or similar shape, or for examples with
significant simplifications. The associated array of scientific work is briefly reviewed in
the last part of the introduction. The remainder of this subsection contains an outline
of the present achievements and corresponding open questions.

110) {010}

{0-10}

{011} 100}

1001) {0-1-1}

{110}

{201} {1-10}

Figure 1.1.: potash alum (left), paracetamol (middle) and lactose (right)

Validity. One of the most imminent issues for crystal shape modeling shall be out-
lined in the following. Imagine the potash alum crystal in figure 1.1 being altered by
increasing the distance for the light blue colored {110} faces. These faces will quickly
grow out. Next, imagine the face distances increasing further. The obtained combina-
tion of face distances seems strange because increasing the distances of the {110} faces
does not change the shape any further. This problem is denoted by ‘validity’ throughout
this present work and Borchert successfully prevents such invalid combinations of face
distances in presented simulations. However, he did not provide a method to handle
such invalid combinations with an equal efficiency compared to valid combinations of
face distances. This capability is useful to conclude schemes for model reduction and
shape approximation that are demonstrated in this work.

Generality. The geometric state space for the potash alum example in figure 1.1 only
requires 3 representative face distances that are hc; for the {111} faces, hc o for the
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{100} faces and hc 3 for the {110} faces. The complete set of face distances, expressed
by the 26-dimensional vector h, can then be obtained by a mapping: h = My, ,nhc
from the 3-dimensional vector h¢. This mapping transfers the symmetry information
and is commonly used for the definition of the crystal geometry. However, it is not
clear whether arbitrary mapping matrices My.,» can be chosen or if yet undefined
conditions must hold for the framework proposed by Borchert. It turns out that such
properties exist so that proper representations that fulfill them are distinguished from
improper representations. Fortunately, representations that are constructed according
to crystal symmetry are always proper. However, it also follows that it is not possible
to treat arbitrary and possibly improper shape representations with the current state
of the art. Again, applications are model reduction and shape approximation since the
resulting representations are typically improper.

Measure computation. A second main achievement from the analysis of the geo-
metric state space is an efficient scheme for measure computation. Without Borchert’s
framework, the vertices of the polytope must be computed together with a triangulation
to obtain, for example, the polytope volume. With the available framework, only a set
of linear inequalities must be evaluated followed by the evaluation of a 3'? order poly-
nomial. In this way, the polytope volume computation is quickened by a factor of 10 to
500 which has a considerable impact on the simulation of particle populations. While
Borchert focuses on the crystal volume, this present work demonstrates a more general
approach towards measure computation.

1.3 Focus and Outline

Thesis. This work focuses on the geometric details for faceted particles and crystals.
It aims to connect the problems that appear in the analysis of the geometric state space
with concepts and solutions drawn from existing mathematical literature, in particular
convex geometry. While important results of Borchert’s work have to be derived again
to create this connection, a generalization of the existing framework is expected and it
is aimed to extend the variety of particle shapes that can be modeled.

Outline. Required mathematical concepts and terminology are introduced in chapter
2 together with outlines of algorithms for geometric problems. Given these preliminar-
ies, new findings and corresponding case studies are organized as follows.

¢ In chapter 3, the required analysis for the treatment of proper representations is
derived based on the introduced mathematical theory. Open aspects of the existing
framework are resolved so that any combination of face distances can be handled
with the same level of efficiency. A large set of case studies is used to verify the
implemented algorithms and to provide data on the related computational effort.

¢ In chapter 4, a numerical solution scheme for the occurring population balances is
derived. The obtained scheme is similar to existing ones but incorporates Monte-
Carlo integral estimates so that it is accompanied by a straightforward error es-
timator and a novel option to optimize the scheme for low numerical errors. The
numerical scheme and the error estimator are validated using two case studies for
which analytical or semi-analytical results are available.

¢ In chapter 5, the framework is extended so that abraded particles which exhibit
rounded edges can be described. This new shape model is consistent with the
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given framework and is rendered possible by the newly introduced mathematical
theory. Dynamic shape changes are linked to attrition and growth phenomena,
isolating the required parameters to describe the corresponding shape evolution.
In addition, a shape identification algorithm based on 2-dimensional projection
images is presented and tested in simulation and experiment case studies.

* In chapter 6, two approaches to model reduction and shape approximation are
investigated. In the first approach, the dimensionality of the geometric state space
is reduced. In the second approach, the shape approximation aims to bypass the
complexity of measure computation so that an original population balance model
can be reduced to a set of ordinary differential equations. Simulation case studies
are used throughout the whole chapter to compare the reduced or approximated
results to their original formulations.

The last chapter finally acts as a reminder on the results of this work (the summary)
as well as a cheat sheet on the inspirations that could come along while reading (the
outlook).

1.4 Literature and Remarks

Overview. The first paragraphs of this subsection illuminate the developments in
the field of particle shape modeling, including the listing of relevant literature sources.
The last paragraph links to important topics on general crystallization modeling and
indicates boundaries and limitations of this work.

Single Crystal Evolution. The main complexity for the geometric evolution of crys-
tal shape comprises the conditions for the appearance and disappearance of crystal
faces, given their growth rates. This problem statement was first discussed by Johnsen
[1900], who considered conditions for two adjacent faces. It was further developed
by considering 2-dimensional crystals, more than two adjacent faces or otherwise con-
strained approaches [Borgstrom, 1925, Alexandru, 1969, Szurgot et al., 1991, Prywer,
1992, 1995] until general conditions for a 3-dimensional crystal were provided by Pry-
wer in 1996. All these approaches were static considering only the principle appear-
ance/disappearance conditions. They did not consider the actual dynamic evolution of
the crystal. The discussion of such problems was given by Gadewar and Doherty [2004]
for prismatic crystals and finally by Zhang et al. [2006] for general 3-dimensional crys-
tals. In both approaches, the evolution of all edges for the current crystal is tracked,
given that a face can only disappear when at least 3 edges disappear simultaneously.

Towards Crystal Populations. Approaching particle populations identifies another
general issue for the geometric evolution of shape that is the calculation of measures.
Based on a review by Cardew [1985], this problem was first mentioned by Christof-
fersen and Christoffersen [1976] and motivated by the coupling of dissolution kinetics
with measurements in batch crystallizers. For such setups, the displacement of specific
faces, for which the growth or dissolution laws were studied, cannot be observed directly.
They must be retraced by the evolution of the bulk solute concentration. Consequently,
several publications consider the relation between the face distances for a crystal popu-
lation with their volume [Nyvlt and Matuchova, 1976a, Christoffersen, 1980, van Oost-
erhout and van Rosmalen, 1980, Cardew, 1985]. The obtained results, however, are only
applicable as long as the particle shape remains similar. This means that the same set
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of faces, edges and vertices must remain present at the crystal surface. A much simpler
approach is obtained when the shape is assumed to be constant [Nyvlt and Matuchova,
1976b]. Such simplified particle populations are simulated by 1-dimensional popula-
tion balances for which several textbooks are available [Randolph and Larson, 1971,
Ramkrishna, 2000].

Shape Evolution of Crystal Populations. Simulating the shape evolution of crys-
tal populations also involves the numerical solution of multidimensional population bal-
ances!. This additional complexity is discussed in detail in chapter 4 so that the focus
on the geometric difficulties is maintained in the following. Ma et al. [2008] studied the
growth of potash alum crystals with 3 independent shape variables. It is evident that
their results comprise crystals with invalid combinations of face distances?. Their later
publication [Ma et al., 2008] did also not consider the validity of face distance combina-
tions. In some earlier studies on the solution of 2-dimensional population balances, Ma
et al. [2002] or Puel et al. [2003] used geometrically more simple examples for which no
unreasonable combinations exist. Additionally, Briesen [2008, 2009a] discussed a com-
parable approach for the attrition of particles. This time, unreasonable combinations
of face distances existed, but they were prevented by the specific choice of the kinetic
rates. The first approach that finally considered the full geometric complexity of faceted
crystal growth, namely the validity of face distance combinations and efficient measure
computation, was given by Borchert [2012].

Borchert’s work. Borchert’s research on the geometric state space of crystals started
with his diploma thesis [Borchert, 2007] which already considers the appearance and
disappearance of crystal faces as well as the solution of corresponding population bal-
ances. Results of this work were also presented at the 3" International Conference
on Population Balance Modelling [Borchert et al., 2007] and are incorporated in later
scientific papers that solve problem statements of crystallization process design, shape
identification from measurements and parameter identification [Borchert et al., 2009,
Borchert and Sundmacher, 2011]. Another important step additionally considers the
appearance and disappearance of edges at the crystal surface in the analysis of the geo-
metric state space. This allows an efficient approach to measure calculation which was
presented at the 17? International Symposium on Industrial Crystallization [Borchert
et al., 2008], but the key components were not published as a full paper until 2012
[Borchert and Sundmacher, 2012]. Note that the first publication from the work pre-
sented in this dissertation also falls into that period [Reinhold and Briesen, 2011].

Singh’s work. Borchert’s diploma thesis was performed at Purdue University at the
chair of Prof. Ramkrishna who also acted as the supervisor for Meenesh Singh who
submitted his dissertation in 2013. Singh also contributed to the understanding of
the geometric state space. He considered crystals with preferred asymmetry while his
case study is limited to a 2-dimensional case. However, according to the above his-
tory, it is not surprising that the corresponding publication was done together with

IThis literature review is strictly limited to multidimensional populations balances that consider the
growth shape of crystals. Scientific work that considers aggregation or population balances with non-
shape-relevant coordinates are beyond the scope of this work. Additional sources may, however, be
listed in chapter 4 with respect to particular numerical schemes.

2This vague term is only adumbrated in the introduction but clearly defined later in this work or by
[Borchert, 2007, 2012].
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Borchert [Chakraborty et al., 2010]. In later studies by Singh, he discussed applica-
tions of Borchert’s framework: shape identification from measurements [Singh et al.,
2012] and a utilization and interpretation of the provided geometric framework [Singh
and Ramkrishna, 2013, Singh et al., 2013].

Related topics and limitations. This work focuses entirely on the geometric aspects
of shape modeling for growth and attrition of 3-dimensional crystals or particles. Never-
theless, related fields of interest are listed in the following to indicate these limitations
more specifically and provide relevant literature for further studies. Most of the aspects
below are generally covered by industrial crystallization handbooks like Mullin [2001]
or Mersmann [1994] or also the work of Briesen [2008].

The molecular lattice of a crystal and its symmetry constitutes the structural origin
for the polyhedral shapes that are assumed by crystals [Borchardt-Ott, 2009, Sands,
1993]. This does also include the common notation of crystal faces by Miller indices like
the ones that are used for the figure 1.1 on page 2 (e.g. {110}).

The dynamic aspects for crystal shape are given by the rates of nucleation [Lacmann
et al., 1999, Erdemir et al., 2009] and growth [Lacmann et al., 1999, Boerrigter, 2003].
Nucleation is mentioned here because the lattice structure of the nucleus cannot be
changed by growth which is important for enantiomers. In regards to growth, Taylor
et al. [1992] provide an interesting overview of a mathematically more general approach
to the motion of interfaces. This approach merely assumes a dependence of the veloc-
ity on the volumetric and surface based free energy and it turns out that the typically
assumed polyhedral growth model is only one out of nine discussed approaches. The
counterpart of growth is dissolution [Snyder et al., 2007, Snyder and Doherty, 2007,
Singh, 2013]. When this process is not diffusion limited, it is also covered by the geo-
metric growth models given by Taylor et al. [1992]. Otherwise, the resulting equations
are called Stefan problems [Chen et al., 1997, Vermolen et al., 2005] and, to the au-
thor’s knowledge, the resulting crystal shapes are not yet considered for the modeling
of particle populations.

Attrition is covered in detail in chapter 5 while breakage [Hill, 2004] or aggregation
[Bramley et al., 1996] of particles is not treated. While breakage creates reasonable
convex particles, the generated particle shapes do not correlate well to the shape model
for faceted growth. Aggregated particles are clearly not convex and therefore beyond
the scope of this framework which is developed from convex geometry.
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Geometry

2.1 Introduction and Preliminaries

2.1.1 Introduction

Convex Geometry. In this work, the theory of convex bodies is incorporated into
the analysis of the geometrical state space of faceted particles. The fundamentals of
convex geometry as a separate field of mathematics or geometry are given by two inde-
pendent developments of Karl Hermann Brunn [1887] and Hermann Minkowski [1911]
[Kjeldsen, 2008]. Therefore, this field is also denoted by the term ‘Brunn-Minkowski
theory’. Since its first applications to number theory at the end of the 19t" century, it
has nowadays influenced numerous other fields of interest like optimization, graph the-
ory or coding theory [Gruber, 2004]. General textbooks on convex geometry are given
by Bonnesen and Fenchel [1934], Hadwiger [1957], Griinbaum [2003] and, in particular,
Schneider [2008]. This field provides the core of the mathematical theory while supple-
mental material is drawn from integral geometry [Santalé, 1976] and combinatorial
geometry [Edelsbrunner, 1987]. Especially important is also the field of computational
geometry [Preparata and Shamos, 1985, Gritzmann and Klee, 1993, O’'Rourke, 1994]
from which the applied algorithms originate.

Wulff theorem. While convex geometry is hardly known in crystallization engineer-
ing, it was already applied for the more commonly known Wulff theorem [Wulff, 1901,
Fonseca, 1991]. The Wulff theorem states that the surface free energy of a fixed amount
of crystalline substance is minimized by exactly that shape for which the face distances
of all possible faces are proportional to the corresponding surface free energy of that
direction. Note that the surface free energy is dependent on the direction of a crystal
face since the underlying molecular lattice generates different surface configurations.
In other words, the Wulff theorem is required to predict the thermodynamical equilib-
rium shape of crystals. This theorem was proven by the application of the so-called
Brunn-Minkowski inequality which is an analogon to the triangle inequality.! The de-
velopment of this proof with successively increasing generality is described in [Herring,

Describing the Brunn-Minkowski inequality is beyond the scope of this work. But assuming the knowl-
edge that is provided in this chapter, it can be explained as follows. For two convex bodies A, B € R"

volume

and the Minkowski addition AA + (1 — \)B, the following inequality for the volume measure

volume

holds: """ (A + (1 — \)B) > (1 — ) y/ (171 (A)) 4 A \/ (17" (B)).
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1951], [Fonseca, 1991] or Singh [2013]. The theorem was also adopted by Chernov
[1963] to predict the steady-state morphology of a crystal based on predicted face spe-
cific growth rates [Gadewar and Doherty, 2004].

Overview. The remainder of this subsection contains some general remarks on no-
tation while subsection 2.1.2 introduces basic terms for geometric objects. Section 2.2
then presents two shape representations that are commonly used in mathematical lit-
erature and one shape representation that is newly defined for the scope of this work.
All corresponding definitions are prerequisites for the derivations and discussions in
subsequent parts of this work. Section 2.3 explains principal concepts for measure com-
putation and the two algorithms in section 2.4 are central for the derivations of chapter
3.

Physical objects and state spaces. The notation and definitions introduced in this
and the following sections are used for geometric objects that are 1-, 2- or 3-dimensional
as well as for sets of vectors as they occur for state spaces. The intuitive difference
between both is that measures like length, distance and angles are commonly applied
for physical objects while such measures usually are not even required for state spaces.
However, the mathematical theory of both objects that is linear algebra is almost the
same [Lorenz, 2003, 2005, Bronstein et al., 2008]. Real vector spaces R" that are com-
monly used for state spaces can be extended to the Euclidean vector space E™ that is
commonly used for geometric objects and for which measures like length, distance and
angle are defined.

Euclidean vector space. The n-dimensional real vector space R™ only implies vector
addition and scalar multiplication [Lorenz, 2003]. To obtain measures like the diame-
ter or the volume of geometric objects, the Euclidean vector space, or simply Euclidean
space, E" is required which implies that the terms length, distance and angle are de-
fined.

For the vectors u = (uy,...,u,)" and v = (vy,...,v,)" in Euclidean space (u,v € E")
the scalar product is defined by:

(u,v) =uev= Zuzv, (2.1)

The notation (u, v) is common in the context of geometry while the notation u e v is
used alternatively in the context of analysis (e.g. divf(x) = Vx ¢ f(x)). The length of the
vector v is defined by the Euclidean norm:

lul| = v/ (u,u). 2.2)

The distance between two vectors or points is given by ||u — v|| and the non-reflective
angle 0° < 6 < 180° between the two vectors is given by:

0 = arccos M (2.3)
[[all [v]]

It is assumed that any real vector space can be extended to an Euclidean vector space
so that E™ and R" are considered equivalent in subsequent sections of this work. This
also implies that for most of the upcoming definitions the term ‘geometric object’ can be
replaced by ‘set of vectors’ and vice versa.
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Sets of points and sets of vectors. Geometric objects are represented by sets of
points or vectors. While a vector describes the directed path between two points, it will
not be distinguished between points and vectors. A point is equivalent to the corre-
sponding vector pointing from the origin to that point. In the context of geometry and
vector spaces, bold lower-case letters are applied for points or vectors (e.g. x, v or u)
and upper-case letters for sets of points or vectors (e.g. A or B). Treating geometric
objects as sets of vectors immediately allows to use the notation that is common for sets
and vector spaces. Typical set operations might be set union (U), set intersection (N) or
relative complement (\).

2.1.2 Geometric Objects

Geometric bodies. Geometric objects might, in general, be any subset of the Eu-
clidean vector space. However, all physical bodies considered in this work will be
bounded and closed subsets? of the Euclidean space. This excludes, for example, fractals
which are not closed. An object of this class (bounded and closed) is called a geometric
body or n-dimensional body.

Convexity. The geometric object B is called convex if for any two elements x and y of
B, all elements of the closed line segment [x, y] are part of the geometric object B, or
formally written:

Bisconvex < (x,y€ B,z€[x,y|=z¢€ B). (2.4)

This defines convexity for any subset of a vector space, not just bodies. Such a convex
set is not necessarily bounded nor closed.

Unit sphere, unit ball and unit vectors. Vectors for which only the direction is
relevant are usually normalized to have the length one. The set of all unit vectors in R™
is called the unit (n — 1)-sphere and is denoted by S"~!. If an n-dimensional vector v of
an arbitrary direction is required, the notation v € S"! is used. The unit (n—1)-sphere
is the surface of the unit n-ball and, hence, is itself (n — 1)-dimensional while the points
exist in the n-dimensional space. The unit n-ball is denoted by B"™.

Examples are given to clarify the terms above. The line segment [—1, 1] is the unit 1-
ball and the corresponding unit 0-sphere consists of the points —1 and 1. The unit 2-ball
is a disk with radius 1 and center in the origin. Its circumference is the corresponding
1-sphere.

Convex hull, positive hull & cones. The terms ‘convex hull’ and ‘positive hull’ are
common operators in mathematical literature. Figure 2.1 shows the convex hull and the
positive hull of a point set B. The point set B consists of the four black points around
the label conv(B). The convex hull (the shape labeled with conv(B)) is a convex body
and, hence, bounded while the positive hull (the cone labeled with pos(B), including the
convex body) is unbounded.

In general, given a nonempty set B, the convex hull of B is defined by:

convB ={> Ab;|b; € B, \; €R, X\ >0, Y X\ =1} (2.5)

3 (2

2Bounded sets do not extent to infinity. For closed sets, the boundary belongs to the set. For example, all
numbers z € R* with 0 < z < 1 are an bounded and closed set. The numbers with 0 < z < 1 determine
a bounded and open set.
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pos(B)
origin

Figure 2.1.: A set B (black dots except for the origin), the convex hull of B (white shape)
and the positive hull of B (light blue shape including the white shape).

and the positive hull by:
pos B={)_Ab;|b; € B, \; € R, \; > 0} (2.6)

)

while the total number of elements b; that is combined for conv B and pos B is arbitrary
but finite [Schneider, 2008, page 1 and 2]. A convex cone, or simply cone, is further
defined by any nonempty set C for which each element c € C' implies that Ac € C holds
for any A > 0, A € R. The positive hull always creates an convex cone while convex cones
are frequently used for regions of the geometric state space (see chapter 3).

Hyperplane and halfspace. A hyperplane is the generalization of a plane in 3-
dimensional space. It can be defined by a normal vector a € R™ and a scalar h € R:

H(a, h) = {x| (a, x) = h}, (2.7

where h is the distance of the plane from the origin if the vector a is a unit vector. A
hyperplane is always (n — 1)-dimensional and separates the corresponding vector space
into two parts. Both parts of the vector space, including the hyperplane, represent a
halfspace. Hence, a halfspace is a subset of the R™ that is defined by:

H™ (a, h) = {x| (a, x) < h}. (2.8)
This definition implies that the normal vector a points to the outside of the halfspace.

Support function. The support function is an important tool for the Brunn-Minkow-
ski theory and will therefore be used as the basis for several definitions in this section.
The support function assigns each convex body B a uniquely determined function h(B, -):
R” — R.2 The support function is defined for general geometric objects B by [Schneider,
2008, section 1.7]:

h(B, v) = ts)telg (b, v), (2.9)

where the supremum (sup), the least upper bound of the argument, is identical to the
maximum (max) for geometric bodies*. As vectors can be interpreted as points, the

3This function might be interesting for shape approximation because knowledge of approximating func-
tions could be utilized to approximate convex bodies.

“The supremum is only required in the case of non-compact sets. For example, the support function of a
fractal would require the application of the supremum.

10
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support function assigns every point v in space a scalar value h(B, v) according to the
convex body. A 2-dimensional example is shown in figure 2.2 (left). The polygon is drawn
in blue. The support function that has values for any point in the visible coordinate
range is presented by the labeled contour lines for h(B,v) =1, 2, 3,4 and 5.

y-axis
o

support function

1
0 1/4 3/4 5/46/4 2
angle of v in multiples of m

Figure 2.2.: Support function of a polygon; left: the polygon in blue and the contour lines
of the support function in black with labels of the corresponding support
function values; right: polar plot of the support function h(B,v) for v € S!
where the z-axis is the angle between the vector v and the z-axis (path
drawn in left figure in white)

Support function as a representation. It isimportant to note thatfor A >0, A e R
it holds:
h(B, Av) = Ah(B, v) = h(AB, v) (2.10)

so that using the unit vectors u € S"~! is sufficient to characterize the support function.
According to the definition, equation 2.9, the support function h(B, u) represents the
signed distance of the point b € B that is farthest away from the origin in the direction
of u so that h(B, u) defines the outer hull of the convex body B. In consequence, knowing
the support function h(B, u) with u € S"! is sufficient to define a convex body B
[Schneider, 2008, theorem 1.7.1]. In 2-dimensions, any convex body can be represented
by a function R — R that maps, for example, the angle between the unit vector and the
z-axis to the support function i(-,u). Figure 2.2 (right) shows an example for such a
function which represents the polygon in the left part of the figure. For a 3-dimensional
convex body, a function R? — R is required whose arguments could be the polar angles
of the unit vector.

Supporting hyperplanes, halfspaces and sets. Figure 2.3 gives two examples for
the entities that are introduced in the following. These entities are based on a polytope
which is colored in blue and a specific direction u. In the left example, the direction
coincides with a facet normal of the polytope. The light line indicated by H (B, -) is the

11
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support hyperplane as the hyperplane H (u, &) for which /4 is minimal while the polytope
is still contained in the halfspace H(u, h) (region drawn in light blue). This halfspace
is called the supporting halfspace H (B, -). The intersection of the hyperplane and the
polytope is called the support set F/(B, -) which is identical to an edge of the polytope for
the left example. In the right example, a different direction u is chosen and the support
set F'(B,u) is identical to an extreme point of the polytope.

H(B,")

Figure 2.3.: Support hyperplane (light line, H(B,-)), halfspace (light blue region,
H~(B,-)) and set (bold line or dot, F'(B,-) for a polygon (blue) and two dif-
ferent directions (left/right)

In general, the support hyperplanes H (B, -), supporting halfspaces H (B, -) and the
support sets F'(B, -) are defined for a geometric body B C R" and a vector v € R" by the
application of the support function:

H(B,v) = {x|({x,v)=h(B,v),xeR"} (2.11)
H (B,v) = {x|{x,v)<h(B,v),xeR"} (2.12)
F(B,v) = H(B,v)NB. (2.13)

Note that the length of the vector v is irrelevant so that for any A > 0, A € R it holds:
H(B, \v) =H(B,v), H (B, \v) = H (B, v) and F(B, A\v) = F(B, v). Any supporting
hyperplane exactly touches the corresponding convex body. Any convex body B equals
the intersection of all supporting halfspaces: B = (),cg.—1 H (B, u). And the union of
all support sets exactly represents the boundary of the corresponding polytope: 0B =
Uuegn—1 F(B, u).

Face, facet and extreme point. The term ‘face’ for a 3-dimensional polytope is com-
monly understood as one of the 2-dimensional support sets. In the context of convex
geometry, the term ‘face’ has a more general meaning while ‘facet’ and ‘extreme point’
are two more terms to be considered. ‘Face’ and ‘facet’ are used differently dependent
on the chosen literature and the terminology here is adopted from [Schneider, 2008,
section 2.1]. Any d-dimensional support set F'(B, -) of the convex body B C R" is called
a d-face of B. For a 3-dimensional polytope, like the crystals to be considered, any edge
is a 1-face, any vertex is a 0-face and any 2-dimensional support set is a 2-face. A facet
denotes a (n — 1)-face and an extreme point is any 0O-face of a convex body. Extreme
points of a polytope will be denoted by: xg ;.

12
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2.2 Shape Representation
2.2.1 H-Representation

Motivation. A mathematical description of a convex body must exist so that they can
be modeled and analyzed algorithmically. This and the following subsection introduce
two representations for convex bodies that are frequently used in computational geom-
etry [Gritzmann and Klee, 1993, Hufnagel, 1995]. Both representations describe the
same subset of convex bodies that are commonly understood as polytopes or polyhe-
dra. The representation in this section is of major importance for the concepts in the
upcoming chapters so that an extensive notation is introduced here.

Definition. The intersection of a finite number of halfspaces is called a polyhedron. If
this polyhedron is bounded it represents a convex body. The corresponding set of half-
spaces that are defined by normal vectors a; and scalars h; is the H-representation of
the polyhedron [Hufnagel, 1995, page vii]. In the scope of this work, the normal vectors
a; are usually fixed and different polyhedra are obtained by varying the scalars h;. The
total number of normal vectors is denoted by ny, the normal vectors are collected in a
matrix:

a1l ar2 v Qlp
A = (ay, ag, ..., anH)T I , (2.14)
Gnyg,1 Ang,2 " OGnpn
and the scalars h; are collected in a vector h = (hy, ha, ..., hny)T so that a corresponding

polyhedron is denoted by Pa (h) or simply P(h) if the context clearly defines the matrix
A. The definition above can be formulated directly as (see equation 2.8):

Pa(h) =(H (ay, hi). (2.15)

However, usually the following equivalent expression is applied:
Pa(h)={x|Ax<h,xeR"}. (2.16)

Throughout this work the vectors a; are unit vectors so that the scalars h; can be called
facet distances and the vector h is called the vector of facet distances. In general, the
facet distances h; might be negative so that for these cases h; is not equivalent to the
distance as defined with the Euclidean norm.

Note that the facet distance h; equals the value of the support function for the direc-
tion of the corresponding normal vector: h(P(h), a;) = h; so that the nomenclature is
consistent.’ In consequence, the halfspaces (or hyperplanes) that define a polyhedron
are typically identical to the supporting halfspaces (or hyperplanes).

Example. An example of a polyhedron in 2-dimensional space is drawn in figure 2.4.
This example is also used to demonstrate how a possible physical dimension of a geomet-
ric object can be reflected in a H-representation. The facet normals are outer normals

5Considering the optimization problem that defines the support function (equation 2.9), the active linear
constraint is: a;x < h; (see equation 2.16). Hence, the support value is (a;, x) = h;.

13
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because of the definition of a halfspace. The matrix of facet normals is given by:

1/vV2  1/V2
—1/V2 1/V2

A NG —1)vE (2.17)
0 ~1

The values h; represent the distance of the corresponding facet from the origin (drawn
for h4) and might therefore carry the physical dimension of the polyhedron. The vector
of facet distances is given by:

T
h=13x <1, . 1) cm. (2.18)
2" V2

\)

ay

Figure 2.4.: A polyhedron in blue in H-representation (equations 2.17 and 2.18); normal
vectors drawn with bold arrows; the double arrow marks the facet distance
ha

2.2.2 V-Representation

Definition. Any finite set of points B is a V-representation of the corresponding con-
vex hull (conv B). However, the term V-representation is usually associated with a min-
imal set of points that describe the given polytope. These points are the extreme points
of the polytope and the number of extreme points that are used for a V-representation
is denoted by ng.

Polytopes and polyhedra. While a H-representation defines polyhedra that are not
necessarily bounded, a V-representation defines polytopes that are bounded by defini-
tion. However, if a polyhedron is bounded, the term polytope can be used synonymously
so that the usage of the term polyhedron or polytope is usually chosen according to the
associated representation.

Simplex and simplicial cone. The minimal number of vertices that describe a d-
dimensional polytope is given by d + 1. Such a polytope is generally denoted as a d-
simplex and might be embedded in some n-dimensional space (n > d). The n-simplex is
simply called a simplex. For example, any triangle in 2-dimensions is a simplex. The
term simplicial cone refers likewise to an n-dimensional cone in n-dimensional space
that is generated by a positive hull from exactly n points. Note that instead of d extreme
points for a V-representation, d facets of a #-representation could be used.

14
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2.2.3 Basic Operations and Minkowski Addition

Motivation. Given normal vectors and facet distances (#-representation) or extreme
points (V-representation), these scalars and vectors are used to describe the changes in
shape and size for convex bodies. This restricts the set of bodies that can be handled to
polyhedra or polytopes, respectively. This section defines operations that change shape,
size or position for general geometric objects. Based on these operations, an alternative
shape representation will be introduced in subsection 2.2.4 that is much less common
and has never been applied to crystals.

Basic operations. Given a geometric object B, the addition with a vector v € R" is
defined by:
B+v={x+v|xe B} (2.19)

This addition can be considered as displacing the object B by the vector v so that only
the position of that object is changed.
Multiplication by a scalar A € R is defined by the multiplication of its elements:

AB = {Xx | x € B}. (2.20)

This scalar multiplication can be considered as changing the size of the object B, even
though the position of the object might also change if it is not the origin.

Minkowski addition. The Minkowski addition is defined for arbitrary sets A, B ¢ R™
with [Schneider, 2008, page 126]:

A+B = {a+b|acA, beB}. (2.21)

The convex sets A and B are called summands of the resulting set (A + B).

Figure 2.5 demonstrates the Minkowski addition of an octahedron and a cube. Posi-
tions of the objects are ignored, because only size and shape are the significant prop-
erties for the framework that will be introduced in this work. The Minkowski sum is
obtained by taking an arbitrary point of the cube (marked with a black dot) and move it
with the cube along all points of the octahedron. The space covered by this procedure is
the Minkowski sum of both polytopes. This perception is represented by an alternative
definition of the Minkowski addition:

A+B=|JA+b (2.22)
beB

that is equivalent to equation 2.21.
The Minkowski addition is sometimes referred to as vector addition in mathematical
literature. In fact, the following equalities hold (A, B C R", A\, u € R):

A+B = B+A (2.23)
A+(B+C) = (A+B)+C (2.24)
AMA+B) = M+ AB (2.25)
A+ A = N+ uA (2.26)

so that the common understanding of the calculus in vector spaces can be applied, even
though the Minkowski addition together with the scalar multiplication does not form a
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Figure 2.5.: Octahedron (blue, left), cube (light blue, middle) and Minkowski addition of
both polytopes (right).

proper vector space. The neutral element for the addition is {0}, but there is no inverse
element ‘— A’ so that A + (—A) = {0}. However, as long as no negative scalar coeffi-
cients are used the common intuition from vector spaces will be valid. In particular, the
Minkowski difference® A — B is a separate operation that is defined by:

A—B:(]A—b
beB

Furthermore, the scalar multiplication —1 - A represents the point reflection of A. This
implies that A+ (—1- A) would be perceived as a larger body than A and A+ (—1- A) is
not equal to the Minkowski difference A — A which would result in {0}.

Minkowski addition and support function. The Minkowski addition of two con-
vex bodies A and B has an interesting and important relation to the support function of
these polytopes (see equation 2.9). This relation is [Schneider, 2008, theorem 1.7.5]:

WA+ B,) =h(A,-) + h(B,") (2.27)

and reads as: the support function of the Minkowski sum is the sum of the support
functions of the corresponding summands. Strongly connected to this and very useful
to understand Minkowski addition is that for two convex bodies any support set of the
sum equals the Minkowski addition of the support sets of both separate polytopes (in
the same direction):

F(A+ B,)=F(A,-)+ F(B,"). (2.28)

This implies for 3-dimensional polytopes in particular that any face of a summand must
be a face of the sum and any edge of a summand must be an edge or face of the sum.
This can be formally written as: dim F/(A + B,:) > max (dim F'(4, ), dim F(B,-)). Fur-
thermore, if the support set of the sum is an edge, its length is determined by the sum
of the lengths of the corresponding edges of the summands.

2.2.4 S-representation

Definition. Given the operations for geometric bodies from the preceding subsection,
it is now possible to define a new representations that uses a fixed set of arbitrary
bodies as the generating elements instead of points (V-representation) or hyperplanes

6Minkowski difference is also denoted as Pontryagin difference in the context of control theory [Kvasnica
et al., 2004].
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(H-representation). The (ordered) set of bodies is denoted by S = {51, ..., Sy} while
ng denotes the total number of bodies S;. The represented shapes are then generated
as linear combinations with arbitrary scalar coefficients \; € R, \; > 0 that can be
arranged in a vector A:

Ps(A) =>_AiSi. (2.29)

Such representations will be called S-representations and the bodies S; are referred to
as structuring elements. The subscript S for Ps is typically omitted in applications.
In contrast to V- or H-representations, the bodies S; and, hence, also the represented
shapes Ps(A) are not restricted to polytopes or polyhedra. In chapter 5, this feature will
be utilized to model rounded particles.

Literature. The above concept (but not the notation) is already denoted by Brunn
[1887] as ‘convex linear family of convex bodies’ (original: ‘Konvexe Linearschar kon-
vexer Korper’) for ng = 2 [Blaschke, 1916] and is the basis of the framework presented
here. The Minkowski addition is also used in morphological image analysis in which
one summand is the image and the other summand is a filter that is called structur-
ing element [Szoplik, 1996]. This name is chosen for this work because it reflects the
intrinsic nature of the Minkowski addition: the morphological structure of the sum is
determined by the morphological structure of the structuring elements with coefficients
Ai # 0. The benefits of this representation become evident in subsection 2.3.2.
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2.3 Polytope Measures

2.3.1 Volume Computation

Motivation. An important part of the complexity that is connected with the modeling
of crystal shape comes with the necessity of volume calculation. Determining the total
volume of a crystal population is mandatory for the simulation of saturation dependent
crystal growth. Additionally, calculating any other measure relies on volume computa-
tion in dimension three or less. Beyond that, the volume is used as the primal example
for measures in general.

Spectrum of possible methods. An excellent overview of deterministic methods for
volume computation is given by Gritzmann and Klee [1993, section 3]. Other text-
books on computational geometry or algorithmical geometry, e.g. O’Rourke [1994], are,
however, equally helpful. The most important method is triangulation which will be
explained in the following paragraph. All other methods do not have any benefit over
this approach [Gritzmann and Klee, 1993]. Nevertheless, two alternatives are named
to outline the range of methods. The ‘sweeping-plane formula’ does not explicitly in-
volve triangulation. However, if it is applied for general polytopes, a triangulation is
implicitly contained. ‘Numerical integration’ is well known and includes Monte-Carlo
and quasi-Monte-Carlo methods [Press et al., 2007, Kroese et al., 2011]. These methods
are not very efficient for volume calculation, even though volume calculation poses the
historical origin of numerical integration [Gritzmann and Klee, 1993, section 3.4].

Triangulation. Figure 2.6 shows the triangulations of two polytopes that share the
same set of facet normals. Only the triangulation of two representative facets is shown.
Triangulation is defined as the dissection of a polytope into simplices for which the
intersection of any two simplices is a face of each.” Once a polytope is triangulated into
simplices, the volume calculation is straightforward and is comprised of the sum of the
simplex volumes. The volume of any n-dimensional simplex is calculated by:

1
1
Hsimplex = 7 |det (Xg2 —Xp1, XE3 = XB1, -+ XBat1 —Xp1)], (2.30)

where xg ; are the (n + 1) extreme points of the simplex.

Applied algorithm (Qhull). For the implementation of volume calculation, the quick-
hull algorithm [Barber et al., 1996] is used, which is readily available in MATLAB®
[2012]. This algorithm calculates the triangulated convex hull for a set of points. How-
ever, instead of the polytope, the surface of the polytope is triangulated. The triangu-
lation of the polytope is obtained by choosing any interior point of the polytope. The
triangulations in figure 2.6 are obtained that way. The algorithm simultaneously gen-
erates the facets of the convex hull so that the output is a V-representation, as well, as
a H-representation. However, the H-representation cannot be accessed in MATLAB®S.

A face might be empty for empty intersections. This is the definition used in literature. As an alternative,
triangulation could be defined by the dissection of a polytope into simplices for which the volume of the
intersection of two different simplices must be 0. This definition would, however, not be equivalent since
it allows dissections which are not possible with the original definition. The condition that each pair of
two simplices must be disjoint might also be more intuitive but is not applicable since the simplices can
share the same facets or edges.

SMATLAB® calls the original implementation but does not copy the results of the 7-representation into
its workspace.
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Figure 2.6.: Triangulation of two polytopes with the same set of facet normals (facets of
a cube and facets of an octahedron)

Barber et al. [1996] also give an empirical comparison to other algorithms and they dis-
cuss practical considerations for degenerated input and imprecision of round-off errors.

Complexity for crystal modeling. A #-representation with a fixed set of facet nor-
mals but with a varying vector of facet distances is assumed which is the typical setup
for crystallization modeling. As long as the same edges remain present and only change
in length, each extreme point xg ; from above is defined by the intersection of the same
3 facets so that the extreme points are a linear function of the vector of facet distances.
Furthermore, a valid triangulation is achieved by combining the same extreme points to
simplices even when the overall shape changes. Following equation 2.30, the volume is
a 3" order polynomial of the extreme points. The result is an equation that is commonly
known in mathematical literature: given the vector of facet distances h, the volume of
a polytope can be calculated, by [Schneider, 2008, lemma 5.1.2]:

volume Z cyobame phjihy, (2.31)
05,k

where the set of coefficients c;"(lgl;?f) is valid as long as the polytope comprises the same
set of edges. Hence, p is an index to a specific set of edges being present at the polytope
surface.

a-types. Based on the discussion above, the combinatorial structure of the polytope
surface is an important property for measure computations. Polytopes that are similar
in such a manner were called analogue in early mathematic literature so that the class
of polytopes with the same combinatorial surface structure are called an a-type [Meyer,
1974, Schneider, 2008]. This term will be defined in subsection 2.4.1 and is frequently
used throughout this work. Note that the total number of a-types is finite since the
set of facet normals is fixed for crystals so that only a finite number of coefficient sets
c;?(lelf) exists for equation 2.31. The partitioning to be introduced in subsection 2.4.2
identifies all required a-types for a given fixed set of facet normals.

2.3.2 Mixed Volumes

Definition. Given an S-representation with convex bodies S; in n-dimensional space,
the volume of any polytope P(A) with )\; > 0 can be calculated by:

pvolume (3) = yvolome (Z AiSz‘) = Z Nihiz -+ iy Vi, i (2.32)

115yt =1
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where the coefficients I~/il, ...in are denoted as mixed volumes that are functions of the
corresponding structuring elements: 172-17 in = 1% (Siy, - -+, Si,) [Schneider, 2008, theo-
rem 5.1.6]. Mixed volumes in this work are only applied in the context of a fixed set of
convex bodies S; so that the notation of XZL ...in 18 sufficient. In the following discussion,
the dimension will be fixed to n = 3 to simplify the notation. All arguments analogously
apply for arbitrary dimensions, where in particular the lower dimensionsn =2orn =1
are of interest.

Properties. Equation 2.32 for polytopes in S-representation is analogous to equation
2.31 for polytopes in H-representation. However, the remarkable property of the mixed
volumes is that they are independent of the values )\;, whereas the coefficients of equa-
tion 2.31 depend on the a-type of the polytope. Additionally, some special mixed volumes
are equal to typical measures like the surface area or the Feret diameter, which will be
discussed in the appendix A.1.1.
Mixed volumes are symmetric and the order of the arguments does not change the
value: _ N N _ N N
Vips=Viga=Vo13=Vo31="V312="V321. (2.33)

In addition, any mixed volume XN/(SZ-, S;, S;) equals the volume 1¥°'"™¢(S;), which makes
it consistent to the monotony order of the volume functional: ;V°"™¢(\S) = \3 yvolume(g),

Determining Mixed Volumes. Mixed volumes can be determined by calculating the
volumes: pYolume(s,), yvolume(g, 4 6.y yvolume( g, 4 9.6.) and pvolume(S; + S; + Si). Any
algorithm to calculate these volumes is suitable. As the mixed volumes are symmetric,
only the index combinations i < j < k are required. First, the mixed volumes for
i = j = k are readily available with:

Vigi = p'"™e (S)) . (2.34)

Secondly, from equation 2.32 it follows:
PS4 8)) = Vigi+ Vg3V +3Vig, (2.35)
uv"l“me(Si +285;) = ‘71” +8 ‘7]',]',]' +6 ‘7“] +12 ‘Z,j,j’ (2.36)

which results in the mixed volumes for i = j < k and ¢ < j = k after elimination of V ;
and Vi ;:

Vijj = éf/i,i,i — Vg — éuv‘)l”me(si +55) + éuv"mme(si +255) (2.37)
Viij = —%‘7 + 5 Viga + ;uvomme(si + ;) — émolume(si +25).  (2.38)

And finally, from equation 2.32 it follows:
promme (S 4SS = Viii+ 17j7j7j + Vk’k’k (2.39)

+3Viig +3Vian +3Vigy +3Viks
+3 Vi + 3 Vikse +6 Vij,
which results in the mixed volumes for i < j < k:

_ 1 _ . -
Vijk = 5 (MVOlume(Si + 8+ Sk) = Viii — Vijj — Vi (2.40)

~3Viij = 3Viik = 3Vigy = 3Vikk = 3Vije =3 ‘Zm) :

20



2.3. Polytope Measures

All required coefficients XN/”k with ¢ < j < k are determined with equations 2.34, 2.37,
2.38 and 2.40 and all remaining coefficients follow by symmetry of the mixed volumes.

Outlook. This subsection defines mixed volumes and provides the most important
tools for their application. Section 2.3.3 and section A.1.1 will demonstrate several rela-
tions to frequently used polytope measures. The application of mixed volumes, however,
is not demonstrated until section 3.3.5 in the context of the geometric state space of
crystals.

2.3.3 Polytope Measures calculated by Mixed Volumes

Introduction. This section summarizes how different measures of a polytope in S-
representation can be calculated by mixed volumes (equation 2.32). These measures
are, on top of the polytope volume itself: surface area, projection area, area of specific
facets, Feret diameter, length of specific edges and mean diameter. The measures are
grouped according to the theorem that is required to deduce their relation to mixed
volumes. For a deeper understanding the reader is also referred to appendix A.1.1
which explains how the aforementioned measures are directly represented by special
mixed volumes.

Support sets: specific edge length and facet area. The facets and edges of a poly-
tope are denoted by the support sets F'(P(h), u) in suitable directions u € S"~. For
any support set of a polytope in S-representation, it holds: F(}_, S;, u) = Y. F(S;, u)
from equation 2.28 in section 2.2.3. The facet area is then the volume of the 2-dimen-
sional support set measured in the corresponding 2-dimensional subspace:

ﬂfacetarea (Z \iSi, u) = Z)\l)\jf/ (F(S;, u), F(Sj, u)) . (2.41)
i &3

The mixed volumes in this equation can be determined analogously to the 3-dimensional
mixed volumes. The edge lengths are calculated by 1-dimensional mixed volumes:

Medge length <Z \iS;, u) — Z Aszz (F‘(SZ7 u)) , (2.42)

where V; (F(S;, u)) are the lengths of the corresponding edges for the structuring ele-
ments S;.

Note that the vectors u that might determine a 2-dimensional support set are known
a priori by the facet normal vectors a; for the application to crystals. Edge length mea-
sures are not applied in this work. A suitable vector u for an edge between two facets
with the normal vectors a; and a; might be denoted by u = %ai + %aj. However, equa-
tion 2.42 measures the 1-dimensional volume of the corresponding support set, which
is not necessarily the intended edge. It might even be a 2-dimensional support set, if a
corresponding facet normal exists.

