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1 Introduction

Fourier series are a well-known and powerful tool in mathematics. Jean Baptiste Joseph
Fourier discovered the principle of expanding functions into Fourier series more than
two hundred years ago and in his honour they have been named after him. In nowadays
literature, classical Fourier series are mostly given in their complex version, where the
formal Fourier expansion of a 2π-periodic function f is given by

S
(
f
)
(x) =

∞∑
k=−∞

cne
inx where cn =

1

2π

∫ 2π

0

f(t)e−intdt .

However, Fourier discovered this principle with the two trigonometric functions sine and
cosine. The equivalent formula with respect to the functions sine and cosine has the
form S

(
f
)
(x) = a0

2
+
∑∞

k=0

(
ak cos(kx)+bk sin(kx)

)
while the corresponding coefficients

are given by ak = 1
π

∫ 2π

0
f(t) cos(kt)dt and bk = 1

π

∫ 2π

0
f(t) sin(kt)dt. The immediate

questions that arise are the following: for which values of x does the series converge,
and does S

(
f
)

converge to f in a certain norm?
The attempt to answer the questions after the different sorts of convergence of this

series is called classical Fourier analysis. Due to the long history of classical Fourier
analysis the theory is developed quite well and there are many books where the theory
is focused on, like for example [6] and [23]. There, we learn for example that we have
norm convergence i.e. S(f) = f almost everywhere in general Lp-spaces for 1 < p < ∞,
a result that is refered to M. Riesz. Already earlier the case p = 1 was proved to be
wrong almost everywhere by Kolmogorov.

By looking at the classical Fourier analysis from another point of view one sees that
the functions en(x) = einx constitute an orthogonal basis in the L2([0, 2π)) space, a
Hilbert space with inner product, i.e. we have 〈en, em〉 = 1

2π

∫ 2π

0
en(x)em(x)dx = δn,m .

Furthermore, the Fourier coefficients cn are defined by cn = f̂(n) = 1
2π

∫ 2π

0
f(t)en(t)dt.

In terms of the inner product in L2([0, 2π)) this means we can write the formal Fourier
series of a function f now via

S(f)(x) =
∞∑

n=−∞

〈f, en〉 en(x) .

From this point of view one is led to the question what happens if the orthogonal system
is changed, together with the domain on which the system is orthogonal. Can we drop
the periodicity condition? Of course, the same convergence question is: for which real
values p with 1 ≤ p ≤ ∞ does S(f) converge towards f in the Lp norm? Can we extend
this to the general setting of locally compact groups? It is well established that we can
change the orthogonal system. This way of generalizing classical Fourier analysis is a
branch of so called harmonic analysis.
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Famous and important orthogonal systems are the so called orthogonal polynomial sys-
tems. There are various families of orthogonal polynomials and one important class are
the Jacobi polynomials. They are orthogonal on the interval [−1, 1] with respect to a
certain weight function. Indeed, the Fourier analysis is successfully taken over to the
Jacobi setting and similar questions are investigated leading to similar results. Norm
convergence of the formal Fourier series is not given in general. But as in classical Fourier
analysis with similar modifications this goal can be reached. This generalized Fourier
analysis has also been well developed for years and many results and applications are
known, cf. for example [2, 4, 29, 30, 31].

The disc polynomials are an orthogonal polynomial system on the unit disc. Thus we
are now working in two dimensions and generalized Fourier analysis with respect to
the disc polynomials can be investigated. The disc polynomials are orthogonal on the
unit disc with respect to the weight function µα(z) = (1 − |z|2)α for α > −1 so we see
that a parameter α is included in the investigations. Indeed, many concepts from the
one dimensional case can be adopted but one is confronted with new problems the two
dimensionality brings about.

The disc polynomials are not as popular as other one dimensional orthogonal poly-
nomial systems. However, in the last years they have been rediscovered as they can
be applied in quantum optics mentioned in [34] and [36]. In fact, a special case of disc
polynomials -the Zernike polynomials- primarily have been developed to describe optical
properties. The Nobel prize winner Frits Zernike found the disc polynomials for α = 0
and used them in his research on optics and microscopy. Later a generalization led to the
nowadays called disc polynomials. They are defined with the help of the Jacobi polyno-
mials and use their orthogonality relation. But nevertheless they need an independent
analysis.

One of the main tasks of applied mathematics is the approximation of functions. There
are many methods and ways to do so. Of course, there are different problems of ap-
proximation. One problem is the question for norm convergence with different kernels
together with the question for the speed of convergence. In addition, it is questioned if
there are explicit constants provided in the convergence estimation. This is desirable for
practical reasons.

To put this thesis in a nutshell we will work on generalized Fourier analysis with disc
polynomials. The concepts of classical Fourier analysis that have been succesfully taken
over to the setting with Jacobi polynomials, for example, will be illustrated in the disc
polynomial case on the unit disc. The aim is to find kernels that approximate functions
so that we have norm convergence in appropriate Lebesgue spaces. Recent results will
be transformed from the Jacobi into the disc polynomial setting. This way we derive
a generalized de-la-Vallée-Poussin kernel Vn with the help of disc polynomials as it has
been done in [10] for Jacobi polynomials. This kernel Vn provides norm convergence
‖Vnf − f‖ → 0 for n →∞ for all functions f from certain Lebesgue spaces on the unit
disc. Furthermore, we know explicitly a constant C which this kernel is bounded with via
‖Vnf‖ ≤ C‖f‖. Then we take a look at general classes of kernels with certain localisation
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properties. Again, we take the cases in the Jacobi setting as inspiration and try to derive
analogue results with disc polynomials. For the result on almost exponential localisation
we followed the example of Petrushev and Xu [27] and for exponentially localised kernels
we followed [11]. The de-la-Vallée-Poussin kernel derived in this thesis could possibly
be employed as a concrete kernel in these localisation problems. It has the requested
properties in the derived theorems.

These results are new as well as another result: An explicit formula for the linearisation
coefficients for the disc polynomials for the parameter α = 0. Linearisation coefficients
of orthogonal polynomial systems are interesting for hypergroup theoretical questions
if they are all non-negative. In case of the disc polynomials, linearisation coefficients
are the particular coefficients of the disc polynomials that are needed to represent the
product of two disc polynomials as a linear combination of disc polynomials:

Pm,nPk,l =
∞∑
i=0

∞∑
j=0

g(m,n; k, l; i, j)Pi,j .

Pi,j are the disc polynomials and g(m, n; k, l; i, j) are the specific linearisation coefficients
for the product of the (m, n)-th disc polynomial with the (k, l)-th.

Outline of the thesis

First, the classical Fourier Analysis with focus on approximation kernels is presented in
chapter 2. In many following chapters kernels with a reference to well known classical
kernels are presented. That’s why an introducing chapter describes where all kind of
approximation theory with kernels come from.

Chapter 3 gives a short compendium on Jacobi polynomials and generalised Fourier anal-
ysis with respect to the Jacobi polynomials. Besides Laguerre- and Hermite-Polynomials,
the Jacobi polynomials are the best known orthogonal polynomials. Nevertheless, we in-
troduce them formally and show some basic properties. On the one hand they are needed
to define the disc polynomials. On the other hand we want to introduce a well-known
system of orthogonal polynomials to indicate the way we want to continue with the disc
polynomials. We will keep it very short there and show how everything is formally done.

Finally, we present recent results on approximation with respect to the Jacobi poly-
nomials that have been made in the last years by different people. We want to transfer
these results to our disc polynomial setting.

In chapter 4 we introduce the disc polynomials and their natural environment, the unit
disc. Interesting properties and simple corollaries of the disc polynomials are given, as
for example differential equations the disc polynomials satisfy and special values they
have. If similar properties exist for the Jacobi polynomials, cross references to chapter 2
are given. A proof different from the classical is given for the property that the maximal
absolute value of every disc polynomial on the disc equals one. Essential structures
we work with like the Lebesgue spaces, the generalised translation and the resulting
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convolution are introduced. They are of major importance for our purposes. In addition,
simple properties are collected which have no direct bearing on the approximational
aspects of this work.

Chapter 5 comes up with a new result, an explicit formula for the linearisation coefficients
of the disc polynomials for the parameter α = 0. The proof is given explicitly in detail
because the idea of the proof has no analogon in other proofs of linearisation coefficients
for orthogonal polynomials.

Finally chapter 6 concludes with the results on approximation on the unit disc. The
formal tools for Fourier series with respect to disc polynomials are introduced. After that
the promised uniformly bounded generalised de-la-Vallée-Poussin kernel is derived. The
result on almost exponentially localised kernels with respect to disc polynomials is not
satisfying as we can not differentiate two values that have the same radial part but are
not equal. Therefore it is pleasing to present the result on exponentially localised kernels
with disc polynomials. Exponential localisation for sure is a stronger result than almost
exponential localisation. Together with our generalised de-la-Vallée-Poussin kernel an
example for an exponentially localised kernel is given. An upper bound for the operator
is explicitly given in this case.

Theorems containing new results are marked by (*) in the thesis.

Acknowledgements

My thanks go to everyone who helped me during my work on this thesis in any way,
especially to my advisor Prof. Rupert Lasser.
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2.1 Fourier series on T

2 Classical Fourier analysis approximation

Fourier series are well known in many branches of mathematics. Questions on conver-
gence are mostly treated only shortly or superficially, except in the domain of harmonic
analysis. In this chapter we will give a short overview of the most important con-
cepts of Fourier analysis. Functions with certain properties, so called kernels, help to
guarantee that all functions from certain function spaces can be approximated (norm
convergence). Some of these summability kernels are introduced here in their classical
appearance. When classical Fourier analysis is carried over to other settings the design of
these classical kernels serve as a model for analogue kernels in those settings. Therefore,
a slight idea of those classical kernels will be given here.

Interested readers can find valuable information on the whole wide theory of harmonic
analysis in several introductive works such as "Introduction to Fourier analysis" (Lasser)
[23], "An introduction to harmonic analysis" (Katznelson) [17] or "Fourier analysis and
approximation" (Butzer and Nessel) [6].

2.1 Fourier series on T
Classical Fourier analysis takes place on the one dimensional torus T. This means we
consider 2π-periodic functions ( f(x) = f(x + k · 2π), k ∈ Z ) and the interval [0 , 2π) is
a model of T. Thus, we have: ∫

T
f(x) dx =

∫ 2π

0

f(x) dx .

Shifting a function on the torus is a fundamental process playing a major role in the
theory of Fourier analysis approximation.

Definition 2.1 (translation operator). For a real number y ∈ [0, 2π) the translation
operator Ty acts on the argument of a function f ∈ L1(T) and is given by

Tyf(x) = f(x− y) .

The 2π-periodicity of functions f ∈ L1(T) gives the following translation invariance of
a function that is integrated over T:∫

T
Tyf(x) dx =

∫
T
f(x− y) dx =

∫
T
f(x) dx .

The function spaces we are working on are of course the usual Lebesgue-spaces on [ 0 , 2π)
with the usual measure and the familiar standard norms. In the sequel we will use the
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2.1 Fourier series on T

notation

Xp(T) =

{
Lp(T), if 1 ≤ p < ∞
C(T), if p = ∞ .

A non-trivial result is the fact that the series of exponential functions en(x) given in the
next definition constitute a basis on the spaces Xp(T), (1 ≤ p ≤ ∞). The proof will be
omitted.

Definition 2.2 (orthogonal basis on T). The so called basis functions for T are

en(x) = einx , with x ∈ T, n ∈ Z .

It is easy to see that in the Hilbert space L2(T) with the usual inner product, given by

< f , g > =

∫
T
f(x)g(x) dx

holds the following L2-orthogonality relation:

< en , em > = 2π · δm,n .

Another basic property of the basis functions is the fact that a product formula exists
with respect to the translation operator, i.e. the translation of a basis function can
alternatively be written as a product of two basis functions. It is easy to see that the
following formula holds:

Tyen(x) = en(x− y) = en(x) · en(y) .

Taking the role of monomials for defining usual polynomials the basis functions are taken
to define trigonometric polynomials.

Definition 2.3 (trigonometric polynomial). For N ∈ N a trigonometric polynomial
on T is an expression of the form

P (x) =
N∑

n=−N

anen(x) =
N∑

n=−N

ane
inx

with 0 6= an ∈ C. P has degree N .

One can easily see with the orthogonality relation of the basis functions that for a given
trigonometric polynomial P (x) the coefficients an can be computed by

an =
1

2π

∫
T
P (x) e−n(x) dx =

1

2π
< P, en > .
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2.1 Fourier series on T

This way of computing the coefficients of a trigonometric polynomial serves as idea of
expanding a general function f ∈ L1(T) into a Fourier series or a partial Fourier series
(where the result is a trigonometric polynomial).

Definition 2.4 (Fourier coefficient). Let f ∈ L1(T). For n ∈ Z the n-th Fourier
coefficent of f is given by the formula

f̂(n) =
1

2π

∫
T
f(x) e−inx dx =

1

2π
< f, en > .

Definition 2.5 (Fourier series). Let f ∈ L1(T). The formal Fourier expansion of the
function f is given by

S(f)(x) :=
∞∑

n=−∞

cnen(x) with cn =
1

2π

∫
T
f(x) e−n(x) dx = f̂(n) .

The N-th partial Fourier series is given by the formula

SN(f)(x) :=
N∑

n=−N

cnen(x) =
N∑

n=−N

f̂(n)en(x) .

With the help of the translation operator and the product formula for the basis functions
en(x) the partial Fourier series can be written with respect to these two concepts as

SN(f)(x) =
N∑

n=−N

f̂(n)en(x) =
1

2π

N∑
n=−N

∫
T
f(y) en(y) en(x)dy

=
1

2π

N∑
n=−N

∫
T
f(y) en(x− y)dy =

1

2π

N∑
n=−N

∫
T
f(y) Tyen(x)dy .

