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Abstract

Structure-Optics-Interaction in Large Astronomical Telescopes

Astronomical telescopes evolve to larger and larger systems to increase optical sen-

sitivity and spatial resolution, which are related to the light collecting area and the

aperture diameter respectively. However, for ground-based telescopes the resolution

is limited to a value achievable with an aperture diameter of 10-20cm due to the

atmospheric turbulence interfering the incoming wavefront.

To exceed this seeing limits adaptive optics is urgently required which actively com-

pensates for wavefront errors. Moreover disturbance sources like wind load and seismic

excitation cause time-dependent deformations of the telescope structure. A passive

structure of this size can no more provide tolerances of the order of wavelength/281

required for optical telescopes with diffraction limited imaging. This accuracy can

only be achieved using active control of mirror position and shape. Moreover the

large aperture mirrors cannot be manufactured as single solid elements. Hence a high

segmentation will be used to compose the primary mirrors of future large telescopes

requiring an actively controlled alignment system.

Consequently control is essential in modern telescopes and the structural mechanics,

the optics and the control are strongly interacting. For design and development an

integrated model representing the major telescope components is essential since this

allows to study the complete system and cross coupling effects between components.

The presented work deals with the generation of a dynamic structural model appropri-

ate to be incorporated into an integrated telescope model. This becomes a key-issue

as the larger telescope dimensions require stricter relative tolerances and the structure

needs to be a sophisticated lightweight design to achieve high natural frequencies. It

is a difficult task to accurately represent the dynamics between the large number of

inputs and outputs while keeping the system size small to limit the computational

effort of a simulation.

For integrated modeling an approach is developed focusing on modularity and flex-

ibility to easily investigate different parameters, configurations and components. A

single configuration file is used to compute optical models and dynamically create the

1The wavefront rms resulting from a deflected mirror shape is twice the surface rms. Thus this

condition corresponds to an maximum wavefront rms of wavelength/14.
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complete system. Modeling the European Southern Observatory’s Very Large Tele-

scope Interferometer (VLTI) this approach is implemented and the model is applied

to exemplary simulations.
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1 Introduction and Objectives

Since the beginning of modern astronomy 400 year ago with G. Galilei and J. Kepler,

astronomical research is having a large impact on our knowledge of physics as well

as on the wide and deep understanding of the universe. The demand of observing

fainter objects has led to larger aperture diameters to increase the light-collecting

area. An advancement in optical sensitivity has not only been achieved by larger

telescopes, but also by better observatory sites like in Hawaii and Chile, improving

the environmental conditions inside the dome, using new materials, the development

of enhanced instruments and applying a superior pointing and tracking.

Alongside sensitivity, angular resolution is most important for telescope performance.

Due to the diffraction theory of electromagnetic waves, the limit for angular resolution

of a telescope is proportional to the ratio of wavelength versus aperture diameter.

However, for ground-based optical telescopes resolution is limited by atmospheric

turbulence. Hence moving to better sites on ground or towards space yielded en-

hancements. In the recent years active and adaptive optics initiated a new generation

of optical ground-based telescopes with higher angular resolution. The mirrors of

active optics are not simply fixed to the mirror support structure, but mounted on

actuators. These allow to reduce significantly quasi-static aberrations of the mirror

positions and shapes, which are e.g. induced by gravity effects and thermal expansions.

In an adaptive optical system, the dynamically varying wavefront error is measured by

a wavefront sensor and fed back with a controller to a deformable mirror to actively

compensate inter alia for the atmospheric turbulence.

Several astronomical telescopes for optical or infrared wavelengths with apertures of

up to 10m are in science operation or in their commissioning phase at the moment. For

better angular resolution stellar interferometers were built. In stellar interferometry,

the light of two or more spatially separated telescopes (“subapertures”) is combined

in order to synthesize the resolution of a single large telescope with an aperture

diameter equal to the distance of the subapertures. Dependent on the actual phase

difference between the light rays, which is a function of the optical path length, the

rays superpose constructively or destructively resulting in high or low light intensity. An

important requirement for operating an interferometer is thus to keep defined optical

path lengths in both interferometer arms by actively compensating for disturbances.

The increased telescope performance, new astronomical observations and novel sci-

entific results have demonstrated the potential of active and adaptive optics in these



2 CHAPTER 1. INTRODUCTION AND OBJECTIVES

so called VLTs (Very Large Telescopes). Still there is a long list of observation re-

quests like the evolution of galaxies, large-scale structures, formation of stars or the

evolution of external planets, which need both a higher spatial resolution and a more

powerful light collection.

In order to observe fainter objects and to achieve higher resolution, first studies

have started in the United States and Europe for a new class of ELTs (Extremely

Large Telescopes) with aperture diameters from 30 to 100m. The complexity and

interdependence of the telescope subsystems will rise significantly in these ELTs.

Hence new design and simulation approaches will be strongly demanded to successfully

realize such a project. ([1, p. 1-4], [2], [3], [4])

1.1 Integrated structure-optics-control modeling —

state-of-the-art

Practically all existing ground-based telescopes have been designed by a closed collab-

oration of specialists within their field as the design of a telescope relies on a variety

of different scientific and engineering disciplines.

In the classical approach towards a first telescope design analytical formulas and

empirical expressions are used to estimate the telescope performance. Then in the

design phase special tools are applied, established in the respective discipline (e.g.

finite element software for the structural mechanics, optical design and optimization

software, control design and simulation software). To evaluate the telescope design

a mathematical model of the physical aspects and characteristics of the telescopes

including the optical components, the dynamics of the telescope structure, the sen-

sors and actuators is built, modeling also the different disturbance sources. Applying

control-system layout techniques a suitable controller is designed and its parameters

are adjusted to optimize the telescope performance.

As Bely explains in [1, p. 62-75, 253-254] this procedure cannot directly be applied to

the design of ELTs, since they imply a much stronger inter-relation between different

disciplines and a complex system of feedback loops to control the shape and the

position of all optical components. A conventional telescope, which is mainly a passive

structure with nearly rigid optical mirrors, is described in a good approximation by a

mathematical model consisting of analytical formulas and semi-empirical assessments.

However, for ELTs with highly segmented, individually steered mirrors and (relatively)

large deflections due to wind load, this approach is no more sufficient, as it does not

show the interdependence of the different components and allows not to fully evaluate

the system. Therefore, the accurate simulation with an integrated model is essential

for optical performance estimation and design validation of a future telescope.



1.1. INTEGRATED STRUCTURE-OPTICS-CONTROL MODELING —
STATE-OF-THE-ART 3

An integrated model yields benefits in all design phases of a telescope project. In

the planning phase it allows to demonstrate feasibility in detail and to evaluate al-

ternatives. In an early design phase requirements can be established and validated.

This includes the critical features and disturbances, structure-control and loop-to-

loop interactions, cross coupling effects and sensitivities. In order to provide accurate

component data in the simulation, for critical components demonstrators are built

and their relevant parameters are identified. A gradual refinement of the subsystems

in the integrated model enables the detailed analysis of the telescope and an accurate

performance prediction in the detailed design phase. In the construction phase the

model quality can be further improved due to component tests and data of on-site

measurements. In addition to this such a model can also be useful in the operational

phase for the preparation of astronomical observations or to select optimum observa-

tion parameters. It helps to calibrate the telescope and allows to correct for systematic

errors in the observation data.([5, 6])

In the last ten years several institutions have started to develop tools for integrated

modeling. These tools were especially applied to space telescopes, since environmental

conditions cannot be fully provided in a ground-based test (e.g. absence of gravity

and atmosphere). The development, adjustment and application to ground-based

ELTs has just started some years ago and at current almost all large telescope or

interferometer projects involve integrated modeling.

Different concepts for integrated modeling were developed. In the “bucket-brigade

approach” the specialists within their fields of mechanics, optics and control build their

mostly independent models specialized for the individual requirements. A model of the

complete system is composed of this elements requiring mostly manually adjustments

of the individual systems. Changes in components require therefore a large effort to

be consistently included.

In contrast to this “bucket-brigade approach” IMOS was developed by JPL (Jet

Propulsion Laboratory, Pasadena, USA) as one of the first integrated modeling tools

trying to use only one data-base by integrating all different disciplines within one

software. IMOS is a Matlab-based toolbox and was applied to several projects like the

Hubble Space Telescope, SIM (Space Interferometry Mission) or the NGST (formerly

Next Generation Space Telescope, now James Webb Space Telescope (JWST)). ([7,

6, 8, 9, 10])

IMOS includes Matlab-written FE modeling with element types similar to NASTRAN,

which allow a static and dynamic structural analysis with mode superposition as well

as thermal computations. The optical modeling is either done directly within IMOS or

with interfaces to the JPL-written optical software MACOS (Modeling and Analysis of

Controlled Optical Systems). In its initial version IMOS was limited in the number of

degrees of freedoms for the finite element models. Therefore the concept of integrating

all into one tool was given up and now also NASTRAN is used for FE-modeling.
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In the early 90’s Ball Aerospace, (Boulder, Colorado, USA) launched the Integrated

Telescope Model (ITM) program, which was applied to the Very Large Telescope

(VLT) of ESO, NGST and TPF (Terrestrial Planet Finder). Most of the model is built

within Simulink and only modal data are imported from a finite element analysis. The

core of the simulation environment is an optical toolbox realized in Simulink. Both,

physical optics with diffraction propagators and geometrical optics with ray tracing or

sensitivity matrices are covered. Building the model within Matlab/Simulink tries to

make the tool flexible and adaptable. However, the experience of the VLT Integrated

Model showed limitations in using the model, since the model proved not to be easy-

to-use and was very awkward to handle. ([11])

Unlike trying to use one universal software tool for modeling all different disciplines,

e.g. the EURO50 team of the University of Lund/Sweden is developing an integrated

model using different packages. The model is Matlab-based using modal results from

a finite element analysis (FEA) in ANSYS and optical ray tracing is simulated within

Matlab. ([2])

Besides the kind of tools applied, also the degree of coupling this tools is different. An

approach using similar tools as for the EURO50 but with a higher degree of coupling

and being more comprehensive is developed at present at the Canadian Herzberg

Institute of Astrophysics (HIA) for the Very Large Optical Telescope (VLOT), a 20m

optical telescope. For ray tracing and the generation of linear optical models (LOMs)

the commercially available software ZEMAX is used, which is coupled with Matlab

using DDE (Dynamic Data Exchange) technique as part of the Microsoft Windows

operating system. The integrated model includes a fully parametric ANSYS model for

the structural mechanics and interfaces to PowerFlow Computational Fluid Dynamics

(CFD) software to compute the dynamic wind load. 1500 modes are remotely read

from ANSYS to build a state-space model with balanced model reduction within

Matlab. The complete model incorporates 1800 outputs and 1500 inputs due to the

large number of control loops to steer the segments according to the signals of the

edge sensors. Different types of disturbances are included like wind, gravity, seismic

load, thermal effects, atmospheric turbulence, sensor noise and actuator errors. Only

one model base for FE modeling, optics and control is used to allow consistent changes

of parameters. Constraining the integrated model to the Microsoft Windows operating

system due to DDE is a major drawback, as the largest and most powerful computers

usually run a UNIX-type operating system. Using commercially available software

restricts the available outputs and can also imply a limitation in flexibility. ([12])

In Northern America the activities of the HIA have merged with the California Insti-

tute of Technology (Caltech), and AURA (Association of Universities for Research in

Astronomy), which is a consortium of universities and other non-profit organizations,

that operates astronomical observatories like, for example, the Gemini Observatories

in Hawaii and in Chile. They develop an Integrated Model for the Thirty Meter Tele-

scope (TMT). The main objective of this cooperation is to incorporate and further
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develop existing integrated modeling tools. An object-oriented database for optical

and structural models will be built with classes for structure, active optics, beams,

sensors, etc. The integrated model will be Matlab-based with interfaces to different

external software tools. In the initialization phase results from FEA, CFD, a thermal

analysis and an atmospheric model will be computed according to the configuration.

This data will then be used for the simulation within Matlab/Simulink.([13, 14])

Another very comprehensive tool is DOCS (Disturbance, Optics, Controls and Struc-

tures), which is developed at the Space Systems Laboratory at MIT (Massachusetts

Institute of Technology) and which was applied to SIM, NGST, NEXUS (Normal

Incidence Extreme Ultraviolet Spectrograph), and TPF. DOCS is a Matlab-based

framework with interfaces to IMOS (for integrated modeling), NASTRAN (FEM),

thermal analysis software and optimization tools. Within DOCS the integrated mod-

eling capabilities of IMOS are significantly extended including optimization, uncer-

tainty analysis, robustness of systems, model reduction, error budgeting and compar-

ison of measurement and simulation. The large effort of developing tools is avoided

in DOCS by using commercial available software and providing only interfaces be-

tween the different tools. Using Matlab keeps the framework flexible and further

expandable.([15, 16, 17, 18])

Due to a lack of comprehensive tools for optical modeling for usage in an inte-

grated model, BeamWarrior was developed in a joint activity by ESO and EADS

Astrium, Friedrichshafen, Germany. The BeamWarrior Kernel is a library of platform-

independent ANSI C functions for optical modeling which can be accessed either by

a custom C application or via the BeamWarrior Optical Modeling Tool. The latter is

a general-purpose application designed for flexible generation of linear optical models

(i.e. sensitivity matrices). BeamWarrior incorporates geometrical- and wave-optics.

For wave-optical methods different algorithms are implemented including a numerical

approximation of the Rayleigh-Sommerfeld integral and the powerful Gaussian beam

decomposition technique. Besides the creation of dynamic optical models BeamWar-

rior can also be employed for a large variety of static optical analysis tasks, like a

diffraction or polarization analysis as well as for tolerancing problems.

BeamWarrior was applied for optical modeling of the VLT of ESO and an integrated

model of the Very Large Telescope Interferometer (VLTI), which is part of this thesis

(see chapter 5). In the framework of an ESA Technology Research Programme (TRP),

BeamWarrior is used to develop the integrated model FINCH (Flexible Interferometer

Characterization) of the spaceborne nulling interferometry mission Darwin. Within

the FINCH project also extended astronomical sources are modeled and broadband

optics.

Major advantages of BeamWarrior are the powerful and efficient algorithms, which

cover most optical phenomena relevant for telescopes and interferometers. Another

benefit for ESO/Astrium is the availability of the source code to adjust the tools if
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necessary to desired output formats or also to expand the capabilities. The drawback

is the effort in developing and validating the self-written software.

Regarding the current integrated modeling approaches, Matlab is obviously always

used as the integration environment and control software, as this is the most com-

prehensive dynamic simulation package. The levels of integration and of detail rep-

resented are different and imply compromises between development effort, flexibility,

ease-of-use and technical capability. An example for low degree of integration is the

integrated model of the EURO50, whereas the approach for the TMT uses for nearly

all kinds of disturbances only one data base.

For a structural model commercially available FEA software tools are commonly used

to compute modal results. The reasons for this are, on one hand the sophisticated and

powerful finite element software packages with preprocessors, which allow to generate

models of complex telescope structures, and effective solvers, that are specifically

designed for structural mechanics problems. On the other hand, the relevant input

from the structure to the optics is the displacement data for the different components.

Since the displacements of the individual degrees of freedom (DOFs) are the standard

result in an FEA, it is only necessary to supply appropriate matrices, that convert the

results for the DOFs into the desired displacements of the optical components and

hence, the effort for adjusting the FEA outputs is relatively small. In contrast to the

structural models the requirements for the optical simulations are very different.

Optics tools range from ray-tracing (IMOS developed by JPL) over commercially

available optical design software (ZEMAX) to highly flexible and powerful code specif-

ically designed for usage in an integrated modeling environment (BeamWarrior and

MACOS, ray tracing and wave-optics). For optics modeling no dynamics is inside

the governing equations, but optics is in general highly nonlinear and the description

much dependent on the effects, which are to be investigated, and the model, which

is suitable to describe the effects. Especially the ELTs incorporate a large number of

segments for the primary as well as (often) for the secondary mirror and consequently

a lot of edges and gaps exist which all cause diffraction effects. To provide consistent

models for the simulations using one common model for the optics is an advantage,

which is at current only covered by BeamWarrior.

Designing an integrated model, the main objectives are first flexibility to adjust the

model to different configurations and designs as well as to be able to increase gradually

the level of detail. A modular approach is therefore important, which allows on the

one hand to keep interfaces while improving or exchanging components and on the

other hand to easily include e.g. additional control loops. Secondly the model should

deliver all desired results and relevant outputs. This requires powerful tools, which

are e.g. for FE-modeling not limited in model size as IMOS and for optical modeling

able to reflect the relevant effects, while giving access to desired results. Having

these models only in the dedicated software packets is not sufficient, but interfaces

and tools must be provided to build accurate structural models of reduced size or



1.2. OBJECTIVE OF THIS WORK 7

linear optical models, which can be used for an integrated model. These required

routines are usually not included in e.g. the FE-software, but must be developed. In

addition to that, the simulation must produce reliable results and therefore validation

of the tools and verification of the results is essential and should be already done

on component level. Hence, using as many proven tools as possible is an advantage.

However, where adequate tools are not available, interfaces and software components

have to be developed to keep the model flexible and powerful.

1.2 Objective of this work

Integrated modeling is essential in the design and development of future large tele-

scope systems. The objectives of this work are first of all to develop a concept to

provide a suitable model of the telescope structure to be used in an integrated model.

Secondly an efficient approach for integrated modeling of astronomical telescopes will

be developed and its application will be tested.

The generation of an accurate and easy-to-handle structural model for the time-

dependent simulation of its coupling with optics and control has become especially

important since the telescopes are increasing in size. The eigenfrequencies are hence

shifted to lower values and therefore the first natural modes reach the relevant fre-

quency range for control loops. Moreover the amplitude of the wind turbulence is

increasing with decreasing frequency and thus, wind effects become more serious.

While scaling the telescopes to larger sizes, the absolute tolerances are kept on the

same levels due to the same permitted wavefront errors, which causes stricter relative

tolerances. Telescope dynamics can in general be treated linearly, which simplifies the

mathematical description dramatically. A main reason for this is the construction,

which avoids microslip and friction, e.g. by applying hydrostatic bearings. However,

nonlinear effects can occur e.g. if friction drives are used.

The telescope structures become not only larger, but also much more complex. Thus

large FE models are necessary to describe the dynamics accurately and reducing the

degrees of freedom becomes more important. Examples are the already built VLT

and the concept the Overwhelmingly Large Telescope (OWL), both of ESO. One FE

model of the VLT consists of 9485 elements and 38268 DOFs with beam elements

and shell elements for the mirror M1. The OWL model was built of simple pipes and

point masses only, but had 131076 elements and 213510 DOFs (see figure 1.1 and

table 1.1).

Due to mirror segmentation and the possibility to use active optics the number of

control loops comprised in telescope systems increases as well as the number of sen-

sors and actuators. Since a dynamic model of the telescope structure must consist

of a much larger number of inputs and outputs, the model reduction becomes more

difficult. E.g. in the VLT the primary mirror is supported by 150 hydraulic actua-
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Figure 1.1: Comparison of the telescope structure of OWL and of the VLT

tors, whereas the OWL primary is planned with more than 3250 segments having 3

actuators each.

In some cases, the extreme size of the ELTs requires different concepts. An example

are the altitude and azimuth drive systems proposed for the OWL. Instead of hydro-

static bearings as used for the VLT a system of some hundreds of bogies on rails

provide the azimuth and altitude rotations required for pointing and tracking. Such a

bogie-drive system involves the risk of stick-slip effects due to the velocity dependence

of the friction and care must especially be taken with respect to the design of robust

controllers. Both the design and the verification of the controller require appropriate

structural models to represent the interaction of the friction, the driver forces and the

dynamics of the telescope. A large number of inputs and outputs is necessary as the

effective driving force of each active bogie depends not only on the control signal,

but e.g. also (non-linearly) on the bogie velocity, the normal force on the wheels, the

history etc. A design model for a certain control task must not exceed e.g. 15 states,

since the model size has a direct influence on the controller size in a robust design.

However, a (different) validation model needs a high accuracy to prove stability and

performance.

Many different model reduction technics were developed and implemented, but the

common routines provided, e.g., within Matlab do not consider the characteristic

format of dynamic state-space models of mechanical structures. Moreover they were

implemented for systems of medium size (about 100 states), but not for large sys-

tems of some thousand states. Besides long computation time the provided routines

sometimes do not converge. This work discusses different criteria and techniques for
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Table 1.1: Comparison: VLT and OWL

VLT OWL

Primary mirror Ø 8.2 m Ø 100 m

M1 meniscus with 3050 hexagonal segments with

150 actuators 3 actuators and 6 sensors each

Secondary mirror monolithic 200 hexagonal segments with

M2 2 tip/tilt actuators 3 actuators each

altitude and hydrostatic bearings 2 altitude rails with 150 bogies

azimuth drive torque motors several tracks on three

levels with 250 bogies

model reduction and considers especially the applicability to state-space models of

mechanical structures.

Two special aspects for modeling telescope structures are treated in more detail:

considering scattering material parameters in a simulation and including the interac-

tion between soil and telescope structure for modeling the dynamics of the telescope

structure.

For integrated modeling within Matlab/Simulink a concept is developed for the VLTI,

but can similarly be applied to other telescope systems. One major characteristic is

the modular approach aiming on maximum flexibility and allowing strongly varying

configurations. For the VLTI three different types of telescopes with completely dif-

ferent structures and optical descriptions can be used, and between two and eight

telescopes are used simultaneously. Therefore the model is based on a single config-

uration file and creates the complete systems applying individual modules covering

the miscellaneous telescopes, diverse control loops with exchangeable types and pa-

rameters of controllers and, of course, the different environmental conditions being

investigated.

To provide broad applicability BeamWarrior is used for the modeling of the optical

subsystems. BeamWarrior yields consistence of the optical models using only one opti-

cal description for the computation of static electric fields in the interferometer’s exit

pupils and the generation of linear optical models (LOMs). Moreover both geometri-

cal optics can be simulated performing ray tracing and also physical optics is covered,

which becomes even more important for ELTs due to the high degree of segmentation

and consequently the large numbers of edges and gaps causing interference effects.

The integrated model allows a precise modeling of the physical effects in optics since

, e.g., for polychromatic effects a spectral band is split into an user-defined number of

sub-bands. LOMs for sensors and actuators can be generated in an arbitrary location
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in the optical path. Furthermore a variety of optical results is possible, like the Point

Spread Function (PSF) in the image plane or the wavefront error expressed in Zernike

polynomials in the exit pupil, but also the full electric field on a pixel grid in the exit

pupil of an interferometer arm with amplitude and phase.

A strong coupling between the ANSYS FE-model and the integrated model was

assessed to be inconvenient as this restricts significantly the flexibility of the struc-

tural model. To allow a structural modification and optimization dynamic models

are condensed only for certain reference configurations using the Structural Modeling

Interface toolbox (SMI), which was developed within the scope of this thesis. The

supporting routines provide an easy definition of inputs and outputs, and an allow to

control model quality interactively at least for the most important transfer functions.

Using only defined telescope configurations for the structure seems to be a major con-

straint, but all possible configurations and parameter combinations can never be fully

investigated and evaluated and therefore it is always an engineering task to identify

the most critical and characteristic configurations for a detailed study. The benefit is

keeping the system reasonable simple and flexible.

An additional feature in the integrated model of the VLTI is the possibility to include

instruments performing an interferometric beam combination. Tow different beam

combination algorithms are implemented — one which is very exact and the second

one which is an approximation reducing the the computational effort significantly. This

fast algorithm provides the possibility to include extended sources and polychromatic

light into a simplified beam combiner model.

1.3 Outline of the thesis

To understand the coupling and inter-connections between the different disciplines

and subsystems within an astronomical telescope a short overview over major com-

ponents is given in chapter 2. Fundamental principles for describing the telescope

optics are explained focusing on the effects of disturbances onto image quality. Af-

ter characterizing the requirements and concepts for telescope structures and control

loops, the environmental disturbances for ground-based telescopes are explained. Be-

sides the physical effects possibilities of including this disturbances into an integrated

model are shown.

Chapter 3 deals with a core topic of this thesis, the generation of an appropriate

dynamic model of the telescope structure for use in an integrated modeling environ-

ment. A standardized state-space format is given including a general descriptions of

inputs and outputs relevant for a telescope. A formulation of the required outputs

especially for LOMs is given, which are the rigid body motions and elastic deforma-

tions of the mirrors in terms of Zernike mode shapes or other polynomials. Different

criteria for evaluating the quality of a reduced model are discussed. The balanced
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model reduction techniques are explained to be most appropriate allowing especially

for state-space models of mechanical structures a fast computation of the approxi-

mated Gramians. In comparison to a balanced condensation the main characteristics

of other methods are shortly described. To complete this chapter examples of applying

model reduction technics to telescope structures are shown, applying the Structural

Modeling Interface toolbox, which was developed within the scope of this thesis.

Two special aspects in modeling telescope structures are addressed in chapter 4. This

is firstly scattering material parameters, a problem which is analyzed considering as

example the reflector Lothar designed for the Planck project. Secondly a concept is

shown to investigate the effects of the foundation and soil-structure interaction onto

the dynamic performance of the telescope structure.

An efficient approach for integrated modeling of a telescope system is presented in

chapter 5. After explaining the principles of the concept, the model architecture and

capability are described in detail. The major VLTI components, control loops and

disturbances are included into the model. Some examples for simulations with the

VLTI Integrated Model are given and the results are discussed.

Finally, chapter 6 provides a concluding summary and open questions for integrated

modeling of future telescope systems.
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2 Major components in telescope

systems for integrated modeling

2.1 Outline

The major task of a telescope is collecting light from a stellar object and redirecting it

towards an optical instrument. A telescope model assembled of the main components

is schematically drawn in figure 2.1. Certainly the optics are the central component

providing an optical instrument at the telescope exit the required photons to measure

intensity distributions or the spectral content. To allow the optical systems to operate

properly they are mounted on the mechanical structure which gives the systems the

required stiffness to keep shape and relative positions to each others. Observing a

stellar object the telescope structure must incorporate systems for pointing toward

the object and for tracking to compensate for the rotation of the earth. Tasks like

pointing and tracking can only be solved by control loops consisting of sensors and

actuators which are connected with a controller.

In real live the systems are always disturbed. This starts with the incoming wavefront,

continues with external loads deflecting the structure and ends with all components,

which have (small) variabilities in their geometry, material properties and output sig-

nals. For the incoming wavefront disturbing effects include atmospheric turbulence

distorting the phase, the refraction of the atmosphere or stray light. Loads on the

mechanical structure on ground based telescopes are, e.g., wind loads, seismic loads,

Figure 2.1: Scheme of a telescope system with major components required in an

integrated model.
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gravity and thermal strain. Control loops, which are required for tracking and com-

pensating for errors, suffer not only from finite bandwidth of controllers, but also

from sensor and actuator noise as well as the limited actuator dynamics. In space

applications disturbances are different. Due to the absence of an atmosphere there is

neither wind load nor the fluctuation in the incoming wavefront. Instead of this, the

guidance and navigation system, gyroscopes and on-board coolers can cause distur-

bances. Moreover solar pressure and gravitational gradients potentially interfere with

the system.

In the following sections the physical background for understanding the different com-

ponents will be given while focusing on ground-based telescopes. Relevant concepts

for modeling and evaluation will be derived.

2.2 Optics in telescopes and interferometers

Depending on the relevant phenomena, optics is described with the different physical

models of geometrical optics, wave-optics and quantum optics. In telescope optics

most effects can be described with geometrical optics, where a light ray is propagating

along a straight path until it is absorbed, reflected or refracted due to a change in the

material properties respectively the refraction index. Geometrical optics often uses

the wavefront and the optical path length (OPL) to describe the light propagation.

2.2.1 Wavefront errors and Zernike polynomials

The wavefront is a surface of constant phase or constant optical path length 1 in a

propagating electromagnetic wave. The geometrical optical wavefront is orthogonal to

the rays. For a source located at very far distances like a star, the wavefront received

at the telescope is a plane. Near the focus of a perfect optical system, the wavefront

becomes a portion of a sphere centered at the focus. (see figure 2.2).

If the wavefront is not spherical after exiting the optical system, the rays will not

converge to the same position in the image and the image will not be perfect. Propa-

gating a grid of rays through the telescope, the actual wavefront can be computed by

evaluating the optical path lengths. The deviation of the wavefront from a plane or a

sphere is called the wavefront error. The magnitude of the error is usually measured

as root mean square (rms) of the entire wavefront and traditionally a system with an

rms of the exit beam (expressed in fraction of the wavelength) smaller than λ/14 is

said to be nearly perfect.

1optical path length = the geometric path of the light ray scaled by the refraction index: OPL =∫
n ds with n = refraction index
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Figure 2.2: Focussing of a plane wavefront by an optical system. Close to the focus

the wavefront error is the deviation of the actual wavefront from a sphere.

The wavefront error is often expressed in terms of Zernike modes introduced in 1934

by F. Zernike [19], who slightly modified them from Jacobi polynomials for use in

optics. They are a set of orthogonal polynomials defined on a circular disc with unit

radius:

W (r, φ) =
∑
m

ζmψm(r, φ) (2.1)

The wavefront errorW (r, φ) at the polar coordinates (r, φ) is composed of the Zernike

coefficients ζm and the Zernike polynomials ψm(r, φ)[20, 1]. A general formula for the

polynomials can be found in [4, p. 279]. Due to the orthogonality of the polynomials,

the coefficients are given by

ζm =
1

πg2
m

∫ ∫
aperture

W (r, φ)ψm(r, φ)rdrdφ (2.2)

with the rms value gm of the individual polynomial ψm

gm =

√
1

π

∫ ∫
aperture

ψm(r, φ)ψm(r, φ)rdrdφ

Different normalizations for the Zernike polynomials are common, e.g. the wavefront

error in meters or an rms-value for each one over the circle to gm = 1. Figure 2.3

shows the first eight Zernike polynomials with formula. The major advantage of using

Zernike polynomials is on the one hand the physical meaning, since each polynomial

corresponds to a classical aberration like astigmatism, coma or spherical aberration2,

and on the other hand the orthogonality, which allows to compute the total error by

adding the errors of the individual polynomials: rms =
√∑

rms2
m =

√∑
(gmζm)2

with the weighting gm, which equals the rms of the polynomial ψm(r, φ).