Projections: projection area and Feret diameter. A projection is a linear operator
which maps any original point into some, usually lower dimensional, subspace. The
projection is viewed directly as a mapping from the originally n-dimensional space to
the lower dimensional space of dimension m < n. For a polytope P and a m x n mapping
matrix M, this can be expressed by:
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MP = {Mx | x € P}. (2.43)

From the definition of the Minkowski addition (equation 2.21) and the distributivity for
matrix multiplication, it follows:

M (Z Ai&) => N(MS). (2.44)

This equation is analogous to equation 2.28 for support sets. The plane for the projection
is given by its normal vector u and the projected polytope by M, P for which M, is a
suitable 2 x 3 matrix that maps to the 2-dimensional subspace. The projection area is
then denoted and given by:

'uprojectionarea <Z /\z'Sz'7 u) = Z )\Z'/\jf/ (Mu SZ', Mu SJ) . (245)

ihj

The Feret diameter is the distance between two parallel supporting hyperplanes that
is: h (D, XiSi, u) + h (3, AiSi, —u), where u is the facet normal of one of the supporting
hyperplanes. In the notation from equation 2.43 and 2.44 the mapping matrix is M =
u’'. The Feret diameter is then denoted and given by:

'uFeret diameter (Z \iSi, u) _ Z )\zf/ (uTSi) . (2.46)

Quermasses. The following paragraph will introduce additional measures for which
the projection area and the Feret diameter are used in their adequate mathematical
terminology. The Feret diameter is denoted by the width of a polytope in direction u
and both, the projection area and the Feret diameter, are denoted as quermasses that
apply for general orthogonal projections of n-dimensional bodies into m-dimensional
subspaces.

Minkowski functionals: surface area and mean width. The expectation value
of a quermass, which is the Feret diameter or the projection area in this case, accord-
ing to directions u € S"~! is found in mathematical literature by: ‘quermassintegrals’,
‘Minkowski functionals’ or ‘intrinsic volumes’. All these measures are related with some
constant factor [Schneider, 2008, section 4.2]. Detailed descriptions are skipped for the
sake of brevity but can be found in textbooks about integral geometry [Santalé, 1976,
section 13.1] or convex geometry or [Bonnesen and Fenchel, 1934, Schneider, 2008, sec-
tion 13.1]. The relation between the surface area and the expectation value of the or-
thogonal projections onto a plane is more commonly known as the Cauchy-theorem and
the ratio of the surface area divided by the expectation value is 4.
In summary, the surface area is denoted and given by:

Msurface (Z )\ZSZ> — Z )\i)\j“};,j (2.47)
7 ,J
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and the mean width by:

Mmeanwidth (Z )\zsz> _ Z)\szz (2.48)

The surface area of a polytope can be calculated by summing up all the specific facet
areas. Calculating the mean width requires much more detail. It is also of central
importance for the modeling of rounded shapes in chapter 5 so that this discussion
follows in subsection 2.3.4, separately.

2.3.4 Mean Width

Introduction. The mean width was already introduced in subsection 2.3.3. It can be
written, as:

Juegn—1 (P, u) + h(P, —u) du
quS”—l du

even though a more accurate notation is used in mathematical textbooks [Schneider,
2008, equation 1.7.2]. The term A(P,u) + h(P,—u) is the width of P with respect to
the direction u € S"~!. The width equals the Feret diameter in the context of particle
measurements so that the mean width equals the mean of the Feret diameter. This sec-
tion will introduce two more alternative definitions. The first one provides an equation
to calculate the mean width and the second definitions provides a visually expressive
interpretation for the mean width of 3-dimensional polytopes.

umean width (P) —

>

Relation to other measures. The mean width of a convex body P € R? is related

to the 214 Minkowski functional W5 (P), the mixed volume V' (P, B, B) with B being the
unit ball and the intrinsic volume V; (P) [Schneider, 2008, page 210 and equation 5.3.8]:

pmeanvidth(py _ 3y opy %V(P, B,B) = Vi(P). (2.49)
The mean width is additionally related to the integral of the mean curvature, but the
curvature of a non-smooth body like a polytope cannot be defined.

In 2-dimensions, the mean width of a disc is its diameter and 7-times the mean width
equals the circumference of the disc. This relation between the mean width and the
circumference, surprisingly, holds true for arbitrary 2-dimensional convex bodies. For
3-dimensional polytopes, a similar relation between the mean width and the sum of the
edge lengths will become evident in the following.

Definition by intrinsic volumes. The relation to intrinsic volumes gives explicitly
[Schneider, 2008, equation 4.2.30]:

mean width Z 'Y length ) (2.50)

where the summation is taken over all edges F; of the polytope. The term ~(F;) is the
external angle of the corresponding edge that is proportional to the angle between the
normals of the facets that create the edge. The term p'°"#t"(F}) is the length of the edge.
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Definition by mixed volumes. While the mean width could already be calculated
based on equation 2.50, the interpretation of this equation is more intuitive by the
following result for mixed volumes (equation 2.32):

MVOlume(P_i_)\B) :‘7(})7 P, P)+3)\V(P7 P, B)+3)\2‘7(P7 37 B)+)\3‘~/(B’ B’ B) (2.51)

which is also known as the Steiner formula if the mixed volumes are replaced by the cor-
responding Minkowski functionals [Schneider, 2008, page 210]. The first term V (P, P, P)
and the last term V(B, B, B) are apparently the volumes of the body P and the unit
ball B, respectively. The term 3 f/(P7 P, B) is also well known as the surface area of the
body P. Therefore, the term 3V (P, B, B) that relates to the mean width is so far the
only term without a clear visual interpretation.

Alternative interpretation of the mean width. The body P + AB can be decom-
posed to depict the four terms from equation 2.51 to visualize the meaning of equation
2.50. Figure 2.7 shows the wireframe of the body P + A\B in the outer left. The initial
volume of the body P is drawn in the outer left figure. The volume of the ball AB is ob-
tained by the parts visualized in the outer right figure. The vertices of a convex polytope
will always create a full ball AB, if P+ AB is decomposed in this way. The inner left part
shows the volumes (3\ V (P, P, B)) that are created by multiplying the surface area of
each facet by \. What remains for the inner right figure are volumes that are created by
multiplying the length of each edge (;/'°"¢'"(F;)) with the external angle v(F;). Finally,
the external angle can be interpreted in this case as the angle between the normal vec-
tors of the adjacent facets divided by the full angle times the area of the unit disc (for
A=1).

Figure 2.7.: Decomposition of the body P + AB (wireframe in the outer left figure) into
parts that correspond to equation 2.51: the volume of the body P (outer
left), the volume that equals AV (P, P, B) (left), the volume that equals
N2V (P, B, B) (right) and the volume of \3B (outer right)
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2.4. Polytope Surface Structure

2.4 Polytope Surface Structure

2.4.1 Preliminaries on Minkowski Decomposition

Motivation. The concept of mixed volumes provides a promising alternative to cal-
culate physically meaningful measures. However, a crystal is naturally given in H-
representation with a fixed set of facet normals while mixed volumes assume an S-
representation. The theory that is introduced in this subsection creates an initial link
between these two representations. It defines a reasonable set of structuring elements
for a given polytope. The corresponding algorithm that is outlined in the following sub-
section is used in chapter 3 to identify a minimal set of structuring elements for a given
set of crystal facets.

Delimitation of focus. The ideas and concepts, discussed in this subsection, orig-
inate from a problem that is called ‘Minkowski decomposition’ in mathematical liter-
ature. Therefore, this and the following subsection are denoted by this term. The re-
quired terminology and ideas to solve this problem are, however, much more useful than
its solution.

Relation on polytopes. Given two polytopes P and (Q in n-dimensional space, P < Q)
is written if it holds:
dim F (P, u) < dim F(Q, u) (2.52)

for the support sets F(-,u) in any direction u € S~ [Meyer, 1974] while dim denotes
the dimension of the support set. This implies for 3-dimensional polytopes that @) has a
facet in all directions u for which P has a facet. Additionally, @) has an edge or a facet
in all directions u for which P has an edge.

If the outer left polytope in figure 2.8 is (), any polytope on its right could be inserted
for P so that P < Q holds. In fact, any polytope P(A) with A > 0 can be used where P(\)
equals ), \; P, and P;, P> and P3 being the three polytopes in the right of figure 2.8.

- w

B

Figure 2.8.: A polytope (outer left) as the Minkowski sum of the three polytopes on the
right; the summands are viewed together with the wireframe of the sum

Possible summands. Minkowski addition conveys information on the surface struc-
ture from its summands to the sum (see equation 2.28) so that it is evident that P < Q)
implies that P is a summand of Q [Shephard, 1963, Meyer, 1974]. Here, any polytope
P is called a summand of the polytope @ if a third polytope R exists, with: \Q = P+ R
and A > 0. The relation P < @ is also sufficient for P being a summand of Q which
subsequently implies that any summand can be represented by the same set of facet
normals in a H-representation.
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From the example above, any polytope P(A) with A > 0 is a summand of Q.

Indecomposability. A polytope @ is called indecomposable, if and only if there are
exclusive decompositions of the form Q = P+ Rwith P=AQ + {x} and R = (1 — \)Q —
{x} for 0 < A < 1 and x € R". This means that for any possible decomposition into
summands there exist only summands that have exactly the shape of () but different
size and position.

All three polytopes in the right of figure 2.8 are indecomposable.

Minkowski decomposition. Given a polytope @, the decomposition of () into inde-
composable polytopes P; with Q) = ). P, is called Minkowski decomposition. A Minkow-
ski decomposition of a shape can be considered analogous to the prime factor decompo-
sition of a number. However, a Minkowski decomposition is not unique.

Figure 2.8 shows a polytope on the left that was already introduced as (). The three
polytopes in the right are the three indecomposable polytopes of a Minkowski decom-
position. While the surface structure of the original polytope is relatively complex, the
indecomposable polytopes have a simple surface structure with only a few faces, edges
and vertices.

a-type. Ifit holds P < @ and Q < P for any two polytopes P and @, they are called
strongly isomorphic [Meyer, 1974]. Strongly isomorphic is formerly denoted by ‘analo-
gous’ in mathematical literature and, thus, a class of strongly isomorphic polytopes is
called an a-type [Schneider, 2008, page 100]. The a-type for a 3-dimensional polytope
represents the combination of faces, edges and vertices that are present so that the term
a-type matches the term morphology in the context of crystal shapes.

The a-type represents an equivalence class for polytopes that is denoted by [P] for
a representative polytope P. Consequently, the discussion on single polytopes can be
transferred to a discussion on equivalence classes (e.g. writing ‘[P] < [Q] instead of
‘P <@ with P € [P] and Q € [Q)).

Conclusion. The discussion above shows that complex issues concerning the mor-
phology of crystals can be expressed by a simple relation: P < (). Additionally, it is
demonstrated that using P < @, speaking about Minkowski summands or discussing
crystal morphology are strongly related to each other.

With the introduced terminology it is now possible to identify a set of structuring
elements to rewrite all polytopes P < () as an S-representation with a fixed set of
structuring elements. First, all indecomposable polytopes P, < () must be contained
in that set because they cannot be expressed as the Minkowski sum of other polytopes.
Secondly, any polytope P’ that does not fulfill P’ < (Q cannot be a summand of any
polytope P < @ and, hence, can be omitted. Finally, adding any other polytope P’ <
Q to the structuring elements is superfluous because it can be substituted in an S-
representation by an expression of the indecomposable polytopes. Hence, exactly all
indecomposable polytopes P; < () are required as structuring element to express any
polytope P < (Q as an S-representation.

2.4.2 Minkowski Decomposition in h-space

Overview. In this subsection, the implications of the relation P < () are viewed in
the space of h-vectors for a H-representation that is suitable to represent Q. The do-
mains for the input a-type (all vectors h with P(h) € [@Q]) and the domain of all possible
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summands (all vectors h with P(h) < @) are presented. Defining these regions goes
along with outlining elements of an algorithm to calculate these domains and, in partic-
ular, the indecomposable polytopes that are summands of Q). Therefore, remarks on this
algorithm and computational issues form the second part of this subsection. Note, how-
ever, that the focus of this subsection is still the link between H- and S-representation
to exploit the measure calculation based on mixed volumes which is commented on in
the last paragraph.

Normalized polytope positions. It is beneficial to define and fix the position of each
considered polytope because it represents superfluous information. Moving the poly-
tope P or () does not change the relation P < ). The appearing complexity when the
polytope position is not normalized is demonstrated in the subsequent paragraph on
indecomposable polytopes.

Regardless of the definition, the chosen polytope position should be invariant to Min-
kowski addition so that the sum is centered if all summands are centered. This is ob-
tained whenever the polytope position changes linearly dependent on the components of
the h-vector and follows directly from the definition of Minkowski addition. Assuming
the polytope @ is centered, it is then suitable to demand that all summands are cen-
tered. This introduces n linear constraints to the corresponding h-vectors so that any
entity in h-space will be embedded in an (ny — n)-dimensional subspace that is given
by the definition of the polytope position.

Meyer [1974] centers polytopes at the Steiner point. For an n-dimensional polytope
P, this point is introduced as the expectation value of (h(P,u) - u) with u sampled uni-
formly from the unit hypersphere S”~! [Griinbaum, 2003, section 14.5]. The Steiner
point is invariant to Minkowski addition. However, while this point is useful for mathe-
matical proofs, it is hard to compute so that the normalization of polytope positions will
be adopted in chapter 3.

Indecomposable polytopes. If a summand P of () is indecomposable, it holds that
any P’ € [P] equals P/ = AP with A > 0. Since AP(h) = P(\h) holds, indecomposable
polytopes are represented by single rays in h-space. This does only hold if normalized
polytope positions are assumed. If the positions are not fixed, indecomposable polytopes
would be represented by some n-dimensional subdomains which would drastically in-
crease the complexity of the remaining discussion.

Linear equality constraints. If a component of the h-vector for an indecomposable
polytope is changed slightly so that the a-type changes, at least one edge (ridge for
n-dimensional polytopes) emerges. This edge (ridge) equals the connection between
two extreme points and it follows a discussion on how this edge (ridge) is defined by
(n + 1) facets. Restricting the corresponding edge length to 0 then creates an equality
constraint to the vector h.

Each extreme point can be defined by the intersection of n facets of the polytope.
The edge (ridge) is embedded in a 1-dimensional subspace given by the intersection of
(n — 1) facets. Hence, both extreme points of the edge can be defined by (n + 1) facets:
two sets of n facets for each extreme point while the facet sets can be chosen to have the
(n — 1) facets of the edge (ridge) in common. The length of this edge changes linearly
in the components of the h-vector (see page 21), it is defined by (n + 1) facets and it
must remain 0 for indecomposable polytopes in order to add no new edge (ridge). This
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represents a linear constraint:
alh=0 (2.53)

with at most (n + 1) non-zero elements in a. How such constraints are constructed is
explained in [Meyer, 1974].

In conclusion, any four facets of () that intersect in a common extreme point create a
corresponding linear constraint to the vector h. Any polytope P(h) < @ must fulfill this
equation since any additional edge in P(h) violates P(h) < Q.

Linear inequality constraints. The term a’h is already introduced to represent the
length of edges, given that the sign is chosen accordingly. Consequently, it must hold:

—a’h <0 (2.54)

for existing edges of ) whenever h represents a polytope of the same a-type: P(h) € [Q].

Domains. With equations 2.53 and inequalities 2.54, the region of h-vectors is defined
for which P(h) € [Q] holds. If an edge length becomes 0 by inequation 2.54, the a-
type changes while P(h) < @ is retained. If the violated inequation is altered to an
equality constraint, the vectors h’ fulfilling this new set of equations and inequations
will represent polytopes P(h’) < P(h) < Q. This indicates a procedure that can be
repeated several times. Each time, one or more edges disappear and the a-type changes.
This process ends, when the range of h’ represents a 1-dimensional ray and, hence, an
indecomposable polytope. This implies that the domain of all summands P(h) < @
is represented by the weak form (<) of the strict inequalities 2.54 and the equations
2.53. This domain is a convex cone and every indecomposable polytope is given as an
extreme ray of that cone. While this domain defines the region of possible summands, it
does simultaneously define the region in h-space that is covered by the S-representation
which is comprised of the corresponding indecomposable polytopes.

Algorithm. It can be concluded, that finding the indecomposable polytopes P; or, re-
spectively, the extreme rays of the cone of all summands for () is sufficient to resolve
any question connected to Minkoswki summands P < (). An algorithm that defines the
range of all summands P < (@ is given by Meyer [1974] or Mount and Silverman [1989]
for n-dimensional polytopes. The work of Meyer [1974] is recommended for a proof of
this approach and is the primary source for the introduced notation. Alternatively, a
similar algorithm is described by Borchert [2012] for the morphology of 3-dimensional
crystals. This source is recommended for an alternative approach to the derivation that
does not include Minkowski addition. It uses a different notation and handles morphol-
ogy in a less generalized manner.

Both algorithms, if applied for 3-dimensional polytopes, exhaustively iterate through
all quadruples of facets. The equations 2.53 are constructed wherever four facets have
an extreme point in common. The inequations 2.54 are constructed for every edge of the
input polytope Q.

Evaluation. The cone of summands is embedded in some lower dimensional subspace
of the h-space. Computations on such degenerated polyhedra are not beneficial so that
the cone of summands is mapped in the proper linear subspace. A suitable mapping can
be computed by singular value decomposition of the matrix that contains all constraints.
The resulting rays of the full dimensional cone are calculated by the double description
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method [Fukuda, 1996, 2008]. After mapping the extreme rays back to the original
h-space, the indecomposable polytopes P;(h;) are obtained.

The original problem statement for Minkowski decomposition is solved for any linear
combination A; > 0 with: h = )~ A\;h; so that the summands of the Minkowski decompo-
sition are given by P(\;h;).

Application. It is provided that, whenever all polytopes P(h;) are summands of the
polytope P (>, A\;h;) it holds:

P (Z )\Z-hi) => AiP(hy) (2.55)

for \; > 0. This can be followed from Schneider [2008, theorem 1.7.5] or the definition
of the Minkowski addition (see equation 2.21). Equation 2.55 implies that the poly-
tope P(h) = ). \;P(h;) can be calculated without explicitly performing a Minkowski
addition by:

h = ) \h; (2.56)

in H-representation. Hence, equation 2.56 provides a direct relation between the S-
representation (the coefficients )\;) and the #H-representation (the vector of facet dis-
tances h).

The suggested S-representation is comprised of the indecomposable polytopes P(h;) <
Q as structuring elements. The region that represents all summands in h-space repre-
sents, hence, also the region of all polytopes that are covered by this S-representation
and for which equation 2.56 can be applied. More discussion on this follows in chapter
3.

2.4.3 Validity of Support Hyperplane Data

Motivation. The algorithm that is introduced in this subsection is applied for the
crystal state space that is not yet defined. Hence, the following describes the motivation
that is used in the original sources [Karl et al., 1995, Mount and Silverman, 1989].

A support function h(B, u) defines any convex body B when u is taken from the unit
hypersphere S("~1) (see page 11). Hence, given a real 3-dimensional convex body, it is
natural to choose an arbitrary origin and measure a discrete number of support values
h(B, a;) to describe this body. This description yields a polytope Pa (h) for which the
facet normal matrix A contains the measurement directions and the vector of facet dis-
tances contains the support value measurements. However, due to measurement errors,
the set of measured support values h(B, a;) for some fixed measurement directions a;
is in general not consistent with the support measures of the identified polytope P(h):
h(P(h), a;). Related problems are entitled ‘validity of support hyperplane data’ or ‘con-
vex set reconstruction’ in mathematical literature. They include, in particular, whether
a measured vector h is consistent, or not. This problem statement is equivalent to im-
portant questions in crystallization modeling. Given a fixed facet normal matrix A: for
which vectors of facet distances h are all facets present? Or: which facets appear for the
polytope P(h)? These questions are answered in this subsection.
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Mathematical literature. An algorithm for the problem above is presented by Karl
et al. [1995]. It comprises a generalization for n-dimensional polytopes with some im-
provements to prior work by Prince and Willsky [1990, 1991]. These improvements were
implemented but the time savings were found insufficient compared to the added com-
plexity of the algorithm. Karl et al. [1995] assume that the polytope that is described
by the support measures is not empty. This is, in general, not true for the purpose in
this work so that cases must be taken into account that were neglected in the original
paper. The algorithm is outlined in the following with the main arguments and their
geometrical interpretation. It is described for 3-dimensional polytopes, even though it
is available for n-dimensional objects.

Skeleton of the Algorithm. The algorithm investigates all ordered sets of 4 facet
normals. The first three facet normals are denoted by a}, a, and aj and constitute a
possible vertex for some polytopes P(h). Figure 2.9 illustrates four examples that are
used in the subsequent discussion. The blue facets of the lower tetrahedron are created
by the facet normals a}, a), and a’; while the upper tip of the wireframe represents the
vertex. The fourth dark blue facet that belongs to the normal a), cuts the tetrahedron in
different angles. Furthermore, the positive and a negative cones are considered which
are formed by the normals a), a, and aj. The positive cone is the positive hull of the
normals interpreted as points in 3-dimensional space. It is drawn in light blue in figure
2.9. The negative cone uses the points —a), —a/, and —aj, instead, and is not drawn.

Since only facet normals with rank (a}, a}, a;) = 3 intersect in a vertex, combinations
of facet normals with rank (a}, a5, a5) < 3 can be ignored. The remainder of the analysis
is based on three cases: the facet normal a resides in the positive cone; it resides in the
negative cone?; or it resides neither in the positive nor in the negative cone. According
to Karl et al. [1995, section 3.1] only the first two cases must be considered.

aé

Figure 2.9.: Four examples how a vertex (top vertex of the lower tetraeder which is
drawn as a wireframe) can be cut by a facet (dark blue); the positive cone
formed by the facet normals defining the vertex is drawn in light blue

Positive cone. Ifthe facet normal &) is in the positive cone, this facet might disappear
at the vertex v’ given by a/, aj, aj and the corresponding facet distances A/, b/, and hj:

(af,ah,a)" v/ = (K, b hy)" . (2.57)

9The negative cone is not drawn in figure 2.9 but the statement ‘a/ is in the negative cone’ is equivalent
to the statement ‘—a} is in the positive cone’.
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The outer left example in figure 2.9 shows a facet normal a that is in the positive cone.
The corresponding facet would disappear at the vertex v/. The inner left example in
the same figure shows a facet normal a) that is just outside the positive cone. The
corresponding facet would disappear at some other vertex. It follows that the facet
corresponding to a can only be present if the following inequation holds:

V', ) > . 2.58)

Considering all (ordered) sets of 4 facets, several such inequations are generated for
the same facet so that all of them must be fulfilled for the existence of this facet. If
equality holds in one or more cases of these equations, the face just disappeared and
the support measure h(P(h), a))) is still consistent with 4/,. Concluding this case, every
h-vector must fulfill all inequations:

Hy — (WY, by, hy) (a), ab,a%) ' a) < 0. (2.59)

so that it is consistent. Additionally, whenever one of the inequations for a specific facet
is violated or equality holds, the corresponding facet is not present at the surface of the
polytope P(h).

Negative cone. If the facet normal a/j is in the negative cone, the polytope P(h) is
empty for:
(v',al) > hj. (2.60)

The inner right example in figure 2.9 shows a facet normal a/; that is in the negative
cone. The whole polytope disappears at the vertex v/ when 4/, becomes too small.1® The
outer right example in the same figure shows a facet normal a that is just outside
the negative cone. The facet distance 4/, might also become too small, but the polytope
disappears at another vertex.
This case can be concluded, similar to the previous case. Every h-vector must fulfill
all inequations:
(W, iy, ) (al, ab, al) " ay — by < 0. (2.61)

to be consistent (h; = h(P(h), a;) for all facets i). Whenever equality holds in one or more
cases, no facet is present and P(h) comprises a single point. Whenever any inequation
2.61 is violated, the polytope P(h) is empty.

Final result. All inequations 2.59 and 2.61 represent a convex cone in H-representa-
tion that can be summarized to:
Ayh <o0. (2.62)

The vector of facet distances h is consistent if this inequation holds.

Additionally, the range of h-vectors can be defined for which a specific facet is present.
The inequations 2.61 for which the specific facet disappears and all inequations 2.61 are,
therefore, summarized to:

Abyih <0.

The facet with normal vector a; is present when this inequation is fulfilled. As a special
case, i = 0 summarizes only the inequations 2.61 so that A’FV(O)h < 0 implies that P(h)
is a non-empty polytope.

OConsider that a/j is an outer normal vector so that the facet moves up for decreasing values h/}.
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3

The Geometric State Space
Proper Representations

3.1 Introduction and Preliminaries

3.1.1 General Observations on Crystal Shape Modeling

Boundaries of validity. Let’s assume a crystal representation uses only one size
coordinate like the volume or the mean diameter. In such a case, there is typically only
a lower bound of zero size and an upper bound does not exist. In contrast, using volume
and surface area as size coordinates implies that the volume cannot become arbitrary
large when its surface area is fixed. Another example is given by the growing facets
of a crystal. In most cases, a growing facet has a maximum distance dependent on the
other facet distances when they remain static. At this maximum distance, the facet
disappears which is already discussed by Johnsen [1900]. While these upper bounds for
chosen size coordinates can be avoided by chosing a sufficiently simple geometry (e.g. a
cuboid), they easily arise in general cases such that they present an inherent complexity
for crystal shape modeling. Since violating these upper bounds produces inconsistent
combinations of shape coordinates, this concept is denoted by validity throughout this
work.

Boundaries of zero size. Another difficulty applies to the lower bounds of the size
coordinates at which crystals would disappear. When only one size coordinate is used,
this point is typically zero. However, assume that the volume and the surface area are
the size coordinates. In this case, the crystal disappears for any zero volume. This in-
cludes flat crystals with a non-zero surface area so that crystals can disappear at several
positions in state space. Properly recognizing and applying these zero size boundaries
adds another degree of complexity, in particular, for the formulation and solution of
population balances.

Measure calculation. The driving force for the growth of crystals is supersaturation,
the amount of dissolved substance above the saturation concentration. This amount is
reduced with the growth of the crystals so that the total mass of the crystalline sub-
stance must be known in all time steps of a process simulation. Calculating the total
volume of the simulated crystals is, therefore, crucial. Faceted crystals are polytopes
for which the measure computation has been discussed in depth in subsection 2.3.1.
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3. The Geometric State Space — Proper Representations

While the volume can be computed from a polynomial, the coefficients of that polyno-
mial depend on the present morphology. This implies that the morphology of the crystal
must be identified before the volume can be calculated. This remains true for various
algorithms of volume computation except numerical integration® so that this problem
does not depend on the selected crystal shape representation. Again, this complexity is
avoided for a sufficiently simple geometry but presents, otherwise, an inherent difficulty
of crystal shape modeling.

Outlook. For the crystal shape representation that is introduced in the next subsec-
tion, the validity and zero-size boundaries are defined and discussed in section 3.2. For
the measure computation, it is possible to perform some calculations a priori so that
simple operations remain for process simulations, optimization or identification. The
corresponding algorithm is introduced in section 3.3 and identifies all required sets of
coefficients for measure calculation including their region of applicability. Finally, the
implemented algorithms are tested and the corresponding computational times are an-
alyzed by a large scale case study in section 3.4.

3.1.2 Representation of Crystal Shape

Motivation. Using a H-representation to represent faceted crystals is the most nat-
ural way since growth is represented directly by the time derivatives of the facet dis-
tances in h (see subsection 2.2.1). However, a lot of facets share the same growth rate
due to symmetry, yielding h-vectors with only a few differing entries. In consequence,
the required independent variables for crystal shape modeling can be represented by a
much lower dimensional vector hg. The relation between the h- and the hg-vector are
then modeled by a mapping matrix My, n: h = Mpn he.

No assumption on the matrix My, is initially posed so that the analysis for appli-
cations of the resulting representations will indicate and define necessary properties.
It turns out that these limitations are relatively tight which raises difficulties for more
general representations that can occur for shape approximation or model reduction (see
chapter 6 and appendix A.2).

Hc-representation. The general form of the shape representation that will be treated
in this work uses any real-valued matrix My, ., to obtain the facet distances in the vec-
tor h from a lower dimensional vector hc:

h = th»—)th- 8.1)

This representation will be called constrained #-representation or #c-representation?.

The dimension of the vector hc is given by nc and the polytope P(My.nhc) can be

abbreviated by P(hc). The matrix My, ., is called group mapping matrix because its

unique rows group the facets into subsets that always share the same facet distance.
Note that the direct expression for a polytope is:

Pa(hc) = {x | Ax < My snhc},

which illustrates that a 7 ¢-representation consists of the matrix of facet normals A and
the mapping matrix My, ,», while the individual polytope is given by the vector hc.

'Numerical integration is computationally inefficient for volume computation.
ZWhile the term “H-representation’ is commonly used in mathematical literature, the terms ‘constrained
‘H-representation’ and “Hc-representation’ are newly introduced.
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The constraints to the vector h can be written explicitly by:

Mch = 0, (3.2)
Mo = (Tug — MiconMi ) (3.3)

where I,,, is the unity matrix of dimension ny x ny and MﬁcHh is the pseudo inverse of
My —h. The matrix M¢ and the mapping matrix My, ., can be used likewise to define
a Hc-representation.

Remark on terminology. Groups of facets that are equivalent by symmetry are
called a form in crystallographic terminology. They always have the same entries in
a corresponding h-vector and they appear and disappear simultaneously on the crys-
tal surface during growth [Borchardt-Ott, 2009]. If the #Hc-representation is created
according to crystal symmetry, the dimension nc equals the number of modeled forms.
However, since the shape representation above is more general and not necessarily de-
scribes a real crystal shape, the term facet group is usually applied instead of crystal
form.
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3.2 Validity and Proper Representations

3.2.1 Ill-conditioned Representations

Motivation. Information on the orientation or position of a polytope is irrelevant if
only the particle shape or size is considered. While a H-representation already fixes the
orientation of the polytope in space, information on the position of a polytope is still con-
veyed such that several h-vectors describe the same shape and size. The representation
is, thus, not unique in the sense that multiple h-vectors describe the same shape and
size.

Overview. The ambiguity above can also apply for a Hc-representation so that the
state space might comprise unnecessary degrees of freedom. It is shown in the second
part of this subsection how to identify a #-representation that contains this ambiguity
and how the representation can be altered to overcome this issue. In the first part, a
more imminent ambiguity is discussed which is only connected to the group mapping
matrix My h.

Group mapping matrix. Given a Hc-representation, it is expected that defining a
group mapping matrix with nc columns gives nc degrees of freedom for the facet dis-
tances h. This is apparently only true for:

rank (Mph) = nc. (3.4)

Any Hc-representation that does not fulfill equation 3.4 implies that a given vector
h = My—nhc can be expressed by multiple hc-vectors so that the Hc-representation is
ambiguous. This ambiguity can be resolved by removing columns of the matrix My, sn
while the rank is maintained. Removing such columns reduces nc while the set of
achievable h-vectors and, hence, the set of represented shapes is maintained.

Polytope position for #-representations. If no constraint Mch = 0 is applied to
a H-representation, the polytope position could be defined as the intersection of three
arbitrary but intersecting support hyperplanes (see page 11). Figure 3.1 illustrates this
idea by a polytope drawn in blue and three intersecting support planes in light blue.
The intersection is marked by a black spot and may, as shown there, reside outside of
the polytope. If these three facets are fixed to a distance of zero, the polytope position
equals the origin of the coordinate system. This implies that removing the position
information from a H-representation creates a #Hc-representation with the dimension
nc = nyg — 3.

Fixed position for H-representations. Given an arbitrary Hc-representation, two
polytopes P(h¢) and P(h(,) might have the same shape and size but different positions
with h¢ # h{.. This ambiguity is not desireable3. The following derives a condition for
the Hc-representation so that both polytopes necessarily share the same position.

Given is a vector h that fulfills the constraint Mch = 0. A translation along a vector
x( to yield a new vector h’ is calculated by:

h' = h + Axy. (3.5)

3See the motivation above, but also consider that the algorithm for Minkowski decomposition shall be
applied which requires a fixed position of polytopes (see subsection 2.4.2).
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Figure 3.1.: Three supporting hyperplanes (light blue) that intersect in a single point
marked by the black spot.

If the translation along x( is not prohibited by the H-representation, the translated
vector h’ also fulfills the constraint which yields:

Mch' = (McA)xp=0 (3.6)

for which h’ is substituted by equation 3.5. It follows that no translation is possible and
the position of the represented polytopes is fixed for:

rank (McA) = 3. (3.7)

Fixing the position for #-representations. In the rare case that the position is
not already fixed?, the constraints in M can be extended by one or more additional
constraints h; = 0. To identify suitable facet indices, valid translation vectors must be
found, initially. They can be obtained by a singular value decomposition of McA and
result in one to three orthogonal directions x j, dependent on the translational degrees
of freedom. Then, for every direction x ;, a facet with <ai(k), Xo,k> # 0 is chosen to be
fixed to () = 0 while the normals of the selected facets are linearly independent. The
constraint matrix M¢ can be extended with rows h;() = 0 accordingly and the rows of
the selected facets can be set to zero for the group mapping matrix. While the corrected
‘Hc-representation has a reduced dimension nc, the original set of represented shapes
remains covered.

Ill-conditioned representation. Since a representation can be adopted to fulfill
equations 3.4 and 3.7 without limiting the range of represented shapes, representa-
tions that do not fulfill equation 3.4 or 3.7 are called ill-conditioned. For the remainder
of this work, any Hc-representation is assumed to fulfill equations 3.4 and 3.7.

3.2.2 Validity

Motivation. In the introduction to this chapter, an inherent complexity of shape rep-
resentations was pointed out that is manifested by possible but inconsistent values of
the shape coordinates. This issue is revisited in this subsection based on the chosen # -
representation. The corresponding property of hc-vectors is defined and the geometrical
state space is analyzed accordingly.

4Lactose is a sample system that requires position fixing [Dincer, 2000, Choscz, 2012] (see figure 1 in the
introduction or figure 3.7 on page 3.7; the facet distances of the {010} and {0 — 10} are independent).
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Example. Figure 3.2 shows two-dimensional polytopes from the Hc-representation
with the facet normal matrix:

1 1 1 1 77T

R R (3.8)
oo 1 -1 + -+ L 1 ' '

V2 V2 V2 V2

and the mapping matrix:
T
1 111000 O0

Mhcon = [ 000O0T1T1T11 ] ' (3.9)

The facet distance hc ; belongs to the facets of the square (shape in the middle right) and
the facet distance hc 2 belongs to the facets of the cross-polytope (shape in the middle
left). Starting with a hc-vector like for the shape in the middle and increasing hc ; up to
the extreme case in the middle left of figure 3.2 results in a polytope where the square
facets have grown out. Further increasing hc ; above this limit, like it is shown in the
outer left example, does not anymore alter the shape compared to the limiting case. An
analogue description could be given for an increasing hc 2-coordinate and the right part
of figure 3.2. It is assumed now that a simulation of a particle evolution has obtained a
ho-vector like in the outer left example in figure 3.2 while the growth rate is changed so
that hc 1 is constant and hc» increases in size. In such a situation, a real crystal would
instantly exhibit the facets of the square again. In the simulation, this reformation of
the square facets would be delayed. For that reason, situations of hg-vectors like in
the outer examples of figure 3.2 are undesirable and the corresponding hc-vectors will
be called invalid. This validity can be identified by the consistency between the facet
distances h; and the corresponding support measures i (P(hc), a;). If the facet distances
and support measures are equal for all facets, then the corresponding facets would also
reappear instantly by a change in the growth conditions. If this consistency is violated
for a specific facet, a delay would be observed for the reformation of that facet.

1 " s N1 N
¢ ¢ ¢ H B
T X bR

Figure 3.2.: Visualization of the #c-representation with the facet normals from equa-
tion 3.8 and the group mapping matrix from equation 3.9.

Validity. The validity property illustrated by the example above is first defined for
h-vectors. Given a H-representation, a vector h is called valid if each facet distance in
h equals the support function according to the corresponding facet normal:

h; = h(P(h), a;). (3.10)
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This corresponds to the middle, middle left and middle right cases in figure 3.2. Every
other vector will be called invalid (outer cases in figure 3.2). Since h-vectors might
represent empty polytopes for which the support function is not defined, such h-vectors
are explicitly defined to be invalid.

Equation 3.10 cannot be given in terms of a h¢-vector since a component i¢; not nec-
essarily represents a facet distance h; for general mapping matrices My, ,1,. However,
validity applies likewise to hc-vectors via: h = My, nhhc and a h¢-vector is valid if and
only if the corresponding h-vector is valid. Additionally, the term validity can also be
applied for facets. If facet 7 is invalid for a given h- or hc-vector, then equation 3.10 is
not fulfilled for this specific facet.

Towards the geometrical state space. While equation 3.10 is suitable to determine
the validity of a single h- or hc-vector, the effort to compute the required support mea-
sures is relatively high for large sets of vectors. Hence, we now focus on a method to
identify the region of valid h- or h¢-vectors directly. This problem is already solved for
‘H-representations in mathematical literature and entitled by ‘validity of support hyper-
plane data’ or ‘convex set reconstruction’ [Prince and Willsky, 1990, 1991, Karl et al.,
1995]. The corresponding algorithm has been explained in subsection 2.4.3. The follow-
ing only transfers this result to the hc-space.

Validity cone. The facet normal matrix A{, from the algorithm to calculate the region
of valid h-vectors is casted to the space of hc-vectors:

Ay = Ay Mpgosn. (3.11)

The region of valid h¢-vectors is then provided by:

Avhc <0 (3.12)

which is a 7{-representation of a convex cone in hc-space®. The cone defined by equation
3.12 will be called cone of valid hc-vectors or simply validity cone and it is denoted by
Cv (see figure 3.3 which is discussed below).

Facet validity cones. Since the underlying algorithm is based on the appearance
and disappearance of facets (see subsection 2.4.3), the regions in hc-space for which
a specific facet is present can also be provided. The transfer of these regions to the
h¢-space is analogous to equations 3.11 and 3.12. The resulting cones are called facet
validity cones and they are denoted by Crvy(;) with facet normal matrices Apy ;. For
indices i € {1,...,ny}, the facet i is present at the crystal surface for hc being in the
interior of the cone Cry ;). The facet has just disappeared for h¢ being at the boundary
of the cone Cpy(;). And, finally, the facet causes invalidity of the hc-vector when it is
outside of the cone Cpy ;). This also implies that the validity cone is the intersection of
all facet validity cones:

Cv =) Crvi- (3.13)

®Note that, prior to applications of equation 3.12, redundant inequalities should be eliminated by remov-
ing corresponding rows in the matrix Av. For example, a lot of rows in Ay are identical by symmetry.
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Zero-size boundary. The cone Cpy (o) indicates, similar to subsection 2.4.3, the region
of h¢-vectors that represent non-empty polytopes. A polytope vanishes for h¢ ¢ Cpy (o) so
that the boundary of the non-empty polytope cone also identifies the zero-size boundary
at which crystals disappear.

Example validity region. The validity cone for the setup, used in the beginning of
this subsection is illustrated in the left of figure 3.3. The validity cone is drawn in light
blue and any white area corresponds to invalid hg-vectors. The blue sample shapes
show how limiting cases at the boundary of the validity cone are obtained. The horizon-
tally aligned shapes demonstrate the increase or decrease of the hc i-coordinate that is
assigned to the facets of the square and the vertically aligned shapes demonstrate the
increase or decrease of the hco-coordinate that is assigned to the facets of the cross-
polytope. Note that all facets are present for shapes inside of the validity cone while
one set of facets disappears for shapes at the boundary of the validity cone.

s W CFV7cross

O
..Q

. hc’l

. . CFV,square

O
=@ ¢ o

L 4

Cv

hc,2

hc,o

hc,2

hca hc

Figure 3.3.: left: validity cone (light blue) and some sample shapes (blue); top right:
facet validity cone for any facet of the cross-polytope; bottom right: facet
validity cone for any facet of the square

The facet validity cones Cpy ;) are highlighted in the right of figure 3.3. In the top
right, the facet validity cone for any facet from the cross polytope is shown. In the
bottom right, the facet validity cone for any facet from the square polytope is shown. The
cone of non-empty polytopes is given by the complete positive quadrant of the coordinate
system.

Related literature. Distinguishing valid and invalid h-vectors is analogous to the
identification of disappearing crystal faces, which was first discussed by Johnsen [1900].
A detailed discussion on the evolution of disappearance conditions for crystal faces is
given on page 4 in the introduction. These conditions evolved from a local or simplified
analysis to arbitrary crystal shapes [Prywer, 1996, Zhang et al., 2006] and further to
the analysis of the complete geometrical state space at once [Borchert, 2007, 2012]. The
underlying algorithm could be adopted from the work of Prywer [1996] while, there, the
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notation is based on angles. It can also be adopted from the work of Zhang et al. [2006]
which was done by Borchert [2007]. His resulting algorithm is analog to the algorithm
in this present work but fails when the validity cone comprises a common boundary
with the non-empty polytope cone additional to hc = 0. The reason for this is that the
complete disappearance of a crystal is not considered by Zhang et al. or Borchert. For
the underlying algorithm in subsection 2.4.3 this consideration is added based on the
assumptions on the applicability of that algorithm that were given by Karl et al. [1995].
In a later work by Borchert [2012], he proposed an algorithm for the computation of
the validity cone that is completely different. However, also for that algorithm the facet
validity cones, the empty-polytope cone are not available and an interpretation of h¢-
vectors outside of the validity cone is not possible.

3.2.3 Validity Mapping

Motivation. The analysis of the geometric state space typically assumes valid hc-
vectors since the components of invalid hc-vectors are not consistent with the support
measures of the represented polytope. Therefore, mapping an invalid hg-vector to a cor-
responding valid h¢-vector while retaining the shape is an elementary task. Usually,
the validity of hc-vectors is retained in dynamic simulations (see chapter 4). Though,
achieving this behavior in dynamic simulations will use the solution of the aforemen-
tioned more elementary problem. Additionally, model reduction and shape approxima-
tion will only be possible by introducing invalid hc-vecors which is shown in chapter
6.

Towards validity mapping. The following part derives a procedure to map an arbi-
trary invalid hg-vector to a corresponding valid hc-vector while retaining the shape of
the represented polytope. This operation will be denoted by validity mapping. Following
equation 3.10, the invalidity of a h¢-vector is caused by the invalidity of certain facets.
It is, hence, suitable to correct invalid facets separately to obtain a valid hg-vector.
Correcting a facet while simultaneously retaining the represented polytope shape is,
therefore, also called validity mapping.

Coherent facets. Helpful for the following discussion is a new term that addresses
the symmetry that also transfers to the validity of facets. It assigns the facets into
groups of facets that are either all present or that all have disappeared for a given h-
vector. It is defined as a binary relation between two facets i and j. Two facets 7 and
j are called coherent, when their facet validity cones are equivalent: Cpy(;) = Cpy(j)-
A facet is always coherent to itself. Additionally, if the validity mapping of a facet is
possible (or impossible), it is simultaneously possible (or impossible) for all coherent
facets. If the validity mapping is actually applied to a facet, it is simultaneously applied
to all coherent facets. For representations that originate from crystal symmetry, facets
of the same facet group (or form) are always coherent to each other [Borchardt-Ott,
2009].

Example (coherent facets). Figure 3.4 demonstrates a Hc-representation for which
the facet groups according to equal rows in the mapping matrix:

T
11110100
Mheoh =10 000101 1] " (3.14)
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are not equal to the groups of coherent facets. The facet normal matrix is given by
equation 3.8. In figure 3.4, the coordinate /¢ ; increases from the left to the right while
hc1 is kept constant. Beginning with the inner left shape, the first disappearing facets
are the top and right facets of the square. Second are the bottom and left facets that just
disappear in the outer right sample shape. Never disappearing is the lower left facet of
the cross polytope that is also assigned to hc ;. The three facets of the cross polytope
that are assigned to ic > could grow out simultaneously as it is evident by the left shape
in figure 3.4, assuming a decrease of the coordinate h¢; and going from the right to the
left. In total, four groups of coherent facets exist:

1. the three facets assigned to hc > (disappearing in the left);

2. the top and right facets of the square (disappearing in the inner right);
3. the bottom and left facets of the square (disappearing in the outer right);
4. the lower left facet of the cross-polytope (never disappearing).

In contrast, only two groups of facets exist according to the rows of the group mapping
matrix. Additionally, for the invalid hc-vector that is indicated in the outer right of
figure 3.4, no corresponding valid hc-vector exists that retains the shape. The coherence
of facets is, hence, an important property with respect to validity mapping.

2
hc,2 hc,2 |
hc,2 he

1
hc,1 ho

Figure 3.4.: Polytopes according to the facet normal matrix in equation 3.8 and the map-
ping matrix from equations 3.14

Empty polytopes. An exception for the general validity mapping are invalid hc-
vectors that represent empty polytopes (P(hc) = 0), similar to the definition of validity
itself. Such vectors cannot be mapped to a valid hg-vector and simultaneously preserve
the represented shape since all h¢-vectors with P(hc) = () are invalid by definition.
Such vectors are, instead, mapped to hc = 0 which always represents the polytope
P = {0} so that this choice is consistent with any length, area or volume measure.
There is no assumption required for this mapping and vectors with h¢ ¢ Cpy () are
excluded in the subsequent derivation.

