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Abstract

In this thesis, major new developments in the program SECDEC are presented. SecDec
is a publicly available program for the numerical evaluation of multi-loop multi-scale
integrals and in this thesis it has been extended from Euclidean to physical kinematics.

The program SECDEC is based on sector decomposition to extract dimensionally reg-
ulated singularities. To deal with integrable singularities due to mass thresholds, the
integrand is analytically continued to the complex plane. Further improvements are
shown, proving invaluable in the two applications within this thesis.

In the first application, numerical results for several massive two-loop four-point func-
tions are presented. In particular, results for two of the most complicated massive
non-planar two-loop box integrals entering the heavy-quark pair production at next-to-
next-to leading order in QCD are shown. A mixed analytical and numerical approach
proves beneficial in the evaluation of the most complicated diagram. It is shown that
the program can deal not only with scalar integrals, but also with tensor integrals of in
principle arbitrary rank.

In its second application within this thesis, the neutral MSSM Higgs-boson spectrum
is discussed. In particular, the calculation of the leading momentum-dependent order
O(asay) corrections using a mixed on-shell/D R renormalization scheme is presented. In-
tegrals which are available in analytic form have been implemented in a way allowing for
a stable numerical evaluation. Analytically inaccessible integrals are evaluated numer-
ically using the program SECDEC. The combination of the new momentum-dependent
two-loop contribution with the existing one- and two-loop corrections in the on-shell /DR
scheme leads to an improved prediction of the light MSSM Higgs-boson mass and a corre-
spondingly reduced theoretical uncertainty. The effect of the newly included momentum-
dependent terms on the neutral CP-even Higgs-boson masses is discussed. The corre-
sponding shifts in the lightest Higgs-boson mass M}, are below 1 GeV in all scenarios
considered, but can extend up to the level of the current experimental accuracy. The
results are included in the code FEYNHIGGS, a publicly available program to calculate
parameters related to the Higgs-boson sector in the framework of the MSSM.
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1 Introduction

Hadron colliders have set the stage to a whole new era of discovery. With the increas-
ing wealth of high energy collision data, physics up to the TeV scale is being explored.
Within the theoretical framework of the Standard Model of particle physics (SM) [8-14]
most of the observations made by past and present collider experiments can success-
fully be described. Its predictive power has lead to the discovery of almost all of its
constituents. These are three families of quarks and leptons, four gauge bosons me-
diating the electroweak and strong interaction, and the simplest manifestation of the
Brout-Englert-Higgs mechanism [15-18] - the Higgs-boson. Although the discovery of
the latter is still not fully confirmed, a particle behaving like the Standard Model Higgs-
boson has recently been observed [19,20] in the ATLAS and CMS experiments at the
Large Hadron Collider (LHC). The characteristics of this new boson with a mass around
125 GeV have been determined already rather accurately [21-24]. If deviations with
respect to the SM characteristics are found with the collation of more data, this particle
must be interpreted within a different model. There are already several other reasons
to search for an embedding of the Standard Model as an effective theory into a more
general theoretical framework. Apart from the fact that gravity is not incorporated, the
indirect observation of dark matter [25-27] does not find a description in the Standard
Model either. Furthermore, the predicted violation of the CP symmetry is not large
enough as to explain the observed excess of matter over antimatter in the universe.
More peculiarities are related to the newly found boson. If it indeed is the SM Higgs-
boson, it is discussed [28-31] that the electroweak vacuum of the Standard Model may
not be absolutely stable and its low mass can only be accommodated for by assuming
an unnatural amount of fine-tuning [32]. Ideas for models beyond the Standard Model
in which the newly found boson is realized range from interpreting it as a dilaton [33,34]
or in the framework of a composite Higgs model [35,36]. A different proposal for a
new framework is formulated as a supersymmetric extension to the Standard Model, in
particular the Minimal Supersymmetric Standard Model (MSSM) [37-39]. It has been
broadly discussed over the last few decades.

The motivation for supersymmetry (SUSY) [40-46] is twofold. On the one hand, it
can provide for a solution to the fine-tuning and the hierarchy problem, achieve a gauge
coupling unification and moreover accommodate for a dark matter candidate. On the
other hand, it allows for the embedding of present observations into a more generalized
mathematical framework. Supersymmetry arises as the only possible extension to the
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Poincaré algebra [47], evading the no-go-theorem found by Coleman and Mandula [48].
In supersymmetric theories, all known fermionic particles of the Standard Model are
assigned a scalar superpartner and all bosonic SM particles a fermionic one. The Stan-
dard Model contains one scalar doublet. In renormalizable supersymmetric models, the
necessity for an even number of scalar doublets arises. At least two Higgs doublets are
required, to give mass to respectively both, up-type and down-type particles and scalar
particles (sparticles) [49-55]. The MSSM contains two scalar doublets which conserve
hypercharge gauge invariance. Due to this invariance, all up-type particles and sparticles
couple exclusively to one scalar doublet, while all down-type (s)particles couple to the
other doublet. This evades constraints from flavor-changing neutral currents (FCNCs),
as was pointed out by Glashow and Weinberg [56]. The two scalar doublets of the MSSM
give rise to five physical Higgs-bosons. In lowest order, these are the light and heavy
CP-even, the CP-odd, and the charged Higgs-bosons. While the mass of the Higgs-boson
remains a free input parameter in the Standard Model, it is predicted within the MSSM.
Associating the newly observed boson with the lightest CP-even Higgs-boson A, the
upper bound on its predicted mass myo at leading order (LO) is given by the Z gauge
boson mass. This would already have lead to the exclusion of the MSSM at past collider
experiments. Yet, higher-order quantum corrections to the MSSM Higgs-boson masses
lead to a shift in the upper limit towards myo < 135 GeV.

Higher-order corrections are not only decisive in the precise prediction of physics
beyond the Standard Model, but are of proven importance in the understanding of
SM processes at colliders. The state of the art of higher-order corrections to Standard
Model processes and a future wish list is summarized in the proceedings of the 2013 Les
Houches workshop [57]. The more accurate predictions are desired, the more involved
the calculations become. Leading order theoretical predictions can most commonly not
meet the current experimental precision. The calculation of perturbative corrections at
next-to-leading order (NLO) in the strong or electroweak coupling constant has reached
an impressive level of automation meanwhile. Corrections beyond NLO accuracy still
require quite some effort, both on the conceptual and on the technical side before they
can be performed in a largely automated way. There are a few processes measured at
the LHC where the need for next-to-next-to leading order (NNLO) QCD predictions
arises. One of them is top-quark pair production. Top-quark pair production is vital
for the precise measurements of the top-quark properties but also enters into other
measurements, e.g., of parton distributions. At the LHC top quarks are produced so
numerously that they also constitute a significant background to new physics signals. It
is therefore crucial to understand this background properly to be able to discriminate the
signal. A full NNLO prediction for the total cross section of top-quark pair production is
known in a semi-numerical form [58] along with many partial results in semi-numerical
and analytical form [59-71]. Soft gluon and Coulomb effects also have been taken into
account beyond the next-to-leading logarithmic accuracy and have been combined with
fixed order results to come up with predictions as precise as possible [72-79]. Among
the key ingredients of the full NNLO calculation are complicated two-loop integrals
entering the virtual corrections. Analytical expressions for these are known for diagrams
dependent on relatively few mass scales [60-62,69,80,81]. As soon as several mass scales



are involved, numerical methods to calculate multi-loop integrals become increasingly
important.

The brief outline of this thesis is as follows: In Chapters 2-5, the basic concepts of
the author’s work presented in this thesis are established. In Chapter 6, the developed
version 2 of the program SECDEC is described, laying the foundation for two applications
presented in Chapters 7 and 8.

More comprehensively, Chapter 2 covers an introduction of the tree-level Higgs-boson
sector of the MSSM. The scalar quark (squark) sector is discussed as well, focussing
on strong and Yukawa-type interactions. Afterwards, a motivation for higher-order cor-
rections to the Higgs-boson masses is discussed, along with an introduction to their
computation. The latter involves the evaluation of two-loop integrals with multiple
scales, leading to mass thresholds. Different methods to approach multi-loop multi-scale
integrals are reviewed in Chapter 3, before motivating the pursuit of a universal numer-
ical approach using Feynman parameterization. The method of sector decomposition is
used for the disentanglement of overlapping ultraviolet (UV), collinear and infrared (IR)
singularities, as discussed in Chapter 4. Various algorithms performing differently with
respect to this task are also reviewed.

In Chapter 5, the appearance of thresholds is discussed. To compute integrable thresh-
olds, the integrand needs to be analytically continued to the complex plane. Towards
this aim, a deformation of the integration contour, applicable in numerical calculations,
is explained. Finally, studies by the author are presented which tune the analytical
continuation further towards a stable evaluation of integrals containing thresholds.

In Chapter 6, the features incorporated in an upgrade of the open-source program
SECDEC are presented. Based on the concepts introduced in Chapters 3-5, SECDEC
allows the automated numerical computation of multi-loop multi-scale integrals, in ad-
dition to an evaluation of more general parametric integrals. Restricted to non-physical
kinematics in version 1, the extension to physical kinematics including thresholds is
achieved in version 2 of the program. The upgraded features are presented along with
diverse other improvements.

In Chapter 7, the full power of the program SECDEC is shown in an application
to massive non-planar two-loop four-point functions, among them various ones where
analytical results are unknown. Several of the topologies shown are computed in a fully
automated way. For one topology which is of particular interest in the top-quark pair
production at NNLO, analytical transformations beforehand are shown, improving on
the numerical stability. In particular, the integration of one Feynman parameter of
a sub-loop is found to be beneficial. Furthermore, a transformation first introduced
by the author and collaborators, proves to allow for a simplification of the singularity
structure, leading to a reduction in the number of sub-functions to be integrated. The
transformation is presented in detail.

In Chapter 8, the calculation of the dominant neutral CP-even MSSM Higgs-boson
mass corrections at the two-loop order including momentum dependence is presented.
This requires the calculation of two-loop self-energies with a proper renormalization at
the two-loop level, using an overall mixed on-shell and DR scheme for the renormal-
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ization. The program SECDEC is used in the evaluation of analytically unaccessible
integrals. The mass shifts resulting from the additional momentum-dependent contri-
butions are presented.

The conclusions are given in Chapter 9.



2 Higgs-bosons in the MSSM

In the following, the Higgs-boson, quark and scalar quark (squark) sector of the MSSM
are introduced. The tree-level mass matrices are derived from the MSSM Lagrangian.
All interactions appearing in the two-loop corrections to the MSSM Higgs-boson masses
discussed in Chap. 8 are shown as well. This includes supersymmetric QCD (SCQD)
interactions. The following two sections, Sec. 2.1 and 2.2, are based on Refs. [38,82-86].
Afterwards, the current status of higher-order Higgs-boson mass corrections in the MSSM
is reviewed in Sec. 2.3.

2.1 The Higgs-boson sector of the MSSM at tree-level

The Higgs-boson sector of the MSSM with real parameters (rMSSM) is part of the full
MSSM Lagrangian and consists of the following four components

Lyssm D Ly, + Ly + Ly, + Lig, + L (2.1)

ghost 7
where Ly, . contains the free-field kinetic terms, Ly, is derived from the Higgs-boson
potential, and Ly, is the gauge-fixing term. With the introduction of a gauge-fixing
term, unphysical degrees of freedom arise which are compensated by Faddeev-Popov
ghost terms [87] in Ly The interaction part of the Higgs-boson sector Lagrangian
can be summarized as

ghost *

Ly, = Lunn + LHHEH
+ Lunv + Luvv + Luavy
+ Lygyy + Luss + Lonss
+ 'CH)Z)Z . (2.2)

All physical neutral and charged Higgs-boson fields are referred to with the index H,
the index V is short for vector boson fields, ¢ and v denote the Standard Model quarks
and leptons, § denotes all squarks and scalar leptons (sleptons) and X symbolizes the
neutralinos and charginos. Adopting the Feynman-'t Hooft gauge, all ghost contributions
vanish.

The MSSM requires two doublets H; and Hs of complex scalar fields, which are
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conventionally written in terms of their components as follows,

. (H?) _ <v1 + 5 () — ix?)) ’ (2.3)

Hy —¢1

Hy 3
Ho=|(,0]|= : , 2.4
’ <%8> (vz + 5(09 +ix9) (2:4)
with an associated hypercharge Y7 = —1 and Yo = +1, respectively. Their vacuum

expectation values are given by v; and wo, respectively. The fields ¢; and y; are still
unphysical, but are brought into the physical basis

HO ¢0 GO XO G:t ¢i
() a0 (3) (5) 20 () (5) (1) s

via orthogonal transformations of the type

Alx) = ( cos(z)  sin(x) > 7 (2.6)

—sin(x) cos(x)

giving rise to the particle spectrum of physical Higgs- and unphysical Goldstone-bosons,
compare Tab. 2.1.

2 neutral CP-even Higgs-bosons no, HO

1 neutral CP-odd Higgs-boson A
1 neutral CP-odd Goldstone boson =GP
2 charged Higgs-bosons H*, H~
2 charged Goldstone bosons Gt, G~

Table 2.1: Higgs- and Goldstone boson particle spectrum.

The kinetic part of the MSSM Higgs-boson sector Lagrangian reads

2
Lo =D OuHI M, . (2.7)

a=1
Note the index ¢ instead of H in Eq. (2.7). It is introduced to distinguish between the
#Y-¢3 and the h?-HO basis.

The potential part of the rtMSSM Higgs-boson sector Lagrangian V), can be written
in terms of the supersymmetric F- and D-term contributions

Vor = [l (M H + My H3), (2.8)
and
¢D—8(g+g)(11 22)+29|1 5%, (2.9)
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where ¢ = 1,2 from now on. In contrast to the Standard Model, the Higgs-boson self-
couplings in the MSSM, resulting from Eq. (2.9), are determined through the gauge
coupling constants. The dagger in Eqs. (2.8) and (2.9) indicates Hermitian adjoints,
is the higgsino (fermionic superpartner of the Higgs-boson) mass parameter, g is the
SU(2), and ¢’ the U(1)y coupling constant. The coupling constants g and ¢ are related
to the electric charge e and the electro-weak mixing angle 0y of the Standard Model by

€ €
/_
g =

g= (2.10)

sin Oy cos Oy

Due to the non-observation of supersymmetric partners to the Standard Model particles,
supersymmetry must be broken. Various supersymmetry breaking mechanisms can be
considered [49-55,88]. In the MSSM, explicit breaking terms [51, 88] parameterize the
effect of SUSY breaking. In order to accommodate for a solution to the hierarchy
problem, these terms may not introduce additional quadratic divergences. They must
have mass dimension less than four. These so called soft supersymmetry breaking terms
are added to the MSSM Higgs-boson potential

Voo, = mI(HTHY) + m3(HAHY) — miy(eiHiHS + hec.), (2.11)

where j = 1,2 from now on, and with 5ij1 being totally antisymmetric, resulting in an
overall MSSM Higgs-boson potential of

Vo = Vo + Vop, + Voo - (2.12)

Relating the MSSM Higgs-boson potential to the MSSM Lagrangian by

Lo = (/ 20V, + // 260420V, + v¢soft> , (2.13)

where the F-term part of the potential is integrated over the auxiliary superspace com-
ponent 6, while the D-term part of the potential is integrated over both superspace
components 6 and 6. In the following, the notation

/ %0V = V|, and / d?ed?0 v = V], (2.14)

is adopted.