2This is valid at least for the lower order aberrations.
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Figure 2.3: The Zernike polynomials are used to express wavefront error. This figure

shows the polynomials ψ1 −ψ8 with formula and the name describing the

optical meaning.

For a set of nj spatially uniformly distributed points3 (rj, φj) (j = 1..nj) the Zernike

coefficients {ζ} = {ζm} corresponding to ni polynomials ψi (i = 1..ni) can be

computed in a least square sense from the equation in matrix form using the pseudo-

inverse ψ+ = (ψTψ)−1ψT to minimize the error ∆ =
∑

j({Wj} −
∑

i([ψji]{ζi}))2;

({W} = {Wj} = {W (rj, φj)}; ψ = [ψji] = [ψi(rj, φj)], (nj > ni)):

{Wj} !
=
∑

i

[ψji]{ζi} → {ζ} = [(ψTψ)−1ψT ]{W} = ψ+{W} (2.3)

The low order Zernike polynomials describe aberrations of small spatial frequencies

and are effective to describe wavefront errors of low and medium spatial frequency.

They are also used for atmospheric wavefront distortion and mirror deformations. For

very high spatial frequency errors caused by turbulent air, dust or micro-roughness on

mirror surfaces, the Zernike polynomial representation is impractical. Instead of this

statistical errors are added onto the wavefront.

3The condition of uniformly distributed points implies, that each point represents the same mirror

area and thus is equally important.
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2.2.2 Diffraction effects and image quality

A limitation of the geometrical optical interpretation are diffraction effects, where the

wave nature of light becomes relevant. Most of the telescope optics can be handled

with geometrical optics, but diffraction optics is essential for the theoretical limitations

of resolution and the tolerancing of optical errors.

To understand the effects of diffraction, the wave effects of incident rays will be

analyzed in more detail. The electric field ψ(r, t) can be written for one polarization

of a locally homogeneous plane wave as the real part of the complex amplitude

ψ(r, t) = A(r)eı(ωt−kr) = A(r)eı(−kr)eıωt (2.4)

Here is k = 2π/λi the wave vector with the the unit vector i denoting the direction

of the light ray, λ = λ0/n = c/(nν) the wavelength, n the index of refraction, nz

the optical path, ω = 2πν the angular frequency and A(r) a spatial complex function

for the amplitude. Setting the temporal term and the phase contained in A(r) to

0, the phase φ(r) = arg(eı(−kr)) is the optical path z divided by the wave number:

φ = z/k = 2πz/λ.

Figure 2.4 shows a plane wavefront arriving at an aperture of diameter D. The light

propagates through an optical system symbolized by a lens, and the light intensity is

measured in the focal plane. To compute the amplitude of the electrical field in a point

of the focal plane, the contributions of the individual points of the wavefront can be

coherently added, while each point in the wavefront can be treated as a point source.

The focal point has equal optical path length to all points on the plane wavefront

perpendicular to the optical axis. A point P (X, 0) in the focal plane will have a

constant optical path to a wavefront tilted by an angle θ = X/f (with focal length

Figure 2.4: A plane wave arrives at an aperture with diameter D, passes an ideal

optical system and creates an image in the focal plane. Due to diffraction

the image of the point source is not a point, but an intensity distribution

as shown in the plot.
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f). Therefore, considering only the 2-dimensional case (i.e. neglecting the dimension

η respectively y) the phase arriving at the focal plane is (neglecting a constant term)

dependent on θ and the position in the aperture plane ζ :

φ = 2πζ sin(θ)/λ � 2πζθ/λ (2.5)

Summing now the electric fields of the individual wavelets results in the electric

amplitude Atel(θ):

Atel(θ) =
∑

(wavelets) =
∫

aperture
eiφ(ζ)dζ

=
∫ D/2

−D/2
ei2πζθ/λdζ = sin(πθD/λ)

πθD/λ
D

(2.6)

The measured intensity is the squared magnitude of the amplitude:

Itel(θ) = |Atel|2 =
[

sin(πθD/λ)
πθD/λ

]2

D2 (2.7)

Including the second dimension, the equation (2.6) reads according to figure 2.4

Atel =

∫ ∫
aperture

eık(αζ+βη)dζdη (2.8)

with α � x/f � sin(θ), β � y/f .

For a circular aperture this gives the well-known ”Airy function” named after George

Airy who first derived this formula.

Itel,3d(θ) =

[
2J1(πθD/λ)

πθD/λ

]2

D2 ”Airy function” (2.9)

J1(X) is here the Bessel function of the first order. The first zero-intensity Itel,3d(θtel) = 0

is reached at θtel = 1.22λ/D, which is also approximately the full width half maximum

(FWHM), a measure for the spatial resolution.

The intensity distribution in the image of a point source is called the ”point spread

function” (PSF) and is a characteristic for the optical system. If a constant phase

φ0 is added to the incoming wavefront the exit amplitude Atel will additionally have

a constant factor eıφ0 while Itel is unchanged. An off-axis source (by the angle θ0)

creates a tilted incoming wavefront and results in a shift of the output intensity

distribution by θ0f . Thus the piston (i.e. the first Zernike mode shape) does not

change the image at all for a single aperture telescope and a tip/tilt error (the second

and third Zernike mode shape) only moves the image without changing the shape.

Higher order aberration degrade the image quality.

Equation (2.8) is mathematically the 2-dimensional Fourier transformation of an aper-

ture function with value 1 inside the aperture and 0 outside. This can be generalized
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defining a complex pupil function P (r, ϕ) = P (r, ϕ)eıkW (r,ϕ) in the polar coordi-

nates (r, ϕ), where k = 2π/λ is the wave number for the wavelength λ, W (r, ϕ) is

the wavefront error and P (r, ϕ) is the transmittance of the aperture, which is 1 for

completely unobscured regions and 0 for fully obscured points. The obstruction and

wavefront errors caused by a real optical system are dependent on the pupil geometry

and obstructions (e.g. the secondary mirror M2) as well as the geometrical aberrations

of mirror shapes and diffraction effects due to defects in optics surfaces or dust. It can

be shown (see [21]), that the PSF of a point source is the two-dimensional Fourier

transformation of this complex pupil function and hence, the optical system is fully

described by the PSF. The image of a source with an arbitrary spatial brightness dis-

tribution can be computed by the convolution of the (arbitrary) intensity distribution

with the PSF of the system. Wavefront errors of the incoming light can be handled

by adding theses additional errors to the complex pupil function, i.e. by multiplying

P (r, ϕ)eıkW (r,ϕ) with, for example, the atmospheric error eıkWatm(r,ϕ). This results in

a convolution in the image plane.

To evaluate an optical system the previous results allow to consider point sources only

without loosing generality. Errors can be toleranced by the PSF, since considering

small optical aberrations the PSF will be dominated by diffraction effects and not

remarkable change. With increasing aberrations the PSF will change its shape and

the intensity will be spread onto a wider area. The ratio between the amplitude of the

actual PSF to the one of an ideal image is called the Strehl ratio and is a measure

for image quality,

Strehl ratio = 1 −
(

2π

λ

)2

(∆φ)2, (2.10)

where ∆φ is the rms wavefront error in fractions of wavelength (for Strehl ratios

> 0.5). A diffraction limited optical systems where the diffraction effects are dominant

and geometric errors can be neglected, requires a Strehl ratio larger than 0.8. This

equals an rms wavefront error less than λ/14.

2.2.3 Stellar interferometers

In stellar interferometers the light collected by two or more spatially separated tele-

scopes is combined. Figure 2.5 shows the intensity distribution for a source per-

pendicular to the plane of the both subapertures with diameter D and distance B.

Analogously to equation (2.6) the contributions of the individual wavelets can be

added respectively integrated:

Aint(θ) =
∫

aperture1
eıkθζdζ +

∫
aperture2

eıkθζdζ

=
[
eıkθB/2 + e−ıkθB/2

] ∫ D
2

−D
2

eıkθζdζ

= 2 cos(kθB/2)Atel(θ)

(2.11)



20
CHAPTER 2. MAJOR COMPONENTS IN TELESCOPE SYSTEMS FOR

INTEGRATED MODELING

Figure 2.5: Simple model of an interferometer with baseline B and subaperture diam-

eter D. The left graphic shows the intensity distribution, that is generated

by the two subapertures in the focal plane for monochromatic light. The

right graphic shows the dependence of the intensity at a beam combiner

from the OPD for finite spatial bandwidth with a typical fringe pattern.

Iint(θ) = 2Itel(θ)[1 + cos(2πθB/λ)] (2.12)

Figure 2.5 left displays the result for monochromatic light with an envelope function

which equals the intensity pattern of a single aperture and the faster oscillating

harmonic term 1 + cos(2πθB/λ). The first zero Iint(θint) = 0 is reached for θint =

λ/(2B), which is also the FWHM.

Hence a stellar interferometer allows a resolution which would correspond to an aper-

ture diameter of the baseline length. This allows, e.g., a very precise localization of

unresolved point sources on the sky.

A more realistic configuration for a stellar interferometer is shown in figure 2.5 on the

right. The two apertures are separated by a baseline vector B and pointing towards

a point source located in s (with direction s0 = s/|s|). After arriving at the aperture

the light has to pass through the telescope, the relay optics and the adjustable delay

lines to be combined with the light of the other interferometer arm. In the beam

combiner the total optical path difference OPD between both arms is composed of
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the external component OPDext = s0 ◦ B and the internal OPDint = d1 − d2. The

arriving electric fields will have the phases:

φ1 ∼ eık(d1+s0◦B)eıωt, φ2 ∼ eıkd2eıωt (2.13)

With similar conditions in both arms the net field resulting from a superposition is

given by:

φnet = φ1 + φ2 ∼ e−ıωt
(
eık(d1+s0◦B) + eıkd2

)
(2.14)

and hence, the time-averaged power is proportional to:

P ∝ φ∗
netφnet = 2(1 + cos k(s0 ◦ B + d1 − d2)) (2.15)

Neglecting loss inside the telescopes with aperture A each and including F , the

incident power per area, gives:

P = 2AF (1 + cos kOPDtot), (2.16)

where OPDtot = OPDext +OPDint = s0 ◦ B + d1 − d2. Thus, the resulting power

P for the monochromatic case is a harmonic function of the total OPD called inter-

ference fringes.

Considering a certain bandwidth ∆λ passed through the optics, the total power is

the integral over the spectrum:

P =

∫ λ0+∆λ
2

λ0−∆λ
2

2AFλ(λ)η(λ)[1 + cos(
2π

λ0
OPDtot)]dλ, (2.17)

where λ0 is the center wavelength of the band, η the finite efficiency in throughput

and k = 2π/λ0 the wave number. For a small band the efficiency and the spectral

intensity Fλ (in units of power per area per wavelength) can be assumed to be constant

η(λ) ≈ η0, Fλ(λ) ≈ Fλ0 .

P (OPDtot) = 2AFλ0η0

∫ λ0+∆λ
2

λ0−∆λ
2

[1 + cos(2π
λ0
OPDtot)]dλ

= 2AFλ0η0∆λ
[
1 + sinπOPDtot/Λcoh

πOPDtot/Λcoh
cos k0OPDtot

]
= 2AFλ0η0∆λ [1 +Mcoh(Λcoh, OPDtot) cos k0OPDtot]

(2.18)

with Λcoh = λ2
0/∆λ. Thus, the collected power is a function again oscillating with a

term cos k0OPDtot as in the monochromatic case, but modulated in the amplitude

by the modulation function Mcoh(Λcoh, OPDtot) with characteristic coherence length

Λcoh. A narrow band corresponds to a larger Λcoh resulting in a wider modulation

function. The maximum amplitude is reached for OPDtot = 0, so the external OPD

must be compensated by the internal due to driving the delay lines suitable. A typical

fringe pattern with maximum contrast for OPD = 0 is shown in figure 2.5.
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The real OPD includes also phase delay in the incoming wavefront due to atmospheric

turbulence and piston terms caused by vibrations of optical components like M1 or

M2 due to wind load. To achieve the largest amplitude, these errors must be taken

into account for adjusting the delay lines, what is done in stellar interferometers with

a fringe tracking sensor and controller.

According to the von Cittert-Zernike theorem an arbitrary intensity distribution on

the sky can be reconstructed from the measurements over all possible baseline vec-

tors ([4]). Required is therefore the measurement of the complex visibility function

V (k,B), which is characteristic for the brightness distribution on sky (see also ap-

pendix D):

V (k,B) =

∫
A(∆s)F (∆s)eık(s◦B)dΩ, (2.19)

with the wave number k, the baseline vector B, the aperture area A, the incident

power per area F and the position on the sky s.

To determine the visibility, the output power is measured, while the delay-line varies

δ according to a certain OPD modulation scheme. To operate the stellar interferom-

eter the major requirement is to adjust the OPD compensating for all internal and

external OPDs caused by the geometry of observation or disturbances. The higher

order wavefront errors have also negative effects, as they reduce the contrast in the

output fringes.

The essential advantage of an interferometer is the high resolution, which is achieved

by synthesizing a large telescope of diameter of the baseline distance by smaller

aperture diameters. This allows a precise astronometrie measuring the position of a

start or the stellar diameter.

2.2.4 Comparison and summary of wavefront errors

Concluding the effects of wavefront errors onto the image, single aperture telescopes

have to be considered separated from stellar interferometers. In single aperture op-

tics piston terms in the wavefront have no effect onto the image and the tilt terms

cause only an image motion. The higher order errors generate image blur. Especially

a changing of the wavefront curvature (called defocus) cause a variation in the in-

tensity, called scintillations. For interferometer the compensation of piston differences

between the individual subapertures is essential, as the maximum contrast is reached

for OPDtot = 0 and the fringes disappear for large OPDs. Uncompensated residual

OPDs cause a shift of the fringe packets. The tilt terms and higher order aberrations

result in a loss of efficiency, which results in lower fringe intensity at the instrument.

A method of “cleaning” a wavefront removing high-order wavefront errors before

beam combination is modal filtering, where the light is coupled into an optical single
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mode fiber. Exiting the fiber the light is in phase with a certain amplitude. However,

wavefront errors cause loss in the efficiency of coupling the electric field into the fiber.

2.3 Mechanical structure of telescopes

The major task of the mechanical structure of telescopes is to support mirrors re-

spectively optical instruments and to keep the optics on fixed positions within close

tolerances. To satisfy the requirements of diffraction limited optics, these tolerances

would be of the order of λ/28 since OPD ≈ 2 ∗ ∆zmirror for a mirror displacement

in the optical axis of ∆zmirror. Moreover the structure must incorporate mechanisms

to provide pointing and tracking.

In former times the constructions had to keep the rms wavefront errors caused by

changing gravitational effects due to changing mass and stiffness distributions while

tracking below λ/14 to allow diffraction limited imaging. Hence telescope tubes of

parallelogram-type were built, which keep even for varying gravity load the tilt of the

secondary mirror M2 small. In our days active optics compensate for such pertur-

bations of low frequency and therefore the main goal for the mechanical structure

is achieving high stiffness and high natural frequencies, which implies a low mass

construction, while parallelogram type structures are still used to keep the actuator

stroke small. A high natural frequency is not only desired because of the relation to

good stiffness, but also due to the achievable bandwidth for tracking, which is limited

with a few of the first relevant frequencies of the structure. An important constraint

is, of course, the optical path, which has to be as less as possible covered with respect

to the obstructed area as well as to the obstructed shape, which can cause diffraction

effects in the image.

Achieving high natural frequencies, i.e., a high stiffness at low mass, is relatively easy

for small systems, but difficult for large systems due to scaling laws. Table 2.1 shows

the scaling of mass, stiffness, eigenfrequency and significant loads dependent on the

size.

The scaling laws show that a large specific stiffness E/ρ is desirable, which is only

depending on the material. To exceed the ratio of E to ρ of steel requires usually

very expensive materials like CFRP or Beryllium, which are therefore limited to space

applications or active secondary mirrors, where minimum mass is a main goal. More-

over a high Youngs modulus E is of advantage as it increases (linearly) the stiffness,

reduces the deflection due to an external force like the wind load and helps to keep

the total material volume smaller. Besides the specific stiffness and Youngs modulus

the scaling laws are governed by the characteristic telescope dimension L. Though

stiffness is rising with size, larger structures suffer from faster increasing loads like

wind load or self weight and at the same time decreasing eigenfrequencies. That is

the reason why gravity effects become more important. In addition to this the wind
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quantity symbol formula scaling low

mass m ρ ∗ V ρL3

stiffness K Force / Displacement EL

eigenfrequency f = ω
2π

f ∝√
K/m

√
E/ρ

L

gravity deflection (self load) ∆g gm/K L2

E/ρ

wind deflection ∆w Fw/K = cD
ρ
2
U2A/K L

E

Table 2.1: Scaling lows for structures. (Typical dimension L, density ρ, Youngs mod-

ulus E, velocity U

load is even increasing with falling frequency and therefore the dynamic effects due

to wind excitation are more critical for larger telescopes.

Thus more attention must be paid on the design of the telescope structure for larger

systems and as the structural dynamics of the telescope is shifted to lower frequencies,

including this dynamic effects into an optical simulation becomes essential.

The common construction for large telescopes is a truss structure since frameworks

provide a high stiffness especially for local forces while the area of attack for the

wind load is relatively small. The mathematical description of mechanical structures

is explained in chapter 3.1.

Figure 2.6: Frequency dependence and order of wavefront errors caused by different

disturbances. (according to [1, p. 312])
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2.4 Control loops

In telescopes control loops have an essential role to operate the systems, which

all must satisfy general requirements like stability, robustness, disturbance rejection

and efficiency within the desired bandwidth. There are several control tasks such

as pointing and tracking, air conditioning or thermal control. These examples are

all not directly dealing with image quality and are hence out of the scope here.

The systems controlling optical quality are active and adaptive optics. The active

optics compensate for quasi-static and low frequency errors (up to the order of some

Hz), which are caused by gravitational or thermal effects. Usually the main optics

like the primary mirror M1 or the secondary M2 are used for active optics. Since

adaptive optics compensates for wavefront errors with higher frequency, light and

relatively flexible mirrors (with respect to rigid mirrors of the main optics) are required

(deformable mirrors), which are usually smaller in size. Figure 2.6 shows the effects

of the different environmental disturbances with temporal frequency and the spatial

degree of aberration. The highest frequency terms with also the highest spatial degree

of aberration are caused by the atmospheric turbulence. Wind buffeting is smaller in

frequency and causes mainly wavefront errors of the lowest orders. Thermal effects

and gravitational load change very slowly.

Different control concepts exist, which can be divided into feedforward control, local

feedback control and global feedback control. For feedforward control a disturbance

is measured and if the behavior of the system is known, the disturbance effects can

be fully compensated without measuring the output error. The major advantage of

feedforward is the high bandwidth and a possible simple controller whereas modeling

errors are not measured and can result in an offset. Examples for the application

of feedforward control could be active optics compensating for gravitational loads

while tracking (quasi-static), since the structural stiffness does not change much.

The high bandwidth could be used for compensating for wind load by measuring the

wind velocity upstream to predict the expected effects and steer against them before

arriving.

In local feedback loops the error is measured within one component and directly

compensated. Advantages are a high bandwidth while avoiding a steady state error

by using an integral term in the controller. An example could be the control of mirror

segments due to the signals of the edge sensors, which give very high accuracy. One

drawback is that small errors within one component can add up over all components

to a larger global error and often sensors suffer from drift for long measurement

periods.

This is avoided in a global feedback loop, where a wavefront sensor measures the error

of the complete wavefront. However these controllers are often complex systems and,

as the reference signal is usually a faint star, the bandwidth of the sensors is limited.
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A combination of the different control concepts allows often to benefit from all advan-

tages while compensating the drawbacks with the other systems. Different wavefront

sensors are used, one for active optics acting on the main optics and a different one

for adaptive optics acting on a deformable mirror.

2.5 Disturbances

The main disturbance for ground based telescopes is the atmospheric turbulence

distorting the incident wavefront. Suffering from the turbulence the angular resolution

of a ground based telescope in the visible is equivalent to an aperture diameter of

10-20cm. Only the application of adaptive optics allows better image quality. [20, 1]

2.5.1 Quasi-static and dynamic disturbances

The atmospheric turbulence directly spoils the incident wavefront, whereas many

other disturbance sources act on the telescope structure or the mirror structure irri-

tating the image indirectly. The main sources on ground are gravity effects, thermal

loads, wind load and seismic excitation (depending on the site).

Thermal load due to temperature variations or thermal gradients within the structure

and gravity effects, which are caused by changing distributions of weight and stiffness

while tracking, are quasi-static loads, which are mainly the concern of the telescope

design with construction and material selection, but also compensated by active op-

tics. The loads caused by wind and seismic activity are of higher frequency and hence

exciting the structure dynamically.

In space applications different disturbances like gravity gradients, solar pressure and

excitations inside the spacecraft become important, while not suffering from at-

mosphere decreasing the seeing and generating wind loads. In the following the dy-

namic disturbances for ground based telescopes will be explained.

2.5.2 Vibration sources for ground based telescopes

The main dynamic disturbances acting on telescope structures are wind forces and

base excitation. Moreover internals disturbance sources exist like motors, hydraulic

systems, etc. Special care must be put on avoiding internal vibration sources e.g. by

mounting motors on large mass concrete blocks, which are supported by soft springs to

isolate the telescope from the vibration forces. For the telescope design the expected

loads are divided into survival loads and operational loads for both the wind velocity

and seismic excitation.
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The survival loads are relevant for the telescope strength and instrument robustness,

whereas the telescope performance must not degrade under the required level for

operational loads. Table 2.2 shows exemplarily the requirements of ESO for the VLT

on Paranal.

Wind load

Wind load is caused by the inertia and friction of the flow creating both static and

dynamic forces F on the structure. The static forces can be described with the formula

F =
ρ

2
U2AcD, (2.20)

with the force F , density ρ, wind speed U , the dynamic pressure q = ρ
2
U2, char-

acteristic cross section area A and the drag coefficient cD. cD, the fluid mechanic

dimensionless characteristic for drag, is a function of the geometry and the Reynolds

number Re 4

The dynamic forces can be caused by both wind gustiness, i.e. variations of the wind

velocity U , and by vortex shedding. Vortex shedding is caused by the flow of the air

around individual members with periodic separation of vortices (Von Karman vortices)

resulting in alternating forces perpendicular to the wind direction. The resulting forces

can be of the order of the static wind loads and excite vibrations of the structure.

The wind gustiness due to turbulence generates a varying load in the wind direction.

Different analytical and empirical models exist for describing the power spectrum of

the turbulent wind velocity. One commonly used is the Von Karman spectrum:

Su(f) =
4I2UL

U(1 + 70.8(fL/U)2)5/6
[
(m/s)2

Hz
], (2.21)

where Su(f) is the PSD of the wind speed, U the mean wind velocity, f the frequency

and L the outer scale, which is a characteristic length for the turbulence and which

4Re = UL/ν describes the relation between the influence of inertia compared to the influence of

friction inside the flow (with velocity U , characteristic length L and kinematic viscosity ν).

Survival wind speed 50 m/s

Survival earthquake 8.5 Richter

Maximum operational wind 20 m/s

Maximum operational wind gust 30 m/s

Maximum operational earthquake 7.75 Richter

Table 2.2: Design specification for the VLT of ESO on Paranal [22]
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is typically 80m in open air and smaller inside a dome. (E.g. for an analysis of wind

effects for the VLT L=20m was chosen for the top unit with top ring (TR) and the

tube (TU) and L=3.2m was chosen for the mirror M1.) The turbulence intensity

I = σu/U is a measure for the variation of the wind speed (e.g. I = 16% for the

VLT study).

The resulting power spectrum for the wind force F is similar to Su(f):

SF (f) = 4

(
F

U

)2

Su(f)χ2
a(f); χa(f) =

1

1 +
(
2f

√
A

U

)4/3
, (2.22)

with the static force F , the characteristic area facing the wind A and the aerodynamic

attenuation factor χ2
a(f), which reduces the effective wind load due to a partially

decorrelation over the telescope area. For larger telescopes χ2
a(f) can significantly

reduce the effective force. Figure 2.7 shows the aerodynamic attenuation factor. On

the left graphic the rising attenuation for increasing frequency can be seen. The

corner frequency is depending on the area A. The right plot shows the attenuation

with increasing area A while keeping the frequency and the velocity constant.

In figure 2.8 two examples for the PSDs of wind according to the Von Karman

spectrum are given which correspond to the values chosen for a VLT model. For

larger L/U (L = 20m, U = 10m/s, which corresponds to TU and TR) Su(f) has

higher values for small frequencies, but the corner frequency, where the PSD starts to

fall, is reached at a lower frequency. The second graph with L = 3.2 and U = 10m/s

Figure 2.7: The aerodynamic attenuation factor is a function of the frequency, the

effective area and the wind velocity. The left plot shows the frequency

dependence, the right plot the attenuation for large effective areas.
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represents the conditions at mirror M1. Due to the minor L the initial power is smaller

until the other graph is intersected at about 0.2Hz and is then higher, since the corner

frequency is shifted to the right. Including the attenuation factor due to an effective

area of A = 100m2 shows the significant reduction for higher frequencies.

For a simulation of the dynamic effects of the wind load, the approach and the effort

is much depending on the level of detail and the effects to be studied. If, e.g., only

the global effects like the total moment causing a tilt on the tube and on mirror

M2 is under research, a rougher computation of the dynamic wind forces is sufficient.

However, if for example the effect of wind gusts moving over the individual segments of

M1 is simulated, the spatial and temporal distribution of forces should be modelled in

more detail what will probably require a computational fluid dynamics (CFD) analysis

or wind tests.

For a rougher computation the static wind load can be computed according to a civil

engineer norm, e.g. the German DIN 1055-4. A wind profile over the telescope height

over ground is calculated. The structure is split into different components and for each

component the aerodynamic drag coefficient is determined from a table. Including

an attenuation factor for mutual obstruction, the static forces can be computed for

all sections. To analyze the total effect of wind load, the coherence of the different

sections should be considered. A common formula for the coherence over the distance

is 〈u(r), u(r + ∆r)〉 = exp(−Cf ∆r
U

) with a constant C between 4 and 8 for typical

outdoor conditions 30m above ground [23].
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Figure 2.8: PSD of the wind velocity for the Von Karman turbulence model. For high

frequencies the PSD decreases ∝ f−5/3
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Figure 2.9 shows the transfer functions and resulting PSDs for the mirror motion in

y-direction and the OPL variation due do wind load on mirror M1 of the UT of VLT.

As can be seen in the transfer functions (left) a mechanical structure behaves like

a low pass filter with falling amplitude for higher frequencies. This and the typical

wind force profile with decreasing amplitude for higher frequencies are the reasons

why the telescope stiffness and first modes have the largest contribution to the total

wavefront error due to wind load. This has to be considered for the condensation of

a dynamic telescope model.
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Figure 2.9: Wind load (in y-direction) onto mirror M1 of the UT of VLT: The left plot

shows the transfer function for the mirror displacement in y-direction and

the OPL. The right plot shows the resulting PSDs assuming an respective

wind PSD profile for wind velocity U = 10m/s.

Seismic load

Seismic load is an excitation of the telescope structure due to acceleration of the

foundation, which can have different sources like the natural seismic noise and seismic

events with larger amplitude. They can also be caused by a driving car close to the

observatory or even by walking persons or wind load exciting the enclosure.

Many of the best observation sites are located on seismic active regions like Paranal

or Hawaii. The magnitude of the different excitation sources must be investigated

and the effects evaluated.

An example for a typical seismic event of Paranal, which type is expected to occur

three times per night, is shown in figure 2.10. Unlike the wind load the ground

acceleration is decreasing with falling frequency. A large amplitude can be found from

5 to 100 Hz with about the same order of magnitude. This is critical, since the first

telescope modes are laying inside this region with high excitation amplitude.
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Figure 2.10: Typical seismic event at Paranal. This type of event occurs three times

per night in mean.

2.5.3 Turbulence

Atmospheric Turbulence

The atmosphere is never fully calm as wind and convection induces turbulence. The

Reynolds number Re = UL/ν (fluid velocity U , characteristic length L and kinematic

viscosity ν) describes whether the flow is laminar or turbulent. Since L is between

several meters and kilometers for the atmosphere and ν = 1.5 · 10−5m2/s of air, Re

exceeds the critical value already for velocities of a few m/s (Re > 105) and therefore

the flow is nearly always turbulent.

The turbulence causes a mixing of layers of different height with varying temperature,

pressure and density. The index of refraction n is a function of the density and there-

fore of the pressure and temperature, where effects due to the temperature variations

are dominant. If an air parcel moves to a different height without exchanging energy

with the environment, the density, temperature and pressure changes adiabatically.

The difference of the refraction indices of the new air parcel and the environment are

dependent of the temperature gradient and there is only no difference for layers hav-

ing the adiabatic lapse rate as temperature gradient (∂T/∂H = γd = −9.8K/km).

For inclining height the density and also the refraction index decrease. That is the

reason why the effects due to atmosphere higher than 20km can be neglected.
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The turbulence is initiated from shear between two layers due to wind or buoyancy

causing large eddies of the size of the outer scale L0 ≈ 1..100m. These large eddies

generate smaller ones nearly without dissipation, but only by redistribution of energy.

This process continues in the so called “inertial subrange” until in smallest eddies

the shear rate becomes large and the dissipation of kinetic energy into heat becomes

the dominant effect. This dissipation subrange is of the order of the inner scale

l0 ≈ 10−3m. Thus the energy flow rate ε0, describing the transfer of energy through

a structure of a size l, is constant: ε0 = E(L)/t(L) = E(l)/t(l) = (mU2/2)/(l/U) =

const. Consequently turbulence intensity is a function of ε0 and the spatial frequency

κ describing the eddy size.