Example. To support the following derivation, an example is used to outline the basic
principles of validity mapping. Figure 3.5 shows an arbitrary validity cone (light blue)
with an invalid vector h¢. For this example, it is assumed that each facet of the polytope
is represented by either hc ; or hc 2. This prohibits a row of the group mapping matrix
containing more than one entry that is non-zero (for example: h; = hc1 + hc2 ) which
is applicable for general Hc-representations.
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First, a facet belonging to the group hc; must have grown out because hc; is too
large in comparison to hco. Additionally, the facets corresponding to hc o are assumed
still being present and the polytope P(hc) is not empty. Secondly, the vector hc must be
shifted along a horizontal line (drawn in black) to retain the facet distances correspond-
ing to hc 2. Thirdly, the subdomain of the boundary dCy to which the invalid vector must
be shifted is depicted with a dashed line. Finally, the intersection of the horizontal line,
the subdomain where shifting h¢ is allowed, and the dashed line, the target subdomain
of OCy, determine the proper valid vector h..

hc,2
AY

Figure 3.5.: Mapping an invalid vector h¢ back to the boundary of the validity cone dCv
to obtain a valid vector h{, with P(h) = P(h’)

Following the above description, the presented viewpoint is entirely based on the h¢-
space. Real polytopes or relations in the corresponding 3-dimensional space are not
mentioned. This relatively abstract concept propagates to the derivations below and
allows to focus on the relevant property of validity.

Identifying invalid facets. According to the example above, identifying invalid and
valid facets is the first step for validity mapping. Note also that, for the definition of
validity mapping, it is already suggested that invalid vectors can be corrected facet by
facet. The proposed algorithm even goes a step further and resolves each inequality
apy(;);hc < 0 for the facet validity cones separately. Simultaneously, the algorithm
assumes that all other non-coherent facets & are present so that neither the polytope
shape nor the differences hy—h(P(hc), a;) can be changed. Identifying an invalid facet i
based on a specific violated constraint apy ;) jhc < 0 is the first step for validity mapping
that is outlined in the example above.

Target domain. The shifting direction is constructed in the following such that the
shape does not change while apy ;) jhc > 0 holds. Therefore, the selected constraint also
provides the target domain to which the hg-vector must be shifted as it is indicated in
step three in the example above. It is given by the hyperplane: apy ;) ; hi, = 0.

Mapping directions. Given a certain set of coherent facets being invalid by the se-
lected constraint, finding a direction in which the h¢-vector can be shifted without af-
fecting the polytope shape is the next required step. Therefore, two paths are possible.

The most obvious way that was already outlined in the example is to affect the dis-
tances of the invalid facets while retaining the distances of all non-coherent facets. This
is possible, given that the rank of the group mapping matrix My, .1, setting all rows
of coherent facets to zero, is smaller than nc. A mapping direction hc,, # 0 is then ob-
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tained by a singular value decomposition of the altered group mapping matrix®. Since
the direction h¢,, must affect some facet distances as long as the #c-representation is
not ill-conditioned and since these distances cannot be any of the non-coherent facets,
the direction hc ,, necessarily affects the distances of the coherent facets. This approach
changes the distance h; while retaining the support measure h(P(hc),a;) so that it is
suitable for validity mapping.

A possible alternative to the correction above is the translation of the polytope. This
is reasonable given that the position is not fixed any more when the coherent facets are
removed from the representation. This condition is fulfilled when the rank of (McA) is
lower than 3 when the rows of coherent facets in A are set to zero. The direction x; for
the translation is obtained by the singular value decomposition of the altered matrix
(McA). The direction in h¢-space is then given by:

he,s = My, A% (3.15)

where A’ is the adopted facet normal matrix. This operation typically changes all non-
coherent facet distances while retaining the distances of the coherent facets. In contrast
to the previous path, this approach changes the support measure h(P(hc,a;)) while
retaining h;.

Note that the two paths directly link to the two types of ill-conditioned representa-
tions (see subsection 3.2.1). Based on the disappeared set of coherent facets, an altered
Hc-representation can be assumed for which these facets do not exist. This implies
to delete the corresponding rows of the matrices A and My, ,n. The mentioned link
is then provided for the first approach by assuming a group mapping matrix with a
rank lower than nc and for the second approach by assuming that the position of the
represented polytopes is not fixed anymore.

Final correction. The final step performs the mapping by: h{, = h¢+~ hc,, where v
represents (not necessarily equals) the distance of h¢ to the target domain apy ;) jhi; =0
and is given by:

al. . hc
y= O (3.16)
Apy (), -
to yield:
1
T
c=hc— aApy(;),j hc <WhC,H> . (3.17)
1),] ’
This equation can be expressed as a projection:
he = Ppy(; jhe (3.18)
and the matrix: -
heapy()
Prva),; = (Inc T 1 (3.19)
FV (i), O

is called a validity projection matrix.

This direction is uniquely determined up to a scalar coefficient. Since this detail is not essential for the
given derivation, it is not discussed.
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Overall algorithm. The complete procedure for the validity mapping of a vector h¢
can be constructed as given by the following.

he <0.

1. Check all constraints agv(i) ;

2. If the vector is valid, the algorithm terminates.
3. If one constraint indicates an empty polytope, set hc = 0 and terminate.

4. Otherwise, select a violated constraint, perform the validity mapping according to
equation 3.18 and return to step 1.

This procedure is applicable, but not efficient for an implementation or for further
derivations. The constraints of the facet validity cones are checked several times in step
(1) and a facet might be corrected multiple times when more than one constraint from
the corresponding facet validity cone is violated. These issues can be resolved by re-
structuring the procedure. First, multiple corrections of the same facet can be avoided.
Since all corrections shift the hc-vector according to the same direction, only one of the
projections from equation 3.18 is actually required. This projection can be identified by
demanding that the corrected vector resides in the facet validity cone which results in
a condition to the input hc-vector:

(ApviPrvi,;) he <0. (3.20)

Secondly, each correction only affects the corresponding coherent facets so that the va-
lidity of non-coherent facets is not affected. Given that each facet can now be corrected
in a single step, the constraints must only be evaluated once. The validity mapping can
now be restructured to the following algorithm.

he <0.

1. Check all constraints ag\,(i) ;

2. If one constraint indicates an empty polytope, set hc = 0 and terminate.

3. For every invalid group of coherent facets, identify the appropriate validity projec-
tion matrix according to equation 3.20 and apply it according to equation 3.18.

The efficiency is further increased by checking only unique constraints for step (1) and
computing the projection matrices Py ;) ; and constraint matrices Apy(;)Pry(;),; @ pri-
ori.

Finally, the requirements for the applicability of the algorithm are summarized. Va-
lidity mapping of a vector h¢ is possible, when

1. the represented polytope is empty (hc ¢ Cpy (g)) or
2. when for every invalid facet i either:

a) the rank of the matrix My, for which all rows of coherent facets are set to
zero is lower than nc or

b) when the rank of the matrix McA, given that the rows of coherent facets in
A are set to zero, is lower than 3.
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In any other case, the polytope is non-empty (condition 1) while no direction in hc-space
exists that does not alter the shape of the polytope (condition 2). Validity mapping is
not possible for such cases’. One example of a ho-vector for which validity mapping is
not possible is given by the outer right shape in figure 3.88.

Further simplifications. The discussion above suggests that the mapping of an in-
valid h¢-vector is possible with a single projection. Therefore, it would be required to
create all combinations of projection matrices Pry ;) ; including the accumulation of the
constraints for their applicability. The total number of such combinations increases
rapidly with nc so that calculating these projection matrices a priori is not reason-
able. However, this concept is still valuable for derivations so that the overall validity
projection matrix is denoted by Py (hc) and the corresponding required conditions by
Ap, (hc). These conditions include the constraints from equation 3.20 and the specifi-
cally violated constraint of the facet validity cone: a%:V(i),j he <0.

3.2.4 Proper Representations

Motivation. Since validity mapping is not always possible, it follows immediately
that two classes of Hc-representations can be separated. One for which validity map-
ping is possible for all hc-vectors and another one for which this is not the case. This
subsection defines this classification and provides corresponding conditions that are
applicable computationally. Therefore, the viewpoint changes from specific hc-vecors
(or polytopes) to Hc-representations (or classes of polytopes), compared to the previous
subsection.

Proper Hc-representations. 7Hc-representations for which validity mapping is pos-
sible for arbitrary hc-vectors are called proper.’ Contrarily, when a hc-vector exists
for which validity mapping cannot be applied, this representation is called improper.'°
Ill-conditioned representations are neither proper nor improper, they are a third class
of Hc-representations that are not treated for the reasons given in subsection 3.2.1.

Properness conditions. To decide the properness of a given H¢-representation com-
putationally, the conditions for a successful validity mapping from the previous sub-
section are reformulated. A Hc-representation is proper and guarantees a successful
validity mapping when for each group of coherent facets, either

1. the facet validity cones equal the non-empty polytope cone Cgv(;) = Cry(q), OT

2. the rank of the matrix My, . ,,, for which all rows of coherent facets are set to zero
is lower than nc, or

3. the rank of the matrix McA, given that the rows of coherent facets in A are set to
zero, is lower than 3.

Condition (1) corresponds to the validity mapping of empty polytopes P(h¢c) = ), condi-
tion (2) links to the mapping that affects the facet distances of the invalid facet i while
condition (3) enables the mapping that is based on a translation of the polytope.

"Though, for hc-vectors that originate from proper crystal symmetry, validity mapping is always possible
as it will be discussed in the subsequent subsection.

8 Another example is introduced in subsection A.2.3 since cases not fulfilling the above constraints require
‘Hc-representations apart from the typical crystal symmetry.

®An example of a proper representation is given by figure 3.2.

9An example of an improper representation is given by figure 3.4.
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Crystal representations. Whenever a Hc-representation originates from crystal sym-
metry, it always fulfills the conditions for properness. The symmetry of crystals guaran-
tees that each face of a crystal form is either present or has disappeared so that faces of
a crystal form are coherent [Borchardt-Ott, 2009]. When the #-representation is for-
mulated, each crystal form corresponds to a component of the hc-vector and each row
of the group mapping matrix contains a single one. If a crystal form grows out and the
rows of invalid coherent facets are set to zero in the group mapping matrix, the rank
is always nc — 1. This is already sufficient to conclude that an #c-representation that
originates from crystal symmetry are always proper, even if the position of the corre-
sponding polytopes might not be fixed. Fixing the position by setting one or more face
distances to 0, as described in the subsection 3.2.1, immediately implies that these faces
can be fixed by moving the whole polytope as described in the preceding subsection.

Relevance of proper 7 -representations. All applications in this work concern
crystallization processes so that proper Hc-representations constitute the native fo-
cus. Additionally, even in the cases where improper Hc-representations are discussed,
corresponding proper Hc-representations are exploited to utilize or analyze them (see
chapter 6). Therefore, improper representations are only analyzed in appendix A.2 and
the following sections assume proper Hc-representations if not noted, otherwise.

47



3. The Geometric State Space — Proper Representations

3.3 Calculating Measures
3.3.1 Introduction

Motivation. Subsection 3.1.1 identifies three general problems for crystal shape mod-
eling. The first two issues, the validity of vectors in the crystal state space and disap-
pearing polytopes, are resolved in section 3.2. The third issue, discussed in this section,
concerns measure calculations. It was pointed out in subsection 2.3.1 that measure cal-
culation strongly depends on the present morphology, or a-type. Corresponding regions
in the hg-space with equal morphology are, however, not yet identified. At this point,
the incorporation of the convex geometry to the analysis and derivations becomes prof-
itable. The Minkowski decomposition (see subsections 2.4.1) and the corresponding S-
representation (see subsection 2.2.4) are appropriate tools to handle morphology based
problems. Additionally, the concept of mixed volumes (see subsection 2.3.2) links the
S-representation with measure computation and, finally, the literature provides that a
variety of measures can be treated analogously (see subsection 2.3.3).

Outline. In the presented approach, it is aimed to transfer the measure calculation
by mixed volumes for polytopes in S-representation to equations that are applied di-
rectly to polytopes given in Hc-representation. Therefore, the Minkowski decomposi-
tion that is given for H-representations, is adopted for #c-representations to solve an
auxiliary problem in subsection 3.3.2. This auxiliary problem discloses how a-types
are represented in hc-space. Subsequently, subsection 3.3.3 introduces a decomposi-
tion of the validity cone based on this auxiliary problem. Given this decomposition,
all structuring elements are identified that are required to represent all polytopes of
a Hc-representation in S-representation. This decomposition is also essential for any
problem that is related to the surface structure of the represented polytopes since it
identifies all present a-types. Subsection 3.3.4 then provides a coordinate transforma-
tion between the S- and H-representation. This, finally, allows to convey the concepts
of convex geometry to the hc-space, including in particular the measure computation
by mixed volumes. The newly obtained framework for measure calculation is described
and summarized in subsection 3.3.5.

Alternative. An alternative to the approach above would be to directly deduce poly-
nomials in the components of the hg-vectors without introducing Minkowski addition
or mixed volumes. An example is shown for the polytope volume in subsection 2.3.1.
However, the proposed approach to start with mixed volumes has benefits, while none
are available for the alternative. The concept of mixed volumes is readily available for
several measures without additional derivations (see subsection 2.3.2) and the required
coefficients are only dependent on 1, 2 or 3 structuring elements. Overall, it can be pre-
sumed that calculating the mixed volumes by evaluating the measures for generated
sample polytopes is less effort and more general than deriving the polynomials in com-
ponents of the hc-vectors directly. Additionally, the coefficients for the polynomials in
components of the hg-vector are only valid for a specific a-type. Following subsection
2.4.2, finding the region in the crystal state space that is covered by a certain a-type is
essentially the same problem as identifying the structuring elements to express all poly-
topes of that a-type in S-representation. Hence, this alternative cannot reduce the com-
plexity to obtain an efficient framework for measure calculation. In fact, the derivations
in this and the following subsection result in a polynomial of the hc-vector components
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and a linear inequality that expresses the region for certain a-types. However, while a
result that matches the problem statement of the alternative approach is obtained, this
result is achieved indirectly via the introduction of S-representations.

3.3.2 Constrained Minkowski Decomposition

Motivation. This subsection introduces and solves an auxiliary problem that is re-
quired to link Hc-representations with S-representations. This allows, in following
subsections, to utilize the findings from convex geometry which includes, in particular,
the concept of mixed volumes. The statement of the auxiliary problem is: given a poly-
tope @ in Hc-representation, find a set of structuring elements P, so that all polytopes
P(h¢) < @ that fulfill the constraints of the Hc-representation are also covered by this
S-representation.

Prior results. A problem analogue to the auxiliary problem in this subsection is al-
ready solved in subsection 2.4.2 to link the S-representation with the #-representation.
Given a polytope (Q in H-representation, all polytopes P < () that are summands of Q
can be expressed in an S-representation that uses the indecomposable polytopes P; < @
as structuring elements. An algorithm, denoted by Minkowski decomposition, is pro-
vided in subsection 2.4.2 to calculate these indecomposable polytopes. The main result
of this algorithm is a cone in h-space that represents all polytopes P < ). Given that
cone, the indecomposable polytopes are represented by the extreme rays of this cone.

Interpretation of the auxiliary problem. The auxiliary problem contains an ad-
ditional constraint compared to the problem solved by Minkowski decomposition: the
summands P < Q must be representable in H-representation. This implies that any
h-vector must fulfill the constraint Mch = 0 with M¢ being the constraint matrix of
the Hc-representation. The set of h-vectors that fulfill this constraint constitute a lin-
ear subspace of the h-space, the null-space of the matrix M. Alternatively, the same
subspace is given by the mapping matrix My, ,n: the columns of the matrix My, i, are
a basis of this subspace.

Solution of the auxiliary problem. It follows that the set of polytopes that must
be covered by the S-representation of the auxiliary problem are represented in h-space
by the intersection of the cone from Minkowski decomposition and the null space of the
constraint matrix M¢. This intersection is necessarily a convex cone and any vector h;
of the cone represents a summand P(h) < @ so that ), \;P(h;) = P(>_, \;h;) holds for
A; > 0. The extreme rays of that cone consequently represent the required structuring
elements for the auxiliary problem. This conclusion is analogue to the discussion of
Minkowski decomposition in subsections 2.4.1 and 2.4.2.

While the structuring elements of the auxiliary problem are not necessarily indecom-
posable they are still special in the sense that, for each structuring element, the set of
existing edges cannot be reduced any further.

Constrained Minkowski decomposition. Asthe Minkowski decomposition already
uses linear constraints, the additional constraint Mch = 0 can be concatenated with
these existing ones (see subsection 2.4.2). Calculating the solution of the auxiliary
problem is then analogue to Minkowski decomposition. This alteration of the original
algorithm will be called constrained Minkowski decomposition and the primary result
is the convex cone for which (exactly) all h-vectors of that cone are summands P < @
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and can be rewritten in #Hc-representation.

Fixed positions. A Hc-representation guaranties normalized polytope positions (see
subsection 3.2.1) so that the additional constraints that were necessary for the Minkowski
decomposition are not required for constrained Minkowski decomposition. The con-
straints are already contained in the matrix Mc.

The cone in h¢-space. The cone that is obtained by constrained Minkowski decompo-
sition is necessarily embedded in the linear subspace defined by the #-representation.
Consequently, it is evaluated directly in hc-space. Likewise, the input polytope @ is
directly given with a hg-vector. The resulting cone is usually nc-dimensional. If a cone
is lower dimensional for an input polytope @', the algorithm for constrained Minkowski
decomposition generated an equality constraint for facets that intersect in the same ex-
treme point of )'. Small perturbations of the h¢-vector for Q' are sufficient to remove
this constraint so that a higher dimensional cone is obtained. In general, choosing the
input polytope @ by a random h¢-vector makes it unlikely to obtain a cone that is not
nc-dimensional.

Maximum ca-types. The following considers an nc-dimensional cone, generated by
the polytope Q. The interior of this cone represents all hc-vectors for which the poly-
topes P(hc) have the same a-type [Q]. At the boundary of this cone, a-types [P] < [Q]
are found that have a smaller number of edges so that the a-type [Q] will be called a

maximum a-type for the given Hc-representation!!.

3.3.3 Decomposition of the Validity Cone

Motivation. The previous subsection introduced an auxiliary problem to identify the
structuring elements for a single input polytope. This subsection presents an algorithm
to identify the structuring elements for all polytopes of a H-representation so that the
corresponding S-representation covers at least all shapes of the H-representation.

Partitioning. The total number of a-types is finite for combinatorial reasons so that
only a finite number of maximum «a-types exist. The corresponding nc-dimensional
cones from constrained Minkowski decomposition can, hence, be enumerated and will
be denoted by Cy .

Because the interior of each cone equals all hc-vectors with the same a-type, the
corresponding cones cannot overlap. Formally, this is expressed with the dimension of
the intersection of two cones p # ¢:

dim (CUJ, N CU,q) < ng. (3.21)

Additionally, given the validity cone which covers all achievable polytopes and a-types
of a Hc-representation, this cone can be decomposed into the cones from constrained
Minkowski decomposition that are generated by the finite number of maximum a-types.
Given all cones Cy ,, it holds:

ey = Jcu... (3.22)

Each cone Cy ; unifies a set of a-types: the maximum a-type [Q)] and any a-type [P] <
(@] for which the polytopes P € [P] can be written in #Hc-representation. Therefore, the

UTn contrast to the term ‘a-type’ which is frequently used in literature, the term ‘maximum a-type’ is not
used in literature and only valid in the scope of this work.
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cones Cy,, are called unified partition and the index U is chosen. Independent of Cy, ),
being a unified partition obtained from constrained Minkowski decomposition, any set
of nc-dimensional cones that fulfill equations 3.21 and 3.22 are called a partitioning of
the validity cone.

Example. Figure 3.6 demonstrates a partitioning of the validity cone into two unified
partitions Cy,. The chosen example models the facets of a cube (blue in the upper
left) for which the facet distances are assigned to hc;. The facet distances that are
assigned to hc 2 belong to an octahedron (dark blue in the right). Both unified partitions
are separated by a third polytope (or structuring element) that can be obtained by a
constrained Minkowski decomposition from one of the two small polytopes near the
center. These small polytopes also illustrate the maximum a-types that are assigned to
the unified partitions (see also subsection 2.3.1).

5 '1 v ho

B

Figure 3.6.: Two unified partitions Cy , that are separated by a structuring element.

Setup of the decomposition algorithm. Before an algorithm is provided to find all
unified partitions for a given H-representation, some notation is introduced and basic
considerations are discussed.

Storage of results. The unified partitions resulting from the algorithm are stored
with their facet normal matrices Ay ,. The total number of unified partitions is de-
noted by npy. Structuring elements are given with the extreme rays of the unified
partitions and are obtained by the double-description method (see appendix A.1.2). All
these structuring elements are necessary and sufficient to cover all polytopes of the
‘Hc-representation according to the discussion of the auxiliary problem in the preceding
subsection. They are stored in two matrices of h¢-vectors because two different scalings
of the structuring elements are required. The total number of structuring elements is
denoted by ngs.

Scaling of structuring elements. In the following, h’c, s, denotes an arbitrary ex-
treme ray element to define the two scalings of the structuring elements.
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The first version of the hc-vector scales the polytope P(h/q Sk) to a mean width of 1.
This vector is used whenever measures (e.g. volume or surface area) are computed so
that it is called physically scaled. The physically scaled vector is defined with:

~ 1
hes, = : he g, -
Mmeanw1dth (P (h/C,Sk>)

Scaling by other measures like volume or surface area is not reasonable because a struc-
turing element can be just a line segment for some cases. The polytope volume or sur-
face area would be 0 in these cases while the mean width cannot reduce to 0 unless the
polytope contains only a single point. This scaling prevents numerical problems (very
small or very large polytopes) that could occur for the following alternative scaling.
The second version of hc-vectors is scaled for properties in the hc-space and will
therefore be called natively scaled. The main target for this scaling is that all such
scaled h¢-vectors reside on the same hyperplane. Benefits of this scaling are outlined
in the following paragraph. The normal vector of the hyperplane is given with the mean
of all physically scaled extreme rays of the validity cone. Scaled to a length of 1, this
normal vector is denoted by h¢, center- The natively scaled vectors are then defined with:

(3.23)

1

hes, = < (3.24)

/
/ C,Sk'
hc,centerv hc7sk>

which implies that the distance of that hyperplane from the origin is set to 1. Natively
scaled hc-vectors have a minimum length of 1.

Closed cones. Natively scaled extreme rays are used to represent convex cones by
corresponding polytopes. The polytopes are specified in V-representation with the na-
tively scaled extreme ray elements and the origin as vertices. The H-representation of
these polytopes is given by the facet normal matrix of the cone with facet distances of
zero while the normal vector h¢ center With a facet distance of 1 is appended. A polytope
that is constructed in that way is called a closed cone and this closure is denoted by a
bar: C. Converting between the closure C and the cone C is always possible by adding or
removing the closing facet (normal vector h cepter)-

The volume of a closed cone is, for example, used to measure the size of a cone. The
main reason to introduce closed cones, however, is an algorithm for set difference which
is only implemented for polytopes.!? The set difference between a domain D and a
unified partition is a central step in the decomposition algorithm.

Decomposition algorithm. The input for the decomposition algorithm is a H¢-re-
presentation: a matrix of facet normals A and a group-mapping matrix My, or con-
straint matrix M. The frame of the decomposition algorithm is an iterative loop that
reduces a domain D in each step by subtracting a new unified partition until this do-
main is empty. This domain is initialized with the validity cone: D = Cy. As the result
of a set difference is not necessarily convex, the domain D is given by a partitioning into
convex cones: D = U;D;. For the initial state, only one partition D; = D = Cy exists.

2The algorithm for set difference is documented in the code. The minuend is given as a set of polytopes in
V-representation constituting a triangulation of the minuend. The subtrahend is given or converted to
H-representation. The core of the algorithm is then based on a case-by-case analysis how a hyperplane
of the subtrahend cuts a simplex of the minuend. The output is the triangulated set difference.
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After the above initialization, the algorithm performs the following steps.

1. Generate random vector h¢ € D;
The natively scaled extreme rays of D; are multiplied by random numbers and
added to obtain the vector h¢. The random numbers are chosen to be significantly
larger than 0 but smaller than 1 to guarantee that h¢ is not at the boundary of D;.
If hc would be at the boundary of D, it is likely that it is also on the boundary of
some unified partition.

2. Constrained Minkowski decomposition
A constrained Minkowski decomposition for the polytope P(hc) is performed and
a corresponding cone is obtained. If the obtained cone is not nc-dimensional, we
return to step 1. This event is unlikely for random vectors h¢ so that no infinite
loop is created (see subsection 3.3.2 for details). If it is nc-dimensional, a proper
partition Cy, ), is found.

3. Accept new partition
The structuring elements are stored physically and natively scaled. The partition
is also stored with Ay ,. The remaining domain is updated by the set difference
D\Cu, , and stored via its partitioning into convex cones: D = U;D;.

4. Termination check
If the domain D is empty, the decomposition is complete according to equation 3.22
and the algorithm terminates. If the domain D is not empty, it is returned to step
1.

Conclusion. With the decomposition of the validity cone Cy into unified partitions
Cu p, all structuring elements S; are determined that are required to describe any poly-
tope P(hc) by means of a linear combination of structuring elements . \;S;. These
structuring elements are the polytopes P(flq s;) from the physically scaled extreme ray
elements of the unified partition.

Range of the S-representation. Given two arbitrary but distinct unified partitions
Cu,p and Cy 4, an important insight can be revealed. Given these unified partitions,
there is a pair of structuring elements S, with h¢ s, € Cy,, and S; with h¢ g, € Cy 4 so
that the polytope S;+ S is not representable in Hc-representation. This implies that the
S-representation covers more polytopes than the input #c-representation when more
than one unified partition exists.

The existence of the polytopes S; and S; can be shown by contradiction. If this pair
does not exist, all structuring elements of both unified partitions can be added to ob-
tain a polytope @ in Hc-representation. For this polytope, a constrained Minkowski
decomposition can be performed and a unified partition Cy , is obtained. This cone is
nc-dimensional and necessarily covers the unified partitions Cy,, and Cy, , from which
the summands are taken to create ). As these unified partitions also follow a con-
strained Minkowski decomposition with a resulting nc-dimensional cone, all partitions
Cu,p = Cu,q = Cu,, are equal. This contradicts the assumption that Cy,, and Cy , are
distinct unified paritions so that S, and S; must exist.

The constraint Mch = 0 cannot be responsible for S; + S; not being representable in
Hc-representation. All structuring elements (given by hg,) fulfill that constraint and
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the Minkowski addition is linear with respect to support values so that Mc (), hg,) =
0 necessarily holds. What remains is that S, + S; fails to be representable in Hc-
representation because of the matrix of facet normals A. This is only possible when
Sk + S; exhibits additional facets that are not covered with the original matrix of facet
normals A.

In summary, unified partitions have two equally valid interpretations. First, they
distinguish different maximum a-types. Secondly, they separate different groups of
structuring elements so that only structuring elements that are assigned to the same
unified partition can be added to yield results in the original #c-representation.

Literature. Borchert [2012] already solves a similar problem. In his work, he con-
structs an algorithm, similar to that of the Minkowski decomposition. Only the equal-
ity constraints are not considered. The corresponding cones in hc-space are then used
to assemble the validity cone partition by partition. Given a seed hc-vector and the
computed partition, new seed vectors outside of this cone are computed for each facet of
the cone and in a predefined distance. This work of Borchert is strongly recommended
for an alternative approach to the partitioning. The algorithm only contains two minor
conceptual flaws!?. First, it assumes that the constructed seed h¢-vectors cover all pos-
sible partitions. This is indeed very likely, but not guaranteed so that unified partitions
might be missed out. Secondly, it assumes that all seed hc-vectors represent a polytope
with a maximum a-type which also cannot be guaranteed. In consequence, a wrong uni-
fied partition could be added that is not nc-dimensional. Both situations are unlikely
so that the algorithm by Borchert [2012] should most of the times properly compute the
decomposition into unified partitions and the validity cone.

3.3.4 Conversion between 7{-- and S-representation

Motivation. With the preceding subsection, all structuring elements S; are identi-
fied that are required to cover all polytopes of a Hc-representation. This subsection
evaluates a mapping between the linear coefficients \; of the S-representation and any
valid h¢-vector to transform the measure equations that involve mixed volumes to the
hc-space.

Concept of mapping. Given an arbitrary valid hc-vector, it can be assigned to at
least one unified partition p. This partition is identified by the compliance of the hc-
vector with:

Ay phe <0. (3.25)

It follows that only the structuring elements associated with this unified partition can
have coefficients )\; # 0 for the desired S-representation. Following subsection 2.4.2
(equation 2.55), for these structuring elements S; = P(hc g,) holds:

P (Z Aiﬁc,5i> => ASi (3.26)

13These issues are assumed to be hard to fix. They involve a numerical parameter (the distance of the new
seeds outside of the known cones) whose magnitude has an upper bound that is influeced by the first
issue and a lower bound that is influenced by the second issue. This comment is based on the experience
that was gathered with previous versions of the decomposition algorithm that used a similar strategy.
Given these experiences, the presented algorithm was designed to avoid numerical parameters.
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so that (compare to equation 2.56 and multiply My, 1 from the left):

he =) Ahes,, (3.27)

(2

in principle, already provides the required mapping. However, a constrained Minkowski
decomposition often identifies more than n¢ structuring elements so that equation 3.27
cannot be inverted.

Simplex partitions. To obtain an invertible mapping, the selection of structuring el-
ements must be reconsidered to allow only n¢ structuring elements to have coefficients
Ai # 0. This can be obtained by decomposing the unified partition into cones with exactly
nc extreme rays. Therefore, the unified partitions Cy,, are closed and the correspond-
ing polytopes Cy_, are triangulated. Each resulting simplex is comprised of exactly nc
natively scaled extreme ray elements and the origin. Removing the closing hyperplane
for all simplices, results in convex cones that are also a partitioning of the validity cone.
These partitions will be called simplex partitions. They are denoted by Cs ,, stored with
the normal matrices Ag , and their total number is given by nps.

Converting Hc- into S-representation. Having a partitioning of the validity cone
into simplex partitions, an appropriate partition for a vector h¢ is found when:

Ag phe <0 (3.28)
is fulfilled and the corresponding structuring elements are denoted by Si; with n¢ dis-
tinct indices j € {1,...,nc}. The coefficients \; are then given with:

()\kl, ceey )\knc )T = (hcjskl e hCVSknC )_1hc (3.29)
Xi = 0 i ¢ {ki,. . kne} (3.30)
The matrix inversion (hQSkl""’thSknc)fl does not have to be calculated, given

the following reasoning. A necessary condition for the coefficients is A > 0. If X is
substituted by equation 3.29, the inequality identifies all hg-vectors that are covered
with the corresponding structuring elements. This inequality, hence, equals the H-
representation of the simplex partition and it holds:

(ho.sy, -5 hes,, )= —Ag, (8.31)

Summary. The introduction of simplex partitions and the conversion from #-repre-
sentation to S-representation are important for the derivations of the following subsec-
tion. Despite of that, these results are not essential. Neither the decomposition into
simplex partitions nor the mapping to a certain A-vector is unique so that neither the
simplex partitions nor the S-representation provide genuine information that is not al-
ready given by the unified partitions.

3.3.5 Measure Calculation

Motivation. Having a A-vector for each valid h¢-vector by the previous subsection,
we can transfer the measure calculation by mixed volumes (see section 2.3.2) to the h-
space. The derivations are performed for a 3-dimensional measure i while the equations
for one- and two-dimensional measures can be obtained analogously.
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Derivation. From equations 2.32 and 3.29-3.31 it follows:

(hC Z ‘/(z,] k) Z as.p,(i,r)as,p,(, s) as.p,(k,t) hC 'rhC shC ts (332)
3,5,k r,s,t

where aV (ir) aTe the elements of the matrix Ag , and V(Z k) = V(Si, Sj, Si) are mixed
volumes. New coefficients can be defined by changing the order of summation:

(r,s,t) Z aS,p, (4,m)4S,p,(4,s ) S,p,(k,t)f}(i,j,k) (333)
4,5,k

and the measure computation simplifies to:

he) = Z %,(i,j,k) hcihc jhe k (3.34)
ik
where the indices r, s, t are substituted back to i, j, k.

Normalized coefficients. The coefficients 171)7(%,6) are not uniquely determined for
the purpose of calculating the desired measure. As it is summed over all combinations
i, j and k the same product hc;hc jhc . appears several times. For example, the result

of equation 3.34 remains unchanged using (V (1,2,3) T ) and ( (1,32) — 1) instead of

171,7(172,3) and 1/1'07(17372). Uniquely determined coefficients are obtained when the index
combinations are restricted to i > j > k so that every product hc ;hc jhc . appears only
once. This defines the following normalized coefficients:

(

=

i) T Vogied) + Vi
i‘V(sz)+V(kl)—|/-\V(7H) 1>7>k
‘Zo,(i,j,k): “;(’]k) %(]’Z’k)+‘i(]k’i) Z:i]:and]::k. (3.35)
Vo, gk T Voiiki) T Vo i=Jjandj<k
Vi.(i.3.k) i=j=k
0 1<jorj<k

Ve

Elimination of simplex partitions. The derivation suggests that the simplex parti-
tions are required to determine the set of coefficients 1’ b.() 88 the hc-vector is assumed
to belong to a specific simplex partition. This is not true It is known that equation
3.34 holds for any h¢-vector of the same a-type (see subsection 2.3.1). Hence, sets of
normalized coefficients must be equal when the corresponding simplex partitions be-
long to the same unified partition. In conclusion, the sets of normalized coefficients can
be summarized to one set for each unified partition which will be denoted by c, (; j r)-
Coefficients for an unspecified measure will be denoted by c, .y as the dimensionality of
this measure is unknown and it may be ¢, (; 1), ¢p,i,j) OF ¢p, (;)- If a specific measure is
addressed, the coefficients will be named accordlngly, like c;f’(lz‘ffg) or c;“éf?‘je

Summary. Given a Hc-representation, the validity cone can be calculated and de-
composed into unified partitions. The mixed volumes for any measure calculation are
calculated according to subsection 2.3.2 and the corresponding measure equations are
transferred to the hc-space according to this subsection. All these steps can be executed
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a priori to any application so that measure calculation reduces to two steps. First, an
appropriate unified partition is determined by equation 3.25. Secondly, the measure is
determined with:

o k) = D hoihc gho ke i (3.36)

ijk

Remark. In contrast to the discussion in subsection 2.3.1, the constraint is relaxed
that polytopes must have the same a-type in order to share the same set of coefficients
for measure computation. Instead, the above equation is valid for any hc-vector of a
unified partition and, hence, for any a-type [P] < [Q] where [Q)] is the maximum a-type
associated with the unified partition. Though, the coefficients c, (; ; 1) are still dependent
on the maximum a-type.
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3.4 Case Study and Summary
3.4.1 Introduction

Motivation. In the discussion of section 3.2, proper Hc-representations are isolated
from general Hc-representations. They efficiently handle the disappearance and refor-
mation of facets and measure calculations. However, the discussion in the preceding
sections was based on theory, only. In practise, limits exist that are connected to the un-
derlying combinatorial complexity of the geometry (e.g. the number of possible a-types)
and the corresponding computation times. These limitations are explored in this sub-
section based on a large set of test cases. Additionally, the algorithms utilize several
polytope operations like the conversion between V- and H-representation (see appendix
A.1.2), volume computation, set intersection or Minkowski decomposition. While the al-
gorithms work well in theory, their practical implementation must consider numerical
precission errors, a corresponding scaling and tolerances. The presented case study is,
hence, simultaneously used to test the implementation.

Content. To evaluate the geometric complexity and corresponding computation times
[Desktop Computer, 2009], every detail from sections 3.2 and 3.3 is computed which
includes the validity cone, the unified and simplex partitions, the structuring elements
and the sets of coefficients for measure computation. To verify these results, several
consistency checks are implemented that verify, for example, that the whole validity
cone is covered by unified partitions or that the normalized coefficients for measure
computation (c, (; j r)) are indeed identical for each simplex partition of the same unified
partition. Additionally, several sample hc-vectors are generated to verify the correct-
ness of measure computation by the presented framework. These tests are also used to
evaluate the average time for measure computations.

Cases. The considered cases are generated from four different crystal systems that
are: potash alum, paracetamol, magnesium sulfate undecahydrate (MgSO, - 11H,0)
and a-lactose monohydrate (lactose). The crystals are shown in the top row of figure
3.7 in a typical appearance while the symmetry information and lattice parameters are
summarized in table 3.1. The bottom row of figure 3.7 additionally shows four more
complex cases that are computed. The present crystal forms for each case are taken
from a set of obligatory forms that ensures a closed polyhedron and a subset of optional
forms. The optional forms are binarily encoded and the resulting cases are listed by
their corresponding decimal number in the right column of table 3.1. An example il-
lustrates this encoding. Potash alum uses the obligatory form {111} which might be
augmented by the forms {100}, {110}, {210} and/or {120}. Each form is assigned to a
bit of the binary number (e.g. {100} to 2° and {120} to 23) so that the decimal number
11 = 1011}, uses the forms {111}, {100}, {110} and {120} but not {210}. A summary of
the realized complexity in terms of the dimension n¢ is additionally provided by table
3.2.14

Measures. To evaluate the computation of measures, the volume, surface area and
four Feret diameters are considered. For the Feret diameters, one direction is chosen
as u; = (0,0, 1)7 and the other three are randomly generated with: u, = (0.4966,

4For lactose, the position is not fixed based on the crystal forms or symmetry. Table 3.2 provides the
dimension nc after the position is fixed according to subsection 3.2.1.
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Table 3.1.: Considered crystal systems and cases

crystal and crystal obligatory optional considered
structure faces faces combinations of
forms

potash alum

cubic, m3, a = 12.158 A, [Ma {111} {100}, {110}, 0-15

et al., 2008] {210}, {120}

paracetamol

monoclinic, 2/m, {110}, {201}, {101}, 0-16, 19, 21, 23, 27,
a=12.651A, b=_8887A, {011}, {100}, {010}, 31-32, 64
c=7236A, 3 =114.848°, {001} {111}, {111},

[Borchert et al., 2009] {101}

MgSO, - 11H,0

triclinic, 1, a = 6.72548 A, {100}, {110}, {110},  0-21, 23-32, 35,
b=6.77937TA, c = 17.2898 A, {010}, {011}, {011},  37-39, 41-43, 45-47,
o = 88.255°, B = 89.478°, {001} {101}, {101}, 51, 53-55, 57-59,

~v = 62.598°, [Genceli et al., {111}, {111}, 61-62, 64, 79, 87,
2007] {111}, {111} 95, 128, 256, 512
lactose

monoclinic, 2, a = 0.7982 A, {010}, {110}, {110}, 0-16, 19, 21, 23, 27,
b=2.1563A, c = 0.4824 A, {o10}, {011}, {001}, 31-32, 64, 128

B =109.57, [Fries et al., {100}, {111}; {111},

1971] {011} (111}, {111}

Table 3.2.: Number of cases for each crystal system separated by the number of facet

groups nc
number of face groups 1 23 4 5 6 7 8 9
potash alum 1 4 6 4 1
paracetamol 1 7 6 6 3 1
MgSO, - 11H»0 1 10 10 14 14 8 1
lactose 1 8 6 6 3 1
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potash alum paracetamol MgSO,-11H,0 lactose 010
1) {110} {100} {010}
{0-10}
{011} {010} 1100}
{100}
{001} {001} {0-1-1}
{110}
3 {110} 1 [1{e0-1} 1 [ ({110} 3 11{-1-10}

potash alum w11 paracetamol {110} MgSO,-11H,0 {100} lactose {010}
{011} {010} {0-10}
{100} 001 {001} {100}
e {110} {0-1-13
{110} {20-1} {110}
{1-10}
101} ] {-1-10}
{210} {0-11} 101-1)
{100} {101}
15 23 59 31

{001}
{120} {111} {-101} {111}

Figure 3.7.: Sample crystals from the case study (the number left to the colorbar indi-
cates the combination of forms from table 3.1)

0.6449, 0.3420)7, uz = (0.8998, 0.8180, 0.2897)7 and uy = (0.8216, 0.6602, 0.3412)7. Mea-
sure computation is too fast so that, typically, multiple sample points must be evaluated
to obtain a reasonable accurate time measurement. Therefore, the presented results in
the following subsection are averaged computation times.

3.4.2 Results and Discussion

Combinatorial complexity. The number of unified partitions in dependence of the
dimensionality of the hs-space is shown in the left of figure 3.8. While a roughly expo-
nential dependency can be observed, the obtained number of unified partitions is widely
scattered. The most complex example in the case study generated almost 1000 unified
partitions which correspond to 1000 maximum a-types. The number of structuring ele-
ments in dependence of the dimension n¢ is shown in the right of figure 3.8. Again, the
dependency is exponential while the data is less scattered. Several more complex cases
use about 100 structuring elements.

A priory computation times. Over 90% of the total computation time to generate all
details from sections 3.2 and 3.3 originates from three separate steps. The first time
consuming step is the generation of the inequalities for the validity cone C5; in h-space
(see subsection 2.4.3). This time is shown in the left of figure 3.9 and is proportional to
ng; since the algorithm iterates over quadrupels of facets. The largest computation time
is given by 36 seconds. The second time consuming step is the decomposition of the va-
lidity cone Cy into unified partitions Cy ;. A roughly linear dependency on the number
of unified partitions can be observed in the right of figure 3.10. This is reasonable since
each unified partition requires the execution of one constrained Minkowski decompo-
sition and one set difference. The largest computation time for the decomposition of
the validity cone is given by 3600 seconds or one hour. In both steps, the sample points
for potash alum are clearly separated from the points of other cases. This is caused by
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Figure 3.8.: Number of unified partitions (left) and number of structuring elements
(right) plotted versus the number of independent facet groups; the crys-
tal systems are indicated by (+) for potash alum, (O) for paracetamol, (57)
for MgSO, - 11H50, and (x) for lactose

the high symmetry of the potash alum system that contains more faces per facet group
than the other crystal systems while the generation of the inequalities for the validity
cone and for the Minkowski decomposition iterate over quadrupels of facets. The third
time consuming step is the computation of the mixed volumes V for the volume, surface
area and Feret diameters which are shown in figure 3.10 in dependence of the num-
ber of structuring elements. If all possible mixed volumes are computed, these times
would be proportional to ng where n is the dimensionality of the measure. Correspond-
ing straight lines are added to figure 3.10.'®> However, a mixed volume V(Si, Sj, Sk) is
only required when the structuring elements S;, S; and Sj, belong to a common unified
partition (see subsection 3.3.5). The implementation considers this detail and skips un-
necessary mixed volumes so that considerable time savings are visible for n = 2 and
n = 3.

number of facet normals, ng
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number of unified partitions, npy

Figure 3.9.: Computation times for generating the inequalities of the unified partition
(left) and for the decomposition of the validity cone into unified partitions
(right); the crystal systems are indicated by (+) for potash alum, (O)) for
paracetamol, (/) for MgSO, - 11H,0, and (x) for lactose

Times for measure computation. Figure 3.11 demonstrates the computation times
that are necessary to determine the volume based on a given hc-vector. For the derived
framework, the measure computation comprises two steps. First, the unified partition
of a given h¢-vector must be identified and the required times are shown by crosses

®These lines are not fitted and drawn manually.
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Figure 3.10.: Computation times for the generation of the mixed volumes ‘7(,) where ()
indicates the generation for the crystal volume, (x) for the crystal surface
area and (+) for a Feret diameter; the straight lines indicate functions
proportional to nl, n3 and n

in figure 3.11. Since the appropriate unified partition is identified by subsequently
checking the containment in the partition (equation 3.25), this time is proportional to
the number of unified partitions npy. In the second step, the volume is evaluated based
on a 3" order polynomial dependent on the components of the hc-vector. The required
computation time for this step is much smaller, shown by circles in figure 3.11. In
comparison, the computation of the volume based directly on the #-representation by
the quick hull algorithm results in an almost constant timing of 62 ms denoted by the +
symbols.
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Figure 3.11.: Computation times to determine the unified partition of a hc-vector (x), to
determine the measure based on a hc-vector and known unified partition
(O) and computation times to compute the measures based only on the
‘H-representation (+)
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3.4.3 Conclusions and Summary

Geometric complexity. The case study considered crystal systems with up to 9 in-
dependently growing facet groups. Since the number of unified partitions grows expo-
nentially with n¢, the computational effort increases likewise. It follows that proper
‘Hc-representations with a dimension of n¢ in the order of 10 must be considered be-
ing high dimensional. On the other hand, such high dimensional crystal systems are
not reasonable in applications so that typically up to a couple of minutes is required to
provide the data for validity mapping and efficient measure computations.

Measure computations. The most apparent benefit of the provided framework is
given by the efficiency of measure computations. The appropriate unified partition
(and a-type) can be determined by a set of linear inequalities (equation 3.25) while the
measure computation evaluates a 3" or lower order polynomial (equation 3.36). Cor-
responding time savings compared to the computation of the same measures directly
from the H-representation are crucial for the evaluation of population balances (closing
of solute mass balances) as it is shown by Borchert [2012] or subsequent chapters of
this work.

Understanding of the geometric state space. A much more subtle achievement
of this chapter is the general understanding of the geometric state space. The uni-
fied partitions and their boundaries indicate all possible a-types or morphologies of
a crystal system so that any morpholgy related question can be addressed efficiently.
Analogously, the validity cone and the facet validity cones indicate regions in h¢-space
where certain facets are present. Based on this information, it is straightforward to
determine if facets grow out, given a particular growth rate. Even though these results
are already evident by Borchert [2012], this work comprises two differences. First, the
framework is connected to existing mathematic theory from which Minkowski addition
is the most important concept. This connection allows a seamless extension to rounded
particles in chapter 5 while rounded particles that include spheres cannot even be ex-
pressed by a H-representation. Secondly, the derivation considers a generalization to
arbitrary mapping matrices My, from which the distinction between proper and im-
proper Hc-representations emerged. Improper representations are used in chapter 6
for shape approximation and model reduction.

