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Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Alois Knoll
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Abstract

Automatic vision-based people tracking system is getting ubiquitous and promises

to be the key for a large variety of domains, including video surveillance, cognitive

human-robot interaction, vision-based sport analysis, automotive driving safety as-

sistance, and so on.

To develop such a system, there are two major issues involved from the perspec-

tive of computer vision: one is to accurately detect objects of interest, the other

is to robustly track them across frames and maintain their corresponding correct

identity. However, there are numerous challenges, for instance, varying appear-

ance/motion/pose of people, uncontrolled environmental illumination conditions,

bad weather effects, cluttered and dynamic changing background, partial or even

full occlusions, long-term interaction, grouping and splitting, etc.

This thesis focuses on developing a complete system for long-term detection and

tracking of an a-priori unknown number of people, walking randomly in a complex

and crowded multi-camera indoor/outdoor environment with all those challenges

arise, particularly aiming to reduce identity switches, miss-detections and false pos-

itives into minimum amount. We propose an unified framework for detecting and

tracking people on the basis of a hierarchical grid-based, globally optimal tracking-

by-detection strategy. Frame-by-frame detection is performed by means of a hier-

archical grid-based methodology. We demonstrate that it can yield nice results for

detecting and localizing targets with no prior knowledge in cluttered scene, while

dealing fairly well with the challenges including complex interactions, mutual occlu-

sions, illumination changes. The tracking problem then can be achieved by linking

detection across frames, which is formulated as a grid-based network flow model

with the discretized state-space, resulting in a convex problem casted into an Integer

Linear Programming (ILP) form and solved through relaxation, therefore providing

a global optimal solution while optimizing all the trajectories simultaneously. In



addition, we show that a finer analysis of the human behavior can contribute to

better understanding of people attention and can be used to analyze the case of

close interaction therefore enhancing the tracking performance. Thus we integrate

a behavior cue (body orientation) into our tracking framework, providing valuable

hints for resolving ambiguities between crossing trajectories.

A novel performance evaluation framework is also proposed to quantitatively evalu-

ate the performance of the proposed system through experiments on a large variety

of benchmark video sequences, including both indoor and outdoor scenarios. Within

this evaluation framework, the ground truth of each sequence has been annotated in

3D space. The performance is evaluated based on a series of metrics, which gives out

an intuitive measure of the detector and tracker’s performance at detecting objects,

localizing objects, keeping their identities, and so on. More importantly, with these

evaluation metrics, it provides a much easier way to compare the proposed system

to the state-of-the-art, so that clearly indicating respective strengths.



Zusammenfassung

Automatische Vision-basierte System zur Personenverfolgung werden allgegenwärtig.

Sie sind der Schlüssel in einer Vielzahl verschiedener Anwendungen wie Videoüberw-

achung, kognitiver Mensch-Roboter Interaktion, bildgestützter Sportanalyse und

Fahrerassistenzsysteme.

Zur Entwicklung derartiger Systeme gibt es zwei wesentliche Aspekte aus Sicht des

maschinellen Sehens: Der eine ist die akkurate Erkennung von Objekten. Der andere

ist die robuste Verfolgung dieser Objekte über mehrere Rahmen hinweg sowie die

Erhaltung der zugehörigen, korrekten Identität. Jedoch gibt es zahlreiche, schwie-

rige Herausforderungen, wie beispielsweise die Variation des Erscheinungsbildes/

der Bewegung/ der Pose der Personen, unkontrollierte Beleuchtungsbedingungen in

der Umwelt, schlechte Wettereffekte, überfüllte und dynamische Hintergründe, par-

tielle oder sogar volle Verdeckungen, Langzeit-Interaktionen, Gruppierungen und

Zersplittungen.

Die vorliegende Arbeit konzentriert sich auf die Entwicklung eines vollständigen

Systems zur Langzeiterkennung und Tracking einer vorher unbekannten Anzahl von

Personen, die sich in einer komplexen und überfüllten Innen- oder Außenbereich

unter Beobachtung von mehrerer Kameras bewegen. Die Arbeit behandelt dabei

zahlreiche Fragestellungen, insbesondere die Reduzierung der Identitätswechsel, der

inkorrekten Erkennungen und der falsch positiven Ergebnisse auf einen minimalen

Betrag. Es wird ein vereinender Rahmen zur Erkennung und Tracking von Perso-

nen auf der Basis einer hierarchischen gitterbasierten, global optimierten Tracking-

durch-Detektion Strategie vorgestellt. Die Frame für Frame Erkennung durch ei-

ne hierarchische, gitterbasierte Vorgehensweise durchgeführt. Es wird demonstriert,

dass gute Ergebnisse zur Erkennung und Lokalisierung von Zielen ohne Vorwissen

in überfüllten Szenen unter Beachtung der beschriebenen Herausforderungen in-

klusive komplexer Interaktionen, wechselseitigen Verdeckungen und Beleuchtungs-

veränderungen erzielt werden können. Das Tracking-Problem kann dann durch die



Erkennung von Verknüpfung über Frames erreicht werden. Es wird als gitterbasier-

tes Netzwerk-Flussmodell mit diskreten Zustandsräumen formuliert, was zu einer

konvexen Problem in eine Interger Linear Programming(ILP) Form gegossen und

durch Relaxation gelöst. Eine global optimierte Lösung mit simultaner Optimierung

aller Trajektorien wird folglich zur Verfügung gestellt. Zusätzlich wird gezeigt, dass

eine feinere Analyse des Verhaltens des Menschen zu einem besseren Verständnis

der Menschen beitragen kann, und zur Analyse im Fall von direkten Interaktionen

verwendet werden kann and erhöhen damit die Trackingleistung. Ein Verhaltenssi-

gnal (Körperorientierung) wird daher in den Trackingrahmen integriert, das wich-

tige Hinweise zur Auflösung von Mehrdeutigkeiten zwischen sich überkreuzenden

Trajektorien zur Verfügung stellt.

Die Arbeit stellt auch einen neuen Evaluierungsrahmen vor, um die Leistung des

präsentierten Systems durch Experimente mit einer großen Viefalt von Benchmark-

Videosequenzen, inklusive Innen- und Außenszenarien, quantitativ zu evaluieren.

Die Referenzdaten jeder Sequenz im 3D Raum wurden innerhalb dieses Evaluie-

rungsrahmens beschriftet. Die Evaluierung der Leistung basiert auf Standardmetri-

ken, die eine intuitive Messung der Leistung des Erkennungs- und Trackingsystems

im Hinblick auf die Erkennung der Objekte, der Lokalisierung der Objekte, der

Erhaltung der Identiät, usw., erlaubt. Noch wichtiger ist, mit diesen Standardeva-

luierungsmetriken, bietet es eine viel einfachere Möglichkeit, zu vergleichen unser

System auf die State-of-the-Art, um so das jeweiligen Stärken deutlich zu anzeigt.
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Chapter 1

Introduction

Due to the fast development of high powerful computers, availability of widespread high-

resolution and low-cost vision sensors, such as CCD or CMOS, as well as the increasing demand

for automatic video analysis, a great deal of interest in the research area of computer vision

has been generated. Following the tendency, intelligent camera systems are getting ubiquitous,

in particular an automatic vision-based people tracking system becomes increasingly popular

and promises to be the key for a large variety of domains, including automatic video surveil-

lance [1–7] (Fig. 1.1(a)), cognitive human-robot interaction [8–12] (Fig. 1.1(b)), vision-based

sport analysis [13–17] (Fig. 1.1(c)), automotive driving assistance system [18–23](Fig. 1.1(d)),

etc. As for video surveillance, reliably locating and tracking people in video can facilitate hu-

man behavior understanding for better event detection; tracking in real-time from a robot can

form the basis for human-robot interaction and robot’s more efficient performance in human

environments; automatically finding the players, finding the paths of players’ movement, dis-

tinguishing players from each other and quantifying their ability can offer significant help to

the sports expert; detecting and tracking pedestrians based on a car’s driving assistance system

can help people drive safely, as the system can give the assessment of various of dangers, which

gives the driver correct instructions for collision avoidance, so that keeping people safe in the

presence of autonomous cars.

From the perspective of computer vision, the major subissues within the automatic vision-

based tracking system is how to firstly detect objects of interest (i.e., find the image regions

corresponding to the objects), and how is to track them across different frames while maintaining

their corresponding correct identities. Due to people’s huge variations in physical appearance,

pose, movement and interaction, or even partially and also fully occluded for long period of time,
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1. INTRODUCTION

Figure 1.1: Sample of significant applications for automatic vision-based tracking system. (a)

Automatic video surveillance. (b) Cognitive human robot interaction. (c) Vision-based sport

analysis. (d) Automotive driving assistance system.
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implementing such a system is obviously very challenging thus receives a significant amount of

attention in the area of research and development.

Huge research efforts have been made to aim at increasing the performance of tracking

system and making more effective use of cameras to reduce the workload of human resources.

There are numerous approaches that have been proposed to tackle the problems, they differenti-

ate from each other by different features that are used, different object representation, different

modeling method of motion, appearance and shape. Even though there has been great progress

during the past decades due to advances in computing power, image quality, and developed

algorithms, the performance and accuracy of multiple people tracking systems is still far from

being satisfactory, it still can not be able to rival the astonishing ease with how human beings

accomplish the same task. It is due to three major reasons: 1) developing a robust and general

object detection method still remains an open problem. In particular, people detection is a

special case of generic object category detection, therefore it inherits all the difficulties com-

mon to the problem of object detection, for example, the necessity to deal with large amount of

background clutter, the variability of illumination conditions and the limited number of training

samples. Additionally, due to the complex structure and varying appearance of human body,

it is very challenging to extract the correct image regions belong to body part of the people

from background clutters. Furthermore the problem gets to be even more complicated when

multiple people are present in the scene; 2) even after the problem of people detection is solved,

we are still facing the ambiguities arising from maintaining consistent tracks from detections, in

particular when the scenarios involves significant occlusions, such as self-occlusion, inter-object

occlusion, or static occluders within the scene. Most works deal with those cases by only con-

centrating on a small time window along the whole trajectories and do not look for a joint global

optimum, they are therefore prone to mistakes such as identity switches. Moreover if objects

do not have distinctive appearance among each other then it would make tracking even more

difficult; 3) almost none of the works improve the tracking performance from the perspective

of human behavior, which conveys the most valuable information about the person’s current

and also future activities. Therefore, this important cue, compared to the common used cues

such as appearance or motion, can contribute much more to enhance tracking performance,

especially when discovering the cases of complex interaction and significant mutual occlusions.

Therefore, to develop such a tracking system is highly significant: that could firstly solve the

detection issue efficiently (being able to detect people robustly in any situation without prior

knowledge, no matter with the environment, illumination, appearance, pose, people density, etc)
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and then consistently track targets over the whole tracking process with improved robustness

against various challenges, particularly to exploit advantages from human behavior analysis,

in order to enhance robustness against identity switches under the case of complex interaction

and significant occlusions.

1.1 Objectives and Challenges

The overall objective of the thesis is to develop a framework for long-term detection and tracking

of an a-priori unknown number of people with random walking in an overlapping, multi-camera

indoor/outdoor environment. The obvious benefits of using multiple cameras are firstly in-

creasing the coverage of the scene, since each of the combined field of views of all the cameras

should be greater than that of any individual camera, then efficiently handle large number of

occlusions, secondly increasing the possibility of preserving object identity across the region,

and thirdly allowing to obtain accurate 3D localization of people. We then want to explore

the benefits from behavior analysis by analyzing some representative cue (e.g. 3D human body

orientation), to better understand people attention so that to disambiguate complex scenarios,

therefore being able to serve for robustness enhancement of final tracking. Furthermore, to

develop a global optimal scheme to look for joint global optimum among all trajectories so that

improving robustness to wrong identity assignment, is also significant.

More specifically, we aim at:

• robustly detecting multiple people in spite of heavy occlusions, background clutters and

environmental illumination changes in both indoor and outdoor scenarios;

• precisely locating people in 3D world coordinate;

• accurately tracking people with global optimum so that reducing identity switches, miss-

detections and false positives into minimum amount;

• exploring representative cues (e.g. 3D human body orientation) of human behavior to

improve tracking performance, by disambiguating complex scenarios such as long-term

interactions and heavy mutual occlusions when general used features (e.g. appearance,

motion) become unreliable;

• being capable of recovering from occasional tracking mistakes, so that can run over long

time;
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• quantitatively outputting the performance of the tracking system, aim to evaluate their

precision in estimating object locations, their accuracy in recognizing object configura-

tions, their ability to consistently label objects over time, etc.

To implement such a framework and achieve these goals is very difficult, which faces a large

mount of difficulties and challenges. Fig. 1.2 shows several examples that illustrating the various

challenges within indoor and outdoor scenarios. As can be seen, people’s appearance could

be able to vary quite largely, and their poses might change significantly. The environmental

illumination conditions could be extremely terrible such as Fig. 1.2(a), the completely dark

environment makes the detection very difficult. We can also see the occlusions due to target

interaction and scene obstacles, for example the road sign forms the occlusion regions in Fig.

1.2(b). The targets might also exhibit very fast and unpredictable motion as in Fig. 1.2(c),

then the tracking would be very difficult. Furthermore the uncontrolled outdoor illuminations

and cluttered background as in Fig. 1.2(d) makes the detection and tracking ambiguous.

To be more comprehensive, the challenges are summarized as follows:

• People typically wear a large variety of clothing, can move fast and unpredictably, being

capable of exhibiting numerous body poses, therefore can have much more uncertainty

compared to other targets;

• Environmental illumination conditions and intensity can considerably change, resulting

in drastic changes in target appearance. Particularly in outdoor environments where

lighting conditions cannot be controlled and image intensities are subject to large changes

in illumination variation.

• Video sequences, in particular with outdoor scenarios, might be of very low quality. For

example, weather effects (e.g. dust, rain, snow), shadows can corrupt the images and

make them difficult to interpret.

• Cluttered and dynamic changing background makes the foreground segmentation ambigu-

ous.

• The tracking scenarios usually include partial or even full occlusions by other objects and

obstacles.

• The targets might interact with each other for long term, and also frequently move in

groups, which eventually split or re-merge with other groups. It becomes even difficult if

they have similar appearance.
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Figure 1.2: Typical examples of images from indoor and outdoor tracking scenarios that illus-

trate some of the challenges for people detection and tracking. (a) Extreme bad illumination.

(b) High density of the targets, similar appearance with each other, frequently move in groups,

self/mutual occlusions. (c) Fast and unpredictable motion. (d) Heavy cluttered background,

shadows, uncontrolled illumination condition.
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1.2 Main Contributions

The work presented in this thesis contributes to the research and application areas of multi-

ple people detection, multiple people tracking as well as human body orientation estimation.

The main contribution of our work is a complete system for tracking an unknown number of

people within complex and crowded scenarios on the basis of tracking-by-detection strategy.

Particularly, for better tracking performance, a finer analysis of human behavior (human body

orientation) is integrated into this framework. The system is capable of automatically detecting

people when they enter into the observing scene, estimating the 3D pose of human body orienta-

tion, and consistently tracking them over time, in particular dealing with long-term interactions

and occlusions.

To summarize, the main contributions of this work thereby include:

• an unified framework for hierarchical grid-based multiple people tracking-by-detection

with global optimization, with the advantage of being resistant to divergence and superior

robustness against identity switches;

• an innovative tracking enhancement scheme by performing a finer analysis of individual

human behavior (human body orientation), contributing to better understanding of people

attention then can be used to analyze the case of close interaction;

• a hierarchical grid discretization scheme, the core for both detection and tracking;

• a hierarchical grid-based detection methodology, yielding nice results for detecting and

localizing targets with no prior knowledge in cluttered scene;

• a robust edge-based background subtraction algorithm being insusceptible to illumination

changes both for indoor and outdoor scenarios;

• a fast oriented distance transform, that efficiently matching foreground edges with model

silhouettes, by considering not only the location of edge points but also their orientation,

reducing a large amount of false alarms in presence of clutter;

• a hybrid 3D human body orientation estimation approach, dynamically combining the

merits of a motion-based orientation estimator with a 3D appearance model-based orien-

tation estimator, providing discriminative hints for the targets no matter they are moving,

slowly moving or even still-standing;
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• a global optimization framework, formulating the data association problem as finding the

global maximum of a convex objective function, that globally optimizing all the trajecto-

ries;

• an association affinity model, incorporating the measurements on behavior cue, as well

as location and appearance in a global manner, that efficiently enhance the tracking

performance if any of the features becomes ambiguous;

• a performance evaluation framework based on standard metrics, that quantitatively eval-

uating the performance of the entire tracking system, giving out an intuitive measure of

the detector and tracker’s performance at detecting objects, localizing objects, keeping

their identities, and so on.

• quantitative evaluation on a large variety of benchmark video sequences, including both

indoor and outdoor scenarios. Comparisons to the state-of-the-art are also provided based

on those standard evaluation metrics.

1.3 Outline of Thesis

The remainder of the thesis is organized as follows:

Chapter 2 provides an overview of the related work in the field of people detection, tracking,

human body orientation estimation, and other works that influenced this thesis.

Chapter 3 presents the system architecture and detailed experimental set-up. We start by

giving out the entire framework of the tracking system, the experimental platform that we

used for implementation. Hardware setup used to capture the video sequences is described,

the choice on datasets and detailed descriptions on corresponding attributes of each dataset is

presented. Furthermore, a performance evaluation framework used for evaluation of the entire

tracking system is discussed.

Chapter 4 describes the proposed hierarchical grid-based people detection. We investigate

the use of template hierarchy and oriented distance transform in a people detection framework

with a variable number of cameras, and demonstrate that it is capable of detecting and localizing

people in 3D space efficiently and precisely without prior knowledge, towards the challenges of

frequent mutual occlusions, cluttered background and environmental illumination changes.

Chapter 5 explains our hybrid strategy that combines a motion-based and 3D appearance-

based orientation estimation approach dynamically, that being capable of working robustly
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under the case of moving, slowly moving or even still-standing targets. With this strategy, we

not only overcome the issue of automatic initialization of 3D appearance model, but also highly

improve the runtime performance.

Chapter 6 describes our global optimization framework for long-term tracking of an a-

priori unknown number of targets. And we show how to integrate the behavior cue (body

orientation) into the association affinity model , efficiently provides valuable hints for resolving

ambiguities between crossing trajectories. The strength of the global optimization framework is

demonstrated by presenting its performance across several challenging datasets, with robustly

tracking and identifying targets through complex interactions and significant mutual occlusions.

Our method achieves consistent robustness and outperform state-of-the-art techniques in most

cases.

Chapter 7 concludes this thesis, listing the key contributions and detailing a number of

interesting issues that are left for future work. Some extensions of our approaches respect to

other related computer vision issues are also discussed.
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Chapter 2

Related Work

In this chapter we provide context for this research in the backdrop of previous work. Since the

large amount of publications about people detection and tracking prohibits an exhaustive review

of all related works, this chapter will focus on work that has had a significant impact on the

field or is especially closely related to the work presented in this thesis. We present an overview

of the developments and the most recent advances in the areas of people detection, human

body orientation estimation and multiple people tracking. Strengths and potential deficiencies

are discussed through a comparative analysis, which enable us to identify the keypoints that

needed to be considered by this research.

2.1 People Detection

People detection has attracted an extensive amount of interest from computer vision community

over the past few years [24–30]. Many techniques have been proposed in terms of features,

models, and general architectures [31–37]. According to the number of cameras employed in

the detection scenarios, these approaches can mainly be divided into two categories: monocular

and multi-view approaches [38].

2.1.1 Monocular based Detection Approaches

Monocular approaches perform people detection by relying on the input of one single camera.

In order to detect people, monocular based people detection methods generally scan the input

image at all relevant positions and scales, and try to determine whether there is people or not.