Until now, the MSSM Higgs-boson potential, Eq. (2.12), contains four free parameters:
m1, ma, mi2 and p. Exploiting the fact that the two vacuum expectation values v1 and v
need to minimize the potential and be nonzero at the same time, the following necessary
minimization conditions

0 lin
o Ve

=0, a=12 (2.15)

!Note the convention: €;; = —%, with e12 = —1 and €21 = 1.
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are required to hold. The minimization conditions originate from the equations of mo-
tion, compare Eq. (2.56). In Eq. (2.15), the linear part of the rMSSM potential reads

11n

\[mlvlqﬁl + \[mgvgqbg + fmlg(v2¢1 + 1)1(;52)

2\[(9 +g )( - v%)(vl¢? - U2¢8) ) (216)
where m? = m; + |u|?>. It should be noted that there are no contributions from the
fields x2 and ¢F to the linear part of the potential. This is due to the fact that the
MSSM potential is CP-conserving, meaning that it is invariant under the consecutive
application of a charge conjugation C and a parity transformation P. Without imposing
the minimization condition just yet, and writing the coefficients to the fields ¢9, ¢9 in
Eq. (2.16) as tadpole parameters T, instead, the parameters 73 and my can be expressed
in terms of experimentally accessible quantities (g, ¢, v1, v2) and the parameter mq,

1 ) 1

) 2 9 2, 12\/.2 2

_ T _ _ - — 2.17

mi Vo 1 1)1m12 4(9 +97)(v] —v3) , ( )

W= Ty — Dyt (g2 + ) (0] — 03 (2.18)
\/i’vg Vg 4

Consequently, after making use of Eq. (2.15), the tadpole parameters T, vanish
T,=0. (2.19)

Turning to the part of the MSSM Higgs-boson potential which is bilinear in the fields, the
mass matrices Mq25°’ M)%O and M2, of the scalar fields of the neutral CP-even, the neutral
CP-odd and, respectively, the charged Higgs- and Goldstone-bosons can be identified

Vs D5 <¢0 ¢2) M¢0 <z(1)> (X1 X2) M2 (Xg) <¢+ b3 ) Mdﬁ (i;:) , (2:20)

where ¢, = (¢5)* and ¢ = (¢7)*. The tree-level mass matrix of the neutral CP-odd
bosons reads

2 1 2 2
2+ 1(g? +9 ) (vf - v3) miy
M2, = 4 5 2.21a
8 ( i, 73+ 1e® + g3 - o)) (2:21)
) (-2 1
= miy 1”1 vl (2.21b)
T2

where in the last step, the relations of Eqs. (2.17-2.19) were used. Afterwards, the mass
matrix can be made diagonal

diag(mZo, m%o) = A(B)TMioA(ﬁ) (2.22a)

0 0
- (0 —m3,(tan B + cot 5)) ’ (2.22b)
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resulting with the tree-level relation for the physical neutral CP-odd Higgs-boson mass
mio. Note that the tree-level A%-boson mass mio does not attain any dependence on
the Standard Model vector-boson masses myy or myz. Defining the vacuum expectation
values v; and vg as

V2myy cos V2myy sin 8
=, V= —

vy 2.23
P p (2.23)
the following relation results
tanf= 2 0<B<’. (2.24)
(% 2

The lower and upper bound on the angle 5 result from the assumption that v, and v
are real and positive, compare Ref. [82].

Hereby, all free mass parameters are expressed in terms of physical observables and the
MSSM Higgs-boson potential is fixed by the parameters vy, vo, ma, ¢’ and g. With this
knowledge in mind, the masses of the neutral CP-even Higgs-bosons can be derived from
the mass matrix

2 2
2 _ [ Mapsy Mavay
Moo=\ a2, a2 (2.25a)
)
2 2 2 2 2 9\ .
m%osin?f + mycos®f —(m5 + my)sinfcosf
- _(m2 + m2 )Sil’l,BCOSﬂ m2 COSQ,B + m2 sinzﬁ ’ (225b)
A0 Z ‘A0 A

being written in terms of the three parameters m 40, mz and the angle 3. After bringing
the mass matrix into diagonal form, the physical CP-even Higgs-boson masses read

1
m%{O,ho =5 (mio + mQZ + \/(mio +m%)? — 4m?40m2z Cos2(26)> . (2.26)
The mass of the light CP-even Higgs-boson is therefore bound from above through the
relation myo < min(mz, mo) [cos(23)|.

For completeness, the masses of the charged Higgs-bosons can be derived via the mass
matrix of the charged-boson components

M2, — mi + 5(9° + 9’2)(10% —v3) + 39%3 . miy — 3970102 X
¢ miy — 590102 s + 1(9% + 9”)(v3 — v]) + 59707
(2.27)
as
diag(mgs, myre) = A(B)T M3+ A(f) (2.28a)
0 0



Chapter 2. Higgs-bosons in the MSSM

where relations Eqgs. (2.17-2.18) are again useful. Similar to the SM relations, the gauge-
boson masses are given by
1 1

miy = 507 (i +v3), my = 59"+ 97w +v3), mI=0. (2.29)
The rich phenomenological implications of the real MSSM can be explored further, when
studying the dependence on the angles o and 8. The angle § is linked to the vacuum
expectation values through Eq. (2.24). In turn, the angle o can be determined from the
rotation of Eq. (2.25b) into the physical basis. The following basic relation among the
two angles holds [83]

2 2
+
tan(2a) = tan(QB)H - g <a<0. (2.30)
A0 Z

Many more relations among the angles can be found, compare Ref. [82,83]. When
expressing the couplings in terms of these, they can be formulated as angle suppression
factors with respect to Standard Model Higgs-boson couplings to, e.g., vector bosons

IWOVV. o sin(B — a) (2.31)
ghvv

IHVV. o cos(B — a) | (2.32)
ghvv

where h denotes the Standard Model Higgs-boson and h?, H° the MSSM Higgs-bosons.

Besides, in order not to be a toy model, the features of the Standard Model must be
reproduced in the MSSM, at least in certain parametric limits. This is fulfilled in the
decoupling limit, taking the limit m 40 — co. Then, the physical Higgs-bosons A°, H°
and H* decouple from the theory and the Standard Model Higgs-boson sector consisting
of a single physical CP-even scalar h° results. Additionally, a SUSY mass scale much
larger than the electro-weak scale can be assumed. Then, h° becomes indistinguishable
from the Higgs-boson h of the Standard Model, since all Standard Model tree-level and
loop-induced couplings to Standard Model gauge bosons and fermions are reproduced.
A decoupling may also occur independent of the A° boson mass in other regions of the
MSSM parameter space. For a discussion, see Refs. [85,89).

2.2 The scalar quark sector and SQCD at tree-level

In light of the calculation to be discussed in detail in Chap. 8, an introduction of the
tree-level quark and squark interactions is necessary, including those of supersymmetric
Quantum Chromodynamics (SQCD). Interactions with the Higgs-boson sector are also
discussed.

The relevant parts of the MSSM Lagrangian regarding SQCD, the fermion ¢ and the
scalar fermion (sfermion) § sector, reads

EMSSM o ‘Cgfree + waree + £gint + E"/’int + £G + Eé ? (233)

10
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superfield = particle content spin = sparticle content = spin Y
Q Q= (4" 1 Q=% 0 1/3
d I L
U U= u% : U = 0  —4/3
> 1 A g
D D =dy 5 D =dy 0 2/3
L (”L> 1 <7L> 0 -1
er, er,
E el : & 0 2
G Go 1 g 3 0
w Wi 1 wi 3 2
B B, 1 B : 2
Hy H, 0 H, 3 -1
Hy Hy 0 H, % +1

Table 2.2: The superfield content of the MSSM, the respective spin of the particles and
sparticles and the corresponding weak hypercharge Y. The index a labels
the different components. Neutralinos and charginos are formed from linear
combinations of the gauginos, B and W*, and the higgsinos H 1,2

where the first two terms on the righthand side of Eq. (2.33) are the free field equations
for the squarks and sleptons and the quarks and leptons, respectively. The last two terms
are the QCD and SQCD gauge field contributions. They can be combined as follows

1
W WE + he.| + L s (2.34)

Lo+ L;=
7 169? F

where W¢ in the first term on the righthand side is the supersymmetric SU(3) Yang-Mills
field-strength tensor defined as

]_ — — acya acia
Wi = = DaD? (e 205" Dye? 1567 | (2.35)

compare Ref. [90]. Here, the t? denote the generators of SU(3)., gs is the strong coupling
constant and the G represent the gluon and gluino fields, compare Tab. 2.2. The D,
and D, are the covariant derivatives with respect to the superspace coordinates and are
defined as

Do = 0o — ich30°0,,  D* = 0" —ic"*"030, . (2.36)

While the gluon is massless, the gluino acquires a mass term from explicit but soft
supersymmetry breaking

I
Lgsoft = 7(§mgng + hC) ° (237)

11



Chapter 2. Higgs-bosons in the MSSM

This type of mass term can rather generically be introduced for all fermions of a super-
gauge multiplet, compare Refs. [51,88].

Following Ref. [82], the third and fourth term in Eq. (2.33) can be split into F-terms,
D-terms and soft breaking terms. Additionally, interactions between the gluino g, a
quark and a squark must be taken into account. Hence, the full potential reads

L + ﬁ'(/)int = - [Vé ] F— [Vﬁ ] D~ Vseor T ﬁw + £qu + ﬁéquj + £ééG + Eqdé :

(2.38)
The F-term contributions are
Vip = | — w1 + 9, QU2 + |ufHY + 4@ D|?
+ yp e HEQ? | + g ey HI Q7
+ (yuMy U — yaHy D) (yu HEU — yaH' D) (2.39)

vyhe}"e Yukziwa interactions of the type H§5, H H3§ and 555§ can be read off. While the
@, U and D denote the scalar superfields, see Tab. 2.2, the Yukawa couplings read

gmny, gmgq

W= =, = 2.40
Y V2myy sin 8 v V2myy cos B ( )
The D-terms contributing to the scalar potential Eq. (2.38) read
1 it Ay it Ai Nit Ay (it ayi itq i Nit Ay
Vip =59° (R Q' + 4151 Q' — 20Q71 Q) (MM + HyH)) + (Q1QY?)
1 L L oy~ o o
+497 (MY — HHY)(V,Q7Q + YuU'U + YaD' D)
1 e s RN
+§g’2 (Y;Q”Ql +Y, U0 + YdDTD> ; (2.41)

where Y, = %, Y, = —% and Yy = % are the hypercharges of the respective superfield.

The squarks couple not only weakly to each other, but also strongly via

1 A
Ciaga = —595 D_(@L150L — Qpt"dn)* | (2.42)
a
compare e.g. Ref. [91]. The soft-breaking part of the potential reads
Vs,or =M§ QMQ'+MU'U+ M2D'D
+me(—eTy, A HIQ U + ey AyHIQ' DT + h.c.) | (2.43)

soft

where the products mg A, 4 denote the trilinear couplings of the Higgs-bosons to the
squarks. In the following, mg = 1 is chosen by convention. Mg is the mass parameter
of the left-hand sparticles, Mz and M; are the mass parameters of the righthand up-
type and down-type sparticles, respectively. The soft breaking terms lead at most to
a logarithmically divergent behavior and gauge invariance is ensured, see Refs. [51,88].

12



2.2. The scalar quark sector and SQCD at tree-level

The slepton fields L, E are omitted here but can be included as well with an appropriate
choice of hypercharges. The Yukawa interaction of the quarks and leptons reads

Ly = —€ij(yaHiQ'D — y,HLYQ'U + yH{L'E) + h.c. (2.44)

where y. is the Yukawa coupling to the leptons. The quark and lepton masses purely
arise from the Yukawa interactions, therefore the quark and lepton mass matrices can be
directly deducted from the Yukawa terms. The interaction of two quarks with a gluon
reads

Logc = —9sGf, Y ™ (t3)jkan » (2.45)

i=u,d

where j and k are color indices. Now, the squark-squark gluon interaction is

Lage = —igsGy Y @' (t2);10"dF (2.46)

zud

where the sums run over both left- and righthanded components, compare Ref. [38].
Finally, the squark-quark-gluino interaction reads

Lags = V2095t 5k Y (GhPLa @) + ¢/ Priadly, — 3L PraP@) — @ PLgedly) . (2.47)

i=u,d

where the relative minus sign comes in with the negative sign of the color generator ¢¢* of
the color antitriplets. Likewise, there are electroweak quark-squark-gaugino interactions.
They are not listed here because they are not needed in the calculation of Chap. 8.

The squark masses are composed of the soft breaking terms, but also the F- and
D-terms of the squark potential, when the Higgs-bosons acquire vacuum expectation
values. Altogether, the massive part of the squark sector in the MSSM reads

L mass = — (aTL T) MZ, (Z;) - (CZTL dT) - (g;) , (2.48)

where the up-type squark mass matrix is given by

M2 - MC% + y2v3 + (g% — Yo' (v} — v3) Y2 (Al — pcot )
UL R yuUQ(Au — ILLT cot B) qu% + yivg 4 %Q/QYU(U% N v%) )
(2.49)

with y,v9 = m,, from previous definitions in Eq. (2.23) and Eq. (2.40). The parameter
1 is taken to be real in the rMSSM. A similar mass matrix can be set up for the down-
type squarks from the previously described parts of the Lagrangian. Using further the
definitions of Eq. (2.10) and of the hypercharges below Eq. (2.41), the up-type squark
mass matrix can be written as

M% + mz + m2Z cos 203 (Ig’ — Qysin? Oyy) muXa
MuXa Mg + mi + m2Z c0s 23 Q. sin® Oy
(2.50)

M2

ULR ~—
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Chapter 2. Higgs-bosons in the MSSM

with X3 = A, —u cot 8 and where Q, denotes their charge and I3 the third component
of the isospin of the up-type squark, respectively. For completeness, the down-type
squark mass matrix is also given,

Mé + mfl +m% cos 23 (Ifl’ — Qgsin? Oy) mgX
B maX; Mg + m3 + m% cos 23 Qg sin? Oy ’
(2.51)

M2
dLr

with X; = Ay — ptan 3. The squark mass matrices can be rotated into the physical
basis

4. Q1
L3 mass = — (q{ q%) M3, <~2> ; (2.52)

with the physical squark mass eigenstates mél and m%. The new mass eigenstates are

related to the unphysical masses via an orthogonal transformation

2 _ 7T a2
M2 =UT M2, U; (2.53a)
_ [cos?OgmZ +sin?0gmZ,  sinbcos 0g(mE — mZ,) (2.53b)
sin 05 cos 95(m§~1 — mg~2) sin?6; mgl + cos?0; m% ) .

where the unitarity matrix

U, = < cos 0 sm%) (2.54)

—sinf; cosby

is parametrized by the mixing angle 6;.
Matching the two mass matrices in Eq. (2.50) and Eq. (2.53b), an expression for the
parameter Xz can be formulated as follows

sin 05 cos 05(m2, —m2)

X, = i 2’ 2.55
g - (2.55)

2.3 Higher-order Higgs-boson mass corrections within the real
MSSM

With the light neutral CP-even Higgs-boson tree-level mass myo being limited to m at
most, compare Eq. (2.26), the MSSM could already have been excluded at LEP due to
the lack of its observation. Yet, higher-order self-energy corrections shifted the upper
bound on the light Higgs-boson mass considerably. There are mainly three different
methods to approach higher-order mass corrections. They can be combined as well.
An exact calculation, invariant under different gauge-fixing terms, is achieved using the
Feynman-diagrammatic (FD) approach, where the self-energy diagrams are evaluated
explicitly. The second method uses an effective potential approximation further de-
veloped for higher loop calculations, compare Ref. [92]. In this approach, the scalar

14



2.3. Higher-order Higgs-boson mass corrections within the real MSSM

Higgs-boson fields are expanded around their vacuum expectation values. This allows
for the computation of the higher-loop effective potential, involving vacuum diagrams
of the given loop order. The results are compact, but also of limited accuracy. As this
approach expands around a constant value of the fields, the momentum dependence of
the two-loop self-energies cannot be taken into account. A third approach uses effective
Lagrangians capturing the dynamics and symmetries of a system in generic terms, while
the phenomenology is contained in their coefficients. Effective Lagrangians are often
used in model-independent analyses.

