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Abstract 

 
Maintenance for infrastructural buildings, e.g. bridges, should have minimal impact on the quality of 
traffic flow. Genetic algorithm is applied for solving infrastructure maintenance schedule problem, while 
different scenarios are created randomly, and better solutions are found by crossover between two 
scenarios and random mutation. NSGAII was presented to deal with multi-objective optimization 
problem. By this method, a Pareto optimal set can be obtained, and thus the decision maker can choose 
a schedule which is most suitable for the maintenance. 
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Chapter 1   Introduction and Overview 
 

1.1 Scope of Work 
 
Maintenance for infrastructural buildings, e.g. bridges, should have minimal impact on the 
quality of traffic flow. Particularly in urban areas, the question is focused on which bridges can 
be repaired simultaneously with the least disturbances of the traffic. This paper is aimed at 
getting the good (minimal traffic delay time) schedules of bridges maintenance by genetic 
algorithms.  
Genetic algorithms are generally considered to be robust techniques of almost universal 
application. This is due to the fact that they can be implemented on a wide variety 
of problems with minimal adaptation, but are likely to be much less efficient than the highly 
tailored problem-specific algorithms [2].  
Different scheduling scenarios are created randomly and analyzed according to their quality 
(impact on the traffic, maintenance budget, compromise with other construction on the bridges, 
etc.).These qualities are so called objective values.  By crossover between two scenarios and 
random mutations it is tried to find particularly suitable representations of the maintenance 
scenarios.  
In this part the field of genetic algorithms is briefly introduced. The main components of the 
genetic algorithms are presented. Since single objective genetic algorithm (SOGA) is the base of 
further genetic algorithms, SOGA is presented in next chapter. The maintenance schedules of 
infrastructural building (focus on minimizing traffic delay time) are also created by SOGA. 
Chapter 3 introduces multi-objective genetic algorithm (MOGA) and NSGAII (an improved 
version of MOGA), and analyses the numerical model with two and three objective functions.  
 

1.2 Introduction to Genetic Algorithms (GA) 
 
Genetic algorithms are a class of probabilistic optimization algorithms [3], which are inspired by 
the biological evolution process. GA uses concepts of “natural selection” and “genetic 
inheritance” (Darwin 1859) [4], since in nature, competition among individuals for scanty 
resources results in the fittest individuals dominating over the weaker ones, and was originally 
developed by John Holland (1975).  
GA is based on an analogy with the genetic structure and behavior of chromosomes within a 
population of individuals using the following foundations [5]: 
•Individuals in a population compete for resources and mates.  
•Those individuals most successful in each 'competition' will produce more offspring than those 
individuals that perform poorly.  
•Genes from `good' individuals propagate throughout the population so that two good parents 
will sometimes produce offspring that are better than either parent.  
•Thus each successive generation will become more suited to their environment. 
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GA process is stochastic, i.e., even the very weak individuals have the chance to survive while 
normally the fitter ones have bigger chance to be selected. The general procedural of GA is 
shown in Fig.1.1. Initially, a group of individuals (population) is created randomly, and then 
some individuals are selected as parents, thereafter by recombination and mutation, offspring 
are created. Applying survivor selections within old population and offspring, new population is 
generated.  
 

 
BEGIN 
      INITIALISE  population; 
       REPEAT UNTIL( TERMINATION CONDITION is satisfied) DO 
           EVALUATE ; 
           PARENT SELECTION; 
           CROSSOVER; 
           MUTATE; 
          SURVIVOR SELECTION; 
      OD 
END 
 

                                      Fig.1.1 General Procedural of GA 
 

1.3 Components of Genetic Algorithms 
 
In this section some of the main components of genetic algorithm are briefly described. 
 

1.3.1 Representation 
 
The mapping from real world model to the genetic individuals is called representation. A 
phenotype, or individual, is the expression of a specific trait, such as eyes colors, based 
on gene. Genotype, or chromosome, is a class of organisms having the same genetic 
constitution.  The phenotype can be very different from the genotype. 
There are a lot different ways of representation in GA, typically binary representation 
and integer representation which are shown in detail in next chapter. 
 

1.3.2 Population 
 
The population is a group of individuals (is also called chromosome) which is subject to 
evolution generation by generation. The diversity of a population is a measure of the 
number of different solutions present [6]. One principle of GA is density preservation, 
i.e., not only high-quality individuals participate the evolution, but low-quality ones also 
have positive chance to attend it. 
In multi-objective genetic algorithms (chapter 3), special techniques are used for 
diversity preservation. 
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1.3.3 Fitness Function 
 
Fitness function, or objective function, is a quality measurement in GA. If there is only 
one fitness function, it is called single-objective GA (SOGA). The goal of SOGA is usually 
associated with searching the maximum (or minimum) fitness function value. In reality, 
there is often more than one objective to achieve. A problem with more than one 
objective function can be solved by multi-objective GA (MOGA). Since it is impossible to 
get the maximum (or minimum) values of different fitness functions at the same time in 
most cases, the goal of MOGA is changed to find the compromised objective function 
values. 
 

1.3.4 Selection  
 
A parent is an individual selected for creating offspring. Selections based on fitness 
proportion are ranking selection, roulette wheel selection and tournament selection. 
The mechanism of these selections is shown in next chapter (2.1). Selection called after 
having generating the offspring is named survivor selection. It chooses individuals who 
will go to the next generation. In SOGA, fitness-based survivor selection has the same 
mechanism as parent selection, while age-based survivor selection making the selection 
only in the new individuals. In MOGA, survivor selection is focus on not only offspring 
but also the current population group, the mechanism is shown in chapter 3 (3.5.3). 
 

1.3.5 Variation  
 
Mutation and crossover are two variation operators which create new individuals from 
old ones. They are stochastic operators. It is mentioned in [20], that the variation 
operators could be problem-specific. In the next chapter, we use different variation 
operators for the binary represented problem and the integer represented problem. 

 
 

 
 

 

 

 
 

 
   



GA for Bridge Maintenance Scheduling 10 
 

Chapter 2 Single Objective Genetic Algorithms 
(SOGA) 
 

Part 1 Binary representations 
 
The binary representation is one of the earliest representations in the GA history. In this paper 
the genotype consists of a bit-string that 1 represents the performing of the maintenance and 0 
represents not performing. Maintenance Agencies make the maintenance schedules for the 
next five year and only five bridges per year should be under constructions.  They anticipate all 
possible maintenance locations and try to minimize traffic delay time. 
A group of population is generated when simulation starts, and every individual genotype, is a 
set of random binary numbers. The length of chromosome keeps constant in the whole group. 
For example, a chromosome (length L = 20) can be illustrated as: 
 

10001010100011100101 
 

For this binary-represented maintenance problem, we set the length of chromosome as 500, 
since there are totally 100 bridges in the list and the schedule is planned for the next 5 years. 
The general scheme of the binary-represented SOGA maintenance problem is the same as in 
Fig.1.1. 
  

2.1 Parent Selection  
 
For the binary-represented SOGA maintenance problem we use roulette wheel selection, 
tournament selection or ranking selection 
 

2.1.1 Roulette Wheel Selection 
 
A very simple example is presented here to introduce the basic concepts of 
roulette wheel selection (the example data is taken from [1]). Fig.2.1 lists a 

population of 5 individuals with fitness function 21
4( ) 2 5f x x x= − + + . 
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                         Fig.2.1 Example for Roulette Wheel Selection 
 
These individuals, in the first column x, are ranged between 0 and 10. The 
fitness values are then taken as the function of x. We can see from the list 
(column Fitness f(x)) that individual No. 3 is the fittest and No. 2 is the 
weakest. Summing these fitness values we can apportion a percentage total of 
fitness. This gives the strongest individual a value of 38% (selection probability) 
and the weakest 5% (as show in Fig. 2.2) 
 

 
             Fig.2.2. Roulette wheel approach: based on fitness (compare to [1]) 
 
We assume the algorithm to select λ members, based on selection probability, from 
the set of μ individuals into a mating pool. Every time randomly create a number p 
in the range of [0, 1], then choose an individual whose selection probability is larger 
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than p. In this paper, for binary represented SOGA, λ = 1, μ = N, the outlines of the 
algorithms are given in Fig.2.3.  
  