The first integral in the second line may look familiar to the experienced eye and indeed,
this is the usual definition of the convolution between the function f and the basis
function en:

Definition 2.6 (convolution). Let f, g ∈ L1(T). The convolution ∗ of the function f
with the function g is given by

(f ∗ g)(x) :=
1

2π

∫
T
f(y)g(x− y)dy =

1

2π

∫
T
f(y) Tyg(x)dy .
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2.1 Fourier series on T

An important fact for our purposes is the commutativity of the translation:

1

2π

∫
T
f(y)g(x− y)dy =

1

2π

∫
T
f(x− y)g(y)dy .

Further easy results on the convolution are the associativity, linearity with respect to f

and g, continuity on Lp and the identity f̂ ∗ g(n) = f̂(n)ĝ(n). The proofs and further
properties of the convolution can be found in every standard analysis book.
Our purpose with respect to the convolution is using it to rewrite the partial Fourier
series:

SN(f)(x) =
1

2π

N∑
n=−N

∫
T
f(y) en(x− y)dy =

N∑
n=−N

(f ∗ en)(x) .

Finally, we define the so called N-th Dirichlet kernel by DN(x) :=
∑N

n=−N en(x) and
write partial Fourier series in a compact way as the convolution of the function f with
the N-th Dirichlet kernel DN :

SN(f)(x) = (DN ∗ f)(x)

which leads to the definition of the Dirichlet kernel.

Definition 2.7 (Dirichlet kernel). For N ∈ N the N-th Dirichlet kernel DN is given
by the summation of the basis functions en:

DN(x) :=
N∑

n=−N

en(x) .

With the help of simple calculations, rearrangements and the Euler’s formula one can
find an explicit closed formula for the Dirichlet kernel:

DN(x) =
sin
(
(N + 1

2
)x
)

sin
(

x
2

) .

Proof:

DN(x) =
N∑

n=−N

einx = e−iNx

2N∑
n=0

(eix)n = e−iNx

(
ei(2N+1)x − 1

eix − 1

)
=

ei(N+1)x − e−iNx

eix − 1

=
ei(N+ 1

2
)x − e−i(N+ 1

2
)x

ei x
2 − e−i x

2

=
ei(N+ 1

2
)x − e−i(N+ 1

2
)x

2i

2i

ei x
2 − e−i x

2

=
sin
(
(N + 1

2
)x
)

sin
(

x
2

)
Thus, we can represent the N -th partial Fourier series of a function f as an integral
equation by using the explicit formula for the Dirichlet kernel:

SN (f) (x) =
1

2π

∫
T
DN(x− y)f(y)dy =

1

2π

∫
T
DN(y)f(x− y)dy
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2.2 Approximation with summability kernels

Next, the question that is of interest is whether norm convergence is achieved with
Fourier series. In the following chapter we will give a criterion for summability kernels
such that kn ∗ f → f in norm. This is necessary as the Fourier series of an L1-function
does not converge in general.

2.2 Approximation with summability kernels

For each N ∈ N the convolution of a function f ∈ Xp(T) (1 ≤ p ≤ ∞) with the N -th
element of the sequence of Dirichlet kernels (DN)N∈N returns a trigonometric polynomial
(DN ∗ f) (x). From the previous section we know that the trigonometric polynomials
are dense in Xp(T) ((en)n∈N is a basis). Thus, the question if the limit of the sequence
(DN ∗ f) (x) converges to f arises naturally. One can furthermore ask for pointwise or
norm convergence. But our interest will be the norm convergence: does the following
limiting process hold: ‖DN ∗ f − f‖Xp(T) −→ 0, (N −→∞) ?

It turned out however, that this is only true for values 1 < p < ∞. The proof is beyond
the scope of this short introduction. Modifications of the Dirichlet kernel DN may in
some cases now lead to a so called summability kernel, such that norm convergence
for approximation with those modified kernels is established for 1 ≤ p ≤ ∞. Most of
these modifications work (mathematically incorrect speaking) the way, that a bit "less"
of most basis functions en is taken: The Dirichlet kernel sums up the basis functions
DN =

∑N
i=−N aiei with ai = 1, in contrast for summability kernels "most" ai < 1.

A whole class of kernels with which norm convergence is achieved is known as summa-
bility kernels. A summability kernel needs to fulfill three criteria, which are concretised
in the following.

Definition 2.8 (summability kernel). A sequence
(
kn(x)

)
n∈N ∈ L1(T) is a summa-

bility kernel if it satisfies the following three properties:

(S1)
1

2π

∫
T
kn(x) dx = 1

(S2)
1

2π

∫
T
|kn(x)| dx = ‖kn‖L1(T) ≤ const

(S3) For all 0 < δ < π : lim
n→∞

∫ 2π−δ

δ

|kn(x)|dx = 0 .

Property (S2) is already fulfilled by (S1) for positive kernels and we have an equality
with const = 1. Furthermore we sometimes consider summability kernels depending on
a continuous parameter r ∈ (0, 1). The limit in (S3) is then replaced by letting either
r → 1 or in some cases r → 0.

9



2.2 Approximation with summability kernels

As mentioned before the convolution with the Dirichlet kernel fails to approximate
some L1-functions. Regarding the three properties a summability kernel needs to fulfill,
the Dirichlet kernel DN does neither fulfill (S2) nor (S3). But of course these are the
properties that finally guarantee the norm convergence of the sequence (kn ∗ f) towards
f . And this is the content of the following theorem: the convolution of a summability
kernel with a function f ∈ Xp(T) converging to f in norm with n −→∞.

Theorem 2.9 (summability in Xp). Let kn be a summability kernel and f ∈ Xp(T)
for 1 ≤ p ≤ ∞. Then kn ∗ f converges to f in norm, i.e.∥∥kn ∗ f − f

∥∥
Xp(T)

→ 0 , for n →∞ .

Proof (sketch):
In the following proof we need two well-known facts we don’t proof:
1. Minkowski inequality:∥∥∥∫

Y

f(x, y)dν(y)
∥∥∥

Lp(X)
≤
∫

Y

∥∥f(x, y)
∥∥

Lp(X)
dν(y) .

2. Continuity of the translation Ty: For 1 ≤ p ≤ ∞ and f ∈ Xp(T):

∀ε > 0 ∃δ > 0 : ∀x, y ∈ T with |x− y| < δ holds
∥∥Tyf − Txf

∥∥
Xp(T)

< ε .

Then we can start to estimate the norm:

∥∥kn ∗ f − f
∥∥

Lp(T)
=

(
1

2π

∫
T
|kn ∗ f(x)− f(x)|pdx

) 1
p

with property (S1) of kn we can write f(x) =
∫

T kn(y)f(x) dy and continue

=

(
1

2π

∫
T

(
1

2π

∫
T
kn(y)(f(x− y)− f(x))dy

)p

dx

) 1
p

≤
∥∥∥ 1

2π

∫
T
|kn(y)||f(· − y)− f(·)|dy

∥∥∥
Lp(T)

Minkowski

≤ 1

2π

∫
T
|kn(y)|

∥∥Tyf − f
∥∥

Lp(T)
dy .

At that point we have to split the integral in the following way:∫
T

=

∫ 2π

0

=

∫ π

−π

=

∫ δ

−δ

+

∫ −δ

−π

+

∫ π

δ

=

∫ δ

−δ

+

∫ 2π−δ

δ

.

Then we have
1

2π

∫ δ

−δ

|kn(y)|
∥∥Tyf − f

∥∥
Lp(T)

dy ≤ const · ε
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2.3 Examples of summability kernels

by continuity of Ty and (S2) of kn as well as

1

2π

∫ 2π−δ

δ

|kn(y)|
∥∥Tyf − f

∥∥
Lp(T)

dy ≤ 1

π
‖f‖Lp(T) · ε

by property (S3) for summability kernels kn.

Many different summability kernels are known and have been intensively studied in
Fourier analysis literature. In the next chapter we will give a few examples of summa-
bility kernels with a variety of designs.

2.3 Examples of summability kernels

In the introduction of this work it has already been said that the Fourier analysis approx-
imation on the torus has been adapted in many other settings by taking an appropriate
basis for the domain of the alternative setting. The focus of this work is on the domain
of the unit disc. For better understanding what is happening here it is useful to know
the standard case. Right here we try to adopt the standard approximation kernels.

This chapter aims at giving an overview of the design of different types of summability
kernels. In this section we will not go to deep into details, not prove every mentioned
fact and keep proofs short. The main focus is on the architecture of the presented kernel.

The first summability kernel we will take a closer look at is the Fejér kernel, surely
one of the best known summability kernels in Fourier approximation.

Definition 2.10 (Fejér kernel). The Fejér kernel is given by taking the arithmetic
mean of the the Dirichlet kernels D0, ...DN :

FN(x) =
1

N + 1

N∑
j=0

Dj(x) =
N∑

j=−N

(
1− |j|

N + 1

)
en(x) .

Like the Dirichlet kernel, the Fejér kernel has a simple closed formula:

FN(x) =
1

N + 1

(
sin
(

N+1
2

x
)

sin
(

x
2

) )2

.

Proof:
With the closed formula for the Dirichlet kernel we can write

FN(x) =
1

N + 1

N∑
j=0

Dj(x) =
1

N + 1

N∑
j=0

sin
(
(j + 1

2
)x
)

sin
(

x
2

)
=

1

N + 1

N∑
j=0

1

2
·
sin
(
(j + 1

2
)x
)
sin
(

x
2

)(
sin
(

x
2

) )2 +
1

2
·
sin
(
(j + 1

2
)x
)
sin
(

x
2

)(
sin
(

x
2

) )2

 .

11



2.3 Examples of summability kernels

Then the addition theorem for arguments of the cosine is employed:
cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) and we can go on like

=
1

N + 1

N∑
j=0

cos(jx)− cos ((j + 1)x)

2
(

sin
(

x
2

) )2 =
1

N + 1

1− cos((N + 1)x)

2
(

sin
(

x
2

) )2


=

1

N + 1

1− cos
(

N+1
2

x + N+1
2

x
)

2
(

sin
(

x
2

) )2

 =
1

N + 1

1− cos
((

N+1
2

x
))2

+
(
sin
(

N+1
2

x
))2

2
(

sin
(

x
2

) )2


=

1

N + 1

2
(
sin
(

N+1
2

x
))2

2
(

sin
(

x
2

) )2

 =
1

N + 1

(
sin
(

N+1
2

x
)

sin
(

x
2

) )2

.

With this formula one can easily see that the Fejér kernel is positive and the critera (S1)
and (S3) for summability kernels are given for the Fejér kernel. The resulting sequence
of the convolution with a function f converges in norm towards f and looks as follows:

(FN ∗ f)(x) =
1

N + 1

N∑
j=−N

Sj(f)(x) =
N∑

j=−N

(
1− |j|

N + 1

)
f̂(j)ej(x) .

The classical de-la-Vallée-Poussin kernel VN(x) is a summability kernel which is a com-
position of Fejér kernels. It has the property to be able to reproduce trigonometric
polynomials of degrees not exceeding N and the kernel itself is a trigonometric polyno-
mial of degree 2N + 1. Generalisations of the de-la-Vallée-Poussin kernel exist and are
introduced in chapter 3.3.

Definition 2.11 (de-la-Vallée-Poussin kernel). The classical de-la-Vallée-Poussin
kernel is given by

VN(x) = 2 · F2N+1(x)− FN(x) =
1

N + 1

2N+1∑
j=N+1

Dj(x) .

The summability kernel properties (S1) − (S3) for the de-la-Vallée-Poussin kernel are
easy to proof by using the known closed formulas and properties of the Fejér and Dirichlet
kernel. The resulting sequence has the form:

(VN ∗ f)(x) =
N∑

j=−N

f̂(j)ej(x) +
2N+1∑

|j|=N+1

(
1− |j| −N − 1

N + 1

)
f̂(j)ej(x) .

The next two kernels are examples of summability kernels where the approximation
parameter r is continous. The easiest and best known is the Poisson kernel.

12



2.3 Examples of summability kernels

Definition 2.12 (Poisson kernel). For 0 < r < 1 the Poisson kernel is given by

Pr(x) =
∞∑

j=−∞

r|j|ej(x) .

The Poisson kernel has the closed formula

Pr(x) =
1− r2

1− 2r cos(x) + r2
.

Proof:

Pr(x) =
∞∑

j=−∞

r|j|ej(x) =
∞∑

j=0

(
reix

)j
+

∞∑
j=0

(
re−ix

)j − 1 =
1

1− reix
+

1

1− re−ix
− 1

by the limit of the geometric series; further using the identities:

(1− reix)(1− re−ix) = |1− reix|2 = 1− r(eix + e−ix) + r2

and 2 cos(x) = eix + e−ix we can conclude

=
1− re−ix

|1− reix|2
+

1− reix

|1− reix|2
− 1− r(eix + e−ix) + r2

|1− reix|2
=

1− r2

1− 2r cos(x) + r2
.

The properties (S1)−(S3) of summability kernels can be seen here without any problem,
too. With the closed formula one can see that the Poisson kernel is positive. And
sup

δ<x<π
|Pr(x)| ≤ 1−r2

1−2r cos(δ)+r2 −→ 0 as r → 1. The sequence that approximates a function

f is of the form:

(Pr ∗ f) (x) =
∞∑

j=−∞

r|j| f̂(j) ej(x) .

In this formula one sees that a limiting process of the parameter r towards 1 would end
up in the usual Fourier series. Thus, parameter values r close to 1 are interesting for
approximation.

The second example of a summability kernel with a continuous parameter s is the Gauss
kernel. The Gauss kernel became rather popular in statistics. But in an appropriate
form it can be used for approximation. The resulting approximation of a function f
would turn into the Fourier series S(f) for s = 0. Therefore, small values for s are
interesting for approximation.

13



2.3 Examples of summability kernels

Definition 2.13 (Gauss kernel). For s > 0 the Gauss kernel is given by

Gs(x) =
∞∑

j=−∞

e−j2s ej(x) .