In the calculation presented in Chap. 8 of this thesis, the Feynman-diagrammatic
approach is adopted. In this approach, higher order mass corrections are computed by
allowing for perturbations to the propagators of the fields ¢°, x0, q.’)ff which result from
the solutions to the equations of motion. For completeness

oL oL
Oy (8(8,“%)) ~ e = 0, (2.56)

where z = ¢°, x°, ¢ and where a = 1,2. Firstly, the equations of motion require
that the terms of the MSSM potential part of the Lagrangian linear in the CP-even
Higgs-boson fields ¢?, see Eq. (2.16), must vanish. For this condition to be met, all
higher-order corrections up to [*" order need to be seen as canceling. At tree level,
the terms linear in the fields are tadpole coefficients. Higher orders include additional
propagators to tadpole lines in terms of loops, where the coefficients are termed T(gl). In
conclusion, the statement reads

2

S(T+TP+TP +...)=0. (2.57)

a=1
Secondly, the bilinear free field and potential parts of the Lagrangian, Eq. (2.7) and
Egs. (2.8)-(2.11), lead to the following contributions to the equations of motion

(00" + M2 ) wa+eaMl , 2y =0  with a,b=1,2; a#b. (2.58)

Hence, those terms bilinear in the same field get solutions to the equations of motion in
terms of causal Green functions including a momentum and a massive part, while the
solutions to terms bilinear in two different fields contain only a massive part. Computing
higher orders in perturbation theory corresponds to adding one-particle irreducible terms
Y(p?) to the propagators [93]

7

(2.59)
p2 - Marilma
= —iy ) [
p2 - szaxa * p2 - Ma?axa ( Pt (p ))p2 - Ma%ama
+ %(—izxaxa (ﬁ))%(—izxwa (P%)% +... (2.60)
p - anma p - anxa p - Mmama
_ v (2.61)

p2 — M? - Exa:ca (pz) ’

Tala

15



Chapter 2. Higgs-bosons in the MSSM

where the bold-faced propagator is the one corrected to all orders in perturbation theory
and where each one-particle irreducible term can be split into its different orders,

Sazs = Do, + E, + . . (2.62)

TaTp

A geometric series relation is used in the last step from Eq. (2.60) to Eq. (2.61). The
cases where different fields enter the time ordered two-point correlation functions can
be treated similarly. Assuming that the self-energy corrections in Eq. (2.62) can be
renormalized, the renormalized self-energies ixawb (p?) enter as corrections to the inverse
propagator matrix of the field =z,

2 2 S 2 2 S 2
(Ax)_l — p _Qm:m +AE:L"1331(}; ) ;m$11‘22 + E}mz (p2) ' (2.63)
—Mgiay + 25}01&02 (p ) D™ — My, + 212362 (p )

The loop-corrected masses M, and M,, are determined by the real parts of the propa-
gator matrix of the field . This is equivalent to solving the equation

A

N ~ 2
P =2 4 Sy (9] [P = M2, + Bagen (0)] = [~y + Sarea(0h)] = 0. (2.64)

The status of the available self-energy corrections to the real MSSM can be summarized
as follows.

At the one-loop level, the full corrections to the MSSM Higgs-boson masses are known,
including gauge bosons contributions and momentum dependence, see Refs. [94-101].

At two loops, a full result using an effective potential approach is known [102,103]. Pre-
ceding works used a two-loop renormalization group equation (RGE) improved one-loop
effective potential approach [104-108], or a two-loop effective potential approach [109-
116]. Furthermore, explicit computations have been performed in the Feynman-diagrammatic
approach, neglecting gauge contributions and assuming vanishing external momentum [117—
120]. The latter cover the dominant corrections of the order O(asay) and O(a?) and the
sub-dominant two-loop contributions of the order O(asap), O(azay) and O(a?). The
orders are given in terms of the coupling factors entering the vertices of the loop di-
agrams. These are the strong coupling constant ay = % and the Yukawa couplings
ap = % and o = % of the top and the bottom quark, respectively. The relative size
of a correction can be estimated a priori by assessing the relative size of its couplings.
Due to supersymmetry, the Yukawa couplings for the quarks and squarks are equivalent
QA = Qg p. The soft supersymmetry breaking terms contributing in the coupling of the
Higgs-bosons to the squarks are proportional to the Standard Model Yukawa couplings
as well, compare Eq. (2.43). Therefore, no distinction between ag and oy is needed.

Complementary to the Feynman-diagrammatic approach, higher-order corrections to
the Higgs-boson masses have been found using the effective Lagrangian approach [121-
126]. Other studies aim towards a combination of the existing two-loop results obtained
in different approaches, see Refs. [110-112,127,128].

Regarding the third order, the dominant corrections of the order O(a2q;) are avail-
able [129-131], where gauge contributions and a non-vanishing external momentum still
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2.3. Higher-order Higgs-boson mass corrections within the real MSSM

need to be incorporated in future calculations. Also, third and higher order resummation
effects have recently been taken into account [132,133].

Remarkably, all these higher-order corrections lead to an approximate upper bound

of mpo < 135 GeV, where the maximal value for the light Higgs-boson mass depends
sensitively on the precise value of the top-quark mass, compare Refs. [119,128].
While the one-loop corrections relocate the upper bound towards higher masses, the
two-loop corrections enter with competing signs and the three-loop corrections further
stabilize the mass, entering with both signs. The overall dominant corrections come
from those self-energies involving the top quark and the scalar top (stop) quarks.

The remaining contributions of higher orders can be estimated based on the already
available results. To reach a theoretical precision matching or even surpassing the exper-
imental one, corrections beyond the above mentioned ones must be taken into account.
At two loops, the remaining uncertainties originate from neglecting gauge contributions
and momentum dependence [134]. Therefore, the calculation of the momentum depen-
dent two-loop corrections to the MSSM Higgs-boson self-energies is of interest. The
momentum dependence at the one-loop level is known to generally amount to less than
2 GeV, compare Ref. [135]. The dominant corrections at the two-loop level have been
calculated adopting a full DR renormalization scheme, see Refs. [136-138]. Higher-order
corrections to the tree-level MSSM Higgs-boson masses can only be applied consistently
if they are computed within the same renormalization scheme. It is therefore interesting
to analyze the momentum-dependent contribution again, but using an on-shell renor-
malization for all masses entering the calculation. Although the calculation becomes
more involved with this renormalization scheme choice, the benefit of being able to in-
corporate those corrections into the public program FEYNHIGGS [139-142] and thereby
making the corrections readily available, is outweighing.
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3 Multi-scale integrals beyond
one loop

This chapter explores diverse techniques regarding the computation of multi-scale inte-
grals beyond one loop. In particular, a focus is laid on two-loop calculations, where fully
differential phenomenological predictions start to emerge for a variety of processes. The
chapter culminates in a motivation for the usage of Feynman parameterization in a tool
to compute multi-loop multi-scale integrals in an automated way.

3.1 The two loop frontier

Due to the high energies at present hadron colliders, processes at very small distances can
be resolved. At the Tevatron and the LHC, these dominantly involve quarks and gluons
(partons). While the Tevatron is a proton-antiproton collider, the dominant production
channel has ¢ pairs in the initial state, at the LHC the gg channel is the dominant initial
state. Compared to eTe™ annihilation processes at past colliders this is one additional
external leg when higher orders are computed. This greatly increases the complexity of
such a computation.

At next-to-leading order ! in perturbative QCD, the frontier is looking at final states
with many particles and matching them with a parton shower. The motivation to go to
NNLO accuracy is at least twofold. First, the dependence on the renormalization scale
is expected to be reduced. Second, a process has more partons in the final state. This
initiates the reconstruction of the parton shower, thus approaching an experimental jet
reconstruction.

The forefront at NNLO is the computation of four-point processes, where various
complications can arise, one being a complicated singularity structure of individual dia-
grams, and the other the involvement of internal and external masses leading to multi-
scale problems. This can render the evaluation of sometimes just single diagrams a highly
non-trivial task. While multiple legs and scales can already be very complicated at NLO,
at NNLO completely new challenges arise in addition when generalizing the techniques
employed at NLO to NNLO and diverse conceptual differences must be acknowledged.

Tt should be noted that the leading order usually encompasses tree-level diagrams, but there are LO
processes (e.g. Higgs production in gluon fusion) which start with loop diagrams.
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Beyond NLO, the renormalization procedure for the cancellation of ultraviolet (UV)
singularities involves not only counter-terms of the loop order to be considered but also
counter-terms of lower loop order with insertions. Finding the full but minimal set of
diagrams is non trivial but was solved and further developed by Bogoliubov, Parasiuk,
Hepp and Zimmermann, summarized in the (BPHZ) theorem, see Refs. [143-145].

Figure 3.1: Example diagrams for double virtual (a), real virtual (b) and double real
radiation (c) contributions entering an NNLO calculation are shown.

Furthermore, a mixture of real radiation and virtual corrections enter a cross section

at NNLO, in addition to double real and double virtual contributions. The typical in-
gredients of an NNLO calculation are depicted in Fig. 3.1. Given the fact that now three
pieces enter the calculation which are all part of different phase space dimensions, the
need for more discriminating and refined subtraction schemes emerges.
At NLO, subtraction schemes are already well established, see Refs. [146-148]. At NNLO
there are various subtraction schemes available, all with different aims and capabilities.
After the introduction of ¢r subtraction by Catani and Grazzini [149, 150], the idea of
using the sector decomposition algorithm [151,152] for a complete NNLO calculation was
originally proposed by Heinrich [153]. It was taken up and further developed into a full
subtraction scheme in Refs. [154-156], and first applied to a full process in Ref. [157].
The idea proposed by Czakon to combine sector decomposition applied to real emis-
sion integrals with phase-space partitioning from FKS subtractions, lead to the sector
improved residue subtraction [158], successfully applied, e.g., in Refs. [65,159]. Fur-
ther, the antenna factorization introduced in Refs. [160-162] was explicitly worked out
and applied to full NNLO processes [163-166]. Lastly, a direct generalization of dipole
subtraction to NNLO processes was presented by Somogyi, Trocsanyi et al. [167,168].

While for the real radiation the computation of more and more legs is of interest,
for the virtual contributions higher-order loop integrals need to be solved. In light of
the fact that the number of diagrams contributing to higher-order processes increases
tremendously from one order to the next, and the diagrams themselves become more and
more complicated, it is desirable to find highly automatable procedures to tackle these.
At NLO, tools towards this aim are already highly developed and sophisticated. The
procedure of generating the real radiation and loop amplitudes contributing to a full
process is automated to a large extent by programs like AMC@NLO [169], BLACK-
Hat [170], FEYNARTS, FOrRMCALC & LoopTooLs [171], GoSam [172], HELAC-
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NLO [173], HERWIG++ [174], MATcHBOX [175], MCFM [176], NJET [177] OPEN
Loops [178], POWHEG [179], RECOLA [180], SHERPA [181], VBFNLO [182]. There
are diverse tools allowing for an automated generation of the pure Feynman amplitudes.
The programs with loop capabilities are FEYNARTS [183,184] or QGRAF [185].

The full basis of irreducible master integrals is known at one-loop order. It comprises
scalar pentagon, box, triangle, bubble and tadpole diagrams which are known analyti-
cally or can be computed numerically [186-189]. Beyond one loop, the set of irreducible
integrals, so called master integrals, is not known which makes the decomposition more
difficult. Master integrals beyond one loop can have irreducible numerators which need
to be evaluated in addition. In the reduction of multi-loop amplitudes to a set of re-
sulting master integrals, integration by parts relations [190-192] and identities resulting
from Lorentz invariance [193] are indispensable. The former are based on the fact that
the integral over the total derivative with respect to any loop momentum k; vanishes in
dimensional regularization

)
O:/delwf(kl,...), (3.1)

where the integrand f may contain any combination of propagators, scalar products and
loop momentum vectors. Together with the exploitation of Lorentz invariance by
T S O _

G g+ gy Py Gliph fmh) =0, (32)
where n is the number of external momenta p; and m the internal masses, the reduction
to master integrals can be achieved. The full reduction into less complicated integrals
can be done if the number of constraints matches or exceeds the number of unknown
integrals.

(p1

In the following, the general structure of the resulting master integrals is shown and
different methods to solve them are described.

3.2 Two and more loop integrals with multiple scales

The difficulty of such multi-loop integrals has led to their extensive study and the devel-
opment of various specialized integration techniques. In the following, a general multi-
loop integral is introduced before presenting a variety of techniques to tackle these.

A general Feynman loop integral G at L loops with N propagators, where the prop-
agators P; can have in principle arbitrary powers v; and mass m;j, has the following
representation in momentum space

H1...[LR _ L D kﬁl o k;LRR
Grtbr{py Am}) =11 [ 4w ” (3.3)
= PR k)
J:
D w5 9 9 9
d¥r = Z.;g APk, Pi({k}.{p}.m5) = ¢ —m; +ié, (3.4)
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where the ¢; are linear combinations of external momenta p; and loop momenta k;. While
the rank R of the integral is indicated by the number of loop momenta appearing in the
numerator, the indices [; denote which of the L loop momenta belongs to which Lorentz
index p;. The factor of w2 in & is chosen by convention to remove any dependence on
7 after the integration over the loop momenta within Feynman parameterization. The
renormalization scale is denoted by p,. The +id in Eq. (3.4) results from the solutions
of the field equations in terms of causal Green functions.