Validity mapping. The algorithm for the correction of h¢-vectors with invalid facet
distances (validity mapping) is probably the most important achievement of this chap-
ter. The principles of this algorithm are utilized in chapter 4 to reduce the stiffness
of the numerical scheme that is used to solve population balances. But the concept of
validity mapping is even more important for chapter 6 where two approaches for shape
approximation are presented and improper representations are analyzed.
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Dynamic Evolution of Crystals

4.1 Introduction and Preliminaries

4.1.1 Introduction

Motivation. Chapter 3 introduces a rigorous framework to model the geometry of
faceted crystals. While the application of Hc-representations is motivated by crystal
growth, the resulting dynamic evolution of single crystals or crystal populations is not
discussed there. These details are considered in this chapter separately, because we
change the viewpoint from derivation to application for the geometrical framework.

Single crystals. Considering growth and dissolution, the evolution of a crystal pop-
ulation is governed by the dynamics of each involved crystal. These dynamics are de-
scribed by a time dependent growth (or dissolution) rate g(t):

dhe
—— =g(hg, t 4.1
dr g( (oF ) ( )

while an initial crystal shape h¢(0) is assumed. Because every vector h¢(¢) must remain
valid, this general formulation must obey the bounds of the validity cone so that g
is necessarily shape dependent. The original growth rate given by kinetic laws does
typically not consider the boundaries of the validity cone and is denoted by g. At this
point, recall that the boundary of the validity cone represents h-vectors for which some
facets have grown out. In literature, the typical approach to comply with these bounds is
to substitute components of the growth rate when corresponding facets have grown out
and do not reappear. They are substituted by a rate that corresponds to the velocity of
the supporting vertex for that facet [Zhang et al., 2006, Borchert et al., 2009, Borchert,
2012, Singh, 2013]. The method in this work uses a more abstract approach since it is
derived from the more general projections of the validity mapping (see section 3.2). This
method is presented in subsection 4.2.1. The difference between both approaches is very
subtle because it lies within the derivation, not within the immediate results. However,
the conducted approach also addresses and resolves stiffness issues that appear for
population balances and which are not treated in known literature.

Crystal populations. A population of particles is commonly described by distribution
densities 1 with respect to spatial and/or intrinsic coordinates. In the scope of this the-
sis, well mixed batch reactors are assumed and the crystal population 7 is distributed
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over the coordinates of a H-representation so that:
I = /ﬁ(hc) dhg 4.2)

represents the total number of particles. Deriving a balance equation for the distribu-
tion density 7(hc, t) results in the population balance equation together with initial,
boundary and regularity conditions ([Randolph and Larson, 1971], [Ramkrishna, 2000,
equations 2.7.9 to 2.7.11], [Borchert, 2012, equations 2.58a to 2.58d]):

on -
G V@ = Yo (43)
n(he, 0) = no(he), (4.4)
Ay (g(hc, t)n(hc, t)) = 0 for h¢ € dCy, (4.5)
fthe, t) — 0 for ||ho| — oo, (4.6)

where Vi, is the Nabla operator so that Vy,, e (gn) represents the divergence of the vec-
tor field (g 7). Note that equation 4.3 usually does not contain any source or sink term o;
for the scope of this work because none of the corresponding mechanisms are relevant.
The shapes of aggregated or broken particles are beyond the scope of the geometrical
framework. Furthermore, without aggregation or breakage, nucleated particles can
be separated as a 1-dimensional population balance [Borchert, 2012] for which numer-
ous approaches are available [Kumar and Ramkrishna, 1997, Briesen, 2009b, Borchert,
2012]. What remains is the evolution of an initial crystal population 7y(h¢c) by growth
and dissolution which is still challenging as it will be discussed in the following sub-
section. Dissolution differs from growth by an additional sink term o; that removes
dissolved particles from the system.

4.1.2 Solving Population Balances

Sources of complexity. The focus of this chapter is a relatively simple crystalliza-
tion problem in terms of included mechanisms, though is it mathematically classified
as a hyperbolic partial differential equation and thereby considered to be difficult to
solve. Efficient numerical schemes are challenging and analytic solutions only exist for
simplified cases. Beyond that, the population balance (equation 4.3) does not pose the
complete system of equations. Considering a real crystallization process, it involves a
growth rate that depends on supersaturation and, hence, requires the closure of the
mass balance. Therefore, it is required to evaluate the total volume of the particle pop-
ulation:

Lootume(t) = / £V (he) 7t (he, t) dhg. 4.7

The numerical computation of this integral becomes more and more challenging with
increasing dimension nc so that a numerical scheme for the population balance must
also consider a numerical scheme for this integral.

The second source for the complexity of the problem is inherited from the geometri-
cal complexity of the single crystal model which is mainly posed by the validity cone.
Details for the proposed numerical scheme in subsection 4.2.2 that also apply for the
moving pivot technique are given in subsection 4.2.1.
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Literature overview. Numerical schemes to solve the population balance can be sub-
divided into different classes for which an extended overview is available by Gunawan
et al. [2004], Costa et al. [2007] or Mesbah et al. [2009]. The discussed classes of nu-
merical schemes contain Monte Carlo simulation, method of moments, finite differences
such as the Lax-Wendroff method and weighted residuals such as the finite elements
method. However, the most successful class of methods for the focused problem seems
to be formed by discretization techniques, in particular finite volume high resolution
schemes [Leveque, 2002, Ma et al., 2002] and the moving pivot technique [Kumar and
Ramkrishna, 1997, Borchert and Sundmacher, 2011, Borchert, 2012]. The method of
characteristics will also be discussed but is considered rather an analytical method than
a numerical scheme.

Finite volumes. When the integral form of the population balance is applied for
closed subdomains of the crystal state space, the resulting methods are classified as
finite volume schemes.

First order schemes of this kind typically suffer from numerical diffusion. Ma et al.
[2008] used the method of classes to model shape-independent growth in 3 dimensions
for potash alum. The boundary conditions are not considered, even though, at the end
of the presented simulation, large parts of the particle population are outside of the
validity cone. Shortly after, the model is extended to shape-dependent growth while the
geometrical boundary conditions remain unconsidered [Ma and Wang, 2008].

High resolution schemes prevent numerical diffusion, a typical disadvantage of first
order methods, as well as oscillations, a typical disadvantage of finite difference meth-
ods. Ma et al. [2002] demonstrate how the high resolution scheme can be viewed as a
hybrid of the upwind scheme (first order finite volumes) and the Lax-Wendroff method
(second order finite differences). In their study, growth and nucleation in 2 dimensions
are considered for potassium dihydrogen phosphate (KDP). The restrictions of the va-
lidity cone are not considered while in this case the population remains in the validity
cone. Briesen [2009a] also applies the high resolution scheme and models attrition as
growth in 2 dimensions. The derived growth rates natively comply with the resulting
boundary conditions. This particular study is discussed in more detail in chapter 5.

Typical for all approaches above are regular grids so that the given numerical schemes
scale poorly into n dimensions. If the grid spacing and, hence, the accuracy is main-
tained, the computational load grows exponentially with the dimension. Using irregu-
lar grids is, in principle, possible but such numerical schemes are not yet tested for the
solution of population balance equations [Leveque, 2002].

Pivots. A very popular approach approximates the distribution density with a finite
sum of Dirac delta functions for which each delta function marks a pivot point in crystal
state space. The fixed pivot technique, introduced by Kumar and Ramkrishna [1996],
never changes the positions of the initially selected pivots. While this method is al-
ready extended for n dimensions by Chakraborty and Kumar [2007], it suffers from
numerical diffusion for most growth applications. In the moving pivot technique, the
initially selected pivots move according to the growth rate so that numerical diffusion
is eliminated. It is introduced by Kumar and Ramkrishna [1997] and extended to n
dimensions by Borchert [2012]. The problem, demonstrated by Borchert [2012], models
2-dimensional growth for potassium dihydrogen phosphate (KDP).

For pivot techniques, the evaluation of the total particle volume, equation 4.7, is triv-

67



4. Dynamic Evolution of Crystals

ial but the problem of n-dimensional integration is shifted to the realization of the initial
condition. Borchert uses randomly sampled pivots that are regularized in a second step.
To assign particle numbers to each pivot, the initial condition is integrated over the cells
of a Voronoi tessellation. Thereby, the shape of each integration domain results in a poor
efficiency of general purpose integrators [Hahn, 2005]: an increasing dimension of the
problem leads to a decay of the volume fraction between a Voronoi cell and its rectangu-
lar bounding box!. Additionally, a high number of integrations must be computed when
a high number of pivots is chosen. In summary, the integrals for the Voronoi cells can-
not be solved effectively in n dimensions. While a scaling of the problem or a derivation
of a tailored integration scheme is possible, the complexity of that task is assumed to be
very high.

Method of characteristics. An approach that is similar to the moving pivot tech-
nique can be derived based on the method of characteristics which is not a numeri-
cal scheme but an approach to solve partial differential equations (semi-)analytically.
Therefore, the total differential:

dn(hc(t),t)  on

a or T Vhet)e

dhc

e (4.8)

is utilized and the partial time derivative of the distribution density is substituted with
the population balance, equation 4.3, to obtain:

dn(hgit),t) = —-n (th ° g) =+ Z:UZ (49)
The resulting ordinary differential equation gives the distribution density at a position
hc(t) that continuously moves according to the growth rate (equation 4.1). A numeri-
cal scheme is obtained, when a finite number of sampling points h¢ ;(0) is selected for
which the evolution of the initial condition is tracked and when also a numerical scheme
is given to evaluate the total particle volume (equation 4.7). In contrast to the moving
pivot technique, the pivots do not represent a specific number of particles. They indi-
cate the distribution density at this point. In consequence, the integration of the total
volume, equation 4.7, requires additional considerations which might pose assumptions
to the distribution of the pivots in hc-space. Therefore, the method of characteristics
does not constitute a complete numerical scheme for most process models.

Singh and Ramkrishna [2013] propose this scheme for problems with an equivalent
geometrical framework, but they neither specify the discretization scheme, nor do they
specify the integration algorithm for equation 4.7.

Monte Carlo Simulations. Monte Carlo methods simulate a large number of indi-
vidual particles [Ramkrishna, 1981, Smith and Matsoukas, 1998]. The initial popula-
tion is generated randomly and mechanisms like aggregation or breakage are modeled

Imagine an n-dimensional ball which is a very regular body compared to the irregular Voronoi cells. The
values n = 1, n = 2, n = 3 should be sufficient for the general principle. The volume fraction between
these balls and their surrounding rectangular bounding boxes decays with increasing dimension n
from 1 to 2° ~ 0.79 to 2 ~ 0.52. Hence, a general purpose solver will have problems to identify the
region of interest for integration (the ball of Voronoi cell) inside the rectangular bounding box. Even
though problems are considered to be high-dimensional for n ~ 100, the shape of Voronoi cells can be
particularly undesireable.
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by stochastic events. The size or shape distribution is then obtained by a statistical
evaluation. The benefit of this approach is that complex kinetic mechanisms can be
introduced easily. The disadvantage is a relatively high computational cost since large
numbers of particles must be simulated. Note that even though Monte Carlo integral
estimates are used as the basis for the numerical scheme in this work, the derived
method is very different from Monte Carlo simulations.

Summary. From the present state of literature, the only scheme that might scale well
into n dimensions without major extensions is given by Borchert [2012]. Inferentially,
this approach was tested while severe numerical problems occurred for high numbers of
pivots (obtaining a proper Voronoi tessellation) or an increasing dimension of the prob-
lem so that scaling or tailored integrators seem to be required. However, during the
analysis of these problems, a different approach to derive a numerical scheme emerged
that is presented in subsection 4.2.2. Despite of Monte Carlo simulations, all numerical
schemes mentioned in the beginning are derived focusing on the challenges of the pop-
ulation balance. In the new scheme, the derivation concentrates on a numerical scheme
for the evaluation of the total volume.
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4. Dynamic Evolution of Crystals

4.2 Numerical Considerations

4.2.1 Geometrical boundaries

Single crystals. Figure 4.1 illustrates why growth rates cannot be chosen arbitrarily
when the state vector must remain valid during the growth of a single crystal. Here,
the crystal state hc is just valid, residing at the boundary of the validity cone Cy. Si-
multaneously, the growth rate points outside of the cone so that the evolution of that
crystal state would lead to an invalid hc-vector.

Cv
s g
hc
hca

Figure 4.1.: Mapping growth rates to maintain valid hc-vectors during growth.

Given the validity mapping for arbitrary hc-vectors, described in subsection 3.2.3, the
correction of growth rates g dependent on the current geometrical state h¢ is straight
forward. Every boundary i of the facet validity cones Cpvy (i) can be treated sequentially,
which results in steps:

g = Prv(r),i8 for ag(k)’ihc >0 and ar‘}fv(k)’ig >0 (4.10)

while the whole procedure can be summarized as:

g= HPFV(k),z‘ g (4.11)
(ki)

analogously to equation 3.19.

Population balances. The geometrical constraints are included in the population
balance via the boundary condition, equation 4.5, which is fulfilled whenever the cor-
rected growth rates g are applied. However, the sharp gradient of the growth rate g
results in a stiff system for the moving pivot technique or the technique derived in the
following subsection. In one approach, Borchert [2012] avoids this problem by treating
pivots at the boundary of the validity cone as separate populations. Hence, instead of
adopting the growth rate g to fulfill the boundary condition, he adopts the number den-
sity n by adding appropriate sink terms to the population balance. In consequence, the
problem of having a stiff system of ordinary differential equations is transformed to the
problem of tracking discrete events which can be considered equally complicated.

In this work, the problem of stiffness is handled by introducing a small margin region
in the interior of the validity cone:

~§5-1<Avhc <0 (4.12)
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for which the growth rate correction gradually sets in. Based on this margin region, the
procedure for a single step (equation 4.10) is adopted to?:

g = ((1=9Te+7Prv)) 8 (4.13)
aT .hc—|—5
ith o [ 2FvE@ate O
with « < 5

for a\T,(k)’ihc > —¢§ and ag(k)ﬂ-g > 0.

Because each boundary i of a facet validity cone k identifies a specific vertex at which
the facet will disappear, the parameter § represents the distance between the facet and
the corresponding vertex before the growth rate correction sets in. This approach to
bypass stiffness implies that the boundary of the validity cone is never reached in finite
time.

Dissolution. While the above procedure is motivated by growth, the same procedure
is applicable to dissolution. However, the boundary condition of the population balance
should in this case be satisfied by 7 = 0. This requirement can be implemented easily
for the moving pivot technique or the technique introduced in the following subsection.
Pivots that represent dissolved crystals can be removed from the system when:

afy () he > =6 (4.14)

holds for any boundary i of the facet validity cone that identifies nonempty polytopes.
Following this approach the regions in crystal state space at which dissolution occurs
are directly identified by Cy N dCpy (g) which always includes the origin 0.

4.2.2 Solving Seeded Growth Problems in » Dimensions

Motivation. For multiple dimensions, the computation of the total particle volume
contributes significantly to the complexity of the numerical problem. In fact, solving
more general integrals of the type:

() = / su(he) i(he, t) dhe (4.15)

is of central interest since almost all physical properties can be formulated in that way,
given an appropriate function y(hc). For high dimensional cases in the order of n ~ 100,
deterministic integration methods are clearly outperformed by Monte Carlo methods
which is not that clear for the relatively low dimensional problems with n < 10 that are
treated in the scope of population balances [Press et al., 2007, Schiirer, 2003]. However,
the concept of Monte Carlo integration seems to be very flexible in its applications so
that a complete numerical scheme can be provided in the remainder of this subsection.

Monte Carlo integration. Monte Carlo integration is based on the random sampling
of points hc ; for which the probability density w(hc, t) is known. Here, the probability
density is already assumed to be time dependent which is essential for the resulting
numerical scheme. In addition, note that the position of the sample points h¢ ; will also

2The distance from the boundary is agv( r),:ic and negative for points hc inside of the cone so that v
gradually changes from 0 at afy () Jhc = —d to 1 at afiy () ;he = 0.
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be time dependent: hc ;(t). Given a total of ngmple points, the integral in equation 4.15
is estimated by [Press et al., 2007, Kroese et al., 2011]:

1 n (hC,i (t)v t)
> p(he(t) FlhosD), 1)

i

L) ~ (4.16)

TNsample

While this approximation itself is a random variable, its standard deviation can be
approximated by [Press et al., 2007, Kroese et al., 2011]:

. 2
std (1,,(1)) ~ ! > <M(hqi(t))m - Mt)) L))

Tsample (nsample - 1)

(2

This empirical standard deviation is commonly used as an error measure for Monte
Carlo estimates of the integral. While a rigorous error estimator could be derived, this
estimate and the coefficient of variation:

st (I, (1))
1,(1)

as a relative error measure are sufficient for applications in this work.

SI,(t) = (4.18)

Numerical scheme. To solve the population balance for seeded growth in n dimen-
sions random points are sampled for ¢t = 0 from a probability distribution wy(hc) and ob-
tain their positions h¢ ;(0), their particle distribution density 72;(0) = no(hc ;) and their
probability density w;(0) = wo(hc;). Applying the method of characteristics, hc ;(t) is
obtained directly and 72;(¢) is obtained according to equations 4.1 and 4.9. Since prob-
ability is a conservative property of the sampled points and since there is no influx,
outflux or net generation in any closed region, it follows:

ow(hc, t)
ot

analogously to the derivation of the population balance itself [Randolph and Larson,
1971]. The method of characteristics then yields:

= —th ° (g w) 4.19)

dw;

dt
for the time evolution of the probability density. The divergence (V. ® g) of the growth
field can be estimated numerically so that a closed system of equations is obtained that
is comprised of 3 X ngmple ordinary differential equations for hc;(t), 7;(t) and w;(¢)
(equations 4.1, 4.9 and 4.20) as well as the integral estimator from equation 4.16 for the
total particle volume.

=i (Vne o &) (4.20)

Reduced numerical scheme. Typical problems in this work do not use any source
or sink term o; so that the particle distribution densities 7; evolve proportional to the
respective probability densities w;. This results in 7;(¢)/w;(t) being independent of ¢ for
each sample point hc ;. Furthermore, the integral estimation in equation 4.16 does only
require these fractions. Hence, a simplified numerical scheme is obtained by storing
only h¢(t) which evolves dynamically and:

pufl

1 i(0)

N; = —
’ Nsample W (0)

(4.21)
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which is a constant for each sample point. The estimation of the divergence (Vi o g)
is not required and the resulting scheme is comprised of ng,mple ordinary differential
equations (equation 4.1) and the simplified integral estimator from equation 4.16:

Selecting wy(hc). Importance sampling is an efficient way to improve the accuracy of
Monte Carlo estimates and is based on a careful selection of the probability distribution
w(hg, t). Given the standard deviation of the integral estimate in equation 4.17, the

error becomes zero for w(hg, t) = u(hC)ﬁ(I}:?t’)t). This approach, however, is pointless as

it requires to know I, which is to be evaluated by the selection of w(hc, t). On the other
hand, any selection of the probability density that is close to this optimum improves
the accuracy. For the proposed numerical scheme, only w(hc) can be selected, but the
integral I,ojume(t) needs to be evaluated several times so that the effort to calculate some
1,,(0) adds up. For crystal growth, a feasible initial guess is to choose wy(hc) = "}Jl((hoc)j)
proportional to the number distribution. The integral I;(0) can be computed by any
integration method provided by Hahn [2005] while the random sampling proportional to
no(hc) is possible by the Metropolis-Hastings algorithm [Metropolis et al., 1953, Haario
et al., 2001].
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4.3 Case Studies and Summary

4.3.1 Constant Growth

Motivation. The numerical scheme from the previous section provides a new option
to trim the errors of a process simulation by the choice of the initial pivot positions
hc;(t = 0). This possibility is based on the error estimator, equation 4.18. The main
aim of this case study is to evaluate this error estimator and to demonstrate a strategy
to reduce the overall error with runs of small-scale simulations to identify a suitable
probability distribution wy(hc) before a large-scale simulation is started. On a sec-
ondary level, the numerical scheme is tested for a rather high-dimensional example
with ng = 7. The construction of the initial condition involves the truncation of an oth-
erwise smooth initial condition by the validity cone which might be a typical situation
for process simulations. For that reason, only a semi-analytical solution is available as
a basis for comparison.

Setup. Modeled is a hypothetic paracetamol crystal that is comprised of the crystal
forms {1,1,0}, {0,1,1}, {0,0,1}, {2,0, -1}, {1,0,1}, {1,0,0} and {0,1,0} for which the
required decomposition data is computed according to chapter 3. The initial condition
is based on a multivariate normal distribution with the mean at hc; = 107%m and a
covariance matrix of 1.5x 1074 xI; m?. It is multiplied by 10'° which represents the total
particle number in a non-truncated case while it must be truncated for the following
two reasons. First, it contains crystals that are outside of the validity cone so that the
distribution density is set to 0 outside of this cone. Secondly, numerical integration of
the distribution is almost impossible when the integration region is chosen too large.
For that reason the particle distribution is set to 0 outside a cubic box centered at the
mean and extending 3 x 1077 m in each direction which is 2.4 times the chosen standard
deviation. The latter truncated part represents about 7.22 x 10° particles while with
both truncations applied, 4.12 x 10° particles are described. The given crystals grow
with a constant growth rate:

g =102, (4.23)
s
Basis of comparison. The results are compared against semi-analytical results. Given
an arbitrary initial condition and constant growth, an analytic solution of the distribu-

tion density is obtained by the method of characteristics for which the characteristic
trajectories h¢(t) evolve with:

hc(t) =he(0) + 8ot (4.24)

and the number density on these characteristics evolve with:
fi(hc(t), t) = no(he(t) — go,it), (4.25)
assuming no sink or source terms are present (o; = 0). As the validity cone truncates
the initial condition, an analytic solution for integrals of the distribution is difficult to

obtain so that they are estimated numerically by the VEGAS algorithm, a Monte Carlo
method implemented by Hahn [2005].
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Results for small-scale simulations. In the first set of results, 100 sample points
are generated from various initial probability distributions that are constructed from
the initial condition of the problem. Each of these different cases is repeated 10 times
with stochastically independent initial sample points hc ;. The first probability distri-
bution uses the unscaled and non-truncated normal distribution that is used for the
initial condition. The second case samples the initial points proportional to the number
density 7y while the third case samples them proportional to x"°'"™¢7 and the fourth

volume,ﬁ0

case proportional to a mix of both: wy ~ %“IVOT + %’}—f

Figure 4.2 shows the evolution of the total particle volume for the 10 runs of the first
case as dashed lines and the semi-analytical result as a bold line. Figure 4.3 displays
for all four cases the estimated coefficient of variation as dashed lines and the absolute
relative error for each run compared against the semi-analytical solution as light blue

lines.
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Figure 4.2.: Total particle volume over time by the semi-analytical solution (bold line)
and the runs of the numerical scheme for case one (dashed lines)

Discussion for case one. In case one, the initial points h¢ ; are sampled from a plain
normal distribution. While the overall increase of the total particle volume shown in fig-
ure 4.2 is well captured, the relative errors are in the range of 10%. These large errors
are caused by the initial sampling for which 59% of the points reside outside of the trun-
cated region of the particle distribution. These points do not bear any information, but
they can also not simply be disregarded once the probability distribution wg is chosen.
In consequence, they result in large terms (0 — Ivolume)2 for the sum in equation 4.17 and
the standard deviation of I.jume. Disregarding points with 72y(hc ;) = 0 follows the idea
of sampling points proportional to the initial particle distribution 7y which is covered
by case two.

Error esimtates. The true coefficient of variation lies within a confidence interval
of 88% to 116% of the displayed values in figure 4.3, given a confidence level of 95%
[Beyer et al., 1995]. This explains well the spread of the coefficient of variation for the
separate runs. Furthermore, assuming I,1ume being normally distributed, the spread of
the relative error is also in good agreement with the coefficient of variation. Overall, it
can be concluded that the estimated coefficient of variation is a suitable error measure
that can be used to tune the error by the selection of a suitable probability distribution
wg. This is demonstrated by the subsequent three cases while only a single run of the
small-scale simulations would be required.
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Figure 4.3.: Coefficient of variation (dashed lines) and relative error (light blue lines)
for case one (top left, normal distribution), case two (top right, proportional
to 1) case three (bottom left, proportional to ;"°'"™¢7) and case four (bottom
right, proportional to a mix of 7 and p¥o'"™e7)

Discussion for case two. For case two, the intuitive approach is followed in which
pivots are sampled densely in regions where a lot of particles are present. This implies
to choose wy proportional to 7o. The obtained coefficient of variation (figure 4.3) is
below 2% and, hence, significantly better than for case one since, now, all points bear
information of the particle distribution. However, comparing the errors for ¢ = 0 and
t = 1800s, the initial particle distribution is not covered well for the computation of the
total particle volume. For ¢t = 0 the variation of the integrand ¥°""™7; is dominated by
the variations in ;V°'"™¢ while the variations in ;"°'"™¢ relative to 77 vanish over time.

Discussion for case three. To increase the accuracy for ¢ = 0, the probability den-
sity wo can be chosen proportional to ;"°'"™¢7 which is demonstrated with case three.
Following equation 4.17, the error for ¢ = 0 is 0. However, the Metropolis sampling ap-
plies Wy = ;""" 7 / Iyolume for which I,oume is only computed numerical up to a certain
accuracy. This uncertainty is not covered by equation 4.17 but can be neglected in this
case since I,oume is computed with a relative error below 10~*. For the time evolution of
the error, it can be concluded that it behaves exactly inverse compared to case two and

an analogue discussion is skipped.

Discussion for case four. Since cases two and three behave exactly inverse, they
can be mixed to decrease the maximum error that is obtained for all times of the sim-
ulation. Therefore, the points are sampled proportional to %ﬁo /I + %u"ommeﬁo / Lvolume
and a coefficient of variation is obtained that is below 1% for all times 0s < ¢ < 1800s.

Large-scale simulation. With the tuning of the probability distribution w, a large-
scale simulation can now be presented that uses 10* sample points. The results are
shown in figure 4.4 analogous to figure 4.3. Since the numerical integration for the
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semi-analytical result used a relative tolerance of 10~2 while the coefficient of variation
is below 3 x 1074, the displayed relative error is dominated by the error of the semi-
analytical result.
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Figure 4.4.: Coefficient of variation (dashed line) and relative error (light blue line) for
a large-scale simulation.

Summary. For this case study, a few small-scale simulations are performed with 100
sample points to construct a suitable probability distribution w, before a large-scale
simulation with 10* sample points is executed. This strategy is possible, based on a
reliable error estimator that is provided by equation 4.17. A reference solution is not
required for this approach even though the tuning for errors might be more compli-
cated for other cases. First, an error in the total particle volume influences the growth
rate and subsequently the evolution of the whole system in all time steps thereafter.
Secondly, the target measure for error reduction must be carefully chosen and might
be supersaturation or a growth rate of some sort instead of the total particle volume.
Despite of the utilization of the error estimator, this case study demonstrates the ap-
plication of the reduced numerical scheme to a complex crystal geometry with a rather
high number of facet groups (nc = 7).

4.3.2 Linear Growth

Motivation. While the case study of the previous subsection focused on the error es-
timator and a high dimensional process model, this case study focuses on the overall
error of the numerical scheme. For this purpose, the distribution densities and four
integrals of the distribution are compared against an analytical solution of the problem.

Setup. Modeled are cuboids that use the following matrices for the facet normals and
facet grouping:

1 T T

1 0
A=|10 0 1
0 0 O

0 0 0 1100 00
-1 0 O Mpesn=|0 0 1 1 0 0 . (4.26)
0 1 -1 000O0T11
The initial condition is a multivariate exponential distribution:
n e
IN (vis) CHie " forhg > 0

0 otherwise

no(he) (4.27)

that is parameterized such that vy = 10'° equals the total particle number and g =
10~°m is the mean facet distance for all directions. These given crystals grow with a
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linear growth rate:

g(hc) =hc - é (4.28)

Analytic solution. The analytic solution is obtained by the method of characteristics
for which the characteristic trajectories h¢(¢) evolve with:

hc(t) = he(0) el (4.29)
and the number density on these characteristics evolves with:
f(hg(t), t) = np(he(t) e ™) e "ct, (4.30)

assuming no sink or source terms are present (o; = 0).
The total volume of the distribution is given by:

Ivolume(t) = 8/7~”L(hc, t) hC,th,2hC,3 dhC

Applying equation 4.30 together with the initial condition, equation 4.27, and perform-
ing an integral substitution with hc = e’ h, gives:

2\? 7 _Lp
Lyolume(t) = N <7) e’ / [Te " nty, dng. (4.31)
S ;
0 3

This integral can be evaluated component-wise to obtain:

Ivolume(t) =N (2'786t)3 . (4.32)

The analytic results for the surface area and mean width follow analogously:

Isurface(t) = 6')/N (2")/86’}/Gt)2 (433)
Imeanwidth(t) = 3 YN VS eFYGt (434)

while the total particle number is constant:
Ii(t) = . (4.35)

Numerical setup. A total of 10° points are sampled initially from the probability
distribution wg = %ﬁ /I + % protmes /T ume Where It = yy is used and Iyopume is computed
at t = 0 by equation 4.32. The Markov chain on which the Metropolis algorithm is based
evaluated wg about 1.7 x 10® times so that the sampling of these points takes about 42
minutes [Desktop Computer, 2009]. The system is integrated for ¢ € [0, 3s] where a
snapshot is created every 0.2s. While the integration of the numerical scheme takes
only 16 minutes, the accuracy of the results is limited by the required memory space of
1.1 Gb to store the result. This memory limitation does not allow a significant increase
of the total number of sample points to improve the presented accuracy.
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Results. The time evolution of the total particle number, volume, surface area and
mean width is shown in figure 4.5 based on equations 4.32 to 4.35. The total mean width
increases from 3 x 10°m to 6 x 10 m and implies a significant increase of the modeled
particle sizes. The maximum of the absolute relative errors for the distribution densities
over time is shown in figure 4.6. While this error constantly increases, the order of
the error originates from the time integrator for the system of ordinary differential
equations. This assumption was successfully tested by lowering the relative tolerance of
the time integrator. Table 4.1 lists the coefficient of variation and the obtained relative
errors. All relative errors are below 5 x 10~* while the coefficient of variation suggests
a tolerance of roughly 1.7 x 1073, given a confidence level of 95% and assuming the
integrals being normally distributed.
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Figure 4.5.: Time evolution of the total particle number (marker dots), mean width in m
(pluses), surface area in m? (triangles) and volume in m? (circles).
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Figure 4.6.: Time evolution of the maximum absolute error for n(hc ;(t), t).

Summary. This case study successfully validates the proposed numerical scheme.
While it demonstrates a high level of accuracy, it also shows that the accuracy of the
proposed scheme is limited by the total number of sample points that can be stored. As
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Table 4.1.: Error measures for total values of the particle distribution.

number volume surface area mean width

coefficient of variation 6.69 x 1074 6.69 x 1074 5.36 x 107* 5.28 x 1074
relative error 220x 107% 220x107% 211 x107%  4.96 x 1074

the error decays only with 1/, /figample, the selection of the initial probability distribution
is essential to obtain a high accuracy with this proposed scheme.
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5

Modeling of Rounded Shapes for
Attrition or Dissolution

5.1 Introduction and Preliminaries

5.1.1 Introduction

Focus. This section introduces a shape model for convex rounded particles. In the
derivations and applications, it focuses specifically on the attrition of crystals while
rounded particles also occur frequently in geology as sand grains, boulders or rocks or
are formed by the dissolution of crystals. Attrition is caused by crystals colliding in an
agitated vessel either with themselves or with the stirrer or walls. If the collision en-
ergy is not large enough to break the particle, only small fragments are separated and
the shape is altered slightly towards a smaller crystal with rounded edges and vertices.
Attrition is important for crystallization processes since it is almost always present and
has a large influence on the obtained size distribution. The generated particle frag-
ments provide nuclei that grow and, therefore, deplete the supersaturation in the sys-
tem. The generation of small fragments and their growth, results in a size distribution
that is broadened and shifted in the direction of smaller particles, compared to a process
without attrition. While this suggests that primarily the number and size of the sepa-
rated particles are influencing the process, it must be considered that these fragments
are typically very small and difficult to measure. Measuring the shape change of the
original particles might therefore provide an alternative way to track the generation of
such nuclei. Additionally, rounded particles are typically less affected by collisions than
angular particles which might be an important factor for predictive modeling.

Determining attrition rates. Attrition kinetics are often determined based on a
power law assumption and experimental data [Meadhra et al., 1996, Hounslow et al.,
2005]. However, these estimated rates are typically not predictive and applicable to sig-
nificantly different systems. These differences particularly include the size of the sys-
tem which makes it difficult to predict the behavior of the final industrial process from
laboratory experiments [Westhoff and Kramer, 2012]. In contrast to this approach,
mechanistic models consider the local geometry at the impact site and include basic
material properties [Gahn and Mersmann, 1997, Briesen, 2007, 2008]. The considered
geometrical detail comprises the opening angle of a cone whose tip represents the im-
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pact site. While these models are designed to result in a better predictability, they
must be augmented by models that predict the frequency of collisions with respect to
the impact angle and the impact velocity. Since industrial systems often contain a high
particle mass fraction, obtaining such rates is difficult [Trzeciak et al., 2004, Heine and
Pratsinis, 2007, Reinhold, 2008, Reinhold and Briesen, 2012]. Even more important,
the mechanistic models above state the attrition rate being dependent on the overall
particle shape while the work by Briesen [2009a] seems to be the only one that actu-
ally considers the corresponding shape changes for attrition rates. His shape model
assumes a cube for which the rounding is modeled by chipping off its vertices to obtain
the facets of an octahedron like it is shown in figure 5.1. Apparently, this shape model
cannot reflect the rounding of arbitrary crystal geometries since it is based on a cube
and it does only present a crude rounding by the application of the octahedron facets. In
summary of the mentioned attrition modeling approaches, an improved shape model of
rounded particles closes one of the gaps to obtain predictive attrition kinetics. However,
the detailed analysis of attrition mechanics is clearly beyond the scope of this work.

900000

Figure 5.1.: Sample shapes for the attrition (or roundness) model by Briesen [2009a]:
fully angular on the left and fully attrited (or fully roundned) on the right

Measuring roundness. Typical measurements for a crystallization system consider
the one-dimensional size distribution and the bulk solute concentration. While sev-
eral imaging techniques in the context of crystallization processes exist [Schorsch et al.,
2012, Singh et al., 2012], none of them considers the rounded shapes that occur during
attrition. On the other hand, roundness is commonly measured in mineralogy, geology
or related fields. There, roundness or angularity is interpreted as an independent prop-
erty from the overall shape or texture [Barret, 1980]. While shape is a global property
of a particle, roundness or angularity are properties of the corners and texture is a prop-
erty in even smaller size scales. Numerous definitions for roundness exist that do not
follow this separation and contain overall shape information [Pons et al., 1999, Masad,
2000, Al-Rousan et al., 2007, Hentschel and Page, 2003]. In contrast, the definitions
by Wadell [1932] or Powers [1953] clearly separate roundness from the overall shape.
Powers [1953] proposed to classify the roundness of particles into 6 categories from ‘very
angular’ to ‘well rounded’ while the classification is based on human observation skills.
It is, hence, not applicable for the automatic monitoring of crystallization processes.
Wadell [1932] provides a definition of roundness that is based on a specific measure-
ment procedure. Three perpendicular projections are taken, like the three images on
the left of figure 5.2. For each projection k, the radius R, of a maximum inscribed cir-
cle (bold circles) and the curvature radii r;,; for all corners (thin circles) are measured.
Corners are defined by regions of the boundary for which the curvature is less than or
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equal to Rj. The final roundness is then obtained by:

1 i
roundness = N ; %k (5.1)

where N is the total number of measured curvature radii. An outstanding property of
this definition is that a roundness of 1 for a single projection implies a fully rounded
shape so that the same projection cannot become any more rounded. The outer right
example in figure 5.2 demonstrates such a situation. However, this only holds for an
single isolated projection. All four images in figure 5.2 are projections of the same
particle which demonstrates that the procedure by Wadell not necessarily result in a
roundness of 1 for fully rounded particles. While this procedure was also designed to
rely on human observation skills, Maerz [2004] proposed an image analysis procedure
that evaluates the radii of curvature automatically. Since his work focuses on angular-
ity, the measurement identifies only a local minimum for the curvature radii. Another
measurement procedure by Lee et al. [2007] uses three dimensional laser scanning data
and computes the roundness based on morphological image analysis. However, today
no technical equipment exists to perform similar measurements during a crystalliza-
tion process. In summary, roundness measurements of particles during crystallization
are not yet available while numerous different definitions of roundness or angularity
exist in the field of mineralogy or geology. Even though the corresponding measure-
ment procedures are not suitable for crystallization processes and do not fit well to the
new shape model, the various definitions point out desirable properties of a roundness
quantification that are utilized in the next subsection.

Figure 5.2.: Illustration of roundness by Wadell [1932]

Outlook. The following subsection introduces the new shape model. It is based on the
Minkowski addition of a polytope and a ball so that it can reproduce perfectly rounded
edges and vertices like it is shown in figure 5.3. Section 5.2 then consolidates the new
shape model with the framework from chapter 3. It additionally analyzes how the dy-
namics of rounding by attrition or the de-rounding by growth are properly described
and isolates required parameters. Section 5.3 finally presents a shape identification
procedure to measure particle size and roundness in a crystallization process. The pro-
cedure is tested for the proof of principle based on simulated particles and based on
experimental data.
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5. Modeling of Rounded Shapes for Attrition or Dissolution

Figure 5.3.: Sample shapes for the roundness model in this work: full angularity on the
left and full roundness on the right (the visible facets at the rounded edges
and vertices are rendering artifacts)

5.1.2 Shape Model

Principles. Rounded edges and vertices of an otherwise faceted crystal are well repre-
sented by the Minkowski sum of a ball (a solid sphere), representing the rounding, and
a polyhedron, representing the facets. An example of such a Minkowski sum is shown in
figure 5.4 where the summands are drawn in the left and the sum is drawn in the right.
Note the facets of the polytope summand also being present in the sum (illustrated by
the coloring of the sum) while their distances have increased. The polytope summand
is called the kernel crystal or kernel polytope P(hy) and given in H-representation. To-
gether with the unit ball B that is scaled to the radius \,, the rounded shape is defined
by:

C(hg, A;) = P(hyg) + A\ B. (5.2)

The support planes of the polytope summand P(hy) are illustrated for the rounded
shape C(hg, A;) by the black frame in the outer right of figure 5.4. They form a polytope
that circumscribes the sum so that the rounded shape C(hy, A;) could have evolved by
abrasion from this black framed polyhedron. Because of this relation, the circumscrib-
ing polytope P(hy + ;) is valuable and its facet distances are abbreviated by:

h, = hy + .. (5.3)

In mathematical literature, the bodies that are created by equation 5.2 are known
as parallel bodies. They are well studied and the so-called Steiner formula provides
equations to determine the volume, surface area and mean width of parallel bodies
based on the same properties with respect to the summands [Santalé, 1976, Schneider,
2008, Hadwiger, 1957]:

Nvolume (C(hk, Ar)) _ Mvolume (hk) + Nsurface (hk) >\r (5.4)
: 4
+or Mmeanw1dth (hk) )\3 + ?’N )\?

Nsurface (C(hk, )\r)) — Msurface (hk) +Ar Mmean width (hk) >\r 44 A? (5.5)
Mmeanwidth (C(hk, )\r)) — Mmeanwidth (hk) + 2. (5.6)

Comparison to prior work. Briesen [2009a] already provided a shape model for
attrition. The initial non-rounded shapes are cubes with facet distances of length L,
(see figure 5.1 on the outer left). The rounding effect is described by the facets of an
octahedron with facet distances given by the shape parameter L,. The fully rounded
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5.1. Introduction and Preliminaries

Figure 5.4.: Decomposition of the shape model with the ball A\, B (light blue, outer left),

the kernel polytope P(hy) (blue, left), the rounded shape C'(h, A;) (right)
and the circumscribing polytope P(h.) (black frame, outer rlght)

shape is then obtained by the cube-octahedron in the outer right of figure 5.1 that uses
Ly = %Ll. This shape model can be rewritten analogously to equation 5.2 with a
kernel cube P(hcyhe) that uses new facet distances h¢ype and the cube-octahedron shape

Scube—octahedron that uses L1 = 1 and is scaled by the parameter A:

Cd(hcubm )\) = P(hcube) + )\Scube—octahedron- (57)

It applies the coordinate transformation:

(g) — (\%ég)(hib) (5.8)

Therefore, the shape model by equation 5.2 represents an enhancement and general-
ization of Briesen’s work. It allows to describe the rounding of arbitrary polytopes with
perfectly rounded edges.

Quantifying roundness. The numerous definitions of roundness, discussed in the
introduction, are not suitable for the new shape model. Most of them do not isolate
roundness from an overall shape description while others are based on human obser-
vation skills or contain variables that are not computed easily by the shape model.
However, they provide a general guideline for roundness descriptors. First, roundness
should be a property that is independent from the general shape or texture. Secondly, it
should be size-independent so that its quantification includes the scaling by some size
property. Thirdly, roundness is a property with two boundaries: one for fully angular
shapes and one for fully rounded shapes. Choosing a range from 0 for fully angular
shapes to 1 for fully rounded shapes is, hence, a suitable choice.

The chosen quantification of roundness in this work follows these guidelines and re-
flects the intrinsic nature of the new shape model. Given an arbitrary size measure,
the difference of the total size and the size of the kernel polytope results in that part of
the total size that is generated by the Minkowski addition of the ball. The roundness
descriptor is based on this relation and, therefore, called additive roundness. It is given
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5. Modeling of Rounded Shapes for Attrition or Dissolution

based on the mean width, surface area and volume:

'uBl o Iumeanwidth (hk) _ 2>\r (5 9)
Mmean width (C(hk, )\r)) Mmean width (hk) + 2>\r '
surface h ) 2
B _ [y kT (hy ) (5.10)
H < Msurface (C(hk, )\7‘))
volume 3
B3 K (hy) >
uB = (1- . (5.11)
( Mvolume (C(hk, )\7"))

The symbol 1”" indicates the unit ball B that is used in the shape model and the n'"
power which is used according to the dimensionality of the measure to adjust the real-
ized values between 0 and 1 to the perceived roundness of the examples in figure 5.5.
Not considering this scaling results only in minor variations of the shape for %3 being
between 0 and 0.5 while a large range of roundness remains for the range between 0.9
and 1.

The first row of figure 5.5 applies a mean width based additive roundness of ;/®' = 0.5.
The kernel polytope in the left case is a line segment so that the surface and volume
based additive roundness are ;®? = 1 and u”3 = 1, respectively. These shapes are
already fully rounded so that a roundness of 1 is actually the proper interpretation.
The second row shows sample shapes with a surface area based additive roundness of
uB? = 0.5. Here, the kernel polytope in the middle is a flat plate and the shape is
fully rounded. This situation is only properly reflected by the volume based additive
roundness, ;%3 = 1. The third row displays sample shapes that use ;?? = 0.5 and
all shapes appear to be equally rounded. It can be concluded from these observations
that the volume based additive roundness is the only measure that properly assigns a
roundness of 1 to fully rounded shapes. However, the total volume is difficult to measure
based on typical imaging techniques as they are applied in section 5.3. In these cases,
the mean width based additive roundness is a reasonable compromise.
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uB1 = HUB1 = HB1 =
0.50 0.50 0.50
KUB2 = Up2 = HB2 =
1.00 0.65 0.59
UB3 = HB3 = UB3 =
1.00 1.00 0.73

Y i KUB1 = uB1 = KB1 =

= 0.34 0.40 0.44
UB2 = UB2 = UB2 =
0.50 0.50 0.50
UB3 = UB3 = uB3 =
0.73 1.00 0.63

Y 4 UB1 = HUB1 = HB1 =

1 0.23 0.32 0.37
UB2 = kB2 = HpB2 =
0.31 0.33 0.40
UB3 = UBs = KB3 =
0.50 0.50 0.50

Figure 5.5.: Display of shapes for additive roundness with urea samples (left, kernel
polytope in 15t row is a line segment), succinic acid samples (middle column;
kernel polytopes in 15 and 2”4 row are flat plates) and potash alum samples
(right column)
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5.2 Modeling Attrition Processes
5.2.1 Geometrical State Space

Motivation. The challenges of shape representations in general consist of possibly
inconsistent combinations of shape coordinates, zero-size boundaries and measure com-
putation as it is discussed in the introduction to chapter 3. This does not change for
the modeling of rounded particles. However, the new shape model is a consistent exten-
sion of the existing framework for H-representations since both approaches are linked
to the Minkowski addition of convex bodies. This subsection analyses the geometrical
state space and demonstrates that the shape model for rounded particles is conform
with the existing framework for proper Hc-representations.

