

Genetic Algorithms for Bridge
Maintenance Scheduling

Yan ZHANG

Master Thesis

1st Examiner: Prof. Dr. Hans-Joachim Bungartz

2nd Examiner: Prof. Dr. rer.nat. Ernst Rank

Assistant Advisor: DIPL.-ING. Katharina LUKAS

Computational Science and Engineering (Int. Master’s Program)

Technische Universität München

September, 2010

GA for Bridge Maintenance Scheduling 2

DECLARATION

I hereby declare that this thesis is entirely the result of my own work except where otherwise
indicated. I have only used the resources given in the list of references.

GA for Bridge Maintenance Scheduling 3

Abstract

Maintenance for infrastructural buildings, e.g. bridges, should have minimal impact on the quality of
traffic flow. Genetic algorithm is applied for solving infrastructure maintenance schedule problem, while
different scenarios are created randomly, and better solutions are found by crossover between two
scenarios and random mutation. NSGAII was presented to deal with multi-objective optimization
problem. By this method, a Pareto optimal set can be obtained, and thus the decision maker can choose
a schedule which is most suitable for the maintenance.

GA for Bridge Maintenance Scheduling 4

CONTENTS

ABSTRACT .. 3

CHAPTER 1 INTRODUCTION AND OVERVIEW ... 7

1.1 SCOPE OF WORK .. 7

1.2 INTRODUCTION TO GENETIC ALGORITHMS (GA) ... 7

1.3 COMPONENTS OF GENETIC ALGORITHMS .. 8

1.3.1 REPRESENTATION .. 8

1.3.2 POPULATION .. 8

1.3.3 FITNESS FUNCTION .. 9

1.3.4 SELECTION ... 9

1.3.5 VARIATION .. 9

CHAPTER 2 SINGLE OBJECTIVE GENETIC ALGORITHMS (SOGA) ... 10

PART 1 BINARY REPRESENTATIONS ... 10

2.1 PARENT SELECTION ... 10

2.1.1 ROULETTE WHEEL SELECTION ... 10

2.2 CROSSOVER .. 13

2.2.1 ONE-POINT CROSSOVER .. 13

2.2.2 N-POINT CROSSOVER ... 13

2.3 MUTATION ... 14

2.3.1 MUTATION FOR BINARY REPRESENTATIONS .. 14

2.3.1.1 FLIP ALL BITS WITH MUTATION PROBABILITY P₀ ... 14

2.3.1.2 FLIP ONE RANDOM BIT .. 14

2.4 SURVIVOR SELECTION .. 14

2.4.1 AGE-BASED REPLACEMENT .. 14

2.4.2 FITNESS-BASED REPLACEMENT .. 15

2.5 SIMULATION RESULTS .. 15

2.5.1 TEST PROBLEM ... 15

2.5.2 PERFORMANCE MEASURES ... 16

2.5.3 DISCUSSION OF THE RESULTS .. 20

GA for Bridge Maintenance Scheduling 5

2.5.4 DIFFERENT PARAMETER SETTINGS .. 20

PART 2 INTEGER REPRESENTATIONS .. 23

2.6 CHROMOSOME REPRESENTATION AND INITIALIZATION ... 23

2.7 CROSSOVER .. 24

2.8 MUTATION ... 25

2.8.1 RANDOM RESETTING .. 25

2.8.2 SUBSTITUTION .. 25

2.9 SIMULATION RESULTS .. 26

2.9.1 TEST PROBLEM ... 26

2.9.2 PERFORMANCE MEASURES ... 27

2.9.3 DISCUSSION OF THE RESULTS .. 29

2.9.4 DIFFERENT PARAMETER SETTINGS .. 30

CHAPTER 3 MULTI-OBJECTIVE GENETIC ALGORITHMS (MOGA) .. 32

3.1 FROM SOGA TO MOGA .. 32

3.2 PARETO TERMINOLOGY .. 32

3.3 VARIOUS MOGAS .. 33

3.3.1 NON-DOMINATED SORTING GENETIC ALGORITHM – NSGA .. 33

3.3.2 AN IMPROVED VERSION OF THE NSGA ALGORITHM – NSGAII .. 34

3.4 A FAST AND ELITIST MULTI-OBJECTIVE GENETIC ALGORITHM: NSGAII ... 35

3.4.1 A FAST NON-DOMINATED SORTING APPROACH ... 35

3.4.2 DENSITY ESTIMATION METRIC .. 36

3.4.4 CONCLUSION .. 38

3.5 THE MAIN LOOP .. 39

3.5.1 EVALUATING .. 40

3.5.2 PARENT SELECTION .. 41

3.5.3 KEEP ALIVE .. 41

3.6 TWO-OBJECTIVE OPTIMIZATION TEST PROBLEM ... 42

3.6.1 TEST PROBLEM ... 42

3.6.2 CONSTRAINT HANDLING .. 45

3.6.3 PERFORMANCE MEASURES ... 45

3.6.4 DIFFERENT PARAMETER SETTINGS .. 48

3.7 THREE-OBJECTIVE OPTIMIZATION TEST PROBLEM ... 51

GA for Bridge Maintenance Scheduling 6

3.7.1 TEST PROBLEM ... 51

3.7.2 PERFORMANCE MEASURES ... 52

3.7.3 DIFFERENT PARAMETER SETTINGS .. 56

CHAPTER 4 CONCLUSIONS ... 61

REFERENCE ... 62

GA for Bridge Maintenance Scheduling 7

Chapter 1 Introduction and Overview

1.1 Scope of Work

Maintenance for infrastructural buildings, e.g. bridges, should have minimal impact on the
quality of traffic flow. Particularly in urban areas, the question is focused on which bridges can
be repaired simultaneously with the least disturbances of the traffic. This paper is aimed at
getting the good (minimal traffic delay time) schedules of bridges maintenance by genetic
algorithms.
Genetic algorithms are generally considered to be robust techniques of almost universal
application. This is due to the fact that they can be implemented on a wide variety
of problems with minimal adaptation, but are likely to be much less efficient than the highly
tailored problem-specific algorithms [2].
Different scheduling scenarios are created randomly and analyzed according to their quality
(impact on the traffic, maintenance budget, compromise with other construction on the bridges,
etc.).These qualities are so called objective values. By crossover between two scenarios and
random mutations it is tried to find particularly suitable representations of the maintenance
scenarios.
In this part the field of genetic algorithms is briefly introduced. The main components of the
genetic algorithms are presented. Since single objective genetic algorithm (SOGA) is the base of
further genetic algorithms, SOGA is presented in next chapter. The maintenance schedules of
infrastructural building (focus on minimizing traffic delay time) are also created by SOGA.
Chapter 3 introduces multi-objective genetic algorithm (MOGA) and NSGAII (an improved
version of MOGA), and analyses the numerical model with two and three objective functions.

1.2 Introduction to Genetic Algorithms (GA)

Genetic algorithms are a class of probabilistic optimization algorithms [3], which are inspired by
the biological evolution process. GA uses concepts of “natural selection” and “genetic
inheritance” (Darwin 1859) [4], since in nature, competition among individuals for scanty
resources results in the fittest individuals dominating over the weaker ones, and was originally
developed by John Holland (1975).
GA is based on an analogy with the genetic structure and behavior of chromosomes within a
population of individuals using the following foundations [5]:
•Individuals in a population compete for resources and mates.
•Those individuals most successful in each 'competition' will produce more offspring than those
individuals that perform poorly.
•Genes from `good' individuals propagate throughout the population so that two good parents
will sometimes produce offspring that are better than either parent.
•Thus each successive generation will become more suited to their environment.

GA for Bridge Maintenance Scheduling 8

GA process is stochastic, i.e., even the very weak individuals have the chance to survive while
normally the fitter ones have bigger chance to be selected. The general procedural of GA is
shown in Fig.1.1. Initially, a group of individuals (population) is created randomly, and then
some individuals are selected as parents, thereafter by recombination and mutation, offspring
are created. Applying survivor selections within old population and offspring, new population is
generated.

BEGIN
 INITIALISE population;
 REPEAT UNTIL(TERMINATION CONDITION is satisfied) DO
 EVALUATE ;
 PARENT SELECTION;
 CROSSOVER;
 MUTATE;
 SURVIVOR SELECTION;
 OD
END

 Fig.1.1 General Procedural of GA

1.3 Components of Genetic Algorithms

In this section some of the main components of genetic algorithm are briefly described.

1.3.1 Representation

The mapping from real world model to the genetic individuals is called representation. A
phenotype, or individual, is the expression of a specific trait, such as eyes colors, based
on gene. Genotype, or chromosome, is a class of organisms having the same genetic
constitution. The phenotype can be very different from the genotype.
There are a lot different ways of representation in GA, typically binary representation
and integer representation which are shown in detail in next chapter.

1.3.2 Population

The population is a group of individuals (is also called chromosome) which is subject to
evolution generation by generation. The diversity of a population is a measure of the
number of different solutions present [6]. One principle of GA is density preservation,
i.e., not only high-quality individuals participate the evolution, but low-quality ones also
have positive chance to attend it.
In multi-objective genetic algorithms (chapter 3), special techniques are used for
diversity preservation.