This turbulence model is called the Kolmogorov model and the velocity distribution

is characterized by the constant C2
v which defines the structure function:

Dv(R1, R2) = 〈|v(R1) − v(R2)|2〉 = C2
v |R1 − R2|2/3 (2.23)

It can be shown that the variations of temperature and refraction index are also

described by a structure function like equation (2.23) only with the constants CT re-

spectively Cn, which depend on Cv. The phase shift produced by the varying refraction

index n is

φ(x) = k

∫ ∞

0

n(x, z)dz (2.24)

This integral over the refraction index is characterized by the Fried parameter r0
taking into account the zenith angle γ:

r0 = [0.423k2(sec γ)

∫
C2

n(h)dh]−3/5 (2.25)

The Phase-Coherence function B(r) can be expressed with r0:

B(r) = 〈exp(ı[φ(x) − φ(x+ r)])〉 = exp

(
−3.44

(
r

r0

)5/3
)

(2.26)

The Fried parameter characterizes seeing and has a physical meaning: “r0 is the

diameter of the area in the incoming wavefront where the rms of the phase fluctuation

is 1 radian (i.e., within which the beam is essentially in phase).”([1, p.448]) For a

diffraction limited image, r0 must be about 1.6 times the aperture diameter. After

removing the wavefront tilt, the observation would be without any significant effects

due to atmospheric turbulence. For large telescopes with aperture diameters D � r0
the FWHM of the image is given for the wavelength λ by [1]

FWHM = 0.98
λ

r0
(2.27)

According to equation (2.25) r0 is a function of the wavelength (respectively of

k = 2π/λ): r0 ∝ λ6/5, what has to be considered for the seeing, i.e., the seeing is
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decreasing slowly with increasing wavelength ( λ
r0

∝ λ−1/5). For usual wind velocities

U of some meters per second the turbulent atmosphere can be considered as frozen

and a coherence time τ0 can be defined as the time required to move a coherent ray

bundle over a certain point:

τ0 =
r0
U

(2.28)

Due to averaging over the area for larger apertures at certain r0 the tilt decreases while

the rms increases. It is possible to express the wavefront error caused by atmospheric

turbulence in terms of Zernike polynomials. However, an explicit form for the power

spectral density of the individual polynomials cannot be given, but they can be given

in an integral from, which has to be evaluated numerically. The Kolmogorov power

spectrum of the phase fluctuations can be calculated to

Φ(k) = 0.023r
−5/3
0 k11/3 (2.29)

The variance of the phase is the integral over Φ(k), which is not finite due to the

piston term. Assuming a von Karman spectrum with finite outer scale gives also a

finite variance.

A possible concept for computing the required wavefront errors in terms of Zernike

coefficients for an array of apertures like for an stellar interferometer consists of several

steps:

• Generate a large phase screen due to the Kolmogorov spectrum according to

equation (2.29).

• This phase screen is assumed to be frozen and is moved with the wind velocity

U over the site. Therefore the required phase screen must have the size of the

site plus a length l = Ut, where t is the time, which will be simulated. For

each time the section of the phase screen covering the respective aperture is

extracted.

• From the time history of individual phase screens the Zernike coefficients can

be calculated.

This approach includes also correlation effects due to the separation of the individual

apertures by the baselines.

Due the baseline distance between the telescopes this requires a very large phase

screen reducing the possible spatial resolution. That is the reason why in a modified

concept analytical formulas are used for the piston and tip/tilt term considering the

correlation effects due to the baseline vector, whereas the time-histories for the higher

order aberrations are generated without correlation effects.
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A formula for the piston effects for frequency f is

SOPD(f) =

⎧⎨
⎩ Cf

− 8
3

Kol

(
f

fKol

)− 2
3
; f < fKol

Cf− 8
3 ; f ≥ fKol

fKol =

(
6.88

C

(
λ

2π

)2(
B

r0

)− 3
5 5

18

)− 3
5

(2.30)

with the constant C = 21.38e−3λ2T
−5/3
0 , the Kolmogorov cut-off frequency fKol, the

baseline B, the atmospheric coherence time t0 = 0.314∗r0/U at reference wavelength

λ and wind velocity U . The coherence time T0 is a different definition related to t0 as

t0 = T0/2.58. To include the averaging effects of the aperture diameter D a second

cut-off frequency fc is computed and SOPD adjusted to SD
OPD for frequencies f > fc:

fc =
3fKolB

2D
; SD

OPD(f > fc) = SOPD
f

fc

−3

; f > fc (2.31)

[24, 25]

For the tilt without including correlation effects due to the baseline the power spectral

density can be given as:

ST ilt(f) = Cf−2/3; C =
4 · 0.804

0.423 · 4π2
λ2r

−5/3
0

(
U−13

)−1/3
(2.32)

with the averaged velocity U−13 = [< C2
N · v−1/3 > / < C2

N >]−3 in [m/s] (typical

value U−13 = 4.4m/s).

Again including averaging effect of the aperture gives a cut-off frequency fc and a

modified spectrum Sa
T ilt:

Sa
T ilt(f > fc) = Cf 3

c f
−11/3; fc =

0.011

0.804
D−3U

8/3

83

(
U−13

)1/3
; (2.33)

with the averaged velocity U 83 = [< C2
N · v8/3 > / < C2

N >]−8/3 in [m/s] (typical

value U 83 = 8.0m/s).

[26, 20, 1, 3, 27]

Internal turbulence

In stellar interferometers the rays have to be directed from the telescope primary

mirrors to the beam combiner. Depending on the conditions inside, e.g., the delay

line tunnel, internal turbulence can give significant contributions to the wavefront

error. For the OPD control this has to be considered, but is no serious problem, if

the OPD sensor is located at the beam combiner, i.e., it directly measures the errors.

The wavefront sensor is usually located inside the telescope and therefore higher order

errors like tilt cannot be corrected and degrade thus directly the efficiency.

To include this disturbance into simulations, measured or computed PSDs can be

applied. The effects of internal turbulence can be avoided by vacuum tunnels or by

advanced air conditioning inside the tunnel.
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2.5.4 Noise

Each sensor and actuator suffers more or less from noise in signals. The relevancy

can be much different and depends on the respective component. In a simulation

the noise (white or colored) can be including by adding random signals to the sensor

signals or actuator output.
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3 Model reduction for dynamic

structural models

This chapter focuses onto the modeling of a telescope structure for use in an in-

tegrated model. After the governing equations for structural dynamics are shortly

repeated, formulations for applying input loads and provide outputs are given. Sys-

tem size and accuracy is crucial for a time-dependent simulation and hence model

reduction is dealt with. Especially balanced model reduction is explained in detail,

while other methods are shortly described. Finally examples of reduced models for us-

age in integrated modeling are given applying the toolbox SMI, which was developed

at the Institute of Lightweight Structure for model reduction of mechanical structures.

3.1 General mathematical description of telescope

structures

For the mathematical description of telescope structures some limiting properties are

assumed, which are generally in a good approximation satisfied by telescope struc-

tures:

Linearity The assumption of linearity means both linearity of the material, i.e. a

material with linear elastic constitutive equations, and the geometric linearity.

Geometric linearity implies only small deformations of the structure and e.g. no

stability problems, where the deformed structured has an impact on the stiffness

distribution. Consequently the mass and stiffness matrices do not change with

the load.

Time-invariance The mathematical model describes only one configuration of the

telescope. Changes in mass and stiffness distribution due to e.g. tracking are

not covered within one model. A possible solution is the analysis of typical

and worst case configurations to estimate the characteristics of intermediate

configurations.

Viscous damping In telescope structures the modal damping values are in general

small (ζ < 5%, conservative assumption for modeling ζ = 0.75..1%) and hence
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the exact mechanism and distribution of damping is not important, but can be

approximated by a viscous (=velocity proportional) symmetric damping.

Passivity The system matrices must be not-negative definite. Therefore no self-

excited vibration is allowed like flutter effects, and the corresponding undamped

system is a conservative system. Neglecting gyroscopic effects is possible since

the rotation for tracking is very slow for telescope systems.

The equation of motion can be set up in different ways, e.g. for simplified structures

with the method of Ritz or Galerkin (see [28]). For typical telescopes the mechanical

structure is modeled with finite elements (FE) and the software generates remotely

the equation of motion.

3.1.1 Finite element modeling

Finite element modeling is the most powerful tool to analyze the mechanical properties

of telescope systems. Depending on the level of accuracy and the subject of research

very rough models with point masses, bars and beams or detailed models with shell

and volume elements can be built, which allow a better geometric approximation

and more realistic distributions of stresses over the structure. The structure of the

resulting equations is not changing with the level of detail, only the number of degrees

of freedom (DOFs) is varying.

For a static analysis the resulting linear equation system reads:

Kx = f (3.1)

with the stiffness matrix K, the vector of generalized displacements x and the ex-

ternal generalized forces f . For large telescope structures the detailed FE models

have typically some hundred thousands of DOFs. In the FE software algorithms are

included which are specially optimized for solving this equation system. Directly ex-

porting the stiffness matrix to solve it for an external simulation does not make sense

in general. The static load should be split into a set of basic cases to be solved within

the FE software. Only the relevant results (e.g. displacements of the mirrors) should

be exported and superposing these the general outputs in the simulation should be

computed.

For dynamic simulations the equation of motion for an elastic mechanical structure

fulfilling the assumptions above in an absolute coordinate system reads:

Mẍ + Dẋ + Kx = f , with (3.2)
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x vector of generalized displacements in an absolute coordinate system

f vector of generalized forces

M symmetric mass matrix

D symmetric damping matrix

K symmetric stiffness matrix.

The mass, damping and stiffness matrices are all semi-positive definite symmetric

matrices and if the structure is fully supported, the stiffness matrix is positive definite.

This system of linear differential equations can be solved in different ways. The most

general approach is the direct integration in the time domain, as this allows also

geometric or other non-linearities (the matrices are changing depending on the dis-

placement). However, the solution requires high computational effort and represents

only one time-history for the input load.

For linear systems with constant matrices the harmonic response gives a result with

more general meaning. By assuming both the inputs force f = 
(f0e
jωt) and the

response x = 
(x0e
jωt) as a sinusoidal function with the (complex) amplitudes f0

respectively x0, equation (3.2) can be evaluated as a simple linear equation system

with a complex dynamic stiffness matrix K̃ = −Mω2 + jωD+K for each frequency

point.

A more efficient method is the transformation of equation (3.2) into the modal space

and the modal superposition for the frequency response and time response: The

natural frequencies ωi, the modal damping ζi and the mode shapes of the free vibration

{φi} are computed from the homogeneous equation [M]{ẍ}+[D]{ẋ}+[K]{x} = 0

assuming x = 
(x0e
jωt). Expressing the displacement x in terms of the mode shapes

{φi} as {x} = [φ]{q} results in the transformed equations:

{q̈} + [diag(2ζiωi)]{q̇} + [diag(ω2
i )]{q} = [φ]T{f} (3.3)

with the normalization [φ]T [M][φ] = [I] and [φ]T [K][φ] = [diag(ω2
i )], [φ]T [D][φ] =

[diag(2ζiωi))].
1

In general a much smaller number m of modes yields a very good approximation of

the dynamics of the complete structure with many more DOFs n.

For time-dependent simulation it is a standard to describe the dynamics of a system

in state space format with the state equation ż = Az+Bu and the output equation

y = Cz+Du. A state space realization with a force distribution {f(t)} = [PL]{u(t)}
1The structure of the damping matrix D requires some constraints to allow the diagonalization

with [φ]T [D][φ]. For lightly damped structures this is not relevant. A possible realization of D
is e.g. D = αM + βK with the modal damping for mode i ζi = α

2ωi
+ βωi

2
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and relevant outputs (e.g. sensor outputs) as a linear combination of the nodal dis-

placements {y(t)} = [PSx]
T{x(t)}+[PSẋ

]T{ẋ(t)} for the modal equation of motion

(3.3) is:

d

dt

⎧⎨
⎩ q

q̇

⎫⎬
⎭ =

⎡
⎣ [0] [I]

−[diag(ω2
i )] −[diag(2ζiωi)]

⎤
⎦
⎧⎨
⎩ q

q̇

⎫⎬
⎭+

⎡
⎣ [0]

[φ]T [PL]

⎤
⎦ {u};

(3.4)

y = [[PSx

T ][φ] , [PSẋ

T ][φ]]

⎧⎨
⎩ q

q̇

⎫⎬
⎭+ [0]

(if y = displacement

of all DOFs

then [PSx]
T = [I])

(3.5)

Instead of this realization the following one is recommended, as the A-matrix consists

of Jordan blocks resulting in a band structure and it is avoided to have numbers of

order 1 and of order ω2 inside this matrix:

d
dt

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...⎧⎨
⎩ωiqi

q̇i

⎫⎬
⎭

...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

. . . [0]

[Ai]

[0]
. . .

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...⎧⎨
⎩ωiqi

q̇i

⎫⎬
⎭

...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎣

...

Bi

...

⎤
⎥⎥⎥⎦
{
u
}

{
y
}

=
[
· · · Ci · · ·

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...⎧⎨
⎩ωiqi

q̇i

⎫⎬
⎭

...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+
[

D
]{

u
}

, (3.6)

with:

Ai =

⎡
⎣ 0 ωi

−ωi −2ζiωi

⎤
⎦; Bi =

⎡
⎣ [0]

[φi]
T [PL]

⎤
⎦; Ci =

[
[PSx ]

T [φi]/ωi PSẋ
[φi]

]
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⎧⎨
⎩{q}
{q̇}

⎫⎬
⎭ respectively

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...⎧⎨
⎩ ωiqi

q̇i

⎫⎬
⎭

...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

2m× 1 state vector for 2m states and m modes

y k × 1 output vector with k outputs

u l × 1 input vector with l inputs

A 2m× 2m system matrix

B 2m× l control matrix

C k × 2m observation matrix

D k × l feedthrough matrix

φ n×m matrix of m mode shapes for n DOFs

PL n× l P −matrix for load sets

PS n× k P −matrix for relevant output DOFs

3.1.2 Handling disturbance inputs from wind and ground

Different kinds of disturbances and loads can excite vibrations on a telescope structure

like wind load, seismic excitation or actuator forces. In general the loads can be split

into the two groups displacements (respectively velocities or accelerations) and forces.

The forces like wind loads can directly be applied to the state-space equation (3.4).

However, for the displacement input the equation system (3.2) must be restructured.

In the equation of motion (3.2) the DOFs are partitioned into two groups

{x} = {{x1}T , {x2}T}T , with {x1} being the DOFs with unknown displacement

and {x2} being those with known displacement. Thus equation (3.2) becomes to:

⎡
⎣ [M11] [M12]

[M21] [M22]

⎤
⎦
⎧⎨
⎩ẍ1

ẍ2

⎫⎬
⎭+

⎡
⎣ [D11] [D12]

[D21] [D22]

⎤
⎦
⎧⎨
⎩ẋ1

ẋ2

⎫⎬
⎭+

⎡
⎣ [K11] [K12]

[K21] [K22]

⎤
⎦
⎧⎨
⎩x1

x2

⎫⎬
⎭ =

⎧⎨
⎩f1

f2

⎫⎬
⎭ (3.7)
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In equation (3.7) the displacements, velocities and accelerations corresponding to

{x2} are known. So the first row of the equation is:

[
[M11] [M12]

]⎧⎨
⎩{ẍ1}
{ẍ2}

⎫⎬
⎭+

[
[D11] [D12]

]⎧⎨
⎩{ẋ1}
{ẋ2}

⎫⎬
⎭+

[
[K11] [K12]

]⎧⎨
⎩{x1}
{x2}

⎫⎬
⎭ = {f1}

(3.8)

[M11]{ẍ1}+[D11]{ẋ1}+[K11]{x1} = {f1}− [M12]{ẍ2}− [D12]{ẋ2}− [K12]{x2}
(3.9)

The left side of this equation can simply be treated in modal coordinates with the

same modal data as the fully supported structure (ẍ2 = ẋ2 = x2 = 0). The inputs

x2, ẋ2 and ẍ2 are all depending on each other by derivatives respectively integrals.

Therefore only the acceleration is used as input and the velocity and displacement is

calculated with two extra states within the state space system.

Equation (3.9) is very general, as it allows an arbitrary distribution of forces and

displacements on all DOFs of the structure. However, the matrices M12, D12 and

K12 must be exported from the FE model.

In the special case of base-excitation due to seismic motion all ground fixed DOFs

approximately have the same displacements while the rotations are zero. The absolute

displacement of all nodes can be split into the displacement of the base and an

(elastic) relative displacement. 2:

{x}abs = {x}rel + {x}b (3.10)

{xb} =
[
{xb}T

1 , {xb}T
2 , {xb}T

3 , · · ·
]T

= Ecb{xb}1 (3.11)

{xb}i =
[
xbx, xby, xbz, 0, 0, 0

]T

(3.12)

Since the rigid body motion of an unsupported structure causes no direct elastic forces

and damping ([K]{x}r = [D]{ẋ}r = 0) using x1 = xrel1 + xb1 and x2 = xb2 the

equation of motion (3.7) can be written as:

[M11,M12]

⎧⎨
⎩
⎧⎨
⎩ẍrel1

0

⎫⎬
⎭+

⎧⎨
⎩ẍb1

ẍb2

⎫⎬
⎭
⎫⎬
⎭+[D11]

{
ẋrel1

}
+[K11]

{
xrel1

}
=
{
f1

}
(3.13)

[M11]
{
ẍrel1

}
+[D11]

{
ẋrel1

}
+[K11]

{
xrel1

}
=
{
f1

}
−
[

[M11] [M12]
]
[Exb]{ẍb}1

(3.14)

2The same is valid for rotations, but coupling terms have to be taken into account and therefore

this will not be used here.
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{x}abs = {x}rel + {x}b (3.15)

The state-space form of the system including rigid body modes r and flexible modes

f , force and base acceleration (uf respectively ub) as well as displacement and velocity

output reads:

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qr

q̇r

Ωifqf

q̇f

vb

v̇b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0] [I] [0] [0] [0] [0]

[0] [0] [0] [0] [0] [0]

[0] [0] [0] [Ωif ] [0] [0]

[0] [0] [−Ωif ] [−Ωifζif ] [0] [0]

[0] [0] [0] [0] [0] [I]

[0] [0] [0] [0] [0] [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qr

q̇r

Ωifqf

q̇f

vb

v̇b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0] [0]

[φr]
T [PL] [φr]

T [P̃B]

[0] [0]

[φf ]
T [PL] [φf ]

T [P̃B]

[0] [0]

[0] [I]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩ uf

ub

⎫⎬
⎭ (3.16)

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[φr]
T [PSx]

[φr]
T [PSẋ

]

[1/ωif ][φf ]
T [PSx ]

[φf ]
T [PSẋ

]

[Exb]
T [PSx]

[Exb]
T [PSẋ

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qr

q̇r

ωifqf

q̇f

vb

v̇b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ [0, 0]

⎧⎨
⎩ uf

ub

⎫⎬
⎭ ; (3.17)

with Ωif = diag(ωif), Ωifζif = diag(ωifζif) and P̃B = [M11M12]Exb.

Only one input is necessary for each set of base excitation. This is transformed by a

matrix Exb to all DOFs of the FE model. Analogously to equation (3.6) the system

can also be built of blocks for each mode improving the band structure of the system

matrix.
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3.1.3 Including actuators into a model

Actuators inside systems always create a pair of forces acting in opposite directions.

Dependent on the control algorithm and the actuator type, it can be decided between

a force and a displacement control. If the force is controlled, the open loop actuator

force must be independent of the displacements inside the structure. Considering an

actuator, which is connected with two points to the structure, one connection has

to be open for the open loop model. If the displacement is controlled, the open loop

force applied to the actuator is depending on the displacements of the structure,

since compressing the actuator causes a force proportional to the actuator stiffness.

Therefore, the open loop model needs the full connection of the actuator to include

its stiffness.

An example for the later are piezo-electric ceramic patches glued onto a mirror for

shape control. If the controller sends a certain voltage command to the patch, strains

and stresses inside the piezo are created in the very same way as due to thermal

expansions. The actuator force, which is really transmitted from the patch to the

mirror, is depending on both the applied voltage and the strain: FPiezoactuator =

c1U + c2ε. (see also [29])

An example for a force control are the bogie drives of OWL. The altitude bogies move

on rails which are fixed to the elastic structure. In the model the lateral and normal

stiffness terms of the bogies are included, while the direction along the rails is free.

Hence, the flexibilities of rails, the support structure and the actuators are included

and realistic displacements of the wheels can be computed, which in turn are required

for the friction models. Closing the control loop removes the rigid body mode for the

altitude rotation calculated in the modal analysis.

3.1.4 Best-fit outputs for rigid body motions of the mirrors

A required output of the mechanical model is the displacement and deformation of

each mirror to be used as input of an optical model. Depending on the model the

mirrors are assumed to be rigid in the optical model (i.e. they keep their geometrical

shape and only rigid body motions are possible) or also elastic deformations of the

mirrors are included. In the simplified assumption of rigid mirrors, the mechanical

model must deliver the translations and rotations of the whole reflector. If the reflector

is modeled as an elastic body within the FE-model, the rigid body motions can be

computed only in a best-fit sense. Allowing also deformations of the geometric shape

of the mirrors, it makes sense to compute the elastic deformations in terms of Zernike

polynomials relative to the new rotated and translated vertex position.
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Applying a linear optical model, this can be represented for six rigid body motions

per mirror and m Zernike polynomials by the equation:

δOM = Mopt ∗ p; N optical surfaces (mirrors) (3.18)

with p = [δx1, δy1, δz1, δθx1, δθy1, δθz1, δa1,1, · · · , δam,1, · · · , δxN , · · · , δam,N ]T

δOM resulting small variation of an optical quantity

Mopt linear optical sensitivity matrix

p 3 displacements, 3 rotations and m coefficients for the Zernike

polynomials Z1...Zm for each of the N optical surfaces

x, y, z, θx, θy, θz 6 DOFs of a rigid body mirror

ai,k Zernike coefficient belonging to Zernike polynomial i and optical

surface k

indices 1..N number of the mirror

indices 1..m number of the Zernike polynomial

The output equation of the statespace model ż = Az + Bu, y = Cz + Du yields

the vector p. This is not directly possible, if the mirror is an elastic component within

the structural model. Therefore C and D must be created accordingly.

To build the state space model, a matrix Poptics must be defined, which builds outputs

from the generalized positions z of the nodes [1..n] with the DOFs xi, yi, zi, θxi, θyi, θzi

of the FE-structure:

p = y = [Poptics]
Tz with z =

{
x1, y1, . . . , xi, . . . , θzn

}T

(3.19)

In this section only a matrix Prigid is derived, which delivers the best-fit rigid body

motion of the mirror. The figure 3.1 shows a rigid mirror in the initial position and

after a displacement and rotation. There are two coordinate systems. The inertial

fixed one is called I-system and has the point O as point of origin, the body fixed one

is called M-system, is fixed to the mirror, has the vertex V of the mirror as its origin

and is (here in the figure) initially aligned to the I-system3. As an example, a point

P on the mirror surface is regarded. After displacement all points of the mirror are

signed with a ’ (e.g.: P → P ′).

The position of the point P on the undeformed structure is:

rOP = rOV + rV P (3.20)

After the translation of the vertex V by rV V ′ and rotation by θ the position of P is

(P → P ′):
rOP ′ = rOV + rV V ′ + rV ′P ′ (3.21)

3In general the mirror co-ordinate system is not aligned with the global co-ordinate system. In

figure 3.1 the I-system and the M-system are only aligned for simplicity.
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Figure 3.1: Coordinate systems and notations

For small angles θ the displacement of point P is (see also Appendix E)

IrPP ′ =I rV V ′ −I rV P × θ (3.22)

In the vector equation (3.22) the two vectors IrV V ′ and θ are unknowns, whereas the

translation IrPP ′ of the point P (nodal displacement as result of the FE-model) and

the vector IrV P (geometry only) are known. This yields three equations for each point

Pi (three cartesian co-ordinates) and 6 unknowns altogether. However, the points Pi

on the mirror are not independent, because of the fixed geometry of the mirror. That

is the reason, why a first point gives three equations, the second one two only (the

distance to the first point is fixed: one constraint equation), the third one only one

further equation (fixed distance to two points: two constraints) and each further point

no further equation (fixed distance to three points and herewith to all other points:

three constraints). The equation system can therefore be solved with three points,

which are not collinear (three points define a plane in the 3-d space).

In practical the motion of the points is not only due to the rigid body motion of the

mirror, but also caused by an elastic deformation. Therefore the equation system can

no more be solved exactly for three points and so more than three points on the mirror

should be used and an averaged value should be computed for the displacement.
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To handle more than one point parallel, equation (3.22) is transformed into a matrix

notation for point Pi:

{IrPP ′}i =
[
[I][−R̃]i

]⎧⎨
⎩ {IrV V ′}

{θ}

⎫⎬
⎭ (3.23)

with the matrix [R̃]i being an operator building the cross product:

[R̃]i =

⎡
⎢⎢⎢⎣

0 −IzV P,i IyV P,i

IzV P,i 0 −IxV P,i

−IyV P,i IxV P,i 0

⎤
⎥⎥⎥⎦ (3.24)

For N points P1, . . . , PN this gives the equation system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{IrPP ′}1

...

{IrPP ′}N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭︸ ︷︷ ︸

3N×1

=

⎡
⎢⎢⎢⎣

[I] [−R̃]1
...

...

[I] [−R̃]N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
3N×6

⎧⎨
⎩ {IrV V ′}

{θ}

⎫⎬
⎭︸ ︷︷ ︸

6×1

(3.25)

which is an overdetermined linear equation system (for N > 2) of form {b}3N×1 =

[A]3N×6{x}6×1. The solution with the least mean square error can be derived by:

[Ax − b]T [Ax − b] = min!

⇒ x = (ATA)−1ATb = A+b

with A+ being the pseudoinverse of A.

However, this procedure is only valid, if all equations in the system have the same

relevancy, i.e. each point represents a structural part of an equal size. Otherwise each

row i in the equation system (3.25) should be multiplied by a weighting factor Si

(Si =
√
Ai: square root of mirror surface represented by the node i):

Si I{rPP ′}i = Si

[
[I][−R̃]i

]⎧⎨
⎩ {IrV V ′}

{θ}

⎫⎬
⎭ (3.26)

and with the vector

S = {S1, S1, S1︸ ︷︷ ︸
3

, S2, S2, . . . , Si, . . . , SM , SM , SM︸ ︷︷ ︸
3

}T :

⎧⎨
⎩{Irvv′}

{θ}

⎫⎬
⎭︸ ︷︷ ︸

6×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
diag(S)︸ ︷︷ ︸
3M×3M

⎡
⎢⎢⎢⎣

[I] [−R̃]1
...

...

[I] [−R̃]M

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
3M×6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
diag(S)︸ ︷︷ ︸
3M×3M

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{IrPP ′}1

...

{IrPP ′}M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭︸ ︷︷ ︸

3M×1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

!
= [Prigid]

T{z}

(3.27)
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The vector {IrPP ′}i can be derived from the state vector {z} of the state-space

model. Therefore, a mapping matrix E needs to be created to deliver the states of

the required DOF in the right order:

{IrPP ′}i = [E]{z} (3.28)

Finally the total matrix Prigid from equation (3.19) is built by the equation

[Prigid] =

⎡
⎢⎢⎢⎢⎣
⎡
⎢⎢⎢⎣diag(S)

⎡
⎢⎢⎢⎣

[I] [−R̃]1
...

...

[I] [−R̃]M

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎦

+

diag(S)[E]

⎤
⎥⎥⎥⎥⎦

T

(3.29)

3.1.5 Elastic mirror deformation in terms of Zernike modes

If the optical model also includes elastic mirror deformations, a matrix PZernike is

built, which expresses the elastic deformations normal to the nominal shape in Zernike

polynomials. These polynomials are defined on a unit circle centered on the mirror

vertex. Both the mirror vertex rOV with a mirror coordinate system M (see figure

3.1) and the aperture radius for the normalization of coordinates must be known.

The location of the FE-nodes in the M-system can be calculated with the appropriate

coordinate transformation from the nodal positions in the global coordinate system:

MrV P = MAMI(IrOP −I rOV ) (3.30)

Using these relative coordinates allows to compute a Zernike matrix ψ(i, k) for all

polynomials k (k = 1..m) in the FE-nodes located in points Pi(xi, yi) (i = 1..n)

ψ(i, k) = ψk(Mxi,M yi) (3.31)

The pseudoinverse of the matrix ψ(i, k) is required for the least square coefficients 4

ψ+(i, k) = [ψT (i, k)ψ(i, k)]−1ψT (i, k) (3.32)

For the computation of the deformation perpendicular to the mirror surface using the

mirror normal vector in the vertex Mn0
V =M [0, 0, 1]T is sufficient for slightly bended

surfaces. Mirrors with larger curvature require for each surface FE node an individual

normal vector n0
i (normalized to unit length).

While the simulation, in each time step the residual deformation vector di for each

point Pi due to elastic deformations must be computed by subtracting the rigid body

4If necessary a weighting according to the square root of the represented mirror area (analog to

(3.28)) can be included. Instead of A � A+ the weighting vector S is used:

A � [[diag(S)A]+diag(S)]
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displacements from the total displacements. In mirror coordinates M according to

equation (3.22) (assuming no changes in MAMI due to small angles θ) this vector

di reads:

Mdi = MAMI(IrPP ′ − (IrV V ′ −I rV P × θ)) (3.33)

The normal distance d⊥,i results to d⊥,i = MdT
i Mn0

V respectively d⊥,i = MdT
i Mn0

i

with normalized normal vectors Mn0
i and positive values for deformation in the di-

rection of the normal vector. The best-fit Zernike coefficients ζ = {ζk} can be

calculated with the pseudo inverse ψ+(i, k) from the normal distances for each point

to ζ = ψ+(i, k)d⊥,i.

This procedure results in the following equations for ζ of one mirror:

ζ = [ψ+(i, k)]{d⊥,i}
= [ψ+(i, k)][blkdiag({Mn0

i }T )]{Mdi}

= [ψ+(i, k)][blkdiag({Mn0
i }T

MAMI)]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

...

{IrPiP ′
i
} − (IrV V ′ −I rV Pi

× θ)
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= [ψ+(i, k)︸ ︷︷ ︸
[m×n]

blkdiag({Mn0
i }T

MAMI)︸ ︷︷ ︸
[n×3n]

]

⎛
⎜⎜⎜⎝E −

⎡
⎢⎢⎢⎣

[I] [−R̃]1
...

...

[I] [−R̃]M

⎤
⎥⎥⎥⎦Prigid

T

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
[3n×nDOFs]

{z}︸︷︷︸
[nDOFs×1]

!
= [PZernike]

T{z}
(3.34)

blkdiag({Mn0
i }T ) means here the blockdiagonal matrix with the transposed normal

vectors {Mn0
i }T as matrix blocks.