State space. While the original shape model is based on a #-representation for the
kernel polytope, the geometrical state space should be based on a suitable Hc-repre-
sentation to reduce the number of shape coordinates. Therefore, the vector hy, (ng-
dimensional) is substituted by a new vector h¢ i (nc-dimensional) from the chosen Hc-
representation:

C(hcy, Ar) = P(hcx) + A B. (5.12)

The geometrical state space then comprises the vectors:

hg = ( hfﬁk > (5.13)

where the index R indicates the represented roundness or the appended radius pa-
rameter. This shape model describes a ball of radius A, for h¢ = 0 which results in
P(hcy) = {0}. A perfectly angular shape is described by A, = 0.

General validity. Equation 5.12 results in reasonable shapes when the vector hc x
represents a non-empty polytope and the radius ), is not negative. For a complete
understanding of the geometrical state space, however, the other cases must also be
considered.

First, the case P(hc ) = ) with \; > 0 is considered for which equation 5.12 computes
the shape C'(hc, A:) = 0. The upper left shape from figure 5.5 is a valuable example to
demonstrate a principle problem of this interpretation. There, the kernel polytope is a
line segment so that the vector h¢ y resides on the boundary of the non-empty polytope
cone Cry (g of the chosen Hc-representation. Shifting the vector h¢  only slightly out-
side of the non-empty polytope cone results in an empty kernel polytope and the whole
particle disappears at once. This is not reasonable. A vector hcy with P(hcy) = 0
is invalid and an idea might be to map the vector hcx to a valid representative. But
such a validity mapping does not exist since a vector hc . ¢ Cpy (o) is always mapped to
hc x = 0 which results in an immediate jump to a sphere. This is also not reasonable. It
follows that an hg-vector with ho i ¢ Cry(g) and A\, > 0 is generally problematic and it
remains to represent an empty shape with C(hc, A;) = (. Even though this seems to
be a severe drawback, this decision is unproblematic in applications since disappearing
kernel polytopes always lead to a volume based additive roundness of ;”? = 1 and the
kinetic rates in subsection 5.2.2 ensure that the kernel polytope cannot decrease in size
any further.
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5.2. Modeling Attrition Processes

Secondly, the case P(hcy) # () with A\, < 0 is considered for which equation 5.12 has
two valid interpretations. In the first case the negative sign belongs to the scaling fac-
tor of the unit ball and implies a point reflection at the origin so that —\,B = \.B and
C(hck, Ar) = C(hck, —A;) holds. In the second interpretation, the Minkowski addition
is altered to a Minkowski difference. In contrast to the ordinary scalar addition and
subtraction, the Minkowski difference is not the reverse operation of the Minkowski
addition. If this interpretation is applied, the resulting shape for a negative radius
yields: C(hcy, Ar) = P(hcx — A:) and, hence, can be expressed by a different vector:

T
hy = (hak + A O) . Even though these two interpretations are possible, it is more

reasonable to treat the case hc € Cpy(p) with A, < 0 as an invalid vector. The appro-
priate direction for the validity mapping is discussed in subsection 5.2.3 (equation 5.35)
together with an appropriate example. It results in: C'(hc, A\;) = C(hck+ A, —A;) and,
hence, combines both interpretations.

Lastly, when P(hcy) = 0 and A\, < 0 holds, then it is feasible to assume that the
shape C(hcy, ;) is also empty. Such a vector can be represented by hg = 0 so that the
corresponding validity mapping is also consistent with #c-representations.

Validity cones. The above discussion suggests that the concept of validity can be
handled similarly to Hc-representations. The corresponding regions are defined below
while the new notation is summarized in the subsequent paragraph. A vector hy for
equation 5.12 is considered valid when it provides a valid representation of the kernel
polytope P(hc k) and a positive radius A, so that the corresponding region in the hg-
space is given by:

Ayprhr < 0 (5.14)
B Ay 0
Ayr = [ 0 -1 } . (5.15)
Additionally, the validity of separate facets that also indicates the existence of these
facets transfers directly to the new shape model because of the properties of the Mink-
owski addition. The facet validity cone Cpv ;) /g for facet i is given by its facet normal
matrix:

Apviyr = | Apve 0. (5.16)

This condition is independent on the ball radius A,. A similar cone Cgy(p)/r for the
validity of the radius ), uses the facet normal matrix:

Apyipyr=1[0 —-1]. (5.17)

Lastly, the shape C(hc, A;) is considered to be an empty set when the kernel polytope
is empty so that the non-empty shape cone (analogue to the non-empty polytope cone)
is given by the facet normal matrix according to equation 5.16.

Measures. Measure computation is essentially based on the measure calculation for
the vectors hc y according to equations 5.4 to 5.6. Feret diameters, edge lengths or
selected surface areas yield similar formulas that can be easily derived. Hence, the con-
cept of measure computation for Hc-representations transfers seamlessly to the shape
model for rounded particles.
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5. Modeling of Rounded Shapes for Attrition or Dissolution

Notation. Since the new shape model is a consistent extension of the concepts that
are introduced in chapter 3, the corresponding notation transfers likewise. When the
subscript contains the letter C for ‘constrained’, it is exchanged by R for ‘rounded’. When
the letter C is not contained in a symbol, the subscript is extended by /R, reading ‘in
hy-space’.

5.2.2 Attrition Dynamics

Motivation. While the shape model from equation 5.2 or 5.12 represents rounded
shapes, it is not yet clear how an attrition rate can be mapped to the parameters hc x
and A\, and how the rounding or de-rounding effect can be incorporated. Therefore,
this subsection derives equations that convert a given increase or decrease of the mean
width (the attrition rate) to changes in the shape parameters hc x and A;. Since a fully
rounded particle cannot become any more rounded, two separate mechanisms will be
required. The first mechanism realizes a pure rounding or de-rounding of the particle
shape. The second mechanism assumes a fully rounded particle for which roundness is
preserved.

Discussion. Figure 5.6 demonstrates the rounding of a shape in a close up view. The
original angular shape is highlighted by the boundary of the blue area. It equals the
circumscribing polytope that was already introduced in subsection 5.1.2 (equation 5.3)
and remains constant. The actual shape C(hy, );) is drawn by a bold black line and
becomes increasingly rounded from the left to the right. The illustrated evolution shows
a pure rounding of the shape while the transition in the middle demonstrates that the
disappearance of facets is contained seamlessly. If the same figure is interpreted from
the right to the left, it demonstrates the de-rounding due to growth of the rounded parts
of the shape. The middle figure then demonstrated the appearance of new facets. It can
be concluded that constraining the distances of the circumscribing polytope to remain
constant!:

dh
= = 1
T 0 (5.18)

results in a pure rounding or de-rounding.

Derivation. Given the constraint in equation 5.18, the shape model leaves only one
degree of freedom that must necessarily be used to represent the increase or decrease in
size. In the following, it is assumed that the governing size property is the mean width.
The time derivative of the mean width, as it is given in equation 5.6, is:

d idth
| mean wi h )\r —

8Mmean width (h{()
o,

dh, _d),
- Ay 5.19
a Y 6.19)

d\,
. . 1)) % (5.20)

where 1 is a vector of ones in the appropriate dimension. Note that the mean width is
typically not differentiable at the boundary of a unified partition since the coefficients

hy

Using equations 5.3 and 5.18, it results:

d mean width _ aumean width (hi<>

!The facet distances of the circumscribing polytope h. (equation 5.3) are not to be confused with the facet
distances hc x of the kernel polytope.
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Figure 5.6.: Details of sample shapes to demonstrate the effect of pure rounding (from
left to right) or de-rounding (from right to left) while the shape is drawn
with a bold black line, the circumscribing polytope is represented by the
boundary of the blue area, the angular light blue area highlights the kernel
polytope and the light blue circles illustrate the radius ),

for measure computation change at these positions in state space. Normal unified par-
tition boundaries, however, are not problematic for dynamic simulations since they are
passed in the time integration and a possible numerical error is bounded by the chosen
step size in time. However, the situation when the vector h; approaches the boundary
of the validity cone must be handled carefully and equation 5.19 does not apply in these
cases. To resolve this issue, the partial derivative is computed numerically based on a
directional finite difference:

. mean width __,,mean width )
aﬂmeanwmth (hi{) 1~ o) (hk) o) (hk \/%1) (5 21)
oh|, ~ 5 '

hy

using a suitably small value §. This approach averages the partial derivative in an
appropriate manner and neglects singularities. It is similar to the handling of stiffness
in subsection 4.2.1. In the final result, equations 5.3 and 5.20 can be used to transfer a
physical rate in terms of the mean width: & ymeanwidth (hy )) to the rates % and &
of the shape model.

Transfer to the geometric state space. The approach above is formulated in terms
of an unconstrained H-representation for the kernel polytope. It can be transferred to
the hc-vectors of a suitable Hc-representation when the constraint M1 = 0 is satis-
fied. In applications it will typically hold that each component of the h¢-vector directly
represents multiple facet distances so that equation 5.20 can be reformulated to:

d idth
Y mean wi h A= |2-
a M ( Ck> )

alumean width (hC7k) . d)\r
o, . dt

C,k

(5.22)

Necessity of a second mechanism. The decrease of the particle mean width must
also be realized for fully rounded particles. In this case, the kernel polytope cannot
further reduce in size so that a second effect must be introduced and coupled to the effect
of pure rounding. This second effect will be realized by a shape preserving decrease
in size and the required considerations for the coupling of the two mechanisms are
analogue to the work of Briesen [2009a].
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Shape preservation. The preservation of the particle shape C(hcy, A;) raises the
constraint:

h

. d (%) _ Ldh hydy (5.23)
dt A odt A2 dt '
dhy hy A,
—r = XX 24
dt A dt (5.24)

This constraint can be applied to the time derivative of the mean width and results in:

d idth idth hy dAr
-, mean wi h )\r — mean wi 2 9
S (w2 = ) 42) (5.25)
or:
d ean width idth hC k dA;
_ ,,mean wi h L) = mean wi ) 2 . 2

Similar to the effect of pure rounding, equations 5.24 and 5.26 are used to transfer a
rate for the mean width into rates of the shape model.

Coupling of pure rounding and shape preserving rates. Modeling the dynamics
of attrition, a size changing rate gattiition in terms of the mean width of the crystal is
assumed. This rate is realized on the one hand by the effect of pure rounding that
results in a change of the mean with, denoted by g;‘;&lggf and on the other hand by a

change in the mean width ¢ jﬁape for which the shape is preserved. To guarantee the

given overall size changing rate, the constraint:

___const. shape rounding
Gattrition = Yatttrition T Yattrition (5.27)
applies and the ratio:
rounding
" B3\ _ _Jattrition
(attrition (,U ) = ~const.shape (5.28)
attrition

is used to realize the pure rounding and shape preserving portions of the overall shape
change. For g.itrition — 00, the particle size changes while it is rounded or de-rounded,
only and for gaiirition = 0, the particle shape is preserved. This ratio is dependent on
the volume based additive roundness since a fully rounded particle cannot become any
more rounded so that the overall changing rate must be realized by the shape preserving
effect. This observation implies that gattrition(1) = 0 must hold. Additionally demanded
18 Gattrition (0) < oo which implies that even the facets of a fully angular shape are slightly
abraded. Furthermore, the function gatpition (#2%) should be monotonically increasing

so that dq‘““d‘t%;“(“m < 0 holds. These limitations to the ratio gatuition (12>) were already
discussed by Brlesen [2009a] who also proposed a suitable parametreized function that
is adopted for this work:

B:
easlope;u' 3 — easlope

Gattrition (,UB3) = Kmax . (5.29)

1 — e%slope

Some examples for this ratio are plotted in figure 5.7. The parameter k.., determines
the maximum ratio that is realized for 4”3 = 0. The bold lines in figure 5.7 apply
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kmax = 1 while the thin lines apply knax = 0.2. The parameter ag,,. determines the
slope of the ratio function. For agpe < 0, the ratio reduces quickly for small roundness
values ;P as it is shown by the light blue lines in figure 5.7. For aqope > 0, the ratio
remains high with low roundness values ;3 as it is shown by the blue lines. The
black lines use agope = 10~* and demonstrate that the limiting case aglope = 0 for which
equation 5.29 is not defined results in:

(attrition (,UB?’) = Kmax (1 - ,UB?’) . (5.30)

Summary. Assembling equations 5.3 and 5.20 for the rounding effect, equations 5.24
and 5.26 for the shape preserving rates and equations 5.27 and 5.28 for the coupling of
the effects results in a dynamic model for attrition:

1

2+umean width hcyk )

hc, Ar -
th — /\rk -1 Gattrition (;U'Bs) gattrltl;g . (5.3 1)
dt . ) Gattrition (/’L ) +1

gpmean width (hC,k

dhC,k hcyk
The overall decrease in mean width (gatirition) might be computed by a mechanistic
model or identified experimentally. Additionally, the parameters for the ratio function
Gattrition (17?) must be set. Note also that any initial condition approaches hy = 0 for
Jattrition < 0. Initially, the kernel polytope might decrease while the radius A, increases.
Then, while the particle approaches a well rounded shape with 1?2 ~ 1, its shape is
preserved so that, neccessarily, hg = 0 is approached. It follows that only the validity
of the vector hc x must be considered during the simulation and a particle disappears
when its hg-vector is close to zero.

Case study. The derived equations are implemented and evaluated to demonstrate
the effect of the ratio function gatirition (uB3) on the evolution of roundness. Therefore,
a single particle with a mean width of 1 decreases constantly in mean width (gattrition =
—1) until it disappears. Figures 5.9 and 5.10 show in the left the initial particle shape
and snapshots from equidistant time steps between 0 and 0.5. Figure 5.8 shows the
volume based and mean width based additive roundness over time where the style of
the lines matches the styles from figure 5.7 that contains the applied ration functions
Qattrition. In particular, figures 5.9 and 5.10 illustrate that the parameters of the ratio
function can be well adjusted to describe different rates at which the particles become
rounded.

5.2.3 Growth Dynamics

Motivation. Angular particles typically originate from the anisotropic growth of crys-
tals or from breakage for general particles. Therefore, this subsection discusses a
dynamic modeling approach that covers the de-rounding of a rounded particle due to
growth. Breakage is not considered because it represents a discontinuous event with
respect to the geometrical state space. Given the attrition dynamics in the previous
subsection and the growth dynamics in this subsection, it will be possible in future to
apply new model based approaches to study attrition kinetics or growth kinetics of high
indexed facets.
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ratio Qattrition

roundness .53

Figure 5.7.: Attrition rounding ratio ga¢trition (48 ) plotted with different parameters: bold
lines use kpnax = 1, dash-dotted lines use knax = 0.2, blue lines use agope = 5,

light blue lines use aqop. = —5 and black lines use agjope = 1074
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Figure 5.8.: Time evolution of the volume based additive roundness (left) and mean
width based additive roundness (right) during a hypothetical attrition ac-
cording to the ratio functions in figure 5.7 (line styles match the applied
ratio function)

Figure 5.9.: Shape snapshots in equidistant times from 0 to 0.5 for the slowest rounding
with agope = —5 and kpax = 0.2

Figure 5.10.: Shape snapshots in equidistant times from 0 to 0.5 for the fastest rounding
with agope = 5 and kpax = 1
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Modeling and assumptions. Growth rates for the morphologically most important
facets are typically known when a corresponding shape model is utilized. The growth
of all other facets that are exposed due to the rounded edges and vertices are typically
unknown. Analogue to the attrition model, the growth of a rounded particle is split into
two mechanisms. This approach guarantees that the known rates of the crystal facets
are properly realized. The first mechanism implements the known growth rates of the
facets by applying them to the kernel polytope:

dh¢
dt = 8Bgrowth (532)

while the radius )\, remains constant:

dA;

% 0. (5.33)

) ) - . dh.
This ensures that the facets of the circumscribing polytope grow properly by:

Zgrowth- This mechanism also implies a displacement of all other facets according to the
displacement of the edges and vertices of the kernel polytope. The second mechanism
covers the pure de-rounding of the shape and is realized according to equations 5.3 and
5.20. Since this mechanism assumes d(gc = 0, the growth of the modeled facets remains
unchanged. However, unknown is the increase in mean width that shall be realized by
the de-rounding mechanism. It is denoted by ggﬁggﬂﬁng. Since only one degree of freedom
is available for all possible facets of the rounded shape portions, a reasonable approach
is to average the known growth rates to obtain the required rate. Here, it is assumed
that the additional de-rounding effect realizes an additional increase of the mean width,
proportional to the increase in mean width by the pure growth mechanism (equations

5.32 and 5.33). This results in:

di 8Mmean width (h, )
g;;;lvr;t}llng = {growth 8h{( 5 " Bgrowth (5.34)

hy

where ¢growen 18 the proportionality constant. While a constant ggyowth = 0 implies that
no additional de-rounding mechanism is realized, the overall roundness still decreases.
In this case, the radius )\, remains constant while the overall particle size increases so
that the radius becomes negligible. In contrast, a positive constant gy owtn > 0 implies a
decreasing radius \, that approaches A\, = 0. This boundary must not be crossed so that
a corresponding validity mapping is required. However, it is not reasonable to simply
correct dd’\tr to d(;\tr = 0, independently of the h¢ y rates. An appropriate mapping direction
according to subsection 3.2.3 retains the facet distances of the circumscribing polytope.

This implies to retain h. so that according to equation 5.3 a mapping direction:

hg,, = < _11 ) (5.35)

must be applied for the validity mapping?.

2The direction hg ., can be substituted for the direction h¢ ., that is used in subsection 3.2.3. Likewise,
the facet normal matrix of the facet validity cone for A is referenced by Apy(p) and corresponds to
Apv).
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Case study. To demonstrate the dynamic model and to illustrate the influence of the
constant ggrowtn, the following simulation case study was conducted. It simulates potash
alum in water using the facets {111}, {110} and {100} for which the growth rates and
crystal data is taken from Ma and Wang [2008] and Nollet et al. [2006]. They are
summarized in table 5.1. The initial crystal population is given directly in its discretized
form by 100 logarithmically distributed sample points with i € [1,...,100]:

0.01
hg; = 8'8} 10715501 ym, (5.36)

1

Each sample point represents 2 x 107 particles so that a total mass of 1.2 g is obtained.
The vessel volume is set to Vieseel = 1 X 1072 m? water which results in a particle volume
fraction of about 0.07%. The initial solution has a temperature of 60 °C and is saturated.
It is cooled down to 30 °C within one hour. The supersaturation is given by:

(Vcr ,0— Ver (t)) mgp& + Vyessel Csol, otash(GOOC)
S(t) — y Y mol,potash p _ 1 (5.37)
Vvvessel Csol,potash(T(t))

where T'(t) is the current temperature, V,,, o is the initial crystal volume and V., (t)
is the current crystal volume. Three simulation runs were executed using ggowtn = 0,
Ggrowth = 0.01 and Ggrowth = 0.1.

Figure 5.11 shows the supersaturation (left) and the crystal volume (right) over time.
The initial total crystal surface is not sufficiently large to absorb the supersaturation
that is created by the temperature gradient so that a peak can be observed in the su-
persaturation plot. This behavior is also evident by the total crystal volume in the right
graph. With regard to the different values of the constant ¢y owtn, no significant differ-
ences can be observed. Figure 5.12 shows the roundness and mean width evolution for
three selected crystal trajectories. The left figures represent the smallest initial parti-
cle, the middle column a medium sized particle and the right column the largest particle
of the population. Again, the constant ¢growen has no significant effect on the resulting
crystal sizes. Only large initial crystals tend to grow slightly larger for larger values
of ¢orowth. In contrast, the plots of the roundness 1B show that different degrees of
roundness are obtained. In general, small particles become rounded much faster than
large particles. The radius )\, that has to vanish for particles in order to become fully
angular scales with its size while the changing rate is the same for all particles, which
explains this observation. Secondly, even a small constant ¢growin = 0.1 leads to a fast
disappearance of rounded particles.
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5.2. Modeling Attrition Processes

Table 5.1.: Crystal data for potash alum

name

definition

crystal system

crystal density

molar mass

solubility in water

growth rate for {111} facets
growth rate for {110} facets
growth rate for {100} facets

cubic, m3, a = 12.517 A

Opotash = 1753 1%

Mmol,potash = 25%39}?3 % .

Csol,potash(T) = €T+10'47ln(§)_65'73 x 10° r:;]—?,’l
gquy(s) = 7.753 stPx 1077

gginop(s) = 1124515 x 1076 2

gpy(s) = 1744515 x 1076 2
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Figure 5.11.: Supersaturation (left) and total crystal mass (right) over time.
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Figure 5.12.: Mean width (top row) and roundness (bottom row) over time for the
smallest particle (left), medium sized particle (middle) and large particle
(right) and the three simulation runs using ggrowtn = 0 (light blue lines),
@arowth = 0.01 (blue lines) and ggrowth = 0.1 (black lines)
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5. Modeling of Rounded Shapes for Attrition or Dissolution

5.3 Measuring Attrition Processes
5.3.1 Identification Algorithm

Motivation. Tracking the roundness of particles in a crystallization process would be
valuable to study attrition kinetics as it is discussed in the introduction to this chap-
ter. Therefore, this section presents an algorithm that identifies the size (p™meanwidth)
and roundness (1?!) from particle projection images. The algorithm is designed as a
shape identification procedure and returns also the H-representation of the projected
kernel polytope. This information could be utilized in an existent shape identification
technique [Schorsch et al., 2012] to obtain the thickness and length of rod-like kernel
polytopes or the height, width and depth of cuboid-like kernel polytopes. This would, in
principle, allow to additionally track the particle volume and surface area.

Thanks to the group of Prof. Mazzotti (ETH Zirich, Stefan Schorsch in particular), a
stereoscopic particle imaging setup was available to test the algorithm with real mea-
surement data. However, only separate projections are discussed throughout this sec-
tion and the required detail to match both perpendicular projections from the mea-
surement setup is given in appendix A.1.4. Details of the measurement setup and the
experiment setup are given in subsection 5.3.3 while the assumptions to the input data
and the algorithm itself are presented here.

Algorithm output. Given that the volume based additive roundness is the only in-
troduced roundness definition that guarantees a roundness value of 1 for fully rounded
particles, it would be the most appropriate measure. Additionally, the particle volume
is a commonly used size measure. However, volume information is difficult to obtain
from 2-dimensional imaging data so that the primary result of the presented algorithm
is the mean width of the particle as a size measure and the mean width based additive
roundness.

Input data. The assumed input data comprises the coordinates of points on the bound-
ary of the projected particle like it is shown by the white dots in the left of figure 5.13.
They are assumed to be reasonably well uniformly distributed over the boundary of the
projected particle. The total number of points is denoted by np0int While x; denotes their
representation in an Cartesian coordinate system which has its origin in the interior of
the particle boundary.

Projected shape model. The particle is assumed to follow the shape model from sub-
section 5.1.2. Since the projection of a Minkowski sum equals the sum of their projected
summands [Schneider, 2008], equation 5.2 results in:

TIC (hy, Ar) = TIC(hy) + T (A B) . (5.38)

where the symbol II denotes the orthogonal projection of the subsequently listed body
as an operator. Equation 5.38 can be rewritten to:

HC(hk, )\r) = P(hk,H> + /\r,HD (5.39)

where P(hy 17) is a 2-dimensional kernel polytope that is given in #-representation with
the facet normal matrix Ay 11 and the facet distance vector hy ;1 while A\, 1D is a disk
with radius A, ;. Note the specific projection II being added to the index for these new
shape parameters to distinguish the symbols from the 3-dimensional shape model.
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5.3. Measuring Attrition Processes

Algorithm overview. Figure 5.13 shows in the left a projection of a rounded particle
together with the data points plotted in white. From visual impression, it is difficult
to identify the parameters hy ;1 and A, ;1 of the projected shape model directly. In con-
trast to that, it is relatively simple to identify a well fitting circumscribing polytope by
identifying lines in the data points. This step is performed by a Hough transformation
whose details are described later while the result is illustrated in the middle of figure
5.13. The corresponding polytope is described in #-representation by a facet normal
matrix A, and the facet distance vector h. 1. Given the circumscribing polytope and
assuming an yet unknown radius ), i1, the kernel polytope is known based on the same
H-representation (Ay 1 = A1) while using the facet distance vector:

hyg=hen — A (5.40)

analogue to equation 5.3. To identify the radius Ay, two principal approaches are
proposed. The first alternative resembles the roundness definition and measurement
procedure that is given by Wadell [1932]. It identifies the roundness for each corner
separately so that it can be expected that the algorithm also performs reasonably well
for particle aggregates. The second alternative represents a typical least squares ap-
proach and aims to identify the radius A, 1 so that the resulting shape fits best to the
given data points. A fitted sample shape is shown in the right of figure 5.13. The kernel
polytope is outlined by the light lines in the center while the circles indicate the vertices
of the kernel polytope and illustrate how the rounded corners of the overall shape are
created.

Figure 5.13.: Overview of the identification algorithm based on a sample shape with the
data points x; in white (left), the identified lines that are featured by the
input points (middle) and the fitted shape (bold white line in the right)

Line detection. The lines that are featured by the sample points x; are identified
following the principles of a Hough transformation [Hough, 1962, Illingworth and Kit-
tler, 1988, Burger and Burge, 2009]. The key element of a Hough transformation is a
parameterized form of the image feature that needs to be detected. For the present case
of lines to be detected, the parameterization is given by an angle ¢ and a distance from
the origin p. The line is then determined by all points x that fulfill:

5= <x, ( cos @ )> (5.41)
sin @
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5. Modeling of Rounded Shapes for Attrition or Dissolution

In a next step, the parameter space is discretized and corresponding bin values are
introduced. The angles are discretized by the sequence:

po=20 Pi+1 = Pj + A@ ©; < 2m (5.42)

where the step size A; = 2° determines the accuracy of the orientation for each line.
The distance p is discretized based on the minimum and maximum polar distances of
the data points:

Pmin = ml_in (xi, X;) (5.43)
Pmax = mlax (xiy X;) (5.44)

and according to the sequence:
po = 0.95 pmin Pr+1 =Pk + 85  pr < 1.05 pax- (5.45)

The factors 0.95 and 1.05 are suitable for most applications while A; = 1 (pixel) deter-
mines the accuracy of the distance between the line and the origin.? The bin values are
denoted by b; ;) where j denotes the discretized angle ¢; and k denotes the discretized
distance py. Each sample point x; supports different lines so that each bin value b; ;) is
incremented by one for each sample point x; that supports the corresponding parameter
combination ¢; and p; which is computed by:

1

<(cos @j, sin gbj)T, xi> > pp— §Aﬁ (5.46)

. _ 1
<(cos @i, smgpj)T, xi> < pr+ iAp.

The bin values b(; ) can be interpreted as a gray scale image like the one shown in fig-
ure 5.14. The dark spots indicate regions of high bin values.* These spots also indicate
the parameter combinations of the longest lines that are featured by the data points
x;. For the algorithm in this subsection, the evaluation of these bin values deviates
slightly from typical applications of a Hough transformation. First, since the boundary
of a reasonably convex shape is identified, each angle ¢; can only feature a single line.
Secondly, in common applications only such lines are detected that are featured by some
minimum number of points x; and/or that correspond to a limited number of local max-
ima in the bin values. This only identifies particularly long lines while, for this appli-
cation, the length of the lines is not defining the importance of the corresponding facet.
Instead, parameter combinations ¢; and py, are chosen when no bin value b 1.1y > b(; 1)
exists where j’ is constrained so that ¢; — A, ., < ¢jr < ¢ + 1A, «op holds [Neubeck
and van Gool, 2006, Burger and Burge, 2009]. The parameter A ., = 15° separates
local minima and implies that the angles ¢; for the identified lines differ at least about
the value of A, p. In summary, the detected lines yield the #H-representation of the
circumscribed polytope with the facet normals:

a1, = (cos pj, sin @j)T (5.47)

3The value 1.05 only considers issues that can be created by a coarse discretization. No line can be farther
away than pmax and still be featured by any point x;. The same applies for the factor 0.95.
*Note that the upper outline in figure 5.14 represents the support function for the data points x;.
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and the facet distances:
hc,l’[,l = Pk (5.48)

as it is illustrated in the middle of figure 5.13.

Pmax - o

Pmin

0 2w

Figure 5.14.: Visualization of the bin values b ;) from the Hough transformation of the
points in figure 5.13 with the maximum value in black and values b; ;) = 0
in white

Signed distances. The following two approaches to identify the radius A, 1 require
a definition for the goodness of fit between the shape model (equation 5.39) and the
data points x;. Such a measure can be derived from the signed distances J(x;) of each
data point from the shape boundary. If the point x; is inside of the kernel polytope, the
distance is given by:

d(x;) = mlin (an, X — hicg) — Aea (5.49)

which can be computed directly. If the point x; resides outside of the kernel polytope,
which is typically the case, the distance is defined by the constrained quadratic opti-
mization problem:

0(x;) = min(x, X;) — Arq1 (5.50)

Arnx < hg.
While this problem can be solved by almost any optimization algorithm, the underlying
geometry was further exploited. First, one constraint is necessarily active. Otherwise,
the point x; resides inside the kernel polytope and equation 5.49 applies. This active
constraint a] ; ,x < hy 1, is known by the facet [ that maximizes al 1 ,x; — hy 11, Thus,
the resulting7d’istance is: o

0(x;) = armix; — g — Ae (5.51)

when the sample point x; can be projected perpendicular on the facet [ so that the pro-
jected point x] resides on the boundary of the kernel polytope: Ay r1x; < hy 1. Otherwise,
the resulting distance is:

5(X2) = <XE,m7 Xi> — )\r,H (552)

where xg ,, is one of the two vertices? that are adjacent to the facet /, whichever is
closest. The distance J(x;) is negative when the point x; is an element of the shape
C(hy 11, Ar,;1) and positive, otherwise.

Pextreme points

101



5. Modeling of Rounded Shapes for Attrition or Dissolution

Error of fitted shape. A typical approach for an error measure is the root of the
mean squared distances d(x;):

6meansquared = \/ ! Z(S(Xz)2 (5.53)

TN point P

This error measure is well suitable as an objective function to determine a fitting shape
C(hy 1, Ar11) to the points x;. However, its informative value is insufficient to determine
problematic input data. Bumps, like the one in the bottom left of figure 5.15 indicate
nearby background noise, nearby bubbles or aggregates that might yield unreliable re-
sults in the line detection step. Such features of the input data are suppressed which
makes it a good objective function in the first place. To identify such features, a second
error measure is introduced by:

5pr0ﬁ1e height = mMax 5(xz) - m.in 5(Xz) (554)

The profile height 6,ofile height 1S Visualized in figure 5.15 and the minimum and max-
imum components in equation 5.54 correspond to the two bold white lines. The inner
shape corresponds to C'(hy 1 +min; §(x;), A1) and no point x; resides in its interior. The
outer shape corresponds to C'(hy 1 + max; 6(x;), A1) and all points x; are contained in
that shape. This error measure is used as the general goodness of fit because it con-
veys information on small bumps in the particle outline. Note that, despite their use
as an error measure, the root of the mean squares éycansquared and the profile height
Oprofile height are also descriptors for the roughness of the surface structure given that the
shape model is consistent with the particle shape and given that measurement noise is
negligible. The square height:

5square height = maX(S(Xi)Q + m,in 5(Xi)2 (555)

is introduced as a last error measure to yield an error measure that can be used as an
objective function to fit a shape to the input points x;. The profile height is not suited
for this because any new radius \; , with:

Arr 4+ mind(x;) < AL < A p + max 0(x;) (5.56)

results in the same profile height. On the contrary, the square height becomes minimal
when the shape is well centered between the inner and outer limiting shape.

Determining the radius )\, ;1. The first approach to identify the radius A, 1 resem-
bles the definition and measurement procedure by Wadell [1932] who identifies corners
in the particle projection and fits the arc of a circle to each corner. His approach en-
sures that about 3 to 5 corners are used to determine the mean curvature radius of the
corners. For the present application, the vertices of the circumscribing polytope P(h. 11)
are used to indicate the corners of the particle projection. A suitable averaging of the
radii )\, 11 ; for each vertex j is then given by:

a

AT = Z i)\r,n,j (5.57)
j
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Figure 5.15.: Fitted shape (black line) with outer limiting shape according to max; §(x;)?
and inner limiting shape according to min; 6(x;) (bold white lines)

where the opening angle a; equals the angle between the normals of the adjacent edges.
This averaging is consistent with cases where vertices of the identified circumscribing
polytope disappear in the final kernel polytope. A suitable subset of data points that
is used to fit the radius A, 11 ; for a vertex j of the circumscribing polytope is obtained
by finding the closest data point to the vertex j and then using 5% of the data points
clockwise and 5% of the data points counterclockwise. Based on this subset of points,
either the mean squares error 6ycansquared Or the square height can be utilized. The
optimal values )\, 11 ; are then obtained based on the golden section search [Kiefer, 1953].
In contrast to this local fitting approach, the second approach finds a radius A, 11 by
minimizing the mean squares error from equation 5.53. The optimal value ), 11 is again
obtained based on the golden section search [Kiefer, 1953]. For the sake of completeness,
the square height is also considered for this global fitting approach. The four resulting
approaches are denoted by local square height, global square height, local mean squares
and global mean squares.

5.3.2 Simulation Case Study

Setup. To evaluate the four fitting approaches from the previous subsection, a simu-
lation case study is presented in the following. It is constructed to emulate the crystal
system and image quality according to subsection 5.3.3 where a real measurement setup
is considered (see also figure 5.13). Four particles are constructed as they are shown in
the top row of figure 5.16. The two aggregated particles in the right are considered
because aggregated particles often occur in experimental data. Additionally, the local
square height approach aimed to perform well for such cases which is not yet verified.
These particles are altered according to the shape model such that a mean width based
additive roundness from 0 to 1 is realized. This altered particles are then projected in
20 randomly chosen directions and a corresponding gray scale image is created for each
projection direction like the ones shown in the middle of figure 5.16. The particle and
image size is chosen such that the mean width of each primary particle is 200 pixels. In
addition to that, the image is blurred by a Gaussian low pass filter and Gaussian white
noise is added to resemble the image quality from experimental data (see subsection
5.3.3). The resulting images are shown in the last row of figure 5.16. Based on these
images, the boundary coordinates of the projections are identified using a grayscale
threshold and a Sobel filter for line detection. The threshold was fitted such that the
resulting mean width of the shape identification algorithm matches the expected mean
width of 200 pixels. These boundary points constitute the input to the shape identifica-
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tion algorithm from the previous subsection.

Results. The computed mean width for each particle projection and for each of the
four algorithms does not show a significant deviation from the expected value of 200
pixels. Deviations for the mean width would indicate that an appropriate threshold
value is roundness dependent. The mean of the measured roundness values (') was
computed separately for each of the applied algorithms and separately for each initial
particle to result in the graphs in figures 5.17 and 5.18. The z-axis represents the set
roundness and the y-axis represents the measured roundness while the light blue line
indicates the ideal behavior.

Discussion (general). Considering the blurred images already exhibiting certain
roundness, it cannot be expected to be corrected by the identification algorithm. There-
fore, the dashed light blue line, starting at 0.3 (measured roundness for set roundness 0)
and linearly increasing to 1, provides a better reference for the performance of the algo-
rithms. Another typical feature for the performance of all algorithms with respect to the
convex particle example (left column of figure 5.16) is the truncation of the measured
roundness towards 1 (left of figure 5.17). This behavior originates from the identified
lines from which almost always small edges remain even for perfect circles so that a
roundness of 1 cannot be measured. When more lines are allowed to be identified (e.g.
by a larger value A sp, high roundness values would be truncated earlier).

Discussion (different approaches). The light black line represents the local mean
squares approach and does not perform well for the ideal convex particle (left of figure
5.17). Especially its flatness spanning only the range from 0.3 to 0.6 makes this algo-
rithm a comparably bad choice. The global square height approach, represented by the
bold blue lines, performs best for the convex and bumped particle in the left of figure
5.16 (graphs in figure 5.17) while it shows a poor performance for the two-particle ag-
gregate. The behavior of the local square height approach and the global mean squares
is almost identical in figure 5.17 while the global mean squares performs better for
the two-particle aggregate (third column in figure 5.16 and left in figure 5.18) since it
spans a broader range of roundness values on the y-axis. The three-particle aggregate
(fourth column in figure 5.16 and right in figure 5.18) does not yield any discrepancy
information for the different approaches since all curves are equally flat.

Conclusion. In summary, the simulation experiment does not clearly identify a best
algorithm and none of the algorithms already performs well for particle aggregates even
though the local square height approach specifically focused on this objective. The main
reason therefore is that the identified circumscribing polytope truncates many parts of
the measured particle contour so that the subsequent fitting of the radii fails. Since the
focused experimental case study in the next subsection does not consider aggregates,
the algorithm was not improved on this behalf. Only the local mean squares approach
yields significantly worse results so that it can be ignored in the following subsection.

5.3.3 Experimental Case Study

Motivation. Thanks to the group of Prof. Mazzotti (ETH Ziirich, Stefan Schorsch in
particular), a particle imaging setup [Schorsch et al., 2012] was available to test the
image analysis procedure from subsection 5.3.1 with real measurement data. While it
was aimed to measure the time evolution of particle size and roundness, the obtained
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ARARER

Figure 5.16.: Sample shapes for a simulation case study with the angular original par-
ticles in the top row, the projection images in the second row (roundness
value in the outer left is: ug = 0.1, left: ug; = 0, right: pup; = 0.05, outer
right: up; = 0.6) and the blurred images in the bottom row
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Figure 5.17.: Identified roundness pup; versus set roundness for the convex sample
shape (first column in figure 5.16), left, and the bumpy shape (second col-
umn in figure 5.16), right, with bold lines for global approaches, light lines
for local approaches, blue lines for square height and black lines for mean

squares
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results were not reproducible so that this subsection only evaluates the capabilities
of the identification procedure for a few selected particle images to demonstrate that
differences of roundness can properly be captured.

Experimental setup. The experiment design and evaluation of the results were main-
ly conducted in close collaboration during 4 weeks that I spent in Ziirich while the
experiments were executed solely by Stefan Schorsch. For the attrition experiment,
aluminum potassium sulfate dodecahydrate (potash alum) in water was chosen. The
crystal material was purchased from Sigma Aldrich with a purity > 98% and all used
water is deionized by a MilliQ Advantage A10 system (Merck Chemicals). The crystals
grow from an isometric Pa-3 space group with a = 12.133 A [Nyburg et al., 2000] where
the faces {111} are most prominent while they are accompanied by the {110} and {100}
faces leading to an octahedral crystal shape as it is shown in the left of figure 5.19.
Seed particles were produced, preparing a saturated solution at 40°C which was
cooled down rapidily to 30 °C. The resulting product material was collected and milled
in a mortar to generate small particles. A second saturated solution at 30°C was pre-
pared and the milled particles were added as seeds. The suspension was slowly cooled
down to 20°C within 20 hours. The solid product was filtered and dried in open air.
For the attrition experiments, saturated solutions of 1 L. were prepared at 23 °C and the
reactor was kept at constant temperature by a controlled cooling jacket. Five grams of
seed particles were added and the stirrer was set to 1800 rpm. At every hour, the stirrer
was slowed down to 250 rpm and crystals have been sampled and photographed for five
minutes. The images were acquired by a stereoscopic imaging setup that has been previ-
ously introduced by [Schorsch et al., 2014]. Suspension is pumped from the crystallizer
via a sampling loop through a sapphire glass flow-through cell which is illuminated by
two flash lamps. Two orthogonally mounted 5 megapixel cameras simultaneously take
pictures of crystals passing through the cell at a rate of 5Hz. The initial image anal-
ysis was performed in accordance with previous work comprising the following details
[Schorsch et al., 2012, 2014]: grayscale threshold; contour extraction; matching of parti-
cles between both projections (i.e. in camera image 1 and camera image 2) with respect
to common positions of objects in flow direction (z direction). The result of these oper-
ations are sets of contour coordinates in z/z direction and in y/z direction, respectively,
that match the input data of the shape identification algorithm from subsection 5.3.1.

Results. Figure 5.20 displays column-wise 5 different samples of the initial seed par-
ticles, obtained by the stereographic setup. This means that projection directions in the
first and second row (II; and II,) are perpendicular to each other while both rows display
the same particle. Likewise, figure 5.21 displays sample particles after 2 hours and fig-
ure 5.22 displays sample particles after 5 hours of stirring at 1800 rpm. The bold white
boundary for the images in all three figures illustrates the fitted outline of the projected
particle shape according to equation 5.39 that is obtained by the global mean squares
approach. The inner outlined shape indicates the kernel polytope. Additionally evalu-
ated are the local and global square height approaches which typically compute similar
fits as it is illustrated by figure 5.23 and table 5.2. Figure 5.23 contains three plots for
the three different approaches where the measured mean width and roundness (;”')
for the particles in figures 5.20 (plusses), 5.21 (crosses) and 5.22 (circles) are indicated.
Two matching projections are indicated by a connecting light blue line while specific
particles are marked by the numbers from 1 to 5. To additionally emphasize the groups
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Figure 5.18.: Identified roundness ;51 versus set roudness for the two-particle aggre-
gate (third column in figure 5.16), left, and three-particle aggregate (fourth
column in figure 5.16), right, with bold lines for global approaches, light
lines for local approaches, blue lines for square height and black lines for

mean squares

Figure 5.19.: SEM image of a seed crystal (left), a product crystal and an overview over
product crystals.
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of particles according to figures 5.20 to 5.22 or according to the corresponding sampling
times (initial, 2 hours, 5 hours), respectively, the black line represents the convex hull
of all data points that belong to the same sampling time. Table 5.2 lists the roundness
values for all particle projections and algorithms and highlights values in bold that dif-
fer more than 0.1 from the result of another algorithm (for the same projection image).

Table 5.2.: Mean width based roundness values for three different approaches (square
height is abbreviated by ‘sq. h.” and mean squares by ‘m. sq.) for the
projected particle images in figures 5.20 (start 1 to 5), 5.21 (middle 1 to 5)
and 5.22 (end 1 to 5); values are highlighted in bold when they differ more
than 0.1 from the result of another algorithm for the same projection image

I Iy

particle local global global local global global

sq. h. sq. h. m. sq. sq. I. sq.r. m. sq.
start 1 0.28 0.29 0.31 0.37 0.46 0.37
start 2 0.30 0.36 0.30 0.30 0.25 0.49
start 3 0.36 0.37 0.30 0.29 0.11 0.27
start 4 0.35 0.32 0.34 0.33 0.41 0.35
start 5 0.19 0.26 0.20 0.20 0.76 0.20
middle 1 0.51 0.50 0.46 0.59 0.58 0.52
middle 2 0.54 0.54 0.62 0.57 0.57 0.51
middle 3 0.47 0.45 0.45 0.43 0.42 0.43
middle 4 0.24 0.72 0.59 0.62 0.58 0.60
middle 5 0.40 0.40 0.53 0.55 0.52 0.60
end 1 0.69 0.69 0.62 0.77 0.63 0.71
end 2 0.51 0.60 0.58 0.57 0.55 0.60
end 3 0.70 0.68 0.61 0.73 0.72 0.60
end 4 0.73 0.75 0.69 0.66 0.60 0.70
end 5 0.74 0.67 0.63 0.62 0.61 0.60

Discussion (circumscribing polytope). It occurs that the identified circumscribing
polytope truncates the particle boundary like for the 4" particle (projection II;) in figure
5.21. Given the parameterization of the lines according to the Hough transformation,
this happens at polar angles where supporting hyperplanes would be supported by the
boundary points of a well rounded edge. Corresponding bin values are typically very
low (see equation 5.46). On the other hand, bumps create higher bin values for the
same polar angle but at a significantly lower value for the polar distance of that line.
These situations can be avoided by further narrowing the allowed polar distances in
dependence of the polar angles (similar to equation 5.45) or by demanding that the
boundary points that contribute to a bin value must be connected. However, such errors
are rare and can be filtered well by evaluating the goodness of fit according to the profile
height (equation 5.54).

108
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Discussion () fitting approaches). Based on figure 5.23, all three algorithms prop-
erly distinguish angular from rounded particles. However, the global square height
approach seems to be inferior to the other two approaches concerning the reliability.
It often overestimates roundness (see table 5.2) when the particle contains outwards
bumps (5% particle, projection II, in figure 5.20) or the particle contour is truncated
(4t particle, projection II; in figure 5.21). On the other hand, inwards bumps can lead
to an underestimated roundness (see table 5.2) like for the 34 example (projection II,)
in figure 5.20. The inwards bump is hard to see and located in the lower right cor-
ner of that particle. Often, however, inwards and outwards bumps appear at the same
time and with similar heights so that both effects are cancelled out and an appropriate
mean contour line is found (4*" example, projection II,, in figure 5.20). In summary, the
global profile height is not as reliable as the other two approaches while for these, no
significant difference is found based on the analyzed data.

Conclusions. The developed image analysis and shape identification procedure suc-
cessfully differentiates between angular and rounded particles in a reliable and quan-
titative manner (see also subsection 5.3.2). The best performing approaches for deter-
mining the radius of the added disk in the shape model are the global mean squares
approach and the local square height approach. However, the local square height ap-
proach fails to evaluate the roundness for aggregates while it is slightly more complex
if compared to the global mean squares approach. Therefore, the global mean squares
approach should be preferred in applications.