GA for Bridge Maintenance Scheduling 9

1.3.3 Fitness Function

Fitness function, or objective function, is a quality measurement in GA. If there is only
one fitness function, it is called single-objective GA (SOGA). The goal of SOGA is usually
associated with searching the maximum (or minimum) fitness function value. In reality,
there is often more than one objective to achieve. A problem with more than one
objective function can be solved by multi-objective GA (MOGA). Since it is impossible to
get the maximum (or minimum) values of different fitness functions at the same time in
most cases, the goal of MOGA is changed to find the compromised objective function
values.

1.3.4 Selection

A parent is an individual selected for creating offspring. Selections based on fitness
proportion are ranking selection, roulette wheel selection and tournament selection.
The mechanism of these selections is shown in next chapter (2.1). Selection called after
having generating the offspring is named survivor selection. It chooses individuals who
will go to the next generation. In SOGA, fitness-based survivor selection has the same
mechanism as parent selection, while age-based survivor selection making the selection
only in the new individuals. In MOGA, survivor selection is focus on not only offspring
but also the current population group, the mechanism is shown in chapter 3 (3.5.3).

1.3.5 Variation

Mutation and crossover are two variation operators which create new individuals from
old ones. They are stochastic operators. It is mentioned in [20], that the variation
operators could be problem-specific. In the next chapter, we use different variation
operators for the binary represented problem and the integer represented problem.

GA for Bridge Maintenance Scheduling 10

Chapter 2 Single Objective Genetic Algorithms
(SOGA)

Part 1 Binary representations

The binary representation is one of the earliest representations in the GA history. In this paper
the genotype consists of a bit-string that 1 represents the performing of the maintenance and 0
represents not performing. Maintenance Agencies make the maintenance schedules for the
next five year and only five bridges per year should be under constructions. They anticipate all
possible maintenance locations and try to minimize traffic delay time.
A group of population is generated when simulation starts, and every individual genotype, is a
set of random binary numbers. The length of chromosome keeps constant in the whole group.
For example, a chromosome (length L = 20) can be illustrated as:

10001010100011100101

For this binary-represented maintenance problem, we set the length of chromosome as 500,
since there are totally 100 bridges in the list and the schedule is planned for the next 5 years.
The general scheme of the binary-represented SOGA maintenance problem is the same as in
Fig.1.1.

2.1 Parent Selection

For the binary-represented SOGA maintenance problem we use roulette wheel selection,
tournament selection or ranking selection

2.1.1 Roulette Wheel Selection

A very simple example is presented here to introduce the basic concepts of
roulette wheel selection (the example data is taken from [1]). Fig.2.1 lists a

population of 5 individuals with fitness function 21
4() 2 5f x x x= − + + .

GA for Bridge Maintenance Scheduling 11

 Fig.2.1 Example for Roulette Wheel Selection

These individuals, in the first column x, are ranged between 0 and 10. The
fitness values are then taken as the function of x. We can see from the list
(column Fitness f(x)) that individual No. 3 is the fittest and No. 2 is the
weakest. Summing these fitness values we can apportion a percentage total of
fitness. This gives the strongest individual a value of 38% (selection probability)
and the weakest 5% (as show in Fig. 2.2)

 Fig.2.2. Roulette wheel approach: based on fitness (compare to [1])

We assume the algorithm to select λ members, based on selection probability, from
the set of μ individuals into a mating pool. Every time randomly create a number p
in the range of [0, 1], then choose an individual whose selection probability is larger

GA for Bridge Maintenance Scheduling 12

than p. In this paper, for binary represented SOGA, λ = 1, μ = N, the outlines of the
algorithms are given in Fig.2.3.

BEGIN
 Pick a random value p uniformly from [0,1];
 FOR I = 0 TO N DO
 sum[I] += fitness[I]/total fitness;
 IF (sum[I] > p) DO
 Select individual[I];
 BREAK;
 OD
 OD
END

Fig.2.3. Pseudo code for the roulette wheel selection

2.1.2 Ranking Selection

The ranking selection sorts the population into ascending order of fitness and then
simply assigns a fitness score based on its position in the ladder. So if a genome
ends up last it gets score of zero, if best then it gets a score equal to the size of the
population. Thereafter individuals are selected according to their fitness scores
instead of fitness values, and each individual has the same chance to be selected.
The Procedure is shown below in Fig.2.4.

BEGIN
 Sort population into ascending order according to fitness;
 Assign new fitness numbers according to the genome's position on this new fitness 'ladder';
 Roulette wheel selection based on new fitness numbers;
END

Fig.2.4. Pseudo code for ranking selection

2.1.3 Tournament Selection

The tournament selection is an operator that selects λ fittest members from
tournament with size k. First pick k individuals randomly from the mating pool, then
select the first λ individuals which have better fitness values. It was shown in [6] that
for binary tournaments if k=2, tournament selection works best. The procedure is
shown in Fig.2.5.

GA for Bridge Maintenance Scheduling 13

BEGIN
 Set current_member=0;
 WHILE (current_member < μ) DO
 Pick k random individuals from mating_pool;
 Select the fittest one ;
 current_member ++ ;
 OD
END

Fig.2.5. Pseudo code for the tournament selection algorithm

2.2 Crossover

We use one-point crossover and n-point crossover recombination operator. They all start
from two parents and create two children.

2.2.1 One-Point Crossover

One-point crossover works by choosing a random number in the range [0, L-1] (with
L the length of the chromosome), and then splitting both parents at this point and
creating the two children by exchanging the tails [6] (Fig. 2.6) (see also [6]).

 Fig.2.6. One-Point Crossover

2.2.2 N-Point Crossover

One-point crossover can easily be generalized to n-point crossover, where the
representation is broken into more than two segments of contiguous genes and
then the offspring are created by taking alternative segments from the two parents
[4]. The following Fig.2.7 illustrated for n = 2.

 Fig.2.7.N_Point Crossover

GA for Bridge Maintenance Scheduling 14

2.3 Mutation

2.3.1 Mutation for Binary Representations

We use two kinds of mutation operators:
•flip all bits with mutation rate P₀ (in this paper for binary represented GA, P₀=0.002,
since 500 (chromosome length) x 0.002 = 1, which means in average each time one
gene is chosen to mutate);
•flip one random bit.

2.3.1.1 Flip all Bits with Mutation Probability P₀

Each bit has a small probability P₀ to flip (i.e., from 0 to 1 or 1 to 0). In Fig.2.8
this is illustrated for the case where the fourth and seventh genes are flipped.

 Fig.2.8. Bitwise mutation for binary encodings

2.3.1.2 Flip one Random Bit

We must flip one gene randomly and flip only one gene in each individual as
shown in Fig.2.9.

 Fig.2.9. Flip one random gene

2.4 Survivor Selection

2.4.1 Age-Based Replacement

In age-based replacement scheme, the fitness of older generation population is not
taken into account during the selection of which individuals to go to the next
generation, rather they are designed so that each individual exists in the population
for the same number of GA iteration [6], i.e., the oldest individuals are eliminated
from the population after generation.

GA for Bridge Maintenance Scheduling 15

2.4.2 Fitness-Based Replacement

Fitness-based replacement strategy is proposed for choosing μ individuals from λ +
μ members, which consist of parents and offspring going forward to the next GA
iteration [6], the mechanisms used here are principally the same as in parent
selection. The selection scheme used in test problem 2.5.1 is tournament selection.
Individuals having better fitness scores have bigger chance to enter the next
generation.

2.5 Simulation Results

2.5.1 Test Problem

We first describe the test problem. The numerical example is based on the data
shown in Fig. 10 and 11. It consists of 100 bridges (index starts from 0 to 99) whose
current ages and conditions are listed in Fig.2.10 and 2.11. The conditions of the
bridges are depends on their ages. Condition 1 is the best while condition 6 means
that the bridge is likely to collapse. None of the bridges should be over condition 6
during the considered time span of 5 years. A maintenance resets the respective
bridge to condition index 1.

 Fig.2.10. Current ages of the bridges

0
10
20
30
40
50
60
70
80
90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

current age of 100 bridges

GA for Bridge Maintenance Scheduling 16

 Fig.2.11. Current condition of the bridges

The testing case has one objective function (fitness function) and two constraints.
The problem is described in Table 2.1.

 Table2.1. Test Problem

Objective Functions
(Fitness Functions)

min f(x)=max𝑖=0,..,4(∑ 𝑔𝑒𝑛𝑒[𝑖 × 100 + 𝑗] × 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑡𝑖𝑚𝑒[𝑗]𝑗=99
𝑗=0)

Constrains
1. condition[j] < 6 j=0,..,99;
2. Only 5 bridges are under maintenance each year.

Termination
Conditions

The best solutions keep unchanged (σ ≤ 0.0001) in 10 successive
generation.

All test settings (with different approaches and parameter settings) are run 50 times
for a maximum of 1000 generation with a population size 100. We use a crossover

probability of P₁= 0.7 and a mutation probability of P₀ = 0.002.