Thus the required matrix PZernike is finally

[PZernike]
T = [ψ+(i, k)blkdiag({Mn0

i }T
MAMI)]

⎛
⎜⎜⎜⎝E −

⎡
⎢⎢⎢⎣

[I] [−R̃]1
...

...

[I] [−R̃]M

⎤
⎥⎥⎥⎦PT

rigid

⎞
⎟⎟⎟⎠

(3.35)
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3.2 Criteria for model reduction

Building a dynamic ss-model of a structure, the first model is usually modal-based.

This is in fact an implicit model reduction since only a limited number of modes is

computed within the FE-software and this number is much smaller than the number

of DOFs. Usually all modes are used from the first eigenfrequency up to a frequency,

which should be 50% higher than the highest frequency, where the dynamic behavior

should be represented well ([30]).

This criterion is only a rule of thumb and results for time-dependent simulations

of large telescope system in much to large — and consequently to slow— models.

Therefore higher effort has to be put on the reduction of system size and the basic

question is, which modes and states should be kept.

3.2.1 Criteria for general transfer functions and linear time

invariant systems

The simplest linear time invariant (LTI) systems are those with only a single input and

a single output. These SISO systems are fully and unique described by their transfer

function. For MIMO systems with multiple inputs and multiple outputs a transfer

function matrix contains the complete system dynamics.

Thus the best reduced model Gr(ω) keeps the difference to the transfer function

matrix of the full model G(ω) as small as possible:

min
Gr(ω)

‖G(ω) − Gr(ω)‖p (3.36)

The mathematical measure for the quantity of a scalar or a matrix signal like the

difference of two transfer functions is a norm. Examples for norms of scalar functions

are

‖x‖1 =

∫ ∞

−∞
|x(t)|dt

‖x‖2 =

(∫ ∞

−∞
|x(t)|2dt

)1/2

‖x‖∞ = sup
tεR

|x(t)|

(3.37)

‖x‖1 is called the action, ‖x‖2 is the energy and ‖x‖∞ the amplitude of the signal

x(t).
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Analogously is the generalization towards vector signals:

‖x‖1 =
∑

i

∫ ∞

−∞
|x(t)|dt

‖x‖2 =

(∫ ∞

−∞
xH(t)x(t)dt

)1/2

‖x‖∞ = max
i

sup
tεR

|x(t)|

(3.38)

For quadratic matrices the same norms are defined:

‖A‖p = sup
x �=0

‖Ax‖p

‖x‖p
(3.39)

Equivalent is a formulation of the norms in the frequency domain since the Parse-

val formula gives a relationship between frequency domain and time domain due to

the conservation of energy:
∫∞
−∞ xT (t)x(t) dt = 1

2π

∫∞
−∞X(ıω)HX(ıω) dω with the

Fourier transformed X(ıω) = F(x(t))

Unlike the transfer function matrix the ss-realization of a system is not unique. By

applying the Laplace transform the transfer function can be computed from the state-

space representation:

G(s) = C(A − Is)−1B + D (3.40)

The transformation of the states x with a non-singular transformation matrix T does

not change the system and keeps the transfer function:

x = Tx̃

˙̃x = T−1ATx̃ + T−1Bu = Ãx̃ + B̃u

y = CTx̃ + Du = C̃x̃ + Du

(3.41)

G̃(s) = C̃(Ã− Is)−1B̃ + D = CT(T−1AT− Is)−1TB + D

= C(A− Is)−1B + D = G(s)
(3.42)

The reduction of a state-space system means decreasing the number of states and

is equivalent with reducing the number of poles of a transfer function. Partitioning

the states into two groups
{

x
}

=

⎧⎨
⎩ x(1:r)

x(r+1:n)

⎫⎬
⎭ =

⎧⎨
⎩ xr

xt

⎫⎬
⎭ with r + t = n and
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r respectively t representing the indices (1 : r) respectively (r + 1 : n) gives the

following system:⎧⎨
⎩ ẋr

ẋt

⎫⎬
⎭ =

⎡
⎣ Ar Art

Atr At

⎤
⎦

⎧⎨
⎩ xr

xt

⎫⎬
⎭ +

⎡
⎣ Br

Bt

⎤
⎦ {

u
}

{
y
}

=
[

Cr Ct

] ⎧⎨
⎩ xr

xt

⎫⎬
⎭ +

[
D
] {

u
}

Reducing the system by the states xt is possible in two ways, either neglecting the

effects completely or considering only the static influence. If effects of xt are complete

neglected, i.e. the states and derivatives of the states are assumed to be nearly zero

(ẋt ≈ xt ≈ 0), the states can be simple canceled:

xt ≈ ẋt ≈ 0 : ⇒{
ẋr

}
=

[
Ar

] {
xr

}
+

[
Br

] {
u
}

{
y
}

=
[

Cr

] {
xr

}
+

[
D
] {

u
} (3.43)

To take the static impact of xt into account ẋt is set to zero and xt is eliminated:

ẋt ≈ 0, xt �= 0 : ⇒
Atrxr + Atxt + Btu = 0, ⇒ xt = −A−1

t Atrxr −A−1
t Btu ⇒

{
ẋr

}
=

[
Ar − ArtA

−1
t Atr

] {
xr

}
+

[
Br − ArtA

−1
t Bt

] {
u
}

{
y
}

=
[

Cr − CtA
−1
t Atr

] {
xr

}
+

[
D − CtA

−1
t Bt

] {
u
}

(3.44)

Figure 3.2 shows as example the reduction of the forth order transfer function

H(s) =
s3 + 11s2 + 36s+ 26

s4 + 14.6s3 + 74.96s2 + 153.7s+ 99.65
. (3.45)

This transfer function can be well approximated by a first order system and both

methods perform very well. The second reduction keeps the static gain (see left plot),

but increases the error significantly in the high frequency range for both the amplitude

and the phase. This can cause serious problems for the stability of a control system.

The influence of the inputs onto the system states and the influence of the individual

states onto the outputs is described with the controllability and observability. In the

state-space format the only states that have a contribution to the output y due to

the inputs u are the ones that are controllable and observable. According to the

controllability and observability the states can be divided into the four groups with
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Figure 3.2: Model reduction of a simple system with originally 4 states to a 1 state

system. The two reduction methods keeping static gain and simple delet-

ing a state are compared. Deleting a state results in better results in

the high frequency range, whereas the other methods keeps exactly the

system characteristics in the low frequency range respectively the long

time-range.

Figure 3.3: Grouping of the states into four blocks according to their controllability

and observability. The transfer function, which gives the relation from the

inputs to the outputs, is only influenced by the block of fully controllable

and observable states.

x̃ = T−1x = (xT
1 , xT

2 , xT
3 , xT

4 )T as shown in figure 3.3. The structure of the

resulting state-space model can be seen in the figure and reads:

d
dt

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̃1

x̃2

x̃3

x̃4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ã11 Ã12 Ã13 Ã14

0 Ã22 0 Ã24

0 0 Ã33 Ã34

0 0 0 Ã44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̃1

x̃2

x̃3

x̃4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎣

B̃1

B̃2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
{

u(t)
}

{
y(t)

}
=
[

0 C̃2 0 C̃4

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̃1

x̃2

x̃3

x̃4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.46)
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3.2.2 Criteria for transfer functions of mechanical structures

Up to now general transfer functions were considered which represent for SISO sys-

tems the complex amplitude function (amplitude and phase) giving the system re-

sponse to an harmonic excitation with unit amplitude depending on the frequency

ω = 2πf . The (MIMO) transfer function matrix can be interpreted similar, but in-

stead of a harmonic input a white noise input with unit amplitude must be assumed.

This section focuses on the aspects of mechanical structures.

For a harmonic excitation also a harmonic response can be expected and therefore

the modal equation of motion {q̈} + [diag(2ζiωi)]{q̇} + [diag(ω2
i )]{q} = [φ]T{f}

with m modes can be solved:

Qi(ω) =

m∑
k=1

φjkFj(ω)

−ω2 + ı2ζkωkω + ω2
k

(3.47)

Including x = [φ]{q} the transfer function matrix Hij(ω) = Xi(ω)
Fj(ω)

is given as the

superposition of the individual modes:

Hij(ω) =
Xi(ω)

Fj(ω)
=

m∑
k=1

φikφjk

−ω2 + ı2ζkωkω + ω2
k

(3.48)

Considering certain load sets with distributed loads but the same time-history within a

single load set, these can be expressed by defining f(t) = [PL]{u(t)} with the matrix

[PL] defining in each column the distribution of a load set (with fixed amplitude

and phase differences between the different DOFs) and the vector {u(t)} describing

the time-history. An analog formula can be used to describe relevant outputs as

linear combinations of the displacements like e.g. a quantity measured by a sensor:

{y} = [PS]T{x}, where each column of [PS] represents the linear combination used

for one output. So the complete transfer function matrix reads:

Ggh(ω) =
Yg(ω)

Uh(ω)
=

m∑
k=1

PS,igφikφjkPL,jh

−ω2 + ı2ζkωkω + ω2
k

(3.49)

or with matrix notation:

[G(ω)] = [PS]T [φ][diag([−ω2 + ı2ζkωkω + ω2
k]

−1)][φ]T [PL] (3.50)

Directly with equation (3.49) can be seen, that the modes k with larger numerator

N = PT
Sφikφ

T
jkPL are more important than modes with smaller N . For modes with

the same N the one with higher eigenfrequency distributes less to the amplitude of

the transfer function.

The modes with ‖PT
Sφik‖ = 0 or ‖φT

jkPL‖ = 0 (and accordingly the respective states

in the state space system) have no effect onto the system outputs as they are not
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observable respectively controllable. An example could be a rotational mode of an

axially symmetric mirror rotating along the optical axis, which does not influence an

image.

In the frequency range far below the eigenfrequency a single mode acts only statically

with its static flexibility. In a high frequency range the amplitude of a single mode falls

with 1/ω2. The real dynamic is in the range of the resonance, where the amplitude

rises to 1/(2 ∗ ζi) times the static flexibility (for small damping values ζ).

Besides the frequency range different criteria exist allowing to evaluate whether the

number of modes is sufficient or whether a essential part of the global structural

characteristics is not represented. This quantities have a physical meaning and should

be matched by a reduced model.

For the frequency ω = 0 the transfer function represents the static flexibility, which

is the inverse of the stiffness matrix K:

[Hij(ω = 0)] = [K]−1 ≈
m∑

k=1

φikφjk

ω2
k

(3.51)

Therefore the magnitude of
φikφjk

ω2
k

indicates the relevance of mode k for the transfer

function Hij. This is not only true for low frequencies, but also the peak amplitude

in the resonance is approximately
φikφjk

2ζiω2
k

and thus proportional to the static flexibility.

Computing the flexibility in a static analysis allows to compensate for the lack of

flexibility due to modal reduction by adding the fraction distributed to deleted modes

(see also [31]):

[Hij(ω)] =

m∑
k=1

φikφjk

−ω2 + ı2ζkωkω + ω2
k

+ ([K]−1 −
m∑

k=1

φikφjk

ω2
k

)︸ ︷︷ ︸
F lexiblity of the modes (m+1:∞)

(3.52)

This results in a feedthrough component in the state-space model and is equivalent

to the model reduction matching static gain. The drawback is the large error in

amplitude and phase for higher frequencies and the danger of causing instability in

closed loop systems.

For very high frequencies the distribution of mass dominates the behavior of the

structure. This gives φTφ as characteristic:

− ω2[Hij(ω → ∞)] = [M]−1 =

m∑
k=1

φikφjk (3.53)

In fact this characteristic is much less important than the flexibility, since a mechanical

structure behaves like a low pass filter for displacements due to forces.

The effective modal mass is another characteristic, that is often provided as a result

by the modal analysis within the FE software. Exciting the whole structure to oscillate
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as rigid body with frequency 1 rad/s and amplitude 1 m is caused by a force f equal

to the mass distributed to a generalized DOF: {f} = [M]{xr}[ 1
s2 ]. The fraction

of the total mass represented by each of the modes (i.e. the transformation of this

force f into the modal coordinates) can be calculated with Mmodal = |[φ]T [M]{xr}|
with a vector {xr} describing a rigid body displacement or rotation of the structure

and the resulting modal mass vector Mmodal. The full modal model gives the total

unsupported mass of the structure as the sum of all effective masses. This criterion

is important to evaluate, if an important fraction of modes is still missing in the

extracted set.

3.2.3 Gramians

As mentioned before, the controllability and observability are important to evaluate

the relevancy of a mode respectively a state. Different methods to check the control-

lability and observability exist in control engineering, e.g. the Kalman criterion:

A system (A,B,C,D) is fully controllable if (and only if) the N × sN matrix C =[
B AB A2B · AN−1B

]
has full rank N and fully observable if (and only if)

OT =
[

CT [CA]T [CA2]T · [CAN−1]T
]

has rank N .

The main drawback of these criteria is the large effort for the computation of the

matrices C and O. Moreover, they allow only to state, whether the system is fully

controllable/observable or not, but no quantitative measure for the individual states.

If a system consists of only controllable and observable states, it is called a minimal

realization. However, MIMO systems usually have only very few states, which are not

controllable or not observable, but some are very well controllable and observable and

some only very weakly. Thus it is necessary to evaluate this property.

A quantitative measure are the controllability and observability Gramians, which are

defined as:

Controllability Gramian: WC =

∫ ∞

0

exp(At)BBH exp(AHt) dt (3.54)

Observability Gramian: WO =

∫ ∞

0

exp(AHt)CHC exp(At) dt (3.55)

They are also the solution to the Lyapunov equations (see appendix C), which can

be solved numerically much more efficient:

AWC + WCAH + BBH = 0 AHWO + WOA + CHC = 0 (3.56)

The Gramians WC and WO are positive definite if (and only if) (A,B) respectively

(A,C) are completely controllable respectively observable.
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The controllability Gramian has also a certain physical meaning. The general response

of a state-space system to an input u(t) can be expressed for the state x(t) as

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ (3.57)

respectively with y = Cx + Du for the output y(t)

y(t) = CeAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ + Du(t) (3.58)

.

If a state-space system with initial states x(t = 0) = x0 is brought to the states x(t =

Te) = xe, the optimal solution with the least input energy J(u) =
∫ Te

0
uHu dt = min

is

uopt[0,Te](t) = −BHeA
H(Te−t)W−1

s (eAtex0 − xe) (3.59)

with Ws =

∫ Te

0

eAtBBHeA
H tdt. xe can be reached from x0 in an arbitrary short

time. However, the smaller the time Te, the larger is u since the elements of Ws

decrease and W−1
s vice versa. The controllability Gramian WC is equal to Ws for

an infinite time Te → ∞.

An analog interpretation is possible for the observability Gramian which represents the

output energy stored in the system at time t = 0 in the initial states x(t = 0) = x0

(for a system with u(t ≥ 0) = 0) according to (3.58):∫ ∞

0

yH(t)y(t)dt =

∫ ∞

0

xH
0 e

AH tCHCeAtx0dt = xH
0 WOx0 (3.60)

The Gramians are strongly dependent on the chosen state coordinates. In the trans-

formed coordinates x̃ = Tx according to (3.41) they read

W̃C = TWCTH ; W̃O = T−HWOT−1, (3.61)

whereas the product W̃CW̃O = TWCWOT−1 keeps the eigenvalues after a trans-

formation.

Therefore Hankel singular values are defined, which are independent of the system

realization and exist for stable systems G(s) without integrators (i.e. 
(λi(A)) <

0 ∀i):
σi(G(s)) := (λi(WCWO))1/2; σi ≥ σi+1 (3.62)

The Hankel singular values are a characteristic of a system and allow to define the

Hankel-norm:

‖G(s)‖H := σ̄(G(s)) = λ1/2
max(WCWO) (3.63)

The physical interpretation of the Hankel norm is the maximum energy efficiency from

an input to the output: If u(t ≥ 0) = 0 then ‖Gx‖H = sup
‖y‖2(0,∞)

‖u‖2(−∞,0)
, which is the

Euclidean norm from past inputs to future outputs.
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3.3 Balanced model reduction

A system is called balanced, if controllability and observability Gramians are equal and

diagonal: WC = WO = Γ = diag(γi); γi > 0. The balanced realization was defined

by Moore [32] and had a large impact onto the progression of model reduction.

A comprehensive paper about balanced model reduction is [33], which considers also

stability aspects and algorithms. [34] applied balanced model reduction especially

to mechanical structures and gives approximations for the Gramians. Error bounds

and the relation between the Hankel-norm, the H∞-norm and the H2-norm are the

concern of [35].

For the balancing transformation T, which transforms A, B, C to Ab = T−1AT, Bb =

T−1B, Cb = CT first of all the Gramians WC and WO must be decomposed with

Cholesky or singular value decomposition (SVD) to WC = RRT and WO = ST S.

With the resulting matrices from the SVD of the product SR = VΓUT the trans-

formation matrix can be computed: T = RUΓ−1/2.

For a balanced system the new states x̃ = T−1x are sorted according to their con-

tribution to the Hankel singular values (HSV). This allows easily to reduce the states

with the least impact onto the observability/controllablity. A second large advantage

is, that a lower bound on the H∞ error is given for a reduced balanced system:

‖Gn(s) − Gr(s)‖∞ < 2
n∑

i=r+1

σi(Gn) (3.64)

The Gramians can be expressed as the sum of the contributions of the individual

SISO systems:

WC =
∑

WC,u(i), WO =
∑

WO,y(j) (3.65)

Accordingly it is possible to consider the individual inputs and outputs independently.

Though it is necessary to scale the inputs and outputs to appropriated sizes, as they

are all assumed to be equally important, but can contain totally different quantities

with very unlike meaning. It is therefore important to include the expected amplitude

of input and output signals into the PL and PS matrices e.g. in order to scale all

inputs and outputs to unit amplitude or according to their relevancy.

For the state space representation of an m mode system (i = 1..m) with two inputs

and two outputs (either displacement- or velocity output) and with

Ai =

⎡
⎣ 0 ωi

−ωi −2ζiωi

⎤
⎦ ; Bi =

⎡
⎣ 0 0

qi1 qi2

⎤
⎦ ; Ci =

⎡
⎣pi1/ωi 0

pi2/ωi 0

⎤
⎦ or Ci =

⎡
⎣0 pvi1

0 pvi2

⎤
⎦ ,
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qij = φT
ikPLkj: contribution of uj to mode i

pij = φT
ikPSkj: contribution of mode i to output yj

as in (3.6) the following observability Gramians result for displacement- respectively

velocity-outputs:

WOi = −p
2
i1 + p2

i2

4ζiω3
i

⎡
⎣1 + 4ζ2

i 2ζi

2ζi 1 + 4ζ2
i

⎤
⎦ respectively WOi = −p

2
vi1

+ p2
vi2

4ζiωi

⎡
⎣1 0

0 1

⎤
⎦

(3.66)

The controllability Gramians read:

WCi = −p
2
i1 + p2

i2

4ζiωi

⎡
⎣ 1 0

0 1

⎤
⎦ (3.67)

The Hankel singular values for displacement outputs are given by

γi/i+1 = eig(WCWO)i/i+1 = 1
4

√�
1+2ζ2

i ±2ζi

√
1+ζ2

i

�
(p2

i1+p2
i2)(q2

i1+q2
i2)

ζ2
i ω4

i

= piqi

4

√�
1+2ζ2

i ±2ζi

√
1+ζ2

i

�

ζ2
i ω4

i
≈ piqi

4ζiω2
i

, (3.68)

with pi =
√
p2

i1 + p2
i2, qi =

√
q2
i1 + q2

i2 and the last approximation assumes small

modal damping ζi.

The velocity outputs result with pvi
=
√
p2

vi1
+ p2

vi2
in

γi/i+1 = 1
4ζiωi

√
(p2

vi1
+ p2

vi2
)(q2

i1 + q2
i2)

=
pviqi

4ζiωi

(3.69)

Gregory ([36]) showed that for a lightly damped structure the Hankel singular values

for outputs mixed from velocities and displacements can be approximated with:

γi ≈ γi+1 ≈ 1

4ζiω2
i

√
q2
i (p

2
i + ω2

i p
2
vi

) (3.70)

Using therefore force inputs and either displacement outputs or velocity outputs al-

lows a very fast exact computation of the HSVs. For low structural damping, equation

(3.70) is a good approximation which is easy to compute. Hence the large effort for

solving the Lyapunov equation is not necessary. Comparing the HSVs in equation

(3.68) with the formula of the modal transfer function in equation (3.49) and con-

sidering the definitions of pi and qi according to (3.3) shows that the HSVs are the

peak amplitude of the transfer function for a SISO system.
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Due to the definition of Gramians in equations (3.54), they do not exist for systems

with integrators. Structural models, which also include rigid body modes, have such

poles at ω = 0. To apply balanced model reduction, the modes have to be split into

the two groups with real vibration modes (ω > 0) and the rigid body modes. The

model reduction is only applied to the vibration modes and the others are simply

kept. Moreover the representation of rigid body modes is not possible in the form

suggested in (3.6) with

Ai =

⎡
⎣ 0 ωi

−ωi −2ζiωi

⎤
⎦ ; Bi =

⎡
⎣ [0]

[φi]
T [PL]

⎤
⎦ ; Ci =

[
[PS]T [φi]/ωi [0]

]
,

since the Ci matrix would not exist and the Ai matrix would consist of zeros only.

Therefore format analog to equation (3.4) with

Ai =

⎡
⎣ 0 1

0 0

⎤
⎦ ; Bi =

⎡
⎣ [0]

[φi]
T [PL]

⎤
⎦ ; Ci =

[
[PS]T [φi] [0]

]

must be used for each rigid body mode.

Due to the Fourier transformation and the Parseval theorem, Gramians are also defined

in the frequency domain:

WC = 1
2π

∫∞
−∞(jωI −A)−1BBH(jωI−A)−Hdω

WO = 1
2π

∫∞
−∞(jωI −A)−HCHC(jωI− A)−1dω

(3.71)

Since input disturbances are usually not white noise signals it is advantageous to

include the expected spectrum of the input into the model reduction. Similarly also

the relevancy of different frequencies of the output signal is different. This is the

reason why a frequency weighted balanced model reduction should be used. Thus the

new reduction task reads:

min
Gr(ω)

‖Wy(ω)(G(ω) −Gr(ω))Wu(ω)‖P (3.72)

This means, the spectral distribution of the inputs and outputs is already included

into the state-space model before model reduction. However, after a reduction the

system and the weightings cannot be separated any more. If necessary, the reduced

systems are again weighted with the inverse weighting matrices. Alternatively the

input can be scaled accordingly.

An example for a load with non-uniform spectral distribution is the wind load, which

has a decreasing amplitude with increasing frequency. Therefore the low order modes

of a system are most important, whereas the higher order modes are anyway less

excited. (see section 2.5.2).
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3.4 Other reduction methods

Besides the balanced model reduction, many other methods exist, which were eval-

uated to be not as suited as the selected one. Nevertheless a short overview will be

given to see the main characteristics of these methods.

A method to reduce the DOFs within the FE-model is the Guyan reduction, which

gives also eigenvectors with less DOFs. In a semi-automatic process supported by the

FE-software,the DOFs are divided into so called master DOFs and slave DOFs, where

the forces are suppose to be applied only on the masters and the dynamics between

masters and slaves should be negligible:⎡
⎣ MM MMS

MSM MS

⎤
⎦
⎧⎨
⎩ ẍM

ẍS

⎫⎬
⎭+

⎡
⎣ KM KMS

KSM KS

⎤
⎦
⎧⎨
⎩ xM

xS

⎫⎬
⎭ =

⎧⎨
⎩ fM

0

⎫⎬
⎭

[
MSM MS

]⎧⎨
⎩ ẍM

ẍS

⎫⎬
⎭ ≈ 0 ⇒ xS = −K−1

S KSMxM

(3.73)

Then the mass represented by the slave DOFs is contributed to the master DOFs

according to the stiffness matrix:[
MM −MMSK

−1
S KSM

]{
ẍM

}
+
[

KM − KMSK
−1
S KSM

]{
xM

}
=
{
fM

}
{

x
}

=

⎧⎨
⎩ xM

xS

⎫⎬
⎭ =

⎡
⎣ I

K−1
S KSM

⎤
⎦{ xM

}
(3.74)

Today the meaning of the Guyan reduction has become lower, since the computers

are powerful and therefore the computation time and resources required for a modal

analysis are not crucial. Moreover for importing the eigenvectors to build a state-space

model, it is sufficient to read only the DOFs with any inputs or outputs.

A very powerful method for model reduction is the Krylov method, which computes

a subspace to represent a system. The idea is to expand the transfer function of the

state-space system Σ = (A,B,C,D) around s0:

G(s) = η0 + η1(s− s0) + η2(s− s0)
2 + η3(s− s0)

3 + · · · (3.75)

with the so called moments ηj at s0. The model reduction is to find a reduced system

Σ̂ = (Â, B̂, Ĉ, D̂), with

Ĝ(s) = η̂0 + η̂1(s− s0) + η̂2(s− s0)
2 + η̂3(s− s0)

3 + · · · (3.76)

such that for a proper l: ηj = η̂j, m = 1, 2, 3, · · · , l.
The Krylov subspace is computed in an iterative way and is e.g. for the matrix A ∈
Rn×n and an initial vector b ∈ Rn: Kl(A,b) = span{b,Ab, ...,Al−1b}, 1 ≤ l ≤ n.
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The Krylov methods involve the advantages to be highly efficient 5 and contain not

the danger of ill-conditioning. However, there is no global error bound existing, the

truncated system may be instable and sometimes the algorithms break down and

have to restart. The method is recommended for systems with much less inputs

and outputs than states, but for some thousands to one million states. State-space

models of telescope structures are typically of some thousand states maximum, while

having some hundreds to thousand inputs and outputs for segmented mirrors or bogie

drive systems with distributed motors. That is the reason, why the balanced method

is preferred. Moreover, the special structure of modal state-space models allows a

much quicker computation of the Gramians than the standard algorithms, which are

designed for full matrices.

For systems, that are composed of several elastic subsystems, the component mode

synthesis was developed (see [37]). This allows, e.g., different organizations to built

the models of the subsystems independently and changes affecting a subsystem require

not the update of the complete structure, but only of the relevant component.

The structure is split into interface DOFs i, to which forces are applied or other

substructures are connected to, and interior DOFs where no forces are acting on:

⎡
⎣ Mii Mij

Mji Mjj

⎤
⎦
⎧⎨
⎩ ẍi

ẍj

⎫⎬
⎭+

⎡
⎣ Kii Kij

Kji Kjj

⎤
⎦
⎧⎨
⎩ xi

xj

⎫⎬
⎭ =

⎧⎨
⎩ fi

0

⎫⎬
⎭ (3.77)

Two kinds of mode sets are created from this equation: constraint modes ψji and the

fixed interface normal modes Φik with corresponding modal frequency ωk. The fixed

interface normal modes are the structural modes of the system, which is fixed at all

DOFs i and results from the eigenvalue problem corresponding to the equation:

[
Mjj

]{
ẍj

}
+
[

Kjj

]{
xj

}
=
{

0
}

(3.78)

The constraint modes are the static structural deformations caused by a unit dis-

placement of each individual interface DOF i:

⎡
⎣ Kii Kij

Kji Kjj

⎤
⎦
⎡
⎣ Iii

ψji

⎤
⎦ =

⎡
⎣ Fii

0

⎤
⎦ , (3.79)

where each column of Fii contains the required force to generate the unit displacement

and the respective mode shape in ψji. The resulting equation for ψji reads:

[
ψji

]
= −

[
Kjj

]−1 [
Kji

]
(3.80)

5The effort is for a reduced system with k DOFS of order O(kn2) and not O(n3) as balanced

truncation methods.
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Thus the complete transformation is:

xn =
[

ΦC−B
nm

]
ηm respectively

⎧⎨
⎩ xi

xj

⎫⎬
⎭ =

⎡
⎣ Iii 0

ψji φjk

⎤
⎦
⎧⎨
⎩ xi

ηk

⎫⎬
⎭ (3.81)

Other concepts for selecting modes for the component mode synthesis are explained

in [38].

Although there are advantages in using the component mode synthesis, it is often

more comfortable to build only one complete FE-model and to include simple actuator

models into the model, since building the model is then much simpler and less error-

prone. This is especially the case if the interfaces are complex and consisting of many

coupled DOFs.

3.5 Examples for reduced models created with the

Structural Modeling Interface Toolbox (SMI)

3.5.1 Description of the toolbox

Within the scope of the Very Large Telescope Interferometer (VLTI) project ESO

was developing the Integrated Modeling Toolbox (IMT), aiming on the integrated

modeling of optical and infrared single- and multi-aperture telescopes. For the struc-

tural mechanical part of IMT the Institute of Lightweight Structures (LLB) has built

the Structural Modeling Interface Toolbox (SMI), which is called interface, as it uses

modal data of an FE analysis and creates a state-space model and a Simulink block

as final results. SMI is designed for IMT and therefore BeamWarrior is usually used

as optical modeling tool, but it is a completely stand-alone toolbox, which uses a

general format of input data and therefore can also be used with other integrated

modeling software packages.

The key idea of SMI is to provide an easy-to-use package to create structural models

with suitable accuracy and size for complex systems with a large number of inputs

and outputs and potentially a wide variety of variants. Therefore the tools preparing

the model generation include controlling an FE-analysis and reading binary result files

from ANSYS. Both forces and accelerations can be handled as input. Routines help

to extract the required data for rigid body motions of mirrors and to define load sets

according to the geometry of the FE model and allow an automatic documentation

of inputs and outputs.

The toolbox provides tools for model reduction and criteria to evaluate reduced mod-

els. However, the user has to decide, whether a reduced model complies with the
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demanded accuracy. The included routines are therefore intended to be used interac-

tively via a graphical user interface.

Figure 3.4 shows the scheme of SMI. It provides an interface between commercially

available FE software and IMT. There are structural data calculated with an FE

software as input and Simulink models as output. To create a dynamic model of

the mechanical structure, the mechanical data like mass and stiffness matrices or

modal data (natural frequencies and mode shapes) are retrieved from the FE analysis.

