IMPROVED KNOWLEDGE OF WIND CONDITIONS FOR WIND TURBINE AND WIND FARM CONTROL

Carlo L. Bottasso and Stefano Cacciola, TU München

4th MSE colloquium München, Germany, July 3, 2014
Motivation

Operating in **yawed conditions**:

- **Reduces power** as $\cos^3(\text{yaw})$
- Causes **vibrations** and excites low-damped side-side modes
- Changes airfoil AoA, possible **performance degradations** (e.g., dynamic stall)
Motivation

Sometimes yawing a machine is helpful:

Due to the presence of the wake of the first turbine, the downstream turbine feels:

- Lower mean wind speed over the rotor disk (less power available)
- Higher turbulence intensity and periodic loads (fatigue problems)
- Performance degradations (e.g., dynamic stall)

One could yaw a turbine to improve performances of downstream turbines
Reliable yaw measurements are **difficult** to obtain.

- **Nacelle anemometer**
 - Local (point) information
 - Affected by rotor wake and blade passing
 - Nacelle interference

- **Lidar** (lased doppler anemometer)
 - Promising solution but
 - Costly
 - “Cyclops effect”
 - Unfrozen turbulence
The Concept in a Nutshell

Any **anisotropy** of the wind generates **periodic loads**

By interpreting the rotor response, one can infer desired wind states (here: direction φ and vertical shear κ)

Advantages: rotor–effective non–local estimates

The rotor is the **ultimate anemometer**

Wind profile described as a power law curve with exponent κ
Outline

• Formulation of a general observation model
 – Model structure from an analytical blade response model
 – Observer synthesis by identification
 – Implementation

• Results
 – Testing in a high-fidelity simulation environment
 – Testing with an aeroelastically-scaled wind tunnel model
 – Field testing on NREL CART3 wind turbine

• Conclusions and outlook
Inspired by rigid flapping blade (Eggleston & Stoddard 1987):

• Assume 1P harmonic solution
 \[\beta = \beta_0 + \beta_{1s}\sin\psi + \beta_{1c}\cos\psi \]

• Insert into blade dynamics, drop h.o.t.’s
• Solve for wind misalignment and shear
 (compute misalignment and shear from 1P periodic terms)

Remarks:

• Linear relationship between misalignment/shear and blade 1P
• Misalignment and shear are independent and observable
• Wind-dependent coefficients
• Gyroscopic effects during yawing (to be considered)

Not useful for practical applications, due to limitations/simplifications of flapping blade model problem
A General Observation Model

Linear input–output wind–scheduled model:

\[
\begin{bmatrix}
\varphi \\
\kappa
\end{bmatrix}
= A(V) m + b(V)
\]

Driving input (blade root loads):

\[
\tilde{m} = (m_{1c}^{OP}/m_{0}^{OP}, m_{1s}^{OP}/m_{0}^{OP}, m_{1c}^{IP}/m_{0}^{IP}, m_{1s}^{IP}/m_{0}^{IP})^T
\]

1P load harmonics by multiblade Coleman–Feingold transformation:

\[
\begin{bmatrix}
m_0 \\
m_{1c} \\
m_{1s}
\end{bmatrix}
= \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
2 \cos \psi_1 & 2 \cos \psi_2 & 2 \cos \psi_3 \\
2 \sin \psi_1 & 2 \sin \psi_2 & 2 \sin \psi_3
\end{bmatrix}
\begin{bmatrix}
m_1 \\
m_2 \\
m_3
\end{bmatrix}
\]
Model Identification