2.5.2 Performance Measures

Fig.2.12 shows the performance of different parent selection schemes: roulette
wheel selection, tournament selection, ranking selection. The variation operators
were fixed with one-point crossover and flip one random Bit mutation. From this
figure, we can see that generally ranking selection and tournament selection have
better performance than roulette wheel selection (this conclusion is only suit for
test case in 2.5.1).

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Current Condition of 100 bridges

GA for Bridge Maintenance Scheduling 17

 Fig.2.12. Different Parent Selection Schemes

Fig.2.13-Fig.2.15 presents the process of convergence of different parent selection
schemes. Fig.2.13 shows that roulette wheel selection converges since generation 5,
and keeps stable since the 23rd generation. Fig.2.14 shows that convergence starts
at the 3rd generation in tournament selection and becomes stable at generation 28.
From Fig.2.15, we can see that ranking selection becomes stable very quick at the
8th generation.

 Fig.2.13. Convergence of GA search using roulette wheel selection

GA for Bridge Maintenance Scheduling 18

 Fig.2.14. Convergence of GA search using tournament selection

 Fig.2.15. Convergence of GA search using ranking selection

One of the maintenance schedule obtained is outlined in Table2.2, where “X”
represents the performing of the maintenance. The resulting total traffic delay time
is 1238462.240 time units. It is a good result for the binary encoding problem,
however, compare to the integer represented approach (shown in the next chapter),
the delay time is too long. Each year only 5 bridges are maintained.

Table2.2 Maintenance Schedule
Bridge Index Year 1 Year2 Year3 Year 4 Year5

0 -- -- -- -- --
1 -- -- -- -- --
2 -- -- -- -- X
3 -- -- -- -- --

GA for Bridge Maintenance Scheduling 19

4 -- -- -- -- --
5 -- -- -- -- --
6 -- -- -- -- --
7 -- -- -- -- --
8 -- -- -- -- --
9 -- -- -- -- --

10 -- -- -- -- --
11 -- -- -- -- --
12 X -- -- -- --
13 -- -- -- -- --
14 -- -- -- -- --
15 -- -- -- -- --
16 -- -- -- -- --
17 -- -- -- -- --
18 -- -- -- X --
19 -- -- -- -- --
20 -- -- -- -- --
21 -- -- -- -- --
22 -- -- -- -- --
23 -- -- -- -- --
24 -- -- -- -- --
25 -- -- -- -- --
26 -- -- -- -- --
27 -- -- -- -- --
28 -- X -- -- --
29 -- -- -- -- --
30 -- -- -- -- --
31 -- -- -- -- --
32 -- -- -- X --
33 -- X -- -- --
34 -- -- -- -- --
35 -- -- -- -- --
36 -- -- -- -- --
37 -- -- -- -- --
38 -- -- -- -- --
39 -- -- -- -- --
40 -- -- -- -- --
41 -- -- -- -- --
42 -- -- X -- --
43 -- -- -- -- --
44 -- -- X -- --
45 -- -- -- -- --
46 -- -- -- -- --
47 -- -- -- -- --
48 X -- -- -- --
49 -- -- -- -- --
50 -- -- X -- --
51 -- -- -- -- --
52 -- -- -- -- --
53 -- -- -- -- --
54 -- -- -- -- --
55 -- -- -- -- --
56 -- -- -- -- X
57 -- -- -- -- --
58 -- -- -- -- --
59 -- -- -- -- --
60 -- -- -- -- --
61 -- -- -- -- --
62 -- -- -- -- --
63 -- -- -- -- --
64 X -- -- -- --
65 -- -- -- -- --
66 -- -- -- -- --
67 -- -- -- -- --
68 -- -- -- -- X
69 -- -- -- -- --

GA for Bridge Maintenance Scheduling 20

70 -- X X X --
71 -- -- -- -- --
72 -- -- X -- --
73 -- -- -- -- --
74 -- -- -- -- --
75 X -- -- -- --
76 -- -- -- -- --
77 -- -- -- X --
78 -- X -- -- --
79 -- -- -- -- --
80 -- -- -- -- --
81 -- -- -- -- --
82 -- -- -- -- --
83 -- -- -- -- --
84 -- X -- -- --
85 -- -- -- -- X
86 -- -- -- -- --
87 -- -- -- -- --
88 -- -- -- -- --
89 -- -- -- -- --
90 -- -- -- -- --
91 X -- -- -- --
92 -- -- -- -- X
93 -- -- -- -- --
94 -- -- -- -- --
95 -- -- -- -- --
96 -- -- -- -- --
97 -- -- -- X --
98 -- -- -- -- --
99 -- -- -- -- --

2.5.3 Discussion of the Results

The different parent selection schemes do not show big difference from Fig.2.12,
however, they are all convergent as shown in Fig.2.13 - Fig.2.15.
 From Table 2.2, we can see that bridge 70 is maintained three times (year 2, 3 and 4)
within 5 years as shown in Table2. It is not only unnecessary, but also takes the
chances for other bridges away. This is one drawback of the binary represented GA,
since the mutation and crossover are totally without control. An approach with a
representation by integer-matrix will improve this weakness.

2.5.4 Different Parameter Settings

This testing case uses binary represented GA with one-point crossover (or two-point
crossover), bit-flip mutation, and three parent-selection schemes (tournament
selection, roulette wheel selection and ranking selection).
First, we keep all other parameters same as before, but increase the population size
to 500 and 1000 (instead of 100 used before). Fig.2.16 and 2.17 show the
convergence for problem using tournament selection and flipping one random bits
mutation operators. Now, we achieve a much better distribution Table 2.3. From
this table we can see that bridge 72 is maintained twice within five years, however,
other bridges are only maintained once. The respective traffic delay time is

GA for Bridge Maintenance Scheduling 21

1045965.180 time units. Compared to Table 2.2 (population size is 100, traffic delay
time is 1238462.240 time units), the delay time is 16% shorter.

Fig.2.16. Convergence with population size N = 500, tournament selection

Fig.2.17. Convergence with population size N = 1000, tournament selection

Table2.3 Maintenance Schedule
Bridge Index Year 1 Year2 Year3 Year 4 Year5

0 -- -- -- -- --
1 -- -- -- -- --
2 -- -- -- -- --
3 -- -- -- -- --
4 -- -- -- -- --
5 -- X -- -- --

0
1
2
3
4
5
6
7
8
9

10
11
12

1 6 11 16 21 26 31 36 41 46 51

W
ai

ti
ng

-T
im

e
(M

ill
io

ne
n)

Generations

0
1
2
3
4
5
6
7
8
9

10
11
12

1 6 11 16 21 26 31 36 41 46 51 56

W
ai

ti
ng

-T
im

e
(M

ill
io

ne
n)

Generations

GA for Bridge Maintenance Scheduling 22

6 -- -- -- -- X
7 -- -- -- -- --
8 -- -- -- -- --
9 -- -- -- -- --

10 -- -- -- -- --
11 -- -- -- -- --
12 -- X -- -- --
13 -- -- -- -- --
14 -- X -- -- --
15 -- -- -- -- --
16 -- -- -- -- --
17 -- -- X -- --
18 -- -- -- -- --
19 -- -- -- -- --
20 -- -- -- -- --
21 -- -- -- -- --
22 -- -- -- -- --
23 -- -- X -- --
24 -- -- -- -- --
25 -- -- -- -- --
26 -- -- -- -- --
27 -- -- -- -- --
28 -- -- -- -- --
29 -- -- -- -- --
30 -- -- -- -- --
31 -- -- -- -- --
32 -- -- -- -- --
33 X -- -- -- --
34 -- -- -- -- --
35 -- -- -- -- --
36 -- -- -- -- --
37 -- -- -- -- --
38 -- -- -- -- --
39 -- -- -- -- --
40 -- -- -- -- --
41 -- -- -- -- --
42 -- -- X -- --
43 -- -- -- -- --
44 -- -- -- -- --
45 -- -- -- -- --
46 -- -- -- -- --
47 -- -- -- -- --
48 -- X -- -- --
49 X -- -- -- --
50 -- -- -- X --
51 -- -- -- -- --
52 -- -- X -- --
53 -- -- -- -- X
54 -- -- -- -- --
55 -- -- -- -- --
56 -- -- -- -- --
57 -- -- -- -- --
58 -- -- -- X --
59 -- -- -- -- --
60 -- -- -- -- --
61 -- -- -- -- --
62 -- -- -- -- --
63 X -- -- -- --
64 -- -- -- -- --
65 -- -- -- -- --
66 -- -- -- -- --
67 -- -- -- -- --
68 -- -- -- -- X
69 -- -- -- -- --
70 X -- -- -- --
71 -- -- -- -- --

GA for Bridge Maintenance Scheduling 23

72 X -- -- X --
73 -- -- -- -- --
74 -- -- -- -- --
75 -- -- -- -- --
76 -- -- -- -- --
77 -- -- -- -- --
78 -- -- -- -- --
79 -- -- -- -- --
80 -- -- -- -- --
81 -- -- -- -- --
82 -- -- -- -- --
83 -- -- -- -- --
84 -- X -- -- --
85 -- -- -- -- --
86 -- -- -- X --
87 -- -- -- -- --
88 -- -- -- -- --
89 -- -- -- X --
90 -- -- -- -- X
91 -- -- -- -- X
92 -- -- -- -- --
93 -- -- -- -- --
94 -- -- -- -- --
95 -- -- -- -- --
96 -- -- -- -- --
97 -- -- X -- --
98 -- -- -- -- --
99 -- -- -- -- --

Part 2 Integer Representations

Binary representations are not always the most suitable if the gene can take one of a set of
values [6]. An integer encoding is probably more suitable than a binary encoding when
designing the variation operators.