Moreover the desired output DOFs and points of application of the input forces must

be defined by the matrices PL for forces, PB for base acceleration and PS for sensors

and relevant outputs. The main tasks of SMI are the generation of a dynamic state-

space model of the structure, reduction of the model size and evaluation of the model

quality.

An additional feature of the SMI is the capability to run parametric studies on struc-

tures. Structural parameters can be varied within the toolbox and passed to the

FE-software. The FEM analysis is rerun and the resulting analysis result is parsed

back to SMI. Figure 3.5 shows the interactions between different SMI components.

The SMI main window is a central element in the toolbox, from which the five sub-

program groups are started. These groups are the control of FE-computations and

parametric studies (FE Data creation), the generation of input- and output-matrices

according to the FE-DOFs, the creation of a first dynamic model from the FE-results,

the model reduction and evaluation and finally the creation of a Simulink block. The

two program groups in the top are concerned with FE-data. The groups model cre-

ation and model condensation deal with LTI-models in Matlab. In a standard session,

all five program groups are successively used from top to down as shown in figure

3.5. However, all components can be used independently – considering that some

tools require results from other tools as input data. The control of FE computations

Figure 3.4: Scheme of the architecture of SMI. SMI is an interface between the FE

model on the left and a final Simulink state-space model on the right.
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is especially designed for the commercial FE package ANSYS. If an FE model of a

mechanical structure is available, SMI directly allows to set options and calculate a

modal analysis. The resulting modal data are read from the binary ANSYS result

files and stored in Matlab readable format. If the FE model has been created in a

parametric way, parameter variations can also be done within SMI. This parameter

could be, for example, the angle of inclination of the telescope. This capabilities help

a user, who is not very familiar to FE software, to create suitable modal data required

as input for a dynamic model of the structure.

SMI offers different tools for the model reduction and model evaluation. In a first step

the modal model can be reduced by manual selection of modes. This can be done by

a user-defined frequency range, by a marginal value for the effective modal mass or

by selecting individual modes. As example for the graphical user interface, figure 3.6

Figure 3.5: SMI architecture and components
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Figure 3.6: SMI provides several tools for model reduction. This figure shows the

graphical user interface with a table of effective modal masses.

shows the window for model reduction based on the effective mass table. In a sec-

ond stage states can be canceled by pole/zero cancellation (realization with minimal

states) and by a transformation to balanced system representation with truncating

the least observable/controllable modes. For the evaluation SMI provides a direct link

to the LTI-viewer of the Matlab Control System Toolbox. The LTI-viewer allows to

plot characteristic responses of linear time-invariant (LTI) systems in both, time and

frequency domain. This includes step- and impulse-response or Bode plot and Nyquist

plot of the systems. This allows directly to compare a reduced system with a full state

system e.g. by the transfer functions. The LTI-viewer also calculates peak response,

setting time and static gain. As a second evaluation tool, SMI allows to calculate

the system response to a given input PSD. This response PSD can be compared

with a reference PSD from measurements or to the response of a reference system.

SMI computes root-mean-square (rms) (i.e., standard deviation) values of the output

PSD in user-defined frequency ranges and the rms value of the difference between

two system outputs. To get, e.g., an output with physical meaning it is possible to

include a sensitivity matrix in the calculation of output and/or input. If the system

outputs are, e.g., the displacements of mirrors, an optical sensitivity can be included.
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3.5.2 Examples for reduced models

Dynamic model of the Very Large Telescope (VLT)

An example of applying SMI is the creation of a dynamic model of the VLT for the use

in the VLTI Integrated Model. The structural model must represent the characteristic

dynamics for wind load and seismic excitation.

The mechanical structure of the VLT UT is modeled in ANSYS (see figure 3.7).

The FE model has 9485 elements and 38268 DOFs. Performing a modal analysis

600 modes between 5 and 120 Hz are extracted. The wind load on the VLT UT is

determined analog to chapter 2.5.2. The global force field is split into four components

each having different spectral distributions: the load on M1 mirror (M1), the load on

M3 mirror and the M3 tower (M3), the load on the tube including center piece and

Serrurier bars (TU) and the load on top unit with M2 housing, M2 spider and M2

top ring (TR) (see figure 3.7).

The optical modeling tool BeamWarrior delivers an optical sensitivity matrix of the

OP and other relevant optical quantities like lateral pupil shift, Zernike coefficients

to express the wavefront error, etc. of the mean ray in the focal plane due to the

rigid body displacements ∆x; ∆y; ∆z and rotations ∆φx; ∆φy; ∆φz of the 8 mirrors

M1...M8. In this study the sensitivity matrix was calculated with an incremental

M1

M2 spiders

top ring

wind load

Z

X
Y

center piece

Serrurier bars

M3 tower

M2 housing

Figure 3.7: Finite element model of a Unit Telescope of the VLT. The wind blows in

-y direction onto the telescope with 40◦ zenith angle. The total wind load

is split into the four components M1, M3, TU and TR.
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displacement of 10−5m. A dynamic model of the telescope structure therefore requires

48 outputs with the generalized displacements of the 8 mirrors.
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Figure 3.8: TF of the OPL due to wind load on M1: model reduction from 1200 to

100 states.

The model reduction is always a compromise between model size, which is directly

linked to computational cost in a simulation, and accuracy. Figure 3.8 shows on the

top the transfer function of the OPD due to the wind load on mirror M1. The full

model with 1200 states was reduced to 100 and to 50 states considering only this

single transfer function. The model with 100 states is in the frequency range between

5 and 70 Hz very similar to the full state model and only small differences can be

seen in the higher frequency range. The resulting relative error can be seen in the plot

below. The error is between 1% and 10% for frequencies lower than 20 Hz and rises

than slowly up to 100%. The reason for this increasing relative error is the definition

of the Gramians, which consider especially the peak amplitude of a mode and since

the transfer function is falling with increasing frequency, the low order modes are

most important. Contrary to the relative error the absolute error is not rising with

increasing frequency. The 50 states reduced model also demonstrates this effect, as

the correlation to the exact function is good for the lower frequencies and especially

for the range between 10 and 20 Hz with the largest amplitudes of the transfer
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function, but shows errors due to truncated modes in the frequencies larger than 35

Hz.

Keeping a model more general implies to provide a larger number of inputs and

outputs. A possible example is here the general interface between structure and optics

with the rigid body motions of the 8 telescope mirrors. The benefit is the modularity,

which allows to use one structural model together with different optical sensitivities,

which can include different outputs of one system, different configurations or different

instruments.

Computing the Gramians assumes the same relevancy of all inputs and outputs and

therefore they have to be scaled accordingly. To investigate these effects due to scaling

inputs and outputs three different concepts for the model reduction are applied:

a) red1: Direct balanced truncation without weighting of inputs and outputs for

the full systems with 7 inputs and 48 outputs without considering the optical

sensitivity

b) red2: Considering only the wind on M1 as input and an optical sensitivity

matrix, which computes the lateral pupil shift in x- and y-direction, the OPL,

the tip/tilt and the defocus

c) red3: Keeping all 48 outputs unscaled, but scaling the four input for the loads

with a frequency dependent weighting matrix according to the expected spec-

trum.

Figure 3.9 shows the resulting PSDs for the OPD due to wind load on mirror M1 (left)

and the absolute error of the PSDs with respect to the full state model (right). The

full state model incorporated again 600 modes (i.e. 1200 states) and was each time

reduced to 100 states. The model red1 shows the worst performance, but is therefore

the most general approach. The peaks of the first modes are well represented, but the

model suffers from a large static error and larger errors in the frequencies with smaller

amplitudes of the transfer function (between two consecutive modes). Still red1 is

a model that incorporates the main characteristics of the dynamics between 5 and

20 Hz. The two other models perform better and especially red3 represents the low

frequency range very well. This is of course caused by the frequency dependent scaling

according to the wind load, which has a falling spectrum for increasing frequency. The

error plots and table 3.1 confirm this.

Table 3.1: Absolute and relative rms error for the computed PSDs of the OPD be-

tween the full state model (exact) and the three reduced models.

exact Red1 Red2 Red3

rms(∆PSDOPD) 2.35e-007 1.61e-007 5.58e-008 3.35e-008

rms(∆PSDOPD)/rmsexact 0 0.68 0.23716 0.14233
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Figure 3.9: PSDs of the OPL due to wind load on M1: Comparison of the three

different methods for model reduction (red1, red2, red3).

Dynamic model of the Overwhelmingly Large Telescope (OWL)

The preliminary design of OWL of ESO envisages friction drives for both the alti-

tude and the azimuth rotation of the telescope. This concept involves the danger of

stick-slip effects due to the nonlinearity in the friction forces. A control system must

provide the required forces for tracking while coping with the interaction between the

friction forces, external disturbances like wind as well as the dynamics and flexibility

of the mechanical structure. Moreover the dynamics of the structure are changing

while tracking due to the varying spatial mass and stiffness distribution and different

locations for the altitude bogies (e.g. for zenith pointing and 60◦ zenith angle).

Figure 3.10: FE model of the OWL and major structural components. The azimuth

structure rotates on the azimuth tracks. The altitude structure is sup-

ported with the two main bearings and two rails.

Figure 3.10 shows the FE model of OWL zenith pointing with the altitude and az-

imuth structure and mirrors M1 - M6. To cover all possible configurations a set of 5
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different corner-stone combinations was selected. For altitude drive the frontal wind

was selected as worst for zenith pointing, 30◦ and 60◦ zenith angle as the global

moment around the altitude axis is the relevant quantity. As opposed to the altitude

drive the global moment around the vertical azimuth axis is critical for the azimuth

tracking and hence, lateral wind load for 30◦ and 60◦ zenith angle were modeled.

Modeling the wind load according to 2.5.2, the telescope was split into 14 groups.

Each of the 150 altitude bogies and 250 azimuth bogies was acting with a pair of

forces (in opposite directions) onto the different parts of the structure. For modeling

the friction the differential displacement and velocity of each bogie and the bogie

load normal onto the rail are required. In addition the rigid bogie motions of the 6

mirrors is provided with the primary mirror M1 split into 6 segments computing an

average value over the respective segments. Hence a model has about 150 inputs and

350 outputs.

The FE model corresponding to the (open-loop) structural model includes lateral and

normal stiffness values for the rails and bogies. The wheels were not coupled to the

tracks in rail direction to simulate the open-loop condition (driving forces = 0). 800

modes were extracted from a modal analysis including one rigid body mode.

Figure 3.11: Transfer functions of wind load on OWL to the motions of mirror M2 in

y-direction. Full state model (1000 states) in comparison to a reduced

state model (25 states).

Figure 3.11 and 3.12 show two examples for transfer functions for a 1000 state model

and a 25 state model. Figure 3.11 shows the accuracy of the reduced model for

representing the motion of mirror M2 in the wind direction due to the wind load. For

the friction modeling the bogie motions are required. The quality of the 25 states

model can be evaluated comparing the transfer function with a full state model. As

representative transfer function the differential displacement of bogie #10 is plotted

due to an input of all altitude bogies with an equal force.
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Figure 3.12: Transfer functions of the altitude drive (all bogies acting simultaneously

with the same force) of OWL to the differential displacement of altitude

bogie #10. Full state model (1000 states) in comparison to a reduced

state model (25 states).

As opposed to these examples with good approximation results, figure 3.13 shows

the transfer function of the displacement of mirror M2 in x-direction and y-direction

due to the altitude drive of OWL. Since the altitude drive does not move the mirror

M2 in x-direction at all, the amplitude of the transfer function is only a residual error

with a very small value, whereas the altitude drive causes a real motion of M2 in

y-direction. The transfer function in x-direction is much worse represented after the

model reduction than the one in y-direction due to the small amplitude. However, the

total amplitude in x-direction is still very small and only the relative error is large, but

not the absolute one.
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Figure 3.13: Transfer functions of the altitude drive of OWL to the motions of mir-

ror M2 in x-direction and y-direction. Full state model (1000 states) in

comparison to a reduced state model (25 states).
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4 Solutions for selected issues in

telescope structural mechanics

Accurate integrated models require also an accurate modeling of disturbances and

of boundary conditions. An example of inaccuracy in the effects of disturbances are

scattering material parameters. This is usually avoided by the selection of appropriate

material and manufacturing technology. A best suited material for space-applications

and light-weight constructions is carbon fiber reinforced plastics (CFRP) due to the

extremely high specific stiffness. However, in CFRP small variations in the material

properties cannot be avoided in the manufacturing process. An approach of concerning

these effects is explained at the example of LOTHAR, a reflector concept for space

application.

While varying material properties can e.g. cause shape errors of mirrors, the telescope

dynamics is not only dependent on the mechanical structure, but also on the founda-

tion. The impact of the ground on the telescope dynamics is usually not considered.

For dynamic models of telescope structures the foundation is often assumed to be

rigid. Though telescopes are frequently built on volcanic sites, where the ground can

be highly inhomogeneous and of only poor stiffness due to the porosity of the vol-

cano stone. Using the example of OWL a technic of modeling the influence of the

foundation onto the telescope dynamics is explained.

4.1 Scattering in material parameters

Scattering in material parameters is a kind of perturbation of a system, as it has

a large impact onto the effects created by external loads. To take the effects of

stochastically varying parameters into account the conservative way is the worst case

assumption. However, it is not always easy to define the worst case and the result

does not allow to asses, which degradation would be realistic to expect.

A possible solution is a monte carlo simulation, where a larger variety of possible

parameter distributions is analyzed to get a probability distribution for the effects and

errors. An example for such an analysis is the reflector LOTHAR, which was designed

by Astrium GmbH, Germany, as part of the space based infrared telescope in the

First/Planck project.[39, 40]
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LOTHAR is a sandwich construction featuring CFRP face skins and also a CFRP

honeycomb core. The major advantage of using CFRP is the high ratio of Youngs

modulus E to the density ρ. This allows very stiff light-weight constructions (see

also chapter 2.3) with the advantage of high natural frequencies while saving mass,

a main driver for space applications. Due to the manufacturing process the fiber vol-

ume fraction Vf of the face skin laminate shows some stochastic variation. Varying

material quantities E, ρ or the thermal expansion coefficient (CTE) and consequently

varying local mechanical properties such as stiffness and thermal expansions are re-

sulting. Since the manufacturing is done at room temperature and the operational

temperature is at -210◦C, the effects of varying CTE are crucial.

Two major load cases are investigated, the first one for the cooling down from room

temperature to operation temperature (∆T = −228K) and the second one for a

variation of the operational temperature by ±15K. As a worst case assumption a

systematic error of 1% ∆Vf between front skin and back skin is investigated. In the

monte carlo simulation statistically variations of the Vf of front side, back side and

core material of up to 0.5% are created.

For simulating the behavior of the reflector a finite element model is used. For the

face skins shell elements are used and for the honeycomb core solid elements. Due

to the modelling of the core by solid elements so called smeared properties have to

be used for the honeycomb core representing the global behavior of the honeycomb

structure. The front skin is composed of 828 elements, which corresponds to a spatial

resolution of approximately 0.06m. The reflector is supported at three nodes on the

back face skin in normal and circumferential direction relative to the plane composed

Figure 4.1: Finite Element Model of the LOTHAR reflector
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of the three support points representing its isostatic characteristics. A picture of the

FEM model is shown in Figure 4.1.

4.1.1 Analysis setup

For this computations a flexible analysis and computation environment is set up that

can easily be adjusted to geometry and configuration changes and allows to be applied

to similar problems without much effort. This leads to the analysis setup shown in

figure 4.2 below.

All preprocessing including geometry generation, generation of nodal and element

data, computation of material properties of the face skin laminates with varying fiber

content is done in MATLAB. The output of the preprocessing are the FEM-input files

for the sensitivity analysis with respect to the fiber content of each element (a one

by one fiber volume fraction variation of each element) for all load cases as well as

scripts for job controlling on a PC cluster.

The finite element analysis is done with the FEM code ANSYS. Due to a high number

of analyses required for the random analyses a PC cluster with 32 Athlon700 PCs

is used. Postprocessing is then again performed within MATLAB. It includes on the

one hand programs for the surface error computation, RMS calculation and fitting

procedures. On the other hand the generation of the random fiber volume fraction

distributions on the reflector and the corresponding analyses are performed.

The goal of the random analysis is to get information about the effects of stochastic

variations of fiber volume fraction (Vf) on the reflector performance (RMS-value).

Two aspects are of special interest: one is the information about the upper limit of

RMS values that may occur (worst case), the other one is information about the

Figure 4.2: Analysis setup for the LOTHAR-reflector FEM analysis.
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frequency distribution of the RMS values, i.e. how likely a certain RMS-value will be

exceeded.

Due to the very own nature of random processes even for a very high number of

realizations it is not absolutely sure that the worst possible distribution pattern is

among the considered ones. In order to cover the whole range of possible effects

with a sufficient probability, a twofold approach is chosen. On the one hand a high

number of random distributions is analyzed (10.000), on the other hand the two

special and conservative distributions of a uniform Vf deviation of ±0.5% on the

front face and a uniform Vf deviation of ∓−0.5% on the back face (load case Delta-

p with +0.5% Vf at the front skin and −0.5% Vf at the back skin, load case Delta-m

vice versa). This distributions are taken separately, because they are very unlikely to

occur in the random analysis and they present extreme distribution patterns, which

are expected to provide an upper and lower RMS limit.

4.1.2 Creation of random distributions

The most obvious method to realize the required number of random analyses is to

create a corresponding number of FEM input files with a different distribution pattern

each and analyze them. The disadvantage of this approach is that e.g. 10 000 random

distributions require the same number of FEM analyses, i.e. the number of required

FEM analyses rises linearly with the number of random analyses.

To reduce the computational costs of the required high number of stochastic analyses

a different approach is chosen here:

The effects of the considered deviation of ±0.5% on the material properties is linear

in the considered region. A variation of +0.5% Vf results in a relative change of E1

of +0.9% and in a relative change of CTE1 of −1.35%.

As the resulting changes to the material properties are relatively small ( 1%) a linear

approximation of the displacement field due to random distribution of Vf -variations

by superposition of the displacement fields due to Vf -changes at single elements is

shown to be reasonable accurate.

So first the fiber content of the face skins or core respectively is changed for a

single element and the corresponding FEM analysis is performed. This is repeated

for all elements of the front and back face and the core. As a result the sensitivity

of the displacement field of the whole reflector for a change at that specific element

(location) is computed. This results in a sensitivity matrix of the displacement field

to the ∆Vf distribution, which represents the following functional correlation:

∆u = f(modified element,∆Vf ) (4.1)
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Figure 4.3: Approach for analyses with random Vf distributions

Finally for a certain random distributions of Vf variation the displacement field can

be computed by superposition. With this approach the number of FEM analyses

is reduced to the number of elements, no matter how many random analyses are

required. The approach is also sketched in Figure 4.3.

Figure 4.4 shows examples for the sensitivity of the surface error distribution due to

the change of the Vf of an individual element. The elements well inside the reflector

cause only a local deformation, whereas those ones at the outer rim create a wave

around the reflector with alternating surface error. However, if the respective inner
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down from room to operational temperature. The Vf was changed by

+0.5% for the two different elements 12 and 686.
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element is located at a support point, this local circular dent like deformation results

in a rigid body rotation of the whole reflector and thus causes a larger total error.

For the statistical distribution of the Vf only very little measurement data are available

which allow to estimate an expected peak to valley value of ±0.5%, but not to derive

a spatial spectrum. As a conservative approach only ∆Vf values of −0.5%, 0% and

+0.5% are used. To generate a spatial random distribution first a random number of

points on the face skin is chosen. To each of this points an also randomly chosen Vf

deviation is assigned. Both random processes have a uniformly distributed probability

increasing the likelihood of extreme distributions like a uniform ∆Vf . Once these

points are arranged, each element is assigned the Vf deviation of that point which it

has the minimum distance to (see figure 4.3). With this approach various distribution

patterns are covered reaching from extremes having the same Vf deviations uniformly

over a whole face skin to having it only over a very small cluster of elements.

4.1.3 Simulation results for the load cases

Nominal reflector and worst cases

Due to the nominal CTE of 6.1e-7 1/K the reflector will significantly change its geo-

metric shape due to cooling down from manufacturing to operational temperature

(i.e., load case Cool down from 18◦C to -210◦C). Figure 4.5 on the left shows the

resulting surface error distribution, which causes a total RMS error of 13.03e-6 m.

However, the error is very uniform and can therefore be considered within the man-

ufacturing by using an accordingly scaled form. The instrument and subreflector will

anyway be aligned and adjusted to the reflector focus at operational temperature.

Hence, the reflector can be fitted to a similar off-axis ellipsoid with moved vertex and

changed elliptic parameters. After this fitting procedure the residual error diminishes

practically (see figure 4.5 on the right).

As the worst configurations the two load cases Delta-m and Delta-p are chosen. In

figure 4.6 the surface error distributions are displayed without fitting on the top and

after optimizing location and elliptic parameters on the bottom.

Initially the Delta-m case results in an RMS of 17.123 µm, which is an increase

of circa 4 µm compared to the reference case (13 µm), whereas the Delta-p case

results in reduction of circa 4 µm smaller RMS value (9.811 µm). Because of the

linear behavior the Delta-p and the Delta-m Vf distributions are symmetric to the

reference case. After the correction both distributions show the expected symmetry

and therefore also have the same RMS value of 0.371 µm.



4.1. SCATTERING IN MATERIAL PARAMETERS 81

Figure 4.5: Due to the nominal CTE of 6.1e-7 1/K cooling the reflector down to

operational temperature causes a large surface error (left). After fitting

the reflector the residual RMS is negligible (right).

Frequency curves for the statistically varying Vf

For the random study 10 000 analyses with various distribution patters have been

performed. In Figure 4.7 on the left the frequency distribution of the RMS value for

the initial surface errors is shown. The distribution shows a symmetric pattern with

a mean value of 13.08 µm that coincides well with the RMS value of the reference

case, 13.03 µm. The standard deviation is 0.568 µm, the maximum RMS that occurs

is 16.382 µm, the lowest RMS value is 10.391 µm. This is still within the scope given

by the Delta-m and Delta-p Vf -distributions, 17.123 µm and 9.811 µm. Thus as

expected the Delta distributions prove to be the worst case distributions.

The frequency distribution of the RMS of surface errors after correction is plotted in

Figure 4.7 on the right. Because there are no negative RMS values the distribution

pattern is no longer symmetric around the RMS value of the corrected reference

case, which was approximately 0 µm. The mean value for this case is 0.468 µm

with a standard deviation close to 0.125 µm. The highest RMS value that occurs

is 1.235 µm, the lowest as expected approximately 0 µm. So for the surface errors

after corrections obviously there can be random patterns of Vf deviations which prove

to have a worse effect on the surface quality than the Delta Vf -distributions, which

showed a RMS of 0.371 µm after corrections. All in all it has to be noted that these

high RMS values are very rare events that happened only once in 10.000 random

analyses.

In contrast to the Cool down load case before, no fitting procedure is possible in the

Otp15 load case (T = -210◦C+/-15K) for minimizing surface errors, because Otp15 is

the load case at operational stage, where no further corrections or adjustments to the

reflector support can be made. So the resulting initial surface errors and corresponding

RMS values are those to be directly applied.
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Figure 4.6: The worst case fiber volume distributions Delta-m (left) and Delta-p

(right) change the deformation of the nominal reflector symmetrically

(upper graphics). After fitting (lower two graphics), both cause the same

residual error, but with different sign.

Figure 4.7: Histograms of the frequency of a certain RMS error for statistically varying

Vf for the load case Cool down. On the left the direct results are plotted,

on the right the residual RMS after fitting is shown.

In Figure 4.8 on the left the sensitivity of the RMS value of the whole reflector due

to a Vf -change at single elements is shown. The RMS values are certainly not linearly

related to the Vf -changes at single elements and therefore this sensitivity to the RMS

value cannot be used to compute the total RMS by superposition. However, it gives

an idea of the relevancy of the different locations on the reflector.

Like expected from figure 4.4 the support points are the most sensitive locations,

although isostatically supported. A deviation in fiber content there will have the
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Figure 4.8: Surface error due to varying Vf for the operational load case OP. The

sensitivity (left) expresses the distribution of RMS by changing Vf a single

element by 0.5% (please regard explanation in the text). The histogram

of the RMS error is shown on the right.

most effect on the RMS value due to the rigid body rotation that is caused by a

deformation similar to local buckling near the modified element. In contrast to the

CD load case here no fitting procedure is allowed, which will compensate for these rigid

body motions. These rigid body motions occur mainly due to the specific modeling

of the support points in this FEM model and maybe do not take place or only to a

less extent with a different support structure.

In Figure 4.8 on the right the frequency distribution of the RMS values for the random

distribution of fiber content deviations is shown for the Otp15 load case. This time

the distribution is symmetrical with the mean RMS value of 1.662µm and a standard

deviation of 0.040µm. The highest RMS that occurs is 1.846µm.

4.1.4 Conclusion

For a non-trivial load a Monte Carlo simulation is necessary to identify the worst

case. Besides worst case information the full probability density distribution e.g. for

a certain surface error is generated to allow to asses the risk more reliable. However,

measurement data of the varying parameters are necessary to determine an accurate

distribution function for the scattering input parameters of the simulation. Due to

the large numbers of simulations required to cover the worst case and to get the

resulting probability density distribution, it can be more efficient to use the sensitivity

of the displacement field and compute afterwards the statistical distributions from

the inputs distributions and the sensitivity.

For the simulation of the LOTHAR reflector a general computational structure was

developed which easily can be applied to an (nearly) arbitrary reflector with scattering

material parameters. Matlab showed up to be well suited to control the computations
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and generate and postprocess a large variety of parameter variations. Using a PC-

Cluster is very powerful, if a high number of similar analysis runs has to be performed.

4.2 Dynamic effects of ground and telescope

foundation

The effects of the telescope foundation are usually not included into a dynamical

model of the telescope structure, although the locations of stellar observatories are

often on volcanic sites with soil of only poor mechanical properties. However, what

error results from assuming an infinite stiff ground (fixed supports), what dynamic

effects are caused by the interaction between soil and structure and which effects

have an impact onto the telescope performance? A possible approach investigating

these questions is explained for the OWL telescope.

Soil shows in general a very non-linear and inhomogeneous behavior. Assuming linear

properties is a simplification, which is only valid for very small amplitudes of displace-

ments and forces. The interaction between soil and telescope means firstly a finite

stiffness for the foundation, but moreover energy transport from the telescope to

the ground and vice versa. Applying the FE-method only a finite domain of soil can

be included requiring appropriate transmitting boundary conditions at the artificial

bounds, which means a matching of the local impedance properties at the bound-

aries, that do not exist in reality. Many different methods for this are described in the

literature (see [41, 42, 43, 44, 45]), which are different in accuracy and effort and can

lead to non-local integral formulations in order to fulfil the conditions for stress and

displacement along the whole artificial boundary. Besides this ’mechanical’ solution of

impedance matching, also a ’geometric’ approach is possible increasing the material

damping in the outer region of the domain to absorb the most of the energy arriving

at the boundary.

The wave propagation is governed by the Navier equation of motion for the continuum

(assuming the summing rule over the same indices):

µ
∂2ui

∂xj∂xj

+ (λ+ µ)
∂2uj

∂xi∂xj

+ fi = ρ
∂2ui

∂t2
, i, j = 1, 2, 3 (4.2)

Here ui is the vector-type displacement field, fi external body forces and λ and µ the

Lamé constants1.

Without body forces (fi = 0) and assuming (locally) a plane wave, where the dis-

placement ui depends only on the variable x1 and the time t, this gives:

1µ = G = E
2(1+ν) ; λ = νE

(1+ν)(1−2ν)
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∂x2
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ü2 = 0, ∂2u3

∂x2
1
− 1

c2S
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where c2P = (λ+2µ)/ρ = E/ρ(1−ν)/((1+ν)(1−2ν)) and c2S = µ/ρ = E/ρ/(2(1+

ν)). The plane wave solutions for equations (4.3) are compression waves, so called

P-waves and shear waves, called S-waves with the wave numbers kP = 2π
λP

= 2πf
cP

and kS = 2π
λS

= 2πf
cS

:

uP
i (x, t) = AP

i fP (xkP − cP t), uS
i (x, t) = AS

i fS(xkS − cSt) (4.4)

The appropriate boundary condition gives the required stresses for the given displace-

ments and velocities, while the velocity fields u̇i = ∂u
∂t

are similar to the strain fields

εij = 1
2

{
∂ui

∂xj
+

∂uj

∂xi

}
and therefore, the strain fields can be expressed in terms of the

velocity field with ψκ = xkκ − cκt (κ = P, S):
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′
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(4.5)

The total resulting stress field is given by the sum of the contributions of the P- and

the S-waves:

σij(x, t) = σP
ij + σS

ij = λεPkk(x, t)δij + 2µεPij(x, t) + 2µεSij(x, t) (4.6)

Hence, the surface stress at the boundary can be expressed using an impedance tensor

zij as:

Ti(x, t) = σij(x, t)nj(x) = −zij u̇j(x, t), (4.7)

with the points x on the boundary and the normal vector n(x).

The impedance results to Z = ρcP for P-waves and Z = ρcS for shear waves. These

non-reflecting boundary conditions are also implemented in LS-Dyna ([46]), a FE-tool

for time-integration of wave propagation and nonlinear systems.

This impedance condition is exactly correct, when applied at infinity and only an

approximation at a finite boundary. If the radiation direction is not perpendicular to

the boundary, the reflected wave increases with larger deviations from the normal

direction. Modeling this equation, viscous dampers are introduced for all nodes at the

outer rim.(see [41])

Besides P-waves and S-waves also other types of waves exist, e.g., Rayleigh waves.

Within the modeling of the OWL foundation only P-waves and S-waves are considered,
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which cause normal stress respectively shear stress. Thus two wave impedances exist,

cP and cS and applying them to a boundary node three discrete damper elements are

used acting in boundary normal direction with damping constants dni = ρcPAi and

in the tangential plane with dti = ρcSAi where Ai is the equivalent boundary area

represented by node i.

4.2.1 FE-model of a telescope structure including soil

The described boundary conditions are not correct for static loads since the dampers

cause no forces for static loads. That is the reason why two models are considered, one

with fixed boundaries and one with dampers simulating the transmitting condition.

To evaluate the dynamic performance of the OWL the transfer functions from wind

excitations to the displacement of the mirrors M1 and M2 are considered.