Without proof we give another representation of the Gauss kernel:

Gs(x) =
2π√
4πs

∞∑
j=−∞

e−
(x+2πj)2

4s .

The Gauss kernel is also a positive kernel and the summability kernel properties are
similar to see as it is the case for the Poisson kernel. For approximating a suitable
function f with the help of the Gauss kernel we form the convolution:

(Gs ∗ f) (x) =
∞∑

j=−∞

e−j2s f̂(j) ej(x) .

Finally we give the example of a summability kernel that has again a discrete paramater
n. A composition of Dirichlet kernels together with the discrete manipulation of the
arguments lead to the so called Rogosinski kernel.

Definition 2.14 (Rogosinski kernel). The Rogosinski kernel is given by

Rn(x) =
1

2

(
Dn

(
x +

π

2n + 1

)
+ Dn

(
x− π

2n + 1

))
.

Without proofs we state that the Rogosinski kernel is a summability kernel and alter-
native representations are:

Rn(x) = 1 + 2
n∑

j=1

cos

(
j π

2n + 1

)
cos(jx) =

n∑
j=−n

cos

(
j π

2n + 1

)
ej(x) .

The resulting approximation of a function f is given by

(Rn ∗ f) (x) =
n∑

j=−n

cos

(
j π

2n + 1

)
f̂(j) ej(x) .

The following figures show the plots of the discussed kernels as well as their way of
approximating a simple function. For the kernels that are trigonometric polynomials we
have chosen the parameter n such that all the kernels have degree 21 (pay attention to
the de-la-Vallée-Poussin kernel).
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2.3 Examples of summability kernels

Figure 1: the kernels
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2.3 Examples of summability kernels

Figure 2: the approximation of the linear function
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3.1 Notations and preliminaries

3 Fourier analysis and approximation with Jacobi
polynomials

3.1 Notations and preliminaries

In this section we give some basic definitions of functions and notations essential for
this work. Often we will give them in an extended or generalized manner in order to
answer non-obvious notational questions and to use them in the following work without
any further explanation. Also, we avoid generalizations if they are not needed for our
purposes.

The well-known Gamma function is given by the formula Γ(x) :=
∫∞

0
tx−1e−tdt , in

which x ∈ R+ . The functional equation Γ(x + 1) = x · Γ(x) together with the value
of the Gamma function at 1, Γ(1) = 1, gives a connection to the factorial, so that for
n ∈ N we have Γ(n + 1) = n!. This concept is extended and we define factorials of
α > −1:

Definition 3.1 (generalized factorial). For α ∈ R , α > −1 , the generalized factorial
α! is given by

α! := Γ(α + 1) .

This notation will make the formulas that occur in this work more intuitive and easier
to read. Another function in that context is the Pochhammer symbol. We give a
definition for real numbers.

Definition 3.2 (generalized Pochhammer symbol). For α ∈ R, and k ∈ N the
generalized Pochhammer symbol is given by

(α)k := α · (α− 1) · (α− 2) · · · (α− k + 1) .

For illustration purposes we look at some special cases in the following

Corollary 3.3. For n, k ∈ N, α ∈ R+, β ∈ R \ (−N0) holds:

1) (α)k =
α!

(α− k)!
, for α > k − 1

2) (n)k = 0 for n < k

3) (0)k = 0

4) (−β)k = (−1)k(β + k − 1)k .

17



3.2 Jacobi polynomials

The binomial coefficient is usually defined with the help of the factorial, i.e. with
our generalized factorial we would be able to define a generalized binomial coefficient
for real numbers greater than −1. But with the help of the generalized Pochhammer
symbol we are even able to define it for real numbers of any size.

Definition 3.4 (generalized binomial coefficient). For α ∈ R , k ∈ N , the gener-
alized binomial coefficient is given by(

α

k

)
:=

(α)k

k!
.

In contrast to the usual binomial coefficient the generalized one can be zero and have
negative values. Again we want to give a few examples.

Corollary 3.5. For n, k ∈ N , α ∈ R \ (−N0) holds

1)

(
−α

k

)
= (−1)k

(
α + k − 1

k

)
2)

(
n

k

)
=

{
n!

(n−k)!k!
for n ≥ k

0 for n < k .

We will see in the sequel that these notations and functions are often used in the work
with Jacobi and especially with disc polynomials.

3.2 Jacobi polynomials

Orthogonal polynomials play an important role in various fields of mathematics. The
Jacobi polynomials are some of the most important orthogonal polynomials in one di-
mension and therefore intensively studied. Szegö’s book "Orthogonal Polynomials" [33]
is the standard work for the studies of one dimensional orthogonal polynomials and in
the chapter on Jacobi polynomials the most common and basic properties are discussed.
Although several excellent introductions on Jacobi polynomials exist we give here their
most important properties and those we work with later on. We will not give any proofs
in this section but only state the definitions and theorems.

Several equivalent formulas for the Jacobi polynomials exist and we want to give the
three most common ones, especially showing later on that for the disc polynomials there
are corresponding forms. In the first and the second line of the subsequent definition two
different explicit forms are given and in the third line the so called "Rodrigues’ formula"
is stated.
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3.2 Jacobi polynomials

Definition 3.6. For n ∈ N0 and α, β ∈ R with α, β > −1 the Jacobi polynomials are
given by

J (α,β)
n (x) =

(α + n)!

n!(α + β + n)!

n∑
k=0

(
n

k

)
(α + β + n + k)!

(α + k)!

(
x− 1

2

)k

= 2−n

n∑
k=0

(
α + n

k

)(
β + n

n− k

)
(−1)n−k(1− x)n−k(1 + x)k

=
(−1)n

n!
2−n(1− x)−α(1 + x)−β dn

dxn

(
(1− x)α+n(1 + x)β+n

)
.

This definition leads to a normalization such that J
(α,β)
n (1) =

(
α+n

n

)
. In the interval

[−1, 1] this is the maximal absolute value in case α ≥ β ≥ −1
2
. For special values of

α and β the Jacobi polynomials are known under different names. For example with
α = β = 0 they are called the Legendre Polynomials, for α = β = −1

2
the Chebyshev

Polynomials of the first kind, for α = β = 1
2

the Chebyshev Polynomials of
the second kind and for α = β in general they are the so called Gegenbauer or
Ultraspherical Polynomials.

They are of such importantance because they satisfy an orthogonality relation on the
interval [−1, 1] with respect to the weight function wα,β(x) := (1 − x)α(1 + x)β, which
implies that they constitute an orthogonal basis in the Hilbert space L2([−1, 1], wα,β).

As the weight function for α, β > −1 is positive on the interval [−1, 1], define a Borel
measure µα,β(x) := wα,β(x)dx and one can formulate the orthogonality relation for two
Jacobi polynomials via:∫ 1

−1

J
(α,β)
k (x)J

(α,β)
l (x)dµα,β(x) = h(α,β)(k) δk,l

while h(α,β)(k) is the so called Haar function which explicitly written looks like

h(α,β)(k) =
2α+β+1

2k + α + β + 1

(k + α)!(k + β)!

k!(α + β + k)!
for k ∈ N

and for k = 0 : h(α,β)(0) = 2α+β+1 α! β!

(α + β + 1)!
.

Another property which has an analogon for the disc polynomials is that each Jacobi
polynomial is a solution to a second-order differential equation. It is easy to check that
J

(α,β)
n solves

(1− x2)y′′ + (β − α− (α + β + 2)x)y′ + n(n + α + β + 1)y = 0 . (3.1)

Furthermore the Jacobi polynomials satisfy a recurrence relation such that with our
normalization, i.e. J

(α,β)
n (1) =

(
α+n

n

)
, it holds
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3.3 Fourier approximation

J
(α,β)
n+1 (x) = (Anx + Bn)J (α,β)

n (x)− CnJ
(α,β)
n−1 (x) (3.2)

with

An =
(2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)

Bn =
(2n + α + β + 1)(α2 − β2)

2(n + 1)(n + α + β + 1)(2n + α + β)

Cn =
(n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
.

These basic properties of the Jacobi polynomials will be sufficient for our purposes.

3.3 Fourier approximation

The well known theory of Fourier Analysis on the interval [0, 2π) with trigonometric
functions is carried over to other settings. Now we are interested in the Fourier Analysis
on the interval [−1, 1] with respect to Jacobi polynomials J

(α,β)
n (x). And so we will give

an introduction to that situation and at the end of the chapter focus on kernels that are
suitable for approximation in norm.

Due to the orthogonality weight of the Jacobi polynomials suitable Lebesgue spaces
Lp are defined by:

For 1 ≤ p < ∞ and α, β > −1 we have

Lp([−1, 1], wα,β) :=
{

f : [−1, 1] → R
∣∣ ‖f‖p,α,β < ∞

}

with ‖f‖p,α,β :=

(∫ 1

−1

|f(x)|p wα,β(x) dx

) 1
p

.

Now the function spaces Xp we will be working with are defined by

Xp =

{
Lp([−1, 1], wα,β) , for 1 ≤ p < ∞
C([−1, 1]) , for p = ∞ .

And the C([−1, 1])-norm is given by the supremum. Furthermore for brevity we want
to think of the values of α and β as fixed and α, β > −1 and omit them in the formulas
of this chapter except in cases where necessary.
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3.3 Fourier approximation

We define the k-th Fourier coefficient for a function f on [−1, 1]:

for k ∈ N0 and f ∈ L1 we have f̂(k) :=

∫ 1

−1

f(x)Jn(x)w(x)dx

so that the n-th partial Fourier series of f is given by

Snf(x) :=
n−1∑
i=0

f̂(i) Ji(x)
(
h(i)

)−1

while h(i) is the Haar function corresponding to the Jacobi polynomials that was intro-
duced in the last chapter.

In order to stay in analogy with the trigonometric case we need a translation operator
with certain properties. The property which will be the most difficult one to get is
the so called product formula the Jacobi polynomials need to fulfill. This means we
want a translation operator Tx with which we have TxJn(y) = Jn(y)Jn(x). Indeed for
α+β > −1 there exists a Borel measure µx,y on [−1, 1] such that we have for x, y ∈ [−1, 1]
and ∀n ∈ N0 the following identity

Jn(x)Jn(y) =

∫ 1

−1

Jn(z)dµx,y(z) .

In [12] this formula is proved. There is a difference to our formula concerning the
normalization of the Jacobi polynomials. Gasper used a normalization such that the
Jacobi polynomials have the value 1 at x = 1:

Rn(x) :=
Jn(x)

Jn(1)
.

For the Jacobi polynomials
(
Rn(x)

)
n∈N the Haar function is different to the one we

use in this thesis. And in addition, the measure for the translation for Rn(x) is even
a probability measure. But for our purposes the Jacobi polynomials Jn(x) are more
suitable. This is the reason why we will continue working with this normalization.
Furthermore in [12] one can find the proof for the boundedness of this measure for
various α, β > −1 and several formulas for the measure itself.

With this measure we can define the translation operator Tx for x, y ∈ [−1, 1] in
order to fulfill the product formula for Jacobi polynomials:

Txf(y) :=

∫ 1

−1

f(z)dµx,y(z) .

As in the trigonometric setting we define a convolution ∗ between two functions with
the help of the achieved translation. It is given by

(
f ∗ g

)
(x) :=

∫ 1

−1

f(y) Txg(y) w(y) dy .

21



3.3 Fourier approximation

Indeed one can check that the following four properties that are required for a translation
are satisfied:

1. ∀n ∈ N0, x, y ∈ [−1, 1] : TxJn(y) = Jn(y)Jn(x) (product formula)
2. ∀a, b ∈ R, x, y ∈ [−1, 1] : Tx

(
af + bg

)
(y) = aTxf(y) + bTxg(y) (linearity)

3. ∀x ∈ [−1, 1] :
(
f ∗ g

)
(x) =

(
g ∗ f

)
(x) (commutativity)

4. ∀x ∈ [−1, 1], f ∈ Lp, 1 ≤ p ≤ ∞ : ‖Txf‖p ≤ C‖f‖p (boundedness)
and C does not depend on f or x. (with the normalization in [12] it holds C = 1 )

Now we can write the n-th partial Fourier series of f as a convolution of f itself with a
function Dn that is called the Dirichlet kernel. So if we want

(
Dn ∗ f

)
(x) =

∫ 1

−1

f(y)TxDn(y)w(y)dy
!
=

n−1∑
i=0

f̂(i) Ji(x)
(
h(i)

)−1

one easily sees with the definition of the Fourier coefficient and the product formula for
Jacobi polynomials that the Dirichlet kernel must be

Dn(x) :=
n−1∑
i=0

Ji(x)
(
h(i)

)−1
.

Now the approximation aspects of the Dirichlet kernel (Dn ∗ f → f for n →∞) are not
satified in all cases. The norm convergence of the Fourier series with respect to Jacobi
polynomials has been thoroughly studied. First Pollard achieved a certain convergence
result for α, β ≥ −1

2
[31], nonconvergence results can be found in [31] and [9]. Finally

Muckenhoupt completely solved this convergence problem [26]. The result states that for
α, β > −1 and γ := max(α, β,−1

2
) convergence depends on the value p of the Lebesgue

space Lp: for 1 < p < ∞ it holds:

if p ∈
(

4(γ + 1)

2γ + 3
,
4(γ + 1)

2γ + 1

)
: ‖D(α,β)

n ∗ f − f‖ → 0 ∀ f ∈ Lp([−1; 1], wα,β) .

For other values of p ∃ f ∈ Lp([−1; 1], wα,β) such that D(α,β)
n ∗ f does not converge.