N observations of wind parameters/associated blade response harmonics:

$$W = T(V)M$$

where

$$W = \begin{bmatrix} \{ \varphi_1 \} \\ \{ \kappa_1 \} \end{bmatrix}, \begin{bmatrix} \varphi_2 \\ \kappa_2 \end{bmatrix}, \ldots, \begin{bmatrix} \varphi_N \\ \kappa_N \end{bmatrix}$$

$$M = \begin{bmatrix} \{ m_1 \} \\ 1 \end{bmatrix}, \begin{bmatrix} m_2 \\ 1 \end{bmatrix}, \ldots, \begin{bmatrix} m_N \\ 1 \end{bmatrix}$$

$$T(V) = [A(V), b(V)]$$

Compute unknown model coefficients by least-squares:

$$T(V) = WM^T(MMM^T)^{-1}$$

Wind scheduling: identify observation model at different wind speeds V_k to cover entire operating envelope of the wind turbine

Linearly interpolate at run time: $T(V) = (1 - \xi)T(V_k) + \xi T(V_{k+1})$
Testing in a Simulation Environment

3MW high-fidelity HAWT model

Cp-Lambda highlights:
- Geometrically exact composite-ready beam models
- Generic topology (Cartesian coordinates + Lagrange multipliers)
- Dynamic wake model (Peters-He, yawed flow conditions)
- Efficient large-scale DAE solver
- Non-linearly stable time integrator
- Fully IEC 61400 compliant (DLCs, wind models)
Verification of Observability

▲ OP and IP loads

▼ OP loads only
Estimation of Wind Properties for Wind Farm Control

Yaw Observation with Varying Shear

Graph showing time series data for different variables:
- V_0 [m/sec]
- φ [deg]
- K_1
- \bar{U}_0
- \tilde{m}_1

Legend:
- Real averaged
- Observed

Time [sec]
Estimation of Wind Properties for Wind Farm Control

Yaw Observation with 10% Turbulence and Varying Mean Wind Speed
Wind Tunnel Testing

WT²: aeroelastically-scaled wind tunnel model of the Vestas V90 wind turbine with individual blade pitch and torque control

Applications:
• Testing of advanced control laws and supporting technologies
• Testing of extreme operating conditions
• Tuning of mathematical models
• Aeroelasticity and system identification of wind turbines
• Multiple wind turbine interactions
• Off-shore wind turbines (moving platform actuated by hydro-structural model)

4x3.8 m, 55 m/s, aeronautical section:
• Turbulence <0.1%
• Open-closed test section

13.8x3.8 m, 14 m/s, civil section:
• Turbulence <2%
• With turbulence generators = 25%
• 13 m turntable

Aeroelastically scaled blades (70g, 1m)

Pitch actuator:
• Zero backlash gearhead
• Built-in encoder

Main shaft with torque meter

Rotor sensor electronics

Conical spiral gears

Pitch actuator electronics

Slip ring

Torque actuator:
• Planetary gearhead
• Torque and speed control

Civil-Aeronautical Wind Tunnel of the Politecnico di Milano
Wind Tunnel Testing

▲ Verification data set

△ Identification data set
Field Testing

NREL CART3 wind turbine
Model identified from real field measurements (elimination of outliers by RANSAC)

Two typical time histories:

- Black solid: met mast
- Blue dash-dotted: wind vane
- Red dashed: observer

Good match at the low frequencies (what needed for yaw control)
Conclusions

- Successful verification in **simulation**, **wind tunnel** and **field testing**
- Simple **model-free** identification
- Good quality of the estimates, **superior** to on-board wind vanes
- **Negligible computational cost**

Outlook:

- Further testing on larger machines, should see even better results
- Field testing of shear observer
- On-board use of observed wind states
Acknowledgements

Work supported by the Alliance for Sustainable Energy LLC, National Renewable Energy Laboratory (NREL), sub-contract No. AGV-2-22481-01,
Dr. Alan D. Wright technical monitor

Thanks to Dr. Paul Fleming for help with CART3 data

Thanks to Dr. Carlo Riboldi for his crucial contribution to the development of this work.
IMPROVED KNOWLEDGE OF WIND CONDITIONS FOR WIND TURBINE AND WIND FARM CONTROL

Carlo L. Bottasso and Stefano Cacciola,
TU München

THANK YOU FOR YOUR ATTENTION