The integral is regulated dimensionally meaning that the integer dimension number
d is shifted by an infinitesimal quantity ¢ to the new dimension variable D = d — 2¢.
Infrared or ultraviolet poles then appear as poles in the regulator €. Careful distinction
has to be made between ultraviolet (¢ > 0) and infrared regulators (¢ < 0). Formally, the
theory is first renormalized dimensionally by going a little below the integer number d of
space-time dimensions and afterwards analytically continued to a little value above d to
regulate the mass singularities, see Ref. [194] for a comprehensive discussion. A modified
version of the dimensional regularization is the dimensional reduction (DR). It is of
particular interest in SUSY calculations, since it preserves global gauge invariance and
supersymmetry, also at the two loop level [195]. Adopting this regularization scheme first
introduced and applied in Refs. [196,197], all external particles and all gamma matrices
{4",~°} appearing in the couplings are treated as quasi four-dimensional, while the loop
integrals are computed in D = 4 — 2 ¢ dimensions. For comparison, the introduction of a
cutoff A to the propagators to regulate UV divergences corresponds to the Pauli-Villars
regularization.

The complexity of the evaluation of loop integrals generally increases with the number
of loops and the number of legs. Massive internal lines further increase the level of
complexity by raising the number of involved scales. All masses and invariants formed
from external momenta are summarized in the term “kinematic invariants”. The sum
of independent kinematic variables corresponds to the number of scales involved in a
diagram. Already at one-loop many-scale integrals are hard to compute. Multi-loop
integrals involving multiple scales are particularly demanding. Further complexity arises
with the non-planarity of graphs. Such diagrams only appear beyond one loop. These
additional complications make the evaluation of multi-loop integrals an extremely non-
trivial task and shrewd and refined techniques need to be employed to tackle these.
Analytical techniques are very advanced, but when it comes to automation they very
often still reach their limit. Numerical methods are in general easier to automate but
issues here are the speed and the accuracy.

In the following, the main technical approaches towards the evaluation of multi-loop
and multi-scale integrals are reviewed. The main recent developments are sketched before
concluding with a motivation for the method chosen to be investigated in this thesis.
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3.3. Introduction of Feynman parametrization

3.3 Introduction of Feynman parametrization

A first method to deal with Feynman loop integrals is to introduce Feynman parameters
to every propagator. To prove that this technique indeed works, it is descriptive to have
a look at a two-propagator example [93]

1 o0 1
— [ s 5(1 — 21 — ) ————— .
AB /0 idwz 0(1 =1 — o) (x1A+ 29B)2 "’ (3:5)

with the propagators A and B and the Feynman parameters x and y. Generalizing this
idea to multiple propagators is straightforward [152]

—N,
1 v
= / do; 276 (1 - Z [Z nP| (3.6)
jl;[lf)jl [] . =1
where N, = ;V 1Vj. An equivalent representation was derived by Schwinger. Pa-

rameters are usually referred to as Schwinger variables when they are assumed to have
values between zero and infinity, while values between zero and one are associated with
Feynman parameterization. The general form of a multi-loop integral reads

Gl — ) / h fv[d:cj 2P —ixi) / APy ... d %k
Hj:l F<V]) 0 j=1 i=1

—N,

L L

xkﬁl...kfRR{Z kiTMijkj_sz;r.Qj+J+i5 ’ (3.7)
ij=1 j=1

where the propagators are written in terms bilinear in the loop momenta with coefficients
contained in the matrix M, terms linear in the loop momenta with coefficients (); and
remaining terms included in J depending on the masses, external momenta and the
Feynman parameters only. To be able to integrate out the loop momenta, the terms
bilinear and linear in the loop momenta need to be brought into a quadratic form by a
shift

L
ki=k+v, u=>Y M;'Q;. (3.8)
i=1

The integration of the quadratic form is then straightforward. After also integrating out
the radial coordinates the general loop integral reads

N
Gé“"i’”? - 7 H /d xj :L'V] o(1— le)
b H] 1 F (vj) ;= I=1

[R/2] 1\™ - ~ I'i,....'r
x 3 <—2) T'(N, —m— LD/2) [(M—1 ®g)(m>z(R—2m>} "
m=0

YNv—(L+1)D/2—R

X (3.9)

FN,—LDj2—m  ’
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Chapter 3. Multi-scale integrals beyond one loop

where
L
F(@) =det(M) | Y QM Qr—J—id (3.10)
g l=1
UE) =det(M), M 1=uM=?, I=Uv. (3.11)

Note the sign of the infinitesimal imaginary part in Eq. (3.10). It results from factoring
an overall minus sign into the prefactor during Wick rotation. Each loop momentum
k;, in the numerator is associated with a fixed Lorentz index p;. The I'; refer to the
combination of both indices I'; = (I;, ;). For rank R = 0, the second line of Eq. (3.9)
reduces to the factor I'(IV,, — LD/2), containing overall UV divergences if present. In
the case of R = 1, the product (M~ ® ¢)(©) does not contribute and /") = fﬁl For
loop integrals of higher rank R > 1, products of the matrix element Mi;1 with the

metric tensor g*¥ contribute as a sum of all possible combinations with the vectors [ in
the double indices I';. As an example of how to read the notation involving the metric
tensors, for rank R = 2 and correspondingly m =1 it is

(M7 ®g)V = (Mo gt = M g™, 1yl e {1,2}. (3.12)

lilo

The functions ¢ and F in Eq. (3.9) are the first and second Symanzik polynomial,
respectively, and are homogeneous (in the Feynman parameters). U is positive semi-
definite and F is negative semi-definite when all propagators are massless. The two

Y41 p3
T

X2 Ly

T3

Figure 3.2: The one-loop box diagram with massless propagators.

functions can also be obtained using a graph-theoretical method, where the polynomials
are constructed from topological cuts of the corresponding Feynman graph. For the
construction of the function U, L lines of the graph are cut, whereas L—+1 lines are cut to
arrive at the function F, see Refs. [152,198,199]. To illustrate this for a simple example,
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3.3. Introduction of Feynman parametrization

assume a massless one-loop box with all external legs being light-like, compare Fig. 3.2.
Then, the first Symanzik polynomial i/ is constructed from adding up all possible L line
cuts of propagators which lead to a tree-level diagram. Each cut propagator contributes
with its Feynman parameter, if more than one propagator needs to be cut (which happens
for L > 1), products of Feynman parameters, all of the same degree, enter the function
U. In the case of the one-loop box with massless propagators, this reads

+  ee-- + + ——

U= x1 + ) + xs + T4

The second Symanzik polynomial F is constructed from adding up all possible L+ 1 line
cuts of propagators. All L+ 1 cut propagators contribute with their Feynman parameter
and the squared momentum flowing into the resulting tree. In the case of the one-loop
box with massless propagators, the function F then reads

1
i + - + .7 + . + S+
i
F=_ _ . 2 . 2 . 2 . 2
= —S812 T1X3 — S23 T2T4 p1 X122 by T2I3 P3 T34 Dy Taxq .

While the prefactor I'(IN, —m — LD/2) in Eq. (3.9) contains overall ultraviolet diver-
gences if present, the vanishing of the function ¥ is related to ultraviolet sub-divergences
of the graph. The second Symanzik polynomial contains the occurring infrared singulari-
ties. The occurrence of these depends not only on the topology as in the UV case, but on
the kinematics as well. If some of the kinematic invariants are zero, e.g. when some ex-
ternal momenta are light-like, the vanishing of F may induce an infrared (IR) divergence.
Therefore general theorems about the IR singularity structure of multi-loop integrals are
sparse. For practical purposes sector decomposition can provide information about the
singularity structure and numerical results, because it offers a constructive algorithm to
extract the poles in 1/e. When generalizing the kinematic invariants to physical space,
the second Symanzik polynomial can also vanish when linear combinations of Feynman
parameters and kinematic invariants vanish. A clever deformation of the integration
contour to the complex plane helps dealing with these physical poles and the integration
over thresholds.

For a diagram with only massless propagators, the function F does not contain any
squares in the Feynman parameters. If massive internal lines are present, terms of the
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Chapter 3. Multi-scale integrals beyond one loop

type
N
F (&) < U(Z) > wym? (3.13)
j=1

appear. These are the source of complexity when it comes to the analytical evaluation
of multi-scale integrals, as many methods used for the simplifcation of an integrand can
no longer be applied.

This opens the field for a numerical treatment of multi-scale integrals, where squared
Feynman parameters are not a bottleneck to the calculation. Additionally, the intro-
duction of Feynman parameters is highly automatable paving the way towards a very
general solution to a large class of multi-scale integrals with arbitrary kinematics.

The problems occurring with this method and their solution will be explained in the next
two chapters. Beforehand, several other approaches towards solving multi-loop integrals
will be reviewed.

3.4 The virtues of a Mellin-Barnes representation

In analogy to Eq. (3.5), the main transformation to arrive at a Mellin-Barnes represen-
tation can be summarized in one line

! L1 /+mdzr(A+z)r(2) B (3.14)

(A+ B>~ T(\) 2mi J—ise ANtz

with the difference, that now a sum in the denominator is transformed into a product.
The sum on the left-hand side can either be a massive propagator or a sum of two
propagators after Feynman parametrization. In the first case, massive propagators are
expressible as a continuous superposition of massless propagators. Considering that the
massive propagators introduce squares in the Feynman parameters, see Sec. 3.3, this
transformation can be very beneficial.

In general, a factorization of the type Eq. (3.14) can be used to achieve a representation
of loop integrals in terms of gamma functions, which are in general easier to evaluate.
This benefit comes at the cost of extra Mellin integrations. Within their integration
domain, poles in the variable z can occur. Taking these into account, the integration
contour must always be chosen such that the poles with a I'(--- + z) dependence are
placed left of the contour and the poles with a I'(- - - — z) dependence are situated on the
right-hand side with respect to the contour. Closing the contour to the right and taking
a series of residues, the integral can be evaluated. Yet, finding the appropriate contour
is non-trivial.

With the computation of the planar [200] and non-planar [201] massless two-loop
four-point diagram, Smirnov and Tausk pioneered the utilization of a Mellin-Barnes
representation finding an appropriate choice of contours for physical kinematics includ-
ing thresholds. Several software packages became available automating the analytical
procedure where possible, see Refs. [202-204]. The more scales are involved, the less
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3.5. The method of differential equations

easy it is to arrive at a fully analytical result. Numerical approaches have also been
considered [205-207], putting much effort in the automation of a proper analytical con-
tinuation of the integrand. Very recently an idea by Pilipp [208] was implemented with in
combination with Feynman parametrization to treat such contours in an automated way,
see Ref. [207]. It works as follows: The second Symanzik polynomial F is decomposed
as

f(xl,...,xn) :pFl(azi)Jng(xi) R (3.15)
where a small coefficient to terms in F is extracted into the parameter p and where all

terms contained in F; and F5 are sufficiently large as not to contribute to a singularity.
The Mellin-Barnes representation is then introduced for the product

dz p® , (3.16)

I'(N, — LD/2) 1 /ioo (N, — LD/2+ z)I'(—=)

(pFy + Fo)No=LD/2 — 27 | ;0 Fl_ZFQN,,—LD/Q—f—z
After the application of sector decomposition which will be described in detail in Chap. 4,
the functions F; and U are constant in the Feynman parameters z;, so that the singularity
structure is revealed in the exponents of the factorized x;

x;li—l-i-bis-i-(?iz

) (3.17)
where the —1 enters with the Feynman parametrization, and where n;, b; and ¢; are
some coefficients resulting from the division into sectors. Allowing only those integrals
where ¢; < 0, the integration contour of the integral over the variable z can be closed
to the right, allowing for the application of Cauchy’s integral theorem. The residues
arising from terms of the type I'(n; + bie 4+ ¢;2) after z; integration need to be taken into
account. Afterwards, an expansion in the parameter p can be performed.

The usage of a Mellin-Barnes representation can be very beneficial in diverse contexts
and can even be applied in an automated way to the physical region with the computation
of asymptotic expansions in the Feynman integrals. Yet, a fully automated approach in
all regions of phase space is difficult.

3.5 The method of differential equations

As it turns out, a representation for the master integrals resulting from the reduction can
also be found by setting up differential equations in all kinematic invariants and solving
them with the appropriate boundary conditions. The method was first introduced by
Kotikov who related massive loop integrals to massless ones, see Ref. [209] and then
generalized to differential equations in all kinematic invariants, see Refs. [210, 211].

Taking the derivative of an integral with respect to one of its invariants yields linear
combinations of integrals with at most one additional propagator in the denominator
and one additional scalar product in the numerator. The derivatives of the invariants
sij = (pi + pj)2 can be expressed in terms of derivatives in the external momenta, e.g.
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for box diagrams

0 1(,0 u 0 uw 0 o o
R L =1,2.3. 1
<p + P} 5 Dl Z) ,i1FEj#EFk i,k ,2,3 (3.18)

%ij 881']' - 2 i 3}95
This generates similar expressions as those resulting from IBP relations mentioned in
Sec. 3.1 and Lorenz invariance identities (LI) introduced by Gehrmann and Remiddi,
see Ref. [193]. Using the IBP and LI relations, the integrals which received an additional
propagator or scalar product can be reduced again to such an extent as to result in a
system of differential equations. In the example of box diagrams, one of the equations
reads

Sij 83--It’t’0(sij’ Siks Skis D) =A(8ij, 8jks Skis D) It,£.0(8ij5 Sjks Skis D)
ij

+ F(sij, Sjk, Ski» Dy Ir—1,N,,R (845, Sjk, Ski, D)) (3.19)
where I; n, g is an integral of a diagram with four external legs of ¢ different propagators
and R scalar products and where the function A is rational. The function F' plays the
role of an inhomogeneous term and the integral contained in it, I;_ n, g, is one differing

propagator short compared to the I; n, r integral. The boundary conditions can be
derived from kinematical limits, e.g. a vanishing invariant s;;,

It,t,O(Oa Sjka Skis D) == - A(Oa Sjka Skiy D)il
x F(0, sk, $ki» D, I1—1,n,,R(0, 85k, 5ki, D)) (3.20)

where A(0, s, ski, D) # 0. Afterwards, the differential equations can be solved by
introducing an integrating factor M of the type

M(Sij> _ efdsij A(845,8k,5ki,D) , (3.21)

yielding solutions to the inhomogeneous equation

1
M (s45)

It 1.0(5i5,85ks Skis D) =

X (/ dsii F(sij, Sjks Skis D, Ii—1,N,,R(Sijs Sjk, Ski» D)) M(si5) + C) ,
(3.22)

where the integral over the function F' and M is either known or relatively easy to inte-
grate and where the constant C' is chosen such that it matches the boundary conditions.
The nice feature of this technique is that it can be applied to arbitrary multi-loop inte-
grals with arbitrary scales. However, the current bottleneck is related to the appearance
of elliptic integrals. These already appear in the rather simple but all-massive two-loop
bubble with different masses, see Fig. 3.3. After the developments summarized in this
thesis, such an integral is easily treated numerically for in principle arbitrary kinematics
and in a fully automated way.
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mq

msy

Figure 3.3: Two-loop two-point massive bubble diagram, also termed the "sunrise'
topology.

3.6 Further analytic developments

Apart from the multi-purpose techniques already mentioned in the previous sections,
there are many more specialized tricks to attack a special class of multi-loop integrals on
the one hand, and other ideas based on long-known mathematical concepts to simplify
the result on the other hand. Furthermore, intensive exploration of diverse mathematical
concepts uncovered new criteria and underlying structures to easier access scattering
amplitudes.