The proof of that convergence result is done by showing that the inequality ‖Dn ∗ f‖ ≤
C‖f‖ holds with a constant C independent of f and n. This already suffices for the mean
convergence result. Because convergence respectively nonconvergence of approximation
kernels are mostly proved using a fundamental theorem from Banach and Steinhaus,
which states that uniform boundedness is equivalent with convergence. The proof of
this theorem using the uniform boundedness principle can be found in [23] (Theorem
5.1). From there we also cite the theorem:
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3.3 Fourier approximation

Theorem 3.7. Let B be a Banach space with norm ‖ · ‖B. Also, let (Tn)n∈N be a family
of continuous linear operators of B into itself. For a dense subset M of B we assume
that lim

n→∞
‖Tng − g‖B = 0 for all g ∈ M .

Then the following two statements are equivalent:

(1) For all f ∈ B we have lim
n→∞

‖Tnf − f‖B = 0

(2) ‖Tnf‖B ≤ C‖f‖B for all f ∈ B, n ∈ N, where C is a constant
independent of f and n .

The way this theorem can be used in approximation theory is the following. If it should
be checked whether a kernel Kn can be used for approximation or not, the statement
(2) about the uniform boundedness will be inspected. If a uniform bound is found the
kernel Kn is suitable for approximation. If an unbounded function C(n) and a function
f is found with which we can show the inequality ‖Kn ∗ f‖ > C(n)‖f‖ then functions
f exist with which Kn ∗ f does not converge.

Often the set of polynomials is taken as the dense set M in the function spaces Lp.
And kernels Kn are designed in that way that they reproduce polynomials up to a certain
degree depending on n. Then the assumptions for Theorem 3.7 are fulfilled.

In the sequel we often prove norm estimates on Lp(Ω, µ)-spaces only for the values p = 1
and p = ∞ and interpolate the cases in between, i.e. for 1 < p < ∞. The background
is the following theorem that justifies this approach. We cite it from [23]:

Theorem 3.8 (Riesz-Thorin). Let (Xi, γi) for i = 1, 2 be two measure spaces, and
let S be a linear operator defined on all γ1-simple functions and taking values in the
space of γ2-measurable functions on X2. Given points (α1, β1) and (α2, β2) of the square
[0, 1]× [0, 1] assume that simultaneously hold

‖Sf‖ 1
β1

,γ2
≤ M1‖f‖ 1

α1
,γ1

and
‖Sf‖ 1

β2
,γ2
≤ M2‖f‖ 1

α2
,γ1

then for all interpolating values α = (1−λ)α1 +λα2, β = (1−λ)β1 +λβ2 with 0 < λ < 1
we have

‖Sf‖ 1
β

,γ2
≤ M1−λ

1 Mλ
2 ‖f‖ 1

α
,γ1

.

The norms in the Riesz-Thorin theorem are given by ‖f‖p,γ :=
(∫

X
|f(x)|pdγ(x)

) 1
p .

In classical introductions on Fourier Analysis on the torus after the treatment of the
Dirichlet kernel one is automatically led to the Fejér kernel and the de-la-Vallée-
Poussin kernel (besides many others). These two kernels in contrast to the Dirichlet
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3.3 Fourier approximation

kernel converge to a function f in norm ( ‖Kn ∗ f − f‖ → 0) in the Xp-spaces for
all values of p which fulfill 1 ≤ p ≤ ∞ and therefore are important for approximation
theory.

In the setting with Jacobi polynomials analogues of the Fejér (Fn) and de-la-Vallée-
Poussin kernels (Vn) (for a n ∈ N0) are given by:

Fn(x) :=
n−1∑
i=0

(
1− i

n

) (
h(i)

)−1
Ji(x) =

1

n

n∑
i=1

Di(x)

Vn(x) := 2F2n(x)− Fn(x) =
1

n

2n∑
i=n+1

Di(x) = Dn+1(x) +
2n∑

i=n+2

(
2− i

n

)(
h(i)

)−1
Ji(x) .

Now the norm convergence of these two kernels in the Jacobi case is not given for every
α, β and 1 ≤ p ≤ ∞ but they can be modified in a way that norm convergence is
achieved. For the Fejér kernel one works with one of the so called generalized Cesàro
means Cα. Fejér-type kernels for Jacobi polynomials, considered from a different point
of view can be found in [22]. In [22] the Fejér-type kernels are D2

n(x). This fits also in
the concept of the de-la-Vallée-Poussin kernels, see below. But as our focus is on the
de-la-Vallée-Poussin kernels we will concentrate on these. In [7] a de-la-Vallée-Poussin
kernel with respect to Jacobi polynomials is introduced. It has a more general form than
the classical trigonometric de-la-Vallée-Poussin kernel. A theorem concerning the norm
convergence states the following:

For a de-la-Vallée-Poussin kernel of the form

V n
m(x) :=

1

2m + 1

n+m∑
i=n−m

Di(x) , n > m

with −1 < α, β < 1
2

and n = cm where n,m ∈ N and a fixed c > 1 (often written as
n ∼ m) the boundedness of the kernel is given by

‖V n
m ∗ f‖p,α,β ≤ C‖f‖p,α,β , 1 ≤ p ≤ ∞

with a constant C independent of n, m and f . But as one can see there is still a limitation
towards α and β.

A different version of a de-la-Vallée-Poussin type kernel which provides norm conver-
gence for any α, β > −1 and α + β > −1 and 1 ≤ p ≤ ∞ is presented in [10]. Thus,
the range for α and β is considerably bigger. The idea for the definition of this kernel
comes from the trigonometric case. It is a well-known fact that in L1([0, 2π)) we have
for the Dirichlet kernel Dt

n(x) the identity

Dt
n(x) =

sin
(
(2n + 1)x

2

)
sin
(

x
2

) .
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3.4 Localized Jacobi kernels

However, with help of induction and the trigonometric addition identity for the sine
function

(
sin(x+ y) = sin(x) cos(y)+ sin(y) cos(x)

)
the following identity for Dirichlet

kernels can be proved:
n+m∑

i=n−m

Dt
i(x) = Dt

n(x)Dt
m(x) .

So now there is a change in view by stating that in the trigonometric case the de-la-
Vallée-Poussin kernel is given by

V t,n
m (x) =

Dt
n(x)Dt

m(x)

2m + 1
instead of V n,t

m (x) =
1

2m + 1

n+m∑
i=n−m

Dt
i(x) .

Of course that makes no difference in the trigonometric case, but in the Jacobi case
this change of view makes a big difference. Together with the observation concerning
the maximal value of the trigonometric Dirichlet kernel, that max

x∈[0,2π)
|Dt

m(x)| = 2m + 1,

one carries this over to the Jacobi case, where the maximal value of the Dirichlet kernel
is taken at x = 1. If we define a generalized de-la-Vallée-Poussin kernel for Jacobi
polynomials by

Vn
m(x) :=

Dn(x)Dm(x)

Dm(1)
, n = cm; n,m ∈ N; c > 1

we get the boundedness of this kernel for α, β > −1 and α + β > −1 with an explicit
constant C, thus ‖Vn

m ∗ f‖p ≤ C‖f‖p , for 1 ≤ p ≤ ∞.
Therefore it is clear that such a kernel is very powerful for approximation and it is

worth trying to construct kernels of that type in other settings. This will be done for
the disc and the disc polynomials in a later chapter of this work.

3.4 Localized Jacobi kernels

3.4.1 Almost exponentially localized kernels

A general form for almost exponentially localized kernels on the interval [−1, 1] with
respect to the weight function wα,β(x) and the Jacobi polynomials is presented in [5, 27].
Kernels of the type

Lα,β
n (x, y) =

∞∑
i=0

â

(
i

n

)(
hα,β(i)

)−1
J

(α,β)
i (x)J

(α,β)
i (y)

with a function â ∈ C∞([0,∞)
)

such that supp â ⊆ [0, 2], â = 1 on [0, 1] and 0 ≤ â ≤ 1
on the interval [1, 2] are analysed. The main result is the almost exponential localisation
of this kernel which means that the following inequality is derived for α, β > −1

2
:

|Lα,β
n (cos θ, cos φ)| ≤ ck

n√
wα,β(n; cos θ)

√
wα,β(n; cos φ)(1 + n|θ − φ|)k
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3.4 Localized Jacobi kernels

for arbitrary k ∈ N, for 0 ≤ θ, φ ≤ π and wα,β(n; x) = (1− x + n−2)α+ 1
2 (1 + x + n−2)β+ 1

2

while there exists a constant ck independent of n but depending on α, β and k. With the
translation and the product formula for Jacobi polynomials introduced in the previous
chapter one can write

Lα,β
n (x, y) = TyL

α,β
n (x) :=

n∑
i=0

â

(
i

n

)(
hα,β(i)

)−1
TyJ

(α,β)
i (x)

and it is clear that polynomials of degree less or equal to n are reproduced. In fact the
almost exponential localisation stems from the smoothness of the function â. The idea
of the proof is, that first it is shown that for any k ∈ N

|Lα,β
n (cos θ)| ≤ ck

n2α+2

(1 + nθ)k
, for 0 ≤ θ ≤ π

and secondly the translation is applied on Lα,β
n (x). With the explicit formula for the

translation the upper localisation of Lα,β
n (x, y) can be proved.

The next step, in achieving norm convergence of this kernel towards a function is the
theorem that states that∫ 1

−1

|Lα,β
n (x, y)|pwα,β(y)dy ≤ ck

np−1(
wα,β(n; x)

)p−1

for k ≥ 3α +3β +5, arguments −1 ≤ x ≤ 1 and exponents 1 ≤ p < ∞. The constant ck

of course is independent of n. Now one can choose p = 1 and with this choice the kernel
in the L1-norm is uniformly bounded. But then it is easy to prove that

‖Lα,β
n ∗ f‖p,α,β ≤ c(α, β)‖f‖p,α,β, for 1 ≤ p ≤ ∞

with c(α, β) independent of n and with
(
Lα,β

n ∗f
)
(x) =

1∫
−1

Lα,β
n (x, y)f(y)wα,β(y)dy. With

theorem (3.7) and the reproducing property for polynomials of degree n of the kernel
the norm convergence ‖Lα,β

n ∗ f − f‖ → 0 is satisfied.

3.4.2 Exponentially localized kernels

In [25, 11] a method is presented showing how to construct exponentially localized Jacobi
kernels, which are kernels Kn(x, y) bounded in the following way:

|Kn(x, y)| ≤ c̃ n2max(α,β)+2 exp(−c n dist(x, y))

while the constants c, c̃ are independent of n and dist(x, y) is a suitable distance function.
As in the proofs in which the translation Tx is employed, the range of α and β is limited
to α, β > −1

2
. The idea of how to construct such a kernel is to take any reproducing

summability kernel K2n that reproduces polynomials of degree 2n and multiply it with
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3.4 Localized Jacobi kernels

a polynomial Sn of degree n that satisfies the condition Sn(1) = 1 and the inequality
|Sn(x)| ≤ c2 exp(−nφ(1 − x)) for |x| ≤ 1 and a nondecreasing function φ with certain
properties. Then it is clear that the new kernel Φn(x) := Sn(x)K2n(x) reproduces
polynomials of degree ≤ n. With the explicit formula for the translation in the Jacobi
case the following two estimates can be made: For x = cos θ , y = cos ϕ ∈ [−1, 1] it
holds

|TyΦn(x)| ≤ c2‖K2n‖∞ exp
(
− nφ(1− cos(θ − ϕ))

)
and

sup
x∈[−1,1]

∫ 1

−1

|TyΦn(x)|wα,β(y)dy ≤ c2

∫ 1

−1

|K2n(x)|wα,β(x)dx .

As Sn is uniformly bounded and K2n is a reproducing summability kernel and therefore
also uniformly bounded as a direct result of Theorem 3.7, the boundedness of Φn follows
together with the most important property: the norm convergence. This results in a
theorem that states that for 1 ≤ p ≤ ∞ and a function f ∈ Xp([−1, 1], wα,β) it holds:

min
P∈Π5n

‖f − P‖p,α,β ≤ ‖f − Φn ∗ f‖p,α,β ≤ c2 min
P∈Πn

‖f − P‖p,α,β

and Πn is the set of all polynomials of degree ≤ n. Since the set of polynomials is
dense in each Lp-space this result tells something about the speed of the convergence in
relation to an approximation with polynomials of a certain degree.
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4.1 Disc polynomials

4 Disc polynomials and structures on the unit disc

4.1 Disc polynomials

Now we study the family of functions which shall be in the focus of our investigations.
The disc polynomials are a series of two dimensional polynomials that are orthogonal
on the unit disc with respect to a certain weight function.

The first investigations on orthogonal polynomials on the unit disc were made by
Frits Zernike, the Dutch Nobel prize winner, who developed the so called Zernike
polynomials. They are related to the disc polynomials, which in some documents are
even called generalized Zernike polynomials. Zernike used them not only because
of their orthogonality but also because of their properties in optics, namely modelling
optical abberations like defocus, coma or astigmatism for example.

A good overview of the disc polynomials gave A. Wünsche in his work "Generalized
Zernike or disc polynomials" [36]. Most of the definitions and properties we give in this
section can also be found there. Wünsche gives analogons of many properties of classical
one dimensional orthogonal polynomials.

Before we give the general definition of the disc polynomials we introduce some notations
that shall be used in the rest of the work. Let z be a complex variable with its complex
conjugate z̄ and let the unit disc be given by D := {z = x + iy ∈ C

∣∣ |z| ≤ 1}. Recall
that J

(α,β)
n (x) is the n-th Jacobi polynomial.

Definition 4.1 (disc polynomials). For m, n ∈ N0 and α ∈ R, α > −1 the (n, m)-th
disc polynomial is given by

Pα
m,n(z, z̄) =

{
n!α!

(n+α)!
zm−n J

(α,m−n)
n (2zz̄ − 1) for n ≤ m

m!α!
(m+α)!

z̄n−m J
(α,n−m)
m (2zz̄ − 1) for n > m .