 
BEGIN 
       Pick a random value p uniformly from [0,1]; 
       FOR I = 0 TO N  DO 
           sum[I] += fitness[I]/total fitness; 
           IF ( sum[I] > p ) DO 
                 Select individual[I]; 
            BREAK; 
            OD 
      OD 
END 
 

Fig.2.3. Pseudo code for the roulette wheel selection 
 

2.1.2 Ranking Selection 
 
The ranking selection sorts the population into ascending order of fitness and then 
simply assigns a fitness score based on its position in the ladder.  So if a genome 
ends up last it gets score of zero, if best then it gets a score equal to the size of the 
population. Thereafter individuals are selected according to their fitness scores 
instead of fitness values, and each individual has the same chance to be selected. 
The Procedure is shown below in Fig.2.4. 
 

 
BEGIN 
       Sort population into ascending order according to fitness; 
       Assign new fitness numbers according to the genome's position on this new fitness 'ladder'; 
       Roulette wheel selection based on new fitness numbers; 
END 
 

Fig.2.4. Pseudo code for ranking selection 
 

2.1.3 Tournament Selection 
 
The tournament selection is an operator that selects λ fittest members from 
tournament with size k. First pick k individuals randomly from the mating pool, then 
select the first λ individuals which have better fitness values. It was shown in [6] that 
for binary tournaments if k=2, tournament selection works best. The procedure is 
shown in Fig.2.5. 
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BEGIN 
       Set current_member=0; 
       WHILE (current_member < μ) DO 
              Pick k random individuals from mating_pool; 
             Select the fittest one ; 
             current_member ++ ; 
       OD    
END 
 

Fig.2.5. Pseudo code for the tournament selection algorithm 
 

2.2 Crossover 
 
We use one-point crossover and n-point crossover recombination operator. They all start 
from two parents and create two children. 
 

2.2.1 One-Point Crossover 
 
One-point crossover works by choosing a random number in the range [0, L-1] (with 
L the length of the chromosome), and then splitting both parents at this point and 
creating the two children by exchanging the tails [6] (Fig. 2.6) (see also [6]). 
 

 
                                               Fig.2.6. One-Point Crossover 
 

2.2.2 N-Point Crossover 
 
One-point crossover can easily be generalized to n-point crossover, where the 
representation is broken into more than two segments of contiguous genes and 
then the offspring are created by taking alternative segments from the two parents 
[4]. The following Fig.2.7 illustrated for n = 2. 
 

 
                                               Fig.2.7.N_Point Crossover 
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2.3 Mutation 
 

2.3.1 Mutation for Binary Representations 
 
We use two kinds of mutation operators:  
•flip all bits with mutation rate P₀ (in this paper for binary represented GA, P₀=0.002, 
since 500 (chromosome length) x 0.002 = 1, which means in average each time one 
gene is chosen to mutate);  
•flip one random bit. 
 

2.3.1.1 Flip all Bits with Mutation Probability P₀  
 
Each bit has a small probability P₀ to flip (i.e., from 0 to 1 or 1 to 0). In Fig.2.8 
this is illustrated for the case where the fourth and seventh genes are flipped. 
 

 
                         Fig.2.8. Bitwise mutation for binary encodings 
 
 
 

2.3.1.2 Flip one Random Bit 
  
We must flip one gene randomly and flip only one gene in each individual as 
shown in Fig.2.9. 
 

 
                              Fig.2.9. Flip one random gene 
 

2.4 Survivor Selection  
 

2.4.1 Age-Based Replacement 
 
In age-based replacement scheme, the fitness of older generation population is not 
taken into account during the selection of which individuals to go to the next 
generation, rather they are designed so that each individual exists in the population 
for the same number of GA iteration [6], i.e., the oldest individuals are eliminated 
from the population after generation. 
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2.4.2 Fitness-Based Replacement 
 
Fitness-based replacement strategy is proposed for choosing μ individuals from λ + 
μ members, which consist of parents and offspring going forward to the next GA 
iteration [6], the mechanisms used here are principally the same as in parent 
selection. The selection scheme used in test problem 2.5.1 is tournament selection. 
Individuals having better fitness scores have bigger chance to enter the next 
generation. 
 

2.5 Simulation Results 
 

2.5.1 Test Problem 
 
We first describe the test problem. The numerical example is based on the data 
shown in Fig. 10 and 11.  It consists of 100 bridges (index starts from 0 to 99) whose 
current ages and conditions are listed in Fig.2.10 and 2.11. The conditions of the 
bridges are depends on their ages. Condition 1 is the best while condition 6 means 
that the bridge is likely to collapse. None of the bridges should be over condition 6 
during the considered time span of 5 years. A maintenance resets the respective 
bridge to condition index 1. 
 

                                             Fig.2.10. Current ages of the bridges 
 

0
10
20
30
40
50
60
70
80
90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

current age of 100 bridges
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                                            Fig.2.11. Current condition of the bridges 
 
The testing case has one objective function (fitness function) and two constraints. 
The problem is described in Table 2.1. 
 
                                                     Table2.1. Test Problem 

Objective Functions 
(Fitness Functions) 

min f(x)=max𝑖=0,..,4(∑ 𝑔𝑒𝑛𝑒[𝑖 × 100 + 𝑗] × 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑡𝑖𝑚𝑒[𝑗]𝑗=99
𝑗=0 ) 

Constrains 
1. condition[j] < 6                j=0,..,99; 
2. Only 5 bridges are under maintenance each year. 

Termination 
Conditions 

The best solutions keep unchanged (σ  ≤  0.0001) in 10 successive 
generation.  

 
All test settings (with different approaches and parameter settings) are run 50 times 
for a maximum of 1000 generation with a population size 100. We use a crossover 

probability of P₁= 0.7 and a mutation probability of P₀ = 0.002. 
 

2.5.2 Performance Measures 
 
Fig.2.12 shows the performance of different parent selection schemes:  roulette 
wheel selection, tournament selection, ranking selection. The variation operators 
were fixed with one-point crossover and flip one random Bit mutation. From this 
figure, we can see that generally ranking selection and tournament selection have 
better performance than roulette wheel selection (this conclusion is only suit for 
test case in 2.5.1). 

0
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Current Condition of 100 bridges
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                             Fig.2.12. Different Parent Selection Schemes 
 
Fig.2.13-Fig.2.15 presents the process of convergence of different parent selection 
schemes. Fig.2.13 shows that roulette wheel selection converges since generation 5, 
and keeps stable since the 23rd generation. Fig.2.14 shows that convergence starts 
at the 3rd generation in tournament selection and becomes stable at generation 28. 
From Fig.2.15, we can see that ranking selection becomes stable very quick at the 
8th generation. 
 

 
            Fig.2.13. Convergence of GA search using roulette wheel selection 
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                 Fig.2.14. Convergence of GA search using tournament selection 
 

 
               Fig.2.15. Convergence of GA search using ranking selection 
 
One of the maintenance schedule obtained is outlined in Table2.2, where “X” 
represents the performing of the maintenance. The resulting total traffic delay time 
is 1238462.240 time units. It is a good result for the binary encoding problem, 
however, compare to the integer represented approach (shown in the next chapter), 
the delay time is too long.   Each year only 5 bridges are maintained. 
 