Modeling the soil in sufficient resolution means on one hand using at least about

6 FE-nodes per wavelength. On other hand the transient boundary should be ap-

plied at least one wavelength distant from the source of radiation, in this case the

telescope. The softest foundation is assumed to be crucial and thus the maximum

and minimum wavelength are defined by λmax = cmax/fmin = cP/fmin respectively

λmin = cmin/fmax = cS/fmax. With E = 500 106 N/m2 and ρ = 1300 kg/m3

the wave velocities cP and cS are: cP = 720 m/s, cS = 380 m/s. The frequency

range to model is between 2 Hz (the first telescope mode) and 5 Hz. Therefore,

the maximum and minimum wavelength are λmax = 720/2m = 360m respectively

λmin = 380/5m = 76m. Accordingly the required resolution is λmin/6 = 12.7m and

the cylinder or half-sphere to be modeled of diameter 2 ∗ λmax = 720m.

Figure 4.9 shows the finite element model of the OWL with the modeled soil domain.

Since the most relevant mode shapes of the OWL are symmetric with respect to the

symmetry plane of the telescope perpendicular to the altitude axis, only a half model

is used. The resulting model consists of 70859 nodes (with 3 DOFs per node for

nodes of the soil and 6 DOFs for nodes of the telescope structure). To avoid local

effects at the boundaries a domain of diameter 450m and height 150m is chosen,

where the OWL structure reaches 27m under ground level and approximately 170m

diameter with the outermost azimuth rail. This slightly violates the conditions of

required resolution and model diameter, but would otherwise lead to a much too

large FE-model.

In the domain closed to the telescope several layers are included which allow to realis-

tically represent a real existing soil according to test drills in a future investigation. At

present only the general effect is investigated assuming homogeneous soil properties

over the complete domain. 9 different parameters for Youngs modulus E and density

ρ were selected (see table 4.1) to represent possible soils from very soft tuff stone
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Figure 4.9: FE-model of the OWL with foundation and ground

(GroundVer1) to hard rock (GroundVer8) and quasi infinite stiffness (GroundVar9

with a Youngs modulus for the soil of five times that of steel).

4.2.2 Results of the modal analysis and harmonic response

The transfer function of the wind load on the OWL to the y-displacement of mirror

M1 and M2 are selected as the main criteria to evaluate the ground effects onto the

telescope dynamics. To fully understand the system also static and modal results are

analyzed.

Comparing the mass of the telescope to the mass of the soil to be removed for the

foundation (spherical calotte) the telescope is stated to be a very light structure with

Table 4.1: List of parameters used for studying the effects of different soil properties.

# Name Youngs modulus Density possible type

E [106N/m2] ρ [kg/m3]

1 OwlGroundVer1 500 1300 tuff stone

2 OwlGroundVer2 1000 1460

3 OwlGroundVer3 2000 1620

4 OwlGroundVer4 5000 1780 sand stone

5 OwlGroundVer5 10000 1940

6 OwlGroundVer6 20000 2100

7 OwlGroundVer7 40000 2260 granite, basalt

8 OwlGroundVer8 80000 2420 granite, basalt

9 OwlGroundVer9 106 2600 quasi-rigid
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only 1/3000 of the modelled mass and 1/100 of the removed mass (see table 4.2).

This is the reason why the telescope has only little influence onto the dynamics of

the ground.

Although the Youngs modulus of steel is much higher than that of the soft soil, the

total stiffness of the telescope is much lower than the effective stiffness of the soil,

since the telescope distributes its load onto a large area of ground. Table 4.3 and

figure 4.10 show the effect of the static wind load onto the displacements of mirror

M1 and M2. Dependent on the Youngs modulus of the soil the total displacement is

changing only slightly. The stiffness of M1 with respect to wind load is higher and

therefore the relative loss of stiffness is larger for M1 than for M2. The total loss of

stiffness is only of the order of the effects caused by the azimuth bogies and thus is

not significant.

The eigenfrequencies resulting from a modal analysis are dependent on the stiffness

of the soil. Figure 4.11 shows the eigenfrequency of the first ground mode over the

specific stiffness E/ρ of the ground. As expected the frequency of the first ground

mode is in a good approximation rising with the square root of the specific stiffness.

The modal analysis shows three types of modes, which can be seen in figure 4.12:

pure ground modes (left top), pure telescope modes (right top) and mixed modes

with elastic deformations of both the telescope and the soil (left bottom). Using

viscose dampers to realize the transient boundary conditions also rigid body modes

occur (right bottom).

To compare the computed modes with the telescope modes with fixed supports, the

Modal Assurances Criterion (MAC), the Modal Scale Factor (MSF) and the Modal

Participation Factor (MPF) with respect to the wind load are computed. The MAC is a

Table 4.2: Telescope mass, mass of the modelled soil and mass of the soil to be

removed due to the telescope foundation for a light soil (ρ = 1300kg/m3)

telescope removed soil modeled soil

full model spherical calotte (d=450m, h=150m)

mass [kg] 13 106 1.1 109 31 109

Table 4.3: Influence of the soil onto the static stiffness. The values give the relative

change (without sign) of displacement with respect to the quasi infinite

stiff soil.

bogies ∆(E = 500; E = 106) ∆(E = 2000; E = 106)

M1 y-displacement 3.32% 3.37% 1.02%

M2 y-displacement 1.36% 1.82 % 0.56%
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Figure 4.10: y-displacement of mirrors M1 (left) and M2 (right) due to static wind

load for different stiffness of the soil. The change between the soft soil

(E = 500MPa) and the infinite stiff reference (E = 106MPa) is only

about 3%. For comparison the effect of the stiffness of the azimuth

bogies is shown, which is also circa 3%.
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Figure 4.11: Eigenfrequency of the first ground mode over the specific stiffness E/ρ

of the ground and interpolated square root function.

correlation value, which describes whether there is a linear relation between two mode

shapes (MAC(φ1, φ2) = 1 ⇔ φ1 = αφ2) or if two mode shapes are completely

different (MAC < 0.1):

MAC(φ1, φ2) =

(
φH

1 φ2

)2

(φH
1 φ1) (φH

2 φ2)
; 0 ≤MAC ≤ 1, (4.8)

where φ1, φ2 are two mode shape vectors and the superscript H denotes the complex

conjugated, transposed vector. If two eigenvectors are similar, the MSF allows to

compare the amplitudes having the value 1 if both vectors are identical. The MSF is

the best fit factor of proportionality α2 between two vectors:

2∆ = min
α

((φ2 − αφ1)H(φ2 − αφ1)) ⇒ MSF = α(∆min)
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Figure 4.12: Modeling the telescope with the soil three types of modes occur: ground

motion only (left top), telescope motion only (right top) or simultaneous

motion of both (left bottom). The models with dampers show also rigid

body modes (right bottom).

MSF (φ1, φ2) =
φH

1 φ2

φH
1 φ1

. (4.9)

For the equation of motion in modal coordinates the scalar product between the mode

shape and the force vector govern the degree of excitation of this mode (neglecting the

frequency dependence). Therefore the MPF is also an important criterion to evaluate

a mode:

MPF (φ1, f) = φH
1 f. (4.10)

Figure 4.13 shows the MAC between the telescope modes and the modes of the

telescope with foundations for soft soil (E = 500 MPa: top left), medium stiff soil

(E = 2000 MPa: top right) and the quasi infinite stiff soil (E = 106 MPa: bottom).

Since the telescope nodes are only defined on the telescope DOFs, the MAC is applied

only to the telescope DOFs not including the DOFs of the foundation and soil. ([47])

The models with soft soil have a significantly higher modal density in the region of

the lower modes due to ground modes and mixed modes. Many of these mode shapes

are similar to the same telescope mode. With increasing stiffness of the soil the modal

density decreases and less modes are similar to the same telescope mode. The modes

of the extremely stiff soil are in fact identical to the telescope modes.
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Figure 4.13: Comparison of the mode shapes with respect to the telescope on fixed

supports using the MAC: For soft soil (top left: E = 500MPa) many

modes are (locally) similar to the same telescope mode. In the stiffer

modeles (top right: E = 2000MPa) less ground dominated modes oc-

cur. The very stiff model (bottom: E = 106MPa) contains (nearly) no

ground modes, but only the telescope modes.

The existence of several modes with a shape similar to a certain telescope mode

is possible without violating the orthogonality property of eigenvectors, since the

similarity is only locally for the telescope DOFs. Most of the mode shapes with

eigenfrequency close to a telescope mode are locally similar to this mode shape.

To analyze this in more detail for the first 19 modes of the soft model the MAC,

MSF and normalized3 |MPF∗| are displayed in the bar chart in figure 4.14 and for the

modes with large MAC listed in table 4.5. Most of the modes 3..19 are very similar

to telescope mode 1 (MAC > 0.75), the modes 9..14 have all a MAC > 0.99 and

thus the identical mode shape. The MSF and |MPF| are both very similar. Only the

mode 13, which is with respect to the eigenfrequency closest to the first telescope

mode, has a participation factor of nearly 0.9. All the others are much less excited.

The computed eigenfrequencies of the telescope with foundation is dependent on

the size of the modelled soil. To investigate this effect a model twice as large as

3|MPF∗| = |MPF/MPF1,TelescopeOnly |
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Figure 4.14: MAC, MSF and normalized |MPF∗| (with respect to the MPF of the

first telescope mode with fixed supports) between the first mode of the

telescope with fixed supports and the foundation model OwlGroundVer1

with E = 500MPa.

Table 4.5: List of eigenfrequency, MAC and MSF for the modes of model OwlGround-

Var1, that are similar to the first telescope mode.

Mode Mode Eigenfrequency Eigenfrequency MAC MSF

Telescope GroundVer1 Telescope GroundVer1

1 3 2.0769 1.3728 0.7540 0.0601

1 7 2.0769 1.7301 0.7557 0.0179

1 9 2.0769 1.9653 0.9925 0.2918

1 10 2.0769 2.0367 0.9963 0.0521

1 11 2.0769 2.0376 0.9946 0.0857

1 12 2.0769 2.0655 0.9998 0.2701

1 13 2.0769 2.0703 0.9999 0.8618

1 14 2.0769 2.0831 0.9999 0.2218

1 15 2.0769 2.2303 0.9549 0.1627

1 16 2.0769 2.2698 0.9161 0.0380

1 17 2.0769 2.3097 0.9014 0.0071

1 20 2.0769 2.4501 0.8185 0.0242
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the reference was computed. Table 4.4 shows the eigenfrequencies of the first four

respective ground modes of two models with ground diameters 900m respectively

450m and height 300m respectively 150m, which correspond well to the scaling laws:

the eigenfrequency of the two times larger model is roughly half that of the smaller

model.

Table 4.4: List of eigenfrequencies (in Hz) for the first 4 modes (E = 2000MPa, ρ =

1620kg/m3).

# of ground mode 1 2 3 4

h = 300m ∅ = 900m 1.06 1.12 1.24 1.35

h = 150m ∅ = 450m 2.24 2.29 2.53 2.75
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Figure 4.15: Comparison of the transfer functions between y-displacement of mirrors

M1 (left) respectively M2 (right) due to wind load for the reference

foundation model (OwlGroundVar9 with E=10e6MPa and fully reflect-

ing boundary condition) and the telescope model with fixed supports.

The decisive criteria for evaluating the effects of different foundations are the transfer

functions of the mirror displacements due to the wind load. The transfer functions

were computed assuming conservatively a modal damping factor of ζ = 0.01 for

the models with fixed bounds and a material damping4 of β = 0.0015[1/Hz] for

the model with transmitting boundary. The material damping of the soil is certainly

higher and could be assumed to be about 5%. This larger damping would further

reduce the negative effects of the ground. Figure 4.15 shows the transfer function of

the mirror displacements of M1 (left) and M2 (right) for both the telescope structure

on fixed supports and the telescope on a quasi infinite stiff soil assuming a modal

damping factor of 0.01. The transfer functions of both models are practically identical

4β = 2ζ
ωi

= 2∗0.01
2∗π∗2.2Hz = 0.0015, i.e. the β-damping is adjusted for the first telescope modes.
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and justify together with the MAC plot in figure 4.13 to use model OwlGroundVar9

as a reference.
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Figure 4.16: Effects of the soil stiffness onto the transfer functions between y-

displacement of mirrors M1 (left) respectively M2 (right) due to wind

load.

Figure 4.16 shows the transfer functions for three different types of soil: the very

soft ground with E = 500MPa, the medium stiff ground with E = 2000MPa and

the very stiff reference with E = 10e6MPa. The transfer functions of all three are

very similar and dominated by the telescope dynamics. The main difference between

the stiff reference and the softer models are, as expected, extra peaks, which occur,

e.g. for the soft model, at the first ground modes (mode #1 at 1.13Hz, mode #3 at

1.37Hz) and at some of the mixed modes, e.g. mode #9 at 1.96Hz, which has a MSF

of approximately 0.3 (see table 4.5). However, all in all the total stiffness of the soil is

such large, that the wind load, which is only acting on the telescope structure, cannot

excite these modes with a large participation of the ground to very large amplitudes,

so that even the resonances of this ground modes are an order of magnitude smaller

than the telescope peaks.

With increasing stiffness of the soil these extra peaks due to the ground modes are

less distinct and shifted to higher frequencies as expected from the modal results. The

larger differences for the frequency range above 4Hz is caused by a lack of modes

computed for the very soft model, but no difference due to the model.

These effects can be seen for both the transfer function of mirrors M1 and M2. The

main difference between the both mirrors is the compliance of M2, which is much

higher and thus the peaks of the ground modes are even smaller compared to the

peak amplitude of the first telescope mode. This effect is the very same as for the

stiffness effects of the foundation.

Using these foundation models with fixed DOFs at the bounds of the modeled ground

introduces an error into the transfer functions, since the energy radiated from the

telescope into the foundation is propagating to the model bounds and than reflected
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back toward the telescope. In reality (assuming a homogeneous soil) this energy is

transported out of the system, i.e. a kind of geometric damping exists due to the

loss of system energy at the model bounds. To include this effects the transmitting

boundary conditions are modeled using discrete dampers.

Figure 4.17 shows the comparison of the transfer function of the soft ground with

E = 500MPa for both the transmitting boundary and the fixed boundary. In either

case the transfer functions are very similar. The non-reflecting boundary even reduces

the influence of the ground to the response due to the wind load and the small peak

close to the first telescope mode at about 2Hz even vanishes. A main difference to the

model with fixed boundary are the rigid body modes and modes with much smaller

eigenfrequency. The effects of rigid body modes cannot be seen in the displayed

frequency range and due to the large ground mass modeled they are only relevant for

much lower frequencies, where no telescope dynamics occur and thus a static analysis

is sufficient. One of the lower frequency modes causes a small peak at about 0.74Hz,

but again the peak amplitude is relatively small as the mode is well damped due to

the boundary conditions.
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Figure 4.17: Effects of the transmitting boundary condition onto the transfer function.

4.2.3 Conclusion

The research of the interaction between the OWL, its foundation and the soil showed

that only a small dynamic effect of the ground can be expected within the range of the

material parameters under research. The main reason is the relatively light telescope

structure and the large area the telescope is supported on. Thus in relation to the

telescope specific stiffness the foundation specific stiffness is high and hence the total

deformations are dominated by the telescope flexibility. As the telescope mass is such

low, it is expected that telescope vibrations will involve only ground vibrations of a

very small amplitude. Though, this implies also nearly no radiation of energy out of

the telescope structure into the foundation, which would be an additional damping.
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However, for a different telescope concept this could be different. Even if the telescope

seems not to suffer too much under degradation of dynamic performance due to the

interaction with the soil, a site with hard rock as ground material is still to be preferred

as only dynamic effects are considered here and static problems with respect to the

strength are not regarded. Moreover negative effects are increasing rapidly with lower

stiffness of the soil.



5 An efficient method for

integrated modeling —

The example of the Very Large

Telescope Interferometer (VLTI)

Integrated Model

Considering all ideas developed in the previous chapters, an integrated model is devel-

oped for the European Southern Observatory’s Very Large Telescope Interferometer.

Using this “real-life” example the efficiency of this approach is demonstrated.

5.1 Basics features of the VLTI Integrated Model

The VLTI Integrated Model is a Matlab-based software package, which dynamically

generates a Simulink model allowing time-dependent, multi-disciplinary system analy-

sis of the VLTI. The model can be used to support VLTI system engineering, but also

intends to develop concepts that can easily be applied to other telescopes like e.g.

OWL.

The main characteristics of this concept is a consistent model with one configuration

file, which is used to generate the optical model, select the suitable structural model

and to built the complete model with all control loops and components. The model

is designed using a modular approach offering a high flexibility. For all component

types prototypes are stored in a Simulink library to dynamically adjust the blocks

and create the model according to the configuration. This allows easily to exchange

components, refine subsystems or test, e.g., different controller designs. To give the

Simulink model an intuitive structure, the architecture is not only based on the control

loops, but the real VLTI structure and main VLTI components are reflected. For

modeling the optics a nonlinear optical analysis is done in a preprocessing phase using

BeamWarrior, which provides static results and sensitivities between disturbances and

optical characteristics in the exit pupil. In principle any plane or surface in the optical

path can be selected to compute linear optical models (LOMs) between an input and
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an arbitrary optical quantity. This is applied to include actuators and sensors, e.g. for

tip/tilt control. Broad band effects can be simulated as each sensor- or instrument-

band can be split into a user defined set of spectral sub-bands.

SMI (see chapter 3.5) is used to extract linear state-space models from FE-models

for the telescope structure. This is not done within the preprocessing phase of the

Integrated Model, but performed separately and stored for relevant telescope con-

figurations in a directory. A strong coupling between the configuration file and a

parametric ANSYS model was assessed to be inconvenient due to reducing the flexi-

bility of changing and improving the telescope structure. Moreover this would cause a

dramatic effort to adjust, e.g., the wind load to every possible configuration. Not only

the points of attack will change dependent on the telescope pointing with respect to

the wind direction, but also the wind profile and the mutual obstruction of telescope

components.

The VLTI Integrated Model focuses on the dynamic characteristics of the interfer-

ometer and hence the main outputs are the time-dependent electromagnetic field

distributions at the interferometer exit pupils in the beam combination laboratory,

which can serve as inputs to a model of scientific instruments (e.g. VINCI, GENIE)

performing the coherent superposition of the fields to form interference fringes. Al-

though a detailed instrument model performing the beam combination is outside the

scope of the Integrated Model, to evaluate the VLTI performance, the model allows to

coherently superpose the interferometric beams after modal filtering by single-mode

fibers. This is a highly nonlinear process and hence, implies high computational cost.

To increase the efficiency an approximation method developed within the scope of the

FINCH project (see section 5.2) by ESO and Astrium is included for modal filtering.

Major advantages of the VLTI Integrated Model are the possibility to analyze the

effects of control parameters and to apply disturbances of desired level and arbitrary

combination. In addition to that, the model allows to create easily linear dynamic

models between any input and output for closed loop control and open loop.

5.2 BeamWarrior — The optical modeling tool

BeamWarrior is a tool to generate models of the optical signal flow influenced by

perturbations. Its development was initiated in 1997, driven by the lack of powerful,

open-architecture optical modeling code which could easily be customized to create

models for integration into a control loop simulation. The institutions which have sup-

ported the development are Astrium EADS, Friedrichshafen, Germany, ESO and the

German Aerospace Center (DLR). Present and future work is done in an ESO-Astrium

team. In the framework of an ESA Technology Research Programme, BeamWarrior

is used to develop an integrated model (FINCH) of the spaceborne nulling interfer-
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ometry mission Darwin. The FINCH project is currently in its Phase II concentrating

on the implementation of extended astronomical sources.

The BeamWarrior Kernel is a library of ANSI C functions for optical modeling which

can be accessed either by a custom C application or via the BeamWarrior Optical

Modeling Tool. The latter is a general-purpose application which reads a sequence of

computational steps to be performed and the results to be produced from an ASCII

“control file”. The Optical Modeling Tool has been designed for flexible generation of

linear optical models (i.e. sensitivity matrices). Besides its main purpose, namely the

creation of dynamic optical models, BeamWarrior can also be employed for a large

variety of static optical analysis tasks. Examples can be found in the references.
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Figure 5.1: BeamWarrior models of the three types of VLTI telescopes (left to right):

Unit Telescope (UT), Auxiliary Telescope (AT) and Siderostat (SID); the

encircled mirror labels “M8” (UT) and “M6” (AT) indicate mirrors onto

which a pupil (= image of aperture stop M2) is located. For the UT and

AT, an image of the star is located in the transmitted Coudé focus below

the dichroic mirror M9 and in the reflected Coudé focus on the field mirror

M10. Note the different scales of the three plots.

Light propagation is simulated by geometrical- or wave-optical methods which can be

flexibly combined in a “hybrid propagation model”. The geometrical-optical domain

is covered by a radiometric polarization ray tracing algorithm. Wave-optical (diffrac-

tion) propagation is handled by three alternative approaches, each being suitable for

specific cases: (1) the “direct method” based on numerical approximation of the

Rayleigh-Sommerfeld integral, (2) the “angular spectrum method” using a decompo-

sition of the optical field into a set of homogeneous and evanescent plane waves, and

(3) the Gaussian beam decomposition technique which can be used to simulate an

“end-to-end” wave optical propagation —from the incident wavefront to the detec-

tor. In addition to these free-space propagation algorithms, the tool can also simulate

the modal filtering of an optical field by coupling into a single-mode step-index fiber.
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All Kernel algorithms consider polarization effects and are radiometrically calibrated.

BeamWarrior allows to compute optical signals in a broad spectral range. This is

handled by sequentially computing the result in adjacent narrow spectral sub-bands.

Wavelength-dependent material properties are stored in a specific material catalogue.

Electric fields at the output of different arms of a stellar interferometer can be su-

perposed coherently. A description of some of the algorithms can be found in the

references.[5, 48]

Within the VLTI Integrated Model BeamWarrior is used for the optical modeling.

Examples for the modeling of the three different telescope types Unit Telescope (UT),

Auxiliary Telescope (AT) and Siderostat (SID) are shown in figure 5.1. Light from

an unresolved, infinitely remote celestial point source is arriving at the telescope

and propagated through the telescope optics including Coudé train and relay optics,

transfer optics, Delay Line and laboratory beam compression/feeding optics.

Figure 5.2 shows the resulting spatial distribution of electric field amplitude and phase

in the exit pupil plane of a VLTI interferometer arm. Moreover BeamWarrior allows

to generate optical sensitivity matrices by applying defined perturbations to optical

components like a mirror displacement and evaluating the deviations from the output

quantities for nominally aligned optics. As explained later, this results are used as the

basic quantities for the linear optical model.

A more general type of optical model is the non-linear optical model. It is adequate

if the changes in optical output parameters of interest are not proportional to the

applied perturbations, e.g., in the case of large-scale perturbations. In such a case,

a BeamWarrior computation must be performed at every time step of a dynamic

simulation. A usage of this kind of models is not planned in the VLTI Integrated

Model.
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Figure 5.2: Amplitude (left) and phase (right) of the electric field distribution in the

nominal exit pupil (parallel to (v, w)-plane, diameter 18 mm) of a VLTI in-

terferometer arm (Siderostat telescope, λ = 2.2, point source magnitude

mK = −6).
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5.3 Architecture and design of the VLTI-Integrated

Model

The Integrated Model of VLTI represents the main control loops of the interferometer

and includes most relevant disturbance sources. At current background radiation,

internal tilt and adaptive optics are not include. The format of its outputs is in Matlab

format, but routines are provided to store data in the format of the ”real-world“ VLTI

(i.e. Flexible Image Transport System (FITS)).

5.3.1 Computing the dynamic interferometer response

The integrated model computes the response of VLTI to a point source (unresolved,

infinitely remote) observed on axis. The incident wavefront is an homogeneous (i.e.

constant intensity) plane wave. Radiometrically, the source is characterized by its

apparent magnitude in a given spectral band (e.g. K-band). Light propagation is

simulated splitting the spectral band into a set of sub-bands. Each sub-band is rep-

resented by a single wavelength equal to the center wavelength of the sub-band. The

point source is assumed to be naturally polarized.

The main output of the model is a complete description of the time-dependent electric

field in the exit pupil of each interferometer arm (“time-dependent pupil function”).

For computation of the dynamic electric field distributions the method described in

[49] is used: The complex electric vector field EPol
i (x, t) at the exit pupil of arm i is

given by the product of a static complex vector field EPol
i (x) and a time-dependent

phase factor exp(j∆φi(x, t)):

EPol
i (x, t) = EPol

i (x) exp(j∆φi(x, t)) (Arm i, Pol = s, p). (5.1)

where the superscript Pol = s, p denotes the two uncorrelated orthogonal polarization

components of the naturally polarized source, t the time and x = (v, w) a two-

dimensional position vector in the exit pupil (compare Figure 5.2). The dynamic

“phase error” ∆φi(x, t) arises from fluctuations of the optical path in the exit pupil

with respect to the nominal situation. As the displacements of optical elements due

to disturbances and active control are sufficiently small the resulting phase error can

be regarded as polarization-independent, i.e. the same phase factor applies to all

Cartesian components of EPol
i . The phase error is linked to an “optical path error”

∆OP (x, t) = λ/(2π)∆φi(x, t) which itself can be expressed as decomposition into

N orthogonal Zernike polynomials ψm(x):

∆OP (x, t) =
N∑

m=1

δξm(t)ψm(x) (5.2)
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The N time-dependent coefficients δξm(t) are the deviations of the N Zernike coeffi-

cients from the static situation. In addition to dynamic phase errors, the model also

takes dynamic pupil motion into account.

As stated above, the method described computes the response to a point source.

However, for linear and space-invariant (isoplanatism) systems the formalism can be

extended straightforwardly to simulate observation of extended objects (see Schöller et

al 2000 [49]) using a Fourier-optical approach, where an extended source is computed

form the image of a point source convolved with the visibility function of the source.

This method is not applicable for modeling a modal filter like a single-mode waveguide,

since changing the location of the source causes a change in the amplitude and not

the location of the intensity pattern at the fiber output (see sections 5.3.3 and 5.3.4).

5.3.2 Model architecture

The architectural design of the VLTI integrated model covers up to eight interfer-

ometer arms (in single-feed mode). Each arm is equipped with a “photon collector”

(Unit Telescope (UT), Auxiliary Telescope (AT) or Siderostat (SID)) and a DL. For

a system description of the VLTI the reader is referred to Glindemann 2004. [50]

The model uses a three phased approach: During the initialization phase, user-

defined parameters are set (e.g. array configuration, source characteristics and angu-

lar position, disturbance and control loop parameters, simulation time and sampling).

BeamWarrior performs the two tasks: (i) compute the static electric vector fields

EPol
i (x, t) for all interferometer arms (i = 1 . . . imax; imax ≤ 8) and both star polar-

izations (Pol = s, p), and (ii) generate the linear optical models (sensitivity matrices)

needed for the dynamic simulation.

The dynamic simulation phase is the core of the integrated model. It is implemented

as a Simulink model. A Simulink block diagram with multiple levels representing the

different subsystems is dynamically generated to match the chosen array configura-

tion.

In the post-processing phase the results of the dynamic simulation are combined

with the static results obtained in the initialization phase. A simplified model of the

VINCI instrument can be include already into the simulation phase computing the

interference fringes assuming pupil-plane beam combination with a temporal optical

pathlength modulation scheme. Alternatively, another instrument model could be used

in a future version.
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Control loops

The VLTI Integrated model represents three main control loops relevant for the dy-

namic telescope performance: the fringe tracking loop, the fast tip/tilt loop and the

lateral pupil position control loop. Since the model focuses on the dynamic perfor-

mance, quasi-static control loops like the active optics compensating for thermal

disturbance and varying gravity load or the control system for pointing and tracking

are not included.

The fringe tracking control loop forms the central control loop of the VLTI. It defines

the top-layer of the model architecture as shown in Figure 5.3. The objective of this

control loop is to compensate for the (temporarily varying) optical path difference

(OPD) between two interferometer arms. Figure 5.4 depicts the block diagram of the

subsystem “Fringe Tracking” appearing in Figure 5.3. The measurement of the

OPD is performed by a Fringe Sensor Unit (FSU) located in the beam combination

laboratory. The stellar light is shared between FSU and scientific instrument (e.g.

VINCI). In general, instrument and FSU operate in different spectral bands. Therefore

the light is split by use of dichroic feeding optics. The OPD Controller (OPDC)

converts the measured OPD into a command passed to the DL (carriage + Piezo

actuator). Optionally, an additional OPD modulation command can be sent in case

of pupil plane beam combination. The fringe tracking control loop is present for all

three types of photon collectors (UT, AT and SID). Currently, we have implemented

a model of the FSU FINITO which is currently being commissioned on the VLTI. The

DL model is a discrete linear state-space model identified from measurements on site.

For UTs and ATs the fast tip/tilt loop compensates for wavefront tip/tilt induced by

wind load and atmospheric turbulence. The tip/tilt error is derived from measuring

the image position at the transmitted Coudé focus (below the dichroic mirror M9)

(see Figure 5.1). An integrator provides a correction signal to an active mirror (M2 for

UT, M6 for AT) which can be actuated in two DOFs (tip/tilt). The tip/tilt control

is not available on a SID. Within the model, the image position is computed as spot

 8{88}
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2Environment
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8080
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Fringe Tracking

Instruments

Disturbance Disturbance

Control
Beam Characteristics Beam Characteristics

Beam CharacteristicsDL Control

Figure 5.3: Top-level architecture of the VLTI Integrated Model; the labels attached

to the signal flow lines correspond to a two-aperture configuration (see

Section 5.3.2)
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Figure 5.4: Sensor (FSU) and controller (OPDC) of the fringe tracking control loop;

each interferometer arm has its own plant model (Delay Line (DL)) (see

Figure 5.6). The labels attached to the signal flow lines correspond to a

two-aperture configuration (see Section 5.3.2).

diagram centroid using a BeamWarrior linear optical model for the beam train through

the telescope optics (M1. . .M3), Coudé train (M4. . .M8) and M9.