This is the definition found in most of the literature on disc polynomials. One can also
write them in terms of the hypergeometric function:

Pα
m,n(z, z̄) = zmz̄n

2F1

(
−m,−n; α + 1; 1− 1

zz̄

)
, ∀ m, n ∈ N0.

We are also interested in the form how the disc polynomials explicitly look like. With the
help of explicit formulas for the Jacobi polynomials one can easily check the following
very important two formulas for the disc polynomials:

Pα
m,n(z, z̄) =

m! n! α!

(m + α)!(n + α)!

min(m,n)∑
k=0

(−1)k (m + n + α− k)!

k!(m− k)!(n− k)!
zm−k z̄n−k (4.1)

Pα
m,n(z, z̄) =

min(m,n)∑
k=0

(−1)k m! n! α!

k!(m− k)!(n− k)!(k + α)!
(1− zz̄)k zm−k z̄n−k . (4.2)
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4.1 Disc polynomials

As for the Jacobi polynomials one can give a Rodrigues’ formula for the disc polyno-
mials, which also is easy to verify by simple differential calculus rules and subsequent
comparison with (4.2):

Pα
m,n(z, z̄) =

(−1)m+n α!

(m + n + α)!

1

(1− zz̄)α

∂m+n

∂z̄m∂zn

(
1− zz̄

)m+n+α
.

Remark: The so called Zernike polynomials Zn
m(r, ϕ) already mentioned before, have the

following relation to the disc polynomials. They are given for n ∈ N0 and m ∈ Z with
0 ≤ |m| ≤ n and (n + |m|) ∈ 2N0 in [0, 1]× [0, 2π) by

Zn
m(r, ϕ) =

{
P 0

(n+|m|)/2,(n−|m|)/2(r, r) cos(mϕ) for m ≥ 0

P 0
(n+|m|)/2,(n−|m|)/2(r, r) sin(mϕ) for m < 0 .

In the sequel we will often switch between the following two notations, used identically:

Pα
m,n(z, z̄) = Pα

m,n(z) as well as f(z, z̄) = f(z) .

The first just merely intends to emphasize that we are talking about two dimensional
functions. One should bear in mind, that we are dealing with polynomials of the kind∑

n,m αn,mznz̄m. Of course polynomials
∑

n αnz
n ∈ C[z] are included in our set of

polynomials, but indeed it is a much bigger class we are talking about.

With the defintion of the disc polynomials we can already find some interesting proper-
ties. In particular the following property concerning complex conjugation will be refered
to several times in the sequel:

Pα
m,n(z, z̄) = Pα

m,n(z̄, z) = Pα
n,m(z, z̄) . (4.3)

Concerning parity we see that Pα
m,n(−z,−z̄) = (−1)m+nPα

m,n(z, z̄). We also want to
mention some special values that are easy to check:

Pα
m,n(0, 0) =

(−1)n n! α!

(n + α)!
δm,n , as well as Pα

m,n(1, 1) = 1 .

A very natural and important way to write functions on balls and especially on the disc
is to transform them into polar coordinates. So for z = reiϕ the disc polynomials are
given by

Pα
m,n(reiϕ, re−iϕ) = ei(m−n)ϕPα

m,n(r, r) (4.4)

and we easily see that the disc polynomials on the boundary of the disc have the values
Pα

m,n(eiϕ, e−iϕ) = ei(m−n)ϕ.
We want to give the first few disc polynomials in order to get a slight idea how they

look like. The first thing that one notices is the fact that whenever one of the indices is
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4.2 Lebesgue spaces and orthogonality on the disc

zero the corresponding disc polynomial is a monomial in z or z̄ depending on whether
the first or the second index is zero. This means that we have:

∀n ∈ N0 : Pα
n,0(z, z̄) = zn and Pα

0,n(z, z̄) = z̄n .

By looking at formula (4.1) it becomes clear that the highest exponent of the disc
polynomial Pα

m,n(z, z̄) is (m, n) and that the subsequent exponents decrease by j for
j = 1 up to min(m, n) via (m− j, n− j). It makes sense to order the disc polynomials
by the sum of their indices, later we will establish a two dimensional order on N0 × N0.
So the first few disc polynomials Pα

m,n(z, z̄) are:

for m + n = 0 : Pα
0,0(z, z̄) = 1

for m + n = 1 : Pα
1,0(z, z̄) = z , P α

0,1(z, z̄) = z̄

for m + n = 2 : Pα
2,0(z, z̄) = z2 , Pα

1,1(z, z̄) =
α + 2

α + 1
zz̄ − 1

α + 1
, Pα

0,2(z, z̄) = z̄2

for m + n = 3 : Pα
3,0(z, z̄) = z3 , Pα

2,1(z, z̄) =
α + 3

α + 1
z2z̄ − 2

α + 1
z

Pα
1,2(z, z̄) =

α + 3

α + 1
zz̄2 − 2

α + 1
z̄ , P α

0,3(z, z̄) = z̄3

for m + n = 4 : Pα
4,0(z, z̄) = z4 , Pα

3,1(z, z̄) =
α + 4

α + 1
z3z̄ − 3

α + 1
z2

Pα
2,2(z, z̄) =

(α + 4)(α + 3)

(α + 2)(α + 1)
z2z̄2 − 4(α + 3)

(α + 2)(α + 1)
zz̄ +

2

(α + 2)(α + 1)

Pα
3,1(z, z̄) =

α + 4

α + 1
zz̄3 − 3

α + 1
z̄2 , Pα

0,4(z, z̄) = z̄4 .

The basic properties given in this chapter already tell much about the character of the
disc polynomials. Further properties which are not that easy to acquire will be given in
another section.

4.2 Lebesgue spaces and orthogonality on the disc

The orthogonality of the disc polynomials is certainly the most important property.
We will give a detailed proof here. The orthogonality relation will open the door to a
generalized Fourier Analysis on the disc and an associated approximation theory with
respect to the disc polynomials. The natural function spaces for this theory are of course
suitable Lebesgue spaces which we will define in this chapter.

As mentioned before the orthogonality relation holds with respect to a certain weight
function which we will call ωα(z) and which is given for real α with α > −1 by:
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4.2 Lebesgue spaces and orthogonality on the disc

ωα(z) :=
α + 1

π
(1− zz̄)α, for z ∈ D .

Because of its nonnegativity it induces a Borel measure on D and we define:

dµα(z) := ωα(z)dz =
α + 1

π

(
1− x2 − y2

)α
dxdy , for z = x + iy .

By a simple calculation we can see that µα(z) is even a probability measure on D. Thus,
the integral over the domain D of the identity function is equal to 1:∫

D

1 dµα(z) =
α + 1

π

∫
D

(
1− zz̄

)α
dz =

α + 1

π

∫ 1

0

∫ 2π

0

r
(
1− r2

)α
dϕdr

= 2(α + 1)

[
−1

2(α + 1)

(
1− r2

)α+1
]1

0

= 1

The next step is to define function spaces taking into account this weight function.
They are given in

Definition 4.2 (Lebesgue space). For 1 ≤ p ≤ ∞ and α > −1 the Lebesgue space
Lp

α(D) is given by

Lp
α(D) :=

{
f(z, z̄) → C

∣∣ z ∈ D and ‖f‖Lp
α

< ∞
}

where the norm is given by

‖f‖Lp
α

:=


(∫

D
|f(z, z̄)|pdµα(z)

) 1
p for 1 ≤ p < ∞

sup
x∈D

|f(x, x̄)| for p = ∞ .

The function space Xp
α(D) is given for 1 ≤ p ≤ ∞ with the same norm as Lp

α(D) by

Xp
α(D) :=

{
Lp

α(D) for 1 ≤ p < ∞
C(D) for p = ∞ .

With Hölder’s inequality we see that for q > p we have Lq
α(D) ⊆ Lp

α(D). And it
is clear that the Lp

α(D) spaces are Banach spaces and L2
α(D) is a Hilbert space. The

corresponding inner product is given by

〈f, g〉α :=

∫
D

f(z)g(z)dµα(z)

for f, g ∈ L2
α(D).
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4.2 Lebesgue spaces and orthogonality on the disc

Now we have all prerequisites to study orthogonality. In a Hilbert space two elements
are orthogonal if their inner product is equal to zero. So what we will prove in order to
show the orthogonality of the disc polynomials is the following:〈

Pα
k,l, P

α
m,n

〉
α

=
δk,m δl,n

hα(m,n)

while hα(m, n) is the Haar function for the disc polynomials given by the formula

hα(m, n) =
m + n + α + 1

α + 1

(
m + α

m

)(
n + α

n

)
=

m + n + α + 1

α + 1

(m + α)!

m! α!

(n + α)!

n! α!
.

As one can see the Haar function is symmetric in m and n which will be of importance
later. So now we come to the actual proof. Recall the properties of the disc polynomials
from the previous section and the orthogonality relation of the Jacobi polynomials which
will be used in the last step.〈

Pα
k,l, P

α
m,n

〉
α

=

∫
D

Pα
k,l(z, z̄) Pα

m,n(z, z̄)dµα(z)
(4.3)
=

∫
D

Pα
l,k(z, z̄) Pα

m,n(z, z̄)dµα(z)

=
α + 1

π

∫ 2π

0

∫ 1

0

Pα
l,k(re

iϕ, re−iϕ) Pα
m,n(reiϕ, re−iϕ)

(
1− r2

)α
r drdϕ

(4.4)
=

α + 1

π

∫ 2π

0

ei(l−k)ϕei(m−n)ϕdϕ

∫ 1

0

Pα
l,k(r, r) Pα

m,n(r, r)
(
1− r2

)α
r dr

now let w.l.o.g. n ≤ m s.th. in case l + m = k + n we can replace k by l + m− n

=
α + 1

π
2π δl+m,k+n

∫ 1

0

Pα
l,l+m−n(r, r) Pα

m,n(r, r)
(
1− r2

)α
r dr

= 2(α + 1)δl+m,k+n

∫ 1

0

(
l + α

l

)−1

rm−nJ
(α,m−n)
l (2r2 − 1)×

×
(

n + α

n

)−1

rm−nJ (α,m−n)
n (2r2 − 1)

(
1− r2

)α
r dr

now a substitution of x = 2r2 − 1 gives

= 2(α + 1) δl+m,k+n

(
n + α

n

)−1(
l + α

l

)−1

×

×
∫ 1

−1

1

4
J

(α,m−n)
l (x)J (α,m−n)

n (x)

(
1 + x

2

)m−n(
1− x

2

)α

dx

= 2−α−(m−n)−1 (α + 1) δl+m,k+n

(
n + α

n

)−1(
l + α

l

)−1

×

×
∫ 1

−1

J
(α,m−n)
l (x)J (α,m−n)

n (x)
(
1 + x

)m−n(
1− x

)α
dx
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4.3 Generalized translation and convolution

=

(
n + α

n

)−1(
l + α

l

)−1
α + 1

m + n + α + 1

(n + α)! m!

n! (m + α)!
δl,n δl+m,k+n

=
δl,n δk,m

hα(m, n)
.

4.3 Generalized translation and convolution

In the chapters on Fourier Analysis with respect to Jacobi polynomials we already men-
tioned the relevance of a translation operator for Fourier analysis and approximation
theory. We are aiming at doing approximation theory on the unit disc with respect to
the disc polynomials so the question for a generalized translation is of great interest. In-
deed a translation for our purposes exists and the associated convolution. In [1] and [15]
the definition and some properties of the generalized translation can be found together
with further considerations. Here we will just concentrate on the definition and some
basic corollaries, applying them in later chapters.

Definition 4.3 (generalized translation). For a function f ∈ L1
α(D), α > 0 and a

point z ∈ D the operator Tα
z , called generalized translation, is defined by

Tα
z f(ξ) :=

α

α + 1

∫
D

f(z̄ξ +
√

1− |z|2
√

1− |ξ|2 y)
dµα(y)

1− |y|2
, ∀ξ ∈ D

=

∫
D

f(z̄ξ +
√

1− |z|2
√

1− |ξ|2 y)dµα−1(y) .

In this definition it becomes clear, that we can no longer maintain α > −1 and have to
change it towards α > 0, which will be our assumption in the sequel.

It is worth taking a closer look at the argument of the integrand. We see that we
actually integrate over the set

{
z̄ξ +

√
1− |z|2

√
1− |ξ|2 y | y ∈ D

}
, i.e. a disc of radius

r =
√

(1− |z|2)(1− |ξ|2) with center z̄ξ. This disc will be called in the sequel and in
the following figure Br(z̄ξ). It is clear, that for z, ξ ∈ D also the product z̄ξ ∈ D. Then
we ascertain that the translation operator is well defined by checking that Br(z̄ξ) lies
entirely in D. Therefore we switch to polar coordinates and let z̄ := (1 − ε)eiϕ and
ξ := (1− δ)eiθ with 0 ≤ ε, δ ≤ 1 ; ϕ, θ ∈ [0, 2π):

Then the center z̄ξ is given by z̄ξ = (1 − ε)(1 − δ)ei(ϕ+θ) and its distance from the
boundary is dist(z̄ξ, ∂D) = ε(1− δ) + δ .

The radius of Br(z̄ξ), r =
√

(1− |z|2)(1− |ξ|2) then, in terms of ε, δ, is given by

0 ≤ r =
√

(1− (1− ε)2)(1− (1− δ)2) =
√

4εδ − 2εδ2 − 2ε2δ + ε2δ2 .

With (dist(z̄ξ, ∂D))2 = ε2 + 2εδ + δ2 − 2ε2δ − 2εδ2 + ε2δ2 we can conclude
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4.3 Generalized translation and convolution

0 ≤ r =
√

(dist(z̄ξ, ∂D))2 − ε2 + 2εδ − δ2

=
√

(dist(z̄ξ, ∂D))2 − (ε− δ)2 ≤ dist(z̄ξ, ∂D) .