A presentation of analytic results in terms of generalized hypergeometric functions has
been found to yield very compact results. The evaluation of special cases of hypergeo-
metric functions, namely generalized Lauricella functions involving elliptic integrals are
not accessible by present analytical techniques. In contrast, for all results expressible in
terms of generalized harmonic polylogarithms (GHPLs) a fast, accurate and stable nu-
merical evaluation of the analytical expressions can be found. GHPLs are generalizations
of harmonic polylogarithms [212], introduced in Refs. [213,214] and applied in innumer-
able phenomenological applications. They are not all independent and relations among
them can become very complicated. A systematic approach to govern the complexity
of such relations is therefore highly desirable in the study of multi-loop integrals. One
such approach is the formulation of results in terms of symbols. The concept, introduced
by Zagier and Gonachrov in Refs. [215-217], allows for particularly simple and elegant
expressions. After the symbol calculus was applied in the context of NV = 4 supersym-
metric Yang-Mills (SYM) theory, see Refs. [218-228], it was found to be also applicable
to diverse phenomenological problems, see Refs. [80,81,229-236]. The coproduct, as a
generalization of the symbol, allowed for the conservation of information on constants
with an associated weight, as was pointed out in Refs. [231,237,238].

As already mentioned in Sec. 3.1, beyond one-loop the basis of master integrals is not
fixed. Finding criteria for an optimal basis was therefore a major breakthrough in the
computation of multi-loop amplitudes. These were introduced by Henn, see Ref. [239],
and further explored and applied in Refs. [240-245]. They lead to a straightforward
iterative solution of the differential equations in the dimensional regulator €.
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Chapter 3. Multi-scale integrals beyond one loop

While the formulation of results in terms of much simpler representations is of vital
importance in pushing the frontier towards the computation of higher loop integrals,
the introduction of completely different approaches to the computation of the master
integrals forms the second pillar in multi-loop computations. Conceptually, every mathe-
matical object constituting a loop integral can be reformulated using a different approach
which is more suitable in a specific calculation. Master integrals entering at higher order
in perturbation theory can be approached from a graph theoretical point of view, an
algebraic or a geometric point of view, to just name a few of the many areas of inter-
play between physics and mathematics that lead to attractive solutions to yet unsolved
integral representations. The liberation from calculations in strictly 4 dimensions, for
example, lead to plural ingenious approaches. The old concept of an infinitesimal € shift
used in dimensional regularization is predominantly used in the computation of loop
integrals. It is also an old concept to shift the dimension by positive or negative integer
numbers, see Refs. [198,246-250], but one may also benefit from an integral represen-
tation adopting a negative dimension. The latter was developed in Refs. [251-254] and
successfully applied in the computation of a massless two-loop five-propagator diagram,
where the expression of a sub-loop is derived using negative dimensions, see Ref. [255].
An abstraction to scalar one-loop vertex functions including internal masses, off-shell legs
and arbitrary propagator powers was achieved for general dimensions, see Ref. [256].
Another concept centers around the analysis of discontinuities across the branch cuts
of Feynman integrals. In the traditional approach, the integral might be reconstructed
directly from one of its discontinuities using a dispersion relation, see Refs. [257-260].
This technique can be generalized to the application of sequential unitarity cuts in dif-
ferent channels, reconstructing one- and multi-loop integrals, see Ref. [235].
Furthermore, the criterion of linear reducibility of a graph has been studied over the
past few years and recently used in the computation of diverse examples, compare
Refs. [261-268]. The examples, all being linearly reducible in the Feynman parameters,
can be integrated sequentially and analytical results can be given in terms of multiple
polylogarithms.

3.7 Motivation for adopting a numerical approach

One may realize that the quality of an employed technique to tackle multi-leg, -loop
and -scale integrals on the one hand lies in its applicability to very generic cases of loop
integrals, and on the other hand in the achieved accuracy within a given time span in ad-
dition to control over the parametric dependences. A fully automated elegant analytical
approach to compute all possibly existing loop integrals would therefore be the perfect
solution. Yet, analytical methods are still struggling with the appearance of elliptic inte-
grals, entering already in rather simple two-loop diagrams, while numerical approaches
need a better ratio of speed to accuracy to compete with the elegance of analytical re-
sults. The two main pillars therefore mutually enrich each other and methods including
analytical and numerical approaches push the boundaries of what is computable with
present techniques.

30



3.7. Motivation for adopting a numerical approach

While the achievements using analytical methods were analyzed in the previous sec-
tions, there are diverse groups who contributed highly non-trivial results to significant
phenomenological applications taking up a numerical approach, compare e.g. Refs. [58,
159,269-278|.

In the work summarized in this thesis, a highly automated numerical approach is
adopted, filling the gap of the missing automated evaluation of multi-loop multi-scale
integrals including thresholds. To this end, a representation of the integrals of inter-
est in terms of plain Feynman parameters is used. Due to its generality, the Feynman
parametrization can serve as the most universal approach to a numerical treatment of
integrals with arbitrary kinematics. Divergences are regulated dimensionally and are
factorized using the method of sector decomposition. The program SECDEC version 1
already implemented the automated formulation of integrals in terms of Feynman pa-
rameterization, integration of loop momenta and a series expansion in the dimensional
regulator e, where the coefficients to each order in ¢ are integrated numerically. The
upgrade of this program to be able to deal with mass thresholds within the integra-
tion region is one of the main achievements of the work presented in this thesis. The
advancement is accomplished by an automated analytical continuation of the Feynman
parametrized integrand, building on work presented in Refs. [274,275,279-281]. With
the resulting version 2 of SECDEC, valuable predictions and checks can be done, regard-
less of the number of scales involved. Contrary to analytical methods, it can even be
beneficial to include more scales. While purely finite integrals with multiple scales are
hard to access with analytical methods, it is comparatively easy using the numerical ap-
proach. Finally, it turns out that not only is the developed tool useful for checks against
analytical results, but it has also proven powerful in computing analytically unaccessible
integrals for phenomenological applications.
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4 The method of
sector decomposition

As described in the introduction, a theory can be ultra-violet and infrared divergent,
The idea of renormalization is to subtract the divergent parts and thereby make the
theory finite. Finding the right subtraction terms for the UV divergent parts was a long
standing problem whose solution resulted in the BPHZ theorem. To this end Hepp used
a decomposition of higher order loop diagrams into sectors to disentangle overlapping
UV divergences [144]. Thirty years later, the idea was taken up by Denner and Roth for
a disentanglement of UV divergences [282].

The application to infrared singularities and a systematic treatment of these to ar-
bitrary loop order using sector decomposition was pointed out by Binoth and Hein-
rich [151]. Tt serves as a local subtraction procedure to separate infrared divergences
from individual diagrams.

4.1 Conceptual idea

The algorithm to find the subtraction terms of individual graphs works in three main
steps. In the first step, the singular components of an integral are disentangled by
iteratively decomposing the integral into sectors. In a second step, the pole coeflicients
to each order in the poles of the dimensional regulator € are extracted. In the last step,
the coefficients containing kinematic invariants and Feynman parameters are integrated
analytically or numerically if an analytical treatment is not accessible.

Figure 4.1: The basic idea of sector decomposition.

The idea of sector decomposition is essential for the first step of the algorithm. It is
based on splitting the integration region to achieve a disentanglement of the singularities.
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As a simple example, consider the following integral

1 1 1
doifdes o e 4.1
1 1 1
= [dzydy o5 (O(21 — 22) + O(22 — 41D
/0 o1 dr o (Bl — ) + O(w2 — 1)) (4.1b)
i e y
= — o + —r .
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da [d ! o i 1
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/0 e 21T (L + Bp)2He /0 ) a3 te (3 + 1)2te (4.1¢)

where overlapping divergences appear in the limit of a vanishing of both Feynman pa-
rameters x1,zo — 0 in the first line. In the second line, see Eq. (4.1b), the integration
region is split into one part where x; is always bigger than xo and a second part where
the hierarchy is reversed. The splitting can be translated into a change of the integration
boundaries, compare Eq. (4.1c). Using the transformation

T — T (4.2a)
T9 — T1T9 (4.2b)

in the first integral on the righthand side of Eq. (4.1c) and the transformation

Tr1 — Tol1 (4.3&)
T — T2 (4.3b)

in the second integral on the righthand side of Eq. (4.1c), both integrals are remapped
onto the unit hypercube, compare Eq. (4.1d). The transformations in Egs. (4.2) and
(4.3) are known in the mathematical literature as blowing-up an affine N-dimensional
space, compare e.g. Ref. [283]. The number of variables participating in this blowing-up
is two, therefore N = 2 in this example. The blowing-up leads to two integrals with
disentangled (non-overlapping) singularities, compare Eq. (4.1e).

In the following, all three steps of the algorithm are discussed in more detail. When
treating Feynman loop integrals, a decomposition into primary sectors is beneficial and
performed before the iterated decomposition into sub-sectors. The description of the
algorithm is restricted to scalar multi-loop integrals for better readability, but the ex-
tension to multi-loop tensor integrals is straightforward. The discussion of the algorithm
is based on Refs. [151,152].

4.1.1 Generation of primary sectors

A general loop integral in Feynman parametrization, compare Eq. (3.3), contains a
d-distribution, which can be formulated in various ways. To arrive at the simplest
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representation for a subsequent iterated sector decomposition, the representation of the
0-distribution is chosen such that a definite hierarchy is introduced after integration,
where one Feynman parameter x; out of IV is always larger than the rest. To this end,
the N dimensional unit hypercube is split into IV sectors. In each of these so called
primary sectors, one Feynman parameter x; is chosen to be larger than all others

N ) N ) N
H / dl’j = H / dxj Z@(wl 2 xj Z 0) s (4.4)
j=1"70 j=1"70 =1

where O is the Heaviside step function with values

L, z>y,
O(r—y) = 4.5
(o) { ) (4.
In the distribution sense, it is a generalized function defined as
Oy = [ dopla) . (16)
y

where the derivative of ¢(x) with respect to x gives the Dirac J-distribution. After the
decomposition into primary sectors, the integral G is split into N integrals G; with z;
the upper integration boundary of all integrals over x; (Vi # [), compare Eq. (4.1c). In
the next step, all integrals are remapped to the unit hypercube by using a blowing up
transformation on the Feynman parameters

ti, £l
sz{xl”’ 770 (4.7)
x, j=1.

The homogeneity of the functions U and F lead to a scaling behavior of U :nlL and
F x :1;L+1, where L is the number of loops of the diagram, see Sec. 3.3. Taking into
consideration all powers in x; appearing in one sector

Gloc/ H “Laty) day (pt;) ! l”l*1gclL(N"_(LH)D/Q)_(L+1)(N”_LD/2) (4.8)

J#l
N N
o0 vp—1)+N—
“/ [Tt dty) day arovms D) o (4.9)
0
L
o N
x / [ dty) day oyt | (4.10)
0 o
J#l

an overall factor of xl_l remains. The integration of the é-distribution

/ 50w Z t)) (4.11)
0

Iy
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then yields primary sectors of the type

N 1 oy (L+1)D/2 @
G, = /dt A : (4.12)
]1_[1 J J ]__ZNV—LD/QO
J#l
where the G; are connected with the full integral G by
() y
G=—v—=—I(N,-LD/2)> G . (4.13)
=1 I'(v;)

4.1.2 Iterated sector decomposition

In the one-loop case, the first Symanzik sub-sector polynomials U; are already brought
N
into the form U = 14+ )  t; after the decomposition into primary sectors. This
j=1,j#
is different at higher loop order L > 1 and also for the second Symanzik sub-sector
polynomials F;. An iterative procedure allows for the successive disentanglement of all

singularities. It follows three steps which are performed until completion.

At first, a minimal set of parameters S = {tqa,,...,%q,} is assigned which leads to a
vanishing of the primary sector functions i; and F; in the limit of vanishing elements
of §. The success of the decomposition is dependent on the choice of S which is by no
means unique.

Then, the defined r-dimensional cube is split into sub-sectors

T T T
[[et>ta, =0)=>"[] Ota, > ta, >0) . (4.14)
j=1 k=1 j=1
ik
Next, the integration boundaries are transformed back to the unit cube by applying
a blowing up once more, leading to the following transformation rules for the Feynman
parameters

_{taktaj, i#k,
ta, =

4.15
Loy, s i=k. ( )

At least one of the functions U and F; factorize in the parameter ¢,, with the exponent
of U; or Fj, respectively. Taking the additional Jacobian factor of tZ;l into account,
exponents of the type Ay — By € result for each integration parameter t,,. Ay and By
are numbers independent of the regulator €. The resulting sub-sector integrals are of
the form

N1 No=(LADD/2(f )
A —Bj.e lk o
:H/ % t’]: k) fquD/ZL? =, k=1...,r. (416)
25 0 Ik (ta,)
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The three steps are repeated creating further sub-sectors Uy, k,. k. and Fig k,.. k., until
no further set & can be found after c¢ iterations which leads to a vanishing of the sub-
sector functions. This is the case when they contain a constant term in form of a 1 in the
case of the first, and in form of a kinematic invariant in the case of the second Symanzik
polynomial

Ulklkg... :1 + u({aj) bl (417)
Fikiky.. =51+ Y _(s8)fs(ta;) (4.18)

where u(f, a;) and fal(te a;) are polynomials in the Feynman parameters and where kine-
matic invariants including masses are termed s; and sg.

The singular behavior is now contained in the exponent A; and all overlapping diver-
gences are disentangled.