2.6 Chromosome Representation and Initialization

The chromosome is represented in the form of integer matrix M of size of My X Mw, for My
= 5 and Mw = 5, where the elements of M are the index number of the bridges, My is the
number of considered years and Mw is the number of bridges that can be maintained in
parallel. The matrix will look like following:

GA for Bridge Maintenance Scheduling 24

Initially, the matrix should not have repeat elements.

2.7 Crossover

We use special crossover strategy for the maintenance problem in 2.9.1: taking 1R rows

from one parent and 2R rows from the other. As a result, the offspring schedule will have

the plans from both parents according to the year. For example, in Fig.2.18 child1 has the
2nd year plan from DAD and 1st, 3rd to 5th year plan from MUM. The crossover procedure is
shown in Fig.2.19.

Fig.2.18. Crossover (R=1)

GA for Bridge Maintenance Scheduling 25

BEGIN
Pick a random row R1 from MUM;
Pick a random row R2 from DAD;
IF (R1 = R2) DO
Exchange the row R1 and R2 between MUM and DAD;
ELSE
Substitute row R1 from MUM for row R1 from DAD;
Substitute row R2 from DAD for row R2 from MUM;
OD
END

 Fig.2.19. Pseudo code for crossover (1 2 1R R= =)

2.8 Mutation

For integer-matrix represented maintenance GA, we use two principal forms of mutation, both
of which mutate each chromosome independently.

2.8.1 Random Resetting

Fig.2.20 illustrates changing one random entry in the integer-matrix to a random
integer value from the set of permissible values.

Fig.2.20. Random Resetting one element

2.8.2 Substitution

Substitution is the process of first picking two random entries from two random
rows and then exchanging their values. It is shown in Fig.2.21.

GA for Bridge Maintenance Scheduling 26

Fig.2.21. Substitution

2.9 Simulation Results

2.9.1 Test Problem

The problem is almost the same like the binary representation GA sample problem
(2.5.1), however, cost constraint (Fig.2.22.) is added for the Integer-Matrix
represented problem. From this figure, we can see that the maintenance cost
increases as the bridge condition index gets bigger. The Problem is listed in Table 2.4.

Fig.2.22. Maintenance Cost for different Conditions

Table 2.4 Test Problem

Objective Functions
(Fitness Functions)

min f(x)=max𝑖=0,..,4(∑ 𝑔𝑒𝑛𝑒[𝑖][𝑗] × 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑡𝑖𝑚𝑒(𝑗=5
𝑗=0 𝑔𝑒𝑛𝑒[𝑖][𝑗])

Constrains
1. condition[j] < 6 j=0,..,99;
2. Only 5 bridges are under maintenance each year.
3. Budget ≤ 35,000 € / year

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

CO
ST

 [€
]

CONDITION

GA for Bridge Maintenance Scheduling 27

Termination
Conditions

solutions keep unchanged (σ ≤ 0.0001) in 10 successive
generation.

2.9.2 Performance Measures

Like the binary-represented GA, there are three schemes of parent selection:
roulette wheel selection, tournament selection, ranking selection. Population size =
100, probability of mutation = 0.002, and test run = 20. However, the length of
chromosome is different as binary-represented GA, we set it to 25 (since the
integer-matrix is 5x5, i.e., maintenance schedule has a five-year plan which
maintains 5 bridges each year). The simulation results are shown in Fig.2.23. Similar
as binary represented GA test (2.5.1), roulette wheel selection performs worse than
the other two selection schemes.

Fig.2.23. Different Parent Selection Schemes for Integer-Matrix Represented GA

Fig.2.24-Fig.2.26 shows the convergence of different parent selection schemes.
Fig.2.24 shows the convergence of tournament selection, Fig.2.25 shows it for
roulette wheel selection, and Fig.2.26 shows for ranking selection. From these three
figures , we find that they all converges very fast (around 2 or 3 generation).

GA for Bridge Maintenance Scheduling 28

Fig.2.24. Convergence of GA search using tournament selection

Fig.2.25. Convergence of GA search using roulette wheel selection

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71

W
ai

ti
ng

-T
im

e
(M

ill
io

ne
n)

GENERATIONS

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81

W
ai

ti
ng

-T
im

e
(M

ill
io

ne
n)

GENERATIONS

GA for Bridge Maintenance Scheduling 29

Fig.2.26. Convergence of GA search using Ranking selection

One of the maintenance schedule obtained is outlined in Table2.5, where the matrix
members represent the bridges which will perform maintenance. The resulting total
traffic delay time is 785522.950 time units, which is much shorter than the case
using binary representation. Each year only 5 bridges are maintained. In this
schedule bridge 1 and 54 are maintained twice, which is unnecessary.

Table 2.5 Maintenance Schedule
YEAR BRIDGES MAINTANENCE COST
year 1 84 1 70 50 42 22000
year 2 63 37 33 19 12 21000
year 3 46 90 84 89 91 13000
year 4 82 54 18 9 33 10000
year 5 40 54 1 42 72 12000

2.9.3 Discussion of the Results

When we constraint the problem to exact 5 bridges maintained per year, the integer
represented GA processes much better fitness value (traffic delay time) than binary
represented GA. Fig.2.27 is the difference between integer and binary represented
GA with tournament selection, population size = 100. We can see that integer
represented problem converges much faster than binary represented one, and it
also achieves shorter traffic delay time.

0

2

4

6

8

10

12

1 11 21 31 41

W
ai

ti
ng

-T
im

e
(M

ill
io

ne
n)

GENERATIONS

GA for Bridge Maintenance Scheduling 30

Fig.2.27. Integer-Matrix represented GA VS. Binary represented GA

2.9.4 Different Parameter Settings

We keep the all other parameters same as before, but increase the population size
to 500 (instead of 100 used before). Fig.2.28 shows the convergence for problem
using tournament selection. Now, we achieve a new schedule (with fitness value =
845522.860 time units) in Table2.6. The traffic delay time is longer, compared to the
setting with 100 population.

GA for Bridge Maintenance Scheduling 31

Fig.2.28. Convergence with population size N = 500, tournament selection

Table 2.6 Maintenance Schedule
YEAR BRIDGES MAINTANENCE COST
year 1 53 42 86 84 29 17000
year 2 70 29 62 33 1 15000
year 3 22 38 83 37 12 23000
year 4 89 46 33 50 48 12000
year 5 53 30 72 38 37 20000

GA for Bridge Maintenance Scheduling 32

Chapter 3 Multi-Objective Genetic Algorithms
(MOGA)

3.1 From SOGA to MOGA

The single objective formulation is extended to reflect the nature of multi-objective problems
where there is not one objective function to optimize, but many. Thus, there is not one unique
solution but a set of solutions. This set of solutions is found through the use of Pareto Optimality
Theory [7] [8].
Besides having multiple objectives, there are a number of fundamental differences between
single objective and multi-objective optimization, as follows [9]:
•Two or more goals instead of one;
•Dealing with two or more search spaces.

3.2 Pareto Terminology

When having more than one objective function, the notion of “optimum” is changed into finding
good compromises or “trade-offs” among all the objective functions like in Fig.3.2. The notion of
“optimum” that is most commonly adopted is that originally proposed by Francis Ysidro
Edgeworth in 1881. The notion of optimum in multi-objective optimization was later generalized
by Vilfredo Pareto (in 1896).

Fig.3.2 An example of a problem with two objective functions: the trade-off surface is delineated
by a curved line.

The multi-objective optimization problem has been proposed by a lot of studies, here quotes
the definition form Andrzej Jaszkiewicz [16]:
The general multi-objective combinatory optimization (MOCO) problem is formulated as:

{ }1 1min () ,..., ()J Jf x z f x z= =

GA for Bridge Maintenance Scheduling 33

s.t. x ∈ D

where: solution []1,..., Ix x x= is a vector of discrete decision variables, D is the set of feasible

solutions.

The image of a solution x in the objective space is a point 1 ,...x x x
Jz z z = , such that

(), 1,...,x
j jz f x j J= = .

A point 1z Z∈ dominates 2z Z∈ , 1 2z z , if 1 2
j jjz z∀ ≤ and 1 2

j jz z< for at least one j .

Solution 1x dominates 2x , 1 2x x , if the image of 1x dominates the image of 2x (Pareto

Dominace). A solution x D∈ is efficient (Pareto-optimal) if there is no 'x D∈ such that 'x x .
Point being image of an efficient solution is called non-dominated. The set of all efficient
solutions is called efficient set and denoted by N. The image of the efficient space in the
objective space is called non-dominated set[16].
The plot of the objective functions whose non-dominated vectors are in the Pareto optimal set
is called the Pareto front. All solutions on the Pareto front are optimal.