For illustration different cases of that are given in the following figure:

Figure 3: the domain of integration of the translation for different values of z̄ = (1−ε)eiϕ

and ξ = (1− δ)eiθ
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If we perform a variable transformation such that the integration domain is Br(z̄ξ) the
concept of the translation changes in the following way:

Lemma 4.4. For z, ξ, y ∈ D we have:

(i) Tα
z f(ξ) =

∫
D

f(y)Eα(z, ξ, y)dµα(y)

and Eα(z, ξ, y) is given by

Eα(z, ξ, y) =

 α
α+1

(
1−|z|2−|ξ|2−|y|2+2Re(z̄ξȳ)

)α−1

(1−|z|2)α(1−|ξ|2)α(1−|y|2)α for y ∈ Br(z̄ξ)

0 else

(ii) Eα(z, ξ, y) ≥ 0

(iii)

∫
D

Eα(z, ξ, y)dµα(y) = 1

(iv) Eα(z, ξ, y) = Eα(z, ȳ, ξ̄) as well as Eα(z, ξ, y) = Eα(y, ξ, z) .

Proof (i):

Tα
z f(ξ) =

α

α + 1

∫
D

f(z̄ξ +
√

1− |z|2
√

1− |ξ|2 y)
dµα(y)

1− |y|2

=
α

α + 1

∫
D

f(z̄ξ +
√

1− |z|2
√

1− |ξ|2 y)(1− |y|2)α−1α + 1

π
dy1dy2 .

Now we perform a substitution by x = z̄ξ +
√

1− |z|2
√

1− |ξ|2 y

which leads to y =
x− z̄ξ√

1− |z|2
√

1− |ξ|2
,

dy1dy2 = (1− |z|2)−1(1− |ξ|2)−1dx1dx2

and D transforms to Br(z̄ξ)

=
α

α + 1

∫
Br(z̄ξ)

f(x)

(
1− (x− z̄ξ)(x̄− zξ̄)

(1− |z|2)(1− |ξ|2)

)α−1
α + 1

π(1− |z|2)(1− |ξ|2)
dx1dx2

=
α

α + 1

∫
Br(z̄ξ)

f(x)

(
1− |z|2 − |ξ|2 − |x|2 + 2Re(z̄ξx̄)

)α−1

(1− |z|2)α(1− |ξ|2)α(1− |x|2)α
dµα(x)

=

∫
D

f(x)Eα(z, ξ, x)dµα(x) .

Proof (ii):

For y ∈ Br(z̄ξ) we have : Eα(z, ξ, y) =
α

α + 1

(
1− |z|2 − |ξ|2 − |y|2 + 2Re(z̄ξȳ)

)α−1

(1− |z|2)α(1− |ξ|2)α(1− |y|2)α

and so if we take y = x + z̄ξ, x ∈ B√
(1−|z|2)(1−|ξ|2)

(0), Eα(z, ξ, y) transforms to
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Eα(z, ξ, z̄ξ + x) =
α

α + 1

(
1− |z|2 − |ξ|2 − |z̄ξ + x|2 + 2Re(z̄ξ(z̄ξ + x))

)α−1

(1− |z|2)α(1− |ξ|2)α(1− |z̄ξ + x|2)α

=
α

α + 1

(
1− |z|2 − |ξ|2 + |z|2|ξ|2 − |x|2

)α−1

(1− |z|2)α(1− |ξ|2)α(1− |z̄ξ + x|2)α

=
α

α + 1

(
(1− |z|2)(1− |ξ|2)− |x|2

)α−1

(1− |z|2)α(1− |ξ|2)α(1− |z̄ξ + x|2)α
,

and as |x|2 ≤ (1 − |z|2)(1 − |ξ|2) the assertion that Eα(z, ξ, y) = Eα(z, ξ, z̄ξ + x) ≥ 0
follows as all terms in the last line are ≥ 0, in fact:(

(1− |z|2)(1− |ξ|2)− |x|2
)α−1 ≥ 0

(1− |z|2)α ≥ 0

(1− |ξ|2)α ≥ 0

(1− |z̄ξ + x|2)α ≥ 0 .

Proof (iii):∫
D

Eα(z, ξ, y)dµα(y) =
α

π

∫
Br(z̄ξ)

(
1− |z|2 − |ξ|2 − |y|2 + 2Re(z̄ξȳ)

)α−1

(1− |z|2)α(1− |ξ|2)α
dy1dy2

=
α

π

1

(1− |z|2)α(1− |ξ|2)α

∫
B√

(1−|z|2)(1−|ξ|2)
(0)

(
(1− |z|2)(1− |ξ|2)− |y|2

)α−1
dy1dy2

=
α

π

1

(1− |z|2)α(1− |ξ|2)α

∫ √(1−|z|2)(1−|ξ|2)

0

∫ 2π

0

(
(1− |z|2)(1− |ξ|2)− r2

)α−1
r dϕdr

[
−((1− |z|2)(1− |ξ|2)− r2)

α

(1− |z|2)α(1− |ξ|2)α

]√(1−|z|2)(1−|ξ|2)

0

= 1 .

Proof (iv):

It is clear, that α
α+1

(
1−|z|2−|ξ|2−|y|2+2Re(z̄ξȳ)

)α−1

(1−|z|2)α(1−|ξ|2)α(1−|y|2)α = α
α+1

(
1−|z|2−|ξ|2−|y|2+2Re(z̄ȳξ)

)α−1

(1−|z|2)α(1−|ξ|2)α(1−|y|2)α , because

of the multiplicative commutativity of the complex numbers, so it suffices to show

y ∈ Br(z̄ξ) ⇐⇒ ξ̄ ∈ Br1(z̄ȳ)

where r =
√

1− |z|2
√

1− |ξ|2 and r1 =
√

1− |z|2
√

1− |y|2 . So

y ∈ Br(z̄ξ) ⇐⇒ y ∈ B√
(1−|z|2)(1−|ξ|2)

(z̄ξ) ⇐⇒ |y − z̄ξ|2 < (1− |z|2)(1− |ξ|2)
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4.3 Generalized translation and convolution

⇐⇒ |y|2 − 2Re(ȳz̄ξ) + |z|2|ξ|2 < 1− |z|2 − |ξ|2 + |z|2|ξ|2

⇐⇒ |ξ|2 − 2Re(ȳz̄ξ) + |z|2|y|2 < 1− |z|2 − |y|2 + |z|2|y|2

⇐⇒ |ξ̄ − ȳz̄|2 < (1− |z|2)(1− |y|2) ⇐⇒ ξ̄ ∈ Br1(z̄ȳ) .

The second equality is proved in the same way.

Now we are in the situation to prove the first two important properties a translation has
to fulfill, namely linearity and boundedness:

Lemma 4.5 (linearity and boundedness of the translation). For y, z ∈ D and
a, b ∈ C, f, g ∈ L1

α(D) for α > 0 it holds

(i) Tα
z (af + bg)(y) = a Tα

z f(y) + b Tα
z g(y)

(ii) ‖Tα
z h‖Xq

α
≤ ‖h‖Xq

α
for h ∈ Xq

α(D) for 1 ≤ q ≤ ∞ .

Proof (i): The linearity follows by the linearity of the integral:

Tα
z (af + bg)(y) =

∫
D

(af + bg)(ξ)Eα(z, y, ξ)dµα(ξ) = a Tα
z f(y) + b Tα

z g(y) .

Proof (ii): case 1): q = 1:

‖Tα
z f‖X1

α
=

∫
D

|Tα
z f(y)|dµα(y) ≤

∫
D

∫
D

|f(ξ)|Eα(z, y, ξ)dµα(ξ)dµα(y)

4.4 iv)
=

∫
D

|f(ξ)|
∫

D

Eα(z, ξ̄, ȳ)dµα(y)︸ ︷︷ ︸
=1

dµα(ξ) = ‖f‖X1
α

case 2): q = ∞:

‖Tα
z f‖X∞

α
= sup

y∈D
|Tα

z f(y)| ≤ sup
y∈D

∫
D

|f(ξ)|Eα(z, y, ξ)dµα(ξ)

≤ sup
x∈D

|f(x)| sup
y∈D

∫
D

Eα(z, y, ξ)dµα(ξ) = ‖f‖X∞
α

.

Based on the generalized translation we can now define the generalized convolution of
two functions on the unit disc in the expected manner:

Definition 4.6 (generalized convolution). For two functions f, g ∈ L1
α(D), and

α > 0, ξ ∈ D the generalized convolution ∗
α

is given by

(
f ∗

α
g
)
(ξ) :=

∫
D

Tα
z f(ξ)g(z)dµα(z) =

∫
D

∫
D

f(y)Eα(z, ξ, y)dµα(y)g(z)dµα(z) .
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4.3 Generalized translation and convolution

The next important property being required from the translation is the product formula
for disc polynomials. Koornwinder proved it in [19] as a corollary of the product formula
for Jacobi polynomials.

Theorem 4.7 (product formula for disc polynomials). For the disc polynomials
we have the following product formula, that is associated with the generalized translation:
∀ α > 0; m, n ∈ N0

Tα
z Pα

m,n(ξ, ξ̄) = Pα
m,n(z̄, z)Pα

m,n(ξ, ξ̄) .

We do not give the proof of this property. It is a consequence of the product formula
for Jacobi polynomials, which is rather complicated.

The final property we need to show in order to have a valid translation on the unit
disc is the commutativity of the generalized convolution. This will be done in a lemma
concluding this chapter.

Lemma 4.8. For f, g ∈ L1
α(D), α > 0 it holds

i) f ∗
α
g ∈ L1

α(D)

ii) f ∗
α
g = g ∗

α
f .

Proof i): Recall the properties of Eα(z, ξ, y), (4.4 (iii) and (iv)) and then we see that

‖f ∗
α
g‖L1

α
=

∫
D

∣∣∣∣∫
D

∫
D

f(y)g(z)Eα(z, ξ, y)dµα(y)dµα(z)

∣∣∣∣ dµα(ξ)

≤
∫

D

∫
D

∫
D

|f(y)||g(z)|Eα(z, ȳ, ξ̄)dµα(y)dµα(z)dµα(ξ)

=

∫
D

∫
D

|f(y)||g(z)|
∫

D

Eα(z, ȳ, ξ̄)dµα(ξ̄)︸ ︷︷ ︸
=1

dµα(y)dµα(z)

= ‖f‖L1
α
‖g‖L1

α
.

Proof ii): Recalling 4.4 (iv) we obtain(
f ∗

α
g
)

(ξ) =

∫
D

∫
D

f(y)g(z)Eα(z, ξ, y)dµα(y)dµα(z)

=

∫
D

∫
D

f(y)g(z)Eα(y, ξ, z)dµα(y)dµα(z)

=
(
g ∗

α
f
)

(ξ) .
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4.4 Further properties of the disc polynomials

In the introductory chapter on Jacobi polynomials was mentioned that they satisfy a
certain differential equation. As we want to look at the disc polynomials in a similar
way one can ask the question for differential equations they satisfy. The two common
coordinate systems the disc polynomials are given in are the polar coordinates and the
one with a complex coordinate and its conjugate. These can be transformed into each
other such that a differential equation for the disc polynomials can always be given in
those two forms.

A very easy differential equation can be found by differentiation of a disc polynomial in
polar coordinates by its angular variable:

∂

∂ϕ
Pα

m,n(reiϕ, re−iϕ) = i(m− n)Pα
m,n(reiϕ, re−iϕ) . (4.5)

With the relations ∂z
∂ϕ

= iz and ∂z̄
∂ϕ

= −iz̄ this differential equation can be transformed
into (

z
∂

∂z
− z̄

∂

∂z̄

)
Pα

m,n(z, z̄) = (m− n)Pα
m,n(z, z̄) .

With the help of the differential equation for the Jacobi polynomials (3.1) one can derive
a second differential equation for the disc polynomials, which we will again give in the
two different coordinate systems:

(
(1− r2)

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
− 2(1 + α)r

∂

∂r
+ 4mn + 2(1 + α)(m + n)

)
×

×Pα
m,n(reiϕ, re−iϕ) = 0

or alternatively

(
2
[
(1− zz̄)

∂2

∂z∂z̄
+

∂2

∂z∂z̄
(1− zz̄)

]
− α

(
z

∂

∂z
+ z̄

∂

∂z̄
+

∂

∂z
z +

∂

∂z̄
z̄

)
+ 4mn+

+2(1 + α)(m + n + 1)

)
Pα

m,n(z, z̄) = 0 .

We will sketch here the way this is to prove. In equation (3.1) we insert β = m − n
(w.l.o.g. m > n) and perform a subsequent substitution x = 2r2 − 1. Therefore we get
for the differential operators ∂

∂x
= 1

4r
∂
∂r

and ∂2

∂x2 = 1
16r2

(
∂2

∂r2 − 1
r

∂
∂r

)
. This leads to(

(1− r2)

(
∂2

∂r2
+

1

r

∂

∂r

)
+ 2(m− n)(1− r2)

1

r

∂

∂r
− 2(1 + α)

1

r

∂

∂r
+ 4mn + 4n(1 + α)

)
×

×J (α,m−n)
n (2r2−1) = 0 .
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4.4 Further properties of the disc polynomials

Now we plug into this equation the (m, n)-th disc polynomial Pα
m,n(reiϕ, re−iϕ) = n!α!

(n+α)!

ei(m−n)ϕ rm−nJ
(α,m−n)
n (2r2 − 1) and adjust the terms that occur by the product rule.

Finally we need the help of equation (4.5) by using ∂2

∂ϕ2 P
α
m,n = −(m−n)2Pα

m,n to get the
desired result.

The differential equation in the variables (z, z̄) can be derived with the following
two transformations of differential operators: ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂ϕ2 = 4 ∂2

∂z∂z̄
as well as

r ∂
∂r

= z ∂
∂z

+ z̄ ∂
∂z̄

.