4.1.3 Extraction of the poles

It is now possible to find subtraction terms to extract poles in a Laurent series in the
regulator £. Fach obtained sub-sector integrand and all variables ¢,;, with exponents
Aj — Bje can be written in the general form

I = / At 1P Lt {tarsa }o€) | (4.19)

where 7 is a function of the decomposed sub-sector functions Uy, k,. k. and Fig ky. k.- I
the Feynman parameter is of positive or vanishing exponent, A; > 0, the integration is
finite in the regulator € and no subtraction is needed. In all other cases, the integration
will lead to a logarithmic pole for A; = —1 or a higher pole if A; < —1 and in the limit
of a vanishing Feynman parameter ¢,,. To expand around the pole, an expansion into a
Taylor series around ¢,; = 0 can be performed

Ajl- P
T(tay, {tasta, s Z ZP(0, {ta,za; }+ o)p +HR(Ee) (4.20)

where R(f e) denotes the remainder term which does not contain any poles in the pa-
rameter t,; by construction and where

(4.21)

=

) o
IO, {tizshse) = 5Lty {tizs}se)
J

Reinserting Eq. (4.20) into Eq. (4.19) the only terms depending on the variable ¢, are
powers of it and the remainder polynomial R. Expanding the whole integrand into
plus-distributions using the identity

xfler-: — ié(x) + i (ng)n [lnn(x)}+ , (4‘22)

|
RE n—0 n:
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Chapter 4. The method of sector decomposition

where

/dxf /dxg { %)~ f(O)} , (4.23)

the integration over t,; can be performed straightforwardly for the first term on the
righthand side of Eq. (4.20), resulting with only the integration left in the finite remainder
term

|A;]—1

1 (0 {tz;éj / Aj—Bje
= dt;t2 7 P R(t€) . 4.24
];) Aj—Bje+p+1 7 Rte) (424)

In the case of a logarithmic divergence, the sub-sector integrand with poles subtracted
in the variable Lo would read

—-1-B
I —/ dtajt jEI( a]7{taz7£aj} )

(07 {tozi;éaj }7 6)
Bje

/ Aty ta; (Lt {tasta; 1+ €) = Z(0, {tasza, }:€)) - (4.25)

4.1.4 Calculation of the pole coefficients

After repetition of these subtraction steps for all variables .,V j and all obtained sub-
sectors, nested sums result where each summand can be dependent on the regulator e.
The whole expression can be expanded in ¢ yielding a Laurent series with coefficients
Clkyky...k.,m for each of the ¢(l) sub-sector integrals of the {-th primary sector

n
Gikikzke = Y. Clkrhgekeme™ + O™ (4.26)
m=—2L

which again enter the full result for a (scalar) loop diagram as

N )
G = (-)"T(N, - LD/2) Z > Gty ke - (4.27)
I=1k=1

4.2 The choice of algorithm

4.2.1 Goals

The best suited sector decomposition algorithm may differ in view of the two aspects,
applicability and simplicity of the result. One algorithm may be applicable to every
multi-loop diagram, but result in very complicated expressions. Another one may lead
to relatively simple expressions, but is not guaranteed to stop.
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4.2. The choice of algorithm

A sector decomposition algorithm does not stop, as soon as it runs into an infinite
recursion. The appearance of such can be exemplified assuming the following function

fxy, w0, w3) = 2f + 2323 . (4.28)

When decomposing it first in the variables 1 and z3, two sub-sectors with opposite
hierarchy

f1 (tl, X9, :ZJ3) =I3 ($3t% + x%) (4.29)
fa(x1, o, t3) =21 (21 + :L"%tg) (4.30)

are created by rescaling the Feynman parameter x1 = x3t; in the first sub-sector of
function f, and x3 = x1t3 in the second sub-sector. Choosing the sub-sector f; and the
set S = {2,3} of Feynman parameters, the initial functional results

fll(tl, to, xg) :.TU§ (t% + xgt%) (4.31)
frati, mo, t3) =23 t3 (t3t] + 22) | (4.32)

augmented by an additional factor of Feynman parameters. The set S = {1,2} would
instead lead to a termination of the algorithm. If chosen in an inconvenient way, de-
composition sequences can complicate integrand functions or even lead to an infinite
recursion. The occurrence of the latter limits the applicability. Manifestations of the
former have a direct influence on the numerical convergence.

The fewer decomposition steps are needed in an iterative algorithm, the fewer sub-
sectors are produced and the smaller the powers of factorized integration parameters
are.

4.2.2 A heuristic algorithm for slim results

A first algorithm, which is also the one employed in the program SECDEC, is completely
heuristic. First, the primary sector decomposition is performed as described in Sec. 4.1.1.
Then, each individual primary sector is iteratively decomposed into sub-sectors until
both Symanzik polynomials are finite for vanishing Feynman parameters. The procedure
works as follows:

1) Determine which of the two polynomials U; and F; of the primary sector ! turns
zero in the limit of vanishing Feynman parameters. Find the best decomposition
set S for this function. If both polynomials nullify, find the best decomposition set
for Y.

2) Compute all possible subsets of Feynman parameters contained in one primary
sector.

3) Find the smallest set Smin that nullifies the function detected in 1). If two or more
such sets have equal but minimal length, proceed with step 4), otherwise continue
with step 5). The smallest set must contain more than one Feynman parameter,
otherwise it would factorize from the polynomials ¢ and/or F;.
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Chapter 4. The method of sector decomposition

4) Discover which of the minimal sets maximizes the number of vanishing sub-sector
polynomials. If there are several minimal sets leading to the same maximal number
of vanishing polynomials, analyze the powers in the Feynman parameters of each
nullifying set for the function detected in 1). Choose the set with lowest powers in
the vanishing Feynman parameters.

5) Divide both, U; and F; into sub-sectors using the encountered best minimal set.

The procedure is iterated and more sub-sectors are produced as long as there is a set
that nullifies Uy, k. or/and Fig, k.-

This heuristic strategy is found to produce the least sectors compared to strategies
described separately by Bogner, Weinzierl and Smirnov, Tentyukov, compare Ref. [284]
and Ref. [285], respectively. Yet, the algorithm is not guaranteed to stop. The probability
for running into an infinite recursion as described in the previous section can be reduced
by introducing an additional heuristic strategy to the algorithm. In the latter, a pre-
decomposition is carried out for all those Feynman parameters appearing quadratically or
in higher powers in the primary sectors. No selection of a subset of Feynman parameters
is performed. This treatment has proven to be very beneficial in many cases, especially
in the computation of two-loop integrals with massive internal lines, but can lead to
an increase in the number of produced sectors if it is always carried out. Applied to
inconveniently chosen sectors of complicated integrals, this additional strategy can even
introduce higher spurious negative powers in the factorized Feynman parameters.

4.2.3 Algorithms guaranteed to stop

There are examples of three-loop diagrams which cannot be treated with the heuristic
algorithms described in the previous chapter due to the occurrence of infinite recursion.
To this end, it is interesting to find algorithms which are guaranteed to stop, regardless
of the numbers of sectors produced.

The possibly simplest algorithm to that matter is the one introduced by Hepp [144],
where n! sectors are produced due to the fact that each sector is split in all Feynman
variables x,, thereby always choosing the maximal decomposition set. Although this
strategy will eventually terminate, the amount of sectors produced is by far too large.
The problem can be solved differently by formulating it in terms of the polyhedra game
introduced by Hironaka where the player A is supposed to win over player B after a
finite number of moves and independent of the reaction of player B, see Ref. [286]. The
relation to sector decomposition was found by Bogner and Weinzierl who also analyzed
three strategies leading to the termination of the sector decomposition algorithm, see
Ref. [284]. The first strategy analyzed there is based on work by Zeilinger [287], the
second on a strategy by the mathematician Spivakovsky [288], and the third strategy is
inspired by a proof of Encinas and Hauser, see Ref. [289]. The strategies are all based on
enforcing a sequence of decreasing decomposition sets of Feynman parameters used for
each step in the iterated decomposition into sub-sectors. It was found, that the heuristic
strategy always wins over the terminating algorithms in terms of the numbers of sectors
produced, see Ref. [284,290].
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4.2. The choice of algorithm

This situation does not change with the introduction of another strategy S found by
Smirnov and Tentyukov, although it results with less sectors than the previously men-
tioned terminating strategies, see Ref. [285]. The strategy involves the computation of
normal vectors to facets of the convex hull of all weights, where the weights are found
by the exponents in the Feynman parameters of each monomial in the sub-sector poly-
nomial. If there is no facet which would lead to a, with respect to the lexicographical
ordering, smaller set of Feynman parameters to be decomposed in the next step, the
decomposition is finished using strategy which is guaranteed to stop, e.g. the one based
on work by Zeilinger. It was also found that strategy S produces the same number of
sectors as the strategy based on Speer sectors [291], which can process more information
about the graph to be computed. The introduction of Speer sectors leads to a higher
efficiency in the sector decomposition, regarding the speed and the memory intensity,
see Refs. [292,293].

Having introduced all these strategies, it would be nice to have a strategy which pro-
duces comparatively few sectors with regard to the heuristic strategy and is guaranteed
to terminate in a finite number of steps. Such a strategy was introduced by Kaneko and
Ueda [294,295]. They take a deterministic approach and reformulate the primary sectors
using convex and combinatorial geometry. By the construction of intersections of dual
cones to convex polyhedral cones a unique decomposition of the integration region can
be found for each polynomial. Some of the cones may still be too complicated for inte-
gration, therefore they can be cut into simplices using triangulation. The total number
of sectors produced depends on the triangulation algorithm. For the latter, there are
many implementations available in the literature, see e.g. Refs. [296,297]. Using the first
of the two, the resulting number of sectors is found to be even smaller compared to the
heuristic strategy and the algorithm is, by construction, always guaranteed to stop, see
Ref. [295]. The drawback is that the resulting functions are more complicated compared
to the integrands resulting from the heuristic strategy. This is due to the fact that it is
not an iterative algorithm. While currently only the heuristic strategy, augmented by
the option of applying a pre-decomposition, is implemented in the program SECDEC,
the algorithm of Kaneko and Ueda will be included in the next improved version of the
program, see Sec. 6.6.
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5 Singularity structure of
Feynman integrals

5.1 Euclidean vs. physical kinematics

In Sec. 3.3 it was already pointed out that both Symanzik polynomials are of definite
sign when computing integrals in the Euclidean region. This implies that the energy
component of the external momenta lies on the imaginary axis, leading to negative values
in the kinematic invariants s;; < 0 and p? < 0 and an overall positive contribution in
the second Symanzik polynomial F. To verify this, compare e.g. with the one-loop
box example in Sec. 3.3. Then, together with masses entering with a positive sign,
F is positive semi-definite. After the application of sector decomposition, all possible
singularities appearing in F are factorized leading to only positive definite integrands.

Switching to physical kinematics, the invariants formed from external momenta can
be real and four-momentum conservation

n—1 n
Zszj—ngzo (5.1)
irj i
i
must hold, where n is the number of external legs of which n—1 are linearly independent.

Due to this fact, F is no longer definite and further singularities, though integrable, can
occur within the integration region.

P mo

ms

Figure 5.1: Two-loop two-point "sunrise" graph with three internal masses.

An intuitive example are production thresholds which appear as internal particles go
on-shell. This means that the overall incoming external momentum reaches any sum
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Chapter 5. Singularity structure of Feynman integrals

of masses of internal propagators potentially leading to physical final states. A simple
example to demonstrate this is a two-loop two-point function with three internal masses,
see Fig. 5.1. The three-particle-cut discontinuity occurs for

p* = (m1+may+ms)” . (5.2)

The analytical determination of the threshold locations gets more and more complicated,
the more external legs and propagators are involved. Writing an integral in Feynman
parametrization, thresholds may be parametrized at the integrand level, as a combination
of kinematic invariants and Feynman parameters. The full set of thresholds can be
determined solving the Landau equations of an integrand.

5.2 Landau equations

The Landau equations
zj (GG({k}, {p}) —m3) =0 Vje{l,...,N} (5.3a)

N
Oy (k) ) —m2) =0 Vi 1.1}, (5.3b)
1 ]:1

give the necessary (but not sufficient) conditions for a divergence, see Refs. [257,298,299].
In accordance with the notation of Sec. 3.2, the g; are linear combinations of external
momenta p; and loop momenta k;, N is the number of propagators and L the number
of loops. Paraphrasing Eqgs. (5.3a), either the propagator q]2- — mf or their respective
Feynman parameter z; must vanish to potentially contribute to a singularity. Only
if Egs. (5.3b), involving a derivative by the loop momenta, vanish simultaneously, the

conditions for a Landau singularity are fulfilled.

A solution to the system with x; # 0V j gives the leading Landau singularity, which is
not integrable for N > 2 when D = 4—2¢, and real values of masses and momenta. Those
singularities where the vanishing of one Feynman parameter leads to a singular behavior
are termed sub-leading Landau singularities. These correspond to the thresholds of a
subgraph as a vanishing Feynman parameter can be associated with the removal of one
propagator and the junction of two vertices. These singularities are integrable and of
logarithmic or square-root type.

The Landau equations can be solved by contracting the momenta of Eq. (5.3b) with
those loop and external momenta the equation depends on, to get a system of equations
which can be solved by using the constraints arising from Eq. (5.3a). A nice example
analysis can be found in Ref. [271]. Another example is shown in Sec. 7.2.

The Landau equations can also be formulated as

F(Z {p,m?}) =0, (5.4a)

0

%}“(f,{p,mQ})zo vVje{l,...,N}, (5.4b)
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5.3. Deformation of the integration contour

after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.

How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Im(z)

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

N | N o N
f jl;[ldsz(z) -/ jzl_[ldij(x)—i— / jl;[ldsz(z):O (5.5)

can be exploited, where Re(2) = #. To be able to use the theorem, the original integrand,
depending only on the real coordinates x;, is analytically continued to the complex plane.
The coordinate transformation reads

[ oo~ | T | (522) v

where the new complex coordinates 2’ describe a path parametrized by the variables &.
With a given description of the coordinates Z, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal id prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.
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Chapter 5. Singularity structure of Feynman integrals

Finding the right analytical continuation to the coordinates Z is equivalent to finding
the proper deformation to the integration contour. It is the crucial step for the success
of this method and will be treated in the following.

5.3.2 Deformation

The aim is to find a clever deformation which is well suited for an automated application
in numerical calculations. For its realization, a good parametrization of the complex
variables z; in Eq. (5.6) must be found which on the one hand preserves the causal id
prescription, and on the other ensures all physical thresholds to appear as such in the
result. As the latter are contained in the Landau equations, an inclusion of these in the
deformation is desirable. It is therefore required that all Landau equations, Egs. (5.4), are
realized when the deformed function F(Z(Z)) vanishes. Furthermore, the i0 prescription
for the Feynman propagators requires that the contour deformation to the complex plane
is chosen such that the infinitesimal imaginary part is conserved. The negative sign of
the imaginary part of the second Symanzik polynomial F was discussed in Sec. 3.3. For
real masses and Mandelstam invariants s;;, the following Ansatz [279-281] is therefore
convenient

OF (%)

Tk(f) = )\xk(l — JIk) 8$k

: (5.7)

where A is an arbitrary real and positive parameter. A closed integration contour is
guaranteed by the factors x and (1 — xy), keeping the endpoints fixed. From Eq. (5.7),
the negative sign of the imaginary part is only guaranteed if the derivative by F(Z) is
not negative. Assuming the overall deformation to be small, the analytic continuation
of the integrand can be expanded into a series

oOF

? 2
M) + O(1(2)%) , (5.8)

F(@) = FE@) = F@) —i Y (@) (
k

where the expansion is done individually in each component k. The physically motivated
requirement that all Landau equations, Eqs. (5.4), be fulfilled is met in Eq. (5.8), when
the deformed integrand F(Z(Z)) vanishes. Furthermore, the imaginary part of F(Z(Z))
is always negative due to an ever positive (%)2 term. While the absolute size of the
derivative parts are determined by the diagrams to be computed, A is chosen to be
a free parameter determining the scale of the deformation. Following the analysis of
Ref. [279], the Ansatz for the analytical continuation must guarantee a full cancellation
of singularities in subtraction terms present in the remainder term of Eq. (4.24), see also
Eq. (4.25). If the analytic continuation is done only after computing the subtraction
terms, one Feynman parameter is deformed, while the one of the subtraction term is
not. Assume the deformation of a function I depending on one Feynman parameter

I— / bt (It 2) — T(0,)) - (5.9)
0
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5.3. Deformation of the integration contour

Analytic continuation of the parameter t, — zo = to + i7(to) yields

! O1(ta)\ Z(ta +i7(ta),€) — I(0,¢)
I_/O dt,, <1+z A ) i ) . (5.10)

The subtraction term Z(0,¢) was set up to cancel the soft singularity in the real part.
This parameterization can introduce spurious poles in the imaginary part, which are
not taken care of in the limit of t, — 0, unless 7(t,) vanishes faster than linear in the
Feynman parameter t,. If the deformation vanishes faster than linear in the Feynman
parameter t,, the imaginary part vanishes faster than the real part, resulting in the
original subtraction term. This condition is no longer necessary, when the analytic
continuation is done prior to the construction of the subtraction terms. It is due to this
analysis that the analytic continuation of each Feynman parameter is done right after
the iterated sector decomposition procedure.