The monocular approaches that have been developed to date can be roughly classified into
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two major categories. The first category is model-based approaches, for example, a model is

firstly defined for the object of interest, and then the approach attempts to match the model

to different parts within the image so that to find an appropriate matching [39,40]. The second

category is learning-based approaches, that learn discriminative features of a class from sets of

labeled positive and negative samples [41].

Model-based Approaches Regarding the model-based approaches, among the various vi-

sual cues that can be used to match objects, shape has the advantage of powerful object discrim-

ination capability which is relatively stable to environmental illumination changes. There are

two representation methods to model the shape space: discrete and continuous approaches [42].

Within the discrete approaches, the shape manifold is represented by a set of exemplar

shapes [18, 19, 43–45]. Efficient exemplar-based matching techniques based on distance trans-

forms are combined with precomputed hierarchical structures, allowing for real-time online

matching with thousands of exemplars [18, 43, 44, 46]. This technique yields nice results for

locating targets with no prior knowledge in a cluttered scene. The efficiency of this method is

illustrated by using about 4,500 templates to match pedestrians in images in [18]. The core idea

is using a Chamfer distance measure, so that matching a template with the DT image results in

a similarity measure. Meanwhile this approach enables the use of an efficient search algorithm.

However, if only computing the location of edge pixels without considering their orientation

when computing distance transform, it inevitably leads to a high rate of false alarms in pres-

ence of clutter. Another highlight of the work [18] is the utilization of a template hierarchy,

which is generated automatically from available examples, and formed by a bottom-up approach

using a partitioned clustering algorithm. It only searches locations where the distance measure

is under a given threshold, so a speed-up of three orders of magnitude is demonstrated, com-

pared to exhaustive searching. This idea was taken further by [44], that however does not build

the template hierarchy (or tree) by bottom-up clustering, rather by partitioning a state-space

represented with an integral grid. The grid is hierarchically partitioned as the search descends

into each region, so that regions at the leaf-level define the finest partition. This method is

demonstrated to be capable of covering 3D motion, even with self-occlusion. Although being

demonstrated efficiently, these methods did not exhibit several important properties, for exam-

ple, they did not employ any form of local gradient information, which is important for making

the matching robust to image noises and clutters. Furthermore, these approaches unfortunately

require a very specific model, which is only valid for specific target.
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For the continuous approaches, the shape models are learned from a set of training shapes,

if an appropriate manual of automatic shape registration method exists [42,47–53]. Compared

to discrete shape models, continuous generative models can fill gaps in shape representation by

using interpolation. However, the online matching process proves to be much more complex

as recovering an estimate of the maximum-a-posteriori model parameters involves iterative

parameter estimation techniques [42].

Learning-based Approaches Different with model-based approaches, object detection is

performed by learning different object views automatically from a set of examples by means of

a supervised learning mechanism within the learning-based approaches. These learning based

approaches rely on the fact that collected training data is representative of all relevant variations

necessary to detection.

In context of object detection, the learning examples are composed of pairs of object features

and an associated object class where both of these quantities are manually defined [54], feature

and classifier are the two major component involved [55]. The feature component provides the

visual appearance information of the person, and the classifier component determines whether

there is person or not within the sliding window. The most commonly used features are Haar

wavelets features [31, 32, 56, 57], shape contexts [58–60], code-book feature patches [34, 61–64],

Histogram of Oriented Gradients (HOG) [33,65–68], edgelet features [69], shapelet features [70].

The classifier that are used are mainly Support Vector Machines (SVM) [31,33,71,72], AdaBoost

using boosted detector cascades [32, 65, 69, 73, 74], convolutional neural network [75–77], and

graphical models [34,78–80].

Selection of features plays a key role in the performance of the classification, therefore, it is

important to select the appropriate feature according to the application environment, so that

discriminate one class from the other. Following we will have a short discussion on several

feature and classifier representations.

Haar wavelet features have first been proposed by [31], and further adapted by [32, 40].

They introduce a dense overcomplete representation using wavelets, which represents local

intensity differences at various locations, scales, and orientations. However, due to overlapping

spatial shifts, the many-times redundant representation requires mechanisms to select the most

appropriate subset of features out of the vast amount of possible features [42].

Code-book feature patches are also belong to the class of local intensity-based features

[34,61,81,82]. A codebook of distinctive object feature patches along with geometrical relations
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is learned from training data followed by clustering in the space of feature patches to obtain a

compact representation of the underlying people class [42].

Histograms of Oriented Gradient (HOG) descriptors have been proposed in [33] for people

detection, and obtained good results on multiple datasets. The HOG feature finds the spatial

distribution of edge orientations. The HOG representation is based on the local gradient his-

tograms, and the gradient of image intensity at each pixel contributes to each of the histograms

of its adjacent cells through trilinear interpolation. Since the representation is based on the

local distributions of gradient locations and orientations, so it appears to be more effective for

modeling object appearance compared to Haar features, while at the same time being robust

to noise and intra-class variability. And block normalization makes the HOG descriptor robust

to illumination changes. However, while demonstrating excellent performance, HOG based ap-

proaches have difficulties handling detection of people in the presence of occlusions and in cases

where people exhibit especially large pose variability.

As the most representative ones within various classifiers, Support Vector Machines (SVM)

are demonstrated to be a powerful tool to solve pattern classification problems, it clusters data

into two classes by finding the maximum marginal hyperplane that separates one class from the

other. Linear SVMs have been successfully used by combining with various features [33,83–86],

while nonlinear SVMs yield further performance boosts however with much higher computernal

costs [31, 40, 87–89]. Adaboost is an iterative method for finding a strong classifier based on a

combination of moderately inaccurate weak classifier. It has been first introduced by [32] and

then further applied in many other works [65,69,90–95].

However, supervised learning methods usually require a large collection of relevant training

data from each object class, it is not only tedious but also often an ill-defined process because it

is unclear that which part of the people class distributions is well-represented and which parts

of the distribution are still insufficiently sampled [96].

Monocular approaches have the inherent advantage of simple and easy deployment, however

have limited ability to handle occlusions due to several objects involved, as the single viewpoint

is intrinsically not able to observe the hidden areas.

2.1.2 Multi-View based Detection Approaches

The utilization of multiple cameras provide a better solution to detect and locate multiple

occluding people, as multiple camera views can be used to recover 3D structure information
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and solve occlusion in crowded environments, also computing accurate 3D locations for targets

in complex scenarios.

A majority of multi-view detection approaches rely on the segment-then-locate scheme, that

detecting people by firstly obtaining foreground masks computed in multiple views [38,97–106].

One of the key aspects within these approaches is how to define the correspondence between

the foreground masks. Some works align the foreground masks by using homography constaints

[107–111].

The work [107] first obtains the foreground likelihood maps in each view, then warping them

from all the other views onto the reference view. These warped foreground likelihood maps are

then multiplied to produce a 2D grid of occupancy likelihoods, called ”synergy map”. This map

clearly highlights the feet regions of all the people in the scenario. Their extended work [108]

localizes people on multiple planes parallel to the reference plane in the framework of plane to

plane homologies.

A similar approach is used in [109], it extracts denser clusters in a ground plane occupancy

map that is computed based on the projection of foreground masks. They do not consider

projection on the ground plane only, but on a set of planes that are parallel to the ground

plane, and cut the object to detect at different heights. And also they propose a heuristic-

based method to combine the multiple projections thus generated.

The work [110] uses the homography constraint in several planes parallel to the ground

plane, searching for people’s heads in the higher planes. All camera views are mapped using

homographies to a reference plane and intensity correlation is used to detect candidate heads.

In [112], it uses the homography constraint within a particle filtering framework for locating

the ground location of a person.

The homography constraint based methods to localize people on a ground plane can also

be interpreted as a visual hull intersection process [107, 113–115]. They have the advantage

of efficient computation, as the decision about ground plane occupancy is directly taken from

the observation of the project of foreground masks from each view. However, the decision only

relies on the part of the whole body (e.g. head, feet), but not the entire object silhouette, thus

their methods is prone to cause many false positive errors due to shadows, reflections on the

floor, and the density of the crowd.

An occupancy map is a plan-view representation of area of interest and allows for efficient

aggregation of information coming from different views, usually about the presence of indi-

viduals. A Probabilistic Occupancy Map (POM) is proposed by [116], it assumes that the
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objects are observed by multiple cameras at the head level. Within this work, the ground

plane is firstly discretized into a regular grid and the occupancy probability of each grid cell is

estimated using results from background subtraction. In particular, a simple rectangle model

that approximates silhouettes is used to back-project the probabilities onto all views. The

occupancy map is obtained by iterative optimization of the probability field, so that the dif-

ference between the back-projected and the input binary images is minimized. This method

is mainly affected by the incorrect foreground blobs obtained by background subtraction (e.g.,

reflections or casted shadows). Similarly, [117] also obtains occupancy map from foreground

images, by using sparsity-constrained inverse problem formulation. [118] presents a multi-modal

fusion framework for simultaneous person detection and localization from multiple cameras in

non-sequential manner. They encodes the multiple weak features as feature maps, which gen-

eralizes the concept of an occlusion map, in each cell the probability of occupancy is replaced

with the value of a feature. [119] firstly extracts foreground objects and the silhouettes are used

to compute a planar projection of the scene’s visual hull. This projection is used to bound the

number and possible location of people. In [120, 121], a 3-D Marked Point Process model is

proposed to detect and localize people. The method extracts pixel-level features by projecting

foreground silhouettes on the ground plane and the hypothetical head plane, and estimates the

positions and heights of the objects by using a stochastic optimization process with geometric

constraints.

In [122], instead of a segment-then-locate approach, they propose a locate-then-segment ap-

proach, which integrates available information of all cameras before any detection decision.

Their method integrates the information of all parallel planes by projecting the foreground

directly on the reference plane and accumulating the evidence from multiple cameras. Oc-

clusion and people detection are solved simultaneously and instantly at each time, using the

accumulated evidence from all cameras.

Compared to monocular detection, multi-view detection is capable of accurately localizing

individuals on the 3D ground plane. Hence, it can be used for many other high-level vision

tasks, such as multiple object tracking, people counting, scene understanding, and so on.

2.2 Human Body Orientation Estimation

Accurate estimation of human body orientation can significantly enhance the analysis of human

behavior, which is important for improving tracking performance. To our knowledge, there are
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few works have been conducted to visually estimate the orientation of human body. Generally,

they can be divided into two categories up to the type of data they rely on: 2D based approaches

and 3D based approaches.

2.2.1 2D based Human Body Orientation Estimation

Some works consider the task of human body orientation estimation as a classification problem.

The orientation space is divided into n categories (i.e., eight categories), then specific visual fea-

tures are extracted and orientation classifier are trained with these extracted features. Support

Vector Machine (SVM) has been efficiently used for classifying between two or more classes,

or estimating a continuous variable using regression. [123] use HoG descriptors to classify the

orientation of pedestrians, recovering an estimate based on 2D low-resolution images. However,

they group the orientation of a person very roughly, only covering a 45-degrees range for in-

plane rotations. [84] estimates the pedestrian orientation using multiple SVM classifiers on Haar

wavelet coefficients, in order to distinguish between different orientations. [124] proposes an idea

of exploiting a modified Histogram of Oriented Gradients (HoG) descriptor with ”bin shifting”

technique to estimate the orientation of human. [125] estimates the human upper-body orien-

tation by using a Support Vector Machine (SVM) on Histograms of Oriented Gradients (HoG)

but replace the SVM by a decision tree with SVMs as binary decision makers. In [126], body

pose classification is performed by using multi-level HoG features and a sparse representation

technique at each frame of the sequence, and estimating body orientation in a temporal filtering

framework. However, for each human region they end up with a very high dimensional feature

vector, which has the drawback of computational complexity, and are limited to a single view

experimental scenarios. To better fuse the body pose related features, the problem is further

explored in [127], they address the issue as a joint model adaption problem in a semi-supervised

framework. In the work of [128], pedestrian classification and orientation estimation problems

are integrated into a set of view-related models. Their probabilistic model does not restrict the

estimated pedestrian orientation to a fixed set of orientation classes but directly approximates

the probability density of body orientation. However, above approaches are only based on static

feature cues, ambiguities might arise up when discriminating the symmetric orientation.

In order to disambiguate these cases, the human dynamics has been considered to address

this issue in some works. Some of them introduce body orientation as a link between the

head pose and body movement cues [129, 130], they suppose the body orientation is similar to

people’s moving direction and use motion cues to estimate the orientation. The work of [131]
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also assumes that the orientation is simply given by the walking direction. The estimation is

based on the motion of a tracked person and the size of its bounding ellipse, however it fails in

the case of people who are not moving, or slowly walking. These works, have not exploited body

pose related features, therefore are problematic when the targets are static or move slowly, as

the velocity becomes too noisy to provide reliable information for body pose estimation.

The work [132] proposes an approach combining Shape Context and SIFT features, initially

the body orientation is calculated by matching the upper region of the body with predefined

shape templates, then finding the orientation within the ranges of 22.5 degrees. The orientation

is further refined by the optical flow vectors of SIFT features with a basic logic approach.

Nevertheless, 2D based human body orientation estimation approaches mainly rely on the

visual features to estimate the orientation. The lack of geometry information decreases the

ability of disambiguating.

2.2.2 3D based Human Body Orientation Estimation

Due to the limitations of 2D based human body orientation estimation approaches, for example

the lack of geometric information, the use of 3D information is considered in some works.

Some of them reply on the information of silhouette shape, [133, 134] perform an analysis

of the shape of the silhouette in images from ceiling mounted cameras, however, they only give

a coarse estimation and very sensitive to arm movement. In the work of [135], body orienta-

tion coefficient vectors are extracted by performing multilinear analysis using binary silhouette

images obtained from multiple cameras. The body orientation estimation is casted into a non-

linear least square problem by using a one-dimensional manifold, which is constructed from the

body orientation vectors. However, a disadvantage of this approach is low speed. Similarly, in

the work of [136], they also estimate the upper-body orientation by using silhouette informa-

tion only, independent of the target’s appearance. The silhouette information is encoded using

shape context descriptors, then classify the extracted feature vector to obtain a hypothesis for

the orientation on each camera view and then fuse the results with a Bayesian filter framework.

In the work of [137], they employ a 3D body model consisting of three elliptic cylinders, instead

of binary silhouette, to represent human body, allowing to introduce a spatial color layout to

discriminate the tracked person from potential distractors. In their work, a dynamical model

is presented that models the coupling between people orientation and motion direction. This

work exploits a loose coupling at low speed, but they did not have an explicit observation model

for body pose estimation, resulting in an similar problem when people is moving slowly.
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In [138], a texture sampled from a cylinder surrounding the person is shifted along the

rotational axis to find the best matched orientation and form an panoramic appearance map

simultaneously. In [139], the overall human body orientation from overlapping cameras is

estimated. They jointly estimate the orientation with a 3D shape and texture representation of

a person’s torso-head, under a rigidity assumption. The overall body orientation is estimated

by minimizing the difference between a learned texture model in a canonical orientation and a

texture sampled using the current 3D shape estimate.

Compared to 2D based human body orientation estimation approaches, the additional ge-

ometry information improves the estimation results in 3D based approaches. However, almost

none of these 3D based approaches have combined all the advantages from the components of

3D shape, appearance and motion in an unified framework.

2.3 Multiple People Tracking

Tracking multiple people has been an active research topic in computer vision area. Its primary

goal is to generate accurate trajectories and assign consistent identity labels to corresponding

people at each frame. There exists extensive work in this domain, which mainly includes two

categories.

One line of research is based on sequential techniques, that relies on the recursive update of

tracks with the most recent detections, such as Kalman filtering [140–148] and particle filtering

[149–158], such trackers are causal, they consider only information from previously processed

frames. It is suitable for time-critical applications when the number of objects remains small

since no clues from future are required. In the same spirit, [159] proposes a general framework to

sample the data association hypothesis using a Markov Chain Monte Carlo (MCMC) approach,

which forms a track based on both current and past observations. [160] introduces a probabilistic

model to associate merged and splitted measurements using a MCMC-based particle filter. [161–

164] further extend the framework in [159] to identify the best spatial and temporal association

of regions with a Data-Driven MCMC sampling approach. However, due to the recursive nature

of these methods, identity switches get to be much more frequent and are difficult to correct

when the number of objects increases. In addition, relying on recursive tracking may result in

irrecoverable errors when a person fails to be detected in a frame or when two detections made at

different frames are incorrectly linked. Errors tend to propagate and multiply in the subsequent
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frames. Eventually, such unbounded error propagation leads a tracker to fail and manual re-

initialization is required. Furthermore, these sampling-based methods typically require careful

tuning of several meta-parameters, reducing the generality of its application. And they are only

able to look at small time window, since their state space grows exponentially with the number

of frames.

The other line has formulated tracking as frame-by-frame association of detections, it is a

widely used paradigm for multi-person tracking [165, 166]. Tracking-by-detection approaches

have become increasingly popular, driven by the recent improvements in object detection per-

formance. Such methods have demonstrated impressive results in addressing the various chal-

lenges [35,38,69,91,167–176], they first apply an object detector to generate target hypotheses

in each frame, and then seek to transitively associate the detections in a coherent manner, and

thus maintain their unique identities. The transitive linking is difficult in the face of (poten-

tially numerous) false positives and miss detections. This is usually addressed by learning an

affinity model between detection responses or tracklets in terms of their intrinsic properties

(e.g., appearance, location, motion, size) [177]. These methods consider both past frames and

future frames, and then perform a global optimization, mitigating the false positive and missing

detections that occur in individual frame, thus it is more likely to give an improved results.

Due to the advances of tracking-by-detection approaches, we will follow this line in our work.

To this end, people tracking-by-detection methodologies will be focused in the following. As

above mentioned, such methods involve two parts: detection of people in individual frame, and

data association between frame-by-frame detections. As the related work on people detection

has been reviewed in previous section, we now focus on the detailed review of the work on data

association.

Classic data association approaches such as the Hungarian algorithm [178], is used to find

the best assignment of possible detection-tracker pairs, whose runtime that is cubic according

to the number of targets. A simple nearest-neighbor approach [179] uses only the closest ob-

servation to any predicted state to perform the measurement update, it is commonly used for

MTT systems because of its low computational cost. Global Nearest Neighbor (GNN) [180] is

based on the idea of bipartite matching, which formulates the single-scan observation-to-track

association as a two-dimensional assignment, choosing the one with the highest joint probabil-

ity as final association for current scan among all possible assignments. Although it has low

computational complexity, it suffers from severe drawbacks in dense and noisy environments.

Other approaches, such as Joint Probabilistic Data Association Filters (JPDAFs) [181] and
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Multi-Hypothesis Tracking (MHT) [182] jointly consider the data association from sensor mea-

surements to multiple overlapping tracks. In particular, JPDAF combines all of the potential

measurements into one weighted average, before associating it to the track, in a single update.

While MHT calculates every possible update hypothesis with a track, formed by previous hy-

potheses associated to the target. Both methods are known to be quite complex, and require a

careful implementation in terms of parameters. In particular, the latter can not avoid the draw-

back of an exponentially growing computational complexity, with the number of targets and

measurements involved in the resolution situation. Moreover, a global optimal solution cannot

be guaranteed in sub-exponential time although they attempt to model the joint trajectories of

all objects.

Recent works show that global optimization approaches of using Dynamic and Linear Pro-

gramming have appeared to be powerful alternatives. Berclaz et al. [38] studies an efficient

approximate dynamic programming scheme over individual trajectories. Greedy strategies are

utilized to combine trajectories and handle potential conflicts. This approach tends to mix

trajectories when targets are densely located, as occlusions are not explicitly modeled because

of separate optimization.