Similar to the recurrence relation for the Jacobi polynomials (3.2) there exist recurrence
relations for the disc polynomials. The most easy one which can be checked with the
explicit formula (4.2) is given by

(m− n)Pα
m,n(z, z̄) = mzPα

m−1,n(z, z̄)− nz̄P α
m,n−1(z, z̄) .

Two other recurrence relations are connected to each other due to the complex conjuga-
tion property (4.3). They can be checked by simple calculations with formula (4.1) and
comparison of the coefficients of the monomials zm+1−kz̄n−k.

(m + n + α + 1)zP α
m,n(z, z̄) = (m + α + 1)Pα

m+1,n(z, z̄) + nPα
m,n−1(z, z̄)

(m + n + α + 1)z̄P α
m,n(z, z̄) = (n + α + 1)Pα

m,n+1(z, z̄) + mP α
m−1,n(z, z̄) .

By looking at these two recurrence relations from a different point of view and the fact
that z = Pα

1,0(z, z̄) one sees, that here are given the linearisation coefficients gα(1, 0; m, n; 0)
and gα(1, 0; m, n; 1). (Further informations and results on linearisation coefficients are
given in the next chapter.) So we have in terms of linearisation coefficients

Pα
1,0(z, z̄)Pα

m,n(z, z̄) = gα(1, 0; m, n; 0)Pα
m+1,n(z, z̄) + gα(1, 0; m,n; 1)Pα

m,n−1(z, z̄)

(and for the complex conjugate case respectively).
Another interesting question is, whether we can determine the maximal value of the

disc polynomials on the unit disc D. The answer is yes and it is known, that it is equal
to one in case α ≥ 0:

For every α ≥ 0 and every (m, n) ∈ N2, we have sup
z∈D

|Pα
m,n(z)| = 1 .

In [3] Askey gives the following proof:

We can write the product of two disc polynomials as a sum of several disc polynomials
multiplied with their corresponding linearization coefficient, namely

Pα
m,n(z)Pα

k,l(z) =
∑
i,j

gα(m,n; k, l; i, j)Pα
i,j(z) .

Koornwinder proved that the linearisation coefficients gα(m, n; k, l; i, j) are non-negative
for every (m, n), (k, l) and (i, j) in case α ≥ 0 which is our general assumption here.
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4.4 Further properties of the disc polynomials

Since for all disc polynomials we have Pα
m,n(1) = 1 it is clear, that firstly we have

sup
z∈D

|Pα
m,n(z)| ≥ 1 and secondly for the sum of the linearisation coefficients we have∑

i,j

gα(m, n; k, l; i, j) = 1. With the notation that M(z) := sup
(m,n)

|Pα
m,n(z)| and M :=

sup
z∈D

M(z) we get from the equation above M(z)2 ≤ M and therefore M2 ≤ M . But then

it must be M = 1.

Subsequently I will give another proof of this result. I don’t know whether the following
proof is already known in literature. In contrast to the upper proof it is only valid for
α > 0:

i) For every z0 = r0e
iϕ0 we have the following relation for the absolute value of a disc

polynomial, namely that it only depends on the radial part of the variable:

|Pα
m,n(z0, z0)| = |Pα

m,n(r0e
iϕ0 , r0e

−iϕ0)| = |ei(m−n)ϕ0Pα
m,n(r0, r0)| = |Pα

m,n(r0, r0)| .

ii) This little consideration we need later: Every r0 ∈ [0, 1] is contained in the disc of
radius (1− r2

0) with center r2
0 :

∀r0 ∈ [0, 1] : r0 ∈ B(1−r2
0)(r

2
0) ⊂ D

We see that the disc B(1−r2
0)(r

2
0) contains the real interval [2r2

0 − 1, 1] thus we need to
check if everything works with the left end of the interval. But we have

2r2
0 − 1 ≤ r2

0 ≤ r0 ; ∀r0 ∈ [0, 1] .

iii) Assume there is a z0 = r0e
iϕ0 ∈ D such that

sup
z∈D

|Pα
m,n(z)| = |Pα

m,n(z0)|
i)
= |Pα

m,n(r0)| > 1.

With the generalized translation

Tα
z f(y) :=

∫
D

f(z̄y +
√

1− |z|2
√

1− |y|2 ξ)dµα−1(ξ)

and the product formula for disc polynomials

Tα
z Pα

m,n(y) = Pα
m,n(z̄)Pα

m,n(y)

given in an earlier chapter (both only given for α > 0) we have the following inequality:
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4.4 Further properties of the disc polynomials

∣∣Pα
m,n(r0)

∣∣2 i)
=
∣∣Pα

m,n(z0)P
α
m,n(z0)

∣∣ =
∣∣Tα

z0
Pα

m,n(z0)
∣∣

=

∣∣∣∣∫
D

Pα
m,n(z0z0 +

√
1− |z0|2

√
1− |z0|2ξ)dµα−1(ξ)

∣∣∣∣
=

∣∣∣∣∫
D

Pα
m,n(|z0|2 + (1− |z0|2)ξ)dµα−1(ξ)

∣∣∣∣
≤
∫

D

∣∣Pα
m,n(|z0|2 + (1− |z0|2)ξ)

∣∣ dµα−1(ξ)

=

∫
D

∣∣Pα
m,n(r2

0 + (1− r2
0)ξ)

∣∣ dµα−1(ξ)

ii)

≤
∣∣Pα

m,n(r0)
∣∣ ∫

D

1 dµα−1(ξ) =
∣∣Pα

m,n(r0)
∣∣ .

In the last inequality we have used the fact, that the point r0 on the real axis at which
Pα

m,n takes its maximal value is contained in the domain over which effectively is inte-
grated which was the consideration in ii), and in the last equality that the measure µα−1

is a probability measure over the disc.
But then we have the contradiction that

∣∣Pα
m,n(r0)

∣∣2 ≤ ∣∣Pα
m,n(r0)

∣∣ which doesn’t fit to
the assumption |Pα

m,n(r0)| > 1.
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5 Linearization coefficients of the disc polynomials

5.1 Linearization coefficients

By looking at the disc polynomials it gets clear that they constitute a basis of the set of

polynomials of the form P (z) =
m∑

i=0

n∑
j=0

ai,j ziz̄j on C. Hence every such polynomial can

be represented by a linear combination of disc polynomials. A question that arises in
hypergroup theory (cf [8] and [14]) is how do the so called linearization coefficients
look like for the product of two orthogonal polynomials, are they non-negative?

Definition 5.1 (Linearization coefficient). For n, m, k, l ∈ N0 the product of the two
disc polynomials Pα

m,n(z) and Pα
k,l(z) can be written as a finite linear combination of disc

polynomials:
Pα

m,n(z)Pα
k,l(z) =

∑
i,j

gα(m, n; k, l; i, j)Pα
i,j(z) .

gα(m, n; k, l; i, j) is called the (i, j)-th linearization coefficient of Pα
m,n(z)Pα

k,l(z).

A first result on the form of the sum and the linearization coefficients of the disc poly-
nomials is given in the following

Theorem 5.2 (Linearization coefficients). For α > −1 and for all m, n, k, l ∈ N0

∃M ∈ N0, such that

Pα
m,nP

α
k,l =

M∑
i=0

gα(m, n; k, l; i)Pα
m+k−i,n+l−i

where M ≤ min{m + k, n + l,m + n, k + l} and gα(m, n; k, l; i) ∈ R ∀i ∈ N0.

Remarks: a) We changed the order of summation in this formula from ascending to
descending beginnig with the highest linearization coefficient that is not
zero and named the gα(m, n; k, l; m + k − i, n + l − i) =: gα(m, n; k, l; i)
for 0 ≤ i ≤ M . All the other linearization coefficients are zero so we
didn’t list them. In our eyes this enhances the readability and under-
standing.

b) Koornwinder proved in [21] the linearization coefficients gα(m, n; k, l; i, j)
for the disc polynomials to be non-negative for α ≥ 0.

c) For the special case α = 0 we were able to calculate the linearization
coefficients g0(m, n; k, l; i) explicitely. This calculation is very tedious based
on a two-dimensional induction.
We have included this result since the explicit form of the coefficients
g0(m, n; k, l; i) -if neccessary- can be used for the analysis of properties of
the disc polynomials, e.g. generalized translation on the disc in case α = 0.
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Proof of Theorem 5.2:
i) At first, we prove the fact that we need for the representation of the product Pα

m,nP
α
k,l

in terms of a linear combination of disc polynomials only those of the form Pα
m+k−i,n+l−i,

while i is in the range of 0 ≤ i ≤ min{m + k, n + l}:

By the explicit formula for the disc polynomials (4.1) we can write the product in the
following way:

Pα
m,n(z)Pα

k,l(z) =
m! n! α!

(m + α)!(n + α)!

min(m,n)∑
i=0

(−1)i(m + n + α− i)!

i!(m− i)!(n− i)!
zm−iz̄n−i

× k! l! α!

(k + α)!(l + α)!

min(k,l)∑
j=0

(−1)j(k + l + α− j)!

j!(k − j)!(l − j)!
zk−j z̄l−j

=
m! n! k! l! α! α!

(m + α)!(n + α)!(k + α)!(l + α)!

×
min(m,n)∑

i=0

min(k,l)∑
j=0

(−1)i+j (m + n + α− i)!

i!(m− i)!(n− i)!

(k + l + α− j)!

j!(k − j)!(l − j)!
zm+k−(i+j)z̄n+l−(i+j)

=
m! n! k! l! α! α!

(m + α)!(n + α)!(k + α)!(l + α)!

×
T∑

s=0

[
s∑

t=0

(−1)s(m + n + α− s + t)!

(s− t)!(m− s + t)!(n− s + t)!

(k + l + α− t)!

t!(k − t)!(l − t)!

]
zm+k−sz̄n+l−s (5.1)

where T = min(m, n) + min(k, l). We want to remind that in the inner sum of the
last line (5.1) only those terms are nonzero, where in the denominator are no negative
factorials. Or in other words: the inner summation should look like

min{k,l,s}∑
t=max{s−m,s−n,0}

. . .

but this is too clumsy and doesn’t help the readability so we keep the upper notation.
Now we list some observations that can be made by looking at this formula and the

form of the disc polynomials.

(P1) One sees in formula (5.1) that the exponents of z and z̄ in the product of
Pα

m,n(z)Pα
k,l(z) reduce by the factor one simultaneously, i.e. only exponents of the form

(m + k − s, n + l − s) for s = 0, ..., min(m,n) + min(k, l) can occur. Moreover all
coefficients are real numbers.

(P2) If we look at the exponents of the disc polynomials Pα
m+k−i,n+l−i(z) with which

we want to make the linear combination of the product Pα
m,n(z)Pα

k,l(z) one also sees that
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for fixed i we only have exponents of z and z̄ of the form (m + k − i− s, n + l − i− s)
for s = 0, ..., min(m + k − i, n + l − i). And the coefficients of the disc polynomials are
real numbers.

(P3) Now we can procede successively and at first choose gα(m, n; k, l; 0) ∈ R in such
a way that the difference

(
Pα

m,n(z)Pα
k,l(z) − gα(m,n; k, l; 0)Pα

m+k,n+l(z)
)

is a polynomial
where the exponents of z and z̄ are only of the form (m + k − 1 − j, n + l − 1 − j) for
0 ≤ j ≤ min(m + k − 1, n + l − 1). That works because of the two facts (P1) and (P2).

Then we choose gα(m, n; k, l; 1) ∈ R in such a way that the difference(
(Pα

m,n(z)Pα
k,l(z)−gα(m,n; k, l; 0)Pα

m+k,n+l(z))−gα(m,n; k, l; 1)Pα
m+k−1,n+l−1(z)

)
is a poly-

nomial where the exponents of z and z̄ are only of the form (m+ k− 2− j, n+ l− 2− j)
for 0 ≤ j ≤ min(m + k − 2, n + l − 2) what again works because of (P1) and (P2).

And so forth and so on. There are two possible ends of this procedure: either one
gα(m, n; k, l; j) for 0 ≤ j ≤ (min(m + k, n + l)− 1) fully regulates the difference, i.e.

Pα
m,nP

α
k,l −

j∑
i=0

gα(m,n; k, l; i)Pα
m+k−i,n+l−i = 0

or we come to the point where the difference
(
Pα

m,nP
α
k,l−

j∑
i=0

gα(m, n; k, l; i)Pα
m+k−i,n+l−i

)
is a polynomial of degree (0, n + l − m − k) or (m + k − n − l, 0) what means that
j =

(
min(m + k, n + l) − 1

)
. But then ∃bn+l−m−k ∈ R, (bm+k−n−l) respectively such

that we can regulate the rest by putting

Pα
m,nP

α
k,l −

∑m+k−1
i=0 gα(m, n; k, l; i)Pα

m+k−i,n+l−i = bn+l−m−kz̄
n+l−m−k

:= gα(m, n; k, l; m + k)z̄n+l−m−k = gα(m, n; k, l; m + k)Pα
0,n+l−m−k

or respectively

Pα
m,nP

α
k,l −

∑n+l−1
i=0 gα(m, n; k, l; i)Pα

m+k−i,n+l−i = bm+k−n−lz
m+k−n−l

:= gα(m, n; k, l; n + l)zm+k−n−l = gα(m,n; k, l; n + l)Pα
m+k−n−l,0 .

Thus, we proved already that

∃gα(m, n; k, l; i) ∈ R : Pα
m,nP

α
k,l =

M∑
i=0

gα(m,n; k, l; i)Pα
m+k−i,n+l−i

and M ≤ min(m + k, n + l).

It remains to show:
ii) M ≤ min{m + k, n + l,m + n, k + l}:

The case that the minimum is m + k or n + l is clear from part i) of the proof, so let
m + n = min{m + k, n + l,m + n, k + l} and w.l.o.g. m + n < k + l,m + k, n + l from
what we get =⇒ k − n > 0 , l −m > 0 and let w.l.o.g. n < m:
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Suppose ∃d0 ∈ N ; 1 ≤ d0 ≤ min(k − n, l −m) so that

Pα
m,nP

α
k,l =

m+n+d0∑
i=0

gα(m, n; k, l; i)Pα
m+k−i,n+l−i , and

gα(m, n; k, l; i) 6= 0 for m + n + 1 ≤ i ≤ m + n + d0 .