Fig.3.3 Example of bi-objective optimum

Fig.3.3 shows an example of minimum in a bi-objective space (f₁, f₂).The Pareto front is the
boundary between the points P1 and P2 of the feasible set F. Solutions 1 and 3 are non-
dominated Pareto optimal solutions. Solution 2 is not Pareto optimal as solution 1 has
simultaneously smaller values for both objectives. Therefore the aim of multi-objective
optimization is to obtain a representative set of non-dominated solutions.

3.3 Various MOGAs

3.3.1 Non-dominated Sorting Genetic Algorithm – NSGA

N. Srinivas and K. Deb [10] proposed the non-dominated sorting GA (NSGA) in 1995. The
NSGA algorithm is based on several layers of classifications of the individuals [14]. At first,

GA for Bridge Maintenance Scheduling 34

sort the individuals on the basis of the non-domination: all the non-dominated individuals
are categorized into one class, with a dummy fitness value. To maintain the diversity of the
population, these classified individuals are shared with their dummy fitness values [14].
Then ignore these classified individuals, rank the left individuals of the group and then
repeat this process until all the individuals are classified. Then select individuals based on
these classes. The pseudo code for NSGA is given in Fig.3.1.

BEGIN
 INITIALISE population;
 EVALUATE objective functions and constraints;
 ASSIGN rank based on Pareto Dominance [14];
 Compute niche distance;
 Assign shared fitness shareσ ;

 REPEAT UNTIL(TERMINATION CONDITION is satisfied) DO
 PARENT SELECTION;
 CROSSOVER with the setting crossover rate;
 MUTATE the offspring;
 EVALUATE each individual;
 ASSIGN rank based on Pareto Dominance ;
 Compute niche distance;
 Assign shared fitness;
 OD
END

 Fig.3.1 Pseudo Code for the NSGA algorithm

In K. Deb’s later paper [11] he mentioned the main criticism of the NSGA approach, which is
showed below:
• The non-dominated sorting has the computational complexity of О (MN³) (where M is the
number of the objective functions and N is the population size), which is the same as other
optimal approach.
•Lack of elitism [11]: elitism scheme keeps a trace of the current fittest member and makes
sure it is always kept in the population. Recent research ([12] [13]) shows that the elitism
can preserve good solutions, and also can speed up the convergence of the Pareto Front.

•Need for specifying the sharing parameter shareσ [11] which influents the diversity in a

population significantly.

3.3.2 An Improved Version of the NSGA Algorithm – NSGAII

K. Deb et al. [11] [15] proposed an improved version of the NSGA algorithm – NSGAII in 2002.
In [14] it mentioned that this algorithm is currently used in most multi objective

GA for Bridge Maintenance Scheduling 35

evolutionary algorithm (MOEA) comparisons. The detail algorithm will be explained in 3.4.
Here we’ll only give some general idea about the NSGAII:
• NSGAII works with a faster non-dominated sorting algorithm, which requires at most О
(MN²) (where M is the number of the objective functions and N is the population size)
computations.
• Use density estimation and crowded comparison operator to preserve diversity of the
population.

3.4 A Fast and Elitist Multi-Objective Genetic Algorithm: NSGAII

The following presents the NSGAII using a fast non-dominated sorting procedure, an elitist-
preserving approach, and a parameter-less niching operator [15].

3.4.1 A Fast Non-dominated Sorting Approach

The currently-used non-dominated sorting algorithm has a computational complexity of
O(MN³),where M is the number of objectives and N is the population size. When sorting the
population, each individual has to be compared with every other individual in the
population to find out whether it is dominated, that needs O(MN) comparisons for each
individual and O(MN²) comparisons for all individuals to find out the first Pareto front. Then
discount the individual of the first front and repeat the procedure until all the individuals are
ranked. The whole process without any book-keeping has the computational complexity of
O(MN³).
The NSGAII uses a better book-keeping strategy when sorting the individuals. The first
individual is kept in the first Pareto front, the second individual is only compared with the
first one, and the third individual is compared with the first two individuals (only if both are
part of the Pareto front), and so on. This requires a maximum of O(N²) domain checks.
During the comparison, if the individual p (the one that will enter the Pareto front P’
temporarily) dominates any individual q in the Pareto front P’, then q is deleted from the
Pareto front P’. And if p is dominated by any member in the Pareto front P’, p is ignored. If p
is not dominated by any member of the Pareto front P’, p enters this Pareto front P’. And
that is how the Pareto front grows with non-dominated solutions. The algorithm is shown
below in Fig.3.4, where P is the set of all individuals.

GA for Bridge Maintenance Scheduling 36

P’ = Pareto-Front(P)
BEGIN
 P’={1}
 For each 'p P p P∈ ∧ ∉
 ' 'P P p= ∪
 For each 'q P q p∈ ∧ ≠
 If ,q p DO
 P’=P’\{q}
 Else if ,p q DO
 P’=P’\{p}
 OD
END

 Fig.3.4.Pseudo Code for Finding the Pareto front

 To find other fronts, the member from P’ will be neglected temporarily and the above
searching procedure goes on. At the end of these comparisons, solutions of the first Pareto

front are stored in F₁, solutions of the second Pareto front are stored in F₂, and so on. The
whole procedure is shown in Fig.3.5.

F=fast-non-dominated-sorting(P)
BEGIN
 1i =
 WHILE P ≠ ∅ DO
 iF = Pareto-Front(P)

 P = P\ iF

 i + +
 OD
END

 Fig.3.5. Procedure of fast non-dominated sorting

3.4.2 Density Estimation Metric

The original NSGA uses sharing function approach (see 3.3.1) to maintain the solutions
spreading out, while the sharing functions are set by users. There are two difficulties with
this sharing function approach [15]:
•The performance of the sharing function method in maintaining a spread of solutions
largely depends on the chosen of sharing function.
•The complexity is O(N²), since each solution must be compared with all other solutions in
the population.

GA for Bridge Maintenance Scheduling 37

The NSGAII uses an concept called density estimation to replace any user-defined parameter.
Also, the new approach has a better computational complexity according to [15].
To get an estimate of the density of solutions surrounding a particular solution in the
population, we calculate the average distance of two points on each objective direction. The

crowding distance tandis cei is the size of the largest cubic enclosing only the point i , like

shown in Fig.3.6.

Fig.3.6 The crowding distance is shown (compare to [15]).

Calculation of the crowding distance tandis cei needs sorting the population according to each

objective function. The procedure is shown below in Fig.3.7, where Ι is a non-dominated set,
and [].i mΙ is the m-th objective function value of the i -th individual in the set Ι .

Crowding-Distance(Ι)
BEGIN
 l = the length of Ι
 For each i , set tan[]dis ceiΙ =0 //initialize distance

 For each objective m
 (,)sort mΙ = Ι //sort using each objective value

 tan tan[1] []dis ce dis celΙ = Ι = ∞ //the boundary solutions are assigned an infinite value

 For i =2 to (1)l −

 tan[] ([1]. [1].)dis cei i m i mΙ + = Ι + − Ι −

END

 Fig.3.7 the algorithm for the crowding distance calculation (compare to [15])

According to [15], the above algorithm has the computational complexity of (log)O MN N .

GA for Bridge Maintenance Scheduling 38

3.4.3 Crowded Comparison Operator ()n

After all members are assigned a distance metric, we can compare the solutions. Every
solution has two attributes:

•non-dominated rank ()ranki

•crowding distance tan()dis cei

A solution with smaller rank is better. Otherwise, if both solutions have the same rank, then
the one with bigger crowding distance (less crowded) is better. Here we choose the symbol

from ()n [15] to implement the comparison of two solutions, as shown in Fig.3.8.

IF ()rank ranki j= DO

 IF tan tan()dis ce dis cei j> DO

 ni j

 OD
ELSE IF ()rank ranki j< DO

 ni j

OD

 Fig.3.8. the definition of operator n

3.4.4 Conclusion

The above three features make the NSGAII working more efficiently. The fast non-
dominated sorting algorithm sorts the combination of current generation and the previous
one according to the non-domination, and then the density estimation metric calculates the
crowding distance of all members in the combination, at last the crowded comparison
operator assigns a rank to each member, the pseudo code is in Fig.3.9 (compare to [15]),

where tP is parent population, tQ is children population, and tR is the combination of

parent and children. 1 2(, ,...)F F F= is the set of non-dominated front, N is the size of

population, | |tP and | |iF are the length of sets tP and iF .

BEGIN
 t t tR P Q= ∪

 F= fast-non-dominated-sorting(tR)

 Set 1tP+ = ∅ and 1i =

 WHILE 1(| | | |)t iP F N+ + ≤ DO

GA for Bridge Maintenance Scheduling 39

 Crowding-Distance(iF)

 1 1t t iP P F+ += ∪

 i + +
 OD
 Sort iF with n

 Choose the first 1(| |)tN P+− elements of iF to fill the population 1tP+

 Generate 1tQ + from 1tP+ ,using SELECTION, CROSSOVER and MUTATION

 t + +
END

 Fig.3.9.The process of NSGAII

The computational complexities of the above operations are:

• fast non-dominated sorting is 2((2))O M N

• crowding distance assignment is ((2) log(2))O M N N

• n sorting is (2 log(2))O N N

So, the overall complexity is 2()O MN .