By contrast, Linear Programming seeks to optimize all trajectories simultaneously over the

whole sequence. Jiang et al. [183] tackles multiple people tracking problem with the use of

Integer Linear Programming, in which the problem is formulated as multi-path searching by

explicitly modeling the track interaction and objects’ mutual occlusion. The metric for inter-

object interaction term is convex while the intra-object term quantifying object state continuity

through sequence. This scheme explores a large search space efficiently and gives a near-global

optimality, because of the specific structure of the formulation. However, its state-space only

consists of observations, not able to interpolate trajectories smoothly in case of the false alarms.

Moreover, it requires a priori knowledge of the number of targets, which severely limits its

applicability in real tracking situations.

Similarly, Berclaz et al. [184] formulates multi-people tracking problem as a constrained flow

optimization, resulting in a convex problem that can be solved by standard Linear Programming

techniques. Their method does not need a priori knowledge of target numbers, and the model

is far simpler. Nevertheless, they haven’t incorporate appearance features into data association

process, thus making it prone to ID-switches in complicated scenarios. While dynamic model

is also discarded in this work.
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Shitrit et al. [185] addresses the appearance limitation by exploiting the global appearance

constraints, as the extension of [184], in which the total number of tracked person is partitioned

into L groups, and a separate appearance is assigned to each group. It reduces the number of

ID switches for overlapping tracks. However, the appearance templates are selected manually

through bounding boxes corresponding to members of each group.

Andriyenko et al. [186] proposes a similar work for multi-target tracking with global op-

timization approach. Compared with [184], they sample the location space on a hexagonal

lattice to achieve smoother trajectories. In contrast to purely discrete approaches for multi-

target tracking [184,186], the work [187] presents individual trajectories in continuous space and

uses cubic B-splines for that purpose. It performs data association using discrete optimization

with label costs, and trajectory estimation is posed as a continuous fitting problem.

Some other methods, like Quadratic Boolean Programming (QBP) [170,188], min-cost flow

[172], have also been tailored to simultaneously optimize all tracks in polynomial time, are in

fact closely related to ILP. The works [170, 188] couple detection and estimation of trajectory

hypotheses by QBP, where a redundant set of putative trajectories is pre-computed, and the

optimization takes place at the trajectory level by pruning to an optimal subset, thus such

approaches can only optimize over a limited time window. While Zhang et al. [172] defines

data association as a maximum-a-posteriori (MAP) problem, and models trajectory hypotheses

as disjoint flow paths in a cost-flow network. There is also some work linking the trajectories

through a set of pre-computed tracklets [189], the global optimal solution can be found by

linking the tracklets via max-flow computation.

Despite of intensive studies, robust and efficient tracking of multiple targets with complex

interactions and significant mutual occlusions remains a problem. Meanwhile, the proposed

different ways of handling the data association problem do not take advantage of any behavior

cue, such as body orientation, which provides the direct evidence of what the person is going

to do and where the person is facing at. In particular, body orientation can provide valuable

insight into the dynamics in case of social interaction and mutual occlusion. Although some

works couple the dynamic model into the affinity model [186], however, such dynamic models

mostly suppose steady heading, steady velocity or steady acceleration. It is problematic when a

person is static or in low speed, as the velocity becomes too noisy to provide reliable information.
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2.4 Conclusion

In this chapter we have provided a detailed literature review in the fields of people detection,

human body orientation estimation, multiple people tracking while focusing on the works which

have had a significant impact on these fields or are closely replated to our works. We have

discussed their advantages and potential deficiencies according to the problems that we aim to

solve, therefore those keypoints which have not been considered are clearly indicated, which

inspires us to develop new approaches with improved robustness.

The next chapter will introduce that how we design the system architecture, to uniformly

integrate the modules on people detection, human body orientation estimation and people

tracking. It will provide a detailed description on experimental platform, system framework,

hardware setup, test datasets and evaluation framework.
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Chapter 3

System Architecture and

Experimental Set-up

This chapter comprehensively presents the system architecture and detailed experimental set-

up. We start by giving out the entire framework of the tracking system, the experimental

platform that used for implementation. Hardware setup used to capture the video sequences

is described, the choice on datasets and detailed descriptions on corresponding attributes of

each dataset is presented. Furthermore, we present the performance evaluation framework used

for evaluation of the entire tracking system, which includes the process of annotating ground

truth data, and the various evaluation metrics that are used for assessing the different aspects

of detection and tracking performance.

3.1 System Architecture and Implementation Backgrounds

In this section, we will systematically describe the structure of proposed multiple people tracking

system and some background on the implementation platform.

Fig. 3.1 illustrates the unified tracking framework on multi-view hierarchical grid-based

people tracking-by-detection under global optimization. It mainly consists of:

1. Tracking pipeline: sensor input module for acquiring source images, hierarchical grid-

based detector for people detection and 3D localization, hybrid human body orientation

estimation based on the local association of measurements from our detector, global op-

timal data association based on association affinity model which uniformly integrates

the output from the previous two modules, and the final output module, which is the
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Figure 3.1: Framework of the proposed multiple people tracking system. It consists of tracking

pipeline, evaluation framework and models that are used in the system.

determined people’s trajectories associated with unique identity, in a world coordinate

system.

2. Evaluation framework: we evaluate each subpart and the entire system through a per-

formance evaluation framework, together with ground truth data and evaluation metrics.

The evaluation is performed by comparing the results with the ground truth data through

diverse aspects, such as accuracy, precision, robustness and so forth.

3. Models: They are usually prior information about targets, which consist of cylinder shape,

3D appearance model, motion and 3D human body orientation.

The software structure of our tracking system is designed and implemented partly on

OpenTL 1 [190, 191], which is a structured, general purpose software library for model-based

and marker-less visual tracking. It provides a user-friendly high-level application programming

interface (API) for the widest variety of computer vision algorithms and applications. This li-

brary integrates multiple, heterogeneous visual modalities (edges, color, texture, motion, etc) in

1http://www.opentl.org
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a seamless way, and handles information from multiple sensors, simultaneous targets, different

object models [190]. Our global optimal multi-people tracking-by-detection system is a great

extension, both in functionalities and applications, of the OpenTL library. The system is imple-

mented with a hiearchical, object-oriented architecture, the main implemented functionalities

can be briefly summarized as below,

1. Visual pre-processing module:

• A new background subtraction algorithm based on the edge modality;

• An automatic template hierarchy generation strategy, the levels of hierarchy and

grid size could be defined by users;

• A novel fast oriented distance transform algorithm, the DT map is then generated

on background-subtracted edge maps;

2. Measurement processing module:

• Data association by global nearest neighbor in feature level;

• Global likelihood computation by fusing from multiple camera views;

• Likelihood clustering on the finest grid level;

3. Detector Module:

• Hierarchical grid-based detection with multiple cameras;

4. Tracker Module:

• Affinity association model construction;

• Tracking by detection approach with global optimal data association;

5. Visual modalities module:

• Intensity edges for the hierarchical grid-based detection;

• Hierarchical cylinder templates for matching with intensity edges;

• Color histograms for the affinity model in global optimal data association;

6. Scene models module:

• Cylinder shape consists of three cylinders, correspondingly represents the head, body

and leg of a person;
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• 3D appearance model constructed for 3D appearance-based human body orientation

estimation;

• Dynamic motion model for motion-based human body orientation estimation;

• Edge-based background model, which is learned for edge-based background subtrac-

tion in hierarchical grid-based detector;

7. Data storage and GPU-computing module:

• Storage of generated template hierarchy for both position and orientation of all the

points;

• Visibility test for planar reprojection of 3D appearance model;

8. Output module:

• Output visualization by cylinder model rendering for people detection, body orien-

tation estimation and people tracking;

• Performance evaluation with ground truth data and a variety of metrics.

3.2 Test Datasets and Hardware Setup

In order to thoroughly validate our system, we collect a variety of datasets, including both

indoor and outdoor scenarios. For the indoor sequences, we record in our own laboratory, while

the outdoor ones are the publicly available datasets.

To be straightforward, all the video sequences used in our work, with its corresponding

attributes and challenges, are briefly summarized in Table 3.1. For each sequence, a short

description about the main challenges is provided in upper row. And the lower row indicates

corresponding main attributes of each sequence, including the number of used cameras, image

resolution, maximum number of targets involved, if some targets walk across others, if targets

interact with each other, if occlusions happen, if targets walk with rotational motion, if targets

run in the scene, if the illumination conditions change, if there are casted shadow. Note that,

”Y” indicates the respective case exists in the scenario, whereas ”N” means not. Every test

sequence is chosen with regard to constraints and challenges that are slightly different, so that

to test each module of our system with different emphasis.

We will give further details on the acquisition of the test sequences in our laboratory. The

sequences are recorded from four, synchronized uEye USB cameras, with a resolution of 752×
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Figure 3.2: Laboratory camera setup. The four uEye usb cameras are mounted overhead on the

corners of the ceiling, each of them observing the same 3D scene synchronously.

480 and a frame rate of 25 fps, as depicted in Fig. 3.2. The four cameras are mounted

overhead on the corners of the ceiling, each of them observing the same 3D scene synchronously.

Furthermore, all the cameras are connected to one multi-core PC. The videos are recorded in

an unconstrained environment, and present significant variability of image quality. Note that

the system is scalable with respect to the number of cameras, no modifications is required for

the entire framework if adding a new camera.

A necessary step before being able to get accurate 3D information, is calibration of the

intrinsic and extrinsic camera parameters, that we perform with the Matlab Calibration Toolbox

1, with respect to a world coordinate system placed on the floor. A chessboard pattern is used

to acquire coplanar points, and perform the full calibration.

Within our laboratory datasets, from 2 up to 6 people are involved in the scenarios. In

order to imitate the real world scenarios better, a wide diversity of poses are included in our

dataset, they might shake hands, hug, or talk with each other for long time, and also might

stand still, being occluded, or closely interacting with others, and so on. The observing area is

about 4m × 6m, with the increasing number of targets, the scenario is getting much crowded

and occlusions between targets from one or more views are getting more serious. In all of

the sequences, multiple people freely enter and leave the observation area, as well as closely

1http://www.vision.caltech.edu/bouguetj/calib_doc/
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interact with each other for long periods, with significant mutual occlusions and even with

extreme similar appearance.

For outdoor datasets, we choose several typical sequences which have representative outdoor

attributes. The first two sequences are from the public ”EPFL” dataset [116, 192]: Sequences

campus is recorded outside in a campus from 3 different camera viewpoints, with a resolution

of (360× 288) and a frame rate of 25 fps, consists of around 5800 frames. Up to four people are

simultaneously walking randomly. Sequence terrace is recorded outside on a terrace for around 3

1/2 minutes, up to 9 people involved in front of 4 DV cameras, with a very high density therefore

featuring a quite challenging outdoor scenario. EPFL terrace sequence consists of 5010 frames,

covering an area of 7.5m× 12m. The last sequence is from S2.L1 subset of PET2009 [193], it is

publicly available and well documented since it is used as part of the PETS tracking challenge.

There are 795 frames showing up to 8 people moving in a street, with a resolution of 768× 576

at 7 fps. The PETS2009 S2L1 dataset is around 2 minutes, using 7 cameras covering an area

of approximately 100m× 30m, in particular, four DV cameras are places about 2 meters above

the ground, while three video surveillance cameras are placed around 3 to 5 meters high, and

significantly far from the scene. Due to the elevated viewpoint of this sequence, it is more

suited for monocular tracking. The outdoor scenarios pose much more challenges, including

daylight changing, dynamic background, large variability of clothing, fast motion of people,

a large number of occlusions, interactions, significant scale changes as well as extreme close

proximity, and so on. Note that calibration data is available for all the public datasets.

3.3 Evaluation Framework

In order to systematically evaluate the performance of entire multiple people tracking system,

it is instructive to have a quantitative performance evaluation framework. By using the frame-

work, the evaluation is usually performed by comparing the results with the ground truth data

which is normally manually annotated by person. And the tracking results can be evaluated

through diverse aspects, such as accuracy, precision, robustness and so forth.

3.3.1 Groundtruth Annotation

Obtaining the groundtruth of a video sequence is often a difficult, monotonous and a time

wasting process, however it is a crucial step during quantitative evaluation. Most conventional

ground truth annotation methods are based on generating 2D bounding boxes around the person
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Table 3.2: Details on all annotated sequences.

Dataset Number of Frames Labelled Interval

Lab 2 Targets 1700 Every frame

Lab 3 Targets - Boxmotion 3000 Every frame

Lab 3 Targets 576 Every frame

Lab 4 Targets - Interaction 3160 Every frame

Lab 4 Targets - Crossing 1800 Every frame

Lab 6 Targets 1520 Every frame

EPFL - Campus 5800 Every 10 frames

EPFL - Terrace 5000 Every 10 frames

PETS - S2L1 792 Every 5 frames

within the images, however the main disadvantage of image plane based evaluation approach is

that they provide very limited information on the real accuracy of the model, as distances and

overlapping areas measured in pixels depend on the distance of the target from the viewpoint

as well as extrinsic and intrinsic camera parameters.

In contrast, we measure and evaluate the 3D ground positions of the persons by locating

the 3D geometrical model onto a predefined grid, as will be introduced in Chapter 4.3.1, and

rendering the model onto all camera views according to calibration parameters so that to

coincide with the target area within image. Thus we can provide both 3D people location

on the ground and their corresponding bounding boxes in camera views, which makes our

annotation technique be able to compare different methods against each other, no matter they

estimate the 3D ground position of people or 2D position within image plane. Additionally,

by annotating in 3D space with multiple camera views, the number of missed persons and

inaccurate ground truth position data caused by occlusions are reduced significantly.

In our ground truth annotation, all targets are manually labeled in all sequences, even in case

of total occlusion. Each target will acquire a new unique ID when it enters into the observing

area. Note that if a target leaves the area and reenters again, then it would be assigned a new

ID. Overall, the datasets that we have labelled are presented in Table 3.2. For most of the

sequences, the ground truth is labelled every frame, and for some very long ones, it is labelled

every 5/10 frames and each target’s trajetory between labeled keyframes is then interpolated.
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Table 3.3: Evaluation metrics used throughout the thesis.

Name Definition

MODA Multiple Object Detection Accuracy: It assess the accuracy of a detection

system. The higher the better.

MODP Multiple Object Detection Precision: The spatial overlap between a detection

and its corresponding ground truth. The higher the better.

Recall Correctly matched objects / total ground truth objects.

Precision Correctly matched objects / total output objects.

MOTA Multiple Object Tracking Accuracy: It combines all error types and is

normalized with the total number of targets. The higher the better.

MOTP Multiple Object Tracking Precision: The normalized distance between the

objects and tracker hypotheses. The higher the better.

FN False Negatives: Number of objects that are mis-tracked by the tracking

algorithm. The smaller the better.

FP False Positives: Number of objects that are tracked by the system which does

not have a matching ground truth. The smaller the better.

IDS ID Switches: Number of times that a tracked trajectory switches its matched

ground truth identity. The smaller the better.

GT Groundtruth trajectories: Number of groundtruth trajectories.

MT Mostly tracked: Percentage of ground truth trajectories that are tracked for

more than 80% in length. The higher the better.

ML Mostly lost: Percentage of ground truth trajectories that are tracked for less

than 20% in length. The smaller the better.

FM Fragments: Number of times that a ground truth trajectory is interrupted.

The smaller the better.
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3.3.2 Evaluation Metrics

The problem of evaluating tracking system has been addressed by the computer vision com-

munity [194]. The consensus is that there is no single metric that could indicate sufficiently

the performance of entire system. Therefore for a complete evaluation, it is essential to use

diverse metrics quantifying different aspects of the system performance. A proper set of eval-

uation metrics would be able to allow optimizing the parameters of algorithms, quantitatively

comparing different algorithms, supporting improvement of the algorithm.

To this end, we use two sets of metrics: detection metrics and tracking metrics. For part

of them, we choose the standard CLEAR MOT metrics [195], since they have been widely

employed in the literature as the main judge of performance of detection and tracking methods,

and can intuitively express a detector and tracker’s overall strengths. To more thoroughly

evaluate the performance, we further use the metrics on precision and recall, additionally, we

apply part of metrics which are presented in the work of [173].

Table 3.3 gives a summary and short description of all the metrics used throughout this

thesis. We give here a short overview of the metrics, for a detailed description and motivations

of the metrics, please refer to [195–197].

3.3.2.1 Detection Metrics

The detection performance is measured by four metrics: Multiple Object Detection Accuracy

(MODA), Multiple Object Detection Precision (MODP), Precision, and Recall.

MODA accounts for all possible errors such as miss detection and false alarms. MODP

measures the relative accuracy of alignment between ground truth and the predicted bounding

box on image plane. Precision and Recall are based on the number of correct and false matches

between detection results and groundtruth.

With the set of detected person at a given timestep denoted as D = {D(t)
1 , D

(t)
2 , · · · , D(t)

m },

while the annotated ground truth data as G = {G(t)
1 , G

(t)
2 , · · · , G(t)

n }, we apply the Hungarian

algorithm to find the maximum match between detections and ground truth data, in order to

determine the number of missed detections, false alarms as well as the accuracy of position

errors.

In particular, MODA is used to assess the accuracy aspect of the detection system perfor-

mance. Within this metric, the number of missed detections mt and false alarms fpt is utilized.

Let gt be the number of ground truth objects at frame t, then the MODA score can be computed

as:
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MODA = 1− Σt(cm(mt) + cf (fpt))

Σtgt
, (3.1)

where cm and cf are the cost functions for the missed detections and false positives. We use

them as scalar weights here, varying up to the focus of the application. For instance, if missed

detections are more critical than false positives, then we can increase cm and reduce cf . In our

case, both are set to 1.

For metric MODP, the spatial overlap information between a detection and its corresponding

ground truth is used to compute the Overlap Ratio. As mentioned before, G
(t)
i denoted the

annotated ith ground truth object at frame t, D
(t)
i denotes the corresponding detected object

for G
(t)
i , thus we have

Overlap Ratio =

Ntmapped∑
i=1

∣∣∣G(t)
i ∩D

(t)
i

∣∣∣∣∣∣G(t)
i ∪D

(t)
i

∣∣∣ , (3.2)

where N t
mapped is the number of mapped object pairs in frame t. Note that, the Overlap Ratio

is summed over all camera views and normalized in our multiple view scenario.

Using the assignment sets, the final MODP that gives the detection precision for the entire

sequence is computed as:

MODP =
Σ
Nframes
t=1

Overlap Ratio
Ntmapped

Nframes
. (3.3)

And for the metric - Precision, it is defined as

Precision = TP/(TP + FP ) , (3.4)

where TP, FP are the numbers of True Positive and False Positive. And

Recall = TP/(TP + FN) , (3.5)

where FN is the number of False Negative. Intuitively, precision value gives information on

the amount of false alarms, and recall value tells how many of the objects have been detected.

Note that for all metrics, the larger their values, the better the performance.
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3.3.2.2 Tracking Metrics

The tracking performance is measured by six metrics: Multiple Object Tracking Accuracy

(MOTA), Multiple Object Tracking Precision (MOTP), Groundtruth Trajectories (GT), Mostly

Tracked (MT), Mostly Lost (ML) and Track Fragments (FM).

In particular, MOTA accounts for three types of errors: false negatives (FN), false positives

(FP), identity switches (IDS) over all frames, giving an intuitive measure of a tracker’s perfor-

mance at detecting objects and keeping their trajectories, independently on the precision with

what the object locations are estimated.

MOTA = 1− Σt(FNt + FPt + IDSt)

Σtgt
, (3.6)

where gt is the actual number of targets at time t.

Conversely, MOTP evaluates the average distance between estimated and true target loca-

tions, demonstrating the capability of a tracker on estimating precise object positions, regardless

of its skills at detecting objects, keeping consistent trajectories and so on.