Table2.2   Maintenance Schedule 
Bridge Index Year 1 Year2 Year3 Year 4 Year5 

0 -- -- -- -- -- 
1 -- -- -- -- -- 
2 -- -- -- -- X 
3 -- -- -- -- -- 



GA for Bridge Maintenance Scheduling 19 
 

4 -- -- -- -- -- 
5 -- -- -- -- -- 
6 -- -- -- -- -- 
7 -- -- -- -- -- 
8 -- -- -- -- -- 
9 -- -- -- -- -- 

10 -- -- -- -- -- 
11 -- -- -- -- -- 
12 X -- -- -- -- 
13 -- -- -- -- -- 
14 -- -- -- -- -- 
15 -- -- -- -- -- 
16 -- -- -- -- -- 
17 -- -- -- -- -- 
18 -- -- -- X -- 
19 -- -- -- -- -- 
20 -- -- -- -- -- 
21 -- -- -- -- -- 
22 -- -- -- -- -- 
23 -- -- -- -- -- 
24 -- -- -- -- -- 
25 -- -- -- -- -- 
26 -- -- -- -- -- 
27 -- -- -- -- -- 
28 -- X -- -- -- 
29 -- -- -- -- -- 
30 -- -- -- -- -- 
31 -- -- -- -- -- 
32 -- -- -- X -- 
33 -- X -- -- -- 
34 -- -- -- -- -- 
35 -- -- -- -- -- 
36 -- -- -- -- -- 
37 -- -- -- -- -- 
38 -- -- -- -- -- 
39 -- -- -- -- -- 
40 -- -- -- -- -- 
41 -- -- -- -- -- 
42 -- -- X -- -- 
43 -- -- -- -- -- 
44 -- -- X -- -- 
45 -- -- -- -- -- 
46 -- -- -- -- -- 
47 -- -- -- -- -- 
48 X -- -- -- -- 
49 -- -- -- -- -- 
50 -- -- X -- -- 
51 -- -- -- -- -- 
52 -- -- -- -- -- 
53 -- -- -- -- -- 
54 -- -- -- -- -- 
55 -- -- -- -- -- 
56 -- -- -- -- X 
57 -- -- -- -- -- 
58 -- -- -- -- -- 
59 -- -- -- -- -- 
60 -- -- -- -- -- 
61 -- -- -- -- -- 
62 -- -- -- -- -- 
63 -- -- -- -- -- 
64 X -- -- -- -- 
65 -- -- -- -- -- 
66 -- -- -- -- -- 
67 -- -- -- -- -- 
68 -- -- -- -- X 
69 -- -- -- -- -- 
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70 -- X X X -- 
71 -- -- -- -- -- 
72 -- -- X -- -- 
73 -- -- -- -- -- 
74 -- -- -- -- -- 
75 X -- -- -- -- 
76 -- -- -- -- -- 
77 -- -- -- X -- 
78 -- X -- -- -- 
79 -- -- -- -- -- 
80 -- -- -- -- -- 
81 -- -- -- -- -- 
82 -- -- -- -- -- 
83 -- -- -- -- -- 
84 -- X -- -- -- 
85 -- -- -- -- X 
86 -- -- -- -- -- 
87 -- -- -- -- -- 
88 -- -- -- -- -- 
89 -- -- -- -- -- 
90 -- -- -- -- -- 
91 X -- -- -- -- 
92 -- -- -- -- X 
93 -- -- -- -- -- 
94 -- -- -- -- -- 
95 -- -- -- -- -- 
96 -- -- -- -- -- 
97 -- -- -- X -- 
98 -- -- -- -- -- 
99 -- -- -- -- -- 

 

2.5.3 Discussion of the Results 
 
The different parent selection schemes do not show big difference from Fig.2.12, 
however, they are all convergent as shown in Fig.2.13 - Fig.2.15. 
 From Table 2.2, we can see that bridge 70 is maintained three times (year 2, 3 and 4) 
within 5 years as shown in Table2. It is not only unnecessary, but also takes the 
chances for other bridges away. This is one drawback of the binary represented GA, 
since the mutation and crossover are totally without control. An approach with a 
representation by integer-matrix will improve this weakness.  
 

2.5.4 Different Parameter Settings 
 
This testing case uses binary represented GA with one-point crossover (or two-point 
crossover), bit-flip mutation, and three parent-selection schemes (tournament 
selection, roulette wheel selection and ranking selection).  
First, we keep all other parameters same as before, but increase the population size 
to 500 and 1000 (instead of 100 used before). Fig.2.16 and 2.17 show the 
convergence for problem using tournament selection and flipping one random bits 
mutation operators. Now, we achieve a much better distribution Table 2.3. From 
this table we can see that bridge 72 is maintained twice within five years, however, 
other bridges are only maintained once. The respective traffic delay time is 
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1045965.180 time units. Compared to Table 2.2 (population size is 100, traffic delay 
time is 1238462.240 time units), the delay time is 16% shorter. 
  

 
Fig.2.16. Convergence with population size N = 500, tournament selection 
 

 
Fig.2.17. Convergence with population size N = 1000, tournament selection 
 

Table2.3   Maintenance Schedule 
Bridge Index Year 1 Year2 Year3 Year 4 Year5 

0 -- -- -- -- -- 
1 -- -- -- -- -- 
2 -- -- -- -- -- 
3 -- -- -- -- -- 
4 -- -- -- -- -- 
5 -- X -- -- -- 
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6 -- -- -- -- X 
7 -- -- -- -- -- 
8 -- -- -- -- -- 
9 -- -- -- -- -- 

10 -- -- -- -- -- 
11 -- -- -- -- -- 
12 -- X -- -- -- 
13 -- -- -- -- -- 
14 -- X -- -- -- 
15 -- -- -- -- -- 
16 -- -- -- -- -- 
17 -- -- X -- -- 
18 -- -- -- -- -- 
19 -- -- -- -- -- 
20 -- -- -- -- -- 
21 -- -- -- -- -- 
22 -- -- -- -- -- 
23 -- -- X -- -- 
24 -- -- -- -- -- 
25 -- -- -- -- -- 
26 -- -- -- -- -- 
27 -- -- -- -- -- 
28 -- -- -- -- -- 
29 -- -- -- -- -- 
30 -- -- -- -- -- 
31 -- -- -- -- -- 
32 -- -- -- -- -- 
33 X -- -- -- -- 
34 -- -- -- -- -- 
35 -- -- -- -- -- 
36 -- -- -- -- -- 
37 -- -- -- -- -- 
38 -- -- -- -- -- 
39 -- -- -- -- -- 
40 -- -- -- -- -- 
41 -- -- -- -- -- 
42 -- -- X -- -- 
43 -- -- -- -- -- 
44 -- -- -- -- -- 
45 -- -- -- -- -- 
46 -- -- -- -- -- 
47 -- -- -- -- -- 
48 -- X -- -- -- 
49 X -- -- -- -- 
50 -- -- -- X -- 
51 -- -- -- -- -- 
52 -- -- X -- -- 
53 -- -- -- -- X 
54 -- -- -- -- -- 
55 -- -- -- -- -- 
56 -- -- -- -- -- 
57 -- -- -- -- -- 
58 -- -- -- X -- 
59 -- -- -- -- -- 
60 -- -- -- -- -- 
61 -- -- -- -- -- 
62 -- -- -- -- -- 
63 X -- -- -- -- 
64 -- -- -- -- -- 
65 -- -- -- -- -- 
66 -- -- -- -- -- 
67 -- -- -- -- -- 
68 -- -- -- -- X 
69 -- -- -- -- -- 
70 X -- -- -- -- 
71 -- -- -- -- -- 
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72 X -- -- X -- 
73 -- -- -- -- -- 
74 -- -- -- -- -- 
75 -- -- -- -- -- 
76 -- -- -- -- -- 
77 -- -- -- -- -- 
78 -- -- -- -- -- 
79 -- -- -- -- -- 
80 -- -- -- -- -- 
81 -- -- -- -- -- 
82 -- -- -- -- -- 
83 -- -- -- -- -- 
84 -- X -- -- -- 
85 -- -- -- -- -- 
86 -- -- -- X -- 
87 -- -- -- -- -- 
88 -- -- -- -- -- 
89 -- -- -- X -- 
90 -- -- -- -- X 
91 -- -- -- -- X 
92 -- -- -- -- -- 
93 -- -- -- -- -- 
94 -- -- -- -- -- 
95 -- -- -- -- -- 
96 -- -- -- -- -- 
97 -- -- X -- -- 
98 -- -- -- -- -- 
99 -- -- -- -- -- 

 

Part 2 Integer Representations 
 

Binary representations are not always the most suitable if the gene can take one of a set of 
values [6]. An integer encoding is probably more suitable than a binary encoding when 
designing the variation operators. 
 