3.5 The Main Loop

The overall steps for NSGAII optimization show in Fig.3.10.

INITIALIZE population 0P

EVALUATE objective functions, constraints, and ranks of 0P

For (gen=1 TO MAXGENERATION) DO
 PARENT _SELECTION using Tournament Selection
 CROSSOVER
 MUTATE
 KEEP the Pareto Front ALIVE
 ADD to new population
 gen++
OD

 Fig.3.10 the overall procedural of the GA optimization

Initially, a random population 0P is created randomly which is the same as SOGA. Besides,

crossover and mutation operation are also the same as in SOGA using integer representation.

GA for Bridge Maintenance Scheduling 40

3.5.1 Evaluating

After the population 0P was created, the next step is evaluating the objective functions and

specifies constraints. Then based on the specified constraints, Pareto front is created, i.e.

the population 0P is ranked. The procedure of creating Pareto front is shown in Fig.3.11,

where N is the population size, and the Flag is the signal of been ranked or not (Flag of
dominated individuals is 0, Flag of an individual which rank not being assigned is 1, Flag of
non comparable individuals is 3)

RANKING(0P)

BEGIN
 Initializing the ranks RNK to zero
 Initializing all the Flags to 2
 For (k=0 To N) DO
 For(j=0;J<N) DO
 Break if all the individuals are assigned a rank
 For (j=0 To N) DO
 Set the flag of dominated individuals to 2
 OD
 RNK++
 For (i=0 To N) DO
 Select an individual []Ind i which rank to be assigned
 For(j= To N) DO
 Select the other individual []Ind j which has not got a rank
 ([], [])compare Ind j Ind i
 OD
 Assign the rank = RNK, Flag=1
 OD
 OD
END

([], [])compare Ind j Ind i
IF ([].Ind j constraints are infeasible)&&([]Ind i .constraint are feasible) DO

Set []. 0Ind j Flag =
ELSE IF([].Ind j constraints are feasible)&&([]Ind i .constraints are infeasible)

 Set []. 0Ind i Flag =
 ELSE IF(both are feasible)
 ([], [],)nsort Ind j Ind i

OD

 Fig.3.11 Ranking procedure

GA for Bridge Maintenance Scheduling 41

3.5.2 Parent Selection

Tournament selection scheme is chosen for parent selection. During the selection, the

crowded comparison operator ()n is used to pick the fitter one. It works as below in

Fig.3.12, where iP is the population in the i-th generation.

Parent_Selection (iP)

Randomly pick two parents 1[]Ind g and 2[]Ind g

IF 1 2([]. [].)Ind g rank Ind g rank>

 2 1[] []nInd g Ind g

ELSE IF 1 2([]. [].)Ind g rank Ind g rank< DO

 1 2[] []nInd g Ind g

 ELSE IF(1[]Ind g .distance > 2[]Ind g .distance)

 1 2[] []nInd g Ind g

 ELSE
 2 1[] []nInd g Ind g

OD
Return the fitter individual

 Fig.3.12 Parent selection based on ()n

3.5.3 Keep Alive

This step is to make sure that the solutions from the better (lower) ranks are chosen into the
next generation. The general process is like in Fig.3.13, and the signal has the same means
as in 3.4.4.

Keep_Alive (,)t tP Q

Form the global mating pool t t tR P Q= ∪
Find the global ranks 1 2(, ,...)F F F=
Fill 1tP+ according to F

 Fig.3.13 Keep_Alive Process

GA for Bridge Maintenance Scheduling 42

First, the global mating pool t t tR P Q= ∪ is formed with size 2N. Then the Pareto front of

tR is created by the fast non-dominated sorting algorithm. In the current Pareto front set

1 2(, ,...)F F F= , 1F is the best non-dominated set and is definitely chosen into the new

population 1tP+ . If the size of 1F is smaller than the population size N, 2F is chosen, and so

on.

3.6 Two-Objective Optimization Test Problem

3.6.1 Test Problem

First we describe the multi-objective problem implemented with NSGAII. The numerical
example is based on the data in Fig.3.14-3.16. As we can see, there are 100 bridges totally,
and their index starts from 1 to 100. Fig.3.14 shows the waiting time for maintenance each

bridge, for example, the bridge 10 has waiting time 51.47 10 unit× , i.e., vehicle needs
51.47 10 unit× more time to cross the bridge 10 district when bridge 10 is being maintained.

The shortest waiting time is 51.00 10 unit× (bridge 2), and the longest is 53.92 10 unit×
(bridge 68).

 Fig.3.14 Waiting Time for maintenance each bridge

GA for Bridge Maintenance Scheduling 43

 Fig.3.15 Maintenance Deadlines and the 3rd party join time of each Bridge

In Fig.3.15, the blue columns are maintenance deadlines for each bridge, for example,
bridge 10 must be maintained before the 3rd year. The earliest deadline is 1 year (bridge 7,

GA for Bridge Maintenance Scheduling 44

38, 44, 58, 61, 89, 91), and the longest deadline is 15 year (bridge 86). The Red columns in
Fig.2.6.2 stand for the time when the 3rd party (other construction companies) will also
make construction on the bridges, for example, a 3rd party will make construction on bridge
6 in the 4th year, and there is no extra construction on bridge 10.

 Fig.3.16 Maintenance Fee of each Bridge

Fig. 3.16 shows the maintenance cost of each bridge. The highest fee is 53.96 10× (bridge

61), and the lowest is 51.01 10× (bridge 7), the average cost is 52.46 10× .
The problem which we simulate needs a five-year maintenance schedule, and 10 bridges are
maintained every year. It has two objective functions with constraints. The problem is
described in Table 2.6.1. As the table showing, objective 1 is to minimize the total waiting-
time per year, and the 2nd objective tries to do the maintenance in the same year as the 3rd
party does the construction, for example, the 3rd party will make construction of bridge 49
at the 2nd year, so it is better to maintain it at the 2nd year. The 1st constraint (will be
explained in detail in next part: 3.6.2) makes sure each bridge is maintained (or has already
been maintained) before its maintenance deadline. The 2nd and 3rd constraints are to keep
the maintenance budget per year between 1.7 million and 2.5 million.

GA for Bridge Maintenance Scheduling 45

All approaches are run for a maximum of 1000 generations and with a population size 100.

3.6.2 Constraint Handling

The principle [15] of constrained NSGAII is that any feasible solution has a better non-
dominated rank than any infeasible one. The non-dominated levels of all feasible solutions
are given according to objective values of those solutions. For the infeasible solutions, the
one has smaller constraint violation has a better rank. Feasible solutions have the constraint
values equal to or bigger than 0, and infeasible solutions have the minus constraint values.

In Constraint 1(Table 2.6.1), 1g is set to -35 initially, when a bridge, deadline is k
(1,...,5k =), is found in [][]gene i j , if 1k i≤ + (i.e., the maintenance is before the deadline),

then 1g adds1. If all the bridges (with deadline before 6 year) are maintained before their

deadlines, 1g grows to 0. And if no bridges (with deadline before 6 year) are maintained

before their deadlines, 1g remains -35. So, 1 [35,0]g ∈ − . But, constraints 2 and 3 have

values around 610 . Then, 1g multiplied with a penalty value 610 to make sure all constraints

have the same exponent.

3.6.3 Performance Measures

Fig.3.17 shows the result of the 1000th generation, the blue points are the infeasible
solutions, and the red crosses are the feasible solutions. Table 2.6.2 is one of maintenance

Objective
Functions

Constraints

Table 2.6.1 Test Problem with Two Objectives
94

1 0 0

4 9

2
0 0

min max([][]. _)

min ([][].3 _ _ _ (1))

i j

i j

f gene i j waiting time

f gene i j rd party construction time i

=
=

= =

→ =

→ = − +

∑

∑∑

1

1

9
6

2
0

9
6

3
0

, ([[][].)
[35,0]

1,...,5
0,..., 4
0,...,9

1

2.5 10 [][]. , 0,..., 4

[][]. 1.7 10 , 0,..., 4

j

j

g if bridge gene i j deadline k
g
k
i
j
k i

g gene i j kost i

g gene i j kost i

=

=

+ + =
∈ −
=
=
=
≤ +

= × − =

= − × =

∑

∑

GA for Bridge Maintenance Scheduling 46

schedule with feasible solutions. Every year 10 bridges are maintained. The budget per year
is between 2.0 million and 2.5 million.

 Fig.3.17 NSGAII simulation result

Fig.3.18-3.20 shows the feasible solutions of generation 252, 676, and 1000. As generation
increases, more feasible solutions are found.