MOTP =
Σi,td

i
t

Σtct
, (3.7)

where dit is the localization error between object oi and its corresponding hypothesis, and ct

the number of matches for time t.

In addition, MT and ML are computed on whole trajectories and measure what’s the per-

centage of ground-truth trajectories that are successfully tracked, respectively, for at least 80%

of their lifespan or for less than 20%. For FM, it is defined as the total number of times that a

true trajectory is broken during tracking.

3.4 Conclusion

This chapter systematically provides an insight into the multiple people tracking system in terms

of system framework, implementation platform, hardware setup, test dataset. A proper and

thorough evaluation of the tracking system is an important issue which seems to be neglected in

many existing works. We address this problem by annotating all the test sequences and utilizing

a set of metrics, to evaluate the detection and tracking performance of the entire system. This

evaluation framework can not only be used for people tracking applications, but also could be

used for more general object trackers.

36



3.4 Conclusion

We now will go to details on each module of the tracking system in the following three

chapters, including how to accurately detect and localize targets in cluttered scene; how to

efficiently estimate the human body orientation with 3D based approaches, by combining all

the advantages from the components of 3D information, appearance cue and motion information

into a unified framework; and finally how to address the people tracking problem by efficiently

utilizing the output from detection and orientation estimation.
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Chapter 4

Hierarchical Grid-based People

Detection and 3D Localization

4.1 Introduction

Robustly detecting people in real world scenes is a fundamental and challenging task, which

has attracted an extensive amount of interest from the computer vision community over the

past decades. Prominent challenges for this task are the high intra-class variability, high degree

of articulation, and huge variation in physical appearance, shape, movement. Many techniques

have been proposed in terms of features, models, and general architectures. Although some are

successful towards the challenging task of detecting moving targets in both indoor and outdoor

environments, in particular in scenes which are with relatively few people. It still severely

remains difficult to detect multiple people precisely in the presence of cluttered environment,

illumination changes and partial or fully occlusions.

In this chapter, we focus on tackling the issue of reliably detect people in real-world envi-

ronment and localize them in 3D space, so that to provide reliable input for the component of

people tracking afterwards. The problem is addressed by employing a hierarchical grid-based

detection methodology, to detect and localize people in 3D space while providing a robust 3D

output towards frequent mutual occlusion between interacting people, cluttered and dynami-

cally changing background and illumination changes of environment.

To firstly segmenting out objects of interest, background subtraction as a commonly used

technique has achieved a significant success in fixed camera scenarios. Most of methods work by

comparing color or intensities of pixels in the incoming video frame to the reference image [198–
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202]. However, it has the drawback of being susceptible to illumination changes, and provides

a less precise localization. In contrast, we propose here an edge-based background subtraction,

which employs Canny [203] edge map together with Sobel gradients [204,205], because edges are

more precisely and stably localized, to a better extent in presence of illumination changes. To

match objects, among the various visual cues shape has the advantage that providing a powerful

object discrimination capability, which is relatively stable to illumination conditions. Template-

based shape matching approaches yield nice results for locating targets with no prior knowledge

in a cluttered scene. The efficiency of this method is illustrated by using about 4, 500 templates

to match pedestrians in images [18]. The core idea is using a Chamfer distance measure, so

that matching a template with the DT image results in a similarity measure. However, if only

computing the location of edge pixels without considering their orientation when computing

distance transform, it inevitably leads to a high rate of false alarms in presence of clutter.

Thus, we propose here a new methodology on oriented distance transform, which matches not

only the location of edge points but also their orientation, significantly reducing false alarms in

cluttered environment. Additionally, we propose a hierarchical likelihood grids scheme, taking

the advantage of multi-resolution grids that can, on one hand precisely and efficiently locate

targets in cluttered scenes, while on the other hand providing a powerful speedup of three orders

of magnitude compared to exhaustive searching.

Our detector has two important properties that making it particularly suitable for detecting

multiple people in crowded scenes: firstly, it allows to detect people in the presence of variations

in physical appearance, shape and environmental lighting condition, and secondly, it is capable

of locating targets in cluttered scenes precisely and efficiently without prior knowledge of their

position.

The remainder of this chapter is organized as follows: Chapter 4.2 describes the general

overview for algorithmic flow. In Chapter 4.3, we provide the detailed detection procedure,

including models, edge-based background subtraction, hierarchical grid evaluation as well as

model-based contour matching and state-space filtering. The experimental results are discussed

in Chapter 4.4. Finally, Chapter 4.5 summarizes the chapter.

4.2 Overview of the Approach

This section presents an overview diagram of our approach, as illustrated in Fig. 4.1, that

consists of two main processing modules: offline and online procedures.
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Background 
learning

Generate 
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PRE_PROCESS

Background 
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Figure 4.1: Schematic diagram of our hierarchical grid-based detection approach. It mainly

contains two processing module: offline and online. The background learning and silhouette

generation is done offline, and the online module includes the pre-process part and hierarchical

detection.
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In the offline phase, edge detection is performed on a certain number of pictures of the

environment (without people) and used to learn a background map containing, for each camera

view, the average distribution of edge pixels (position and orientation). Meanwhile, the 3D grid

of states is sampled at each level, and silhouette templates are generated by projecting a simple

geometry model, computing the external boundary, and collecting model edges pixel-wise (also

storing position and orientation).

In the online phase, we have two submodules: pre-process and detection. Within the pre-

process part, for each camera view foreground contours are segmented by edge-based back-

ground subtraction, using the learned model. Afterwards, we compute an oriented distance

transform onto this image, in order to match, for each template, both the location and the

orientation of its contours. In particular, the oriented DT is efficiently computed over a finite

set of orientations, so that the image is sampled over parallel scan lines that are pre-computed.

The advantage of using both edge position and orientation, during background subtraction as

well as template matching, is a strong reduction of false alarms.

Detection part firstly computes the likelihoods by matching projected templates and oriented

DT for each camera view, where the likelihoods are computed on the coarse grid firstly, then

refined on the next resolution only the locations where the likelihood is higher than a given

threshold, the joint likelihoods can simply be multiplied then. The object-level measurements,

or target hypotheses, are obtained by means of likelihood grid clustering, performed by Gaussian

filtering of the high-resolution grid and local maxima detection.

4.3 Hierachical Grid-based People Detection

In this section, we provide full details about people detection based on shape templates and

hierarchical grids, that serves as one of our key building blocks for our entire system. In

short, the detection is performed by means of hierarchical likelihood grids, by matching shape

templates through an oriented distance transform over foreground intensity edges, followed by

clustering in pose-space.

4.3.1 Construction of Template Hierarchy

The idea to construct a template hierarchy is inspired by the paper [44], as well as by the

system developed by [18], here extended to multiple views, multiple targets, and with a more

general template.
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A graphical illustration is shown in Fig. 4.2. Assuming there are L levels of search, the

state space is partitioned with a coarse-to-fine strategy. Each discrete region
{

Ri,l
}Nl
i=1

, where

Figure 4.2: Grid based state space with hierarchical partition through a coarse-to-fine art. The

grid size of each child level is doubled as the previous parent level. All the regions at a child level

are connected to its parent cell.

Nl is the number of cells at level l, is sampled at its center, before the template hierarchy is

generated. Meanwhile, we connect regions at a child level with its parent cell, by computing

the nearest-neighbor in state-space, as well as its nearest neighbors within the same level, as it

will be described in Chapter 4.3.6, in order to smooth the grid likelihoods.

After sampling the grid, templates are generated by rendering the 3D model at each state,

under the respective camera projection. To more precisely match our target, the model chosen

here is composed of 3 cylinders, where one cylinder is for the head, one for the torso, and one for

the legs. The model undergoes (x,y) translation on the floor, while its silhouette is generated by

projecting the external contour. An example of the model and a partial view of the hierarchy

of silhouettes are shown in Fig. 4.3.

For each silhouette, the position of each point as well as its normal is collected, as it will be

described further in Subsection 4.3.3. As already emphasized, both grid sampling and template

hierarchy generation are performed offline.
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(a) (b) (c)

I = 1

I = 2

I = 3

(d)

Figure 4.3: Illustration of our shape model. (a) Discretized cylinder. (b) Silhouette with normals.

(c) Silhouette without normals. (d) Hierarchy of the silhouettes.
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4.3.2 Edge-based Background Subtraction

In order to match the templates against image data, we propose here an edge-based background

subtraction approach, that can be divided into three phases: background learning (offline),

foreground segmentation and post-processing (online). In the first phase, we utilize a certain

number T of frames without people to learn the background model. Let Θb(t), Gbx(t), Gby(t)

respectively be the Canny edge map and the Sobel (x,y)-gradient images, detected at frame

Ib(t). The edge map Θb is accumulated from frame 1 to T as a simple binary OR between

Θ
(I)
b (1), . . . ,Θ

(I)
b (T ), while Sobel gradients are accumulated as a running average. At the end,

we also normalize the average gradient, so that G2
bx + G2

by = 1, ∀ (x, y) wherever the gradient

is not zero.

Subsequently, a standard distance transform is applied to the accumulated edge map, and

thresholded to a few pixels in order to provide a binary mask ΘDT ∈ {0, 1}, where potential

background edges can be detected in the incoming images.

Online, edge map and image gradients Θf (t), Gfx(t), Gfy(t) are computed at frame If (t),

and the position and orientation of each edge pixel is tested: any pixel with Θf (t) 6= 0 lying

close to a background edge (ΘDT 6= 0) is a candidate for removal. These edges are further

tested for orientation using image gradients, and if the scalar product is higher than a given

threshold Ths
GbxGfx +GbyGfy√

G2
fx +G2

fy

> Ths, (4.1)

the point is removed from Θf (t).

Fig. 4.4 shows an example of this procedure: as it can be seen, the resulting edge map

robustly preserves the person contours while discarding most of the background edges, despite

the relatively cluttered scenario.

However, we notice that some small gaps may result in the foreground edges. Therefore, we

perform some morphological postprocessing, in order to close gaps by analyzing the singular

edge points (referred to as endpoints), without appreciably increasing the overall computing

time.

A straightforward edge linking approach consists of detecting endpoints of contours in the

new edge map, and linking them through the neighborhood of endpoints in the original edge

map. Following this heuristics, we firstly detect the endpoints in Θf (t) as a set
{
xiep , yiep

}Nep
iep=1

.

Then, we check the 8-neighborhood of an endpoint within the unsegmented foreground map

Θfu(t) (Fig. 4.4c), and eventually extend the segmented contour by adding back a previously
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(a) (b)

(c) (d)

Figure 4.4: Edge-based background subtraction. (a) Original frame, in which the background is

quite cluttered. (b) Learned background model. (c) Unsegmented foreground edge. (d) Segmented

foreground edge.
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(a) (b)

Figure 4.5: Illustration of the postprocessing result. (a) Edge map before postprocessing. (b)

Edge map after postprocessing, the gaps are closed mostly within the unconnected edges.

detected neighbor pixel. Afterwards, the endpoint is replaced with the new one and the proce-

dure is repeated until the number of updated endpoints falls below a threshold Thep.

Fig. 4.5 illustrates the effect of morphological postprocessing. This scheme proved to be

efficient enough to close gaps between closely spaced, unconnected edges, at the price of slightly

increasing the size of (erroneously detected) background edges.

4.3.3 Oriented Distance Transform

Figure 4.6: Scanning single line for one direction. From left to right: Multiple single line

scanning; Distance value to the nearest edge point on the line; Multiple scanning directions.

The next step is to match foreground edges with the model silhouettes. One possibility would

be to apply the standard Chamfer distance to the edge map, that is tolerant to small shape
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Figure 4.7: Results of oriented distance transform. (a) Input image. (b) Foreground edge map.

(c) Oriented DT (at 12 discrete orientations).

variations and has already been applied in several works, such as [18, 206]. However, despite

the background edge subtraction, in case of images with significant clutter a high rate of false

alarms could be present. This problem can be reduced by matching not only the location of

edge points, but also their orientation [207]. For this purpose, we consider an oriented distance

transform.

However, integration of edge orientation and position can be defined in many ways. In

particular, we choose the most conservative approach of searching for corresponding edges only

along the template normals, (that is chosen among a discrete set of angles γ ∈ Γ), leading to

several DT images that are obtained by scanning the edge map through all parallel raster lines
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having the orientation γ.

We build the oriented DT efficiently by scanning the edge image along parallel lines Lγ (a)

through pixel a = (x, y) for a given orientation γ, and repeat it for a finite set of Nγ directions

Γ = {γi}
Nγ
i=1. The algorithm is illustrated in Fig. 4.6.

In particular, for each direction and each scan line, the oriented DT is a mono-dimensional

function, looking for the nearest edge point b on either direction

b = DTγ (a) = min
b∈Lγ(a)

‖a− b‖ (4.2)

An example of oriented distance transform is shown in Fig. 4.7.

4.3.4 Optimized Fast Search Strategy

The proposed oriented DT method needs two scans for each raster line: one for finding edge

pixels on the line, and the other for writing the DT values in the output image. In particular,

all of the image pixels on each line must be read, before deciding whether any edge pixel is

present, and then assign them DT values. However, if the line crosses no edge, no one of these

pixels will have a valid DT value. Moreover, even for a valid scan line, most pixels have a DT

which is higher than the validation gate, and therefore have no valid DT as well, but the line

iterator can only proceed one pixel at a time, therefore wasting computational resources.

We propose here an optimized fast search strategy on oriented DT, which instead performs

line scans starting directly from the edge pixels, and proceeding in the two opposite directions,

until a maximum distance that corresponds to a pre-defined validation gate Dmax.

Thus, each pixel in the DT image holds a counter, telling how many pixels away, along the

given direction, the closest edge is found1. Notice that, unlike the standard DT, this image

is sparse, because many points do not find a corresponding edge along the desired direction,

or the closest edge may be beyond the validation gate. Those points are therefore considered

outliers, and their DT is set to ∞.

Going into more detail, scanning is obtained by maintaining a double-linked, circular list

of exploring units, two for each foreground edge pixel (which are in a limited amount, after

background subtraction), that keep trace of the current DT value and perform a single pixel

move in each direction, executed one after the other through the circular list.

1To be precise, one pixel move corresponds to a distance tha depends on the orientation, e.g. along the

diagonal it would be
√
2. However, we simply multiply each DT by this constant factor when computing the

likelihood.
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A single iteration consists of: one read operation (to check the current pixel DT), one write

operation, and one move (increment of pixel position and DT value). The read operation ensures

that, if a pixel has been already visited (i.e. its DT value is not empty), the unit is stopped

and removed from the list. By performing one move per unit each time, we make sure that

two units coming from two different edges but traveling along the same scan line in opposite

directions, will meet exactly at the mid-point, so the DT values will be correctly assigned and

their search will be stopped.

When the list is empty, the algorithm terminates. Overall, this strategy reduces the number

of operations (read/write/iterate) to a minimum, since only valid pixels are visited, while

keeping an exact computation of distance. A pseudo-code of the fast oriented DT is shown in

Algorithm 1, while Fig. 4.7 shows an example of results on the optimized fast oriented DT.

Algorithm 1 Fast oriented distance transform

Initialization :

Fill the DT image with ∞, apart from 0 at the foreground edges.

Create a double− linked, circular list of ”exploration units”, two for each foreg−
round edge pixel, going in opposite directions (= line iterators).

Each unit consist of :

− A distance counter(initialized with 0);

− A line iterator(initialized with edge pixel position), with a given direction;

Main loop :

while list is not empty do

Take current element of the list;

Read DT value at (x, y);

if 0 < DT (x, y) <∞ then

Remove unit from the list;

else

Write the counter value into the DT image;

Increment counter;

if counter > validation gate then

Remove unit from the list;

else

Increment line iterator;

end if

end if

Move to the next unit in the list;

end while
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Figure 4.8: Results of fast oriented distance transform. (a) Original image. (b) Foreground edge

map. (c) Fast oriented DT results (at 12 discrete orientations).

4.3.5 Hierarchical Template based Matching

Once DT images are available, template matching can be simply amounted to compute the

likelihood, by summing up all values over the silhouette pixels, using the closest orientation to

its normal. More formally, a projected template s is represented by a set of N pixel positions

and normal orientation angles {xi, yi, gi}Ni=1, and the orientation is used to select the nearest

γ ∈ Γ, say γ (gi) (up to a 180 degrees ambiguity, since the direction of the normal does not

matter), from which the DT value will be taken. Therefore, the likelihood for state hypothesis

s is given by:
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P (z|s)pos ∝ exp

(
− 1

2NR2

N∑
i=1

min
(
DTγ(gi)(xi, yi)

2, D2
max

))
, (4.3)

where γ (gi) denotes the closest available direction to the normal, and the sum is performed over

all values {xi, yi, gi}Ni=1. R is the measurement standard deviation, and an outlier threshold is

usually fixed at Dmax = 3R, which is our validation gate for a more robust matching. We also

notice that, in order to avoid problems with different scales, the sum is further normalized by

N .

During the computation of likelihood, a coarse-to-fine search strategy is applied by eval-

uating it, at each level, only for locations where the parent cell likelihood is higher than a

given threshold, which is usually obtained as the average likelihood [44]. For those cells where

the parent likelihood is under the threshold, its value is simply inherited, thus saving a large

amount of computation.

4.3.6 Likelihood Grid Clustering and 3D Localization

In order to obtain the object-level measurements, or target hypotheses, after likelihood com-

putation we employ a isotropic Gaussian filtering procedure on the high-resolution grid, where

each cluster is a local maximum, potentially corresponding to a person.

This approach is similar to mean-shift [208], but explicitly done on discrete states. First of

all, a Gaussian filtering is applied to the grid, where the isotropic Gaussian corresponds to the

filtering kernel. For each cell si within the grid, we take the nearest neighbor sj by looking

at the connected states with distance di,j = ‖si − sj‖ up to a validation gate Dmax = 3σ2
s ,

where σs is the measurement covariance in state-space, these neighbors are pre-computed in the

off-line phase. For each neighbor, the Gaussian weight is also pre-computed by

Wi,j ∝ exp(−
d2i,j
2σ2

s

), (4.4)

the computed weights are also normalized to 1, so that the smoothed likelihood for state cell

si is given by

P (z|s)smooth(i) =
∑
i,j

Wi,j ·P (z|s)pos(j). (4.5)

Subsequently, local maxima are detected (within the same neighborhood), to obtain the

hypotheses, or measurements for targets.
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Fig. 4.9 intuitively illustrates the clustering and localization process. In Fig. 4.9 (a), the

clustered likelihood grid maps are projected each camera view. The larger circle means higher

likelihood. And in Fig. 4.9 (b), the likelihood map is visualized in 3D space, the local maxima

can be easily detected so that to obtain potential targets’ 3D location.

b) Potential targets are localized in 3D space by detecting the local maxima

a) Clustered likelihood grid map projected on each camera view

Figure 4.9: An illustration of likelihood clustering and 3D localization of local maxima.

4.4 Experimental Results

In this section, we aim to demonstrate both qualitatively and quantitatively the performance

of hierarchical grid-based detector, through various video sequences from real world. Firstly,

the important implementation details are presented. Secondly, the experiments with both

qualitative and quantitative evaluation are comprehensively performed. Thirdly, we study the

influence of several parameters on the detector’s accuracy.

4.4.1 Implementation Details

Here we provide some important details of the practical implementation. Firstly, in our exper-

iments the state grids are discretized respectively as Ng ×Ng, 2Ng × 2Ng and 4Ng × 4Ng from

the coarsest to the finest, resulting in a total of 21N2
g grid cells. The dimension of the observing

area and grid is varied depend on different scenarios, as shown in Table 4.1.
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Table 4.1: Dimension of the observing area and grid.