Figure 5.20.: Examples for the seed particles (columns 1 to 5) in two perpendicular pro-
jections (II; and II,), fitted by the global mean squares approach
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5. Modeling of Rounded Shapes for Attrition or Dissolution

Figure 5.21.: Example particles after 2 hours of stirring (columns 1 to 5) in two perpen-
dicular projections (IT; and II,), fitted by the global mean squares approach

11,

Figure 5.22.: Example particles after 5 hours of stirring (columns 1 to 5) in two perpen-
dicular projections (IT; and II,), fitted by the global mean squares approach
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Figure 5.23.: Mean width and roundness ;”! for the particles in figures 5.20 (plusses),
5.21 (crosses) and 5.22 (circles) according to three different approaches
(the three plots); projections of the same particle are linked by light blue
lines; data points of the same figure (or sampling time) are surrounded by
a black line (convex hull).
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6

Model Reduction and
Shape Approximation

6.1 Introduction and Preliminaries

6.1.1 Introduction

Motivation. This chapter aims at a model reduction of the population balance that
might include the necessity of crystal shape approximation. At a first thought, the term
model reduction suggests a decreased dimension of the h¢-vectors that contain the in-
dependent shape parameters. Even though the accuracy and/or effort of crystallization
processes simulations is not necessarily dependent on the dimension n¢c (shown in chap-
ter 4), such a reduction might be essential if the numerical scheme is changed from the
approach that is followed in this work to, for example, a high resulution scheme with a
regular grid. Another motivation can be posed by particle size and/or shape measure-
ments. The desired properties of a particle population are often not directly available by
measurements so that a reduction in the number of shape parameters might be useful
for corresponding identification algorithms. On a second thought, the purpose of model
reduction is manifested by a general relaxation of the complexity in applications. This
complexity can arise from introducing more than one size coordinate but this is not a
necessary consequence, as it is already outlined in the introduction of chapter 3. One
example is measure calculation for which a case-by-case selection of coefficients is often
required when nc > 1 applies. However, parallelepipeds and, in particular, cuboids can
be modeled with 3 size coordinates for length, width and height. A corresponding H-
representation has only one unified partition and, hence, only one set of coefficients for
measure calculation even though nc > 1 holds. Section 6.3 presents a shape approxi-
mation that is constructed to achieve the outlined reduction in complexity. This shape
approximation finally allows the reformulation of the population balance model into
ordinary differential equations for the moments of the particle size/shape distribution.
This result is particularly useful for real-time applications and model-based control.

Desirable starting point: H-representations. Assuming spherical particles with,
for example, a volume equivalent diameter already represents a shape approximation
since crystalline particles rarely possess a spherical shape. Slightly more adequate is
the consideration of shape factors which imply the assumption of an arbitrary but con-
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stant shape. More sophisticated are shape models that allow shape changes. One ex-
ample of such models assumes a cuboid for arbitrary compact particles and uses length,
width and height as shape parameters [Kempkes et al., 2010, Samad et al., 2011]. In
contrast to these shape models, appropriate #c-representations consider all facets of a
crystal while assuming perfect symmetry [Borchert, 2012, Schorsch et al., 2014]. How-
ever, no work yet exists that derives a shape approximation based on such an ideal
Hc-representation. Without such a connection, any shape approximation either uses a
simple shape model for which measure computation remains simple (e.g. cuboids), or a
suitably efficient concept for measure computation has to be derived from scratch. It is,
hence, desirable to compute a shape approximation from a Hc-representation so that
the insights for proper Hc-representations, including measure computation, transfer to
the approximated shape model.

Outlook. In this section, the basic principles and the type of shape approximation is
introduced based on a model reduction that does not require an approximated shape
model. Section 6.2 then discusses a shape approximation that focuses on a reduction in
the number of free variables while section 6.3 focuses on a reduction in the complexity
for measure computations that allows a reformulation of the population balance into a
set of ordinary differential equations without discretization.

Genuine research procedure. The presentation of this chapter does not follow the
genuine research procedure. In chapter 3, proper #c-representations were analyzed
in great detail. The concept of valid h¢-vectors was introduced and an efficient way of
measure calculation was derived from the decomposition of the validity cone into unified
partitions. Because crystal symmetry ensures that the resulting Hc-representation is
proper, this knowledge is sufficient for modeling the crystals in their ideal form. How-
ever, the forthcoming of modeling crystal shape was deemed to be blocked if the corre-
sponding tight limitations of proper representations could not be overcome. One could
either use proper #Hc-representations, neglect shape changes completely or construct
custom shape models for particular problems that imply only a simple geometry. At
this point, shape approximations like to be presented in section 6.2 are the primary
motivation to study improper Hc-representations and their peculiarities according to
validity. Their analysis and the corresponding case studies, however, turned out that
no significant benefit could be obtained by this theoretical analysis. Since this analysis
is also comparably abstract, it is presented in appendix A.2 and not together with the
successfull case studies that originally motivated it.

6.1.2 Model Reduction

Motivation. Let’s assume a single crystal being modeled with several independently
growing facet groups, e.g. nc = 7, but growing at a constant rate. Viewed in h¢-space,
the trajectory of this particle follows a straight line parallel to the growth rate and dis-
placed by the initial condition so that all h¢-vectors of the shape evolution are contained
in some 2-dimensional linear subspace. Such a shape evolution could therefore be de-
scribed perfectly by only 2 shape parameters. However, some facets might grow out at
which point the trajectory hits the boundary of the validity cone. Since the hc-vectors
are required to remain valid, the growth rate is adopted and the trajectory bends to
continue at the boundary of the validity cone. Such a trajectory cannot anymore be
embedded in a 2-dimensional linear subspace.
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The growth rate correction to maintain valid h-vectors was assumed obligatory for
the dynamic shape evolution, discussed in section 3.2 and corresponding reasons are re-
called in the following. First, validity guarantees an appropriate behavior when facets
reappear during a simulation. Secondly, measure computation requires valid h¢-vectors
since the coefficient sets c{?ﬁzsure are only computed for unified partitions which are sub-
domains of the validity cone. These obstacles can be eluded. Facets that once dis-
appeared during growth rarely reappear in common applications, rendering the first
argument negligible. Additionally, valid hc-vectors can be computed corresponding to
originally invalid hc-vectors to identify a matching unified partition and compute mea-
sures (see section 3.3).

In conclusion of the above statements, the dimension for the geometrical state space
can be reduced to the degrees of freedom that are given by the initial condition and
the growth rates if and only if disappeared facets never reappear. In such a case an
alternative simulation procedure can be chosen. Instead of adopting the growth rate
to maintain the validity of hc-vectors, the growth rate remains unchanged and invalid
h¢-vectors are mapped to valid he-vecors for the purpose of measure computation. This
alternative simulation procedure provides the basis for all model reduction and shape
approximation approaches in this chapter and the following demonstrates the achiev-
able model reduction with two case studies. Additionally, this model reduction serves
as a template for the shape approximation in section 6.2.

Single Particle Growth. In the first example, a crystal shape as illustrated in figure
6.1 is considered. It comprises the three opposing facets of a cuboid, three groups of
facets that truncate the edges of the cuboid and one group of facets that truncates the
vertices of the cuboid [Snyder et al., 2007]. The facet normal matrix is given by:

110 0 o0 o01°%
Aciboid = 0 01 -1 0 0 6.1)
0 00 0 -1 1
1'—1—111—1—1110000T
Acge = NG 1 1 -11.0 0 0 0 -1 -1 1 1 6.2)
0 0 0 0 -1 1 -11 -1 1 -11
e B A R B RS r
Avertex = —| -1 -1 1 -1 1 -1 1 1 (6.3)
V3 -1 1 -1 -1 -1 1 1 1
Acuboid
A = Acdge (6.4)
Avertex

and the group mapping matrix My, 1 is chosen according to figure 6.1. Simulated is
the growth of a single crystal for which all facet distances are set initially to hc; =
10 um. The corresponding shape is shown in the left of figure 6.2. The crystal is grown
for 3600s with the rate gc = (0.2, 0.2, 0.4, 2, 2, 2, 6)T x 1073 £2 and some snapshots of
the shape evolution are shown in figure 6.2. The shape change is almost complete after
this period of time so that the right shape in that figure illustrates the growth shape
P(gc). This setup was simulated according to three different procedures: according
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to the original procedure (see chapter 4) retaining valid hc-vectors (original run); fol-
lowing the idea to retain the growth rates and fix invalid hc-vectors only for measure
computation (no-growth-limitation run); according to the reduction of the model which
is given in the following (model reduction run).

hc
hc,2
hc,3
hc,a
hc,s
hcs
hc.7

Figure 6.1.: Facet groups for a cuboid with truncated edges and vertices

Model reduction (single particle). For the particular case of constant growth rates,
the particle trajectory for the no-growth-limitation run is embedded in a linear subspace
that is spanned by the initial condition and the growth rate. Therefore, a new space of
2-dimensional vectors hp can be constructed with the mapping:

hC = MhAHhChA- (65)
_ h¢ (t=0) g
Miohe = [7\\110(15:0)” TecT | (6.6)

Note that the new h vectors also form a H-representation with a new group mapping
matrix:

My, —~h = MhoshMp, —he- (6.7)

The growth model can be transferred into this new shape representation using the
pseudo inverse matrix My}

dhp

_ _ +
F =gA = MhAHthC' (68)
ha(t=0) = MIAHhChC(t =0) (6.9)

The simulation of this reduced model was performed and the resulting vectors h, are
lifted to the original hg-space by equation 6.5 for the comparison to the original and
no-growth-limitation run.

Notation. While the index A is chosen arbitrarily for this subsection, it is consis-
tent with the shape approximation in section 6.2 and reads ‘approximated’. Since the
h-vectors also form a Hc-representation, existing symbols must be adopted. Every
appearance of ‘C’ in a symbol is substituted by ‘A’, reading ‘approximating’ even though
the polytopes P(hy) are not yet a shape approximation to the polytopes P(h¢) in the
scope of this subsection. If ‘C’ does not appear in the symbol, ‘/A’ is appended to the
sub- or superscript, reading ‘in approximated space’. An overview of these new symbols
is given in column 3 of table 6.1 where column 4 already summarizes symbols for a third
Hc-representation that is used in section 6.3 and appendix A.2.
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Results (single particle). Figure 6.3 demonstrates the growth of the particle over
time based on its facet distances and mean width. At ¢ ~ 660s the facets that trun-
cate the cuboid vertices disappear and at between ¢ =~ 2460s and ¢ ~ 2640s, the facets
that truncated the cuboid edges also disappear. These events are visible by the slope
changes and also affect the evolution of the mean width. The left of figure 6.4 displays
the relative errors between the original and the no-growth-limitation run. Two peaks
are visible at the times where facets disappear. They originate from the stiffness han-
dling that was introduced for the growth rate corrections and, therefore, represent an
error stemming from the original run and not from the no-growth-limitation run. For
the same reason, the no-growth-limitation run is typically used as basis for compar-
isons in this chapter. The right of figure 6.4 displays the relative error between the
no-growth-limitation run and the model reduction run. The relative errors are in the
range of machine precision which verifies the model reduction from originally 7 shape
parameters to 2 shape parameters without any loss of information.

Dissolution of a Particle Distribution. In the second example, the generic cuboid
crystal from above is reused. The initial condition comprises a shape distribution with
3 degrees of freedom and the particles are dissolved rather than grown. The initial par-
ticles have a mean shape according to the left example in figure 6.5 which uses h¢; =
500 pm, hc2 = 1000 pm and hc 3z = 1500 um. To simulate a shape distribution, 100 sam-
ple points were selected according to a normal distribution with the standard deviations
std (hc,1) = 25 pm, std (hc2) = 50 pm and std (hc3) = 75 pm. The remaining shape coor-
dinates are computed such that the corresponding facets have disappeared while the hc-
vectors are valid. In consequence, all h¢-vectors are embedded in some 3-dimensional
linear subspace. The dissolution rate gc = (—2.5, —2.5, —5, —25, —25, —25, —75)T X
1072 E2 was selected and some snapshots of the shape evolution are shown in figure
6.5.

Model reduction (particle population). The same simulation runs were executed
as for the previous example. In this case, the projection matrix My, ,,n, is computed
from the matrix:

gc he1(t=0) _hcioo(t=0) }

HgC” HhC,l(tZO)H Hhc,loo(tio)”
where the vectors hc ;(t = 0) are the sample points of the particle distribution. The
mapping matrix My, , .1, is obtained by a singular value decomposition so that its range
matches the range of the matrix above. The resulting h,-vectors are 4-dimensional.

Results (particle population). Figure 6.6 shows in the left the time evolution of
the mean facet distances and mean width over time and, additionally, the total number
of remaining sample points in the right. The particle distribution vanishes between
t = 2000s and ¢t = 2500s. The cuboid facets disappear completely while the facets that
truncate the cuboid initially appear but vanish again later in time. The relative errors
in figure 6.7 are computed based on the mean facet distances. Again, the comparison
between the no-growth-limitation and original run shows errors at time points were
facets disappear. The relative error between the no-growth-limitation run and model
reduction run has relative errors in the range of 10~'! up to t = 2100s were sample
points already disappear. The comparably large errors thereafter are caused by differ-
ent numbers of remaining sample points during the dissolution process. These differing
numbers are, however, not caused by errors in the he-vectors. They originate from the
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Figure 6.2.: Shape evolution of a growing crystal (crystal size is normalized)
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Figure 6.3.: Evolution of facet distances and mean width for the growth of a truncated
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Figure 6.4.: Relative errors between the no-growth-limitation and original run (left) and
between the no-growth-limitation and model reduction run (right): growth
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Figure 6.5.: Shape evolution of a dissolving crystal (crystal size is normalized)
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Figure 6.6.: Evolution of the mean facet distances and mean width (left) and the number
of sample points (right) for the dissolution of a truncated cuboid.
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Figure 6.7.: Relative errors between the no-growth-limitation and original run (left) and
between the no-growth-limitation and model reduction run (right): dissolu-
tion of a truncated cuboid.
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method that is used to determine disappearing sample points. A sample point disap-
pears when the distance of a h¢-vector from the empty polytope cone is smaller than
some tolerance. The empty polytope cone is mapped to the hp-space using the facet
normal matrix:

Arv0)/a = Arv(0)Mh,i-he-

Since the distance of a h¢-vector from the non-empty polytope cone differs from the
distance of the corresponding h-vector from the mapped non-empty polytope cone, the
sample points are removed at different points in time. Therefore, it can be concluded
that the model reduction to a 4-dimensional subspace, again, characterizes the origi-
nally 7-dimensional problem without any loss of information.

Summary. The geometrical state space can be reduced in dimension whenever the
combined degrees of freedom from the initial condition and growth rate are lower than
nc. While the above examples used linear subspaces, the idea also extends to nonlinear
subspaces that might be found for shape dependent growth. Required components for
such a model reduction are:

1. a mapping function that describes the new nx-dimensional space, embedded in
the original hc-space: fh,sh, : R™ — R"C

2. and a reverse mapping function: fy, . sn, : R" — R™A.

In the presented linear cases, these mappings are:

Jopaohe (ha) = Mu, shoha (6.10)

and
focsny (he) = My he. (6.11)

The first mapping is required to utilize the insights of the original (proper) Hc-repre-
sentation which includes, for example, measure computation and the empty polytope
cone. The second mapping is required to transfer the initial condition and growth rate
to the reduced space of h-vecors.
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Table 6.1.: Overview of symbols for Hc-representations including new symbols in the
context of model reduction or shape approximation

Symbols Description New New
Symbols: Symbols:
approximation embedding

H, Hc Descriptor of the representation

A, h, ng matrix of facet normals, facet A, h, g

distance vector for (extended,
‘H-representation and number of only)
facets

Mh—h, he mapping matrix and reduced Mh i sh, ha M —h, hg

vector of facet distances

mapping matrices for the M, shes Mg shes

conversion to and from the Mhigshy My sh and

hc-space th S0
(extended,
only)

mapping matrices between Mhgshys Mhgoshg

embedding and approximation

Cv, Av validity cone and corresponding Cv/a> Av/a Cv /e, Av/E

facet normal matrix

Crv(i)» Arpv(@) facet validity cones and Crv(i)/A> Crv(i)/E>

corresponding facet normal Apvii/a Apviy/E
matrices

Cug)s Aug) unified paritions and Cugiy/as Cu(iy/E>

corresponding facet normal Ayiy/a Ayiye
matrices

Si, he s structuring elements and ha s, hg g,

corresponding reduced vector of
facet normals

Py, Ap, validity projection for a hc-vector Py s, Ap,, a Py, Apy g

and facet normal matrix for the

applicable region of the projection
measure . measure/A measure/E
. (i7j:‘k) coefficients for measure Cplijk) Cp (i)

calculation
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6.2 Reduction of Dimension
6.2.1 Problem Statement

Motivation. The model reduction demonstrated in the previous section is applicable
to only a very limited set of problems. More typical problems comprise variations that
span the entire h-space where some degrees of freedom are important, like the change
in size and some major shape changes, and some degrees of freedom are comparably
negligible, like variations in the initial condition or minor shape changes. For these
cases, the shape approximation that is introduced in this subsection aims to cover the
important degrees of freedom while ignoring the minor ones.

General Principles. To obtain a shape approximation that couples to a known Hc-
representation, the same mapping functions fy,,,h, and fn.—n, are required like for
the model reduction from the previous section. The range of the function fy,, ,n, de-
scribes the lower dimensional subspace embedded in the original hc-space and, hence,
the range of shapes that are covered by the new representation. The function fy, .,
describes the approximation of hc-vectors that are not in the aforementioned range of
the new representation. This implies that each value from the function fy,.n, implic-
itly or explicitly results from an optimization problem:

fthhA (hC) = arghminf (fh;y—)hc (hA)7 hC) (6.12)

where f describes some error between the original vector h¢ and its approximation by
the vector hs. To ensure that the error f is zero when a vector h¢ in the range of fi,,,,h.
is chosen, the function fyn, must fulfill a consistency condition:

ha = fagohs (faashe (ha)). (6.13)

Limitations. In the scope of this chapter, only shape approximations are discussed
that use linear functions fy, n.. The range of such a shape approximation describes
a linear subspace embedded in the space of the original Hc-representation. Figure 6.8
illustrates such a situation with the validity cone of the original H-representation in
light blue and the linear subspace of a possible approximation in dark blue. The re-
sulting shape representation is then also a Hc-representation. Corresponding adopted
symbols are introduced in the previous subsection and summarized in column 3 of table
6.1.

Figure 6.8.: Validity cone of a Hc-representation in light blue and the embedded hx-
space of an approximated Hc-representation in dark blue
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A second limitation to this approach results from the general optimization problem
from equation 6.12 which is fixed to:

fhoosh, (he) = af{-’ilmin |hc — fhyshe (ha)|l (6.14)
A

which is solved by the pseudo inverse matrix MﬁAHhc:

fagsna (he) = Migosnhe = My ) he (6.15)

and minimizes the Euclidian distance between the original h¢-vector and its approxi-
mation: MhA»—)thh(y—)hAhC'

Problem statement. The shape approximation in this section works analogous to
the model reduction from subsection 6.1.2. It aims to reduce the dimension of a given
Hc-representation by finding an optimal mapping matrix My, ,, ;.. The corresponding
optimization problem:

Mh,—sh. = argmin fa (Hc, Mh,he) - (6.16)

Mh, —hg
is based on a set of sample vectors h¢ ; that are arranged in the matrix:
HC = [ hc»l e thnsample :| * (6-17)

It fixes the mapping function f},,,,n, While the mapping function fy,n, is defined by
equation 6.15.

Principal component analysis. The work of Wang and Ma [2009] might already be
regarded as a shape approximation according to the problem statement above. Based on
simulation data for potash alum crystals in Hc-representation (nc = 3), they generated
virtual measurement data in H-representation by adding 10% Gaussian noise. This
virtual measurement data was then reduced by principal component analysis (PCA) to
3 principal coordinates, the dimension of the original simulation data, and the growth
rates were identified. This implies that instead of obtaining a reduced shape represen-
tation from an original H-representation and transferring the known growth rates,
they aimed to identify a Hc-representation and corresponding growth rates from mea-
surement data. Their work is, hence, different from the aim in this section.

The PCA approach nevertheless provides a first objective function for the general
approximation problem from equation 6.16:

fa,pca (He, Mh,she) = Z (he; — Pahc,)” (he,; — Pahgy) (6.18)

Py = Mn,onMy

ha—hc

(6.19)

Its solution can be provided by a singular value decomposition of the matrix [Jolliffe,
2002]:
He = UpcaSpcaVica (6.20)

where the first na columns of Upcp determine the mapping matrix:

M, she = [UPCA1s - -+ UPCA ny - (6.21)
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This approach minimizes the (empirical) variance of the h¢-vector components while
assuming the mean: hc = 0. Therefore, the first PCA component h, ; reflects mostly
the particle size. As it is typical for PCA, the obtained solution is sensible to a scaling of
the coordinate axes. Additionally, since the objective is based on the squared absolute
error, shape variations for large particles influence the result more than shape varia-
tions of very small particles. Despite of these drawbacks, the PCA approach is useful
because its solution can be computed easily.

Measure based objectives. The particle volume is often the most important par-
ticle property since it determines the product yield and is required to determine the
supersaturation and growth rates. Other measures like the surface area might also
be important when they determine the product quality. The PCA approach does not
consider corresponding errors and, hence, cannot produce a shape approximation that
minimizes relevant simulation errors. As an example, figure 6.9 illustrates the setup
of a urea crystal [Salvalaglio et al., 2013]. Given this hypothetical shape, it is evident
that variations in the A 3-coordinate influence the particle volume much less than vari-
ations in the A -coordinate. Therefore, the following objectives are proposed:

fA,abs2 (HCa MhAHhc) = Z’Yﬂyj (Mj(hC,i) _ :uj(PAhC,z’))2 (622)
2%
fA,relmax (HC’ MhA*—)hc) = Z,‘Y}L,j <mlaX /‘L]( C, ) /‘1’]( A1C, )
J

Nj(hC,i)

> (6.23)

with y; being arbitrary particle measures and v, ; being corresponding weights. The
first objective f A abs? is a generalization of the PCA objective fa pca which is obtained
for p1; = hc j; and v, ; = 1. The second objective fA relmax @ims to put a minimal upper
limit to all considered relative errors.

Sample point generation. The set of sample points hc; could be generated manu-
ally based on experience or, if available, based on measurement data [Singh et al., 2012,
Schorsch et al., 2014, Kovacevic et al., 2014]. Another alternative is to generate the
sample points by a suitable simulation. In the case of the urea example (figure 6.9), a
hypothetical crystal growth is simulated and used as an example throughout the next
subsection. The shape illustrated in figure 6.9 determines the initial condition and uses
the dimensionless facet distances hc = (0.5, 1, 1.3)T. The growth is simulated in di-
mensionless time from ¢ = 0 till ¢ = 2 while the rate gc = (0.1, 0.5, 0.75)T applies for
0 <t <1 and the rate gc = (0.1, 0.75, 1.5)T for t > 0. Figure 6.10 shows some snapshots
of the shape evolution while figure 6.11 shows the evolution of the coordinates hc; and
mean width. At ¢ =~ 1.55, the facet group that is described by hc 3 grows out. This is vis-
ible by the dashed line which represents valid h¢-vectors while the solid lines represent
the evolution of the h¢-vectors without any adoption of the growth rates. The hc-vectors
that are sampled at regular time steps ¢ € {0, 0.01, 0.02, ..., 2} are generated as sample
points h¢ ;.

Complexity of the optimization problem. The optimization problem that is posed
by equation 6.16 is difficult. The number of free variables that describe the matrix
My, h is very high with nc x na. Additionally, no reasonable lower or upper bound-
aries are known for the components of the matrix My, ,h,. On the other hand, the
optimization problem has a multiplicity of equivalent solutions. The matrix My, ,,nh,.
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d

Figure 6.9.: Crystal shape example (urea, Salvalaglio et al. [2013]).
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Figure 6.10.: Snapshots of the shape evolution (plotted shapes are shown with normal-
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Figure 6.11.: Shape evolution and evolution of mean with for the growing urea crystal
(dashed lines show the evolution of valid vectors hg)

125



6. Model Reduction and Shape Approximation

contains the base vectors of the linear subspace in which the approximated shape vec-
tors Pahc are situated. Hence, the approximation result is identical when two matrices
M, h. describe the same linear subspace. It would, hence, be desirable to reduce the
total number of free variables by corresponding constraints. First, the length of the base
vectors can be fixed to 1 and orthogonality can be claimed for all base vectors which re-
sults in the constraint:

MY, b Mhyohe = Iny - (6.24)

With this constraint, the base vectors describe an orthonormal coordinate system. An-
other constraint would consider rotations or reflections of the h-vectors in their own
subspace which can be represented by the coordinate transformation:

h), = O,,hx (6.25)

that uses any matrix for which:
0}, 0,, =1,, (6.26)
holds. Applying this transformation to the projection matrix P, (equation 6.19) yields:
Py = (MhA'—>hc O”A) (MhA’—)hC O”A)+ (6.27)
= Mh,5hc0,, 00, My (6.28)

so that the objective function is invariant with respect to such coordinate transforma-
tions:

fa (Hg, Mp, sne) = fa (He, Mh, b Ony ) - (6.29)

The constraint for the orthonormality of the matrix My, ,n. fixes 5 (n% +na) degrees
of freedom, constituted by the upper triangular matrix elements of equation 6.24. The
transformation of the hy-space according to O,,, implies % (ni -n A) degrees of free-
dom. This is the case since equation 6.26 does not describe constraints to the matrix
My, ,sh, but constraints to the modeled degrees of freedom, indicated by equation 6.29.
Unfortunately, no direct constraints to the matrix My, ,,,n. can be provided for these
degrees of freedom. In total, n% constraints apply and the optimization problem could
be reduced to ns (nc — na) free variables. However, since this reduction of the free vari-
ables is not straightforward, the solution of the optimization problem (equation 6.16) is
treated separately in the next subsection.

6.2.2 Solution of the Problem Statement

Grassmann manifolds. Given the optimization problem from equation 6.16, the dis-
cussion in the preceding subsection already concluded that the objective function fa
only depends on the linear subspace that is spanned by the columns of the matrix
My, she- In mathematical literature, the set of n,-dimensional linear subspaces that
are embedded in an nc-dimensional space is known as the Grassmann manifold G, »,
[Milnor and Stasheff, 1974, Edelman et al., 1998, Absil et al., 2008]. For example, G3 2
represents the set of all planes in R3 that go through 0. A Grassmann manifold is a non-
linear, homogeneous n (nc — na)-dimensional space that can be embedded in the space
Rm™c*"a  The dimension of the Grassmann manifold matches the degrees of freedom
that were already introduced in the preceding subsection while the embedding space
represents the components of the matrix My, ,h,. In general, manifolds behave lo-
cally like an Euclidean space so that distances and angles (in particular orthogonality)
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6.2. Reduction of Dimension

can be determined. While the global properties of manifolds are more complex, these
properties are not relevant.

Procedure. In the following, the theory that is mostly taken from Edelman et al.
[1998] is utilized to determine a reduced set of na(nc — na) free variables including
corresponding lower and upper bounds for the original optimization problem in equation
6.16. Based on the new coordinate system, the optimization problem is reformulated
and solved by a general purpose global optimization algorithm, available in MATLAB®.
To describe the theoretical concepts, a temporarily simplified notation is introduced.
The nc x na matrix Y, analogous to the matrix My,,,,n, represents a point on the
Grassmann manifold G, »,. The term ‘represents’ is important at this stage since the
Grassmann manifold describes linear subspaces while the matrix Y describes a specific
set of base vectors for this linear subspace.

Tangent space. In this first step, the tangent space for a point Y on the Grassmann
manifold is introduced that discloses the local Euclidean space and, hence, the concept
of directions on the manifold. To visualize the principle of a tangent space, imagine a
surface in R®. This surface is a 2-dimensional manifold. For an arbitrary but fixed point
on this manifold, many tangents exist that can all be chosen from a plane touching the
surface in the given point. This plane is called the tangent space for general manifolds.
For a Grassmann manifold and a fixed point Y, the tangent space is given by the
columns of [Edelman et al., 1998]:

Y, B (6.30)

where Y| is a n¢ x (nc — na) matrix that contains any set of orthonormal basis vectors
for the null space of Yy:

YIY, = T n, (6.31)
Yy, =0 (6.32)

and B being any (nc — na) X na matrix. Equation 6.30 describes nc x ny matrices and,
hence, points in the embedding space while the matrix B determines the degrees of
freedom for the tangent space. In general, the tangent space of a manifold always has
the same dimension as the manifold itself. In fact, the tangents identify directions on
the manifold which might become more apparent in the following.

Geodesics. Given two points of the manifold, the shortest path on this manifold lies
on a geodesic. This defines a geodesic and since it is a path, the dimension of a geodesic
is always 1. Additionally, each geodesic through Y, crosses Y, parallel to a specific
tangent direction. This implies two viewpoints. First, geodesics provide the principles to
move on a manifold, given a starting point Y and a specific direction from the tangent
space. Secondly, since any point Y on the manifold is connected to the arbitrary but
fixed point Y, the point Y can be described by the point Y, a direction from the tangent
space of Y and a distance ¢. According to Edelman et al. [1998], geodesics through the
fixed point Y, on a Grassmann manifolds are described by!:

Y(t) = YoV cos (3t) VT + Usin (Zt) VT (6.33)

!The terms cos (Xt) and sin (Xt) apply the trigonometric functions element-wise.
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where UX V7 is the compact singular value decomposition of Y ;B and ¢ is the free
coordinate of the path, equivalent to a signed distance. For a compact singular value
decomposition, the matrix 3 has the dimension ny x ng with ng = rank (Y B). Corre-
sponding to the singular value decomposition, the parameter ¢ is redundant to a scaling
of B so that t = 1 can be chosen to obtain:

Y(B) =Y Vcos () VT + Usin () VT, (6.34)

This equation describes any point Y on the Grassmann manifold by an arbitrary origin
Y, and the choice of the matrix B. Hence, only na(nc — na) variables are used to
determine the matrix Y.

Constraints on B. Edelman et al. [1998, equation 2.67] provides a relation between
the singular values o; in the diagonal elements of the matrix 3 and the components of
B:

\/Z 0?2 = \/tr ((YLB) (Y.B ) r (BTB) = (6.35)

This relation and equation 6.34 is utilized in the following to determine lower and upper
bounds for the components of the matrix B. Apparently, the geodesic describes identical
matrices Y for the singular values o; = o; + 2knr, with k € {0,1,...}. Since Y and —Y
both describe the same subspace, even the singular values o; = 0; &+ k7 are equivalent.
Additionally, singular values are always positive so that a negative direction o; < 0
would be represented by o; > 0 but with a sign change in a column of U or V. In
summary, o; < 7 can be demanded for the singular values of Y | B while still every point
on the manifold is covered. The singular values are equivalent to so called principal
angles so that o; < 7 can alternatively be concluded by the work of Edelman et al.
[1998, page 337] and Hamm [2008]. From this constraint on the singular values and
equation 6.35, it follows:

be Za < min(na, nc —na) (72T>2 (6.36)
i,J

which is also formulated by Wong [1967, theorem 8b]. This can be interpreted geomet-
rically when all free variables b; ; are aligned in a vector. This vector must then be
contained in the na(nc — na)-dimensional unit hypersphere scaled to the radius:

. e
\/mln(nA, ne —na) 5
to avoid ambiguous points on the Grassmann manifold. In addition to this tight limita-

tions, the variables b; ; can alternatively be bounded by:

T
—. 6.37
5 ( )
Reformulation of the optimization problem. The optimization problem can now
be reformulated to:

- ™ :
— \/mln(nA, ne —na) ) <b;; < \/mln(nA, ne —na)

B = argmin  fa (He, Y(B)). (6.38)

BER(nC—nA)XnA
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with upper and lower bounds for the components of B given in equation 6.37. For
the fixed point Y on the Grassmann manifold, the solution of the PCA approximation
problem is used. The result of the optimization problem are the computed elements of
B while the desired mapping matrix is then given by equation 6.34:

M, »he = Y(B). (6.39)

However, in following case studies the matrix B or the mapping matrix My, ,n. are
typically not reported since their values do not map easily to geometric properties. In-
stead, the results are analysed by relevant errors of the simulation and, if applicable,
by the display of approximated shape samples.

Scaling. While the above formulation already resolves the issues of the original opti-
mization problem according to the number of free variables and appropriate boundaries,
a last detail must be considered to guarantee an efficient optimization. The sample
points typically cover only a small subdomain of the hc-space so that many linear sub-
spaces will not intersect with the convex hull of the data points. Such linear subspaces
necessarily yield poor objective values and should, hence, be avoided. A coordinate
transformation according to the principal component analysis or singular value decom-
position (equation 123) can resolve this issue. The rotation according to the matrix
U], aligns the largest variance in the data, which typically correlates with the parti-
cle size, to the first coordinate axis and the subsequent coordinate axes cover decreasing
variance in the data. A scaling of these new coordinate axes according to EISé A then en-
sures equal variance for all axes. For the data points in this new coordinate system, the
convex hull is not anymore narrow and most of the linear subspaces intersect with the
data points. To use the overall coordinate transformation in the optimization procedure,
the linear subspaces are modeled in the scaled space. A new reference point:

on the Grassmann manifold is used and base vectors of the linear subspace in the orig-
inal data space are recovered by:

Y (B) = UpcaZpca Y(B). (6.41)

This scaling implies that solutions are significantly different from the PCA solution are
reduced to small areas in the b; j-space which is illustrated in the following examples.
Figure 6.12 (left) illustrates the PCA objective function fa pca (equation 6.18) for the
sample points from the urea simulation (see page 124) for the unscaled hc-space with
bi1 and by ; between —27 and 27. The black circle indicates the boundaries to the free
variables in B according to equation 6.36 and the objective function forms only a narrow
valley inside of these bounds. Outside of these bounds, the periodicity of the objective
function is visible. Similar observations can be made for the left of figure 6.13 which
illustrates the objective fa reimax (equation 6.23) for the volume measure (u; = pvolume
Yu,1 = 1). However, it seems to contain two crossing valleys while one of the valleys is
aligned identically to the valley of the PCA objective. The plots in the middle of both
figures show the same objective functions based on the scaling above. Figure 6.12 (PCA
objective) demonstrates that most of the regions in the b; j-space cover reasonable good
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6. Model Reduction and Shape Approximation

values for the objective function while poor objective values are obtained only at the
boundary according to equation 6.36. For the objective fa rcimax in figure 6.13, however,
the valley that corresponds to the PCA valley is deformed to the broad spot in the mid-
dle while the second valley is visible by a wide arc close to the boundary of the free
variables. This demonstrates two general issues. First, most of the b; ; values are at-
tracted by the local optimum near the center of the b; j-space. Secondly, typical gradient
based optimization algorithms will perform badly for the narrow curved valley in the
top which seems to contain the global optimum.
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Figure 6.12.: Plotted objective function fo pca (equation 6.18) for the sample points ac-
cording to the urea growth simulation (see page 124) for an unscaled h¢-
space (left), the scaling according to equations 6.40 and 6.41 (middle) and
the scaling according to equation 6.42 and 6.43 (right); dark spots indicate

local optima
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Figure 6.13.: Plotted objective function fa_ relmax (equation 6.23 with py = pvolvme, y, | =
1) for the sample points according to the urea growth simulation (see page
124) for an unscaled hc-space (left), the scaling according to equations
6.40 and 6.41 (middle) and the scaling according to equation 6.42 and 6.43
(right); dark spots indicate local optima

Based on the discussion above, the scaling can be relaxed by using the square root of
the singular values in the diagonal elements of the new matrix %3 ,. This new scaling
is applied analogue to the approach above:

& -1
Yo = (B224) UbcaYo (6.42)
Y(B) = UpcaX®2,Y(B). (6.43)

The right of figure 6.12 demonstrates that for this new scaling, regions of the b; j-space
with good values of the objective function are present in similar portions compared to
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regions of the b; j-space with poor values. This indicates that any solution is well repre-
sented in b; j-space while the narrow domain of the data points is properly emphasized.
Figure 6.13 for the objective fa rcimax also gives evidence for a reasonable scaling. The
crossing of the two valleys remains vaguely visible, the valleys containing the optima
are only slightly bent and a much larger portion of the b, j-space is attracted by the
valley that is assumed to contain the global optimum.

Numerical solution. The optimization problem typically contains multiple local min-
ima which is also illustrated by figure 6.13 (most apparent in the right). It is solved by
an optimization algorithm readily available in MATLAB®. The GlobalSearch algo-
rithm [Ugray et al., 2007] provides a strategy for an efficient selection of starting points
for a local optimizer for which sequential quadratic programming via fmincon is used
[Fletcher and Powell, 1963, Goldfarb, 1970]. The setup of the local solver is unproblem-
atic. It considers only tolerances for the objective value and free variables. The parame-
ters for the GlobalSearch algorithm, however, determine whether the global optimum
is found. In the first stage of the algorithm an adjustable amount of points is sampled
from the rectangular region that is specified by equation 6.37. In the second stage, an
adjustable amount of local optimization runs is executed with the starting points se-
lected from stage one. Starting points that yield poor objective values are neglected as
well as starting points that are close to already known local optima. Therefore, new
sample points are also generated during stage two of the algorithm to refill the points
from stage one.

It must be noted, additionally, that dedicated optimization algorithms are available
that operate directly on the Grassmann manifold [Edelman et al., 1998, Absil et al.,
2008, Adragni et al., 2012]. They require an analytic formulation of the partial deriva-
tives of the objective function in dependence of the components of the matrix Y. While
a significant decrease of the computational cost can be expected with analytical gradi-
ents, this approach does not provide any additional insight for this work. Additionally,
the derivation and implementation of these gradients is an error prone task. Therefore,
the optimization problem is solved as discussed earlier.

Results for the urea growth example. Figure 6.14 shows the absolute relative er-
rors for the volume (black), surface area (blue) and mean width (light blue) and for
different objective functions. Only the errors according to the projection of the original
sample points (equation 6.19) represented by the bold dashed lines are considered for
now. The left plot represents the PCA solution (fs pca, equation 6.18) which is the ba-
sis of comparison since it can be computed easily by singular value decomposition. This
solution was also used to verify the implementation of the global optimization problem
with the objective fa pca. For the middle plot, the objective function f, ,..2 (equation
6.22) is used and the right plot uses fa rcimax (equation 6.23). It is assumed that the
volume measure shall be approximated best so that ; = p¥°"™® and Yu,1 = 1 apply. For
the PCA solution, the highest absolute relative error is 4,7% at ¢t = 0 for the volume.
The solution for the objective function f, ;.2 shows a significantly increased accuracy
for the volume. The maximum absolute relative error is 0.3% at ¢ = 0. In contrast to
that, the accuracy of the surface area has improved only slightly while the mean width
is approximated worse. The results for the objective function fa reimax (right) differ only
slightly from the results for f, ;> (middle). The large relative error at ¢ = 0 is positive
(not visible) and decreased for the fa ieimax-solution. In return, the negative relative
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error at t ~ 0.8 increased slightly. It can be concluded that the differences between the
objective function fa reimax and f A, abs? are well reflected by the different optimal solu-
tions and the objective function fa rcimax successfully evens out negative and positive
relative errors to obtain a maximum absolute value of the relative error of 0.18% for
the volume measure. This error is less than 4% of the original error while the compu-
tation of the approximation itself took less than a minute [Desktop Computer, 2009].
Computation times for the actual simulation are negleglible.
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Figure 6.14.: Shape approximation of the urea simulation (page 124) with plotted abso-
lute relative errors for the volume (black), surface area (blue) and mean
width (light blue) of the projected points (bold dashed lines) and solution of
the approximated problem (light lines); the left shows the objective func-
tion fa pca, the middle shows f A, abs? and the right shows fa relmax

While the above results demonstrate that the objectives are well reflected, the results
in figure 6.15 aims to demonstrate that the global optima are obtained reliably. There-
fore, the objective function considers the volume (y; = p'°'"™°) and the mean width
(po = pmeanwidth) while the ratio 7,,1/7,,2 is varied between 0 and 1 in steps of 0.025.
Again, errors consider the deviation between the original sample points and their pro-
jections according to equation 6.19. The initial amount of trial points in stage one of
the global optimization was set to 5000 and the number of local optimization runs in
stage 2 was set to 50. The corresponding computation time is less than 3 minutes for
each approximation run. The left of figure 6.15 shows the resulting coordinates b; ;
of the free variables according to equation 6.38. It indicates jumps between local op-
tima due to the changing landscape of the objective function. The objective function for
Yu,1/Vu,2 = 1 is shown in the right of figure 6.13 and the indicated location of the opti-
mum with b;; = —0.04 and by; = 0.30 (by figure 6.15) indeed lies within the valley of
the objective function. The right of figure 6.15 shows the absolute relative error of the
volume (blue) and mean width (light blue) as well as the combined error according to
the objective function fa reimax (black). The error for the volume is 3% for v, 1 /7,2 =0
and the corresponding local optimum changes quickly when this volume error is taken
into account (at v,,1/7,,2 = 0.025). Also for the next two computed approximations, the
large volume errors affect the obtained local optimum. After these initial changes of
the local optima, there is only one jump remaining at v, /7,2 ~ 0.25 where the local
optimum for v, 1/7,2 = 1 is obtained. Despite the jumps in the free variables b; ;, the
objective function changes continuously. This would not be the case if local optima are
obtained unreliably and with significantly lower parameters for the global optimization
algorithm, the graphs in the right of figure 6.13 would contain corresponding sporadic
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Figure 6.15.: Shape approximation of the urea simulation (page 124) based on the ob-
jective fa relmax With p1 = p'olme and py = pmeanvidth gnd varying ra-
tio v,.1/7u,2; the left shows the location of the local optimum (black: b 1,
blue: b3 1) and the right shows the maximum relative errors for the volume
(blue), the mean width (light blue) and the combined error (black)

A last detail considers the errors between the original sample points and the approx-
imated simulation which uses the initial condition:

hai(t =0) = Mpgsh hoi(t =0) (6.44)

and the growth rate:
ga = My sn,8C- (6.45)

These results are plotted by the thin lines in figure 6.14 and deviations from the direct
projection of the sample points, discussed above, are only visible starting at ¢t ~ 1.5. At
this point in time, the facets that are represented by hc 3 grow out (see figure 6.11).
Both errors remain well comparable and the chosen approach for shape approximation
is not only valid for the direct projection, but also for the approximation of the original
dynamical problem (initial condition and growth rate).

6.2.3 Case Study (Paracetamol)

Motivation. The derivation of the shape approximation procedure in the previous
subsection considers a relatively simple example. First, only a single particle is ana-
lyzed. Simulating particle populations creates much more sample points and the com-
putational effort must be reconsidered. Secondly, the growth rate was chosen generi-
cally and no interaction between the growth rate and the accumulated particle volume
was considered. At last, the supersaturation often depletes at the end of a batch crys-
tallization so that the final time steps result in very similar shapes while large shape
changes might be observed at earlier time intervals. In such cases, the objective func-
tions fa pca or fy 1,2 would yield approximations in favor of the large particles at the
end of the simulation, possibly neglecting important particle shapes obtained in short
time intervals, only. The following simulation setup is created to study the above con-
cerns.

Simulated process. Simulated is the growth of paracetamol in a seeded batch reac-
tor [Borchert et al., 2007, Borchert, 2012]. The crystal system is shown in figure 6.16
and important material data is given in table 6.2, including the growth rates. Supersat-
uration is generated by a temperature profile 7'(¢) that starts at 40°C and cools down to
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30°C within 4000s or roughly 1.1h. Afterwards, the temperature stays constant while
an overall time span of 6h is simulated. The original crystal system uses nc = 4 and
the target dimension for the shape approximation is ny = 2.

Initial condition. The reactor is initially filled with water (myater = 1kg) that is
saturated with dissolved paracetamol. A total mass of seed crystals (mcrystal = 103 kg)
is added at ¢ = 0. The particle number distribution is a normal distribution with mean
facet distances:

hc,; = 50 ym (6.46)

and a corresponding standard deviation of 0.05 times the mean width. For the simula-
tion, the reduced numerical setup from section 4.2 is applied. The sample vectors hc;
are generated randomly proportional to the given normal distribution? while, with the
chosen mean width and standard deviation, all 1000 generated vectors are valid. The
assigned particle numbers N; for each sample point are equal to each other, given the
selected sampling proportional to the number distribution. These particle numbers N;
are computed to guarantee the initial crystal mass:

mcrystal (t = 0) - Qparacetamo] Iuvolume (t - O)

= Oparacetamol Z NiNVOIume (hC,i) (647)

)

N, = Merystal(f = 0) (6.48)

Oparacetamol Zz Iuvolume (hC,i) ’

Supersaturation. The solute concentration zp,racetamol 1S defined as a mole fraction
and the temperature dependent solubility 2oty (') is listed in table 6.2. Since the
initial supersaturation is s = 0, the total mass of paracetamol in the system is given by:

Lsolubility (T(O)) Mparacetamol
Myater
1- xsolubility(T(O)) Myater

where Maracetamol @nd Myater are the molar masses (table 6.2). The current total crystal
volume Vi,ytal(t) can be computed based on the current sample points hc ; (see equation
4.16) and the current mole fraction results in:

(6.49)

Mparacetamol = mcrystal(t = 0) +

x (t) . mparacetamol - Qparacetamol‘/crystal(t) (6 50)
paracetamol - M aracotamo . .
Mparacetamol — Qparacetamol‘/;:rystal (t) + IJ]\/[T:MI water
The supersaturation is finally defined by:
S(t _ xparacetamol(t) 1 (6 51)

Tsolubility (T (t) )
and used to compute the growth rates according to table 6.2.