2.6 Chromosome Representation and Initialization 
 
The chromosome is represented in the form of integer matrix M of size of My X Mw, for My 
= 5 and Mw = 5, where the elements of M are the index number of the bridges, My is the 
number of considered years and Mw is the number of bridges that can be maintained in 
parallel. The matrix will look like following: 
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Initially, the matrix should not have repeat elements. 
 
 

2.7 Crossover 
 

We use special crossover strategy for the maintenance problem in 2.9.1: taking 1R  rows 

from one parent and 2R  rows from the other. As a result, the offspring schedule will have 

the plans from both parents according to the year. For example, in Fig.2.18 child1 has the 
2nd year plan from DAD and 1st, 3rd to 5th year plan from MUM. The crossover procedure is 
shown in Fig.2.19. 
 

 
Fig.2.18. Crossover (R=1) 
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BEGIN 
Pick a random row R1 from MUM; 
Pick a random row R2 from DAD; 
IF ( R1 = R2 ) DO 
Exchange the row R1 and R2 between MUM and DAD; 
ELSE 
Substitute row R1 from MUM  for  row R1 from DAD; 
Substitute row R2 from DAD  for  row R2 from MUM; 
OD 
END 
 

                      Fig.2.19. Pseudo code for crossover ( 1 2 1R R= = ) 

 
 
 

2.8 Mutation 

For integer-matrix represented maintenance GA, we use two principal forms of mutation, both 
of which mutate each chromosome independently. 

 

2.8.1 Random Resetting 
 
Fig.2.20 illustrates changing one random entry in the integer-matrix to a random 
integer value from the set of permissible values. 
 

 
Fig.2.20. Random Resetting one element 

 

2.8.2 Substitution 
 
Substitution is the process of first picking two random entries from two random 
rows and then exchanging their values. It is shown in Fig.2.21. 
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Fig.2.21. Substitution 

 

2.9 Simulation Results 
 

2.9.1 Test Problem 
 
The problem is almost the same like the binary representation GA sample problem 
(2.5.1), however, cost constraint (Fig.2.22.) is added for the Integer-Matrix 
represented problem. From this figure, we can see that the maintenance cost 
increases as the bridge condition index gets bigger. The Problem is listed in Table 2.4. 
 

 
Fig.2.22. Maintenance Cost for different Conditions 

 
Table 2.4 Test Problem 

Objective Functions 
(Fitness Functions) 

min f(x)=max𝑖=0,..,4(∑ 𝑔𝑒𝑛𝑒[𝑖][𝑗] × 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑡𝑖𝑚𝑒(𝑗=5
𝑗=0 𝑔𝑒𝑛𝑒[𝑖][𝑗]) 

Constrains 
1. condition[j] < 6                j=0,..,99; 
2. Only 5 bridges are under maintenance each year. 
3. Budget ≤ 35,000 € / year 

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

CO
ST

 [€
]

CONDITION



GA for Bridge Maintenance Scheduling 27 
 

Termination 
Conditions 

solutions keep unchanged (σ  ≤  0.0001) in 10 successive 
generation.  

 

2.9.2 Performance Measures 
 
Like the binary-represented GA, there are three schemes of parent selection: 
roulette wheel selection, tournament selection, ranking selection. Population size = 
100, probability of mutation = 0.002, and test run = 20. However, the length of 
chromosome is different as binary-represented GA, we set it to 25 (since the 
integer-matrix is 5x5, i.e., maintenance schedule has a five-year plan which 
maintains 5 bridges each year). The simulation results are shown in Fig.2.23. Similar 
as binary represented GA test (2.5.1), roulette wheel selection performs worse than 
the other two selection schemes. 
 

 
Fig.2.23. Different Parent Selection Schemes for Integer-Matrix Represented GA 
 
Fig.2.24-Fig.2.26 shows the convergence of different parent selection schemes.  
Fig.2.24 shows the convergence of tournament selection, Fig.2.25 shows it for 
roulette wheel selection, and Fig.2.26 shows for ranking selection.  From these three 
figures , we find that they all converges very  fast (around 2 or 3 generation). 
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Fig.2.24. Convergence of GA search using tournament selection 

 

 
Fig.2.25. Convergence of GA search using roulette wheel selection 
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Fig.2.26. Convergence of GA search using Ranking selection 

 
One of the maintenance schedule obtained is outlined in Table2.5, where the matrix 
members represent the bridges which will perform maintenance. The resulting total 
traffic delay time is 785522.950 time units, which is much shorter than the case 
using binary representation. Each year only 5 bridges are maintained. In this 
schedule bridge 1 and 54 are maintained twice, which is unnecessary. 

Table 2.5 Maintenance Schedule 
YEAR BRIDGES MAINTANENCE  COST 
year 1 84 1 70 50 42 22000 
year 2 63 37 33 19 12 21000 
year 3 46 90 84 89 91 13000 
year 4 82 54 18 9 33 10000 
year 5 40 54 1 42 72 12000 

 

2.9.3 Discussion of the Results 
 
When we constraint the problem to exact 5 bridges maintained per year, the integer 
represented GA processes much better fitness value (traffic delay time) than binary 
represented GA. Fig.2.27 is the difference between integer and binary represented 
GA with tournament selection, population size = 100. We can see that integer 
represented problem converges much faster than binary represented one, and it 
also achieves shorter traffic delay time.  
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Fig.2.27. Integer-Matrix represented GA VS. Binary represented GA 

 

2.9.4 Different Parameter Settings 
 
We keep the all other parameters same as before, but increase the population size 
to 500 (instead of 100 used before). Fig.2.28 shows the convergence for problem 
using tournament selection. Now, we achieve a new schedule (with fitness value = 
845522.860 time units) in Table2.6. The traffic delay time is longer, compared to the 
setting with 100 population. 
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Fig.2.28. Convergence with population size N = 500, tournament selection 

Table 2.6 Maintenance Schedule 
YEAR BRIDGES MAINTANENCE  COST 
year 1 53 42 86 84 29 17000 
year 2 70 29 62 33 1 15000 
year 3 22 38 83 37 12 23000 
year 4 89 46 33 50 48 12000 
year 5 53 30 72 38 37 20000 
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Chapter 3 Multi-Objective Genetic Algorithms 
(MOGA) 
 

3.1 From SOGA to MOGA 
 
The single objective formulation is extended to reflect the nature of multi-objective problems 
where there is not one objective function to optimize, but many. Thus, there is not one unique 
solution but a set of solutions. This set of solutions is found through the use of Pareto Optimality 
Theory [7] [8]. 
Besides having multiple objectives, there are a number of fundamental differences between 
single objective and multi-objective optimization, as follows [9]: 
•Two or more goals instead of one; 
•Dealing with two or more search spaces. 
 