Scenario Area Finest grid size Total cells

Indoor lab 4m× 6m 40× 40 2,100

Campus 13m× 12m 60× 60 4,725

Terrace 7.5m× 12m 60× 60 4,725

PETS 20m× 18m 80× 80 8,400

During edge-based background subtraction, the number of frames used for background learn-

ing is varied up to different video sequences, the threshold θ mentioned in Eq. (4.1) is consis-

tently set to 0.9.

Our implementation of the oriented distance transform uses 12 discrete orientations, ranging

from 0 to π, with the validation gate of 50 pixels. As it computes each orientation separately,

the optimized fast oriented DT requires about 0.12 sec/frame for four images, whereas the

original oriented DT is computed in 0.25 sec/frame and a single standard distance transform is

computed in 0.1 sec/frame. Therefore, the proposed optimized fast search strategy is effective

and competitive.

The cylinder model size in our experiments are set to 175cm, in which the head size is 30cm,

upper body size is 60cm and leg size is 85cm, those size are chosen according to the average

people height in current societies.

4.4.2 Detection Performance

Figs. 4.10 to 4.15 showcase the hierarchical grid-based detector on various video sequences.

Within each sample frame, the likelihood maps on the finest level which intuitively illustrate

the likelihood for each grid, have been superimposed onto the detection results. As it can be

seen from the frames, the challenges are gradually increased. In the following we will discuss

more details on the detection performance.

Indoor Scenario

Within our indoor laboratory sequences, there are respectively 3, 4, 6 targets involved. With

the increasing number of targets, the scenario is getting much crowded and occlusions between

targets from one or more views are getting more serious. For instance, in Fig. 4.11, each two

targets are occluded from some views in frame 480, however, since for the same pairs there are

no occlusions from another camera view, all targets are successfully detected, and the similar

case happens more frequently when 6 targets are involved, as can be seen from Fig. 4.12, almost
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Figure 4.10: Detection results on the sequence of Laboratory 3 Targets. Every row shows a

diffent frame, while every column displays diffent camera view. The likelihood grid maps of the

finest level are superimposed onto the detection results, illustrating the likelihood for each detected

person in corresponding frame.

in each sample frame, the mutual occlusions between targets are existing. In spite of this, the

targets can be correctly located, thanks to the robustness of multi-camera fusion and oriented

DT matching.

Outdoor Scenario

Now we turn to more difficult outdoor scenarios, with much more challenges involved, in-

cluding daylight changing, dynamic background, large variability of clothing, fast motion of

people, mutual occlusions or occluded by obstacles, extreme close proximity, and so forth. For

example, within Fig. 4.13, we can see that in frame 1706, both targets are running with signif-

icant speed, and our algorithm can locate them quite well. Fig. 4.14 illustrates a scenario with

plenty of challenges, we can notice that the scenario is extremely crowded, due to the reason

that there is up to 9 targets involved, thus leading to a significant number of occlusions and

interactions. In addition, the daylight conditions are varying during the process of detection.

One more difficulty is that the clothing of the people are almost all dark and extremely similar

except the white one. Under these challenges, the performance of our detector is satisfying, this

can be largely attributed to the edge-based background subtraction, that overcoming the disad-

vantage from appearance-based approaches. A more challenging outdoor scenario is shown in

Fig. 4.15, here we use only one view out of the sequence PETS2009 - S2L1, from the VS-PETS
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Figure 4.11: Detection results on the sequence of Laboratory 4 Targets. Every row shows a

diffent frame, while every column displays diffent camera view. The likelihood grid maps of the

finest level are superimposed onto the detection results, illustrating the likelihood for each detected

person in corresponding frame.

2009 benchmark dataset. Due to the monocular view, much more additional challenges appear,

for example, it is very hard to distinguish targets when they are partly or fully occluded by

each other or by obstacles, as in frame 145 and 477. And as the targets are very far from the

camera viewpoint, if the targets are getting too close with each other, then it would be difficult

for the detector to correctly locate, such as in frame 145 and 262. However, in most cases, our

detector can handle quite well. Note that, in frame 525, 614, 662 there are people that not

being detected, this is because that they are not in the observing area, which is marked by

white dot.

4.4.3 Quantitative Evaluation

In order to better evaluate the performance of our proposed hierarchical grid-based detector,

it is instructive to have a quantitative performance evaluation with groundtruth data, both

in terms of position accuracy and robustness of detection. For the details on groundtruth

annotation and evaluation metrics, please refer to chaper 3.3.

Fig. 4.16 shows evaluation results on all the labelled sequences based on the previous in-

troduced metrics MODA and MODP. Note that a detection is only counted as correct if the

overlap ratio between the annotated box and the detection result is greater than a given thresh-
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Figure 4.12: Detection results on the sequence of Laboratory 6 Targets. Every row shows a

diffent frame, while every column displays different camera view. The likelihood grid maps of

the finest level are superimposed onto the detection results, illustrating the likelihood for each

detected person in corresponding frame.

old τoverlap. The results on MODA and MODP should be varying according to different given

threshold, we further vary the threshold systematically and compute the evaluation metrics at

each threshold during our experiments, as illustrated in Fig. 4.17. We can see from the re-

sults that, as the overlap threshold decreases, MODA increases and MODP decreases, because

more misaligned detections become classified as correct ones. Nevertheless, our MODP curve

has a slow decreasing. Fig. 4.18 shows results through a similar threshold varying but using

precision/recall metrics.

In our evaluation results illustrated in Fig. 4.16, τoverlap is set to 0.3. As illustrated by the

evaluation results, the localization precision is generally high. Note that our hierarchical grid-

based detector not only detect people in the camera views, but also accurately localize them

on the 3D ground plance, which is a major advantage of our work compared to most existing

methods. For the sequence PETS-S2L1, however, due to the monocular view, the performance

of the detector turns to be less successful compared to other sequences. Overall these results

indicate that, despite the cluttered situations, the localization results are basically satisfactory.

One is because of the local edge-based matching which, despite the simplicity of the model, is

more precise with respect to global statistics such as color histograms, or histograms of oriented

gradients.
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Figure 4.13: Detection results on the sequence of EPFL-Campus. Every row shows a diffent

frame, while every column displays diffent camera view. The likelihood grid maps of the finest level

are superimposed onto the detection results, illustrating the likelihood for each detected person

in corresponding frame.

4.4.4 Discussion

We have demonstrated on a variety of sequences that the detector can robustly handles different

challenges. The robustness allows the detector to work both indoor and outdoor without too

much parameter tunings.

Note that, the grid resolution is one of the most important factors that influencing the

performance of our hierarchical grid-based detector. If the grid resolution is fine enough, the

real-world locations can be better explained by the discrete grids, so that for each sampled

template silhouette, it is more possible for a target matching with it at the corresponding grid,

thus leading to better performance for the detector. However, a finer grid resolution would lead

to a higher computational cost. Conversely, if the resolution is coarse, then it is ambiguous to

locate a target at the correct grid, especially in the case of crowded scene.

Another important factor that altering the quality of detector’s output, is the output of

the background subtraction. Current edge-based background subtraction can handle the case
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Figure 4.14: Detection results on the sequence of EPFL-Terrace. Every row shows a diffent

frame, while every column displays diffent camera view. The likelihood grid maps of the finest

level are superimposed onto the detection results, illustrating the likelihood for each detected

person in corresponding frame.

of natural illumination changes in both indoor and outdoors, however, the subtraction result

could be largely affected if the illumination drastically changes.

The third factor is the proximity of involved targets within observing area. If there are

too many people in the scene, then it is too ambiguous to matching templates with foreground

DT maps, thus being not able to successfully detect and locate all the targets simultaneously.

Currently it is hard to quantify the maximum number of targets that we can deal with, since it

is largely up to the hardware configuration including the number of cameras, the viewing angle

of the camera, and also the space between the targets.

4.4.5 Runtime Performance

The detection algorithm has been implemented in C++, and runs on a desktop PC with Intel

Core 2 Duo CPU (1.86 GHz), 3GB RAM and an Nvidia GeForce 8600 GT graphic card. The

computational cost can be affected by two aspects: one is the grid size, the computational

complexity is linear with respect to the size of the grid. And the other is the image resolution,

downsampling the input images can result in a significant speedup. The execution time is about
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Figure 4.15: Detection results on the sequence of PETS-S2L1. Sample frames on single view are

shown. The likelihood grid maps of the finest level are superimposed onto the detection results,

illustrating the likelihood for each detected person in corresponding frame.

4 FPS for the indoor laboratory sequence with the grid size of 40× 40 and image resolution of

752× 480.

4.5 Conclusion

In this chapter, we have presented a novel approach for multiple people detection in various un-

constrained environments, using a hierarchical grid-based methodology. A template hierarchy is

constructed off-line, by partitioning the state space. And frame-by-frame detection is performed

by means of hierarchical likelihood grids and clustered on the finest level. Moreover, edge-based

background subtraction has been proposed for foreground segmentation, which is quite robust

to illumination changes, together with an oriented distance transform, matching the silhouette

templates by taking gradient orientations into account, thus significantly reducing the rate of

false alarms. Experimental results over both indoor and outdoor video sequences show that our

proposed approach deals fairly well with the challenges including complex interactions, mutual

occlusions, cluttered environment, illumination changes, and so on.

In the remainder of our work, we rely on the hierarchical grid-based detector to provide

the frame-by-frame detection for following parts, including hybrid human body orientation
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Figure 4.16: Evaluation results on the sequence of Laboratory-3Targets, Laboratory-4Targets,

Laboratory-6Targets, EPFL-Campus, EPFL-Terrace, PETS-S2L1 respectively, using Multiple Ob-

ject Detection Accuracy (MODA) and Multiple Object Detection Precision (MODP) metrics.

estimation and global optimal data association. The next chapter will introduce the novel

approach of estimating the 3d body orientation of multiple human, which might interact with

each other for long time, slowly move or even stand still. It will provide a detailed discussion of

how we dynamically combine the merits of a motion-based and a 3D appearance model-based

methods, so that combining the advantages from both mechanisms.
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Figure 4.17: Influence of overlap threshold level on the evaluation results (MODA and MODP)

for all of the sequences.
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Figure 4.18: Influence of overlap threshold level on the evaluation results (Precision and Recall)

for all of the sequences.
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Chapter 5

Hybrid Human Body Orientation

Estimation

5.1 Introduction

To better tracking people robustly and efficiently in case of complex interaction and significant

mutual occlusions, there are some cues that are necessary and important for improved track

disambiguation through performing a finer analysis of individual or group human behavior.

Among those cues, a person’s body orientation (i.e. rotation around 3D torso major axis)

conveys much valuable information about the person’s current activity, indicating the person’s

direction of focus, direction of movement or social interaction with other people within the entire

scene, thus efficiently contributing to understand people’s potential behavior, and therefore can

be used to discover interaction between multiple people and disambiguating more complex

scenarios with mutual occlusions. Fig. 5.1 gives an example of such ambiguous situations,

with extremely close people occluding each other, furthermore with a similar appearance, and

remaining static over a few frames. Here, body orientation provides a very discriminative

feature.

The aim of this chapter is to robustly and accurately determine the body orientation of

a variable number of people in 3D space, through multiple calibrated views mounted on the

ceiling from different viewing angles. We propose a hybrid methodology, combining the merits

of a motion-based and 3D appearance-based approach, being fast and capable of automatic

initialization of 3D appearance models, and working both in case of moving, slowly moving or

even still-standing subjects.
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(a) (b)

Figure 5.1: Sample frames of close interaction and strong mutual occlusion.

Our proposed approach makes following main contributions:

• a motion-based estimation mechanism which gives out the body orientation by considering

the person dynamics;

• a 3D appearance model based estimation approach by combining a 3D human body/appearance

model with 2D template-based matching, being able to deal with still-standing or slowly

moving people, while covering a full 360 degrees range;

• a dynamic hybrid strategy that efficiently combing the advantages from both mechanisms,

by taking care that the appearance model is constructed automatically, using the first

estimate of the orientation, as well as achieving a speed as close as possible to real-time

performance.

The remainder of this chapter is organized as follows: Chapter 5.2 gives out the general

overview of proposed approach, followed by the motion-based orientation estimation scheme in

Chapter 5.3 and 3D appearance model based orientation estimation approach in Chapter 5.4.

The proposed dynamic hybrid strategy is described in Chapter 5.5. Chapter 6.5 describes and

discusses the experimental results, and Chapter 6.6 concludes the chapter.

5.2 Overview of the Approach

In this section, an overview of our approach for hybrid human body orientation estimation is

described, with the details on the specific components that are involved. The flow chart is
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Figure 5.2: Flow chart of the proposed approach on hybrid human body orientation estimation.

According to the motion pattern of targets, if its motion has significant speed, motion-based

orientation estimation works. Instead, the appearance-based orientation estimation would be

automatically launched when the target moves extremely slowly or stops.

outlined in Fig. 5.2. The motion pattern classifier decides which mechanism will be adopted, if

the motion of targets has significant speed, the mechanism of motion-based orientation estima-

tion starts, insteadly, the appearance-based orientation estimation mechanism will be launched

when the target moves slowly down or stops.

Now we go into full details: after acquiring a frame from all the cameras, we rely on the

output of hierarchical grid-based detection which has been explained in Chapter 4, to obtain

the location of each person in the scene, which is going to be used as a position reference.

Within motion-based estimation, the orientation of human body is given by target dynamics,

under motion with significant speed. The appearance-based estimator, instead, is automatically

launched whenever the target moves extremely slowly or stops. The latter, combines a 3D

human body/appearance model with 2D template matching: the 3D model is represented by

a colored point cloud, which is obtained by back-projecting foreground image pixels onto the

surface of the predefined body geometry at the given pose, makes our approach independent

of the camera viewpoint. Notice that the body geometry is composed of three cylinders with

elliptical section. And in order to avoid collecting background pixels onto the appearance model,

a fast GPU-based foreground segmentation is firstly utilized on each view.

Subsequently, the appearance model is rendered onto each view at multiple poses and multi-

ple 2D templates are generated, in order to match the reconstructed appearance to new images
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under arbitrary orientations, through a robust similarity function, thus leading to the orienta-

tion estimation result.

5.3 Motion-based Orientation Estimation

If a person is walking with significant velocity, the body orientation of this person is usually

expected to be aligned with the direction of motion. Given a motion vector Mi,j = (px(t) −

px(t− 1), py(t)− py(t− 1))T between two corresponding poses at time t− 1 and t, orientation

estimate could be inferred by means of computing the direction of this motion vector. Notice

that this estimate requires a data association to be available (at least a sub-optimal one, based

on two adjacent frames), and for this purpose we adopt the Hungarian algorithm for global

nearest neighbor assignment, based only on adjacent target locations.

As we estimate the orientation in world coordinate, a reference vector Mref
i,j = (0, c)T is

assumed with the start point of (px(t− 1), py(t− 1)), where c could be an arbitrary constant.

Thus the direction of motion is,

θmotionr (t) = arccos
Mi,j ·Mref

i,j

|Mi,j | ·
∣∣∣Mref

i,j

∣∣∣ . (5.1)

If the target slows down significantly we can rely on the previous orientation estimate, and

therefore we filter the orientation estimates by a first order autoregressive filter, with adaptive

coefficients regarding to the target’s velocity. The final orientation estimate at timestep t is

given by,

θr(t) = αθr(t− 1) + (1− α)θmotionr (t) , (5.2)

in which α is defined according to a lower velocity threshold Thstill

α =

{
0.1, if |Mi,j | > Thstill
0.9, else

. (5.3)

However, if the variation of a target’s motion vector Mi,j is continuously under the threshold

Thstill for consecutive timesteps Nstill, then it is accounted as still or extreme slowly moving.

As discussed before, in this case the above motion-based estimation scheme can not provide

reliable estimate for body orientation, thus some methodology else being able to efficiently

deal with this intractable case is imperatively in need. Consequently, a 3D appearance model-

based orientation estimation method, being capable of give out the orientation of targets whose
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velocity are even close to zero, is launched and integrated with former motion-based estimation

scheme. Further details will be described in Chapter 5.4.

We notice that the motion-based scheme automatically provides a reliable initial orientation

for appearance model initialization, thus the target is not restrictive to be more or less at the

center of the observation space and face a certain direction at the beginning.

5.4 3D Appearance-based Orientation Estimation

To compensate the shortcoming of motion-based method, we propose a 3D appearance-based

estimation method, which could be able to deal with still-standing or slowly moving people,

therefore combining all the advantages from the components of motion, 3D shape, appearance

in a unified framework.

5.4.1 3D Appearance Model Construction

h1

h2

h3

(px, py)

Figure 5.3: 3D geometrical body model and pose parameters ((px, py, θr), where (px, py) indicates

the body location and θr indicates the possible orientation.

If we take into account the flattened shape of a human body along the depth dimension, we

can approximate the overall geometry by three cylinders with elliptical section, as illustrated

in Fig. 5.3, enclosing the head, torso and legs.

Given an estimated body location (px, py) and orientation θr, respectively provided by

the detector and motion-based orientation estimator, a 3D appearance model is automatically
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reconstructed by back-projecting pixels from each camera view (Fig.5.4(c)) onto the respective

surface point (Fig.5.4(d)) using the 3D geometry model shown in Fig.5.3.

Moreover, in order to avoid erroneously collecting background pixels we first perform a

background subtraction, with a GPU-based foreground-background segmentation method based

on an extended colinearity criterion, which is firstly proposed by Griesser et al. [209].

We here briefly summarize this method: it compares the color values at pixels in a reference

(background) image, and a given image. In particular, all color values within a small window

(3 × 3 neighborhood) around a pixel are used for comparison. And change detection is based

on a colinearity criterion, if they are colinear, no change is judged to be present and the

background is still visible at the pixel in given image. Conversely, if not, the pixels are considered

to have different colors, and a foreground pixel then is found. This colinearity criterion is

further integrated into a MRF framework, solved in an iterative manner. A priori knowledge

is integrated through the change mask of the prior frame as well as the compact property

of connected foreground regions. Additionally, it adds an additional component for darkness

compensation, which helps the algorithm to correctly detect foreground regions even if the

object’s color is nearly black [209].

Note that, within this GPU-based foreground-background segmentation, the background

model is also learned from a set of frames without people, as for the edge-based background

subtraction of Chapter 4.3.2. Fig.5.4(b) shows an example result of this algorithm. The re-

sulting segmentations are smoothly shaped and provide reliable input for 3D appearance model

construction.

The result is a large set of N model points xn (Fig.5.4), including position, color values,

and local surface normals from the underlying 3D surface. This constitutes a sparse appearance

model, that we denote by

M ≡ {(x1, v1, n1), · · · , (xN , vN , nN )} . (5.4)

5.4.2 Matching through Planar Reprojection

Once the sparse point cloud is available, pixel-level measurements can be obtained by repro-

jecting the visible part of the cloud (appearance model) onto the respective image planes, by

using the (3× 4) linear camera projection matrix given by,

yk = KkTkwTwoxo; k = 1, . . . , Ncam, (5.5)
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(a)

(b)

(c)

(d)

(e) ... ... ...... ...