1st year 43 6 57 60 88 8 2 37 90 41
2nd year 11 46 83 67 80 5 65 52 75 35
3rd year 94 79 99 14 23 44 53 7 20 32
4th year 48 22 92 95 19 15 70 76 4 0
5th year 55 33 42 84 27 61 81 91 10 16

Table 2.6.2 MAINTENANCE SCHEDUEL

GA for Bridge Maintenance Scheduling 47

Fig.3.18 Feasible solutions of Generation 252

Fig.3.19 Feasible solutions of Generation 676

110
120
130
140
150
160
170
180
190
200
210
220
230
240

110 120 130 140 150 160

O
bj

ec
ti

ve
 2

Objective 1

110
120
130
140
150
160
170
180
190
200
210
220
230
240

110 120 130 140 150 160

O
bj

ec
ti

ve
 2

Objective 1

GA for Bridge Maintenance Scheduling 48

Fig.3.20 Feasible solutions of Generation 1000

3.6.4 Different Parameter Settings

First, we keep all the other parameters same as before, but increase the size of the
population to 500 (instead of 100 before).Fig.21 shows all the solutions (feasible and
infeasible) in generation 1000, which range from 115 to 165 in objective 1 and from 80 to
250 in objective 2. Fig.3.22 shows only the feasible solutions, which range from 115 to 165
in objective 1 and from 115 to 225 in objective 2. There are totally 15 feasible solutions
among 500 solutions. Compared with the simulation running with 100 individual (population
size=100), it found more feasible solutions when the population size increases. Table 2.6.3
shows a possible schedule with feasible solution.

110
120
130
140
150
160
170
180
190
200
210
220
230
240

110 120 130 140 150 160

O
bj

ec
ti

ve
 2

Objective 1

70

90

110

130

150

170

190

210

230

250

110 120 130 140 150 160 170

GA for Bridge Maintenance Scheduling 49

Fig.3.21 All solutions of generation 1000 with population size 500

Fig.3.22 Feasible solutions in Generation 1000

Then, we decrease the size of population to 50 and keep all the other parameter unchanged.
Fig.3.23 shows all the solutions in generation 1000. Fig.3.24 shows the feasible solutions in
generation 1000. As we can see, it has less feasible solutions compared to the previous two
cases (population size =100/ population size= 500). Table 2.6.4 shows a possible
maintenance schedule with feasible solution.

110

130

150

170

190

210

230

110 120 130 140 150 160

1st year 90 57 11 6 88 60 44 67 65 43
2nd year 80 52 2 46 8 53 5 83 20 55
3rd year 75 78 53 79 89 76 70 29 32 7
4th year 40 73 42 15 61 9 14 95 94 91
5th year 50 30 28 22 16 84 12 63 86 98

Table 2.6.3 MAINTENANCE SCHEDUEL

GA for Bridge Maintenance Scheduling 50

Fig.3.23 All solutions in generation 1000 with population size = 50

Fig.3.24 Feasible solutions in generation 1000 with population size = 50

90

110

130

150

170

190

210

230

110 120 130 140 150 160

120

130

140

150

160

170

180

190

200

210

110 120 130 140 150 160

1st year 60 43 85 46 90 57 2 53 37 6
2nd year 32 67 83 44 80 52 15 65 76 11
3rd year 18 5 59 8 7 20 1 79 95 70
4th year 54 84 14 26 91 9 75 4 94 50
5th year 55 48 74 61 64 91 16 27 42 86

Table 2.6.4 MAINTENANCE SCHEDULE

GA for Bridge Maintenance Scheduling 51

3.7 Three-Objective Optimization Test Problem

3.7.1 Test Problem

The numerical example is based on the data from 3.6.1, besides, there is a third objective
(group information (Table 2.7.1)) new added. It is better to maintain the bridges in the
same group at the same year. For example, maintaining bridge 72 and 78 in the same year is
the best solution, while their maintaining year difference being 4 year is the worst solution.

Table 2.7.1 GROUPS
Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

3 29 72 27 52 68
6 31 78 43 59 80

10 41 57 83
20 44 74 84
60 86 96
85 98

The three-objective problem is described in table 2.7.2. All the other functions are the same

as the two-objective problem, except the new added objective function 3f . 3f works like

this: first calculate the year differences between the maintenance years of the bridges
belonging to the same group, for example, maintaining bridge 31 at the 1st year and
maintaining bridge 41 at the 3rd year, the year difference is 3-1=2. Then add all these year

differences in the schedule, we get 3f .

GA for Bridge Maintenance Scheduling 52

3.7.2 Performance Measures

In this problem, we use a population size of 100, maximum generation of 1000, and run
NSGAII. Fig.3.25-3.27 shows all solutions (feasible and infeasible) in generation 10000. From
these figures we can see that the lower and upper bounds of the objective function values

are: 1 [117,157]f ∈ , 2 [90,250]f ∈ , and 3 [30,280]f ∈ .

Objective
Functions

Constraints

Table 2.7.2 Test Problem with Three Objectives

94

1 0 0

4 9

2
0 0

1

1

6
2

min max([][]. _)

min ([][].3 _ _ _ (1))

, ([[][].)
[35,0]

1,...,5
0,..., 4
0,...,9

1

2.5 10

i j

i j

f fene i j waiting time

f gene i j rd party construction time i

g if bridge gene i j deadline k
g
k
i
j
k i

g gen

=
=

= =

→ =

→ = − +

+ + =
∈ −
=
=
=
≤ +

= × −

∑

∑∑

9

0

9
6

3
0

[][]. , 0,..., 4

[][]. 1.7 10 , 0,..., 4

j

j

e i j kost i

g gene i j kost i

=

=

=

= − × =

∑

∑

94

1 0 0

4 9

2
0 0

5

3
0

min max([][]. _)

min ([][].3 _ _ _ (1))

min { ' | [][]. ['][']. ; , ' 0,...,5; , ' 0,...,9}

i j

i j

gr

f fene i j waiting time

f gene i j rd party construction time i

f i i gene i j group gene i j group gr i i j j

=
=

= =

=

→ =

→ = − +

→ = − = = = =

∑

∑∑

∑

90

110

130

150

170

190

210

230

250

110 120 130 140 150 160

f_
2

f_1

GA for Bridge Maintenance Scheduling 53

Fig.3.25 1 2f f−

Fig.3.26 2 3f f−

Fig.3.27 3 1f f−

Fig.3.28-3.30 shows the feasible solutions in generation 1000. We get 9 feasible solutions
from 100 solutions. Fig.3.28 shows the solutions in objective 1 and 2, it has the same pattern
as two objective feasible solutions (Fig.2.6.6). The range of the objective function values are:

1 [117,154]f ∈ , 2 [130,205]f ∈ , and 3 [90,210]f ∈ .

20
40
60
80

100
120
140
160
180
200
220
240
260
280

90 110 130 150 170 190 210 230 250

f_
3

f_2

110

120

130

140

150

160

20 40 60 80 100 120 140 160 180 200 220 240 260 280

f_
1

f_3

GA for Bridge Maintenance Scheduling 54

Fig.3.28 1 2f f−

Fig.3.29 2 3f f−

130

150

170

190

210

110 120 130 140 150 160

f_
2

f_1

80

100

120

140

160

180

200

220

130 140 150 160 170 180 190 200 210

f_
3

f_2

GA for Bridge Maintenance Scheduling 55

Fig.3.30 3 1f f−

Table 2.7.3 shows a possible maintenance schedule with three-objective functions. Table
2.7.4 lists the bridges whose maintenance deadlines are 1st year, 2nd year, 3rd year, 4th year,
and 5th year. These bridges are then marked in Table 2.7.3, and bridges having the same
maintenance deadlines are marked with the same color. For example, bridges 83, 80, 46, 11,
52, 2, 65 are marked with green, and they all have the deadline till the 2nd year. From these
two tables, we can see that almost all the bridges are maintained before their deadlines,
except bridge 6.

110

120

130

140

150

160

80 100 120 140 160 180 200 220

f_
1

f_3

1st year 57 83 88 80 46 11 60 43 90 37
2nd year 42 52 2 8 32 65 7 16 55 89
3rd year 35 68 20 75 39 76 53 67 30 14
4th year 79 84 15 42 5 70 95 94 44 47
5th year 18 85 21 45 91 25 86 92 50 4

Table 2.7.3 MAINTENANCE SCHEDULE

Deadline
1st year 6 37 43 57 60 88 90
2nd year 2 11 46 52 65 80 83
3rd year 7 8 20 32 53 67
4th year 5 14 15 44 70 75 76 79 94 95
5th year 16 42 55 84 91

Bridge Index
Table 2.7.4 Bridges whose deadline is earlier than 5 year

GA for Bridge Maintenance Scheduling 56

3.7.3 Different Parameter Settings
We keep all the other parameters same as before, but increase the size of population to 500.
Fig.3.31-3.33 shows the feasible solutions in generation 1000. In total there are 26 feasible
solutions in 500 solutions.

Fig.3.31 1 2f f−

Fig.3.32 2 3f f−

110

130

150

170

190

210

230

110 120 130 140 150 160

f_
2

f_1

50

70

90

110

130

150

170

190

210

230

110 120 130 140 150 160 170 180 190 200 210 220 230

f_
3

f_2

GA for Bridge Maintenance Scheduling 57

Fig.3.33 3 1f f−

Table 2.7.5 shows a possible solution. Here the color has the same meaning as Table 2.7.3.
From this table, we can see that all the bridges are maintained before their deadlines.