3.2 Pareto Terminology 
 
When having more than one objective function, the notion of “optimum” is changed into finding 
good compromises or “trade-offs” among all the objective functions like in Fig.3.2. The notion of 
“optimum” that is most commonly adopted is that originally proposed by Francis Ysidro 
Edgeworth in 1881. The notion of optimum in multi-objective optimization was later generalized 
by Vilfredo Pareto (in 1896). 
 

 
Fig.3.2 An example of a problem with two objective functions: the trade-off surface is delineated 
by a curved line. 
 
The multi-objective optimization problem has been proposed by a lot of studies, here quotes 
the definition form Andrzej Jaszkiewicz [16]: 
The general multi-objective combinatory optimization (MOCO) problem is formulated as: 

{ }1 1min ( ) ,..., ( )J Jf x z f x z= =  
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s.t.   x ∈  D 

where: solution [ ]1,..., Ix x x= is a vector of discrete decision variables, D is the set of feasible 

solutions. 

The image of a solution x  in the objective space is a point 1 ,...x x x
Jz z z =   , such that

( ), 1,...,x
j jz f x j J= = . 

A point 1z Z∈ dominates 2z Z∈ , 1 2z z , if 1 2
j jjz z∀ ≤  and 1 2

j jz z<  for at least one j .  

Solution 1x  dominates 2x , 1 2x x , if the image of 1x  dominates the image of  2x (Pareto 

Dominace). A solution x D∈ is efficient (Pareto-optimal) if there is no 'x D∈ such that 'x x . 
Point being image of an efficient solution is called non-dominated. The set of all efficient 
solutions is called efficient set and denoted by N. The  image  of  the  efficient  space  in  the  
objective  space  is  called non-dominated set[16]. 
The plot of the objective functions whose non-dominated vectors are in the Pareto optimal set 
is called the Pareto front. All solutions on the Pareto front are optimal. 
 

 
Fig.3.3 Example of bi-objective optimum  

 

Fig.3.3 shows an example of minimum in a bi-objective space (f₁, f₂).The Pareto front is the 
boundary between the points P1 and P2 of the feasible set F. Solutions 1 and 3 are non-
dominated Pareto optimal solutions. Solution 2 is not Pareto optimal as solution 1 has 
simultaneously smaller values for both objectives. Therefore the aim of multi-objective 
optimization is to obtain a representative set of non-dominated solutions.  
 

3.3 Various MOGAs 
 

3.3.1 Non-dominated Sorting Genetic Algorithm – NSGA 
 
N. Srinivas and K. Deb [10] proposed the non-dominated sorting GA (NSGA) in 1995. The 
NSGA algorithm is based on several layers of classifications of the individuals [14]. At first, 



GA for Bridge Maintenance Scheduling 34 
 

sort the individuals on the basis of the non-domination: all the non-dominated individuals 
are categorized into one class, with a dummy fitness value. To maintain the diversity of the 
population, these classified individuals are shared with their dummy fitness values [14]. 
Then ignore these classified individuals, rank the left individuals of the group and then 
repeat this process until all the individuals are classified. Then select individuals based on 
these classes. The pseudo code for NSGA is given in Fig.3.1. 
  

 
BEGIN 
      INITIALISE  population; 
      EVALUATE objective functions and constraints; 
      ASSIGN rank based on Pareto Dominance [14]; 
      Compute niche distance; 
      Assign shared fitness shareσ ; 

       REPEAT UNTIL( TERMINATION CONDITION is satisfied) DO 
           PARENT SELECTION; 
           CROSSOVER with the setting crossover rate; 
           MUTATE the offspring; 
           EVALUATE  each individual; 
           ASSIGN rank based on Pareto Dominance ; 
           Compute niche distance; 
            Assign shared fitness; 
        OD 
END 
 

                      Fig.3.1 Pseudo Code for the NSGA algorithm 
 
In K. Deb’s later paper [11] he mentioned the main criticism of the NSGA approach, which is 
showed below: 
• The non-dominated sorting has the computational complexity of О (MN³) (where M is the 
number of the objective functions and N is the population size), which is the same as other 
optimal approach.  
•Lack of elitism [11]: elitism scheme keeps a trace of the current fittest member and makes 
sure it is always kept in the population. Recent research ([12] [13]) shows that the elitism 
can preserve good solutions, and also can speed up the convergence of the Pareto Front. 

•Need for specifying the sharing parameter shareσ [11] which influents the diversity in a 

population significantly. 
 

3.3.2 An Improved Version of the NSGA Algorithm – NSGAII 
 
K. Deb et al. [11] [15] proposed an improved version of the NSGA algorithm – NSGAII in 2002. 
In [14] it mentioned that this algorithm is currently used in most multi objective 
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evolutionary algorithm (MOEA) comparisons. The detail algorithm will be explained in 3.4. 
Here we’ll only give some general idea about the NSGAII: 
• NSGAII works with a faster non-dominated sorting algorithm, which requires at most О 
(MN²) (where M is the number of the objective functions and N is the population size) 
computations. 
• Use density estimation and crowded comparison operator to preserve diversity of the 
population. 

 
 

 

3.4 A Fast and Elitist Multi-Objective Genetic Algorithm: NSGAII 
 
The following presents the NSGAII using a fast non-dominated sorting procedure, an elitist-
preserving approach, and a parameter-less niching operator [15]. 
 

3.4.1 A Fast Non-dominated Sorting Approach 
 
The currently-used non-dominated sorting algorithm has a computational complexity of 
O(MN³),where M is the number of objectives and N is the population size. When sorting the 
population, each individual has to be compared with every other individual in the 
population to find out whether it is dominated, that needs O(MN) comparisons for each 
individual and O(MN²) comparisons for all individuals to find out the first Pareto front. Then 
discount the individual of the first front and repeat the procedure until all the individuals are 
ranked. The whole process without any book-keeping has the computational complexity of 
O(MN³).  
The NSGAII uses a better book-keeping strategy when sorting the individuals. The first 
individual is kept in the first Pareto front, the second individual is only compared with the 
first one, and the third individual is compared with the first two individuals (only if both are 
part of the Pareto front), and so on. This requires a maximum of O(N²) domain checks. 
During the comparison, if the individual p (the one that will enter the Pareto front P’ 
temporarily) dominates any individual q in the Pareto front P’, then q is deleted from the 
Pareto front P’. And if p is dominated by any member in the Pareto front P’, p is ignored. If p 
is not dominated by any member of the Pareto front P’, p enters this Pareto front P’. And 
that is how the Pareto front grows with non-dominated solutions. The algorithm is shown 
below in Fig.3.4, where P is the set of all individuals. 
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P’ = Pareto-Front(P) 
BEGIN 
     P’={1} 
     For each 'p P p P∈ ∧ ∉  
       ' 'P P p= ∪  
        For each 'q P q p∈ ∧ ≠  
                If ,q p DO 
                     P’=P’\{q} 
                Else if ,p q DO 
                            P’=P’\{p} 
                 OD 
END 
 

                    Fig.3.4.Pseudo Code for Finding the Pareto front 
 
 To find other fronts, the member from P’ will be neglected temporarily and the above 
searching procedure goes on. At the end of these comparisons, solutions of the first Pareto 

front are stored in F₁, solutions of the second Pareto front are stored in F₂, and so on. The 
whole procedure is shown in Fig.3.5. 
 