This lateral pupil position control loop (UT and AT only) corrects the lateral position

of the exit pupil in the beam combination laboratory. The measurement is taken in the

laboratory and fed back to the field mirror M10 which can be actuated in two DOFs

(tip/tilt) (see Figure 5.1). Within the model the lateral pupil position is computed

using a BeamWarrior linear optical model for the beam train through the whole VLTI

optical train up to the instrument entrance (telescope including Coudé train and relay

optics, transfer optics, DL, laboratory beam compression/feeding optics). The “real”

VLTI does not provide closed-loop control of lateral pupil position (realized by a zero

feedback gain in the model). Instead of this, the exit pupil is centered on a CCD

matrix by an automatic alignment system before each observation run.

Figure 5.6 displays the block diagram of a single UT interferometer arm. The signal

flows of both tip/tilt loop and lateral pupil position loop are fully contained in the

subsystem since these two control loops act independently on each VLTI arm. In

contrast, the fringe tracking loop controlling the OPD between different arms is

implemented on the top-most level of the model. For a description of the signal

representations, see Section 5.3.2.

Modeling of the disturbances

The model considers the following environmental disturbances: wind load, micro-

seismic excitation and atmospheric turbulence. Currently wind load and micro-seismic

excitation are simulated for UTs only. Moreover the piston term of the internal tur-

bulence inside the DL tunnel is added to the respective OPLs and white noise terms

are added to sensors and actuators like the Fringe Sensor Unit or the DL.

The wind load acting on the telescope (structure & optics) is modelled using the

model as described in section 3.5.2 with four different load cases.
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The seismic motion of the ground is simulated by measured PSDs of typical ground

acceleration at Cerro Paranal (see chapter 2.5.2). The ground acceleration PSD is

converted into a random time series serving as further input to the structure model

—in addition to the dynamic wind forces.(see Appendix A)

Atmospheric turbulence creates temporal and spatial fluctuations of the phase of the

electric field of each interferometer beam (see chapter 2.5.3). In current version the

three lowest order modes (piston and tip/tilt) are computed using analytical expres-

sions of their PSDs based on Kolmogorov statistics (see equations (2.30)-(2.33)).

The correlation between atmospheric piston on two telescope apertures separated

by a given baseline is simulated. The PSDs are converted into random time series.

Higher-order modes are represented by time-varying Zernike coefficients. These are

extracted from moving phase screens independently computed for each aperture. Pis-

ton is (partially) corrected by the fringe tracking loop. Tip/tilt is compensated by

the fast tip/tilt control loop. The higher-order modes remain uncorrected (assuming

the absence of an adaptive optics system) and are directly added to the electric field

distributions at the exit pupils in the beam combination laboratory.

Representation of the signals

In the dynamic simulation, each interferometer beam is characterized by its beam

characteristics state vector z = (δv, δw, δOPL, δξ1, . . . , δξN)T . The components

δv and δw are the deviations of the exit pupil center from its static position (measured

in the (v, w)-plane in the beam combination laboratory, see Figure 5.2). The dynamic

wavefront aberrations are encoded in a set of Zernike polynomials with coefficients

ξi (i = 1 . . .N ; 3 ≤ N ≤ 37) (see equation (5.2)). The Zernike decomposition uses

a normalization radius which is assumed to be constant.

Figure 5.5 shows schematically the signals for one spectral band of one arm. The

external inputs for the state-space model of the telescope structure are the four load

cases for wind excitation and the three ground accelerations for micro-seismicity. The

resulting vibrations of the eight mirrors are provided to the optical model with six rigid

body motions per mirror. The optical model is a linear sensitivity matrix computing

from this mirror disturbances the lateral pupil shift, the OPL of the so called Chief

ray (i.e. the ray in the center) and the Zernike coefficients in the exit pupil. The

atmospheric turbulence is directly expressed in Zernikes and is therefore directly fed

through the telescope to the exit pupil. Together with the static electric field, these

time-dependent deviation give the dynamic electric field in the exit pupil.

The state vector z has the size (3+N)×1, i.e. 40×1 for N = 37. This is reflected in

the labels attached to the signal flow lines in the Simulink block diagram of the single

interferometer arm shown in Figure 5.6. The block diagrams showing the top-level

architecture (Figure 5.3) and the fringe tracking loop (Figure 5.4) represent an array

configuration with two apertures. Their beam characteristics signal flow lines (label
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Figure 5.5: Schematic drawing of the signal flow for one arm and one band in the

Integrated Model.

“80”) hold two vectors z1 and z2 related to the two interferometric beams. In general

the instrument band is split into several sub-bands, and additional bands are used

for the fringe tracking sensor and the tip/tilt sensor, since these sensors use light of

spectral bands separated from the scientific band.

The disturbance signal vector entering the subsystem model of a single UT arm (Fig-

ure 5.6) is of size (7 + N) × 1 (= 44 × 1 for N = 37). The label “4{44}” in

Figure 5.6 indicates that the disturbance vector is divided into four groups: (i) wind

load (4 components corresponding to the four above mentioned load cases, see Sec-

tion 5.3.2), (ii) seismic noise (3 components representing the accelerations along

u, v and w-directions), (iii) atmospheric piston and tip/tilt (3 components), and

(iv) higher-order modes of atmospheric turbulence (37 − 3 = 34 components). The

telescope subsystem (block labeled “Telescope”) contains an SMI-created structure

model coupled to a BeamWarrior-created linear optical model. The output vector of

the linear state-space structure model has the size 48 × 1 —holding 6 DOFs (trans-

lation and rotation) for each mirror M1 . . .M8. It is passed as input to the optical

model represented by a 40×48 sensitivity matrix. All control loops directly act on the

beam characteristics vector z. The fast tip/tilt loop additionally acts on a 2×1 vector

(δX, δY ) defining the deviation of the image position in the transmitted Coudé focus

from its static value.
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Figure 5.6: Subsystem model of a single interferometer arm (UT) with the main con-

trol loops

5.3.3 Simplified beam combiner models

The outputs of the integrated model are the time-dependent electric fields in the

VLTI exit pupils located in the beam combination laboratory. This location corre-

sponds to the interface between the interferometer and the scientific instruments.

The model output can serve as input to an instrument model. We have developed a

simplified model of the test instrument VINCI currently operating with the VLTI [51].

It computes interference fringes assuming “pupil-plane” (i.e. coaxial) beam combi-

nation of two beams using a temporal optical pathlength modulation scheme. VINCI

performs modal filtering using single-mode fibers to “clean” the wavefronts before

interferometric superposition. In this way spatially and temporarily varying wavefront

aberrations across each beam are “translated” into temporal variations of optical

power at the fiber output.

After modal filtering, the fields of the two arms related to the same star polarization

and the same spectral sub-band are superposed in a partial coherent way considering

temporal coherence effects due to the finite spectral bandwidth of the respective sub-

band. This results in separate interferograms for the two star polarizations Pol = s, p,

the different spectral bands and the Cartesian components of the electric field, which

are then added on intensity-basis.

5.3.4 An efficient method for beam combination - the Ruilier

approximation

Both, the simulation of instruments operating in a broad spectral band, and the

modeling of extended source interferometry with a beam combiner using single-mode
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fibers require a fast method of modeling beam combination, as otherwise each spec-

tral sub-band and each point of an extended source has to be propagated separately

through the optical system. Since the latter is a highly non-linear process, a lineariza-

tion is not possible. Within the development of BeamWarrior and the VLTI Integrated

Model different methods were analyzed. The one is a direct method, where for each

time-step the electric field is computed at the telescope exit pupil and then modally

filtered by means of a classical FFT-based algorithm. A faster approximation is the

Ruilier approach developed for BeamWarrior within the FINCH project.

The different steps for the ”direct“ method are:

• Creation of the electric field in a plane before the fiber entrance, which is the

exit pupil of the telescope: In the linear optical model the time-dependent elec-

tric field is built of the static electric field and the time-dependent deviations

expressed with Zernike polynomials and lateral shift. This gives a separate elec-

tric field for each interferometer arm, for each Cartesian component, for each

of the two star polarizations and, in the case of an extended source, for each

source point.

• Propagation of the light through the fiber. This includes the coupling of the

fields into the fiber, which is an highly non-linear process dependent on the

spatial distribution of amplitude and phase as well as the lateral position of the

telescope exit pupil.

• Coherent combination of the light of both interferometer arm, which has to be

computed separately for each spectral band, for each source polarization and

for each Cartesian component.

• The incoherent superposition of all the intensities of the individual spectral

bands, the different source polarizations and the different Cartesian compo-

nents.

The realization of this direct method involves a high computational cost, as this has to

be performed at each time step. The implementation of the first three items is realized

with the Simulink S-functions “BuildMonochromaticFields”, “SMFibrePropagation”

and “CoherentSuperposition”, that were developed within the scope of the FINCH

project and provided for testing purposes by EADS Astrium, Germany.(see figure 5.7)

To accelerate this computation, the first two of these four steps are replace by a

method developed by C. Ruilier, which is valid for small Zernike aberrations.[52, 53]

The complex output intensity of the fiber at the beam combiner is approximated

by the ideal output and a degradation and phase shift due to the wavefront error

expressed with Zernike polynomials in the pupil plane. Ideal output means the intensity

and phase produced by the modal filtering of an unaberrated reference beam with

amplitude profile ÊPupil and a flat wavefront.
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Figure 5.7: For the exact simulation of the modal filtering process Simulink S-

functions are used. “BuildMonochromaticFields” generates the time-

dependent electric fields form the static electric fields and the time-

dependent deviations. “SMFibrePropagation” simulates the propagation

of the light through the single mode fiber resulting in complex electric

fields separately for the source polarizations and cartesian components.

Zernike polynomials are an orthogonal set, but due to the coupling into the fiber the

individual Zernike terms are no more decoupled, since the distribution of electric field

amplitude and the waveguide mode of the fiber have to be taken into account. To

include this correlation a matrix km,n is computed

km,n =

∫ ∫
ψm(r, θ)ψn(r, θ)Êmode(r, θ)Êpupil(r, θ)rdrdθ∫ ∫

Êmode(r, θ)Êpupil(r, θ)rdrdθ
, (5.3)

where ψm(r, θ) and ψn(r, θ) are the Zernike polynomials, Êmode(r, θ) is the amplitude

profile of the fundamental mode backpropated to the plane of the injection optics

and Êpupil is the electric field amplitude profile in the plane of the injection optics

(“pupil function”).

For the wavefront phase at a wavelength λ written in terms of Zernike polynomials

ψm and Zernike coefficients ζm (in units of m) φ(r, θ) = 2π
λ

∑
m ζmψm(r, θ) the

normalized power coupling efficiency can be written as:

ρWFE ≈ exp

{(
−2π

λ

)2 ∑
m,n≥2

ζmζnkm,n

}
; 0 ≤ ρWFE ≤ 1 (5.4)

The approximation for the phase change due to modal filtering reads:

∆φWFE =
2π

λ

∑
m≥1

ζmkm,1 (5.5)

Thus, the phase shift is linearly approximated with the Zernike coefficients and the

loss in power coupling efficiency is a exponential function with second order terms of

Zernike coefficients. After the electric field amplitude ÊStatic and phase φStatic are

computed with a direct propagation of the unaberrated reference beam with amplitude
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Figure 5.8: Ruilier method for simulating the modal filtering process. The upper part

deals with the effects of lateral beam shift using a look-up table. The

wavefront errors expressed in Zernike coefficients are the concern of the

lower part resulting in both loss of field coupling efficiency and a phase

shift.

profile ÊPupil and a flat wavefront, the resulting dynamic electric field is approximated

with the amplitude and phase

Ê(t) ≈ ÊStatic
√
ρWFE(t); φ(t) = φStatic + ∆φWFE(t) (5.6)

Besides the wavefront error the lateral shift of the telescope exit pupil with respect

to the optical fiber has to be taken into account. As a first approximation, this is

considered independent of the wavefront error reducing the field coupling efficiencies

only. In the Simulink model the effects due to lateral shift are realized using a two-

dimensional lookup-table. However, the effects due to lateral beam shift are not

fully decoupled from the wavefront errors. Thus these effects have to be further

investigated in more detail to include them into a future version of the model. The

Simulink blocks corresponding to the Ruilier approximation of the optical fiber are

shown in figure 5.8.

5.4 Simulation results

A large variety of simulations can be done with the VLTI Integrated Model combining,

e.g., different disturbances, control parameters and configurations. Only some exam-

ples will be given in the following for the typical wind velocity of 10 m/s focusing on

the relevance of the individual disturbances and telescope components.
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5.4.1 Test of plausibility for a sensitivity matrix

Within the VLTI Integrated Model the relevant optical quantities are directly con-

nected to the rigid body motions of the mirrors. As an example table 5.1 shows a

part of the full sensitivity matrix for the first three mirrors of the UT. The displayed

optical quantities are the lateral shift of the VLTI exit pupil (∆XPupil and ∆YPupil)

and the four lowest Zernike polynomials describing the wavefront error in the exit

pupil. The rigid body motions of the mirrors are described in a local coordinate sys-

tem with X aligned to the altitude axis and Z aligned to the optical axis of mirror

M1.

The OPL is the quantity which can easily be checked for plausibility. For mirror

M1 and M2 the OPL is very insensitive for a translations ∆X and ∆Y as these

are perpendicular to the optical axis. For a ∆Z shift both mirrors have the same

magnitude of nearly 2 in their sensitivity as the OPL of both the incident ray and

the reflected one is (nearly) changed by ∆Z. The sensitivity values have different

signs as the incident ray is for M1 oriented to −Z and for M2 to +Z. The tertiary

M3 is a flat mirror oriented with 45◦ to the Z axis to redirect the light towards the

Nasmyth-focus. Hence translation ∆Y has no effect onto the OPL and both ∆X and

∆Z have a sensitivity of one again with different signs.

All optical quantities are insensitive for a rotation of M1 or M2 along the Z-axis

according to the rotational symmetry of these mirrors. The pupil position is mostly

influenced by tilting mirror M1, but it is also very sensitive to a tip of M2 or M3. The

lateral translations of M1 and M2 result both with a large amplification in a pupil

shift.

The wavefront tip/tilt in the exit pupil are mostly influenced by the tip/tilt of M1.

Besides the OPL, ∆Z of M1 and M2 have the largest impact onto the focus error.

The reason for this is the optical layout of the VLT, since this is of Ritchey-Chretien

type und thus the (nearly) parabolic primary shares a common focus with the (nearly)

hyperbolic secondary. A ∆Z motion of M1 or M2 moves the mirrors focal point out

of the focus of the other mirror and causes therefore a focal error in the exit pupil.

The sensitivity matrix created remotely by BeamWarrior corresponds therefore to

expected values.

5.4.2 Contribution of different components to the error due

to wind load

To analyze the windload in more detail, the effects are split into the the contributions

of the individual mirrors M1, M2 and M3. Moreover the errors due to the four different

force sets for the wind load M1, M3, TU and TR are investigated.



112
CHAPTER 5. VERY LARGE TELESCOPE INTERFEROMETER (VLTI)

INTEGRATED MODEL

10
0

10
1

10
−15

Frequency [Hz]

P
is

to
n

10
0

10
1

10
−15

Frequency [Hz]

T
ilt

10
0

10
1

10
−20

10
−15

Frequency [Hz]

D
ef

oc
us

10
0

10
1

10
−10

Frequency [Hz]

La
te

ra
l s

hi
ft

M1
M2
M3
Total

Figure 5.9: Contributions of the mirrors M1 M2 M3 of the UT to the PSD errors for

piston, tilt, lateral pupil shift and defocus due to wind load.

Figure 5.9 shows the PSDs of the low order wavefront errors ∆(OPL) (= ∆(piston)),

∆(tilt), ∆(defocus) and ∆(lateral pupil position) with the individual effects caused

by the motion of M1, M2 and M3 together with the total values. The piston is

dominated by the motion of mirror M2 although both M1 and M2 have the same

sensitivity. Due to the stiffness and the loads the vibrations of M2 are larger than

that of M1. For the tilt practically only M1 is responsible which is also caused by

the sensitivity, which is more then seven times larger for M1 than for M2 or M3. For

defocus, both M1 and M2 share the resonance peaks with about the same amplitudes

while M2 becomes more important in the low frequency range. The lateral pupil shift

is practically only governed by the motion of M1 which corresponds well to the

expectations due to the sensitivity table 5.1.

Besides the effects due to the three mirrors of the main optics, the four load sets with

load on mirror M1 (M1), the load on M3 mirror and the M3 tower (M3), the load

on the tube including center piece and Serrurier bars (TU) and the load on the top

unit with M2 housing, M2 spider and M2 top ring (TR) (see figure 3.7 and section

3.5.2) are investigated separately. Again the low order wavefront errors are shown in

figure 5.10. The effects due to the loads TU and TR are the most important, whereas

the contribution of mirror M3 and M3 tower is the smallest. The different corner

frequencies for the different spectral distributions of the load sets cannot be seen in

this graphics, as they are below one Hz, where the wind load is acting exclusively

statically on the structure.
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Figure 5.10: Contribution of the four load cases M1, M3, TU and TR of the UT to

the low order PSD errors due to wind load.

5.4.3 Contribution of different disturbances to the error

Apart from the wind load the atmospheric turbulence and the micro seismic excitation

are the most important error sources. In figure 5.11 the low order wavefront errors

again with piston, tilt, focus error and lateral pupil shift are shown. For the higher order

errors astigmatism and coma are displayed in figure 5.12. The low frequency piston

of the atmosphere is dominant whereas the peaks due to the structural vibrations in

the eigenfrequencies exceed the atmospheric turbulence for both the wind load and

the seismic excitation. The wind load is declining with increasing frequency whereas

the seismic amplitude stays on a nearly constant level within the displayed frequency

range. Thus for higher frequencies the seismic piston effects exceed the wind effects.

For the wavefront tilt the structural deflections are more important than the at-

mospheric turbulence. Already in the low frequency range the tilt due to wind load is

larger than the atmospheric tilt. The constant seismic contribution and the decreasing

wind effects can be seen again.

For the focal error the effects due to mirror motion are less important than the at-

mosphere. Only some resonance peaks due to wind reach the level of the atmospheric

error. The same is even more true for the higher order wavefront errors. As figure

5.12 shows, the atmospheric high order errors exceed the effect due to wind and

seismicity by some orders of magnitude and can therefore nearly be neglected in this

model. However, this is simply the case as only the rigid body motions of all mirrors

are included into the simulation. This approach is valid, as apart from M1 all mirrors

are relatively small, stiff mirrors, where the wind load does not cause a large elastic
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Figure 5.11: Contribution of wind load, seismic excitation and atmospheric turbulence

to the low order errors (piston, tilt, lateral pupil shift and focus error).
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Figure 5.12: Contribution of wind load, seismic excitation and atmospheric turbulence

to the higher wavefront errors showed by mean of astigmatism and coma.

deformation. For mirror M1 an active optics control loop keeps the desired mirror

shape with a bandwidth up to some Hz.
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5.4.4 Disturbance rejection of the control loops

The disturbance rejection of the Fringe Tracking Loop (=OPD control loop) and Fast

Tip/Tilt Control loop are shown in figures 5.13 and 5.14. The Fringe Sensor Unit

(FSU) measures the OPD between both interferometer arms in the laboratory. This

signal is fed back over the OPD controller (OPDC) to the Delay Line (=actuator).

For the UT the tip/tilt controller uses the measurement of the wavefront tilt at the

transmitted Coudé focus (as a lateral shift of the stellar image (in BeamWarrior: spot

diagram centroid)) and feeds the signal back to the tip/tilt mirror M2.
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Figure 5.13: Time-history effect of the Fringe Tracking Control loop and the Fast

Tip/Tilt Control loop onto the OPD and the tilt of the wavefront in the

exit pupil.
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Figure 5.13 shows with the example of a time-history without control (left) and

with closed loop control (right) the reduction of the wavefront errors. Especially

the low frequency OPD error is removed, while the signal is oscillating with the

high frequency components. In figure 5.14 the corresponding PSDs are plotted. The

bandwidth of the OPDC (left) is limited due to the dynamics of the Delay Line and

the noise signals added to the sensor and actuator outputs. The integrating part

of the controller reduces very efficient the low order OPD error, but between 12

and 100 Hz the controlled OPD is even worse than the open loop OPD. For higher

frequencies the roll-off of the OPDC becomes high enough and thus the open loop

and the closed loop signals are identical. According to the right plot in 5.14 the Fast

Tip/Tilt control loop acts with nearly constant efficiency up to 60 Hz. This is caused

by a dominant proportional part in the controller. The low frequency dynamic could

be further improved by increasing the integrating component in this control loop.

The disturbance rejection decreases again for higher frequencies due to the limited

dynamics of the components in the loop.

The specification for the wavefront errors is typically dependent on the observation

band and the exposure time. For shorter times the statistical errors are smaller (see

appendix A). Table 5.2 lists the rms errors for the OPD and the wavefront tilt in the

exit pupil for different exposure times. This table allows quantitatively to evaluate

the efficiency of the applied controllers reducing significantly the rms errors for short

time exposure and for longer exposure times.

Table 5.2: Open loop and closed loop rms errors for OPD and tilt computed for a

wavelength of 2.2µm for different exposure times.

time OPD [1e-6 m] Tilt [mas on sky]

[s] no OPD control OPD control no tip/tilt control tip/tilt control

0.1 1.04 0.369 19.6 0.0147

1.0 4.09 0.375 102 0.0933

10 12.60 0.382 203 0.211

5.4.5 Accuracy evaluation of the Ruilier approximation

The computational cost for the Ruilier approximation is significantly lower than that

for the exact method. A comparison of required simulation time shows an acceleration

of a factor of about 7700 for a 101× 101 pixel map. However, the method is limited

to small aberrations. Figure 5.15 shows examples of loss in field coupling efficiency

and phase shift due to simple aberrations. The rising error for increasing wavefront

errors can be seen. Table 5.3 lists the maximum difference between the exact method

and the approximation for different levels of aberrations.
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The effects of lateral pupil shift are relatively small for slight shift-values. As the look-

up table is directly created from simulations with the exact method no differences can

be seen in figure 5.16 on the left top. The loss in field coupling efficiency due to the

Zernike wavefront errors is approximated with a Gaussian function. The output phase

is linearly expressed dependent on the Zernike coefficients (compare to equations

(5.4) respectively (5.5)). The maximum error between the Ruilier approximation and

the exact method is much dependent on the Zernike polynomial. Table 5.3 shows for

example at a level of 0.5µm wavefront error a significant higher deviation for the focus

error than for tilt, astigmatism, coma or spherical aberration. As figure 5.16 shows

on the lower right plot, the coupling between two errors can further reduce the range,

where the approximation is valid. While the tilt cause a small phase error up to nearly

2µm and the spherical aberration up to 1µm, the combination of 0.5µm tilt and

0.5µm spherical aberrations already reaches the limits of valid approximation. Hence

before applying this approximation method it should be checked that the Zernike

coefficients do not exceed conservatively chosen limits.

For wind load and atmospheric turbulence the resulting intensity histories are plotted

in figure 5.16 and 5.17. As for the instrument VINCI three signals are produced: the

two intensity measurement of the individual arms and the interferometric signal with

the characteristic fringe pattern. In figure 5.16 the only disturbance is the wind load,

while the OPD and tip/tilt wavefront error is fully compensated by the control loops.

The radiometric intensities of both interferometer arms are nearly constant and the

interference fringes show a pattern similar to the ideal shape in figure 2.5. The reason

for this are the relatively small higher order wavefront aberrations due to wind load.

Both the exact method and the Ruilier approximation give very similar results as can

be seen in the magnified plot on the left. Table 5.4 compares the approximation errors

for the three channels depending on the applied control loops. The OPD control loop

has no direct influence onto the approximation since an extra OPD causes simply an

additional phase difference between both arms and thus the accuracy for the intensities

of arm 1 and arm 2 do not change. The small decrease of error for the interferometric

intensity is due to a larger maximum amplitude this signal. The tip/tilt wavefront

error contributes significantly to the deflection between both methods. Hence closing

this control loop increases the accuracy of the approximation method.

As shown in section 5.4.3 the atmospheric turbulence causes much larger high order

wavefront aberrations than the telescope vibrations due to wind load or seismicity. In

figure 5.17 the time-histories of the individual intensities are plotted. The radiometric

intensities are no more constant but vary over the time due to a varying coupling

efficiency of the electric field into the optical fiber. The average interferometric signal

is varying in the same way since it is composed of the intensities of the arms. Moreover

the fringe contrast is varying, which is maximum for the superposition of two signals

with the respective phase difference of π and the same amplitude.



118
CHAPTER 5. VERY LARGE TELESCOPE INTERFEROMETER (VLTI)

INTEGRATED MODEL

The large high order wavefront errors are the reason why the Ruilier approximation

shows distinct deviations from the exact method. Therefore this method cannot be

applied simulating atmospheric turbulence of this magnitude without an adaptive

optics system.
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Table 5.1: Sensitivity matrix of the rigid body motions of primary mirror M1, sec-

ondary mirror M2 and tertiary mirror M3 of the Unit Telescope (UT) of

VLT.

∆XPupil ∆YPupil OPL Tip Tilt Defocus

M1 ∆X 44.772 -27.699 0.001 -0.229 0.149 +1.7439e-005

∆Y 29.048 42.605 0.003 -0.149 -0.229 -2.9972e-005

∆Z 0.015 0.025 -1.982 -0.000 -0.000 +1.8773e-002

∆φx -836.400 -1226.929 -0.047 4.318 6.646 +3.8157e-004

∆φy 1290.391 -798.079 0.050 -6.647 4.313 +3.3641e-004

∆φz 0.368 -0.243 -0.002 -0.002 0.001 +2.7663e-006

M2 ∆X -39.447 24.395 -0.002 0.201 -0.131 -1.4537e-005

∆Y -25.546 -37.490 -0.001 0.131 0.202 +1.8132e-005

∆Z -0.019 -0.026 1.981 0.001 0.000 -1.9107e-002

∆φx 116.370 170.739 0.005 -0.601 -0.925 -5.1494e-005

∆φy -179.539 111.055 -0.005 0.925 -0.600 -4.7876e-005

∆φz -0.061 0.038 -0.000 0.000 -0.000 +1.7298e-007

M3 ∆X -5.364 3.317 1.000 0.028 -0.018 -2.7691e-004

∆Y -0.002 0.001 0.000 0.000 -0.000 -7.5529e-008

∆Z 5.363 -3.317 -1.000 -0.028 0.018 +2.7692e-004

∆φx -23.786 -34.904 -0.001 0.123 0.190 +7.0752e-006

∆φy 73.403 -45.394 0.002 -0.379 0.246 +1.3122e-005

∆φz -23.762 -34.919 -0.001 0.123 0.190 +7.1638e-006
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Table 5.3: Accuracy of the Ruilier approximation for varying a single Zernike wave-

front aberration. The table lists the difference of the exact propagation for

the center wavelength λc = 2.2µm expressed in the maximum relative am-

plitude error (respectively the ideal efficiency) and the phase shift in [rad].

The level gives the Zernike coefficient in [m]; e.g. a tilt of level 1.00e-6

gives a maximum wavefront error of 1.00e-6 m at the outer rim.

Tilt Focus error Astigmatism Coma Spherical

Level ∆ρ ∆φ ∆ρ ∆φ ∆ρ ∆φ ∆ρ ∆φ ∆ρ ∆φ

[m] [%] [rad] [%] [rad] [%] [rad] [%] [rad] [%] [rad]

1.00e-7 0.29 0.02 0.57 0.02 0.25 0.02 0.26 0.02 0.34 0.02

5.00e-7 1.22 0.03 8.63 0.10 0.63 0.03 1.01 0.04 1.07 0.02

1.00e-6 4.26 0.04 17.76 0.74 3.12 0.04 5.32 0.06 8.26 0.15

3.00e-6 7.26 3.71 33.00 5.20 28.05 0.05 16.90 3.55 30.20 4.28

Table 5.4: Relative error (rms-error in per cent of maximum amplitude) between exact

computation and Ruilier approximation for time simulations. Three cases

are listed for wavefront errors due to wind load: without control, closed

Fringe Tracking loop (OPD control) without tip/tilt control and both OPD

control and tip/tilt control.

[%] Intensity arm1 Intensity arm2 Intensity interferometer

no control 1.08 0.50 0.64

OPD control 1.08 0.51 0.53

OPD + tip/tilt control 0.12 0.02 0.28
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Figure 5.15: Intensity loss and phase shift due to simple phase aberrations. For small

aberrations the Ruilier methods gives a good approximation. The ef-

fects of simple aberrations are displayed for λc = 2.2µm (starting at top

left plot): lateral shift (no difference due to look-up table), tilt, spher-

ical aberration and combination of tilt and spherical aberration (both

coefficients varying with equal magnitude)



122
CHAPTER 5. VERY LARGE TELESCOPE INTERFEROMETER (VLTI)

INTEGRATED MODEL

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

time [s]

In
te

ns
ity

Comparison Rulier method: FTL + FTT control loop

Rulier P1
Rulier P2
Rulier I12
Exact P1
Exact P2
Exact I12

0.094 0.096 0.098 0.1 0.102 0.104

270

275

280

285

290

295

300

time [s]

In
te

ns
ity

Comparison Rulier method: FTL + FTT control loop

Rulier P1 
Rulier P2 
Rulier I12
Exact P1  
Exact P2  
Exact I12 

Figure 5.16: Example for the time-history of the VINCI output: intensities of the two

interferometer arms P1, P2 and the interferometric fringe intensity I12

due to wind load.
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Figure 5.17: Example for the time-history of the VINCI output: intensities of the two

interferometer arms P1, P2 and the interferometric fringe intensity I12

due to atmospheric turbulence.



6 Conclusion and outlook

6.1 Conclusion for this work

Future large astronomical telescopes will be highly complex systems incorporating key

technologies as active and adaptive optics, huge probably actively damped lightweight

structures or high precision measurement systems providing the data to steer various

actuators in closed loop control. A comprehensive integrated model computing the

time-dependent signal flows between the components and subsystems is a required

tool for the multidisciplinary system engineering.

This is true for all phases of a telescope project, since, for example, in the planing

phase the evaluation of feasibility and functionality of different concepts need a suit-

able model. For a final design the performance can only be predicted reliably if major

crosstalk and interaction between all different dynamical subsystems is considered.

In this work a concept was shown to provide a suitable model of the telescope structure

to be used in an integrated model. In addition to that an efficient approach for

integrated modeling of astronomical telescopes was developed and its application to

the Very Large Telescope Interferometer (VLTI) tested.