2This sampling is performed directly while, typically, the points would be sampled by the Metropolis al-
gorithm from the particle number distribution 7. The particle number distribution is, however, only
implicitely given by the total particle weight. This information does not transfer easily to the total par-
ticle number I, required to scale 7. The described procedure circumvents to compute a particle volume
integral of the unscaled distribution and the application of the Metropolis algorithm. Furthermore, it
guaranties that the initial crystal mass computed from the pivots is accurate which would, otherwise,
not be possible because of the involved randomness.
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Figure 6.16.: Paracetamol crystal

Table 6.2.: Crystal data for paracetamol [Borchert et al., 2007, Borchert, 2012]

name

definition

crystal system

crystal density
molar mass

monoclinic, 2/m, a = 12.651 A, b = 8.887T A, ¢ = 7.236 A,
B = 114.848°

Oparacetamol = 1263 %
Mparacetamol = 151.17 %; Myater = 18.02 ke

kmol

10495.9K T
ity i o _104959K 1 4511344 In( £ )—298.59288 molgiut
solubility in Tsolubility(T) =€ T (%) solute.
water
growth rate for

{110} facets

9{110}(5) =35

5 < 0.1076

otherwise

o] 1.041 x 1078
2.125 x 10752 — 2,142 x 10~ 7s — 4.366 x 1010

growth rate for
{201} facets

gp2013(s) = —5.883 x 10705% + 1.847 x 107 6s* — 1.131 x 1075 =

growth rate for
{011} facets

— —6 .3 —7 2 —8
gro113(s) = —2.238 x 107653 + 7.461 x 107752 — 5.940 x 10785

growth rate for
{001} facets

9{001}(5) =

5 <0.0533

otherwise

=

S

—1.272 x 1078 +2.431 x 10~ 8s
—5.699 x 107653 + 1.867 x 107652 — 5.975 x 1085

135



6. Model Reduction and Shape Approximation

Simulation results. Figure 6.17 illustrates the evolution of the mean particle shape
which is computed by the mean of all generated hc-vectors in a certain time step. A
more detailed view on the shape changes is given by the evolution of the mean relative
facet distances with respect to the {110}-facets (hc,1) shown in the left of figure 6.18.
The shape becomes more elongated in the z-direction and the {011} facets almost grow
out. The right of figure 6.18 demonstrates the increase in the total volume, surface
area and mean width, relative to the corresponding initial values. The crystal mass
increases by a factor of 8.5 while the particle mean width increases by the factor 2.1.
The temperature profile is given in the left of figure 6.19 as an additional reference
together with the supersaturation in the right.

Resulting data set. The simulation results are sampled every 60 seconds resulting
in 361 snapshots for the generated h¢-vectors. Even for the PCA approach, the resulting
matrix size of 4 x 361000 is too large to compute a shape approximation in MATLAB®
[MATLAB®, 2012]. The data set must be reduced. In a first approach, the range of
shapes shall be resampled evenly distributed in the hc-space so that no specific shape
is preferred. This approach could also be used in the case where no simulation data is
available and only a few hg-vectors are created manually to cover the extreme cases of
shapes that might be obtained.

Even resampling. To eliminate the particle size information prior to any resampling,
each hc-vector is scaled onto a common hyperplane (see also: natively scaled structur-
ing elements in subsection 3.3.3). The normal vector of this hyperplane is given by the
mean hc-vector from all sample vectors and the distance of that facet from the origin is
1. This step results in the scaled sample vectors:

_ 1
hg,; =

’ 351006 i hei >
361000 2 > h .
< [— Sty R
Not performing this scaling would emphasize particle shapes that cover a large size
range compared to particle shapes that cover only a small range of sizes. Based on the
convex hull of these sample points, the covered range of hc-vectors can be resampled
by uniformly distributed h¢-vectors. The main principle of the sampling algorithm is

described by Devroye [1986, section V.2.1, page 207] while the following outlines the
implemented steps.

he,. (6.52)

1. The sample points are expressed in an (n¢c—1)-dimensional coordinate system that
is embedded in the chosen hyperplane. The required coordinate transformation is
obtained by a singular value decomposition of the centered vectors hc ;.

2. The convex hull and its triangulation is computed for the points in the dimension-
ally reduced space.

3. For each vector to be sampled a uniformly distributed scalar random variable is
generated and a simplex of the triangulation is chosen proportional to the volume
of that simplex. The sampled vector will reside in this simplex. The next step
ensures that the vector is selected from a uniform distribution of vectors in the
selected simplex. Hence, all vectors will finally be selected from a uniform distri-
bution of vectors residing in the computed convex hull.
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Figure 6.17.: Evolution of the mean particle shape for the paracetamol batch crystal-
lization case study.
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Figure 6.18.: Evolution of the relative facet distances with respect to ic ; (left) and in-
crease of the total volume, surface area and mean with relative to their
initial value (right) for the paracetamol batch crystallization case study.
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Figure 6.19.: Temperature profile (left) and supersaturation over time for the paraceta-
mol batch crystallization case study.
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4. To specify the vector in the selected simplex, it is shown in the following how
uniformly distributed points are obtained for a standard simplex. Therefore, (nc—
1) uniformly distributed random variables r; € [0, 1] are generated and sorted in
ascending order, prepended by 7o = 0: rg, r1, ..., rno—1. The differences r; — r;_;
are also uniformly distributed so that the vector:

(Tl —T0y .-+, Tnc—l - TTLC—2)T

is uniformly selected from the points of the simplex (given in V-representation)

[Devroye, 1986]:
{xxiZO,Zwigl}.

This standard simplex can be converted by a linear transformation into the previ-
ously selected simplex. Applying the same linear transformation to the generated
vectors:

(Tl —T0y -+ Tnc—l - rnC—Q)T

results in uniformly distributed vectors for any selected simplex from step (3).

5. The linear transformation from step (1) is inverted and applied to all sample
points, generated by steps (3) and (4). The range of shapes which was indicated by
the sample points hc ; are now resampled by uniformly distributed points.

Results for the even resampling. Based on the procedure above, a set of 1000 h¢-
vectors was resampled from the originally 361000 h¢-vectors and a shape approximation
with a reduction to ny = 2 was computed. Figure 6.20 illustrates relative errors for
the reference PCA solution (top) and the shape approximation according to the objec-
tive fa relmax With p1 = pvelime (hottom). The two shape approximations are compared
based on two ways. The direct projection of the vectors from the original simulation:
hp i(t) = Mhneshyhe,i(t) is shown by the dashed lines in figure 6.20. The solid lines
show the errors for the recomputation of the simulation with the approximated shape
representation. To create these simulations, the mapping matrix My,.,n, is applied to
the initial condition and the growth rates and the mapping matrix My, ,n is used for
measure computation during the simulation. For the PCA solution, the errors for the
mean facet distances do not exceed 3% for neither the projection nor the simulation er-
ror. The corresponding relative errors of the total volume, surface area and mean width
are in the range of —1% and 2% for the simulation errors. The results for the optimiza-
tion according to fa relmax With 1 = pvelime took about 5 minutes while the PCA solution
is obtained in a fraction of a second. Despite this high computational effort, the results
for the objective fa ;clmax are worse. The relative errors of the facet distances even reach
up to 25% so that significant changes in the mean crystal shape are visible. Figure 6.21
shows the evolution of the mean shapes based on the simulation of the approximated
process model according to fa relmax. Significant differences are visible compared to the
mean shapes in figure 6.17.

General observation. The relative error of the total volume is typically less for the
simulation error than for the projection error. This behavior is caused by the coupling
of the total volume to the growth rate. If the total particle volume is overestimated by
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Figure 6.20.: Relative errors of the mean facet distances (left) and the total volume,
surface area and mean width (right) for a shape approximation to ny = 2
based on the even resampling (top: PCA, bottom: fa relmax); solid lines
represent the simulation error and the dashed lines the projection error
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Figure 6.21.: Evolution of the mean particle shape for the shape approximation accord-
ing to the objective fa relmax With p1 = pvelime and based on the even re-
sampling of the simulation data
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6. Model Reduction and Shape Approximation

the approximation, the supersaturation and the growth rate are reduced, leading to less
increase in the particle volume for further time steps. The coupling of the total particle
volume and the growth rate stabilizes the obtained error for the total volume.

Discussion of the PCA solution. The reduction of the originally 4-dimensional shape
approximation to 2 dimensions yields satisfying results for the PCA solution. Since
characteristic sample vectors hc ; which span the region for the even (re)sampling can
also be obtained by experience or experiments, this approach is reasonable when no sim-
ulation data is available. However, the obtained simulation error cannot be concluded
from the errors of the shape approximation. Figure 6.22 shows in the left the errors of
the 1000 generated sample vectors for the PCA solution. The obtained relative errors
are sorted ascendingly and span the range from —32% up to 57% for the crystal volume.
Based on these large deviations it is surprising that the total particle volume does not
exceed 2% error.

Discussion of the complex optimization. The projection and simulation errors for
the approximation based on the objective fA reimax With 1 = pvelime gre clearly not
convincing. However, this does not imply that the nonlinear optimization failed to find
a suitable optimum. The right of figure 6.22 shows relative errors of the 1000 generated
sample vectors that were used to find the shape approximation. The relative error of
the crystal volume ranges from —35% to 30% and yields a significantly better objective
value for fa ;eimax compared to the PCA solution in the left of the same figure. While
the mean error is clearly negative, it is not possible to derive a relation between the
statistics of the resampled hc-vectors and the relative error of the total particle volume.
To obtain a suitable shape approximation, the selection of the sample vectors and/or the
selection of the objective function must be reconsidered.

Time based resampling. The even resampling was used to limit the influence of
the sampled hg-vectors between ¢t = 2h and ¢t = 6h that would otherwise dominate
the shape approximation for the PCA approach. Additionally, the objective fa relmax
aimed to limit the maximum relative error of the particle volume. While this limit is
reasonable for a single particle (see the urea case study in subsection 6.2.2), it is not
suitable for low errors of the integral I,ume(t) when a particle population is considered.
In the following approach, a small amount of time steps ¢; is selected from which a
subset of 100 sample hc-vectors is used. The time ¢; = 0 is selected and every time step
t;11 thereafter for which the mean particle shape has a mean width that is 10 ym larger
than for the time step ¢; before. This approach ensures that a lot of sample hc-vectors
are selected between ¢ = 0 and ¢t = 2h while only a few remain for ¢ > 2h. Additionally,
the time ¢t = 6 h is added to the selected time steps to ensure the whole time span being
covered by hc-vectors. Given this sampling, the resulting complete set of hg-vectors
is grouped according to the time criterium ¢; and the integral properties Iy oume(ti) can
be evaluated based on the 100 sample points in each time step to construct the new
objective:

anIvolume = HI?X |Ivolume(tz'a hC(tz)) - Ivolume(tia hA(tz))| . (653)

This new resampling of the h¢-vecors will be denoted by time based resampling.

Results of the time based resampling. The resampling based on the above ap-
proach generated 15 time snapshots ¢; with 1500 sample hc-vectors in total. Figure
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6.23 illustrates relative errors for the reference PCA solution (top) and the shape ap-
proximation according to the objective fa ... (bottom), analogue to figure 6.20 that
was discussed earlier. The PCA solution yields similar relative errors compared to the
even resampling. However, this time the nonlinear optimization approach with the ob-
jective fa . significantly improves the relative errors of the total volume integral
below 0.5%. This relative error is about 4 times smaller than for the PCA solution. The
corresponding relative errors for the components of the hg-vector are much larger and
reach up to 7.3% for hc 1. The corresponding mean shape evolution is shown in figure
6.24 where the most apparent difference to figure 6.17 is visible in the {011} facets

corresponding to hc 2.

Additional results: size distributions. It is straightfoward to compute particle size
distributions from the stored variables NN; and h¢ ;(t). Distribution values are defined
by the integrals:

Jao, , #(ho)Alho, t) dhg
Hit1 — i

(6.54)

where p; (with p; < p;11) are the boundaries of disjoint bins with each sampling point
at 3 (141 + pi). The region €, ; is defined as:

Qi = {hc | p(he) = i, phe) < piga}. (6.55)
The Monte Carlo integral estimate for each distribution value is then given by:

1 ‘ n(hci(t), t)
Z p(heyi(t)) m%c,i(wem (6.56)

Nsample

where Oy, (1)eo, is 1 for hci(t) € ©; and 0, otherwise. The left of figure 6.25 shows
particle size distributions over time for the original process model in black and the
approximation to ny = 2 according to the objective fa ;.. . in blue. The agreement is
very good considering the involved large errors of the Monte Carlo estimates that can
be expected for distribution plots (see equation 4.18). This example demonstrates that
any computation that is available for the original process model with nc = 4 is also

available for an approximation.

Additional results: optimal single shapes. Additionally, it is possible to find an
optimal single shape to obtain a 1-dimensional population balance with ny = 1. Fig-
ure 6.26 illustrates corresponding relative errors for the PCA solution (top) and the
shape approximation according to the objective fa s ... (bottom) computed from the
time based resampling. This figure is analogue to figure 6.20 or 6.23 that were discussed
earlier. The resulting errors are much larger in the range of 10% for the simulation er-
ror while it is even more apparent that the coupling between the total volume and the
growth rate via the supersaturation stabilizes the simulation errors compared to the
projection errors. For that reason, the shape approximation according to the objective
JA, Litume does not perform significantly better in terms of simulation errors of the total
volume, even though the projection errors are better. The errors in the facet distances
are very high which is also well expressed by the computed shapes in figure 6.27 when
they are compared to the original mean shape evolution in figure 6.17.

141



6. Model Reduction and Shape Approximation

1 1

g8 05 5
- -
5 mean width &8 mean width
g 0 surface q>) surface
3 volume 3 volume
® 05 o

-1 -1

0 500 1000 0 500 1000

sample point (sorted) sample point (sorted)

Figure 6.22.: Relative measure errors for the even resampling and fpca (left) as well as
JA relmax With p; = pvelime (right); sample points are sorted according to
the values of the relative errors

0.04 0.03
E 0.02 § 0.02 ‘ ‘
3 Ecyl 5 001 . - - mean width
o 0 C,2 ) / - surface
= he s & = - 1
= s = 0 \ Hvo ume
= heg =
g 002 & 001 Y
-0.04 -0.02
0 2 4 6
time in h time in h
8 &
=]
E EC,I & mean width
o C,2 o
= hC N q>) surface
= h. ’ =] volume
= C.4 < ®
: §
-0.1
2 4 6
time in h time in h

Figure 6.23.: Relative errors of the mean facet distances (left) and the total volume, sur-
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puted based on the time based resampling (top: PCA, bottom: fa r_...);
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Figure 6.24.: Evolution of the mean particle shape for the shape approximation accord-
ing to the objective fa 1, and based on the time based resampling of
the simulation data
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t =0,0.5h,0.7h, 1h and 6 h for the approximation to np = 2 by the objec-
tive fa 1,,um. (left) and to ny = 1 by the PCA objective (right); both shape
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Figure 6.27.: Approximated shapes for ny = 1 computed by the time based resampling
and according to the PCA objective (left) and according to the objective
fAvlvolume (rlght)

Applicability. Note that this approach for shape approximation will typically fail to
provide reasonable results when facets disappear and reappear later in the simulated
process since the validity of hg-vectors is not maintained throughout a simulation. Fur-
thermore, the resulting 7 c-representations of a shape approximation according to this
subsection are typically not proper® so that it will not even be possible to maintain the
validity of hc-vectors. While it is possible to construct a shape approximation such that
the validity for specific sets of coherent facets can be maintained, this possibility will be
outlined in appendix A.2.1 to A.2.3. This approach would require a detailed understand-
ing of improper Hc-representations while the results that can be expected in terms of
achieved reduction and accuracy of the results are questionable.

Conclusions. The shape approximation according to the PCA objective always pro-
vided a reasonable approximation of the original process model. This makes the PCA
approach a reasonable reference that is easy to implement and sufficient in many cases.
The shape approximations according to a tailor made objective function introduce a con-
siderable complexity in terms of the theory, discussed in the previous subsection, and
in terms of the global optimization problem that needs to be solved. The computation
times are reasonable with a couple of minutes and the relative error of the total vol-
ume was reduced by a factor of 4 for the reduction to ny = 2. Additionally, the global
optimization approach did not yield considerable better results for the approximation
to ny = 1 since the target relative error of the total volume is stabilized automati-
cally by its coupling to the growth rate via the supersaturation. Overall, these results
imply that the global optimization is not worth the effort for similar cases. However,
consider that the global optimization approach was much more efficient for the urea
case study, discussed in the previous subsection. Therefore, the decision to utilize the
global optimization approach remains a case by case decision and can yield significant
improvements, depending on the involved range of shapes and on the focused degree of
approximation (target dimension ny).

3This is was not yet discussed but considering the hx-space, it includes linear constraints (Mch = 0) in
addition to the ones that are used for the original hc-space. Though, this time these linear constraints
do not originate from symmetry so that, typically, more groups of coherent facets are present than
degrees of freedom (n,); leading to improper Hc-representations according to condition 2 for proper
representations. See subsection 3.2.2 and 3.2.3 for more details.
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6.3 Reduction of Complexity
6.3.1 Reduction to Moments

Motivation. Crystallization process models typically involve the evaluation of the in-
tegral:

Leolume(t) = / ii(he, t) 1" (he) dhe (6.57)
Cv

for the closure of the mass balance while product properties like the total surface area
or the mean shape are available based on similar integral formulations. This section
focuses on a shape approximation that allows a model reduction of the nc-dimensional
population balance to the time derivatives of the moments:

M(z’,j,k) (t) = /"ﬁ(hc, t) hC’,ihC,th,k dhc (6.58)
Cv

M(i,j) (t) = /"ﬁ(hc, t) hc’ﬁ‘hc,j dh¢ (6.59)
Cv

Ml(t) = /ﬁ(hc, t) hC,i dhg (6.60)
Cv

M()(t) = /fl(hc, t) dhc. (6.61)
Cv

The model reduction itself does not introduce any error to the evaluation of the above in-
dicated integrals. However, only marginal information on the size or shape distribution
is available based on the above moments. Since the information on distributions is typ-
ically not used for process control, the main application for this model reduction might
be model based control. The derivation of the reduction is described in the following
paragraphs and the corresponding limitations are highlighted. One of these limitations
considers the complexity of measure computation and can be resolved by a shape ap-
proximation which is described in subsection 6.3.2. The urea and paracetamol case
studies from the previous section are continued to demonstrate the model reduction to
the moments above.

Measure computation. The integral of the total volume above can be reformulated
to (see equation 2.31):

Fotame(t) = [ albo. ) | 37 6 beshehea | dnc (6.62)
Cv (4,5,k)

which simplifies to:

Fatamelt) = Y 785 Mg 1301 (6.63)
(17]7k)
if all hc-vectors share the same set of coefficients cYolune — cyolume o1 the same
(4,3,k),p(hc) (4,5,k)

unified partition p (h¢), respectively. The total particle surface area is given by a similar
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formulation, the total particle number is equivalent to My and the mean shape of the
particles from the size distribution is given by:
I fc hC; hC idhc Mz
T o ilhe, tydhe My’

(6.64)

Dynamic evolution of moments. The time derivative of the moments is exemplified
by the moment M, ; ;)

p o hoahc e dhe. (6.65)

Cv
The partial derivative of the distribution 7. can be substituted by the population balance
(equation 4.3):
Mijw _ Y au(he.t) | hegheghesdhe — | (Vig o (8c i) hehe,jhey. dh
o 1(hc, c,ihc jhcr dhg he ® (8c 1)) heihc jhe dhe.
Cv ! Cv

(6.66)
The left integral term is typically zero if the nucleation size is h¢ = 0, except for M. If
the source term o; expresses a seeding event, the moments can be updated accordingly
by a discrete time event. For the analyzed case studies, only an initial condition is used
and no source term o; exists so that this term is neglected in the following. The right

integral can be integrated by parts:

dMi . o 0 (heiho jh
i UYL / (7 o (8c 1)) heihejho dhc—i-/(gc ) e (heihoher) dhg
dt Ohc

OCv Cv

(6.67)
where dCy is the boundary of the validity cone and the vectors 7 are corresponding
outer normal vectors. The right integral term can be further reduced to the available
moments if the growth rates g¢ are shape independent:

I 0 (hcihc jh . _ .
/(gc n) °< ( 78h(j C’k)> dhe = /ngC,ihC’7th,k+hC,igC,th,k + heihe, o,k dhe

C\/ CV

= gc,iMjr +9c Max) + gceMy j (6.68)
The left integral term (equation 6.67) cannot be reduced to a moment formulation. But
if i = 0 or 7 g = 0 is guaranteed for hc € dCy, it is 0 and can be neglected. The
limitation 77 ¢ & = 0 cannot be achieved since g§ must remain independent on h¢ for the
right integral term. The term 7 = 0 for hc € JCy implies that facets must not grow
out. If this assumption holds, the left integral vanishes. Since this derivation can be
repeated analogously for the other moments, the time derivatives result in:

dM; ;i 5 _ _
# = gc,iMr +9c Max) + geeMy j (6.69)
dM; ;
# = go,iM; + go,; M; (6.70)
dM; _
- gc,iMo (6.71)
dM
—— = 0. 6.72
y7 0 (6.72)
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Summary. Equations 6.69 to 6.72 substitute the original nc-dimensional population
balance by a finite set of ordinary differential equations while equation 6.63 is used to
evaluate the total particle volume or similar integrals. The limitations of this model
reduction are:

1. the growth rate g¢ is independent on the current particle shape or size;
2. no facet disappears so that n(hc,t) = 0 for h¢ € ICy holds;

3. all h¢-vectors reside in the same unified partition, throughout the entire simula-
tion.

If limitation (1) is not fulfilled, the derivation is not applicable (see equation 6.68). If
limitation (2) is not fulfilled, the derivation remains applicable by choosing a sufficiently
large compact domain instead of the validity cone Cy before applying the integration by
parts to equation 6.67. However, the coefficients for measure computation c?.q)easure are
not applicable outside of the validity cone so that errors in the computed integrals can
be expected. Limitation (3) is typically not fulfilled by crystal models but the shape
approximation in the next subsection overcomes this obstacle. A special acknowledg-
ment goes to Carsten Choscz [2012] who conducted the first case study that involved
the above model reduction for the growth of lactose crystals.

6.3.2 Extended Embedding

Motivation. The model reduction, described in the previous subsection is only appli-
cable if all hg-vectors during a dynamic simulation remain in the same unified partition
so that the same set of coefficients cl(fl)easure for measure computation can be used. This
is typically not the case but it is possible to construct an extension of the original #c-
representation so that any h¢-vector resides in the same unified partition of a new -
representation. This extension is introduced in the first part of this subsection and its
implications to the original process model are outlined. It turns out that the extension
only shifts the original issue of different sets of coefficients Y to another problem
while this problem can be resolved by a suitable shape approximation.

Reviewing unified partitions. The extension is constructed based on the under-
standing of the geometrical state space which is recalled from chapter 3. Given a unified
partition Cy ), the following statements are equivalent.

1. All h¢-vectors with he € Cy ), use the same set of coefficients cr(fl)easure for measure
computation.

2. All structuring elements S; = P(hc,s,) with h¢ s, € Cy, (and also all polytopes
P(hc) with he € Cy,,) can be summed according to a Minkowski addition by just
adding the corresponding hg-vectors:

D XiSi=Pa (thﬁh > Aihc,&.) : (6.73)

Important to note is the polytope term Pa (Mp.nhc) explicitly indicating the facet
normal matrix A and using the H-representation where usually the matrix A is omitted
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and the h¢-vectors are used directly. The shape approximation in this section will use
two different matrices of facet normals. Statement (2) implies that for a different unified
partition Cy 4, two structuring elements S; € Cy, and S; € Cy 4 exist for which:

Si+S; = Pa (thah (hc,si + hc’sj)) (6.74)

does not hold. It is used in the following to construct an extended matrix of facet nor-
mals A so that equation 6.73 holds for all structuring elements (and also for all vectors
hc € Cy). This implies by the equivalence to statement (1) that a single set of coeffi-
cients crye exists for the new facet distance vectors h.

Extended 7-representation. Whenever two structuring elements cannot be added
according to equation 6.74, the Minkowski sum S; + S; necessarily involves a new facet
that is not listed in the matrix A (see subsection 2.2.3 or the paragraph ‘Range of the
S-representation’ on page 53). These facets are generated by the combination of two
edges. To find the facet normals for all possible additional facets, it is sufficient to check
all pairs of structuring elements for new facets since no new edges can be created by
Minkowski addition. The resulting set of new facet normal vectors are accumulated
together with the original facets in a new facet normal matrix A. The matrix A de-
scribes a new H-representation, denoted as extended H-representation. This extended
‘H-representation is only temporary and the nomenclature uses a tilde to indicate corre-
sponding variables (see column 2 of table 6.1, page 121). Computing the corresponding
vector of facet distances h is straightforward by evaluating the support values:

hi = h (P(hg), a;) = pSPPorbai (he) .

Based on the unified partition dependent coefficients ¢;' port: i (gee subsection 3.3.5), a

corresponding unified partition dependent mapping matrix can be provided:

h = M, ;,hc (6.75)
support, a1 support, a1 . support, a;
1,p - C2,p Cng,p -
support, ag Csupport,ég . support, as
1,p 2,p ngc,p
Myoohp = : : . : (6.76)
support, &z support, &z support, &z
C1,p 2,p " Cnc,p

Extended embedding. The h-vectors of the structuring elements are denoted by hg,
and are obtained by equation 6.75. These vectors do not span the whole ny-dimensional
space since the original crystal symmetry is maintained. It follows that a new Hc-
representation can be identified by the singular value decomposition of the matrix

flgl, f152, e flgns which computes the mapping matrix from the (new) constrained

vectors to the vectors h. This new constrained #¢-representation is called the extended
embedding. The descriptor ‘embedding’ might not yet be clear and is explained after the
remark on notation. All symbols for #c-representations are adopted. Every occurrence
of the subscript C is substituted by E for ‘embedding’. If no such subscript exists, /E is
appended to the subscript, reading ‘in embedding space’. An overview of the adopted
notation is given in the 4*} column of table 6.1 (page 121).
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6.3. Reduction of Complexity

The embedding character is created by the original hc-vectors being mapped to cor-
responding hg-vectors via:
hc (6.77)

hE = MB»—)hEMhCHﬁ,p

where the matrix M; shy = MI i is the direct result of the singular value decom-
E

position for the matrix ﬂgl, f152, e flgns} . This implies that the original hc-space is
embedded piecewise as a linear subspaces in the hg-space.

Utilizing the extended embedding. The dimension ng is often much higher than
nc so that it is not feasible to compute the whole decomposition data like the validity
cone or the unified partitions. But this information is not required and it is sufficient
to know that all structuring elments hg s, now fulfill equation 6.73 and are part of the
same unified partition. It is feasible to assume that the positive hull of the vectors
hg s, equals a unified partition for the purpose of measure computation. The mixed
volumes can be reused or recomputed for all structuring elements and converted to the
coefficients cn?easure/ E (see section 3.3). Additionally, note that the hp-vectors that are
computed from original hs-vectors according to equation 6.77 reside on the boundary of
the validity cone since none of the additional facets in the normal matrix A is present
for the polytopes Pa (hc).

The original process model could be transferred to the extended embedding, but the
corresponding growth rates are:

dh
gr = dTE = Mhgshp.p 8C (6.78)
Mh@—)hE,p = va—)hEth'—)ﬁ,p (679)

where p must be computed based on the current state hg which makes the rates gg
shape dependent. The model reduction from subsection 6.3.1 is not applicable in such a
case which is resolved in the following.

Approximation. To retain a shape independent growth rate gg, a constant mapping
matrix My, is required. The range of this matrix indicates a linear subspace of
the hg-space that is at most nc-dimensional since My, n, has nc columns. The first
idea might be to reuse the shape approximation concept from section 6.2 to identify an
optimal linear subspace. While this approximation can find an optimal subspace, the
mapping of the original process model still uses the extended embedding:

ha = Mpgoh,Mp, My he (6.80)

and remains, hence, shape dependent. Finding an applicable mapping matrix M, i
or My h, must be resolved otherwise. A simple approach is to minimize the variance
of the error:

T
fvariance = Z (thﬁfl,p(th)hc’i - Mh@»—)ﬁhcvi> (MhCHB,p(hC,i)hC,i - MhCHBhC,i)
i

(6.81)
for some sample h¢-vectors. The solution of this optimization problem is known by the

mean of the applied mapping matrices M, oy

1
Z M,sip(he ) (6.82)

M

hc—h —
c Nsample
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Since the sample hg-vectors span an at most nc-dimensional subspace, it is sufficient
to identify this subspace analogue to the PCA based shape approximation to nyn = nc.
The PCA based shape approximation does not involve any shape approximation. It is
already contained in the hg-vectors that are created by the mapping:

hg = Mpionghe (6.83)

th’—)hE = M M (6.84)

fl’—)hE th—)ﬁ

Summary. Figure 6.28 gives an overview of the mappings and representations that
are utilized throughout this subsection. On the left, the original #- and #-representa-
tions are indicated by the symbols A, h and hc. The first step created an extension of
the facet normal matrix, leading to an extended 7{-representation (A, h). The mapping
to this space is either exact but only piecewise linear via M, .0 » (equation 6.75), or it is
approximated and linear via th . (equation 6.82). Based on the original structuring

elements in h-space, the smallest required linear subspace can be identified which is

indicated by the vectors hg. While the process model could be transformed to the hg-

space via the exact mapping, using only one set of coefficients c?l)easure/ E the growth

rates become shape dependent. Therefore, the approximating mapping is used which
allows an additional model reduction analogue to subsection 6.1.2 which creates a third
Hc-representation, indicated by vectors ha. The formulation of the process model in
h-space finally allows the reduction to moments. Additionally, the last step could also
include another shape approximation according to subsection 6.2.1, further reducing
the set of required equations.

extended set of facet normals
A h

@ find facets via (AL

< testing S; + S = e ;
singular value
1 decomposition

h 3y h
£ model reduction @

Figure 6.28.: Schematic of relevant mappings for the extended embedding

6.3.3 Case Studies

Motivation. Given the derivation of the previous subsection, it is not yet clear what
an extended H-representation looks like and how the shape approximation affects the
results when the population balance is reduced to a moment model. To answer these
questions, the two case studies of the previous section are continued in the following.
The case study for a single growing urea crystal is introduced on page 124 and the
results of the dimensional reduction are given, starting on page 131. The case study for
a growing population of paracetamol crystals is introduced and analyzed in subsection
6.2.3.

Extended 7-representation. Figure 6.29 shows sample particles of the extended H-
representation in which all additional facets are visible. The facets of the original crys-
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6.3. Reduction of Complexity

tal forms are color coded while the additional facets of the extended H-representation
are shown in white.

The original urea crystal has 3 crystal forms with 10 facets while the extended H-re-
presentation has 4 additional facets and the extended embedding uses a 4-dimensional
hg-space. This result is feasible since urea uses 4 structuring elements with 2 unified
partitions so that only two structuring elements exist that cannot be combined accord-
ing to equation 6.74. The addition of these two structuring elements generates the
additional 4 facets.

The original paracetamol crystal uses 4 crystal forms with 12 facets while the ex-
tended #H-representation uses 28 additional facets. The computed extended embedding
uses a 9-dimensional hg-space so that the geometrical complexity of the paracetamol
crystal increases much more than for the urea crystal. This situation is reasonable
since the original Hc-representation uses 11 structuring elements in 13 unified par-
titions and, hence, already provides a higher geometrical complexity for the original
crystal representation.

hca
{110}

hc,2
{011}

hc,s
{001}

hc.a
{201}

Figure 6.29.: Extended H-representations of the urea crystal from figure 6.9 (left) and
paracetamol crystal from figure 6.16 (right) with new facets in white

Generated data. The mapping matrix M,,..; Was computed according to equation
6.82 which also results immediately in the mapping matrix My, ., (equation 6.84).
For urea, the whole series of sample points h¢(¢) is used that is generated by the non-
altered process model (see page 124). For paracetamol, the hc-vectors are taken from
the time-based resampling (see page 140). The obtained hg-vectors from the mapping
hg = My he are compared to the exact mapping hg = My, hy p(ho)hc Which pro-
vides a first comparison. It addresses the pure approximation error.

To obtain the nc-dimensional Hc-representation that covers the range of the map-
ping matrix My, ;n,, the hg-vectors that were used to find My, ,1,, are used for a PCA
based shape approximation according to section 6.2. This step is, however, only a model
reduction, not an additional shape approximation. The overall mapping analogue to
equation 6.80 transfers any original hc-vector to a corresponding hx-vector while both
vectors are nc-dimensional. This mapping is applied to the initial condition of the orig-
inal process model and to the growth rates which transfers the process model to the
hp-space. The initial values for the moments are then computed from the sampled
points of the original simulation data.* The results obtained from these simulations
address the final error of the obtained moment model.

“The urea case provides only a single sample point and the integral can be omitted.
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6. Model Reduction and Shape Approximation

Results for urea. At first, the more simple case of the growing urea crystal is ana-
lyzed. The relative errors for the total volume, surface area and mean width are plotted
in figure 6.30. The maximum relative errors of the facet distances rated over the whole
simulation time are given in table 6.3 while the error is evaluated separately for the
original facets and the facets that are added by the extended #-representation. The di-
rect mapping into the hi-space does not yield any error since the crystal remains in the
same unified partition throughout the whole simulation. Hence, the mapping into the
hg-space does not involve a shape approximation and the model reduction could have
been applied for the original problem in hg-space. However, the simulation of the mo-
ment model yields errors in the range of up to 2%. This is solely caused by the growing
out facet at ¢ ~ 1.55 which can be seen by the facet distance error in table 6.3. The sud-
den jump in the error at ¢t = 1 is caused by the accuracy of the time integrator and the
switch of the growth rate at this time instant. The obtained simulation error is slightly
lower compared to the shape approximation based on a dimensional reduction to ny = 2
(see figure 6.14).

mean width

surface

volume

I

relative error
[l
(6]

0 0.5 1 1.5 2
dimensionless time

Figure 6.30.: Urea case study: relative errors of the shape approximation via the map-
ping into the hg-space (dashed lines) and simulation error of the reduced
moment model (solid lines)

mean width

surface

volume

“w

relative error

time in h

Figure 6.31.: Paracetamol case study: relative errors of the shape approximation via
the mapping into the hg-space (dashed lines) and simulation error of the
reduced moment model (solid lines)

Results for paracetamol. The presentation of the results for the paracetamol case
study is analogue to the urea case study above. It is given in figure 6.31 and table
6.3. The maximum relative error for the simulated moment model is obtained for the
total mean width with about 0.7%. This error originates from the additional facets of
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Table 6.3.: Maximum relative errors (absolute values) for facet distances of the shape
approximation via the mapping into the hg-space (mapping) and the simula-
tion error of the reduced moment model (simulation)

original facets additional facets

urea (mapping) 0 0
urea (simulation) 2.3 x 1072 1.5 x 1071°
paracetamol (mapping) 1.2 x 1076 4.2 x 1072
paracetamol (simulation) 4.4 x 1074 4.3 x 1072

the extended embedding that truncate the otherwise accurate crystal (see table 6.3).
The original facets have a maximum relative error of 4.4 x 10~ throughout the simu-
lation while the additional facets have an error of 4.3%. Since these additional facets
are barely present on the crystal surface, they have a minor effect on the total crystal
surface area or total crystal volume. According to the small errors, changes in the mean
crystal shape are not visible, if the crystals are printed at the usual size. Compared
to the dimensional reduction via shape approximation (see section 6.2), the obtained
relative errors for the total particle volume are significantly lower while the error of the
total mean width is well comparable (see figure 6.23). However, the computational ef-
fort to obtain the shape approximation and to simulate the final process model is much
lower. No more than a minute is spent for the shape approximation and the process
model while no uncertainty exists whether the global optimum is found. Additionally,
the original process model involves 4000 ordinary differential equations for the sample
points while the moment model uses 35 ordinary differential equations.

Summary. Overall, the shape approximation into the hg-space is well conditioned if
the total particle volume is considered. The largest relative errors of the facet distances
are obtained for the additionally created facets. Since these facets are not present for
the original crystals, the corresponding truncation has a small effect on the crystal
volume. If the moment reduction can already be performed for the original problem in
hc-space, no approximation error is involved. This is demonstrated by the urea case up
to ¢ &~ 1.55 or the case study on the growth of lactose crystals by Carsten Choscz [2012].
If the final set of 35 ordinary differential equations for the paracetamol case study is
still too large for model based control, the step from the hg-space to the hs-space could
involve an additional shape approximation to, e.g. no = 3 or ny = 2 which would reduce
the set of moments to 20 or 10, respectively.
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7

Summary, Conclusions and
Outlook

7.1 Summary and Conclusion

Complexity of Particle Shape Modeling. Modeling particle shape often includes
two fundamental problems that are discussed in the introduction to chapter 3. The first
issue concerns efficient algorithms for particle measure computation and the second
issue is connected to boundaries in the geometric state space. These boundaries are
the zero size boundaries at which particles disappear and validity boundaries beyond
which combinations of shape coordinates are inconsistent. In the scope of crystal shape
modeling, these issues are analyzed throughout chapter 3 (and appendix A.2) for con-
strained H-representations. It turned out that proper Hc-representations for which va-
lidity boundaries can be handled consistently in simulations must be distinguished from
improper representations for which inconsistent combinations of shape coordinates can
appear. Several examples are used in chapter 6 to demonstrate that improper repre-
sentations are valuable for model reduction techniques that often require some shape
approximation®.

Measure computation. Measure computation is discussed in detail in section 2.3
where it is shown that a strong link exists to the a-type or, in particular, to the presence
of edges for 3-dimensional polytopes. Given this insight, an algorithm for Minkowski
decomposition is adopted to search the geometric state space for existent a-types. The
resulting domains provide linear inequalities that are used to select the right set of co-
efficients to compute measures based on polynomials in the coordinates of the chosen
geometric state space. The volume computation for reasonably complex crystals (e.g.
4 forms) is then about two orders of magnitude faster compared to the computation of
the volume from their H-representation. Additionally, a large number of generic crystal
systems was analyzed for the combinatorial and computational complexity that is con-
nected to this framework of measure computation. It is found that the combinatorial
complexity (e.g. the number of structuring elements or involved a-types) increases expo-

!The detailed analysis of improper representations is available in appendix A.2 where it is shown that
some issues concerning the validity of geometric state vectors cannot be resolved for improper repre-
sentations. This finding can, on the one hand, often be ignored but might, on the other hand, indicate
severe limitations for the choice of particle shape models in general.
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nentially while crystal systems with up to 9 forms are successfully tested. This implies
that crystal systems with about 10 forms or more must be considered high dimensional
with respect to this framework for measure computation.

Validity. The validity of state space vectors is concerned with respect to the appear-
ance and disappearance of crystal faces. While the derived algorithm to identify valid
vectors is almost identical to the algorithm by Borchert [2012], it is newly linked to
present mathematical literature (see subsection 2.4.3). Additionally, a new way is pro-
posed to maintain valid vectors during a dynamic evolution of the crystal shape. This
approach also allows finding a valid vector for any given invalid vector which was not
possible before. With the analysis of this validity mapping, requirements on the crystal
shape representation emerged that must be fulfilled. This defines proper representa-
tions while corresponding improper representations are discussed in appendix A.2. The
analysis of these improper representations is based on corresponding proper represen-
tations where validity mapping constitutes the most important tool.

Population balances. The dynamic evolution of crystal shape based on population
balances is discussed in chapter 4. Since existing methods could not be implemented
successfully for n-dimensional problems (n > 2), a numerical scheme is developed from
a new approach that considers primarily the complexity of the required computation of
the total particle volume instead of the complexity from the partial differential equa-
tion. It is based on Monte Carlo integral estimates that are combined with the method of
characteristics. Therefore, its theoretical background is very different from existing ap-
proaches to solve population balances. The presented case studies verify this approach
via a comparison to one analytical and one semi-analytical solution. Additionally, the
case studies demonstrate how the stochastic degrees of freedom can be used to improve
the numeric accuracy by choosing the probability distribution for the initial sample
points.

Rounded particles. A new particle model for rounded particles is introduced in chap-
ter 5 based on the newly introduced S-representation. It describes abraded particles
very well which was verified by experiments in cooperation with the group of Prof. Maz-
zotti (ETH Ziirich, Stefan Schorsch in particular). A corresponding image analysis pro-
cedure is presented and tested for a proof of principle. The new shape model is further
analyzed and required kinetic parameters are identified to describe the particle shape
evolution for attrition and/or growth processes, analogue to Briesen [2009a].

Model reduction and shape approximation. Two schemes for model reduction
and particle shape approximation are presented in chapter 6. The first approach aims
for a dimensional reduction of the required geometric state space. It is rendered possi-
ble by the new procedure for validity mapping. In the simplest case, the corresponding
optimization problem is solved by principal component analysis which often provides
reasonable results. A more complex approach minimizes the error for measure com-
putation and provides better results for specific cases, only. The second approximation
approach aims for a reduction in complexity which allows the reduction of the popu-
lation balance to a finite set of ordinary differential equations for moments of the size
distribution. The derivation of this approach mainly utilizes the correlations between
measure computation, the involved a-types and Minkowski decomposition. Both ap-
proaches to model reduction are successfully implemented and tested. They constitute
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new ways to handle the complexity that arises with the shape evolution of growing
crystal populations.

Conclusion of the thesis. The incorporation of mathematical literature to the anal-
ysis of the geometric state space for faceted crystals significantly improved the under-
standing and handling of corresponding problems. It can be concluded that measure
computation and validity of the shape parameters are the two main issues for the stud-
ied system of faceted crystals. The introduction of Minkowski addition and the defini-
tion of S-representations extend the range of shapes that can be modeled by rounded
particles. Finally, the detailed analysis of the geometric state space resulted in two
concepts for particle shape approximation and an understanding of the limitations that
occur for dynamical particle shape modeling.

7.2 OQOutlook

Applications. Since this work entirely focuses on geometric aspects of crystal shape
modeling, almost every analysis ends with case studies where applications with a cou-
pling to crystallization experiments could have followed. The most apparent continu-
ation is the compilation of crystal growth and/or attrition simulations in the scope of
predictive models, process control or parameter estimation. Particularly promising is
the new model for rounded particle shapes. The dynamic model and a measurement
technique is ready and available to study the kinetic parameters that were isolated.
Additionally, the new methods for model reduction are well suitable to establish state
observers (e.g. Kalman filters) or approaches for model-based control.

While this work provides a solid starting point for the above applications, improve-
ments or extensions are possible for almost every chapter of this work. The most impor-
tant enhancements are listed in the remainder of this outlook.

Numerics of the Implementation. The main pitfall of the presented framework
is given by the complexity of the implementation and its numerical stability. For the
present work, scaling of the geometric objects was used to cover most of the issues
but several workarounds are included that are necessary for errors in utilized libraries
(e.g. the convex hull algorithm [Barber et al., 1996, MATLAB®, 2012] and the double-
description method [Fukuda, 1996]). In most cases, the errors originate from the sen-
sitivity of the algorithms to small perturbations of the input data and corresponding
tolerances. To bypass these issues, the algorithms can be transferred from floating
point arithmetic (e.g. 0.3333) to rational numbers (e.g. fractions like %). Rational num-
bers can be computed without numerical errors so that no tolerances are required. This
is a typical approach in computational geometry and the double description method is
originally implemented for rational numbers [Fukuda, 1996]. However, this approach
is a trade-off between numerical stability (and accuracy) and computational efficiency
since rational arithmetic is typically slower than floating point arithmetic.

Population balances. Utilizing Monte Carlo integral estimates for solution schemes
of population balances raises several questions and provides new paths for population
balance solvers. For the present work, only growth of an initial particle population is
considered so that the main question is whether nucleation, breakage or aggregation
phenomena can be incorporated. Particularly challenging is the proper handling of
the probability distribution if the selection of the pivots shall be adaptive. First, some
decision scheme for the removal and creation of new sample points is required. Secondly,
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adding or removing sample points affects the overall probability distribution for which
the integral must remain 1. If the pivots are only sampled for ¢ = 0, these issues can be
ignored while, in this case, a question remains that is: how to properly evaluate sink or
source terms from breakage or aggregation?

Model reduction and shape approximation. Only linear subspaces are consid-
ered for approximated shapes in this work because the general understanding of the
resulting improper representations was not clear in the beginning. However, nonlinear
subdomains significantly improve the capabilities for a reduction of the number of shape
parameters. The problem statement would optimize the parameters of a nonlinear func-
tion fn, +nh., Where the vectors h, comprise the new shape parameters. Corresponding
optimization problems do not require complex concepts like the Grassmann manifolds
while the selection of the right ansatz function f,,.,n, might be challenging. On the
other hand, finding a consistent function f}.n,that performs the shape approxima-
tion might result in additional computational effort.