 
F=fast-non-dominated-sorting(P) 
BEGIN 
     1i =  
      WHILE P ≠ ∅  DO 
                   iF = Pareto-Front(P) 

                    P = P\ iF  

                    i + +  
       OD 
END      
 

                          Fig.3.5. Procedure of fast non-dominated sorting 
 

3.4.2 Density Estimation Metric 
 
The original NSGA uses sharing function approach (see 3.3.1) to maintain the solutions 
spreading out, while the sharing functions are set by users. There are two difficulties with 
this sharing function approach [15]: 
•The performance of the sharing function method in maintaining a spread of solutions 
largely depends on the chosen of sharing function. 
•The complexity is O(N²), since each solution must be compared with all other solutions in 
the population. 
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The NSGAII uses an concept called density estimation to replace any user-defined parameter. 
Also, the new approach has a better computational complexity according to [15]. 
To get an estimate of the density of solutions surrounding a particular solution in the 
population, we calculate the average distance of two points on each objective direction. The 

crowding distance tandis cei  is the size of the largest cubic enclosing only the point i , like 

shown in Fig.3.6. 
 

 
Fig.3.6 The crowding distance is shown (compare to [15]). 

 

Calculation of the crowding distance tandis cei  needs sorting the population according to each 

objective function. The procedure is shown below in Fig.3.7, where Ι is a non-dominated set, 
and [ ].i mΙ is the m-th objective function value of the i -th individual in the set Ι . 

  

 
Crowding-Distance( Ι ) 
BEGIN 
     l = the length of Ι  
      For each i , set tan[ ]dis ceiΙ =0                //initialize distance 

      For each objective m 
              ( , )sort mΙ = Ι                                 //sort using each objective value 

              tan tan[1] [ ]dis ce dis celΙ = Ι = ∞            //the boundary solutions are assigned an infinite value 

              For i =2 to ( 1)l −  

                   tan[ ] ( [ 1]. [ 1]. )dis cei i m i mΙ + = Ι + − Ι −  

END      
 

              Fig.3.7 the algorithm for the crowding distance calculation (compare to [15]) 
 
According to [15], the above algorithm has the computational complexity of ( log )O MN N .  
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3.4.3 Crowded Comparison Operator ( )n  

 
After all members are assigned a distance metric, we can compare the solutions. Every 
solution has two attributes: 

•non-dominated rank ( )ranki  

•crowding distance tan( )dis cei  

A solution with smaller rank is better. Otherwise, if both solutions have the same rank, then 
the one with bigger crowding distance (less crowded) is better. Here we choose the symbol 

from ( )n  [15] to implement the comparison of two solutions, as shown in Fig.3.8. 

 

 
IF ( )rank ranki j= DO 

     IF tan tan( )dis ce dis cei j>  DO  

          ni j  

     OD 
ELSE IF ( )rank ranki j< DO 

               ni j   

OD 
    

                                   Fig.3.8. the definition of operator  n  

 

3.4.4 Conclusion 
 
The above three features make the NSGAII working more efficiently. The fast non-
dominated sorting algorithm sorts the combination of current generation and the previous 
one according to the non-domination, and then the density estimation metric calculates the 
crowding distance of all members in the combination, at last the crowded comparison 
operator assigns a rank to each member, the pseudo code is in Fig.3.9 ( compare to [15]), 

where tP  is parent population, tQ  is children population, and tR  is the combination of 

parent and children. 1 2( , ,...)F F F= is the set of non-dominated front, N is the size of 

population, | |tP and | |iF are the length of sets tP and iF . 

 

 
BEGIN 
     t t tR P Q= ∪  

      F= fast-non-dominated-sorting( tR ) 

     Set 1tP+ = ∅ and 1i =  

      WHILE 1(| | | | )t iP F N+ + ≤ DO 
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                    Crowding-Distance( iF ) 

                    1 1t t iP P F+ += ∪  

                     i + +  
       OD 
       Sort iF  with n  

       Choose the first 1( | |)tN P+− elements of iF to fill the population 1tP+  

       Generate 1tQ + from 1tP+ ,using SELECTION, CROSSOVER and MUTATION 

       t + +  
END      
 

                                      Fig.3.9.The process of NSGAII 
 
The computational complexities of the above operations are: 

• fast non-dominated sorting is 2( (2 ) )O M N  

• crowding distance assignment is ( (2 ) log(2 ))O M N N  

• n sorting is (2 log(2 ))O N N  

So, the overall complexity is 2( )O MN . 

 

3.5 The Main Loop 
 
The overall steps for NSGAII optimization show in Fig.3.10. 
 

 
INITIALIZE population 0P  

EVALUATE objective functions, constraints, and ranks of 0P  

For  (gen=1 TO MAXGENERATION ) DO 
        PARENT _SELECTION using Tournament Selection 
        CROSSOVER 
        MUTATE 
        KEEP the Pareto Front ALIVE 
        ADD to new population 
        gen++ 
OD   
 

                    Fig.3.10 the overall procedural of the GA optimization 
 

Initially, a random population 0P is created randomly which is the same as SOGA. Besides, 

crossover and mutation operation are also the same as in SOGA using integer representation. 
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3.5.1 Evaluating 
 

After the population 0P  was created, the next step is evaluating the objective functions and 

specifies constraints. Then based on the specified constraints, Pareto front is created, i.e. 

the population 0P  is ranked. The procedure of creating Pareto front is shown in Fig.3.11, 

where N is the population size, and the Flag is the signal of been ranked or not (Flag of 
dominated individuals is 0, Flag of an individual which rank not being assigned is 1, Flag of 
non comparable individuals is 3) 
 

 
RANKING( 0P ) 

BEGIN 
     Initializing the ranks RNK to zero 
     Initializing all the Flags to 2 
     For (k=0 To N) DO 
         For(j=0;J<N) DO 
              Break if all the individuals are assigned a rank 
         For (j=0 To N) DO 
              Set the flag of dominated individuals to 2 
         OD 
         RNK++ 
         For (i=0 To N) DO 
              Select an individual [ ]Ind i which rank to be assigned 
              For(j= To N) DO 
                  Select the other individual [ ]Ind j which has not got a rank 
                  ( [ ], [ ])compare Ind j Ind i  
               OD 
           Assign the rank = RNK, Flag=1 
           OD 
       OD 
END  
 

( [ ], [ ])compare Ind j Ind i  
IF ( [ ].Ind j constraints are infeasible)&&( [ ]Ind i .constraint are feasible) DO 

Set [ ]. 0Ind j Flag =  
ELSE IF( [ ].Ind j constraints are feasible)&&( [ ]Ind i .constraints are infeasible)  

     Set [ ]. 0Ind i Flag =  
     ELSE IF( both are feasible) 
                 ( [ ], [ ], )nsort Ind j Ind i   

OD  
 
                               Fig.3.11 Ranking procedure 
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3.5.2 Parent Selection 
 
 
Tournament selection scheme is chosen for parent selection. During the selection, the 

crowded comparison operator ( )n is used to pick the fitter one. It works as below in 

Fig.3.12, where iP is the population in the i-th generation. 

 

 
Parent_Selection ( iP ) 

Randomly pick two parents 1[ ]Ind g  and 2[ ]Ind g  

IF 1 2( [ ]. [ ]. )Ind g rank Ind g rank>  

     2 1[ ] [ ]nInd g Ind g  

ELSE IF 1 2( [ ]. [ ]. )Ind g rank Ind g rank< DO 

      1 2[ ] [ ]nInd g Ind g  

       ELSE IF( 1[ ]Ind g .distance > 2[ ]Ind g .distance) 

                    1 2[ ] [ ]nInd g Ind g  

                 ELSE  
                     2 1[ ] [ ]nInd g Ind g  

OD 
Return the fitter individual 
 

                      Fig.3.12 Parent selection based on ( )n  

 

3.5.3 Keep Alive  
 
This step is to make sure that the solutions from the better (lower) ranks are chosen into the 
next generation. The general process is like in Fig.3.13, and the signal has the same means 
as in 3.4.4. 
 