After an overview over a ground based astronomical telescope system with the major

components optics, mechanics and control was given, their mathematical description

was shortly explained. Moreover the different sources disturbing a ground-base tele-

scope – especially atmospheric turbulence and wind load – are discussed. While local

effects are out of the scope of the integrated models, possibilities for appropriately

modeling the relevant global and large scale effects were given.

For describing the mechanical structure the governing equations were explained and a

standardized state-space format was given allowing both force and acceleration inputs

as well as displacement and velocity outputs. For telescope structures linear state-

space models can be generated from the modal data of a finite element analysis. Only

for special components like friction drive systems non-linear models have to be added.

A standardized format for inputs and outputs was developed allowing to define fixed

interfaces towards an FE-model.

Different techniques for model reduction were explained and their meaning was dis-

cussed. Balanced model reduction was identified as the most appropriated condensa-

tion method as the modal state-space systems keep the computational effort small.
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Using selected applications to telescope structures the meaning of an appropriate

scaling of inputs and outputs was explained and the effects onto the reduced models

was demonstrated. Using selected applications to telescope structures the meaning of

an appropriate scaling of inputs and outputs was explained and the effects onto the

reduced models demonstrated.

The two special cases of scattering material parameters and the structure-soil inter-

action in modeling telescope structures were discussed in more detail. For scattering

material parameters an approach for performing a monte carlo simulation was de-

veloped, which gives much more precise information than a worst case simulation

and also allows the non-trivial identification of a worst case configuration. Especially

cluster PCs allow performing such an analysis quickly and at low cost.

For modeling the interaction between telescope structure, the foundation and the soil

a concept was explained using Finite Element modeling. Analyzing the preliminary

design of the Overwhelmingly Large Telescope (OWL) of ESO the dynamic effects

of the ground were showed to be not critical. However, this was true only for this

extremely light weight construction, which distributes the telescope mass onto a large

area of ground, and for the considered range of soil properties, as the influence of the

ground increases with decreasing stiffness modulus of the soil.

For integrated modeling of an astronomical telescope a modular approach was devel-

oped and applied to the European Southern Observatory’s VLTI. The VLTI comprises

many different configurations and components which are generated consistently using

a single configuration file for the computation of the linear optical models and the

dynamical creation of the complete system. The VLTI Integrated Model approved

the coupling between the optical modeling tool BeamWarrior and a Matlab-based

integrated Simulink model to be well suited for such a complex system. The chosen

degree of detail allows simulations in acceptable computational time.

With selected examples the plausibility of the sensitivity matrices was demonstrated

and the distributions of the individual disturbance sources to the total wavefront error

at the VLTI exit pupil was shown. While for lower order wavefront errors both the

wind load and the atmospheric turbulence give significant distributions, for higher

order errors the atmospheric turbulence is dominant.

For a wide field of applications a Fourier-optical method can be used which allows to

compute the image of extended (arbitrary distributed) sources due to the convolution

of the image of a point source and the visibility function and also easily spectral broad

band effects.

A necessary requirement is linearity and isoplanatism (space-invariance), which is ,

e.g., violated by a single-mode wave guide (e.g. on optical fiber), since a change in the

location of the point source causes a change in the amplitude of the intensity pattern

and not of the location at the output of the optical fiber. Such a modal filter is used



6.2. OUTLOOK TOWARDS MODELING EXTREMELY LARGE
TELESCOPES 125

at the VLTI for the instrument VINCI, for which a simplified model was included into

the VLTI Integrated Model.

Direct modeling of each source pixel involves a high computational cost and is lead-

ing to unacceptable long simulation time. Therefore as an approximation the Ruilier

method was applied. It was shown that this method gives efficiently valid results for

small wavefront errors, but leads to wrong results, if the disturbance level exceeds a

certain level.

When developing an integrated model, at the beginning the purpose of the model

must be clearly defined. Only dependent on the desired objectives, a design with the

right degree of integration, coupling and detail can be built. A final model will always

be a compromise between the effort of building and handling it, the model accuracy

and level of detail represented by the model as well as the computational cost for

preforming simulations. Therefore the right balance is very important and is mostly

influence in the early design phase of the model.

6.2 Outlook towards modeling Extremely Large

Telescopes

For future Extremely Large Telescopes (ELTs) the presented approach for building

a reduced structural state-space model can fully be applied. The major differences

for the telescope structure are lower natural frequencies although the design is a

sophisticated lightweight construction with much higher stiffness compared to a scaled

model of an existing 10m-class telescope. The larger dimensions and lower natural

frequencies lead to larger influence of the wind load on the telescope performance.

Force spectra will act on the individual mirror segments, which are different and

partially correlated. To reliably verify the alignment system the time-dependent loads

on each segment as well as the actuators and the supporting telescope structure must

be represented correctly. Consequently a structural model of, e.g., OWL has to include

the 10000 actuators of the segmented mirrors, but also the telescope deformations

with sufficient spatial resolution. Truncating too many modes will result in an artificial

increase of stiffness. To verify the model accuracy a comparison between the DC-gain

of the dynamic model and results of a FE analysis can by used. The proposed balanced

model reduction technique is still appropriate, especially as it can efficiently be applied

to modal state-space systems.

Besides the effects onto the structural model the high degree of segmentation will

also have a large impact onto the optical model and the control loops. For studying

the optical effects on the VLTI UT, the ray tracing was performed with a [101×101]

ray grid. Using only a grid of [31 × 31] for one segment of OWL will result in a 300

times larger number of rays. Considering six rigid body motions for each segment of
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M1 and M2 nearly 20 000 singular disturbances exist increasing the sensitivity ma-

trices accordingly. Moreover the linear optical models for the deformable mirrors of

the adaptive optics have to be generated. Hence for the optics the concept is valid.

However, the major challenge is the large number of segments and the grand increase

of degrees of freedom, which can lead to long computation times and large memory

requirements. Considering the development of more powerful computers with an in-

crease of available memory the optical models should be computed within acceptable

times.

Both the lower natural frequencies of the mechanical structure and the high number

of segments complicate the telescope control. The lowest telescope modes limit either

the bandwidth of the controller or a large effort is necessary to include a structural

model into the controller while guaranteeing robustness. For aligning the 3250 seg-

ments for M1 and M2 of OWL 20000 sensor outputs must be connected to 10000

actuator inputs. A possible solution providing a high bandwidth are local controllers.

However, although using high precision sensors the small amounts of signal noise

can add up in the long chain coupled with the structure and the sensors. Moreover

this coupling can cause additional dynamics and instability for the complete system

forcing to reduce the controller gain and limit the bandwidth.

For modeling the full system within an integrated model an extremely large number

of states is required to represent the mechanical structure, the inertia of the segments

and the control loops with sensors, controllers and actuator dynamics. To keep simu-

lation times on a tolerable level a large effort has to be put into the implementation of

the complete system. A possible option could be parallel computing on a PC-Cluster,

but classical simulation environments like Simulink do not support this at present.
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[42] Appelö, Daniel, “Non-reflecing Boundary Conditions for Wave Propagation

Problems”. Licenciate’s Thesis, Royal Institute of Technology, Stockholm, 2003.

[43] K. Grote, Marcus J., “Exact nonreflecting boundary conditions for the time

dependent wave equation,” SIAM Journal of Applied Mathematics 55, pp. 280–

297, 1995.

[44] Kim, Jae K.,Koh, Hyun M.,Kwon, Ki J.,Yi, Jang S., “A three-dimensional trans-

mitting boundary formulated in Cartesian co-ordinate system for the dynamics

of non-axialsymmetric foundations,” Earthquake engineering and structural dy-

namics 29, pp. 1527–1546, 2000.

[45] T. Komatitsch, Dimitri, “A perfectly matched absorbing boundary condition for

the second-order seismic wave equation,” Geophysical Journal Internatinal 154,

pp. 146–153, 2003.

[46] “LS-DYNA Theoretical Manual, 20.2 Transmitting Boundaries,” 1998.

[47] Ewins, D. J., “Modal Testing: Theory, Practice and Application”, Research Stud-

ies Press Ltd, Hertfordshire, 2 ed., 1999.

[48] Wilhelm, Rainer, “Comparing geometrical and wave optical algorithms of a novel

propagation code applied to the VLTI,” 4436, pp. 89–100, 2001.

[49] M. Schoeller; R. Wilhelm; and B. Koehler, “Modeling the imaging process in

optical stellar interferometers,” Astron. & Astrophys. Suppl. Ser. 144, pp. 541–

552, 2000.

[50] Glindemann, Andreas, “VLTI technical advances (present and future),” in New

Frontiers in Stellar Interferometry, W. A. Traub, ed., Proc. SPIE 5491, 2004.

[51] P. Kervella, “VINCI, the VLTI Commissioning Instrument: status after one year

of operations at Paranal,” 4838, 2002.

[52] C. Ruilier and F. Cassaing, “Coupling of large telescopes and single-mode

waveguides: application to stellar interferometers,” 18, 2001.

[53] C. Ruilier, “A study of degraded light coupling into single-mode fibers,” 3350,

pp. 319–329, 1998.

[54] Hughes, Peter C., “Space structure vibration modes: How many exist? Which

ones are important?,” Control Systems Magazine, IEEE 7(1), pp. 22– 28, 1987.

[55] Lunze, Jan, “Regelungstechnik 1”, Springer-Verlag, Berlin Heidelberg New York,

1996.

[56] Lunze, Jan, “Regelungstechnik 2”, Springer-Verlag, Berlin Heidelberg New York,

1997.



Bibliography 131

[57] Spanos, John T.,Tsuha, Walter S., “Selection of component modes for flexible

multibody simulation,” AIAA journal 14(2), pp. 278–286, 1990.

[58] Nowacki, Witold, “Dynamic of elastic systems”, Champman & Hall LTD., Lon-

don, ed., 1963.

[59] Graff, Karl F., “Wave motion in elastic solids”, Clarendon Press, Oxford, ed.,

1975.

[60] Welch, P.D., “The Use of Fast Fourier Transfrom for the Estimation of Power

Spectra: A Method Based on Time Averaging Over Short, Modified Peri-

odograms,” IEEE Transactions Audio Electroacoustics 15, pp. 70–73, 1967.



List of Figures

1.1 Comparison of the telescope structure of OWL and of the VLT . . . 8

2.1 Scheme of a telescope system . . . . . . . . . . . . . . . . . . . . . 13

2.2 Focussing of a plane wavefront by an optical system. . . . . . . . . . 15

2.3 Zernike polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Diffraction pattern of a point source . . . . . . . . . . . . . . . . . 17

2.5 Simple model of an interferometer . . . . . . . . . . . . . . . . . . . 20

2.6 Frequency dependence and order of wavefront errors caused by differ-

ent disturbances. (according to [1, p. 312]) . . . . . . . . . . . . . . 24

2.7 Aerodynamic attenuation factor . . . . . . . . . . . . . . . . . . . . 28

2.8 PSD of the wind velocity for the Von Karman turbulence model. For

high frequencies the PSD decreases ∝ f−5/3 . . . . . . . . . . . . . 29

2.9 Wind load (in y-direction) onto mirror M1 of the UT of VLT . . . . . 30

2.10 Typical seismic event at Paranal. This type of event occurs three times

per night in mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Coordinate systems and notations . . . . . . . . . . . . . . . . . . . 46

3.2 Model reduction of a simple system . . . . . . . . . . . . . . . . . . 53

3.3 Grouping of the states according to their controllability and observability. 53

3.4 Scheme of the architecture of SMI. . . . . . . . . . . . . . . . . . . 64

3.5 SMI architecture and components . . . . . . . . . . . . . . . . . . . 65

3.6 SMI provided tools for model reduction. . . . . . . . . . . . . . . . . 66

3.7 Finite element model of a Unit Telescope of the VLT. . . . . . . . . 67

3.8 TF of the OPL due to wind load on M1 . . . . . . . . . . . . . . . . 68

3.9 PSDs of the OPL due to wind load on M1 . . . . . . . . . . . . . . 70

3.10 FE model of the OWL and major structural components. . . . . . . . 70

3.11 Transfer functions of wind load on OWL to the motions of mirror M2

in y-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 Transfer functions of the altitude drive to the differential displacement

of altitude bogie #10 . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Transfer functions of the altitude drive of OWL to the motions of

mirror M2 in x-direction and y-direction. . . . . . . . . . . . . . . . 73

4.1 Finite Element Model of the LOTHAR reflector . . . . . . . . . . . . 76



List of Figures 133

4.2 Analysis setup for the LOTHAR-reflector FEM analysis. . . . . . . . 77

4.3 Approach for analyses with random Vf distributions . . . . . . . . . 79

4.4 Examples for the sensitivity of the surface error distribution . . . . . 79

4.5 Due to the nominal CTE of 6.1e-7 1/K cooling the reflector down

to operational temperature causes a large surface error (left). After

fitting the reflector the residual RMS is negligible (right). . . . . . . 81

4.6 Worst case fiber volume distributions . . . . . . . . . . . . . . . . . 82

4.7 Histograms of the frequency of a certain RMS error . . . . . . . . . 82

4.8 Surface error due to varying Vf for the operational load case OP. . . 83

4.9 FE-model of the OWL with foundation and ground . . . . . . . . . . 87

4.10 y-displacement of mirrors M1 (left) and M2 (right) due to static wind

load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Eigenfrequency of the first ground mode . . . . . . . . . . . . . . . 89

4.12 Types of mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.13 Comparison of the mode shapes . . . . . . . . . . . . . . . . . . . . 91

4.14 MAC, MSF and normalized |MPF∗| . . . . . . . . . . . . . . . . . . 92

4.15 Comparison of the transfer functions between y-displacement due to

wind load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.16 Effects of the soil stiffness onto the transfer functions between y-

displacement of mirrors M1 (left) respectively M2 (right) due to wind

load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Effects of the transmitting boundary condition onto the transfer function. 95

5.1 BeamWarrior models of the three types of VLTI telescopes . . . . . . 99

5.2 Amplitude (left) and phase (right) of the electric field distribution in

the nominal exit pupil . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Top-level architecture of the VLTI Integrated Model . . . . . . . . . 103

5.4 Sensor (FSU) and controller (OPDC) of the fringe tracking control loop104

5.5 Schematic drawing of the signal flow for one arm and one band in the

Integrated Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Subsystem model of a single interferometer arm (UT) with the main

control loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Exact simulation of the modal filtering process . . . . . . . . . . . . 109

5.8 Ruilier method for simulating the modal filtering process. . . . . . . 110

5.9 Contributions of the mirrors M1 M2 M3 of the UT to the PSD errors

for piston, tilt, lateral pupil shift and defocus due to wind load. . . . 112

5.10 Contribution of the four load cases M1, M3, TU and TR of the UT

to the low order PSD errors due to wind load. . . . . . . . . . . . . 113

5.11 Contribution of wind load, seismic excitation and atmospheric turbu-

lence to the low order errors . . . . . . . . . . . . . . . . . . . . . . 114

5.12 Contribution of wind load, seismic excitation and atmospheric turbu-

lence to the higher wavefront errors showed by mean of astigmatism

and coma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



134 List of Figures

5.13 Time-history effect of the Fringe Tracking Control loop and the Fast

Tip/Tilt Control loop onto the OPD and the tilt of the wavefront in

the exit pupil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.14 Disturbance rejection of the Fringe Tracking Control loop and the Fast

Tip/Tilt Control loop in the frequency domain. . . . . . . . . . . . . 115

5.15 Intensity loss and phase shift due to simple phase aberrations. . . . . 121

5.16 Example for the time-history of the VINCI output due to wind load . 122

5.17 Example for the time-history of the VINCI output due to atmospheric

turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables

1.1 Comparison: VLT and OWL . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Scaling lows for structures. (Typical dimension L, density ρ, Youngs

modulus E, velocity U . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Design specification for the VLT of ESO on Paranal [22] . . . . . . . 27

3.1 Absolute and relative rms error for the computed PSDs of the OPD

between the full state model (exact) and the three reduced models. . 69

4.1 List of parameters used for studying the effects of different soil properties. 87

4.2 Telescope mass, mass of the modelled soil and mass of the soil to

be removed due to the telescope foundation for a light soil (ρ =

1300kg/m3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Influence of the soil onto the static stiffness. The values give the

relative change (without sign) of displacement with respect to the

quasi infinite stiff soil. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 List of eigenfrequency, MAC and MSF for the modes of model Owl-

GroundVar1, that are similar to the first telescope mode. . . . . . . . 92

4.4 List of eigenfrequencies (in Hz) for the first 4 modes (E = 2000MPa, ρ =

1620kg/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Open loop and closed loop rms errors for OPD and tilt computed for

a wavelength of 2.2µm for different exposure times. . . . . . . . . . 116

5.1 Sensitivity matrix of the rigid body motions of primary mirror M1,

secondary mirror M2 and tertiary mirror M3 of the Unit Telescope

(UT) of VLT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Accuracy of the Ruilier approximation . . . . . . . . . . . . . . . . . 120

5.4 Relative error between exact computation and Ruilier approximation

for time simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Appendix

Appendix

A Relationship between time-series, PSDs and
RMS-values

The time-series can be converted into Power Spectral Densities (PSDs) and a real-

ization of a possible time-history with a given PSD can be generated using random

numbers:

The PSD is the amount of power per unit (density) of frequency (spectral) as a

function of the frequency and describes how the power (or variance) of a time series

is distributed with frequency. Mathematically, it is defined as the Fourier Transform

of the autocorrelation sequence of the time series.

PSD =
Sxx(f)

fs

=
1

fs

∞∑
m=−∞

Rxx(m)e−2πfm/fs (A.1)

An equivalent definition of PSD is the squared modulus of the Fourier transform of

the time series, scaled by a proper constant term.

For continuous signals the autocorrelation is defined as

Rxx(t) = E(x(t− τ)x(τ)) = 〈x(t− τ)x(τ)〉 =

∫ ∞

−∞
x(t− τ)x(τ)dτ. (A.2)

For a discrete time series it is given as

Rxx(m) = E(xn+mxn), (A.3)

where E() denotes the expected value and can be computed approximately to

Rxx(m) ≈
N−M−1∑

n=0

xn+mxn for m ≥ 0; Rxx(m) = RH
xx(−m) for m < 0; (A.4)

Using the discrete-time Fourier transformation (sampling frequency fs = L ∗ ∆f)

XL(f) = XL((k − 1)∆f) = XL[k] =

L∑
n=1

xL[n]e−2πıf(n−1)/fs

=
L∑

n=1

xL[n]e−2πı(k−1)(n−1)/L, 1 ≤ k ≤ L

(A.5)
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and the inverse discrete Fourier transformation

xL(t) = xL((n− 1)∆t) = xL(n)

=
1

N

L∑
k=1

XL(k)e2πı(k−1)(n−1)/L, 1 ≤ n ≤ L
(A.6)

allows to compute an estimation of the two-sided PSD:

Pxx(f) =
|XL(f)|2
fsL

(A.7)

(e.g. in Matlab: periodogram.m)

The one-sided PSD is given by:

Pxx,one−sided(f) =

⎧⎨
⎩ Pxx(f) |f = 0

2Pxx(f) |f = [fs : fs : N
2
fs]

(A.8)

Applying a window (e.g.: Hanning window, Hamming window, ...) reduces the spectral

leakage effects. A modification is Welch’s method ([60]), which divides the time series

into (possibly overlapping) segments to compute a spectrum for each segment and

uses in the end the average spectrum as the PSD estimate.

To generate a realization of a time-series with a given one-sided PSD is possible by

inverting the PSD computation. The total time covered by the spectrum is T = 1
∆f

.

Usually a signal with zero mean value is generated and thus PSD[1] = PSD(f=0) is

set to 0. The maximum frequency in the spectrum defines the time-spacing according

to the Nyquist-Theorem ∆t = 1/fa = 2
∆f

. To change the time-spacing (without

changing the frequency content) the spectrum can be artificially be filled up with

zeros, call zero-padding. The total length L of the time-signal and of the complex

spectrum is two times the length of the one-sided PSD. After generating a random

vector randomV ec (with values between 0 and 1) the complex spectrum can be

computed using the random phase vector φ = 2πrandomV ec:

XL(f) =

√
1

2
fsLPxx,one−sided(f)e−ıφ (A.9)

and applying the inverse (discrete) Fourier transformation the time-series is given to:

xL((n− 1)∆t) = xL[n] (A.10)

To characterize the variation of a signal with a single scalar quantity often the rms-

value is used. The total rms-value of a signal x(t) is

rms =

(
1

te − t0

∫ te

t0

x2(t)dt

) 1
2

(A.11)
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or expressed in terms of the PSD

rms =

(∫ fmax

0

Pxx,one−sided(f)df

)1
2

. (A.12)

Both is numerically computed as a sum over the sampling values.

Including a limited exposure time, the PSD has to be multiplied by a filter function:

rmsτ =

(∫ fmax

0

Pxx,one−sided(f)(1 − (sinc(τf))2)df

) 1
2

, (A.13)

where the sinc-function is defined as

sinc(x) =

⎧⎨
⎩

sin(πx)
πx

|x �= 0

1 |x = 0
(A.14)

B Zernike polynomials used within BeamWarrior

For the Zernike polynomials different definitions are common. Here the definition used

within BeamWarrior and the VLTI Integrated Model are listed:

Index Zernike polynomial ψm Name

1 1 Piston

2 r cos(θ) Tilt around Y

3 r sin(θ) Tilt around X

4 2r2 − 1 Defocus

5 r2 cos(2θ) Astigmatism (Y)

6 r2 sin(2θ) Astigmatism (X)

7 (3r2 − 2)r cos(θ) Coma (Y)

8 (3r2 − 2)r sin(θ) Coma (X)

9 6r4 − 6r2 + 1 Spherical aberration

10 r3 cos(3θ)

11 r3 sin(3θ)

12 (4r2 − 3)r2 cos(2θ)

13 (4r2 − 3)r2 sin(2θ)

14 (10r4 − 12r2 + 3)r cos(θ)
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Index Zernike polynomial ψm Name

15 (10r4 − 12r2 + 3)r sin(θ)

16 20r6 − 30r4 + 12r2 − 1

17 r4 cos(4θ)

18 r4 sin(4θ)

19 (5r2 − 4)r3 cos(3θ)

20 (5r2 − 4)r3 sin(3θ)

21 (15r4 − 20r2 + 6)r2 cos(2θ)

22 (15r4 − 20r2 + 6)r2 sin(2θ)

23 (35r6 − 60r4 + 30r2 − 4)r cos(θ)

24 (35r6 − 60r4 + 30r2 − 4)r sin(θ)

25 70r8 − 140r6 + 90r4 − 20r2 + 1

26 r5 cos(5θ)

27 r5 sin(5θ)

28 (6r2 − 5)r4 cos(4θ)

29 (6r2 − 5)r4 sin(4θ)

30 (21r4 − 30r2 + 10)r3 cos(3θ)

31 (21r4 − 30r2 + 10)r3 sin(3θ)

32 (56r6 − 105r4 + 60r2 − 10)r2 cos(2θ)

33 (56r6 − 105r4 + 60r2 − 10)r2 sin(2θ)

34 (126r8 − 280r6 + 210r4 − 60r2 + 5)r cos(θ)

35 (126r8 − 280r6 + 210r4 − 60r2 + 5)r sin(θ)

36 252r10 − 630r8 + 560r6 − 210r4 + 30r2 − 1

37 924r12 − 2772r10 + 3150r8 − 1680r6 + 420r4 − 42r2 + 1

C Gramians as the solution of the Lyapunov
equation and meaning

Gramians are defined with the integral formula in equation (3.54) or equivalently with

the Lyapunov equation:
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WC =
∫∞
0
eAtB︸ ︷︷ ︸

u′
BHeA

H t︸ ︷︷ ︸
v

dt = [A−1eAtBBHeA
H t︸ ︷︷ ︸

[uv]

]∞0 − ∫∞
0

A−1eAtBBHeA
H tAH︸ ︷︷ ︸

uv′
dt

⇒ WC = −A−1BBH − A−1

∫ ∞

0

eAtBBHeA
H tdt︸ ︷︷ ︸

WC

AH

⇒ AWC + WCAH + BBH = 0

analog: AHWO + WOA + CHC = 0

(C.15)

Gramians define the least energy input to reach a certain state. Using the relation

between state and input for a state-space model

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, (C.16)

the state xe = x(t = te) can be reached starting at x0 = x(t = t0) with a

certain input u(t) with least required energy J =
∫ te

t0
uH(τ)u(τ)dτ . To compute

this u(t) an variation problem is solved using the Lagrange function L = J +

λH
(
xe − eA(te−t0)x0 −

∫ te
t0
eA(te−τ)Bu(τ)dτ

)
:

L(u, λ) =
∫ te

t0
uH(τ)u(τ)dτ + λH

(
xe − eA(te−t0)x0 −

∫ te
t0
eA(te−τ)Bu(τ)dτ

)
= min!

δL(u, λ) = 2
∫ te

t0
uH(τ)δudτ + λH

(
− ∫ te

t0
eA(te−τ)Bδudτ

)
+(

xe − eA(te−t0)x0 −
∫ te

t0
eA(te−τ)Bu(τ)dτ

)H

δλ
!
= 0

u(t) = 1
2
BHeA

H(te−τ)λ

0 = xe − eA(te−t0)x0 −
∫ te

t0
eA(te−τ)B1

2
BHeA

H(te−τ)dτλ = xe − eA(te−t0)x0 − 1
2
Wsλ

→ λ = 2W−1
s

(
xe − eA(te−t0)x0

)
→ u(t) = BHeA

H(te−τ)W−1
s

(
xe − eA(te−t0)x0

)
(C.17)

Considering now the time from t0 = −∞ to te = 0, Ws becomes the controllability

Gramian (substituting the variable in the integral t = te − τ):

Ws(t0 = −∞, te = 0) =
∫ 0

−∞ eA(te−τ)BBHeA
H (te−τ)dτ

=
∫∞
0
eAtBBHeA

H tdτ = WC

(C.18)

Hence, the controllability Gramian is directly connected with the least energy input

to reach a certain state x0.
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D Visbility function and brightness distribution

An extended source with center s0 is described by the intensity distribution F (∆s)

on the sky. The delay lines are adjusted for δ = OPDtot for the direction s0; thus

the point in s = s0 + ∆s has an OPD of ∆s ◦B+ δ. The total power collected from

this source can be derived by incoherent superposition of the monochromatic case

over the source surface, where A(∆s) is the aperture area and F (∆s) is in units of

incident power per area:

P (s0,B, δ) =
∫
A(∆s)F (∆s)(1 + cos(k(∆s ◦ B + δ)))dΩ

=
∫
A(∆s)F (∆s)dΩ

+ cos kδ
∫
A(∆s)F (∆s) cos k∆s ◦ BdΩ

− sin kδ
∫
A(∆s)F (∆s) sin k∆s ◦ BdΩ

(D.19)

Introducing the constant aperture-integrated power P0 =
∫
A(∆s)F (∆s)dΩ and the

complex visibility function V (k,B) for the brightness distribution F dependent on

the wave number k and the baseline vector B:

V (k,B) =

∫
A(∆s)F (∆s)eıks◦B)dΩ, (D.20)

allows to write the detected power as

P (s0,B, δ) = P0 + 
(V ) cos kδ + �(V ) sin kδ = P0 + 
(V eıkδ) (D.21)

Writing s◦B = αBx +βBy in suitable coordinates (x, y) and (α, β) and introducing

the spatial frequencies u = Bx/λ = Bxk/2π and v = Byk/2π gives V as a two-

dimensional Fourier-transformation:

V (u, v) =

∫ ∫
A(α, β)F (α, β)e−2πı(αu+βv)dαdβ (D.22)

and due to the invertibility of the Fourier-transformation:

F (α, β) =

(∫ ∫
V (u, v)e2πı(αu+βv)dudv

)
/A(α, β) (D.23)

Therefore, to reconstruct an extended source requires the measurement of V (u, v),

i.e. a variation of the baseline in both the absolute aperture distance and the direction

with respect to the source.

E Rigid body motions and coordinate
transformations

The position of the point P on the undeformed structure is:

rOP = rOV + rV P (E.24)
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After the translation of the vertex V by rV V ′ and rotation by θ the position of P is

(P → P ′):
rOP ′ = rOV + rV V ′ + rV ′P ′ (E.25)

Using the I-system as a reference the equation become:

IrOP ′ =I rOV +I rV V ′ +I rV ′P ′ =I rOV +I rV V ′ + AIM MrV ′P ′ (E.26)

with AIM being the transformation matrix from system M to system I.

For small rotations θ, the term AIM MrV ′P ′ can be simplified:

The complete rotation is done in three steps: Firstly by α along the x-axis (I �

K ′ : (xI , yI , zI) � (x′, y′, z′)). Secondly by β along the new y′-axis (K ′
�

K ′′ : (x′, y′, z′) � (x′′, y′′, z′′)). Finally by γ along the new z′′-axis (K ′′
� K :

(x′′, y′′, z′′) � (xK , yK, zK)). The individual transformation matrices read:

AIK ′ =

⎛
⎜⎜⎜⎝

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

⎞
⎟⎟⎟⎠

AK ′K ′′ =

⎛
⎜⎜⎜⎝

cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)

⎞
⎟⎟⎟⎠

AK ′′K =

⎛
⎜⎜⎜⎝

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

⎞
⎟⎟⎟⎠

The complete transformation from the K-system back to the I-system is:

AIK =⎛
⎜⎝ cos(γ) cos(β) − sin(γ) cos(β) cos(β)

sin(α) sin(β) cos(γ) + sin(γ) cos(α) − sin(γ) sin(β) sin(α) + cos(γ) cos(α) − cos(β) sin(α)

− cos(α) sin(β) cos(γ) + sin(γ) sin(α) sin(γ) sin(β) cos(α) + cos(γ) sin(α) cos(β) cos(α)

⎞
⎟⎠

AIM MrV ′P ′ ≈I rV P + θ ×I rV P =I rV P −I rV P × θ (E.27)

The displacement of point P is herewith and with E.24

IrPP ′ =I rOP ′ −I rOP

=I rOV +I rV V ′ +I rV P −I rV P × θ −I rOV −I rV P

(E.28)
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and so the final equation

IrPP ′ =I rV V ′ −I rV P × θ (E.29)
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Wilhelm, der mir sehr vieles erklärt hat und durch Ideen meine Ar-
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