In summary, unless a kinematic point fulfills all Landau equations, where both F and
its derivatives with respect to x; vanish, the deformation of the integration contour leads
to a well behaved integral at the points where only the function F vanishes.

An implementation and further analysis of this deformation for numerical calculations
has already been worked out in Refs. [274,275]. To assure a high numerical stability of
the evaluation of multi-loop integrals, necessary to make the implementation publicly
available, supplementary studies of the deformation are necessary which are presented
in the following.

Deformation studies

The aim of these deformation studies is to find an optimal procedure for an optimal choice
for the parameter A which guarantees a good behavior of the integrand. To this end, the
terms of order O(7x(%)), O(7%(¥))? and O(7(%))? are analyzed, assuming a decreasing
effect in higher orders, as is expected from a convergent Taylor series expansion.

The analytic continuation of F(Z(Z)) to the third power in the deformation reads
- . OF \?
F(2@) =F(z) —ix Y ap(l—ap) (5 -
k

8$k

2 2
- Xt - (5 (2'1") (511)

ka
138N 1301 )3 af>3 >PF
+ 52 Ek:a:k(l ) (8“ o] (5.12)

which uncovers two non-trivial aspects of the deformation. One leads to the fact that
the term proportional to A? contributes to the real part of F(Z(¥)) and the other to an
ambiguity in the sign of the imaginary part.
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Re[F(x)]

25+ "-‘\ 1

-3.5

Figure 5.3: Influence of the deformation on the real part for the one-loop bubble and
m=1,s=4.5.

05 F\

Im[F ()]
&

0.6 0.8 1

Figure 5.4: Influence of the deformation on the imaginary part for the one-loop bubble
and m =1, s =4.5.

To show the effect on the real part, it is descriptive to look at the specific but simple
example of the massive one-loop bubble, where the leading Landau singularity is well
known to be situated at s = 4m? when z = % The function F(x) of the one-loop bubble
reads

FiLbubble() = —sz (1 —z) + m? —id . (5.13)

The real part of F after the analytical continuation is shown in Fig. 5.3, where a point
above threshold was chosen, with a mass m = 1 and s = 4.5 and assuming arbitrary units.
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5.3. Deformation of the integration contour

From its basic geometric properties, it is known that the derivative of F in Eq. (5.7) is
smallest in the extrema and largest where the slope is maximal. Around x = 0.5, the
function F is almost, but not exactly, vanishing. The size of the deformation coming
from the derivative of F is shown for A = 1. One can notice that choosing a rather small
A = 0.5 the function F never vanishes except at the endpoints of the integration region
x = 0,1, while for the cases of A = 1,2 the function additionally vanishes in four points.
In principle, this should not be a problem, as the imaginary part is not vanishing in
any point beyond the end-points, see Fig. 5.4. But the larger the value for X is chosen,
the closer the points where the real part is zero, get to the endpoints, where also the
imaginary part is small. This can easily lead to numerical instabilities, so the parameter
A should not be chosen too large.

3
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Figure 5.5: Implications for the best choice of A from the modulus of F(z(z)) for the
one-loop bubble and m =1, s = 4.5.

It should be noted that a value for A > 1 is still viable, as long as the overall deforma-
tion is small. Otherwise, the series in the deformation Eq. (5.8) is no longer converging,
leading to a wrong sign of the imaginary part.

After having settled that the deformation parameter should not be chosen too large,
it must be found that it should neither be chosen to small, see Fig. 5.5. Though never
striking zero, the modulus is extremely small for A = 0.5, in particular in the vicinity of
x = 0.5, which is bad for the numerical convergence. A maximization of the modulus of
the function F(Z(Z)) close to the critical points where it becomes minimal stabilizes the
numerical evaluation.

In the case of the one-loop bubble, the term of order A3 in Eq. (5.12) is zero. This is
not the case for more complicated integrals. In order for this term not to grow dominant
and by that spoil the overall minus sign of the imaginary part, either lambda must

be chosen below one or the terms proportional to the derivative must be |8£-‘I(f)| < 1L
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Chapter 5. Singularity structure of Feynman integrals

This task can be accomplished by performing a small sampling of the derivative terms for
each Feynman parameter in various values and divide the parameter A by the maximally
achieved value for the derivative

5 A
ATA= max(|0F(%)/0x1],...,|0F () /0xn]|) (5.14)

Then, the derivative parts are roughly normalized to one and the scale of the deformation
is again dominated by the value for the parameter \.
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Figure 5.6: Implications for the best choice of A from the minimization of the complex
argument of F(z(z)) for the one-loop bubble and m =1, s = 4.5.

In order to further prevent the deformation to become too large, valuable information
on the right choice of A can be extracted from the analysis of the complex argument

2
-2 (@) ()
PF(E@) = F(@) ; (5.15)

x

where the numerator contains the coefficient of the imaginary part of order O(\), see
Fig. 5.6. Minimizing the complex argument ¢ z(z(z)) improves the numerical convergence
in the whole integration region when kinematically far from a critical point. When
the imaginary part is relatively small compared to the real part, the terms of order
A2 contributing to the real part cannot become too large and those terms going with
A3 cannot spoil the overall sign of the imaginary part. This can be advantageous for
speeding up a calculation and is especially interesting in the case of highly fluctuating
integrands. Close to a threshold, this additional check is however not advisable because
it clashes with the maximization of the modulus of F(Z(Z)).

For more technical details about the implementation of the deformation, see Sec. 6.2.3.
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Pinch singularities

If a singularity falls together with an endpoint of the integration region, it is trapped
and no proper deformation of the integration contour is possible. The same applies to
the case where two singularities fall together, where one singular point could only be
bypassed deforming the contour into the direction of the other singularity. The result
is a pinch in the integration contour. Both, pinch singularities and singularities at the
endpoint of the integration region, are described by the Landau equations, compare
Egs. (5.4).

With the introduction of the analytical continuation to the complex plane and the
deformation of the integration contour, integrable singularities do not appear as diver-
gences in the coefficients of the Laurent series in €. Nevertheless, the method leads to
numerical instabilities in the vicinity of either a pinch singularity or a singularity at the
endpoint of the integration region. This is due to the fact that the deformation of the
integration contour becomes negligible. Returning to the one-loop bubble of Eq. (5.13),
this behavior can be observed in Fig. 5.5, where the modulus of the function F can
become very small. The evaluation time and accuracy of an integral close to such a
singular point heavily depends on the chosen value for A and the numerical integrator.
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6 Extension of the program
SECDEC to physical
kinematics

In the following, the public program SECDEC version 2 [1,2,4-7] is presented. SECDEC is
a program for the numerical evaluation of multi-scale multi-loop and multi-dimensional
polynomial parameter integrals. It is based on the sector decomposition algorithm de-
scribed in Chap. 4, where dimensionally regulated singularities are extracted. Even
though their coefficients are available in algebraic form, they are usually too compli-
cated to be integrated analytically. Therefore the final computation of the coefficients to
each order in the regulator ¢ is done by Monte Carlo integration. To deal with integrable
singularities due to mass thresholds, the integration contour is deformed to the complex
plane. Before the extension to arbitrary kinematics was achieved with SECDEC version 2,
a first version of the program was publicly available [301]. Other public implementations
of the sector decomposition algorithm working in the Euclidean space are introduced in
Refs. [204, 284,285,293, 296]. Recently, a new version of the program FIESTA has be-
come available [207], including interesting and valuable new features. The extension to
arbitrary kinematics was also achieved there, though their approach is heavily based on
the one employed in SECDEC, as mentioned in their publication.

The structure of this chapter is as follows: in Sec. 6.1, the functionality of the program
SECDEC version 2 is reviewed. Its characteristic features are explained in Sec. 6.2,
further capabilities are elaborated in Sec. 6.3. The operational sequence of the program
is shown in Sec. 6.4, before studying two examples and discussing the computation times
in Sec. 6.5. Prospective future developments are discussed in Sec. 6.6.

6.1 Functionality

In this section, the functionality of the program SECDEC is described. The program has
two main branches, one where the computation of any loop integral or integral with a
similar structure is possible. The user can start from a diagram knowing the propagators
involved, or can even feed some of their own functions into the program. All other steps
including the output of the final result are performed in a fully automated way. In the
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other branch, more general parametric functions can be computed, including the special
feature that additional finite functions can be left symbolic until shortly before numerical
integration.

Up to the step of the final integration, the coefficients are computed in a fully analytical
way, where all kinematic invariants are left symbolic by default. This feature allows for
a fast evaluation of multiple kinematic points, as only the integration step is left to be
done if any of the kinematic invariants change. If a user is interested in just the result
for one particular diagram for one set of kinematics, it is also possible to insert kinematic
values in the beginning.

Version 2 of SECDEC contains the following new features, which will be described in
detail in the next sections.

Loop integrals and integrals of similar structure

e Multi-scale loop integrals can be evaluated without restricting the kinematics to
the Euclidean region. This has been achieved by performing a (numerical) contour
integration in the complex plane. The program automatically tries to find an
optimal deformation of the integration path. In addition, a kinematic threshold can
be defined symbolically. Above this threshold, a complex contribution is expected
and the deformation of the integration contour is automatically switched on.

e For scalar multi-loop integrals, the integrand can be constructed from the topo-
logical cuts of the diagram. The user only has to provide the vertices and the
propagator masses, but does not have to provide the momentum flow.

e Tensor integrals can be evaluated with (in principle) no limitation on the rank.
This means that a numerical approach in certain cases can help to alleviate or
even avoid the procedure of amplitude reduction to master integrals. !

e Another new feature is the option to apply the sector decomposition algorithm and
subsequent contour deformation on user-defined functions which do not necessarily
have the form of standard loop integrals, but have a simliar structure.

e The files for the numerical integration of functions amenable to contour deforma-
tion (multi-scale multi-loop integrals, user-defined functions) are written in C*+
rather than Fortran. For integrations in Euclidean space, the user can choose
between using Fortran or CT.

e A parallelization of the algebraic part for Mathematica versions 7 and higher is
possible if multiple cores are available. This is of special interest when computing
very complicated multi-scale multi-loop integrals, see e.g. Chap. 7.

e A rescaling of all kinematic invariants by the absolute value of the largest invariant
can be chosen to achieve a faster convergence of the numerical result.

'This new feature has been implemented in collaboration with J. Carter.
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e Looping over ranges of parameter values is automated, allowing scans over different
kinematic configurations within one topology. !

e A stable and recent version of the CUBA LIBRARY [302,303], CUBA-3.2, allowing for
a parallelized numerical integration is added to the program and used by default.

General parametric integrals

e The user can define additional (finite) functions at a symbolic level. These can
be specified later, after the integrand has been transformed into a set of finite
parameter integrals, for each order in €. !

e Looping over ranges of parameter values is automated, allowing scans over param-
eter sets for more general polynomial functions. !

Below, these new features are described in more detail, but also see Appendix A.2
for a user manual. Comprehensive documentation can be found with the code itself,
available at http://secdec.hepforge.org.

6.2 Characteristic features

6.2.1 Loop integrals

The program is capable of integrating general loop and multi-loop diagrams, including
kinematic thresholds, using Feynman parameters. In accordance with Sec. 3.3, such
a loop integral is composed of five parts, the two Symanzik polynomials U and F,
the numerator, the d-distribution and the powers of factorizing Feynman parameters.
While the numerator in a scalar integral is equal to unity, it can contain contractions
of loop momenta with each other or with external momenta when the integral is of
higher rank. While any kinematic invariant or scalar factor is treated as a constant in
the numerator, loop momenta appearing as contractions in the numerator influence the
singularity structure of the integrand, compare Eq. (3.9).

Tensor integrals up to in principle arbitrary rank can be computed with SECDEC by
evaluating the coefficient functions of the Lorentz decomposed tensors. Take for example,
the Lorentz decomposition of a one-loop two-point (bubble) integral B, of rank R =1
with one external momentum p

B, =puB1 , (6.1)

where the coefficient function By reads

2 D qup"
pBlzP/dq (6.2)
(¢? = m)((g +p1)? —m3)
with P = %)T# . In the case of B, the coefficient function B; can be computed

with SECDEC, thereby delivering a result for the whole tensor integral.
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The algorithms in SECDEC are not restricted by any loop order, tensor rank or the
number of scales. Provided with the information on the diagram to be computed SECDEC
calculates the Laurent series up to the desired order in the regulator ¢ in a fully auto-
mated way. For the iterated sector decomposition two heuristic strategies, described in
Sec. 4.2.2, are available. A diagram is specified by its propagators, loop momenta and
irreducible numerators, and by the number of external legs and their on-shell conditions.
The on-shell conditions become of special importance when external legs are light-like.
This is the minimal information needed. Yet, SECDEC has several options allowing for a
more efficient evaluation tailored to specific integrals and/or a customization of the out-
put of the results. One of the features of SECDEC is that all kinematic invariants are left
symbolic up to the numerical integration. This allows for a fast evaluation of integrals of
the same topology for different sets of kinematic values. If only one kinematic point is of
interest, it can be beneficial to set the values for the invariants already in the beginning
to allow for an additional simplification of the integrands prior to numerical integration.
This feature is included in SECDEC as well, by abuse of the on-shell conditions, see
App. A.2.4. Furthermore, SECDEC allows for the choice of the desired prefactor and
the maximal order in the regulator € to be computed. Among further options regarding
the numerical integration, see Sec. 6.3.8, SECDEC arranges for a user-adjustment of the
contour-deformation parameters for calculations in the physical region, see Sec. 6.2.3. A
removal of spurious divergences can be achieved using integration by parts, see Sec. 6.3.4.

6.2.2 Parametric integrals

The program SECDEC can also factorise singularities from parameter integrals which
are more general than those in multi-loop integrals. The only restrictions are firstly that
the integration domain should be a unit hypercube, and secondly singularities should
reside only at the upper and/or lower integration boundary, i.e. at zero or one. Contour
deformation is not available for more general parametric functions, because it requires
the sign of the imaginary part to be known a priori in order not to give a wrong result.
Currently the singularities are assumed to be regulated by non-integer powers of the
integration parameters, e.g. the € of dimensional regularization, or some other regulator.
The general form of such integrals is

1 1 m
1:/0 dxl.../o deizl_[lPi(:c,{a})”l, (6.3)

where P;(Z, {a}) are polynomial functions of the parameters x;, which can also contain
a set of symbolic constants {«}. The user can leave the parameters {a} symbolic during
the decomposition, assigning values only for the numerical integration step. This way
the decomposition and subtraction steps do not have to be redone if the values for the
constants are changed. In Eq. (6.3), the indices v; are of the form v; = a; + b; £, with a;
such that the integral is convergent. Note that half integer powers are also possible.
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6.2.3 Implementation of Contour deformation

As explained in Sec. 5.3.1, singularities on the real axis can be avoided by a deformation of
the integration contour to the complex plane. The scale of the deformation is controlled
by the parameter A defined in Eq. (5.7). The convergence of the numerical integration
can be improved significantly by choosing an “optimal” value for A. As analyzed in
Sec. 5.3.2, values of A which are too small lead to contours which are too close to the
poles on the real axis and therefore lead to bad convergence. Values of A which are too
large can modify the real part of the function to an unacceptable extent, and could even
change the sign of the imaginary part if the terms of order A* become larger than those
terms linear in A. This would lead to a wrong result. Therefore a four-step procedure is
implemented in SECDEC to optimize the value of A\. These are

e Ratio check: To make sure that terms of order A3 in Eq. (5.8) do not spoil the sign
of the imaginary part, the ratio of the terms linear and cubic in A are evaluated
for a quasi-randomly chosen set of samples to determine A.x. The size of the set
can be chosen by the user.

e Modulus check: The imaginary part is vital at the points where the real part of F is
vanishing. In these regions, the deformation should be large enough to avoid large
numerical fluctuations due to a highly peaked integrand. Therefore the modulus
of each sub-sector function F; is checked at a number of sample points. At the
points where the modulus is close to vanishing, the fraction of the value Apax is
picked which maximizes the modulus of ;. Hereby, the value of A\ which keeps F;
furthest from zero is chosen.