 
Keep_Alive ( , )t tP Q  

Form the global mating pool t t tR P Q= ∪  
Find the global ranks 1 2( , ,...)F F F=  
Fill 1tP+  according to F 

                 Fig.3.13 Keep_Alive Process 
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First, the global mating pool t t tR P Q= ∪  is formed with size 2N. Then the Pareto front of 

tR  is created by the fast non-dominated sorting algorithm.  In the current Pareto front set 

1 2( , ,...)F F F= , 1F  is the best non-dominated set and is definitely chosen into the new 

population 1tP+ . If the size of 1F  is smaller than the population size N, 2F is chosen, and so 

on. 
 

3.6 Two-Objective Optimization Test Problem 
 
3.6.1 Test Problem 

 
First we describe the multi-objective problem implemented with NSGAII. The numerical 
example is based on the data in Fig.3.14-3.16. As we can see, there are 100 bridges totally, 
and their index starts from 1 to 100. Fig.3.14 shows the waiting time for maintenance each 

bridge, for example, the bridge 10 has waiting time 51.47 10 unit× , i.e., vehicle needs 
51.47 10 unit×  more time to cross the bridge 10 district when bridge 10 is being maintained. 

The shortest waiting time is 51.00 10 unit× (bridge 2), and the longest is 53.92 10 unit×
(bridge 68).  
 

 
                                      Fig.3.14 Waiting Time for maintenance each bridge 
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  Fig.3.15 Maintenance Deadlines and the 3rd party join time of each Bridge 
 
In Fig.3.15, the blue columns are maintenance deadlines for each bridge, for example, 
bridge 10 must be maintained before the 3rd year.  The earliest deadline is 1 year (bridge 7, 
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38, 44, 58, 61, 89, 91), and the longest deadline is 15 year (bridge 86). The Red columns in 
Fig.2.6.2 stand for the time when the 3rd party (other construction companies) will also 
make construction on the bridges, for example, a 3rd party will make construction on bridge 
6 in the 4th year, and there is no extra construction on bridge 10. 
 

 
                                                 Fig.3.16 Maintenance Fee of each Bridge 
 

Fig. 3.16 shows the maintenance cost of each bridge. The highest fee is 53.96 10× (bridge 

61), and the lowest is 51.01 10× (bridge 7), the average cost is 52.46 10× . 
The problem which we simulate needs a five-year maintenance schedule, and 10 bridges are 
maintained every year. It has two objective functions with constraints. The problem is 
described in Table 2.6.1. As the table showing, objective 1 is to minimize the total waiting-
time per year, and the 2nd objective tries to do the maintenance in the same year as the 3rd 
party does the construction, for example, the 3rd party will make construction of bridge 49 
at the 2nd year, so it is better to maintain it at the 2nd year. The 1st constraint (will be 
explained in detail in next part: 3.6.2) makes sure each bridge is maintained (or has already 
been maintained) before its maintenance deadline. The 2nd and 3rd constraints are to keep 
the maintenance budget per year between 1.7 million and 2.5 million.   
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All approaches are run for a maximum of 1000 generations and with a population size 100.  
 

3.6.2 Constraint Handling  
 
The principle [15] of constrained NSGAII is that any feasible solution has a better non-
dominated rank than any infeasible one.  The non-dominated levels of all feasible solutions 
are given according to objective values of those solutions. For the infeasible solutions, the 
one has smaller constraint violation has a better rank. Feasible solutions have the constraint 
values equal to or bigger than 0, and infeasible solutions have the minus constraint values.  

In Constraint 1(Table 2.6.1), 1g is set to -35 initially, when a bridge, deadline is k
( 1,...,5k = ), is found in [ ][ ]gene i j , if 1k i≤ + (i.e., the maintenance is before the deadline), 

then 1g adds1. If all the bridges (with deadline before 6 year) are maintained before their 

deadlines, 1g grows to 0. And if no bridges (with deadline before 6 year) are maintained 

before their deadlines, 1g remains -35. So, 1 [ 35,0]g ∈ − . But, constraints 2 and 3 have 

values around 610 . Then, 1g multiplied with a penalty value 610 to make sure all constraints 

have the same exponent. 
 

3.6.3 Performance Measures 
 
Fig.3.17 shows the result of the 1000th generation, the blue points are the infeasible 
solutions, and the red crosses are the feasible solutions. Table 2.6.2 is one of maintenance 
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schedule with feasible solutions. Every year 10 bridges are maintained. The budget per year 
is between 2.0 million and 2.5 million. 
 
 

 
                                              Fig.3.17 NSGAII simulation result 
 

 
 
Fig.3.18-3.20 shows the feasible solutions of generation 252, 676, and 1000. As generation 
increases, more feasible solutions are found.  
 

1st year 43 6 57 60 88 8 2 37 90 41
2nd year 11 46 83 67 80 5 65 52 75 35
3rd year 94 79 99 14 23 44 53 7 20 32
4th year 48 22 92 95 19 15 70 76 4 0
5th year 55 33 42 84 27 61 81 91 10 16

Table 2.6.2 MAINTENANCE SCHEDUEL
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Fig.3.18 Feasible solutions of Generation 252 

 

 
Fig.3.19 Feasible solutions of Generation 676 
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Fig.3.20 Feasible solutions of Generation 1000 

 

3.6.4 Different Parameter Settings 
 
First, we keep all the other parameters same as before, but increase the size of the 
population to 500 (instead of 100 before).Fig.21 shows all the solutions (feasible and 
infeasible) in generation 1000, which range from 115 to 165 in objective 1 and from 80 to 
250 in objective 2. Fig.3.22 shows only the feasible solutions, which range from 115 to 165 
in objective 1 and from 115 to 225 in objective 2. There are totally 15 feasible solutions 
among 500 solutions. Compared with the simulation running with 100 individual (population 
size=100), it found more feasible solutions when the population size increases. Table 2.6.3 
shows a possible schedule with feasible solution.  
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Fig.3.21 All solutions of generation 1000 with population size 500 
 

 
Fig.3.22 Feasible solutions in Generation 1000 

 

 
 

Then, we decrease the size of population to 50 and keep all the other parameter unchanged. 
Fig.3.23 shows all the solutions in generation 1000. Fig.3.24 shows the feasible solutions in 
generation 1000. As we can see, it has less feasible solutions compared to the previous two 
cases (population size =100/ population size= 500). Table 2.6.4 shows a possible 
maintenance schedule with feasible solution.  
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1st year 90 57 11 6 88 60 44 67 65 43
2nd year 80 52 2 46 8 53 5 83 20 55
3rd year 75 78 53 79 89 76 70 29 32 7
4th year 40 73 42 15 61 9 14 95 94 91
5th year 50 30 28 22 16 84 12 63 86 98

Table 2.6.3 MAINTENANCE SCHEDUEL
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Fig.3.23 All solutions in generation 1000 with population size = 50 

 

 
Fig.3.24 Feasible solutions in generation 1000 with population size = 50 
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1st year 60 43 85 46 90 57 2 53 37 6
2nd year 32 67 83 44 80 52 15 65 76 11
3rd year 18 5 59 8 7 20 1 79 95 70
4th year 54 84 14 26 91 9 75 4 94 50
5th year 55 48 74 61 64 91 16 27 42 86

Table 2.6.4 MAINTENANCE SCHEDULE
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3.7 Three-Objective Optimization Test Problem   
 
3.7.1 Test Problem 

 
The numerical example is based on the data from 3.6.1, besides, there is a third objective 
( group information (Table 2.7.1)) new added. It is better to maintain the bridges in the 
same group at the same year. For example, maintaining bridge 72 and 78 in the same year is 
the best solution, while their maintaining year difference being 4 year is the worst solution.  