Figure 5.4: Appearance model reconstruction. (a) Original input frames from 4 views. (b)

Corresponding foreground images. (c) Detected target, with geometry model superimposed onto

foreground images. (d) Back-projected partial 3D cloud, at each view. (e) Final 3D appearance

model, covering 360◦, with some key-poses shown.

where xo is a local model point in homogeneous coordinates, yk is the corresponding image

pixel, K is the intrinsic camera projection, known from off-line calibration

K =

 fx 0 pc,x 0
0 fy pc,y 0
0 0 1 0

 , (5.6)

with fx, fy the focal lengths, pc,x, pc,y the principal point, and Tkw, is the camera-to-world con-

stant transform, also known by calibration. Finally, Two is a homogeneous (4×4) transformation

matrix that represents the target pose

Two =

[
R t
0 1

]
, (5.7)

where t = [px, py, Z = 0]T is the location on the floor, and the (3 × 3) rotation matrix R

is expressed in terms of XY Z Euler angles (of which only γ is updated by the orientation
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3D appearance model

Reprojected 

2D templates at frame 0

Reprojected 

2D templates at frame n

Reprojected 

2D templates at frame n+1

Figure 5.5: Planar templates are obtained by reprojecting the 3D appearance model in different

poses, from different camera views. The 2D templates are generated according to all possible

poses at the first frame, and afterwards, a prediction mechanism is employed for computational

efficiency, that is, the templates are only generated on the poses which are in a fixed range around

the former estimation.

estimation):

θr = [α, β, γ]T (5.8)

R(θr) = Rx(α)Ry(β)Rz(γ).

Given a model point (xo, yo, zo) in world coordinates, the corresponding location (xs, ys) in

camera coordinate can easily be obtained via (5.5). During the reprojection, it is worth noting

that, due to the rotations of the body, the visible part of the sparse 3D point cloud should

change, only a roughly 180◦ slice of the point cloud is visible in any particular frame, that

corresponds with the visible portion of the human body in each video frame.

Thus, it is necessary to test visibility of each point: since the shape is almost everywhere

convex, a point p is visible from camera c if the angle between its normal and the camera

projection ray through p is less than 90◦, that is

Vc ·nc < 0 (5.9)

where Vc is the viewing vector (i.e. the position of p in camera coordinates) and nc is the

respective normal direction.
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The point projection (5.5) and visibility test (5.9) are done at each pose hypothesis θr. Fig.

5.5 provides an example of re-projected templates on one camera view.

Subsequently, template matching amounts to evaluate a likelihood function that robustly

compares template colors with the underlying foreground pixels. For a predicted pose T̂t at

time t, our similarity measure between the Nk color pixels u from the reprojected template

hk(T̂ ) onto camera k, and the corresponding pixels v of the foreground image, is defined as

D =

Ncam∑
k=1

1

Nk

∑
u∈hk

√ ∑
ch∈(r,g,b)

(uch − vch)
2

(5.10)

which is the sum of absolute pixel-wise difference over (r, g, b) channels.

In this formula we adopt an isotropic L1-norm that, compared to classical L2-norm, it is

more robust to outliers, such as erroneous colors sampled from the background, as well as

non-Gaussian noise statistics. The corresponding likelihood is a Laplacian distribution

P (z|s)ori =
1

2σ
exp

(
−D
σ

)
(5.11)

where the pose is described by s = (px, py, θr), and σ is the precision parameter of this distri-

bution.

During orientation estimation, we employ a simple but effective prediction mechanism for

computational effiency. In fact, during normal walking it is unlikely for a person to turn more

than 90 degrees over one frame of the sequence; therefore, after the initial pose estimation,

reprojection and matching are performed only on the orientations which are in a fixed range

around the former estimation, thus saving computation while reducing estimation error. Fig.

5.5 illustrates this strategy across frames.

Similarly to the motion-based estimator, this prediction requires a coarse data association

between two adjacent frames, also given by the aforementioned position-based Hungarian algo-

rithm.

5.5 Dynamic Hybrid Strategy

To intuitively and comprehensively describe our proposed dynamic hybrid strategy on orien-

tation estimation, we explain it by illustrating one of those typical cases in Fig. 5.14. As it

can be seen, during the short period (frame 2377 - frame 2434), the person with beige color

rotates itself at his place, thus the 3D localization result remains almost unchange through-

out this period. As motion-based estimation approaches rely on motion vector between two
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corresponding poses at adjacent time steps, and in such case, the motion vector Mi,j remains

zero thus it is not able to provide reliable output for orientation estimation. Nevertheless, if

this situation continuously remains for a consecutive timestep Nstill, a 3D appearance model is

automatically constructed for this person and corresponding 3D appearance-based orientation

estimation method is launched. As we can see from Fig. 5.14, 3D appearance-based estima-

tor can quite robustly give out the orientation of this person even though he is standing still

during this period. Therefore, with the hybrid combination of motion-based approach and 3D

appearance-model one, we take full advantage of low computational cost of the motion-based

orientation estimator and high-precision of 3D appearance-based estimator, consequently mak-

ing them mutually beneficial to keep both their advantages while compensating for the limits

of each.

5.6 Experimental Results

In this section, we demonstrate our approach on the problem of estimating human body orien-

tation in 3D space. As we focus on demonstrating the ability of the approach on dealing with

very ambiguous situations, such as people interact with each other for long time with similar

appearance, standing extremely close to others and being fully occluded on some camera views,

or they walk very slow or even remain static over a long period. Therefore we record our own

dataset which exhibit a diverse set of aforementioned features, to test the effectiveness of our

proposed hybrid human body orientation estimation approach. Qualitative results as well as

quantitative evaluation are both presented in this section.

5.6.1 Qualitative Results

We evaluate our orientation estimation algorithm through four video sequences, showing mul-

tiple people that move and turn freely, as well as interacting and occasionally occluding each

other in some views. The sequences have been simultaneously recorded from all cameras, as

described in Chapter 3.2, with a resolution of (752× 480) and a frame rate of 25 fps.

Furthermore, during the initialization phase of our system, the 3D appearance model of each

target is automatically reconstructed according to the detected 2D location using the technique

described in Chapter 4 and known orientation provided by motion-based method (Chapter 5.3),

Note that the body orientation θr is continuously estimated by the motion-based method,

while in the appearance-based method, for computational effiency, 12 discrete orientations
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Figure 5.6: Human body orientation estimation results on the sequence of Laboratory 2 Targets

with longterm handshake. Every row consists of views from four different camera views at the

same time frame. The arrow indicates the orientation of the human body in 3D world space.

covering 360◦ are utilized during the reprojection of the appearance model onto the image

planes, and at subsequent frames the model is reprojected only within 90◦ around the previous

estimate.

Figs. 5.6 to 5.9 show the example orientation estimation results on each of the evaluated

sequence. In each image, the orientation of each target is indicated by a colored line, with

arrow pointing to the estimated orientation. And the silhouette of the geometry model is also

superimposed onto each target, to illustrate the tracked location that is used as reference.

Following we will go into more discussions on each corresponding sequence.

Laboratory 2 Targets Within this sequence (Fig. 5.6), there are two targets involved,

who are shaking hands with each other. During sample frame 1113 and frame 1157, we can

see that the two persons walk, meet, shake hands and then separate away. In frame 1127 and

1139, the person’s speed magnitude is very small, in this case, the appearance-based method is

launched and works efficiently, so that the orientations of both persons are correctly estimated.

Laboratory 3 Targets This sequence (Fig. 5.7) involves three targets, during this se-
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Figure 5.7: Human body orientation estimation results on the sequence of Laboratory 3 Targets.

Every row consists of views from four different camera views at the same time frame. The arrow

indicates the orientation of the human body in 3D world space.

quence, people are walking with notable speed in most case, and according to our model, the

motion direction provides a good prior for the body orientation. In this sequence we also

emphasize the challenges due to mutual occlusions, from one or more views. At frame 2582,

although people keep very close to each other, in addition, the person superimposed with green

cylinder is occluded by others simultaneously on view 0 and 2, our estimation results are still

satisfactory, thanks to the multi-camera environments that resolving the ambiguities. Addi-

tionally, we notice that during frame 2525 and 2582, the target superimposed with red cylinder

remains almost static, however its body orientation is correctly estimated.

Laboratory 4 Targets - Interaction In this sequence (Fig. 5.8), there are more targets

involved, and it features a more challenging scenario consists of long-term interaction and still-

standing case. As we can see from frame 2456 until frame 2500, the two persons correspondingly

with green and blue cylinder get extremely close with body oriented towards each other and have

close interaction across several frames, while their speed magnitude is particularly small. Our

approach is still able to successfully estimate correct body orientation from noisy observations.
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Figure 5.8: Human body orientation estimation results on the sequence of Laboratory 4 Targets,

aim to evaluate the performance with longterm interaction and still standing case. Every row

consists of views from four different camera views at the same time frame. The arrow indicates

the orientation of the human body in 3D world space.

The success on one hand demonstrates the effectiveness of our approach, and on the other hand

we should thank to our hierarchical grid-based detector that provides reliable position reference

even in case of close proximity. Again, as can be seen from the four sample frames, the target

with red cylinder remains static for a long time, and our approach successfully gives out correct

estimation.

Laboratory 4 Targets - Crossing This sequence (Fig. 5.9) also involves four targets,

however, comparing to previous sequence we have a different emphasis on evaluating the per-

formance. Firstly, we can see the challenges as targets are strongly occluded by each other from

one or two views almost in each sample frame. Secondly, between sample frame 912 and 985,

it clearly illustrates a process that the person with blue cylinder is passing between the other

two people respectively in red and green cylinder, while their spatial locations are very close to

each other. Thirdly, in frame 1061, the two persons in red and green cylinder are not only with

very close proximity but also standing almost still over few frames. Nevertheless, our approach
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Figure 5.9: Human body orientation estimation results on the sequence of Laboratory 4 Targets,

aim to evaluate the performance when target walking across others with very close proximity.

Every row consists of views from four different camera views at the same time frame. The arrow

indicates the orientation of the human body in 3D world space.

performs quite well under above various challenges.

In a nutshell, the motion direction provides a good prediction of body pose, is reliably

exploited while the targets have signifant speed. And when people are static (i.e. not moving

forward), e.g. while waiting of during interaction, our appearance-based method demonstrates

its advantage and gives a very reliable compensation. Therefore, despite various challenges of

this task as mentioned above, our proposed approach successfully estimates the body orientation

in most cases.

5.6.2 Quantitative Evaluation

In order to evaluate more precisely the performances of our approach, we compare our method

with the ground truth data on a per-frame basis. To this aim, we firstly manually label the

position of each target for each frame of the sequences with the annotation method introduced

in Chapter 3.3.1, meanwhile, its respective body orientation is annotated by rendering the 3D
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Figure 5.10: Ground truth evaluation on sequence Laboratory 2 Targets. The errors are in

degree.

elliptical body model and visually matching it with the body of the target in all views where

the person can be seen. The annotated body orientation is taken to be the person body facing

direction and labeled with an interval of 5 degrees.

For sequence Laboratory 2 Targets and Laboratory 3 Targets, the most challenging clip,

covering 400 frames from both sequences, was selected for ground truth evaluation. The results

are shown in Fig. 5.10 and 5.11 respectively, which shows the absolute error between estimated

orientation and ground truth for each person. As it can be seen from the results, the orientation

errors are most of the time below 30 degrees.

For sequence Laboratory 4 Targets - Interaction and Laboratory 4 Targets - Crossing, we

correspondingly select the most challenging clip with 500 frames for quantitative evaluation,

the absolute errors are illustrated in Fig. 5.12 and 5.13 respectively. These two sequences are

much more challenging compared to previous twos, one is because of the increased number of

targets, leading to more crowded scene, thus it will challenge the output of our detector, conse-

quently influencing the performance of orientation estimation; on the other hand, within these

two sequences, long-term interaction, mutual occlusion and still-standing cases are frequently

presented. Despite the increased challenges, the absolute orientation errors are still below 30-40

degrees mostly. In addition, we notice that in Fig. 5.12, the absolute orientation error of target

1 and 2 remain almost constant for quite a long period, as we mentioned in previous section,

target 1 and 2 get very close and interact with each other for long time during this period,

their speed is extremely slow even gets to be static. In this case, motion-based approach can

not provide reliable output, nevertheless in our estimation scheme, it will automatically turn to

79



5. HYBRID HUMAN BODY ORIENTATION ESTIMATION

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

Frame number

A
bs

ol
ut

e 
O

rie
nt

at
io

n 
E

rr
or

 in
 D

eg
re

es

 

 
Target 1

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

Frame number
A

bs
ol

ut
e 

O
rie

nt
at

io
n 

E
rr

or
 in

 D
eg

re
es

 

 
Target 2

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

Frame number

A
bs

ol
ut

e 
O

rie
nt

at
io

n 
E

rr
or

 in
 D

eg
re

es

 

 
Target 3

Figure 5.11: Ground truth evaluation on sequence Laboratory 3 Targets. The errors are in

degree.

the 3D appearance-based approach, and it can be seen from Fig. 5.12, very robust orientation

output is provided through this methodology with very low absolute orientation error, even

though the targets stand very close to each other which is hard for localization.

Our approach has demonstrated a good robustness in various cases through evaluation. By

resuming, the effectiveness of the approach is due to four main aspects: one is the reconstruction

of a detailed 3D appearance, that makes a pixel-level matching more precise with respect to

global or local statistics, such as color histograms. The second is the dynamic hybrid strategy

of combining motion-based and appearance-based method, so that efficiently handling various

cases. The third is the use of a robust multi-target detector, since a good location reference is

necessary for an accurate orientation estimation. And the fourth is the integration of calibrated

multi-camera views, both for position and orientation estimation, so that the ambiguities can

be efficiently resolved.
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Figure 5.12: Ground truth evaluation on sequence Laboratory 4 Targets − Interaction. The

errors are in degree.

5.7 Conclusion

In this chapter we presented a robust algorithm for estimating the body orientation of multiple

people simultaneously in a calibrated multi-camera environment. The merits of motion-based

and 3D appearance-based orientation estimation method is dynamically combined, providing a

solution to the crucial requirements on not only speed but also automatic initialization of 3D

appearance model, as well as being capable to deal with still-standing or slowly moving people.

Experiments over several real-world sequences have been performed and also evaluated against

ground-truth data, thus the validity of our method is demonstrated. The experimental results

evince that our approach could reliably estimate the body orientation in 360◦ scope.

Apart from facilitating an accurate orientation estimate, the proposed method has further

potential to offer disambiguation for improving tracking performance in multiple people tracking
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Figure 5.13: Ground truth evaluation on sequence Laboratory 4 Targets − Crossing. The errors

are in degree.

scenario. In the next chapter, we show how the body orientation can be efficiently integrated

into the data association problem, and how it provides ability on revolving ambiguities between

crossing trajectories.
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Figure 5.14: An illustration of the proposed hybrid strategy on estimating body orientation. It

shows a typical case that if the person does not walk with significant velocity, the motion-based

orientation estimation method becomes ambiguous, however the 3D appearance-based method

can provide very robust estimation result in such case. Our hybrid strategy can keep both their

advantages while compensating for the limits of each.
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Chapter 6

Global Optimal Data Association

for Multiple People Tracking

6.1 Introduction

Multiple people tracking is an intensively studied area in computer vision. Its primary goal is

to retrieve the trajectories of targets by localizing the targets individually at each frame, and

maintain their identities throughout the video sequence. Tracking multiple people accurately

in cluttered and crowded scenes is a highly challenging task due to frequent occlusions between

people, low resolution, abrupt motion, illumination and appearance changes, in particular, sim-

ilar appearance and complicated interactions between different targets often result in tracking

fails such as track fragmentation and identity switches.

Tracking-by-detection approaches, with the advantage of being resistant to divergence, have

demonstrated impressive results in addressing these challenges. Such approaches involve two

steps, namely independent detection in individual frames, and association of observations across

frames. With the output from our hierarchical grid-based people detector (Chapter 4) as

evidence for tracking, the main aim of this chapter is to link the detections across frames,

allowing to track and identify targets even though complex interactions and significant mutual

occlusions with automatic initialization and termination.

As discussed in Chapter 2.3, classic data association approaches such as JPDAFs or MHT

has the drawback of an exponentially growing computational complexity with the increasing

number of targets and measurements. Additionally, they can not guarantee a global optimal

solution in sub exponential time even though they attempt to model joint trajectories of all
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objects. Thus, the data association approaches based on global optimization by using Linear

Programming, being able to optimize all trajectories simultaneously and optimize the whole

video sequence, have appeared to be recent popular.

Some algorithms have been proposed for the global optimal association framework by in-

tegrating several cues such as appearance, size, location, and motion into an affinity model to

measure similarity between detections or tracklets [171, 174, 177, 210–212]. However, the main

evidence used to link detections of tracklets is still visual cues, there has been seldom effort ad-

dressed to explore the benefit from human behavior, which is a higher-level reasoning evidence.

As already illustrated in Fig. 5.1 in Chapter 5.1, showing an example that targets are inter-

acted extremely close or highly occluded by each other, with similar position even appearance,

and remains almost static over a few frames, in this case, the behavior cue - body orientation

provides valuable insight into the dynamics of a social interaction.

In this chapter, we propose a global optimization approach for long-term tracking of an a

priori unknown number of targets, randomly walking in the environment with variable num-

ber of cameras. And the problem of complex interaction and mutual occlusion is addressed

by exploiting a consistency scheme on behavior cue, as well as compensating measurements of

location and appearance, in which the related features are respectively provided by the hierar-

chical grid-based people detector (Chapter 4) and hybrid human body orientation estimation

method (Chapter 5).

More precisely, the multiple target tracking problem in this work is formulated in terms of

finding the global maximum of a convex objective function, then solved efficiently through a

linear programming relaxation. By taking the full advantage of our hierarchical grid-based de-

tector, the regular discretization scheme is further adapted here. With this particular scheme,

a grid-based network flow model is constructed, in which the nodes and edges encoded corre-

spondingly, as inspired by the work of [184]. This scheme allows to effectively avoid intermediate

hard decisions and simply model mutual occlusion because of the specific graph structure. To

enable the tracker recovering from mis-detections, we carry out non-maxima suppression during

tracking rather than during detection, with the contrast to previous approaches that the state-

space only consisting of observations, which are not able to interpolate trajectories smoothly in

case of false negatives. Moreover, the measurements of body orientation, target location and

appearance are incorporated in a global manner. The explicit use of behavior cue can disam-

biguate the situation such as in Fig. 5.1. This is distinctive compared to many state-of-the-art

approaches that only using purely visual cues (like appearance and motion information).
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The remainder of the chapter is organized as follows. Chapter 6.2 describes the general

system overview with hardware setup and algorithmic flow of software. A classic data associa-

tion method without global optimization is given in Chapter 6.3, in order to serve as one of the

baselines while comparing quantitatively with the global optimal solution. And a global optimal

data association approach is described in detail in Chapter 6.4 including problem formulation

and optimization framework. Chapter 6.5 presents and discusses experimental results through

different indoor and outdoor scenarios. At last, concluding remarks are drawn in Chapter 6.6.

6.2 Overview of the Approach

Hierarchical Grid-

based Detector

Video Sequence

People Location 

Detection

Color Histogram 

Extraction

Body Orientation 

Estimation

Model Construction

Frame
t t+1

>{ Appearance

Location

Orientation

Global Optimization

Frame
t t+1 t+2 t+3 t+4 t+5

Track Output

Feature Extraction

Orientation

Location

Appearance

Figure 6.1: Overview of the proposed approach on global optimal data association for multiple

people tracking.

The flow chart of our proposed approach is outlined in Fig. 6.1. After acquisition of original

frames from all the cameras and hierarchical grid-based detection, the potential observations
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are obtained. Note that in order to allow tracker to recover the most probable locations in

accordance with all evidences, we eschew non-maxima suppression during detection here. With

the output from detector, each observation is characterized by a descriptor that records the

features including location and appearance. However, it is not sufficient for a people tracking

approach to determine data association only according to the location reference and appearance

model, e.g. tracking may fail if two targets get very close or wear similar clothing. To overcome

this limitation, we incorporate a discriminative cue on body orientation, which is estimated

by utilizing the technique proposed in previous chapter. As proposed in our detector, the

state space is partitioned into integral grids with a coarse-to-fine strategy. We follow the

discretization structure in data association part, with the per-frame measurements sampled

on regular grids. A grid-based network model can be constructed afterwards as concisely

illustrated in model construction part, while the corresponding detailed model will be shown

in Chapter 6.4.1. A consistency scheme on behavior cue, as well as measurements of location

and appearance, is modeled as transitional cost between nodes at two consecutive time steps.