OF; -
s for different

e Individual A(4, j) adjustments: If the discrepancy of the values of
x; is very large among one sub-sector i, it can be convenient to have an individual
parameter A(4, j) for each sub-sector function F; and each Feynman parameter x;.
As was shown in Sec. 5.3.2, it is beneficial to have small overall deformations of
the integration contour. Therefore each individual parameter \(7, j) is divided by

the largest value of gf]? for all z; in one sub-sector ¢, decreasing the overall size of

the deformation. If the largest deformations is smaller or equal to one, the A(7, j)
are left unchanged.

e Further optional \(7,j) adjustments:

1) If the integrand is expected to be oscillatory and hence sensitive to small
changes in the deformation parameter A\, SECDEC can minimize the argument
of each sub-sector function F; by varying A(i,j). The effect is shown in
Sec. 5.3.2.

2) If the integrand is expected to have (integrable) singularities close to the
endpoints of the integration (z; = 0,1), the deformation should be as large as
possible in order to move the contour away from the problematic region. To
this end, each individual parameter A(4,7) is multiplied by the largest value

of gf L for all x; in one sub-sector 7.
J
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e Sign check: After the above adjustments to A have been made, the sign of Im(F)
is again checked for a number of sample points. If the sign is ever positive, this
value of A is disallowed.

The contour deformation can be switched on or off, see App. A.2.3. The calculation
takes longer if a deformation of the integration contour is performed, so if the integrand
is known to be positive definite, the contour deformation option should be switched off.
It must also be emphasized that for integrands with a complicated singularity structure,
the success of the numerical integration can critically depend on the parameters which
tune the deformation and on the settings for the Monte Carlo integration.

6.3 Additional capabilities

6.3.1 Evaluation of user-defined functions with arbitrary kinematics

To calculate a “standard” loop integral, it is sufficient to specify the numerator, the
loop momenta and the propagators. The program will construct the integrand in terms
of Feynman parameters automatically. It can also be desirable to take a mixed ap-
proach of computing an integral numerically after having manipulated it analytically.
An example approach is given in Chap. 7, where the numerical efficiency is shown to be
improved by a clever analytical preparation of the integrand for the subsequent Monte
Carlo integration. In this example, the preparation includes the analytical integration
of one sub-loop. This implies that the constraint 6(1 — Y, x;) has been already used
to achieve a convenient parametrization, and therefore no primary sector decomposition
is needed anymore to eliminate the d-constraint. In such a case, the user can skip this
step in SECDEC and insert the functions to be factorized directly into the Mathematica
template file, using the favored parametrization. More generally, this option offers more
flexibility regarding the functions to be integrated, such as expressions for loop integrals
which are not in the “standard form”. For example, analytic manipulations which have
already been performed on the integral can be dealt with as well. This includes the
possibility to perform a deformation of the integration contour to the complex plane.
To better understand the types of function a user could insert, the reader is invited
to look back to Eq. (3.9). A general loop integral in Feynman parametrization thus
contains a numerator function A non-divergent by construction, two Symanzik poly-
nomials U and F, whose exponent can have either sign and therefore singular points.
Furthermore, it contains a fully analytical, but arbitrary prefactor P allowed to con-
tain singularities in the regulator e, factorizing powers of Feynman parameters, and a
d-distribution constraint. A user-defined function, may contain any of the previously
mentioned components or none, with the only exception that the J-constraint needs to
either not exist or have been integrated out already. In a more general form, such a
user-defined integral Gyser may have any of the following components

N 1
Guser = P(e) TIH /0 dz; 2379} N(e) USH(Z, {m}, {p}) FOF (&, {m}, {p}) . (6.4)
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The functions N, U and F can be polynomials or products of polynomials with the only
condition that they share a common exponent, ex!/ and exF. The factorizing Feynman
parameters can appear with exponents a; dependent or independent of e. Any of the
exponents may in principle also contain fractional numbers. Details about the usage of
this option are given in the user manual, see App. A.2.6.

6.3.2 Topology-based construction of the integrand

As already mentioned in Sec. 3.3, the functions U and F can be constructed from the
topology of the corresponding Feynman graph, without the need to assign the momenta
for each propagator explicitly. The implementation in SECDEC is such that the user
only has to label the external momenta, the vertices and the masses of a graph. An
example is given in Sec. 6.5 and more examples can be found in SECDEC. This feature
of constructing the graph topologically is only implemented for scalar integrals so far.
The syntax is explained in App. A.2.5.

6.3.3 Looping over ranges of parameters

In phenomenological applications usually not just one kinematical point is of interest,
but looping over ranges of parameters becomes necessary. To this end, it is beneficial to
decrease the computation time where possible. The algebraic part of SECDEC can deal
with symbolic expressions for the kinematic invariants, or other parameters contained in
the integrand. Consequently, the decomposition and subtraction need only be done once,
producing functions which contain general kinematics. The generality of these functions
allows for the computation of many sets of different values for the invariants. SECDEC
allows for an automated calculation of many numerical points, minimizing the effort
for the user. Scripts are provided for “standard” loop, user-defined and more general
parametric integrals, see App. A.2.7.

6.3.4 Integration-by-parts relations

After the iterated sector decomposition has been performed, poles of the type
1
GZ(A]', Bj, t, 8) X I(Aj, Bj, t, 6) = / dtj t?j+Bj8R(t, 6) (65)
0

can arise in an integral G of the sub-sector [, where I is a sub-sector integrand. An
exponent A; = —2 is associated with a spurious linear pole, powers A; < —2 correspond
to spurious poles of higher order. These terms must be artificial because a renormalizable
gauge theory must be integrable. The function R(f: ¢) denotes the residue integrand after
subtraction, compare Eq. (4.20). Choosing A; = —2, it would read

R(tv 5) = I(toéj’ {tlli#aj}v 5) - I(Ov {tiij}v 5) - tj [I(l)(tj’ {tiij}’ 8)} e =0 (66)

Even in the limit of a vanishing ¢;, the integrand will remain integrable and finite as-
suming the decomposition into plus-distributions has already been performed. While

99



Chapter 6. FExtension of the program SECDEC to physical kinematics

approaching t; = 0, both the numerator and the denominator will become very small.
This can introduce numerical instabilities resulting, e.g., from rounding errors. To mit-
igate this, the sub-sector integrand I can be integrated by parts

1+A;+Bje

t 1
. Py = |2 p(f _
I(A]’B]7ta€) - [1—|—AJ+BJ5R(t7€):|O
1 1 1+A;4Bje 0 =
- tit, 7T —R(t 6.7
1+AJ’+BJ‘€/0 7 at]’ (’E) ( )
B 1
1+ A+ Bje
1 4+Be O _ -
< [ROL At} ) = [ty 7R (6.8)
j

thereby reducing the negative power in the Feynman parameter ¢; by one and enhancing
numerical stability, see Ref. [304] for a more detailed description of the implementation.
This procedure is automated for arbitrary pole order.

6.3.5 Leaving functions implicit during the algebraic part

When evaluating general parametric functions, the user may wish to introduce a “dummy”
function depending on (some of) the integration parameters, specifying the actual form
of the function later at the numerical integration stage. There are a number of reasons
why one might want to leave functions implicit during the algebraic stage: for example,
squared matrix elements typically contain large but finite functions of the phase space
variables in the numerator, so the algebraic part of the calculation will be quicker and
produce much smaller intermediate files if these functions are left implicit. Also, one
might like to use a number of measurement functions and be able to specify or change
them without having to perform the decomposition more than once. Note that one may
use more than one implicit function at a time, and that these functions can have any
number of arguments. The syntax and usage are described in App. A.2.8.

6.3.6 Assessing the reliability of the numerical result

When dealing with numerical techniques, the knowledge of the reliability of the result
is of major importance. Although the integrands of all sectors are stored analytically, it
may, especially when dealing with complicated integrals, be time consuming to analyze
these, either due to the abundance of Feynman parameters appearing in one function,
or simply due to a large number of functions. And even then, the numerical integrator
may still appear to be a black box. It is therefore appealing to get an estimate for
the correctness of the stated uncertainty. The numerical integrators contained in the
CUBA LIBRARY [302,303] return a probability for an estimated numerical uncertainty to
be erroneous. A maximal probability of 1 therefore means that the stated uncertainty
of a result cannot be trusted. The program collects the maximal probability for each
computed order in the dimensional regulator €. The probability can be reduced by
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increasing the number of sampling points used in an evaluation. More options tuning the
numerical integration parameters are given in the user manual, see App. A.2. To prevent
a suffering from underestimation of the true error given by the numerical integrators, it
is beneficial to check a result with different integrators when dealing with complicated
integrands.

6.3.7 Automated remapping to one endpoint

The program is capable of remapping singularities in a Feynman parameter x; appearing
at the endpoint 1 of the integration region to zero. A remapping of the singularity to
zero becomes necessary, if one of the sub-sectors of U or F in the case of loop integrals,
or one of the P; of Eq. (6.3) in the case of more general parametric functions, diverge in
the limit of one or more ¢; — 1. It works as follows. The integration region is split into
two parts at the point a, where a is chosen rather arbitrarily

[ iwae= [ “f<x>?x+ [ @ | (6.9)
_/01 if(Z)dg”c—i—/ol 2f(1 — %)dx’ : (6.10)

From Eq. (6.9) to Eq. (6.10) the substitutions 2 — £ and z — (1 — ) are applied to the
first and the second integral of the right-hand side, respectively. Hereby, a remapping of
the integration boundaries to the unit hypercube is achieved. The resulting functions f
either vanish for limz_,g or do not vanish at all.

In SECDEC, the integration region of those integrals over Feynman parameters t;,

leading to a divergence at the upper integration boundary, is split at 1/2 and the result-
ing two integrals are remapped to the unit interval.
This splitting of the integration region is performed before the iterated sector decompo-
sition. It increases the number of primary sectors by 2n, where n is the number of split
integration variables, in favor of improved numerical convergence. After all singulari-
ties at the endpoint are remapped to the lower integration boundary, an iterated sector
decomposition can be applied. The occurrence of singularities at both endpoints is typ-
ically encountered in massless diagrams. In Sec. 7.1.1, the integration of one sub-loop
prior to the treatment of the full integral serves as an example.

6.3.8 A word on the numerical integration

The numerical integration forms a crucial part in the calculation of any type of integrand
function resulting from a Laurent series expansion in e. SECDEC contains interfaces to six
different numerical integrators, BASES [305], Vegas, Suave, Divonne and Cuhre contained
in the CUBA LIBRARY [302,303], and NINTEGRATE contained in Mathematica [306]. The
user is offered to choose one of these in the input files, see App. A.2.3. It is crucial to
have the parameters for the numerical integrator under control. SECDEC incorporates
several options, allowing for a good adjustment of these parameters. Two of them are the
desired relative and absolute accuracy, where the desired absolute accuracy is necessary
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for integrals close to zero. If the real or imaginary part of the integral tends to zero, the
relative accuracy can never be reached. The numerical integrators therefore attempt to
find an estimate [ of the integral I that fulfills

A

I — I < max(eaps, ereld) (6.11)

see e.g. Ref. [302]. For vanishing values of the integral, the integration time then
heavily depends on the value chosen for the desired absolute accuracy. When looping
over ranges of kinematic invariants, points below threshold have a zero imaginary part.
This can artificially increase the computation times, if the absolute accuracy goal was
set to a reasonable, but small value. This artifact can be circumvented by setting
the lowest threshold symbolically when specifying the integrand. This new feature is
incorporated in SECDEC, switching off the contour deformation below the user-defined
threshold. Hence, unnecessarily long calculations are avoided in kinematic regions where
the imaginary part is known to be zero.

The other selectable parameters are described in the manuals of the different numerical
integrators, BASES [305] and the CUBA LIBRARY [302,303], and in the user manual in
App. A.2. Regarding the advantages of these integrators, BASES is a Fortran compatible
Monte Carlo integrator that allows for a sequential evaluation only. In the sequential
mode it is fast, producing reliable results. The four integrators included in the CUBA
LIBRARY can run in parallel mode and are usable with Fortran and C/C**. While Vegas
gives very stable results and tends to overestimate the numerical integration uncertainty,
Divonne is extremely adaptive but occasionally underestimates integration uncertainties.
The latter is very useful for very complicated integrands and is especially good in regions
close to a threshold. Suave is heuristically found to converge slowly, but gives very stable
results. While Vegas, Suave and Divonne are mainly Monte Carlo integrators which can
sample pseudo and quasi-random numbers, Cuhre is a fully deterministic integrator, able
to reach high accuracy if the integrand is comparatively simple.

In the integration phase, SECDEC allows for different choices regarding the number
of integrands to be summed before integration. Setting togetherflag=0 and grouping=0
at the same time leads to the separate integration of each sector in all different pole
structures Piljhk and orders ord in the regulator €”"?. Here i denotes the number of
logarithmic poles, j the number of linear poles and k£ the number of higher poles in
€. The summation of some integrand files before integration is enabled by entering the
allowed summed size of the grouped files in bytes, e.g. grouping=2000000 corresponds
to a grouping of integrands with a maximal total file size of around 2 MB. Switching
on togetherflag=1, all integrands leading to the full coefficient of a certain order in the
regulator are first summed up and then integrated numerically.

The uncertainty resulting from the Monte Carlo integration is expected to be bigger when
each sector is integrated individually before summing up all sectors. Yet, the difference
turns out not to be large, as the numerical integrator can tackle single functions much
better and yield more accurate results. Grouping files before integration can also lead
to a faster convergence if the integrand contains highly oscillating terms which cancel
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each other out, but will in general slow down the numerical calculation if the polynomial
structure is rather smooth.

6.4 Operational sequence

— loop directory — ] general directory
|
Feynman loop integral any integral matching more general
loop integral structure parametric function
(generated automatically) (inserted by user) (inserted by user)
primary se‘c.t or factorization
decomposition
iterated sector iterated sector iterated sector
decomposition decomposition decomposition
; 5 ; 5
multiscale