Aggregates. Since this work focuses on convex faceted particles, particle aggregates
are not considered. However, particle aggregates frequently appear in crystallization
processes. While the underlying convex geometry of this work is not suitable for these
concave shapes, it is believed that the concept of validity and proper representations
extends to general shape representations. Therefore, this work might only provide
a guideline to assess possible geometric representations of particle aggregates while
modeling the shape of particle aggregates including their evolution in time clearly con-
stitutes a future milestone for crystal shape modeling.
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Appendix

A.1 Miscellaneous

A.1.1 Mixed Volumes representing Polytope Measures

Introduction. This subsection gives additional information on how the polytope mea-
sures from subsections 2.3.2 and 2.3.3 (projection area, Feret diameter, surface area and
mean width) can be interpreted as mixed volumes in n-dimensional space. These mixed
volumes are formulated for the polytope itself and one or two special polytopes that
are either line segments or the unit ball. The derivations here are already described
in literature by [Bonnesen and Fenchel, 1934, page 37 ff]. While the discussion in this
subsection is not required for the algorithms in this work, it demonstrates the concept
of mixed volumes by visually expressive interpretations.

Line segments. Figure A.1 illustrates the following discussion. The polytope P is
shown in blue (left) and its volume is x"°"™¢(P). The Minkowski addition of P and a
unit line segment L,, = [0, u] with |ju|| = 1 is performed and the additional volume is:

,LLVOlume(P—i-Lu) _ uvolume(P) _ Mvolume(Lu) + ‘7(P, Ly, Lu) +‘7<P, P, Lu)- (A.1)

The volume of the line segment is: x"°'"™¢(L,) = 0. The volume x*°'"™¢(P 4 \L,)
grows linearly with X so that it also holds: V(P, Ly, Ly) = 0. The corresponding
polytope (P + Ly) \P is shown in light blue (middle left) and must have the volume:
‘N/(P, P, Ly). According to Cavalieri’s principle, the volume does not change if the points
of (P + Ly) \P are rearranged in direction u to a polytope with constant width in di-
rection u. A prism of height 1 is obtained that is drawn in light blue (middle right).
According to the transformations, the base of the prism equals the projection of P into

direction u and the projection area is:
Mprojcctionarca (P, u) — V(P, P, Lu) (A.2)

A second line segment L. perpendicular to L, can be chosen with ||v|]| = 1 and the
same argumentation for the 2-dimensional subspace of the projection area can be used
to obtain:

MFeret diameter (P, u x V) -V (P7 Ly, Lu) .
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@ .\

Figure A.1.: From left to right: arbitrary polytope, additional volume by Minkowski
addition with line segment, transformed additional volume, projection.

The projection in direction u is projected onto another perpendicular plane with normal
vector v so that the result of this projection is a line segment in direction u x v whose
length is the Feret diameter of S in direction u x v.

Unit ball. The mixed volumes between a convex body P and the unit ball are linked
to the volume, surface area, mean width and the Euler characteristic! by the following
relations:

Mvolume (P) — V(P, P, P) (A.3)
Msurface area (P) = n ‘7(P7 P7 B) (A4)
Mmean width (P) — i ‘7(P, B? B) (A5)
i
MEuler characteristic (P) — 43 ‘7(3’ B, B) =1. (A.6)
7

These findings are not trivial and are connected to the mathematical terms: ‘quer-
massintegral’, ‘Minkowski functional’, ‘intrinsic volume’ and ‘mixed volume’ which orig-
inate from both integral and convex geometry. Details are skipped but can be found in
[Schneider, 2008] with the connection between the first three terms on page 210 and
the connection to mixed volumes on page 290. Alternatively, [Bonnesen and Fenchel,
1934, page 37 ff] can be used.

A.1.2 Converting between 7/- and V-representation

Motivation. According to the Minkowski-Weyl theorem there is a uniquely defined
(non-redundant) V-representation for any (non-redundant) H-representation of a poly-
tope and vice versa. The conversion from H- to V-representation (and vice versa) is fre-
quently applied for algorithms in this work. Crystals will be given in H-representation,
while measure calculation relies on the V-representation. The domains for h-vectors
that are introduced in chapter 3 are given in a H-representation while the structuring
elements that are used correspond to a V-representation of the same domains.

Algorithms. The double description method [Motzkin et al., 1953] that is applied in
an implementation by Fukuda [2008] provides a conversion from #- to V-representation.
An outline of this algorithm is provided at the end of this subsection. A conversion

'The Euler characteristic is an integer valued measure of the topology of the body under consideration.
It is an expression of the total number of components and holes. As the body under consideration is
convex, the Euler characteristic is always 1.
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from V- to H-representation is performed by the quick hull algorithm that is discussed
in subsection 2.3.1. However, as the coupling to MATLAB® does not return the %-
representation and the double description method is said to be more efficient for higher
dimensions [Barber et al., 1996], the double description method is applied in most of the
cases.? Nevertheless, both algorithms could be used to perform both conversions, given
the following principle of duality.

Duality. Duality is a concept from the field of combinatorial geometry [Edelsbrun-
ner, 1987]. It provides a one-to-one correspondence between points and hyperplanes
[Edelsbrunner, 1987, section 1.6]. Given a valid theorem about the combinatorics of hy-
perplanes and points, this theorem can be transformed to a different valid theorem by
exchanging every occurrence of the word ‘hyperplane’ by the word ‘point’ and vice versa.
A simple example is the following dual pair.

* A point is uniquely defined by n intersecting hyperplanes.
* A hyperplane is uniquely defined by n linearly independent points.

In general, there are some more details to consider (e.g. the term ‘intersecting’) when
translating theorems to their dual version. The following example is essential for the
application of duality in this section.

¢ A polytope is uniquely defined by its extreme points (V-representation)
¢ A polytope is uniquely defined by its facets (H-representation)

Duality transformation. The concept of duality does not require a specific transfor-
mation between points and hyperplanes to be defined. More than one of such transfor-
mations exists from which the following is commonly applied. It is based on the unit
hypersphere. Figure A.2 (left) illustrates the shape that was already used throughout
subsection 2.1.2 (see figure 2.4) together with the unit hypersphere (black circle). Right
of this shape is drawn the dual polytope, again together with the unit hypersphere. The
facet with normal vector a (left) intersects the unit circle so that the dual point r’ lies
outside of the unit circle while the direction is maintained (right, dashed line). The
extreme point r (left) is outside of the unit circle and much farer away than the point
r’ (right). Therefore, the facet with normal vector a’ (right) intersects the unit sphere
closer to its center. The definition of this duality transformation is given by:

a=rh=1 (A.7)

for arbitrary points r # 0 and:
r =a/h (A.8)

for an arbitrary facet normal a and facet distances h # 0. The facet normals a’ are
not necessarily scaled to ||a’|| = 1. If the distance of the hyperplane from the origin is
smaller (or greater) than 1, the dual point is outside (or inside) of the unit sphere like
described in the example above.

2Unfortunately, the implementation of the double description method suffers from rare instabilities that
result in a failure of the conversion. Therefore, this method is backed up by the convex hull algorithm
in case of failure.
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Figure A.2.: Two dual polytopes where the black circle represents the unit circle

Equation A.7 can be used to convert a polytope from V-representation to a different
polytope in H-representation. This resulting polytope is the dual polytope under the
given duality transformation. Likewise, equation A.8 can be used to obtain the dual
polytope in V-representation from a polytope in #H-representation. Note also that the
dual of the dual is the original polytope, which is also evident by equations A.7 and A.8.

Application of duality. It follows that for every well defined polytope, there exists a
dual polytope, while ‘well defined’ refers to the restrictions for equations A.7 and A.8.
These are fulfilled whenever the origin is in the interior of the polytope. This is ensured
by a scaling of the input polytopes that will be explained in subsection A.1.3.

Given an algorithm for the conversion from - to V-representation, e.g. the double de-
scription method, a polytope in V-representation can be converted to H-representation.
The required steps are illustrated by figure A.3 and given in the following.

1. Transfer the given polytope in V-representation into the dual polytope in H-repre-
sentation by equation A.7 (Figure A.3, transition from the top right to the bottom
right).

2. Perform the double description method that returns the corresponding dual V-re-
presentation (Figure A.3, transition from the bottom right to the bottom left).

3. Use equation A.7 again to obtain the #-representation of the original polytope
(Figure A.3, transition from the bottom left to the top left).

[ V-representation ) [ ‘H-representation )

| T original polytope
l ‘ dual polytope

[ ‘H-representation )—)( V-representation )

Figure A.3.: Conversion from V- to H-representation via duality transformations (ver-
tical transitions) and a conversion from 7- to V-representation (horizontal
transition)
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Double description method. The double description method as described by Fukuda
[1996] converts an n’-dimensional convex cone:

C={x|A'x<0} (A.9)

given by the matrix A’ to its generating rays where each ray (called generator) is rep-
resented by a point r; # 0. The whole set of generating rays is represented by a matrix:

R =(r),..., r;E)T. The same cone as in equation A.9 is then described by:

C={x|x=R'A\ AeR™, )\ >0} (A.10)

analogue to the positive hull: C = pos{r},...,r] }. That the matrix R’ exists, given

Y 1
an arbitrary matrix A’, is covered by the Minko]izvsky-Weyl theorem. The algorithm
of the double description method itself is based on a theorem that states that for a
given double description (matrices A’ and R’), the matrix A’ can be extended with an
additional constraint and a new double description can be obtained by updating the
matrix R’ in a manner that is defined by the theorem. This constitutes the core of an

iterative algorithm. More details can be found in [Fukuda, 1996].

Double description method for polytopes. The problem that is solved by the dou-
ble description method above is equivalent to finding the V-representation for a #-re-
presentation of a given polyhedron. This is shown in the following. It is assumed that
the n-dimensional polytope is embedded in the hyperplane {x | (x,1) = 1} of an (n + 1)-
dimensional space so that the corresponding double description is (n’ = n + 1):

A" = (h,—-A) (A.11)
1 xga

R = : : . (A.12)
1 xXgng

It is assumed that the set of generating rays is minimal so that the total number of rays
equals the total number of extreme points ng.

A.1.3 Scaling of Polytopes

Motivation. Often in the algorithms of this work, it is required to decide if a point
resides on a hyperplane or if two hyperplanes or points coincide. Because of numerical
inaccuracy and varying sizes of the polytopes, a relative tolerance is desirable. This
is realized by scaling the polytopes and applying an absolute tolerance to the decision
statements. Additionally, the applied algorithms may have some assumption that must
be ensured. For example, applying the duality for an H-representation (see equation
A.B), the facet distances must not be 0. This results in the requirement of a normalized
position. Hence, scaling the size and normalizing the position of polytopes is crucial to
control numerical accuracy and to ensure assumptions of underlying algorithms. The
following paragraphs present the scaling that is applied in this work for the #- and for
the V-representation.

H-representation. The largest ball that is completely contained in a given bounded
set is known as the Chebychev ball. The center xy, and radius r of this ball are well
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defined and can be found by a linear optimization problem that maximizes r by varying
xo and r. A ball is inscribed in the given polyhedron, if it holds for all facets i:

max (aiT (xo +ru)) <h;. (A.13)

uesn—1

Only the points of the unit sphere S"~!, which is the boundary of the unit ball, are
considered because of the convexity of the ball and the polytope. Since the maximum is
always obtained for u = a;, this condition can be rewritten as:

Axp+7r<h (A.14)

which represents the set of linear constraints for the optimization problem. The opti-
mization problem to maximize r is then solved by the simplex algorithm, readily avail-
able in MATLAB® [2012]. The original polytope is then scaled to:

W — %(h—Axo) (A.15)

where the matrix of facet normals A remains constant. The Chebychev ball for a scaled
polytope uses xg =0 and r = 1.

H-representation (interpretation). Equation A.15 suggests that a Chebychev ra-
dius of 0 is invalid for the scaling of polytopes. Indeed, such a radius indicates a flat
polytope that could be embedded in a lower dimensional linear subspace. Flat polytopes
remain, therefore, unscaled and the calling algorithm must handle flat polytopes ap-
propriately. A Chebychev radius of co indicates an unbounded polytope for which the
Chebychev ball is not defined and the polytope cannot be properly scaled. Again, the
calling algorithm must consider unbounded polytopes appropriately.

The scaled polytope has its Chebychev center in the origin so that the origin is an in-
ner point of the polytope. The corresponding Chebychev radius is 1 which implies h; > 1
for all facets. However, large facet distances are obtained for elongated or flat polytopes
so that these cases are prone for numerical problems in subsequent calculations.

V-representation. By duality, the above approach to scale a H-representation could
be translated to an approach for scaling a V-representation. In this case, the Chebychev
ball becomes the smallest ball that contains the polytope. However, a much simpler
approach can be used, based on the rectangular bounding box. The bounding box is
a rectangular box with edges parallel to the coordinate axes while every facet of the
bounding box touches the polytope. It can be written in a #-representation by:

I,
Abounding box — < I (A16)
mn
hpoundingbox = (Hllfch TEil; -+ - MAX TE,in,
T
—minzg, 1, ..., —min :I:Em> . (A.17)
7 7
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where g ; ; is the j-th coordinate of the i-th extreme point. The scaling of the original
V-representations with the vertices in R is executed in two steps:

max; Tg,,1 —MiN; T,,1 | MaXi TE,j,pn —MiN; TEin
2 2
/ . .
R = |R- : : (A.18)
max; Tg,;,1 —Min; Tpi,1  MaX; Tpin—MiN TEin
2 2
1 . 0
max; Tg,;,1—min; ;1
" i . .
R’ = R : : (A.19)
0 0 !

maXx; xEyi’n—mlni xE,i,n

where the first step centers the polytope at the origin of the coordinate system and the
second step normalizes the size of the polytope. The polytope with the extreme points
R’ has a maximum for the absolute coordinate values that is 1.

V-representation (interpretation). In comparison to the scaling of a H-represen-
tation, the scaling of a V-representation is less problematic. First, a V-representation
cannot be unbounded. Secondly, even flat polytopes can be scaled as long as they are
not well aligned to one of the coordinate axes (max; zg; ; — min; zg; ; = 0). However, flat
polytopes will contain extreme points that are relatively close so that these polytopes
are prone to numerical instabilities when, for example, edge lengths of a 3-dimensional
polytope are considered.

A.1.4 Measuring Roundness based on Multiple Projections

Motivation. In subsection 5.3.3, the two available orthogonal projections of the par-
ticles are analyzed separately. Averaging the results of both images, however, improves
the accuracy by reducing the effect of random errors. Some theoretical background for
this averaging is considered in the following while a more general case is assumed that
uses an arbitrary number of projection directions that are not necessarily orthogonal to
each other.

Scope. When n,; projections II;, are available, the parameters hy ;, and A, 17, of the
projected shape model (see equation 5.39) can be obtained by the procedure, described
in subsection 5.3.1. This results in a mean width pf7*" width and a roundness measure
uﬁi for each projection. The aim is, however, to estimate the mean width and roundness
uB1 for the 3-dimensional particle for which the estimators are given in the following.

Mean width. The mean width ™ width from each 2-dimensional projection (com-
puted analogously to equation 5.6) is also an estimate for the mean width of the 3-
dimensional particle. In general, the mean width of the particle can be estimated by:

Mmean width ~ Z winean Widthluﬁean width (A 20)
N .
k
with appropriate positive weights w2 Vidth that fulfill } wineanwidth — 1 The weight-
ing wzneanmdth = % is usually reasonable. It is also the proper choice for the used
proj
measurement setup in subsection 5.3.3. However, for arbitrary projection directions
the values of ™" width can be stochastically dependent. For example, two projection
directions that are close to each other result in similar estimates for the mean width.

165



A. Appendix

If this is the case, proper weights w}**" width ¢an be computed by a Voronoi tessellation
on the surface of a unit sphere (see: [Serra, 1982, Ohser and Miicklich, 2000, Schnait-
ter, 2011]). Additionally, the mean width estimate from a single projection might be
biased when particles are not properly randomly oriented with respect to the projec-
tion direction. For example, elongated particles might take a preferred orientation so
that a 2-dimensional estimate of the mean width becomes biased. For such cases, the
aforementioned proper weights also guarantee an unbiased particle mean width when
a sufficient set of projection directions is used.

Roundness. Given the relation between the 3-dimensional shape model and its pro-
jection, each estimated radius A, 1y, is also an estimate for the radius \,. Therefore, the
mean width based additive roundness of the particle can be estimated by:

A
Bl 22 5 Wi A,
~ umeanwidth

(A.21)

where the weights w;” = —1— are a reasonable choice. Only when the radii ), 11, have a

Nproj
different accuracy or their results are stochastically dependent, the weights w,;\* should
be reconsidered.

A.2 Improper Hc-representations
A.2.1 Proper Embedding

Motivation. The H-representations corresponding to approximated hy-vectors are
typically not proper, even though these improper representations are already success-
fully utilized in the preceding sections of this chapter. The two typical issues for particle
shape modeling (see subsection 3.1.1) are properly resolved or neglected. The first issue,
measure computation, is resolved by restoring hc-vectors of the original crystal repre-
sentation where measures can be computed as usual. The second issue, the validity of
hc-vectors, is either neglected completely while corresponding errors are accepted (see
the moment models from subsection 6.3.2) or validity is restored based on the linked hc-
vectors (see the dimensional reduction of section 6.2). This also implies that shape ap-
proximation will fail to produce reasonable results when facets disappear and reappear
later in a simulated process. To resolve this limitation, improper Hc-representations
must be considered in detail.

An alternative motivation is given, assuming that more arbitrary shape representa-
tions shall be constructed (not necessarily for crystals). Based on the current state of the
art, one could either use proper Hc-representations, neglect shape changes completely
or construct custom shape models for particular problems that utilize a simple geometry
like cuboids or ellipsoids. Here, the analysis of improper #c-representations paves the
way for more general shape representations and issues for improper Hc-representations
might be analogously present for other shape representations.

Remark on generality. The analysis in this appendix is a continuation of chapter
3 where no initial assumptions on #¢-representations are used. This implies foremost
that the improper representations in this appendix do not necessarily originate from a
shape approximation. Additionally, it is important to recall that improper representa-
tions cannot represent the symmetry of crystals so that examples might appear odd in
the context of modeling crystal shapes.
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Example. To highlight the most important issues for improper representations, the
following example is provided. It uses the facet normal matrix (identical to equation
3.8):

{ 10 0 L _—1 1 _1°7
:[o 0 1 —1 NV I (A.22)
Vi Vi VIov2

which is also used for the examples on pages 38 and 41. The group mapping matrix in
this example is:

T
11110000] (A.23)

00002211

and figure A.4 illustrates the most important transitions. From the left to the right of
this figure, hc; remains constant while hc o increases. In the left sample shape, the
square facets have just grown out. This part illustrates that the square facets could
be corrected when they are invalid. Towards the right of figure A.4, the top right and
bottom left facets of the cross polytope disappear before the other two facets of the
cross polytope. This indicates that the top right and bottom left facets cannot be fixed
when they become invalid. However, the top left and bottom right facets could be fixed.
Providing a scheme to distinguish situations where invalid facets can be fixed from
situations for which this is not possible is not straightforward. Additionally determining
a required mapping procedure in hg-space is similarly difficult since validity mapping
(see subsection 2.4.3) is not applicable.

o f:if

Figure A.4.: Polytopes according to the facet normal matrix in equation A.22 and the
mapping matrix from equation A.23

Mug—h = [

Strategy. The above example illustrates that understanding improper #c-represen-
tations is difficult, performed directly based on the associated hc-space. On the other
hand, the utilization of improper Hc-representations was straightforward in the scope
of shape approximation since they are derived from and linked to a proper representa-
tion. As it will turn out, the hc-space of an improper representation is always embedded
in a corresponding, constructible, hg-space of a proper Hc-representation. The relation
between the original (improper) hc-space and the constructed embedding (proper) hg-
space is exactly the same like between the approximated ha-space and the original
h-space for the dimensional reduction via shape approximation (see section 6.2). The
constructed Hc-representation is denoted by proper embedding and directly transfers
the analysis for proper representations. The required adopted notation for the proper
embedding is analogue to the extended embedding, described on page 148 and summa-
rized in column 4 of table 6.1 (page 121).
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Proper Embedding. To construct a proper embedding, the rows mﬁcHh’i of the group
mapping matrix are separated in groups such that facets i and j of the same group:

1. are coherent (see page 41) and share the same facet validity cone (Cpv(;) = Cpv ;)
and

2. the rows of the group mapping matrix are equivalent (micﬁm = micHh, )

The hc-space can then be embedded in a new space of hi-vectors, given by:

hg = My sn he (A.24)
T
My, ish,i(1)

thl—>hE = (A.25)
T
mhc l—}l’l7 l(ng)

where i(k) is any index to a facet of the k-th group of facets and ng denotes the total
number of groups. Given the space of hg-vectors, the columns of the matrix My hy
span the linear subspace of the hc-vectors. The resulting hg-space belongs to a new
‘Hc-representation which is proper, given the following discussion.

Based on the choice of the mapping matrix My, ,1,,, every component of the hg-vector
directly represents facet distances for the same group of coherent facets. Hence, each
row of the group mapping matrix My, ., comprises a single one and zeros, otherwise.
Additionally, each column of the group mapping matrix My, ., contains only ones in
rows for which the corresponding facets are coherent. In the scope of validity map-
ping (see subsection 3.2.3), this implies that setting the rows of coherent facets to zero,
the rank of the adopted group mapping matrix My, . ,,, becomes nc —1 and validity map-
ping is possible. In conclusion, the resulting Hc-representation is, indeed, proper and
called the proper embedding.?

Example. Figure 6.8 on page 122 visualizes how the improper representation (shown
in dark blue) is embedded in the hg-space which is illustrated by the validity cone of
the proper embedding in light blue. More details for this example are added in the
following.

Forward Mapping. A vector h¢ can be lifted to the embedding hg-space by equation
A.24. The dark blue region in figure 6.8 is created based on this relation. As it might
already be evident by this figure, the resulting hg-vector is not necessarily valid since
parts of the dark blue region are outside of the light blue validity cone. Therefore, an
appropriate validity projection Py can be constructed in virtue of subsection 3.2.3 so
that a valid hg-vector is obtained by the mapping:

hy = Py/g (hc) Mpgong he (A.26)

where the validity projection is denoted according to its dependency on the original
hc-vector.

3In fact, the proper embedding could be called an orthogonal representation with: Mp s, imzcﬁh, ;=1
for coherent facets and 0, otherwise. The principles of validity mapping are simplified in this case since
the mapping directions hg . for a facet ¢ are identical to mchh’ i)
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Example (continued). Since different regions in hc-space cause different validity
projections Py /g (hc), the resulting valid hg-vectors literately fold the embedded hc-
space to the validity cone. This situation is illustrated in figure A.5 for the simple
example from figure 6.8. The part of the hc-space that is inside of the validity cone
is not projected. The part of the hc-space that is behind the validity cone is projected
to 0 for this example since the corresponding hy-vectors are outside of the non-empty
polytope cone. The second dark blue part in front of the validity cone is folded onto the
validity cone which is highlighted in blue. Finally, the white part in front of the validity
cone is mapped to the front ray of the validity cone.

N

Figure A.5.: Validity cone of a proper embedding in light blue; the embedded hc-space is
outlined by the wireframe triangle; regions of confined hc-vectors in dark
blue and their corresponding valid hg-vectors in blue (if applicable)

Regions of h¢-vectors. The observations above imply that the he-space can be sep-
arated into regions for which different validity projections are applicable. According to
subsection 3.2.3, the applicable region of the validity projection Pv i (hc) is denoted by
Ap,/E (hc) hg < 0 so that the region in hc-space is given by:

AP\//E (hC) thHhE hC S 0' (A-27)

Since only a finite number of validity projections exists, the hc-space is also separated
into a finite number of such regions for which specific validity projections apply.

Conclusion. Given the proper embedding and particularly the mapping from equa-
tion A.26, the a-type for a given polytope P(hc) can be quickly identified and measure
computations can be performed, as usual, based on the proper embedding. The overall
procedure can be further shortened by transferring the operations on the hg-vectors to
the h¢-space. This step, however, is straightforward and does not provide a significantly
better understanding of the hc-space. Since it is also extensive in its presentation, it is
explained in appendix A.2 and yields to a concept of measure computation that is fully
analogue to the one for proper Hc-representations (unified partitions, measure polyno-
mials). On the other hand, the mapping matrix Py /g (hc) Mugesn, from he-vectors to
valid hg-vectors is central for the discussion of the main difference between proper and
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improper representations, given in the next subsection. It is, therefore, already evident
that the proper embedding is the key to the analysis of improper representations.

A.2.2 Confinement

Motivation. This subsection clarifies the main difference between proper and im-
proper Hc-representations which constitutes the inherent complexity of improper rep-
resentations. It originates from two arguments that were used to motivate validity and
ill-conditioned representations.

1. Two distinct h-vectors must represent different polytopes P(h¢). Otherwise, one
of these h¢-vectors is redundant and should be excluded from being valid.

2. For an h-vector, it must hold h; = h(P(h), al') so that a facet immediately reap-
pears when the dynamic evolution based on a growth rate g(t) = %‘ indicates such
a situation.

While the second argument is used to define the validity of h- and h¢-vectors, the first
argument appears only implicitly throughout section 3.2. This was possible since both
arguments are redundant for proper representations. For improper representations,
this is not the case anymore. The following two paragraphs clarify this situation while
the concept of validity is expanded in subsequent paragraphs by a new property of hc-
vectors to address the difference of the above two arguments. This final theoretical
analysis discloses a possible dilemma in the context of crystal shape approximations.

Redundancy for proper representations. First, it is shown that the validity of two
distinct vectors h¢ and hf, implies that the corresponding polytopes cannot be equal:
P(hc) # P(hg). Given two valid and distinct ho-vectors, their support functions are
different by the definition of validity. Since differing support functions imply that the
associated polytopes P(hc) have a distinct shape or size, argument one holds. This is
true for any Hc-representation. Secondly, it is shown that once a h¢-vector is invalid,
more vectors hg, exist so that P(hc) = P(hy,) holds. Given an invalid hc-vector in the
context of a proper Hc-representation, there exists a direction in h¢-space which can be
used to change the h¢-vector without changing the shape of the corresponding polytope.
In conclusion, for proper representations, arguments one and two for validity are indeed
redundant.

Irredundancy for improper representations. If a representation is improper, va-
lidity mapping is not always possible because no direction for validity mapping exists.
Hence, an invalid hc-vector might exist so that the polytope P(h¢) cannot be expressed
by a different and possibly valid vector h¢, (see the right of figure A.4 and the discussion
on page 167). In other words, shifting the invalid vector h¢ always changes the corre-
sponding polytope so that arguments one and two for validity are no longer equivalent.

Confined hc-vectors. It can now be concluded that the two arguments that were
used to motivate the validity of h¢-vectors for proper representations are, in fact, dis-
tinct properties of a hg-vector. While the validity that reflects argument 2 from above
is already defined in subsection 3.2.2, the new classification of hc-vectors will be called
confinement and reflects argument 1.

A hc-vector is called confined when for any direction u € S(c—1) and any positive
scalar ¢ > 0 it holds: P (h¢c) # P (hc +eu) and P (h¢) # P (hc — eu). The he-vector
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cannot be changed without affecting the shape P (h¢). This describes a not necessarily
compact set of h¢-vectors. To ensure that also limiting cases are contained in the set of
confined hg-vectors, a h¢ vector is also confined when a (convergent) series of confined
vectors hg, ; exists for which:

hc = lim he; (A.28)

71— 00

holds. Unconfined hc-vectors are typically identified when a direction u € S™c~1) and
fixed positive scalar ¢ > 0 exists so that it holds P (h¢) = P (hc +¢eu) = P (hc — cu).
This is, however, not necessarily applicable for hc-vectors at the boundary of the set
of confined hc-vectors. Confinement can only be defined for hc-vectors and does not
exist for h-vectors. The set of confined hc-vectors is not convex which is explained in
subsection A.2.3.

Determining confinement. The definition of confinement resembles argument 1 for
validity but is not suited to compute whether a given hc-vector is confined or uncon-
fined. A corresponding equation is, therefore, provided in the following based on the
proper embedding and the corresponding hg-vector: hg = My ,n,hc. For this vector,
a validity projection Py /g (hc) exists according to subsection 3.2.3 so that the vector
Py g (hc) hg is valid. This validity projection also has a defined region in which it is
applicable, given by equation A.27. Given that the vector h¢ resides in the interior of
this region, the condition:

rank (PV/E (he) thHhE) =ng, (A.29)

implies that a region of vectors h{, with ||h{; — hc|| < ¢ and € > 0 exists for which all

vectors:
£ = Py/g (hc) Mpgsnho (A.30)

are different and valid. The vector hg would, hence, be confined. While confinement
cannot be concluded directly for h residing on the boundary of the region, based on the
equation A.29, this is not required. The region of confined hc-vectors is closed according
to the definition of confined h-vectors, so that equation A.29 also indicates confinement
when the vector h¢ is at the boundary of the applicable region*. In summary, the fulfill-
ment of equation A.29 directly ensures the confinement of a h¢-vector and all h¢-vectors
in the region defined by equation A.27.

Simplified determination of confinement. Using equation A.29 to determine the
confinement of a hg-vector requires to construct the specific validity mapping Pv /g (hc).
Therefore, the invalid facets must be determined and facet specific validity mappings
must be selected. The following derivation demonstrates that the latter step is not
required to determine confinement. The basic idea is to utilize that the null space of the
projection Py /g (hc) is only dependent on the set of invalid facets.

Based on the rank-nullity theorem, the matrix Py /i (hc) My sn, can only have the
full column rank nc when the dimension of the null space is zero. This means that a
full rank nc is only obtained when no vector h{, # 0 exists with [Lorenz, 2003]:

Py /g (h¢) Mpgohghe = 0. (A.31)

“Note that at the boundary of an applicable region, two or more validity projection matrices Py JE are
valid. An implementation of the above approach must ensure that the validity projection matrix
Py g (hc) with the smallest possible null space is constructed to determine confinement.
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If a vector h(, # 0 exists that fulfills this equation, the vector h¢ is unconfined. In such
a case, the vector h{, indicates a linear combination of columns of the matrix My, ,n,, S0
that the vector My, .1, hi; is an element of the null space of the projection Py /i, (hc).
Hence, a vector h{, that fulfills equation A.31 exists if and only if the columns of the
matrix My h, and an arbitrarily chosen set of base vectors for the null space of the
matrix Py g (hc) are linearly dependent. Given the principles of the validity mapping
for proper representations (given in subsection 3.2.3), the null space of the projection
Py /g (he) is spanned by the mapping directions hg ., ; which depend, individually, only
on the disappeared facet group. Hence, the confinement condition from equation A.29
can be reformulated. A vector h¢ is confined if it holds:

rank [hE,r—>,1 L. hE#—hnD thHhE] =np + nc (A.32)

where the vectors hg,, ; are the appropriate mapping directions for the validity correc-
tion (given in subsection 3.2.3) of the vector My, h, hc. Finding the required mapping
directions hg ., ; is only based on the facet validity cones Cpy ;) and, hence, much simpler
than constructing the overall validity mapping.

Summary and Conclusions. This subsection has shown that, in general, the valid-
ity of a hc-vector (support values h(P(hc),a;) match the modeled facet distance h; =
My.nhc) is a different property of a hc-vector than confinement (changing the vector
h¢ also changes the shape P(h¢)), even though both properties are similar and related.
For these properties, the following relations hold.

¢ A valid h¢-vector is necessarily confined.

* An invalid h¢-vectors might be confined or unconfined.

* Unconfined vectors are invalid.

* Confined vectors can be valid or invalid.

* For proper representations, the terms validity and confinement are equivalent.

A particularly problematic relation is that an invalid hg-vector might be confined which
immediately implies that validity cannot be restored without changing the correspond-
ing particle shape. This is not surprising since proper representations are defined in
subsection 3.2.4 such that they ensure that validity mapping is always applicable. In
general, equation A.32 implies that ng — nc facets can grow out before a h¢-vector
becomes unconfined. While unconfined h¢-vectors can be mapped to corresponding con-
fined ho-vectors, analogue to validity mapping, the derivation is given in appendix A.2
since no case studies are presented based on these derivations.

Conclusions for shape approximation. When the confinement condition from equa-
tion A.32 is viewed in the scope of shape approximations (see section 6.2), it implies that,
typically, nc—na facets can grow out before a hg-vector becomes unconfined. This means
that the creation of the first invalid facet can, typically, not be corrected. However, it
also demonstrates that a shape approximation can be constructed such that the creation
of a specific invalid facet implies unconfinement so that validity can be maintained. For
such a case, the mapping direction hc,, of the selected facet must be contained in the
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range of the mapping My, ,,,1,. This approach contains a contradiction. A shape ap-
proximation should typically yield a good approximation of the particle volume. On the
other hand, a facet that disappears and reappears at the crystal surface, possibly more
than once (see Snyder et al. [2007]), does not have a large impact on the crystal volume
because it truncates only small parts of the crystal (see the discussion of the urea case
study on pages 6.2.1 and 6.2.2 or the paracetamol case study on page 6.3.3). It follows
that the selection of the linear subspace for an approximation can either be in favor of a
good approximation of the volume measure, or in favor of modeling the appearance and
disappearance of a specific facet.

A.2.3 Confinement mapping

Motivation. Insubsection A.2.2, confinement is introduced as a property of h¢-vectors
that must be distinguished from validity for improper representations. While a method
to determine the confinement of a hc-vector is provided, no procedure is given to cor-
rect unconfined hc-vectors. Additionally, it is not discussed how invalid vectors could
be corrected. This subsection supplements these details for improper representations.

Example. Even though confinement is strongly linked to validity, it involves several
peculiarities that are outlined in the following example. As an example, an improper
representation is defined by the matrices:

I 10 0 L _1 1 _1n°T
A:[o 01 1 X W 4 1“5] (A.33)
V2V2 V2 V2
T
11112 2 2 2
MhCHh:[0000111 1]‘ (A.34)

Shapes of this representation are drawn in figure A.7 and the validity cone of the proper
embedding is drawn in light blue in figure A.6. Similar to figure A.5, confined regions of
hc-vectors are highlighted in dark blue. Two regions of confined h¢-vectors are visible
so that the complete region of confined h-vectors is not convex. In contrast to that, the
region of valid h¢-vectors is always convex. This comes along with a second peculiarity.
All h¢-vectors between the two confined regions are mapped to the right ray of the va-
lidity cone. Since this holds for the two inner rays of the confined regions, two equally
applicable confined h¢-vectors exist that represent the same polytope. The same sit-
uation can be retraced based on figure A.7. The situation in the middle can either be
represented by the confined representation on its left, or by the confined representa-
tion on its right. This illustrates that unconfined hc-vectors do not necessarily have
a unique corresponding confined hc-vector. Invalid h¢-vectors always have a unique
corresponding valid h¢-vector.

Regions of hi-vectors. The algorithm for confinement mapping requires two compo-
nents that are introduced in this and the following paragraph. In this paragraph, the
region of hg-vectors is discussed that is covered by a corresponding region of h¢-vectors.
The regions of hg-vectors are drawn in blue in figures A.5 and A.6 while the regions of
hc-vectors are drawn in dark blue. Between both regions, the following mapping exists:

he = (Py/g (hc) Migosng) he (A.35)
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Figure A.6.: Validity cone of a proper embedding in light blue, confined regions of the
embedded improper representation shown in dark blue and the correspond-
ing projections onto the validity cone shown in blue (if applicable)

-hfwj.

Figure A.7.: Polytopes according to the facet normal matrix in equation A.33 and map-
ping matrix from equation A.34

which creates the original ho-vector according to equation A.26 when the matrix Py, /i (he)
My, hy, has full column rank.

Equation A.27 describes the dark blue colored regions in hc-space. If the vector hc
is substituted by equation A.35, the blue regions of the hg-space are covered. But the
region that is then described by:

Ap, /i (hc) Mpoong (Py/e (he) Mh@»—)hE)+hE <0 (A.36)

also contains the null space of the matrix My, hy, (PV JE (he) MhCHhE)Jr. Not yet con-
sidered is that the region of hg-vectors must be limited to the range of the validity pro-
jection Py, /p which is indicated by the blue regions. The aforementioned null space is the
orthogonal complement of this range so that eliminating this null space fixes hg-vectors
simultaneously to the range of the validity projection Py i (the blue regions).’ The or-
thogonal complement for the range of the validity projection Py i can be constructed

5The following justifies this statement. The matrix Mhshy does not contribute to the null space. It
has a full column rank, otherwise the representation would be ill-conditioned. Then it holds that the
null space of a pseudo inverse MT equals the null space of the matrix M” so that the null space of
(Py/i (hc) Migsng) ' equals the null space of (Py/s (he) Migosny ) - Additionally, the null space of
a matrix M equals the orthogonal complement of the range of its transpose M7 so that the null space of
(Pv/g (he) MhCHhE)T equals the orthogonal complement of the range for Py, (hc) Mhg .. Again,
the matrix Mh,.n, does not contribute to the range. Hence, it can be concluded that the orthogonal
complement of the range of the validity projection Py i indeed represents the null space of the matrix

Mucshg (PV/E (he) thr—)hE)+~
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and the corresponding base vectors are stored as rows in a matrix A ;. Demanding
A hg = 0 finally fixes the hg-vecors to the blue regions. This region of hg-vectors is
then provided as a H-representation by:

Al
AL hy < 0. (A.37)
Ap, /5 (hc) Mpon, (Py/g (he) Mpgohg)

Existence of confined vectors. The above paragraph constitutes one required com-
ponent for the correction of unconfined vectors. A second component considers that a
confined vector hy, indeed exists for each unconfined hc-vector. This is not obvious for
confinement as it is evident for the validity of hc-vectors.

Given is an unconfined vector hc. If this vector represents an empty polytope, hi, =
0 can be chosen which is always a confined vector.® If this is not the case, it exists
a direction hc,, in hc-space along which the given vector can be moved freely (see
equation A.31). It affects one or more facet groups that do not touch the polytope P(hc).
One of these facet groups is selected. Now, a finite scalar v and the corresponding
vector hi(y) = hc + vhc,, exist so that a facet of that group does touch the polytope
P(hc). However, the polytope P(h{,) might be different from P(hc) when the wrong
facet group is selected. In this case, a different facet group touches the polytope P(hc)
at some vector hi.(y') with |y/| < |y|. If this is the case, 7/ is assumed instead of ~ for
the computation of the new vector hy,. This procedure is repeated until a vector hy, is
found for which P(h{,) = P(h¢) holds and a facet group now touches the polytope P(hc)
that did not touch the polytope for the vector hc. Since a new facet group touches the
polytope P(hc), a new validity projection Py i (h(,) is applicable while the null space of
the matrix Py g (hi;) Mpn is reduced in its dimension. At this point, either the null
space of the matrix Py g (hi;) My, is already empty and indicates confinement for
the vector h{, or the procedure can be repeated until this is the case. This concludes that
a confined vector h{, exists for each unconfined vector hc while P(hi,) = P(hc) holds.

Confinement mapping. Based on the two preceding paragraphs, it is now possible
to provide a procedure to find a confined vector h{, that represents the same polytope as
a given unconfined vector hc. First, the unconfined vector hc is lifted to the hg-space
via: hgy = Mpn,hc. Secondly, validity mapping is applied to obtain the valid vector
hi;. In the next step, the regions of hg-vectors are considered that are covered by the
different regions of ho-vectors according to equation A.37. Once a corresponding region
is found, the mapping from equation A.35 is applied to obtain a confined vector hg..

Two remarks are necessary. First, it might not be clear whether a region according
to equation A.37 can be found. However, this region must exist since a corresponding
confined h¢-vector exists which is shown in the preceding paragraph. Secondly, it is
possible that more than one region is identified according to equation A.37 which indi-
cates that the vector h{, is not necessarily uniquely determined (see the example from
the beginning of this subsection).

5The vector hc = 0 represents the polytope P = {0} for any Hc-representation. Any direction hc
affects at least one facet so that either P(hc + €hc,—) does not contain 0 or P(hc — ¢hc ) does not
contain 0 holds for some ¢ > 0. The position of the polytope is fixed since ill-conditioned representations
are not discussed so that either P(hc +ehc,—) = 0 or P(hc —chc,—) = ) holds and h¢ = 0 is confined.
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Validity mapping. Finding a valid vector h{, for a given invalid vector hc while the
shape is retained (P(hy,) = P(hc)) is usually not possible for improper representa-
tions. The validity cone might even be empty in such cases. The closest solution to
this problem is to apply confinement mapping while equation A.32 indicates how the
improper representation must be constructed so that the validity of a specific facet can
be restored. If confinement mapping cannot restore the validity of the ho-vector, it is
necessary to solve an optimization problem to preserve shape characteristics as well as
possible. One possible strategy is to minimize the distance between the invalid vector
h¢ and the valid vector hl., resulting in a linear objective function with linear inequality
constraints:

h’C = argmin Hhc — h’CH . (A.38)

c€Cv

This optimization is equivalent to the orthogonal projection of the vector h¢ to the va-
lidity cone Cy.

A.2.4 Decomposition

Motivation. Section 3.3 and the previous subsections already provide the basic prin-
ciples of measure computation, confinement and validity for improper representations.
However, the required information is not yet generated in a systematic manner to al-
low an efficient application. This subsection describes a decomposition algorithm that
is similar to the decomposition of the validity cone for proper representations. This
decomposition allows the accumulation of any information a priori to applications of
this data. It is assumed that every information of the proper embedding is computed
according to chapter 3 and available.

Decomposed domain. For proper representations, all unified partitions are obtained
by the decomposition of the validity cone Cy. This domain is not a reasonable starting
point for improper representations since the set of represented polytopes is given by the
set of confined vectors and not by the set of valid vectors. An additional problem is raised
by not even knowing the region of confined hc-vectors, yet. Recall from the previous
subsection that this region is not necessarily convex. However, since hc-vectors for
empty polytopes are always unconfined, the cone of non-empty polytopes Cyv () is chosen
as the starting domain for the decomposition. It is obtained from the proper embedding
by:

Arv(0) = Arv(0)/EMhcshg- (A.39)

Construction of unified partitions. To retain the terminology of proper represen-
tations, the regions in which a set of measure coefficients cg‘aj‘g)e remains valid is also
called a unified partition. However, vectors of a unified partition are not necessarily
valid so that they do not represent a maximum a-type. The following steps are used to
compute the region of hc-vectors for which a set of measure coefficients c;n(efj“,;)e remains
valid. It additionally describes the information that is gathered during the decomposi-
tion. It starts with an arbitrary vector hc¢.

1. The vector hc is lifted to the proper embedding by: hg = My hhc.

2. The validity projection Py /i (hg) is selected while the matrix of facet normals
Ap, /E(hE) indicates the applicable region for this projection. The corresponding
valid hg-vector is calculated by: hi = Py /e(hg) hg. If the vector hg is already
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valid, the resulting projection matrix is Py /g(hg) = I, the matrix of normal
vectors Ap,, e (hg) is empty and h}; = hg holds.

3. The confinement of the vector h¢ is determined based on equation A.29.

4. Based on the valid vector hj;, the matching unified partition ¢ of the proper em-
bedding is determined so that Ay, /ghy < 0 holds.

5. The matrix:

Ap (hE)
A - V/E M (A.40)
up Ay /5 Py/p(hg) horhe
is accumulated so that:
Ay,hc <0 (A41)

describes all h¢-vectors for which the validity mapping is applicable and the se-
lected unified partition is valid.

6. The region of hg-vectors that is covered by this unified partition is stored as a
‘H-representation according to equation A.37.

Given the coefficients cglffj‘}j)e/E for the unified partition ¢ and the mapping matrix
Py /g(hg) Mpq.sny;, the corresponding coefficients c'f#%"F for the improper representa-

. q7(27]7k)
tion can be calculated.

Decomposition algorithm. To identify all required unified partitions that cover the
set of all confined h¢-vectors, the following decomposition is performed. This algorithm
uses the same principles that are applied for the decomposition of the validity cone for
proper representations (see section 3.3). The domain to be decomposed is initialized
with the non-empty polytope cone: D = Cpy(g), given by equation A.39. Since this
domain does not necessarily remain convex throughout the algorithm, it is provided as
a partitioning into convex regions D;: D = U;D;. After this initialization, the algorithm
performs the following steps.

1. Generate random vector h¢ € D;
The natively scaled extreme rays of D; are multiplied by a random number and
added to obtain hc. The random numbers are chosen to be sufficiently large to
guarantee that h¢ is not at the boundary of D;. If h¢ would be at the boundary of
Dy, it is likely that it is also on the boundary of some unified partition.

2. Generate partition
A partition according equation A.40 and A.41 is generated and denoted by Cs. If
the obtained region is not nc-dimensional, it is returned to step 1. This event is
unlikely so that no infinite loop is created.

3. Accept new partition
If the vector h¢ is confined, the region is stored as a unified partition. If the vector
h¢ is unconfined, the region is not stored. In either case, the remaining domain
is updated by the set difference D\Cs and stored via its partitioning into cones:
D =U;D,.
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4. Termination check
If the domain D is empty, the decomposition is complete and the algorithm termi-
nates. If the domain D is not empty, it is returned to step 1.

The gathered unified partitions cover all confined hc-vectors so that, together with con-
finement mapping, an efficient handling of any hc-vector is possible.
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