As illustrated in model construction part, the affinity measure can achieve highest only if the

nodes have simultaneous similarity on all cues of location, appearance and orientation. Next

follows the global optimization part, consists of formulating the data association problem as

finding the global maximum of a convex objective function, which in our work is solved by a

linear programming relaxation, and at last leading to track output with identity associated to

each target.

6.3 Classic Data Association without Global Optimiza-

tion

Before we go to full details on the global optimization approach for dealing with data association

problem, in this section we first describe a classic data association method, in order to serve as

one of the baselines while comparing quantitatively with the global optimal solution.

The data association problem consists in deciding which measurement should correspond to

which track. Although our detection algorithm is fairly robust, it is also not person-specific,

and therefore in a small observing environment there are always ambiguities, arising from

neighboring targets, as well as from missing detections and false alarms caused by background

clutter. To this respect we employ the Global Nearest Neighbor (GNN) approach, that gives a

good solution for this problem [213], while requiring relative low computational cost.
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The first step of the GNN is to set up a distance (or cost) matrix: assuming that, at time

t, there are M existing tracks and N measurements, the cost matrix is given by

D =


d11 d12 · · · d1N
d21 d22 · · · d2N
...

...
. . .

...
dM1 dM2 · · · dMN

 , (6.1)

where dij is the Euclidean distance between track i and measurement j, and i = 1, 2, . . . ,M ; j =

1, 2, . . . , N . In particular, dij is set to ∞ if it exceeds the validation gate, which is a circle

with fixed radius around the predicted position, eliminating unlikely observation-to-track pairs.

Moreover, it is commonly required that a target can be associated with at most one measurement

(none, in case of misdetection), and a measurement can be associated to at most one target

(none, in case of false alarms).

The GNN solution to this problem is the one that maximizes the number of valid assign-

ments, while minimizing the sum of distances of the assigned pairs. To this aim, we adopt the

extended Munkres’ algorithm [180], where the input is the cost matrix D, and output are the

indices (row, col) of assigned track-measurement pairs.

In particular, the track management follows a strategy indicated in [214]:

• Track initiation In case of new targets entering into the scene, they will generate mea-

surements that are too far from the existing targets, and therefore can be used to start

new tracks. In this case, they are labeled with a unique ID, and a counter for the number

of consecutive, successful detections for this target is also initialized to 1.

• Track maintainance During tracking, a target is successfully detected whenever the data

association algorithm provides one valid measurement for it, so its counter is increased

up to a maximum value (which can be taken as a confirmation time), while in case of

misdetection it will be decreased. Those targets which are successfully detected over the

confirmation time, can be considered as stable targets and maintained by the algorithm.

In this way, if a target is misdetected for a few frames in case of occlusion, it can still be

recovered until the counter goes to 0.

• Track termination When a target exits the scene, or after occlusion for a too long time,

its misdetection counter goes to 0, and its track is terminated.

A pseudo-code of the whole procedure is shown in Algorithm 2, a track is initialized when

new measurements come and no corresponding target. And a track is only maintained under
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Algorithm 2 Track management with GNN

1: if nMeasurements = 0 then

2: for i = 0 to nTargets do

3: DecreaseCounter(target[i]);

4: if Counter(target[i]) > 0 then

5: MaintainTarget(target[i]);

6: else

7: TerminateTarget(target[i]);

8: end if

9: end for

10: else

11: if nTargets = 0 then

12: for j = 0 to nMeasurements do

13: newTarget = CreateTarget(meas[j]);

14: ResetCounter(newTarget);

15: end for

16: else

17: for i = 0 to nTargets do

18: for j = 0 to nMeasurements do

19: D(i, j) = Distance(target[i],meas[j]);

20: if D(i, j) > V alidGate then

21: D(i, j) =∞;

22: end if

23: end for

24: end for

25: (i↔ j) = GNN(D);

26: for i = 0 to nAssocTargets do

27: if D(i, j(i)) ≤ V alidGate then

28: MoveTarget(target[i],meas[j]);

29: IncreaseCounter(target[i]);

30: if Counter(target[i]) > MaxC then

31: Counter(target[i]) = MaxC;

32: end if

33: else

34: DecreaseCounter(target[i]);

35: if Counter(target[i]) = 0 then

36: TerminateTarget(target[i]);

37: end if

38: end if

39: end for

40: for j = 0 to nUnassocMeas do

41: newTarget = CreateTarget(meas[j]);

42: ResetCounter(newTarget);

43: end for

44: end if

45: end if
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the case that Counter(target[i]) reaches MaxC. If the distance between measurement and

target is lower than a given validation gate, then Counter(target[i]) is decreased and if it goes

to 0, then this target is removed so that the track is terminated.

6.4 Global Optimal Data Association

In this section, more details are provided about the proposed global optimal data association

approach, which finds global optimal solution for multi-target tracking. We start with the

formulation of a grid-based network flow model, with the nodes and edges encoded. Then we

transform the maximum a-posteriori trajectory estimation into an Integer Linear Programming

(ILP) problem, solved through relaxation. Followed by the association affinity model, in which a

consistency scheme is exploited on behavior cue, as well as the compensation with measurements

of location and appearance.

6.4.1 Grid-based Network Model

We recall that the state space has been partitioned into discrete coarse-to-fine regions during

detection phase (Chapter 4). Each discrete region
{
Ri,l

}Nl
i=1

is sampled at its center, where

1 ≤ l ≤ L, L is total levels of state space hierarchy, Nl is the number of grids at level l. With

the refinement through detection, a set of observations with world-space position then would

be on the leaf level L. Assume there are N t
o observations at time instant t, 1 ≤ t ≤ T , the

observation set then be R(t) =
{

(R1,L
t , R2,L

t , · · · , RN
t
o,L

t

}
, while the full set of observations is

< = {R(t)}. As we avoid non-maxima suppression during detection phase, these observations

may contains many false positives.

By assuming that a pre-defined maximum number of people nmax can appear throughout

the video sequence, our goal is to find a unique track for target n = 1, . . . , nmax, by eliminating

false positives and recovering from false negatives, given by an ordered sequence of observations

at all times Tn =
{
R
i1n,L
1 , R

i2n,L
2 , · · · , Ri

T
n ,L
T

}
(some of which may be empty), where R

itn,L
t ∈ <,

itn is the region assigned to target n at time t, and the set of all tracks is given by T = {Tn}.

In order to simplify the formulation, we construct a grid-based flow model inspired by the

work of [184], extended to a new consistency scheme within time intervals. For NL discrete grids

and T consecutive time steps, a directed acyclic graph (DAG) with NLT nodes is introduced

as shown in Fig. 6.2, in which every node represents a discrete grid at a given time step.

For a simpler flow-based analysis, the nodes are represented in the form of pairs within our
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model, allowing to explicitly model object dynamics through transition costs by considering the

relationship of observations between two consecutive time steps. By contrast, the transition

cost in the model of [184], is assigned only with the occupancy probability of corresponding

grid. For any location Ri,L, that an object located at Ri,L (which will be encoded as node i in

following text) at time t can reach its neighbors N(i) including itself at time t+ 1. Therefore,

Frame m m+1 n-1 n n+1

Figure 6.2: The grid-based network flow model for multiple object tracking. The nodes are

represented in the form of pairs, in which the gray nodes encode the possible location of detection,

the colored nodes encode the detected location of measurements while the color encodes the

appearance information, and the arrow encodes the orientation information.

a path for the object starting from node i to node j is represented as pi,jt , valued pi,jt ∈ {0, 1},

encoding that if the path is within part of some trajectory, that is, pi,jt = 1 means that the path

is on the trajectory, and pi,jt = 0 means not. The cost c(i, j) of each pi,jt between node i and

node j is assigned in the light of an association affinity model, which will be further described

in Chapter 6.4.3.

By taking advantage of the grid-based network flow model, we define a list of constraints to

guarantee that each edge(path) through the DAG is practically possible:

Continuity Potential As illustrated in Fig. 6.3, in order to enforce continuous trajectories

for tracks, that for any node j, paths arriving at j at time t should be equal to the sum of paths

leaving from j at time t+ 1,

∀t, j,
∑

i:j∈N(i)

pi,jt =
∑

k∈N(j)

pj,kt+1 . (6.2)
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Intersection Avoidance With the sampled grid resolution is sufficiently fine, no two

objects should occupy the same grid at one time, thus, for any node j, the sum of paths from

j should be no more than 1,

∀t, j,
∑

k∈N(j)

pj,kt ≤ 1 . (6.3)

Initialization and Termination Scheme For automatically initializing and terminating

a track, two special nodes, source and sink nodes − vsource and vsink, are introduced into the

proposed network flow model, as shown in Fig. 6.3. Both nodes are connected to any node in

the network, and represent unknown locations for targets entering or exiting the observation

area. In Fig. 6.3, to simplify we only show nodes at the first frame connected to the source,

and nodes at the last frame connected to the sink.

The source and sink nodes are subject to the constraint, that all paths should start from

vsource and end at vsink,

∑
j∈N(vsource)

pvsource,j =
∑

k:vsink∈N(k)

pk,vsink . (6.4)

as we already mentioned, here the neighborhood of vsource, vsink coincides with the entire

network.

6.4.2 Linear Programming Formulation

The objective of global optimal tracking is to link all the detections together over the whole

sequence, choosing links so that the total probability is maximized, that is, maximizing the

posteriori probability of T with given observation set <,

T∗ = arg max
T

P (T|<)

= arg max
T

P (<|T)P (T)

= arg max
T

∏
t

P (R(t)|T)P (T),

(6.5)

where the last row assumes that measurements are conditionally independent between times,

given the trajectories T. If further assume that measurements are independent between targets,

i.e. by ignoring the effect of close interactions, then (6.5) can be decomposed as:

T∗ = arg max
T

∏
t

P (R(t)|T)
∏
Tn∈T

P (Tn) . (6.6)
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Frame t-1 t t-1

Figure 6.3: Illustration of constraints. They enforce continuous trajectories for each track by

constraining each node can be passed by any path, and intersection is avoided by constraining

each node can be only occupied by one object at the same time, the track can also be initialized

and terminated automatically introducing source and sink nodes.

Using the network flow formalism we can easily cast it to an Integer Linear Program-

ming(ILP) problem, with an objective function that is linearized with respect to a set of binary

path (or flow) variables pi,jt ∈ {0, 1}, which indicate if a path is within part of some trajectory or

not, as mentioned earlier. Then the proposed grid-based network flow model can be expressed

as an ILP with the following objective function, by minimizing the total cost,

X∗ = arg min
X

CT p

= arg min
X

∑
i

c(vsource, i)p
vsource,i +

∑
i,j,t

c(i, j)pi,jt

+
∑
i

c(i, vsink)pi,vsink ,

(6.7)

in which the corresponding cost function C will be described in more details in Chapter 6.4.3.

Minimizing the criterion of (6.7) under the constraints of (6.2) to (6.4) can be rewrote as

follows,
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minimize CT p

subject to ∀t, j,
∑

i:j∈N(i)

pi,jt =
∑

k∈N(j)

pj,kt+1

∀t, j,
∑

k∈N(j)

pj,kt ≤ 1

∑
j∈N(vsource)

pvsource,j =
∑

k:vsink∈N(k)

pk,vsink

∀t, i, j, pi,jt ∈ {0, 1} .

(6.8)

Since Integer Linear Programming is NP-complete, we relax the condition pi,jt ∈ {0, 1} to

0 ≤ pi,jt ≤ 1, resulting in a significant complexity reduction, and the relaxed formulation can

be sufficiently solved with the simplex or interior-point method. The LP results then, are no

longer guaranteed to be integer. However, we find in the experiments that the results are in

most cases round integral, therefore giving a globally optimized solution.

6.4.3 Association Affinity Model

The details on the association affinity model are provided, which incorporate all meaningful

features, including the measurements on behavior cue, as well as location and appearance in

a global manner. With the set of observations <, we extract the features respect to location,

color appearance, human body orientation, as illustrated in feature extraction module in Fig.

6.2. Location feature of each observation is represented as a grey node, its corresponding color

measurement is represented as a colored one, while the arrow indicates the orientation cue.

Therefore, the transition probability term for each path pi,j leaving from node i to node j,

is according to,

A(i, j) =

{
Apos(i, j) ·Acol(i, j) ·Aori(i, j), if tj − ti = 1, j ∈ N(i)

0, otherwise
, (6.9)

which is a product of these three affinities Apos(i, j), Acol(i, j), Aori(i, j), respectively are lo-

cation, appearance, orientation affinity between nodes i and j. To minimize the total cost

according to (6.8), the corresponding cost is given by c(i, j) = −log(A(i, j)). The higher the

affinity is, the more negative the cost of the edge, subsequently, confident tracks are likely to be

in the path of the flow in order to minimize the total cost. And after taking log of the product

of three affinities, the cost c(i, j) becomes a weighted sum of them, thus these three affinities

can be compensated with each other if any of these three features becomes ambiguous.
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To be more detailed on each affinity term, the location affinity term Apos(i, j) concerns the

spatial distances between two detection responses within two consecutive time steps,

Apos(i, j) = exp(−||li − lj ||
σ2
l

) . (6.10)

Note that the detection responses are on the 3D ground plane, not in 2D image plane. And

the absolute spatial location difference is a L1 norm.

For the color appearance term, histograms in CIE-Lab color space are employed for better

characterizing the color content, which has the advantage of being perceptually uniform. In

particular, 64 × 64 × 64 color histograms are extracted from foreground images according to

the detection responses. It is worth noting that the foreground images are obtained through

utilizing a GPU based foreground/background segmentation approach proposed by Griesser et

al. [215].

To compare the color feature similarity, Bhattacharyya distance measure is utilized because

of its good classification property, allowing the combination of different features in a straight-

forward way. The similarity is multiplied through all views and assigned to corresponding path

between nodes i and j.

Acol(i, j) =
∏
nv

exp(−dB(ai, aj)

σ2
a

) , (6.11)

where dB is the Bhattacharyya distance between color feature ai and aj .

Finally, we integrate the crucial body orientation term, and the affinity is simply defined by

difference between the two consecutive orientations,

Aori(i, j) = exp(−0.5 ∗ (1− cos(|θi − θj |)
σ2
θ

) . (6.12)

Note that the orientation θi and θj are computed in 3D space, being defined as the rotation

with the axis perpendicular to the ground plane. The form of 0.5 ∗ (1 − cos(|θi − θj |)) makes

the orientation difference lie in the interval of [0, 1].

As already emphasized before, the body orientation cue provides hints for resolving ambi-

guities between crossing trajectories, being discriminative enough even if crossed targets have

similar appearance or move very slowly. The significant advantage of adding the orientation

affinity term, is that more accurate trajectories can be estimated in case of close interaction or

mutual occlusion, which will be demonstrated in our experiments in Chapter 6.5.
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6.5 Experimental Results

This section aims to show the demonstrative results of our proposed approach. We evaluate the

algorithm through a large variety of pre-recorded video sequences from our own dataset and

public dataset as mentioned in Chapter 3.2, that involving both indoor and outdoor scenarios,

with multiple people entering and leaving the scene, as well as closely interacting with each

other for long time, or be seriously occluded by others.

6.5.1 Implementation Details

In order to keep a tractable complexity we separate long sequences into several batches, each

one including 50 frames, processed one after the other. The ILP problem is solved by using the

IBM ILOG CPLEX Optimizer 1. This optimizer is able to solve very large linear programming

problems using either primal or dual variants of the simplex method of the barrier interior point

method.

At the same time, it is important to ensure consistency across batches, therefore we include

the last frame of the previous batch into the current one, not only considering the detected

locations but also the flows. This can be implemented as an additional constraint into the ILP

problem (6.8), ∑
j∈N(i)

pi,j−1 = mi, ∀(i, j). (6.13)

As described in Chapter 4.4.1, the space has been discretized into 4Ng × 4Ng grids on the

finest level, with each node of the grid at time t connecting to its 9-neighborhood at time

t+1 (8 neighbors plus the central location itself), resulting in 144N2
g flows between consecutive

frames. We define the transition cost c(i, j) to be 0 if there is no observation on node i, that

significantly reduces the size of graph and decreases the computational cost. Note, however, that

there are approximately 100 observations in each frame, since we avoid non-maxima suppression

during detection: the redundant observations greatly help for preserving the tracks during heavy

occlusion and long-term interaction.

We also pay special attention to check the resulting, continuous values of the variables after

linear programming relaxation. By processing a batch of 50 frames with a fine-grid discretization

of 40×40, which results in 720,000 variables, we noticed that 719, 800 of them were in the range

[0, 0.01], and 200 in the range [0.99, 1]. Therefore, the relaxed linear programming is able to

give an almost globally optimal solution to the original, integer-valued problem.

1http://www.ibm.com/software/integration/optimization/cplex-optimizer
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6.5.2 Tracking Performance

Figure 6.4: Tracking performance of our proposed approach on our own laboratory dataset with

4 targets involved, aiming to test the performance under the case of long term interaction. Every

row shows a diffent frame, while every colomn displays diffent camera view.

We provide first a qualitative evaluation of results for each test sequence. Quantitative

results will be shown and discussed in the following section.

Laboratory 4 Targets - Interaction This sequence consists of 3160 frames, in which the

objects have interaction for long time. This scenario is aiming at evaluating the ability of our

approach for dealing with long-term interaction and still-standing case, especially to verify the

validity of the affinity term on behavior cue. Fig. 6.4 illustrates some sample frames between

frame 2435 and frame 2499, target 1 and target 2 get extremely close and interact with each

other across several frames, even that they almost stand still over time and their clothes are

quite similar. Nevertheless, our hybrid orientation estimation scheme efficiently gives out the

orientation of each target, consequently their corresponding opposite body orientations provide

a powerful compensation in this ambiguous case, target 1 and 2 successfully maintain their own

identity throughout the interaction.

Laboratory 4 Targets - Crossing The second sequence consists of 1800 frames. Within

this sequence, most of the targets are wearing very dark clothing, with ambiguous appearance

compared to each other. The objective of this case is to evaluate the capability of how the three

affinity terms compensate with each other if any of the three features becomes ambiguous. As

shown in Fig. 6.5, we can see the challenges due to targets that are occluded by each other
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Figure 6.5: Tracking performance of our proposed approach on our own laboratory dataset with

4 targets involved, aiming to test the performance when target walking across others with very

close proximity. Every row shows a diffent frame, while every colomn displays diffent camera view.

from one or two views. Sample frame 923 and frame 970 clearly illustrates a process that target

1 is trying to pass between target 0 and 3, their spatial locations are very close, however the

distinguishing appearance of target 1 helps itself successfully maintain its identity during this

crossing, as well as owing to its different orientation compared to other two targets. Conversely

at frame 1055, target 0 and target 3 have close interaction while wearing extreme similar dark

clothing, however their distinctive orientation provides efficient hint to solve the ambiguity

despite of the similar appearance.

Laboratory 6 Targets An even more challenging sequence is recorded from our laboratory,

which consists of 1520 frames, involving 6 targets in small observing area, therefore being with

high density and heavy occlusion, so that to test the ability of our approach to cope with

crowded environment. Example snapshots from the resulting tracks are shown in Fig. 6.6,

clearly, the tracks for all targets are successfully obtained, even though they are densely located

and some of them are occluded by others. More importantly, as illustrated from the tracking

results, although the high density and severe occlusion, the identities of corresponding tracks

are maintained very well over significant time intervals.