Table 2.7.1 GROUPS 
Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 

3 29 72 27 52 68 
6 31 78 43 59 80 

10 41   57 83   
20 44   74 84   
60     86 96   
85     98     

 
The three-objective problem is described in table 2.7.2. All the other functions are the same 

as the two-objective problem, except the new added objective function 3f . 3f  works like 

this: first calculate the year differences between the maintenance years of the bridges 
belonging to the same group, for example, maintaining bridge 31 at the 1st year and 
maintaining bridge 41 at the 3rd year, the year difference is 3-1=2. Then add all these year 

differences in the schedule, we get 3f .   
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3.7.2 Performance Measures 
 
In this problem, we use a population size of 100, maximum generation of 1000, and run 
NSGAII. Fig.3.25-3.27 shows all solutions (feasible and infeasible) in generation 10000. From 
these figures we can see that the lower and upper bounds of the objective function values 

are: 1 [117,157]f ∈ , 2 [90,250]f ∈ , and 3 [30,280]f ∈ . 
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Fig.3.25 1 2f f−  

 

 
Fig.3.26 2 3f f−  

 

 
Fig.3.27 3 1f f−  

 
Fig.3.28-3.30 shows the feasible solutions in generation 1000. We get 9 feasible solutions 
from 100 solutions. Fig.3.28 shows the solutions in objective 1 and 2, it has the same pattern 
as two objective feasible solutions (Fig.2.6.6). The range of the objective function values are:

1 [117,154]f ∈ , 2 [130,205]f ∈ , and 3 [90,210]f ∈ .  
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Fig.3.28 1 2f f−  

 

 
Fig.3.29 2 3f f−  
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Fig.3.30 3 1f f−  

 
Table 2.7.3 shows a possible maintenance schedule with three-objective functions. Table 
2.7.4 lists the bridges whose maintenance deadlines are 1st year, 2nd year, 3rd year, 4th year, 
and 5th year. These bridges are then marked in Table 2.7.3, and bridges having the same 
maintenance deadlines are marked with the same color. For example, bridges 83, 80, 46, 11, 
52, 2, 65 are marked with green, and they all have the deadline till the 2nd year. From these 
two tables, we can see that almost all the bridges are maintained before their deadlines, 
except bridge 6.  
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80 100 120 140 160 180 200 220

f_
1

f_3

1st year 57 83 88 80 46 11 60 43 90 37
2nd year 42 52 2 8 32 65 7 16 55 89
3rd year 35 68 20 75 39 76 53 67 30 14
4th year 79 84 15 42 5 70 95 94 44 47
5th year 18 85 21 45 91 25 86 92 50 4

Table 2.7.3 MAINTENANCE SCHEDULE

Deadline
1st year 6 37 43 57 60 88 90
2nd year 2 11 46 52 65 80 83
3rd year 7 8 20 32 53 67
4th year 5 14 15 44 70 75 76 79 94 95
5th year 16 42 55 84 91

Bridge Index
Table 2.7.4 Bridges whose deadline is earlier than 5 year
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3.7.3 Different Parameter Settings 
We keep all the other parameters same as before, but increase the size of population to 500. 
Fig.3.31-3.33 shows the feasible solutions in generation 1000. In total there are 26 feasible 
solutions in 500 solutions.  
 

 
Fig.3.31 1 2f f−  

 

 
Fig.3.32 2 3f f−  
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Fig.3.33 3 1f f−  

 
Table 2.7.5 shows a possible solution. Here the color has the same meaning as Table 2.7.3. 
From this table, we can see that all the bridges are maintained before their deadlines. 
 

 
 

Table 2.7.6 shows the distribution of the working group. Compared to Table 2.7.1, all 
bridges in group 4 are distributed among the 1st, 3rd, and 4th year, two bridges from group 0 
are distributed in the 2nd and the 3rd maintenance year, two bridges from group 1 are 
separated in the 1st and the 5th year, four bridges from group 3 are distributed among the 
2nd, 4th, and 5th year, only one bridges from group 2 are maintained in this schedule, and no 
bridges from group 5 are maintained. 
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1st year 37 65 88 6 90 57 60 43 2 46
2nd year 53 80 20 11 7 67 52 95 83 31
3rd year 30 8 84 15 32 44 76 62 75 79
4th year 5 42 64 39 16 66 70 94 14 33
5th year 29 21 55 77 47 9 49 24 93 91

Table 2.7.5 MAINTENANCE SCHEDULE

maintenance year
1st year -- -- -- -- 4 -- 1 -- -- --
2nd year -- -- 3 0 -- -- -- -- -- --
3rd year -- -- 4 -- 0 4 2 -- -- --
4th year 4 -- 4 -- -- 3 -- -- -- --
5th year -- 1 3 -- -- -- -- 3 -- --

groups
Table 2.7.6 Group Distribution
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Table 2.7.7 shows the 3rd-party construction time of the maintenance bridges. For example, 
bridges 65, 6, 2 are maintained in the 1st year, but the 3rd-party will make constructions of 
these three bridges in 13 years later. From these tables, we observe that the compromise 
with 3rd-party participating time is not good. 
 

 
 

Then still keep the other parameter unchanged, but decrease the population size to 50. The 
feasible solutions are showed in Fig.3.34-3.36. There are totally 4 feasible solutions within 
50 solutions ingeneration 1000. Table 2.7.8 is a possible schedule with feasible solution. 
 

 
Fig.3.34 1 2f f−  

 

maintenance year
1st year -- 14 -- 14 -- -- -- -- 14 --
2nd year 10 -- -- 11 13 10 -- 15 -- 13
3rd year 15 -- 6 5 11 -- -- -- -- 13
4th year -- 2 13 -- 6 3 14 -- 8 --
5th year -- 9 9 5 2 6 13 7 -- --

3rd-party participating time
Table 2.7.7 3rd-party participating information
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Fig.3.35 2 3f f−  

 

 
Fig.3.36 3 1f f−  
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1st year 60 43 76 46 90 57 2 53 37 6
2nd year 32 67 83 44 80 52 15 65 86 11
3rd year 18 5 67 8 7 20 1 79 95 70
4th year 54 84 14 97 16 22 75 4 94 50
5th year 55 48 51 61 24 91 45 27 42 85

Table 2.7.8 MAINTENANCE SCHEDULE
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From above figures, we can see that NSGAII has been able to maintain a good spread of 
solutions (feasible and infeasible). However, when applied constraints, NSGAII can only get a 
few solutions feasible solutions. 
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Chapter 4 Conclusions 
 

In the beginning of this thesis, an overview of Genetic Algorithms (GA) was presented. The main 
components, which play major roles in the algorithm, were briefly introduced. The aim of applying GA in 
this thesis is to minimize user delay of infrastructure maintenance plan. As a result, a thorough explain 
of Single Objective Genetic Algorithms (SOGA) was launched. It was separated into binary represented 
and integer represented parts to get the maintenance schedules. Thereafter, a very detailed explain of 
Multi-Objective Genetic Algorithms (MOGA) was presented. A fast and elitist MOGA (NSGAII) was used 
for the testing case. 

The aim of this thesis is to create nearly ideal maintenance schedules by the use of genetic algorithms. If 
there is only one objective when making the schedules, which is called single objective, we applied both 
binary and integer represented scheme. Since the maintenance schedule should have no duplicated 
elements, the integer represented scheme led to better solutions with less duplicate bridge index and 
shorter traffic delay time (the objective). If two or more objectives exist, which is called multi-objective, 
NSGAII was applied to get the schedules. With the properties of a fast non-dominated sorting procedure, 
an elitist strategy, a parameter-less niching operator, NSGAII has found good spread out of the solutions. 
Further increasing of the population size got better spread of solutions. 
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