Table 2.7.6 shows the distribution of the working group. Compared to Table 2.7.1, all
bridges in group 4 are distributed among the 1st, 3rd, and 4th year, two bridges from group 0
are distributed in the 2nd and the 3rd maintenance year, two bridges from group 1 are
separated in the 1st and the 5th year, four bridges from group 3 are distributed among the
2nd, 4th, and 5th year, only one bridges from group 2 are maintained in this schedule, and no
bridges from group 5 are maintained.

110

120

130

140

150

160

50 70 90 110 130 150 170 190 210 230

f_
1

f_3

1st year 37 65 88 6 90 57 60 43 2 46
2nd year 53 80 20 11 7 67 52 95 83 31
3rd year 30 8 84 15 32 44 76 62 75 79
4th year 5 42 64 39 16 66 70 94 14 33
5th year 29 21 55 77 47 9 49 24 93 91

Table 2.7.5 MAINTENANCE SCHEDULE

maintenance year
1st year -- -- -- -- 4 -- 1 -- -- --
2nd year -- -- 3 0 -- -- -- -- -- --
3rd year -- -- 4 -- 0 4 2 -- -- --
4th year 4 -- 4 -- -- 3 -- -- -- --
5th year -- 1 3 -- -- -- -- 3 -- --

groups
Table 2.7.6 Group Distribution

GA for Bridge Maintenance Scheduling 58

Table 2.7.7 shows the 3rd-party construction time of the maintenance bridges. For example,
bridges 65, 6, 2 are maintained in the 1st year, but the 3rd-party will make constructions of
these three bridges in 13 years later. From these tables, we observe that the compromise
with 3rd-party participating time is not good.

Then still keep the other parameter unchanged, but decrease the population size to 50. The
feasible solutions are showed in Fig.3.34-3.36. There are totally 4 feasible solutions within
50 solutions ingeneration 1000. Table 2.7.8 is a possible schedule with feasible solution.

Fig.3.34 1 2f f−

maintenance year
1st year -- 14 -- 14 -- -- -- -- 14 --
2nd year 10 -- -- 11 13 10 -- 15 -- 13
3rd year 15 -- 6 5 11 -- -- -- -- 13
4th year -- 2 13 -- 6 3 14 -- 8 --
5th year -- 9 9 5 2 6 13 7 -- --

3rd-party participating time
Table 2.7.7 3rd-party participating information

120

130

140

150

160

170

180

190

200

210

110 120 130 140 150

f_
2

f_1

GA for Bridge Maintenance Scheduling 59

Fig.3.35 2 3f f−

Fig.3.36 3 1f f−

90

110

130

150

170

190

210

230

120 130 140 150 160 170 180 190 200 210

f_
3

f_2

110

120

130

140

150

90 110 130 150 170 190 210 230

f_
1

f_3

1st year 60 43 76 46 90 57 2 53 37 6
2nd year 32 67 83 44 80 52 15 65 86 11
3rd year 18 5 67 8 7 20 1 79 95 70
4th year 54 84 14 97 16 22 75 4 94 50
5th year 55 48 51 61 24 91 45 27 42 85

Table 2.7.8 MAINTENANCE SCHEDULE

GA for Bridge Maintenance Scheduling 60

From above figures, we can see that NSGAII has been able to maintain a good spread of
solutions (feasible and infeasible). However, when applied constraints, NSGAII can only get a
few solutions feasible solutions.

GA for Bridge Maintenance Scheduling 61

Chapter 4 Conclusions

In the beginning of this thesis, an overview of Genetic Algorithms (GA) was presented. The main
components, which play major roles in the algorithm, were briefly introduced. The aim of applying GA in
this thesis is to minimize user delay of infrastructure maintenance plan. As a result, a thorough explain
of Single Objective Genetic Algorithms (SOGA) was launched. It was separated into binary represented
and integer represented parts to get the maintenance schedules. Thereafter, a very detailed explain of
Multi-Objective Genetic Algorithms (MOGA) was presented. A fast and elitist MOGA (NSGAII) was used
for the testing case.

The aim of this thesis is to create nearly ideal maintenance schedules by the use of genetic algorithms. If
there is only one objective when making the schedules, which is called single objective, we applied both
binary and integer represented scheme. Since the maintenance schedule should have no duplicated
elements, the integer represented scheme led to better solutions with less duplicate bridge index and
shorter traffic delay time (the objective). If two or more objectives exist, which is called multi-objective,
NSGAII was applied to get the schedules. With the properties of a fast non-dominated sorting procedure,
an elitist strategy, a parameter-less niching operator, NSGAII has found good spread out of the solutions.
Further increasing of the population size got better spread of solutions.

GA for Bridge Maintenance Scheduling 62

REFERENCE

[1]. John Dalton, “Roulette wheel selection,” Newcastle Engineering Design Centre, Merz Court,
Newcastle University, August 2010
[2]. Peyman Kouchakpour,” Population Variation in Canonical Tree-based Genetic Programming”, School
of Electrical, Electronic and Computer Engineering, University of Western Australia,2008
[3]. Siddhartha K. Shakya,” Probabilistic model building Genetic Algorithm (PMBGA): A survey,”
Technical Report, Computational Intelligence Group, School of computing, The Robert Gordon University,
Aberdeen, Scotland, UK. pp.1, 2003
[4]. Assaf Zaritsky,” Introduction to Genetic Algorithms,” Ben-Gurion University, Israel
[5]. G. Winter,” Genetic algorithms in engineering and computer science,” 1995
[6].A. E. Eiben, “Introduction to Evolutionary computing”, Springer, pp.41, 2003
[7].M. Ehrgott. “ Multicriteria Optimization.” Springer, Berlin, second edition, 2005.ISBN 3-540-21398-8
[8].C. A. C. Coello, ”Evolutionary algorithms for solving multi-objective problems.” Springer, second
edition, pp.7, 2007.
[9].K. Deb. “ Multi-Objective Optimization using Evolutionary Algorithms.” Wiley, pp.23-24, 2002
[10]. N. Srinivas, and K. Deb,” Multi-objective function optimization using non-dominated sorting genetic
algorithms”, Evolutionary Computation, Vol. 2, pp. 221-248, 1995
[11].K. Deb,” Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II,” KanGAL Report No. 200001,
Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology Kanpur, Kanpur, PIN
208 016, India
[12]. E. Zitzler, and L. Thiele, “Comparison of multi objective evolutionary algorithms: Empirical results.”
Evolutionary Computation, Vol.8. pp. 173-195, 2000
[13]. G. Rudolph, “Evolutionary search under partially ordered sets,” Technical Report No.CI-67/99,
Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany.
[14]. C. A. C. Coello. “ Evolutionary algorithms for solving multi-objective problems.” Springer, second
edition, pp.91, 2007.
[15]. K. Deb, A. Pratap, and T. Meyarivan,” A fast and elitist multi-objective genetic algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, 6(2):182-197, 2002
[16] Andrzej Jaszkiewicz ,”Genetic local search for multi-objective combinatorial optimization,”
European Journal of Operational Research, Vol.137, Issue 1, pp. 50-71,2002

GA for Bridge Maintenance Scheduling 63

	/ /
	Genetic Algorithms for Bridge Maintenance Scheduling
	Master Thesis
	Abstract
	Contents

	Chapter 1 Introduction and Overview
	Scope of Work
	Introduction to Genetic Algorithms (GA)
	Components of Genetic Algorithms
	Representation
	Population
	Fitness Function
	Selection
	Variation

	Chapter 2 Single Objective Genetic Algorithms (SOGA)
	Part 1 Binary representations

	Parent Selection
	Roulette Wheel Selection

	Crossover
	One-Point Crossover
	N-Point Crossover

	Mutation
	Mutation for Binary Representations
	Flip all Bits with Mutation Probability P₀
	Flip one Random Bit

	Survivor Selection
	Age-Based Replacement
	Fitness-Based Replacement

	Simulation Results
	Test Problem
	Performance Measures
	Discussion of the Results
	Different Parameter Settings
	Part 2 Integer Representations

	Chromosome Representation and Initialization
	Crossover
	Mutation
	Random Resetting
	Substitution

	Simulation Results
	Test Problem
	Performance Measures
	Discussion of the Results
	Different Parameter Settings

	Chapter 3 Multi-Objective Genetic Algorithms (MOGA)
	From SOGA to MOGA
	Pareto Terminology
	Various MOGAs
	Non-dominated Sorting Genetic Algorithm – NSGA
	An Improved Version of the NSGA Algorithm – NSGAII

	A Fast and Elitist Multi-Objective Genetic Algorithm: NSGAII
	A Fast Non-dominated Sorting Approach
	Density Estimation Metric
	Conclusion

	The Main Loop
	Evaluating
	Parent Selection
	Keep Alive

	Two-Objective Optimization Test Problem
	Test Problem
	Constraint Handling
	Performance Measures
	Different Parameter Settings

	Three-Objective Optimization Test Problem
	Test Problem
	Performance Measures
	Different Parameter Settings

	Chapter 4 Conclusions
	Reference