EPFL - Campus Sequence EPFL-Campus consists of around 5800 frames, which is recorded

with outdoor scenario, within which the sunlight condition dynamically changes and there are

shadows casted by moving people, furthermore, some targets run with fast speed within the
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Figure 6.6: Tracking performance of our proposed approach on our own laboratory dataset with

6 targets involved, aiming to test the performance under crowded environment. Every row shows

a diffent frame, while every colomn displays diffent camera view.

scene. Towards this sequence, we aim to evaluate whether our approach is able to handle the

case of illumination changes, shadows and fast motion. Fig. 6.7 illustrates sample results of

the tracking results. Despite the illumination changes and shadows, our approach correctly

tracking targets throughout the sequence. In particular, as we can see from Frame 1706 appar-

ently, target 7 runs along with target 6 with a very high speed, nevertheless it is successfully

handled while their corresponding identity is well maintained. Note that within this sequence,

the targets frequently leave and reenter the observing area, then they would be assigned a new

unique ID everytime, therefore the identity changes for the same target across frames as we see

from the sample frames.

EPFL - Terrace This sequence contains 5000 frames, up to 9 targets walking freely within

a small outdoor area, which features a much more challenging outdoor scenario including a large

number of occlusions, interactions, significant scale changes as well as illumination changes. This

scenario makes the tracking performance evaluation of our proposed approach more convincing

and significative. As can be seen from Fig. 6.8, plenty of challenges are obviously existing,

targets get very close to each other and most of them have similar dark clothing. There are

respectively 6, 7 and 8 targets appeared in the sample frame 1634, 2290 and 2540, all the targets

are successfully tracked in spite of the various challenges. Especially in frame 2540, there are 8

targets in such a small observing area, thus the scene gets densely crowed, such as the cluster of
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Figure 6.7: Tracking performance of our proposed approach on public dataset EPFL-Campus

with outdoor scenario, aiming to evaluate the ability of our approach to handle the case of illu-

mination changes, shadows and fast motion. For the first two datasets, every row shows a diffent

frame, while every colomn displays diffent camera view.

target 10, 15, 17 and target 7, 16, they locate extremely close to each other. Nevertheless, they

can be tracked very well. However we notice that the same target is assigned with different

identity across the frames, in this sequence it is because of the frequent interobject occlusions,

track-loss occurs sometimes throughout the long sequence, but it recovers very soon afterwards

and assigns a new identity to the recovered track.

PETS2009 - S2L1 To further challenge the performance of our approach, monocular

tracking is performed by using only one view out of the sequence PETS2009 - S2L1, from the

VS-PETS 2009 benchmark dataset. This sequence shows an outdoor scene with up to 8 people

walking freely and being occluded by each other for numerous times. Due to the single view

this sequence poses additional challenges compared to previous ones. Firstly, targets frequently

form together and split away. Secondly, it is totally ambiguous to distinguish targets when

they are occluded by other tracking targets or traffic sign. Thirdly, the motion of some targets

is very dynamic, since they are suddenly stopping, moving backward, or in circles. Fig. 6.9
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Figure 6.8: Tracking performance of our proposed approach on public dataset EPFL-Terrace,

which features a highly challenging outdoor scenario. We aim to evaluate the performance under

large number of occlusions, interactions, significant scale changes and illumination changes. For

the first two datasets, every row shows a diffent frame, while every colomn displays diffent camera

view.

depicted 12 sample frames of the monocular tracking results. From the results we can explicitly

see the challenges, in frame 71 target 1 is occluded by the traffic sign while the four targets in

the middle are in close proximity; similarly, at frame 355 target 9 is almost fully occluded by

target 10 and by the traffic sign, while at frame 481 target 9 is again occluded by target 13.

Especially at frames 696 and 711, the scene is highly crowded. Our approach can handle most

of the above cases, although a few mis-detections happen, e.g. at frames 71 and 123, due to a

long-term, close proximity. Note that during frames from 514 to 696 the target walking on the

lawn is not tracked, because it is out of the observation area.

6.5.3 Quantitative Evaluation

For a more fine-grained analysis, it is instructive to have a quantitative performance evaluation

of our approach under our aforementioned unified performance evaluation framework, which

include annotated ground-truth data and stand evaluation metrics.

Table 6.1 gives the quantitative results for all of the tracking metrics, which have been
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T
a
b
le

6
.1
:

Q
u
a
n
ti

ta
ti

v
e

p
er

fo
rm

a
n
ce

ev
a
lu

a
ti

o
n

re
su

lt
s.

T
h
is

ta
b
le

sh
ow

s
th

e
co

m
p
a
ri

so
n

re
su

lt
s

b
et

w
ee

n
o
u
r

a
p
p
ro

a
ch

w
it

h
d
iff

er
en

t

st
a
te

-o
f-

th
e-

a
rt

a
p
p
ro

a
ch

es
.

T
h
e

re
su

lt
s

a
re

ev
a
lu

a
te

d
w

it
h

va
ri

o
u
s

m
et

ri
cs

a
s

d
es

cr
ib

ed
in

C
h
a
p
te

r
3
.3

.2
.

D
at

as
et

M
et

h
o
d

M
O

T
A

M
O

T
P

F
N

F
P

ID
S

G
T

M
T

M
L

F
M

L
a
b

o
ra

to
ry

4
T

a
rg

e
ts

-
O

u
rs

9
8
.3

7
7
.5

1
6

1
6

2
4

4
0

2

In
te

ra
c
ti

o
n

C
h

en
20

12
[2

16
]

8
7
.3

7
9
.2

2
6

2
1
5

1
2

4
4

0
5

B
er

cl
az

20
09

[1
84

]
9
5
.5

7
4
.6

2
2

6
4

4
4

4
0

3

L
a
b

o
ra

to
ry

4
T

a
rg

e
ts

-
O

u
rs

9
8
.3

7
9
.7

9
9

1
6

4
4

0
2

C
ro

ss
in

g
C

h
en

20
12

[2
16

]
8
1
.9

7
7
.8

1
1
3

2
1
0

3
7

4
4

0
1
0

B
er

cl
az

20
09

[1
84

]
9
5
.6

7
6
.3

2
5

3
8

2
2

4
4

0
8

L
a
b

o
ra

to
ry

6
T

a
rg

e
ts

O
u

rs
9
1
.2

8
2
.7

3
5

2
4

2
7

6
6

0
3

C
h

en
20

12
[2

16
]

8
2
.9

7
8
.9

3
7

8
6

4
4

6
6

0
3
2

B
er

cl
az

20
09

[1
84

]
8
6
.6

8
0
.1

4
0

5
1

4
0

6
6

0
2
8

E
P

F
L

-
C

a
m

p
u

s
O

u
rs

7
3
.4

7
9
.8

2
7
5

4
3
0

6
2
4

2
4

0
0

C
h

en
20

12
[2

16
]

6
0
.5

7
4
.4

3
1
6

7
8
2

5
3

2
4

2
2

2
3
5

B
er

cl
az

20
09

[1
84

]
6
6
.2

7
7
.6

2
9
0

5
9
3

2
1

2
4

2
4

0
1
0

E
P

F
L

-
T

e
rr

a
c
e

O
u

rs
7
0
.9

8
0
.7

3
6
4

6
7
0

1
5

9
7

1
7

B
er

cl
az

20
11

[1
92

]
9
4
.0

7
7
.1

-
-

-
9

-
-

-

A
n

d
r.

20
10

[1
86

]
8
6
.2

3
9
.3

-
-

1
8

9
-

-
8

A
n

d
r.

n
o

O
M

[2
17

]
8
4
.9

7
9
.6

-
-

1
9

9
7

1
1
0

P
E

T
S

-
S

2
L

1
O

u
rs

7
1
.1

6
6
.9

5
6
6

2
5
5

5
3

2
3

2
0

2
2
7

B
er

cl
az

20
11

[1
92

]
8
2
.3

5
2
.1

6
4
1

1
2
6

1
3

2
3

1
7

2
2
2

A
n

d
r.

n
o

O
M

[2
17

]
8
1
.4

7
6
.1

2
6
2

5
3

1
6

2
3

2
1

0
1
1

A
n

d
r.

O
M

[1
65

]
8
8
.6

7
6
.9

1
7
1

2
5
9

1
9

2
3

2
1

0
1
2

103



6. GLOBAL OPTIMAL DATA ASSOCIATION FOR MULTIPLE PEOPLE
TRACKING

Figure 6.9: Tracking performance of our proposed approach on public dataset PETS-S2L1 with

outdoor scenario. Due to the monocular view, frequent occlusion, grouping together and splitting

away of the targets poses much more challenges. Sample frames on single view are shown.

detailedly explained in Chapter 3.3.2. We further compare our approach to different state-

of-the-art approaches. In particular, on the first three our own datasets and EPFL-Campus

dataset, we respectively compare with two baseline methods: Chen 2012 [216] and Berclaz

2009 [184]. On one hand, we mainly focus on demonstrating the improvement achieved by

global optimal data association over classic data association, while using the same hierarchical

grid-based detector input. Unsurprisingly, results on overall tracking accuracy (MOTA), preci-

sion (MOTP) as well as misdetections (FN), false alarms (FP), identity switches (IDS), mostly

tracked (MT), mostly lost (ML), fragment (FM) significantly outperform the classic data as-

sociation ones except the precision metric for dataset Laboratory 4 Targets - Interaction. The

global optimal one efficiently reduces misdetections, false alarms and identity switches, therefore

producing much smoother tracks and more consistent trajectories.

On the other hand, we compare with the baseline of standard Linear Programming approach

in the work of [184], in order to show the effectiveness of our association affinity model which has

incorporated the cues on location, appearance as well as body orientation. As can be seen from

the evaluation results, our multi-feature based affinity model shows significant improvements

over standard LP approach on all metrics. Especially thanks to the factor of explicitly taking
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behavior cue - body orientation into account, so that efficiently decrease the ambiguities in

crowded cases, therefore reduce the number of FN, FP and IDS, which in turn lead to higher

accuracy score.

For dataset EPFL-Terrace, we instead compare to the tracking results of Berclaz 2011 [192],

Anton 2010 [186] and Anton 2011 [217], the latter without occlusion modeling (denoted as

Andr. no OM). Even though the MOTA score of our method does not achieve the highest

value, the lowest IDS metric clearly indicates that our approach preserves identity much better

than others due to including behavior cue. Note that a low number of ID switches is one of

the most significant properties of a good tracking method. On the other hand, we notice that

a relative higher FP value may lead to the lower MOTA score, this is due to the fact that

we eschew non-maxima suppression during people detection, in oder to allow recovery from

misdetections during global optimization for data association, false negatives are efficiently

reduced by this procedure, nevertheless to some extent it leads to a slightly higher false alarm

score.

Finally, for the widely used dataset PETS-S2L1, we compare ours with Berclaz 2011 [192],

Anton no OM [217] and Anton OM [165], the latter again with occlusion modeling (denoted as

Andr. OM). As it can be noticed, on this monocular dataset we have slight decreases of the

performance. It can be explained by the fact that, comparing to multiple views, the performance

of our hierarchical grid-based detector is influenced by only one view, being not able to provide

the most reliable output in case of mutual occlusions (that can become almost total occlusions),

thus producing more false negatives and positives that influence the final global optimized track

output.

In addition, for the MOTA and MOTP value computed from our own approach, we again

systematically vary the overlap ratio between the annotated box and tracking result, and obtain

the corresponding varied MOTA and MOTP value, as shown in Fig. 6.10. Not surprisingly, we

can see from the results that, as the overlap threshold decreases, MOTA increases and MOTP

decreases, because more misaligned track results become classified as correct ones.

6.6 Conclusion

We have presented a global optimization framework for tracking a varying number of targets,

the problem of multiple target tracking has been formulated with a grid-based network flow
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model, then casted into Integer Linear Programming and solved through relaxation, achieving

global optimality in most cases.

Our approach initiates, maintains and terminates tracks in a fully automatic way. Exper-

iments over several benchmark sequences and quantitative comparisons with existing state-of-

the-art approaches have been performed, demonstrating that our approach deals fairly well

with mutual occlusions and long-term interactions that involve moving as well as still-standing

people, while also revealing the importance and effectiveness of explicitly integrating 3D body

orientation cue, as compared to previous approaches based on planar appearance or motion

models.

The proposed methodology can be easily applied to different camera setups and different

scenarios, and additional features can be easily included. In addition, we will consider to

extend our framework to unstable illumination conditions, and apply the system to high-level

scenarios, such as analysis of the trajectories, human-robot interaction, as well as autonomous

robot navigation.
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Figure 6.10: Influence of overlap threshold level on the evaluation results (MOTA and MOTP)

for all of the sequences.
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Chapter 7

Conclusion and Future Work

In this final chapter, we will summarize the main contributions of this thesis and thereby con-

cluded the work. According to these observations, possible improvements and some interesting

directions for future research are pointed out.

7.1 Summary

In this thesis, we have presented an unified hierarchical tracking-by-detection framework, for

long-term detection and tracking of an a-priori unknown number of people with global optimiza-

tion in complex and crowded environment, particularly the problem of complex interactions and

heavy mutual occlusions for long period are well addressed. We further consider the human

behavior as a higher-level reasoning evidence to improve the performance of data association

based tracking. This work presented in this thesis contributes to the research and application

areas of multiple people detection, human body orientation estimation as well as multiple people

tracking. More specifically,

People Detection We first built a robust hierarchical grid-based people detector, which

works on a frame-by-frame basis and merges information from multiple views, to produce an

accurate localization on the ground plane. In particular, we relied on a segment-then-locate

scheme, that detecting people by firstly obtaining foreground masks computed in multiple views,

unlike mostly appearance-based background subtraction methods, we proposed an edge-based

background subtraction for foreground segmentation, which has been demonstrated quite robust

to environmental illumination changes. We also have constructed a template hierarchy, that

matching with the foreground edge masks with a new oriented distance transform, by taking

not only the location of edge points into account but also the gradient orientation. We showed
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that this technique can significantly reduce the rate of false alarms in cluttered environment.

Our proposed hierarchical grid-based detection methodology has been demonstrated that being

able to yield nice results for detecting and localizing targets with no prior knowledge and deal

fairly well with the various challenges such as mutual occlusions, illumination changes, fast

motion, cluttered environment, and so on.

Human Body Orientation Estimation We studied part of the behavior analysis prob-

lem, by estimating the most representative cue - body orientation, which provides the direct

evidence of person’s potential behavior, that is, what the person is probably going to do and

where the person is looking at. We explored this specific cue which is seldom considered by

others, to improve tracking performance by disambiguating complex scenarios such as long-

term interactions and heavy mutual occlusions when general used features (e.g. appearance,

motion) become unreliable. The body orientation has been estimated by a hybrid 3D human

body orientation estimation approach, dynamically combining the merits of a motion-based

orientation estimator with a 3D appearance model-based orientation estimator. This approach

has demonstrated a good robustness in various cases such as long-term interaction, mutual

occlusion, slowly moving or even still-standing, etc.

Multiple People Tracking We have presented a global optimization framework for track-

ing a varying number of targets, by modeling the tracking problem with a grid-based network

flow. And we formulate it in terms of finding the global maximum of a convex objective func-

tion, then cast into an Integer Linear Programming (ILP), leading to output with identity

associated to corresponding target. It is demonstrated that global optimization is well suited

for linking detections from a people detector at individual frames. Particularly, we have shown

that how the body orientation can be efficiently integrated into the data association problem,

and how it provides its capability on revolving ambiguities between crossing trajectories. We

have also validated the tracking framework through multiple experiments over various chal-

lenging sequences, including both our self-recorded datasets and public benchmark datasets,

demonstrating that our approach is able to deal fairly well with mutual occlusions and long-

term interactions that involve moving as well as still-standing people, and the importance and

effectiveness of explicitly integrating 3D body orientation cue has been revealed. Comparing

to previous affinity models which consider appearance or motion cue, this new affinity model

efficiently decreases the ambiguities in crowded cases.

Performance Evaluation Framework This work has proposed a novel evaluation frame-

work, to quantitatively evaluate the performance of the entire tracking system. For this, we
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have annotated the ground truth data in 3D space for each video sequence, so that analyzing the

strengths and weaknesses of the system with groundtruth data. Furthermore, the evaluations

are based on standard metrics, such as Multiple Object Detection Accuracy (MODA), Multi-

ple Object Detection Precision (MODP), Precision, Recall, Multiple Object Tracking Accuracy

(MOTA), Multiple Object Tracking Precision (MOTP), False Negatives (FN), False Positives

(FP), Identity Switches (IDS), giving out an intuitive measure of the detector and tracker’s

performance at detecting objects, localizing objects, keeping their trajectories, and so on. More

importantly, with these standard evaluation metrics, it provides a much easier way to compare

our system to state-of-the-art, so that clearly indicating respective strengths and weaknesses.

7.2 Future Work

This thesis has contributed to related areas of people detection, tracking, human body orienta-

tion estimation, and there are several future research directions that have spawned, including

future improvements and potential extensions.

On one hand, the future improvements aim to improve the performance of the entire system

in certain aspects where it is currently lagging. Among the main ones is the improvement of the

hierarchical grid-based detector, it could be optimized by utilizing the full power of the latest

GPUs in order to obtain performance boost, and in order to better handle the outdoor scenarios,

the edge-based background subtraction algorithm, as one key for the final performance of the

detector, should also be improved in the future. Possible ideas that include processing binary

images with, for instance, shape analysis, so that to remove noises that not belong to peoples.

And also a part-based people detector, that does not look for a whole human body but searches

for isolated body parts would also be preferred.

Another potential improvement of our work deals with the human body orientation es-

timation module, the estimation results could be improved by using more advanced inference

approaches such as particle filters, that instead of maximum likehood approach for selecting the

body orientation in 3D appearance-based estimation method. Additionally, within the motion-

based estimation method, the motion vector can rely on not only two consecutive frames, but

also a tracklet consists of several frames, which would be helpful to achieve more robust results.

In the context of our approach of people tracking based on global optimization, on one

hand, we plan to work on the optimization itself in order to further improve the optimization

process that better utilizing current affinity terms. On the other hand, an important direction
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of future studies will be to not only utilize the body orientation output from the human body

orientation estimation module for the people tracking module, but also incorporate the built

3D appearance model to make full use of this module, so that better disambiguating tracks and

keeping identities, further improving the tracking performance. Furthermore, for the compu-

tation cost of the optimization part, there is still space to improve its efficiency by exploiting

graphics hardware. And our work can be easily applied to include additional features, such as

color or motion, also can be scaled to different camera views, as well as being used for tracking

different objects, for example 3D tracking of flying quadrotors.

Besides these straightforward improvements, we also plan to test and extend our system

to more challenging scenarios, as well as people tracking on mobile robots, with a non-static

background and viewpoint. To further enhance its applicability, future extension could be

aimed at more advanced technologies (i.e. to recognize the actions of person, as they need to

be tracked first), and can be used to an aid to enhance the utility of others (i.e. crowd analysis

may be able to detect people moving against the flow of traffic, which can then be tracked using

people tracking techniques). An interesting direction of research would be to detect and track

groups in crowd, the output of our human body orientation estimation module could provide

reliable information for group formulation if neighboring people share the same orientation.

The tracking results can also be used in the analysis of group or crowd activities. People in

crowds tend to show peculiar patterns of collective behavior like, gathering, scattering, clique

behavior, marching, milling, and so on. It would be interesting to develop crowd behavior

analysis and use the tracking results to detect and recognize normal and abnormal activities.

Our complete multi-view people detection and tracking framework lends itself very well to this

behavior analysis task. The ground plane localization can be provided as the input data for

a system whose task is to automatically analyzing the trajectories and potentially recognizing

the behavior patterns. By analyzing the behaviors of people, we could determine whether

their behaviors are normal or abnormal, so that provide high-level description of actions and

interactions between or among people.

In conclusion, our system could be extended in a variety of ways, making it an exciting and

rewarding concept to be involved in.
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