Recall that
(
hα(m, n)

)−1
=
∫

D
Pα

m,n(z)Pα
m,n(z̄)dµα(z) =

∫
D

Pα
m,n(z)Pα

m,n(z)dµα(z) and
the orthogonality relation:∫

D

Pα
m,n(z)Pα

k,l(z)dµα(z) = δm,kδn,l

(
hα(m, n)

)−1
.

Then for all 1 ≤ d ≤ d0 we have:

gα(m,n;k, l; m + n + d)

= hα
(
m + k − (m + n + d), n + l − (m + k + d)

)
×

×
∫

D

m+n+d0∑
i=0

gα(m,n; k, l; i)Pα
m+k−i,n+l−i(z)Pα

m+k−(m+n+d),n+l−(m+n+d)(z)dµα

= hα(k − n− d, l −m− d)

∫
D

Pα
m,n(z)Pα

k,l(z)Pα
k−n−d,l−m−d(z)dµα

= hα(k − n− d, l −m− d)

∫
D

Pα
l,k(z)Pα

m,n(z)Pα
l−m−d,k−n−d(z)dµα

= hα(k − n− d, l −m− d)×

×
∫

D

Pα
l,k(z)

M∑
i=0

gα(m, n; l −m− d, k − n− d; i)Pα
l−d−i,k−d−i(z)dµα

= 0

because of the orthogonality of Pα
l,k(z) ⊥ Pα

l−d−i,k−d−i(z) as d ≥ 1 , i ≥ 0 ⇒ l− d− i < l
and k − d− i < k. But this is a contradiction. So we see that indeed

g(m, n; k, l; i) = 0 for m + n + 1 ≤ i ≤ m + n + d0 .

The case that k + l = min{m + k, n + l,m + n, k + l} follows identically.

One easy consequence for the sum of the linearization coefficients is the following fact.

Corollary 5.3. For all m,n, k, l ∈ N0 with M = min{m+ k, n+ l,m+n, k + l} it holds

M∑
i=0

gα(m, n; k, l; i) = 1 .
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Proof:
In the chapter on disc polynomials we saw that for α > −1 and ∀m,n ∈ N0 we have

Pα
m,n(1, 1) = 1.

⇒ 1 = Pα
m,n(1, 1)Pα

k,l(1, 1) =
M∑
i=0

gα(m, n; k, l; i)Pα
m+k−i,n+l−i(1, 1) =

M∑
i=0

gα(m, n; k, l; i) .

5.2 Explicit formula for α = 0

In this chapter we focus on the disc polynomials for the parameter α = 0 and derive
an explicit formula for their linearization coefficients. So first of all we will introduce
notations that should be valid only in this chapter. We don’t want to carry along α = 0
all the time and that is the reason why we want to fix α = 0 here.

The notation for the disc polynomials for α = 0 is given by the following explicit formula:

∀m, n ∈ N0, z ∈ D : P 0
m,n(z) =

min(m,n)∑
k=0

(−1)k (m + n− k)!

k!(m− k)!(n− k)!
zm−kz̄n−k .

So let in the sequel but only in this chapter α = 0 and Pm,n := P 0
m,n(z). As the formulas

here hold for all z ∈ D we do not write z explicitely. Furthermore for the linearization
coefficients let g(m, n; k, l; i) := g0(m, n; k, l; i).

A second thing we need to talk about here is the generalized Pochhammer symbol.
Recall the property of the generalized Pochhammer symbol of Corollary 3.3, 2):

(m)j =
m!

(m− j)!
= 0 for j, m ∈ N, j > m .

In the sequel of this chapter there will appear terms of the form m!
(m−j)!

possibly for
j > m. Of course they should be zero. So whenever we have a negative integer factorial
in the denominator of a term, then the whole term should be zero.

As a preparation for the proof of the formula for the explicit linearization coefficients
we provide the following lemma.

Lemma 5.4. For k, n, m, l ∈ N0 and N ∈ N the following equation holds:

N∑
i=0

(−1)i k!

(k −N + i)!

n!

(n−N + i)!

l!

(l − i)!

m!

(m− i)!

(
N

i

)

=
N−1∑
i=0

(−1)i k!

(k −N + i)!

n!

(n−N + i)!

l!

(l − i)!

m!

(m− i)!

(
N − 1

i

)
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−
N−1∑
i=0

(−1)i k!

(k + 1−N + i)!

n!

(n + 1−N + i)!

l!

(l − 1− i)!

m!

(m− 1− i)!

(
N − 1

i

)

what written in terms of the Pochhammer symbol looks like

N∑
i=0

(−1)i(k)N−i(n)N−i(l)i(m)i

(
N

i

)
=

N−1∑
i=0

(−1)i(k)N−i(n)N−i(l)i(m)i

(
N − 1

i

)

−
N−1∑
i=0

(−1)i(k)N−1−i(n)N−1−i(l)i+1(m)i+1

(
N − 1

i

)
.

Remark 1: Here we see that the situation with the Pochhammer symbol described above
may arise, namely when N > k, N > n, N > l or N > m. So the actual summation in
the first sum according to N is

min{l,m,N}∑
i=max{N−k,N−n,0}

. . .

but that is more confusing than helpful, so we will write it the easy way.

Remark 2: In our opinion for the understanding of the subsequent proofs in this chapter
it is more intuitive to write the Pochhammer terms in the form m!

(m−j)!
so we will do that.

Proof of Lemma 5.4: We use the wellknown binomial identity
(

N
i

)
=
(

N−1
i

)
+
(

N−1
i−1

)
and

an index shifting to perform the proof.
Due to the long terms that occur, for better readability we write the equations in

small font:
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
=

N−1∑
i=1

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

[(
N−1
i−1

)
+
(

N−1
i

)]
+ k!

(k−N)!
n!

(n−N)!
+(−1)N l!

(l−N)!
m!

(m−N)!

=
N−1∑
i=1

(−1)(i−1)+1 k!
(k+1−N+(i−1))!

n!
(n+1−N+(i−1))!

l!
(l−1−(i−1))!

m!
(m−1−(i−1))!

(
N−1
i−1

)
+(−1)N l!

(l−N)!
m!

(m−N)!
+

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
=

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
−

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

m!
(m−1−i)!

(
N−1

i

)
.

Now we have all prerequisits to prove the formula for the linearization coefficients.
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Theorem 5.5 ( (*) Explicit formula for the linearization coefficients of the
disc polynomials for α = 0). ∀m, n, k, l, N ∈ N0 the linearization coefficients of the
disc polynomials for α = 0 are

g(m, n; k, l; N) =
(m + n−N)!(k + l −N)!(m + k −N)!(n + l −N)!

m! n! k! l! N ! (m + n + k + l + 1−N)!
×

×(m + n + k + l + 1− 2N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

.

Remarks: i) One sees that M in Theorem 5.2 for α = 0 is not only
≤ min{m + n, k + l,m + k, n + l} but "=".

ii) All g(m, n; k, l; i) with i /∈ {0, ...,M} are zero.
iii) With this formula the non-negativity of the linearization coefficients

for α = 0 is clear to see.
iv) g(m, n; k, l; i) ∈ Q

Proof of Theorem 5.5: We prove the theorem in several steps. The principle is an
induction in two dimensions.

a) let k, l ∈ N0 arbitrary. Then one easily checks, as P0,0 = 1:

P0,0Pk,l = g(0, 0; k, l; 0)Pk,l = Pk,l

so we need to show, that g(0, 0; k, l; 0) = 1, which can be seen here:
(0+0−0)!(k+l−0)!(0+k−0)!(0+l−0)!

0! 0! k! l! 0! (0+0+k+l+1−0)!
(0+0+k+l+1−2·0)

(∑0
i=0

k!
(k−0+i)!

0!
(0−0+i)!

l!
(l−i)!

0!
(0−i)!

(
N
i

))2

=
(k + l)! k! l!

k! l! (k + l + 1)!
(k + l + 1) = 1 . X

b) In the second step, we prove for arbitrary k, l ∈ N0:

i) P1,0Pk,l =
k + 1

k + l + 1
Pk+1,l +

l

k + l + 1
Pk,l−1

ii) g(1, 0; k, l; 0) =
k + 1

k + l + 1
, g(1, 0; k, l; 1) =

l

k + l + 1
.

regarding i):

P1,0Pk,l = z

min(k,l)∑
i=0

(−1)i(k + l − i)!

i!(k − i)!(l − i)!
zk−iz̄l−i =

min(k,l)∑
i=0

(−1)i(k + l − i)!

i!(k − i)!(l − i)!
zk+1−iz̄l−i

on the other hand we calculate:
k+1

k+l+1
Pk+1,l + l

k+l+1
Pk,l−1 = k+1

k+l+1

min(k+1,l)∑
i=0

(−1)i (k+1+l−i)!
i!(k+1−i)!(l−i)!

zk+1−iz̄l−i

+ l
k+l+1

min(k,l−1)∑
i=0

(−1)i(k+l−1−i)!
i!(k−i)!(l−1−i)!

zk−iz̄l−1−i = k+1
k+l+1

min(k+1,l)∑
i=1

(−1)i(k+1+l−i)!
i!(k+1−i)!(l−i)!

zk+1−iz̄l−i
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+ k+1
k+l+1

(k+1+l)!
(k+1)! l!

zk+1z̄l + l
k+l+1

min(k,l−1)∑
i=0

(−1)i (k+l−1−i)!
i!(k−i)!(l−1−i)!

zk−iz̄l−1−i

= (k+l)!
k! l!

zk+1z̄l + k+1
k+l+1

min(k,l−1)∑
i=0

(−1)i+1 (k+l−i)!
(i+1)!(k−i)!(l−1−i)!

zk−iz̄l−1−i

+ l
k+l+1

min(k,l−1)∑
i=0

(−1)i (k+l−1−i)!
i!(k−i)!(l−1−i)!

zk−iz̄l−1−i

=
min(k,l−1)∑

i=0

(−1)i (k+l−1−i)!
(i+1)!(k−i)!(l−1−i)!(k+l+1)

(
l(i + 1)− (k + 1)(k + l − i)

)
zk−iz̄l−1−i

+ (k+l)!
k! l!

zk+1z̄l =
min(k−1,l−1)∑

i=0

(−1)i+1(k+l−1−i)!
(i+1)!(k−i)!(l−1−i)!(k+l+1)

(k − i)(k + l + 1)zk−iz̄l−1−i

+ (k+l)!
k! l!

zk+1z̄l =
min(k,l)∑

i=1

(−1)i (k+l−i)!
i!(k−i)!(l−i)!

zk+1−iz̄l−i + (k+l)!
k! l!

zk+1z̄l = P1,0Pk,l .

concerning ii):
g(1, 0; k, l; 0) = (1+0−0)!(k+l−0)!(1+k−0)!(0+l−0)!

0! 1! k! l! 0! (0+1+k+l+1−0)!
(1 + 0 + k + l + 1− 2 · 0)

(
k!
k!

0!
0!

l!
l!

1!
1!

(
0
0

))2
=

1!(k + l)!(k + 1)!l!

1! k! l! (k + l + 2)!
(k + l + 2) =

k + 1

k + l + 1
X

g(1, 0; k, l; 1) = (1+0−1)!(k+l−1)!(1+k−1)!(0+l−1)!
0! 1! k! l! 1! (0+1+k+l+1−1)!

(1 + 0 + k + l + 1− 2)
(
(−1) l!

(l−1)!
1!
0!

)2

=
(k + l − 1)!k!(l − 1)!

k! l! (k + l + 1)!
(k + l)l2 =

l

k + l + 1
. X

c) In the same manner as b) one checks:

P0,1Pk,l =
l + 1

k + l + 1
Pk,l+1 +

k

k + l + 1
Pk−1,l

what means that

g(0, 1; k, l; 0) =
l + 1

k + l + 1
, g(0, 1; k, l; 1) =

k

k + l + 1
.

d) ∀n, k, l ∈ N0 holds:

P0,nPk,l =
M∑
i=0

g(0, n; k, l; i)Pk−i,n+l−i, M = min{n, k + l, k, n + l} .

Therefore we look at the following equation:

P0,nPk,l = P0,1P0,n−1Pk,l = P0,1

M̃∑
i=0

g(0, n− 1; k, l; i)Pk−i,n+l−1−i
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c)
=

M̃∑
i=0

g(0, n− 1; k, l; i)
n + l − i

n + k + l − 2i
Pk−i,n+l−i

+
M̃∑
i=0

g(0, n− 1; k, l; i)
k − i

n + k + l − 2i
Pk−1−i,n+l−1−i

with M̃ = min{n− 1, k + l, k, n− 1− l}.
Hence it holds:

M∑
i=0

g(0, n; k, l; i)Pk−i,n+l−i =
M̃∑
i=0

g(0, n− 1; k, l; i)
n + l − i

n + k + l − 2i
Pk−i,n+l−i

+
M̃∑
i=0

g(0, n− 1; k, l; i)
k − i

n + k + l − 2i
Pk−1−i,n+l−1−i .

One sees that the linearization coefficients g(0, n; k, l; i) can, by induction, be won by
known coefficients, namely g(0, n− 1; k, l; i), i.e. induction over n

We have to distinguish between four cases, depending on M :
1. M = n ≤ k + l, k, n + l =⇒ M̃ = n− 1
2. M = k < n; k ≤ k + l, n + l =⇒ M̃ = k
3. M = n + l < n; is not possible and n + l = n is case 1 .
4. M = k + l < k; is not possible and k + l = k is case 2 .
By comparison of the coefficients of the disc polynomials it needs to hold:
In case 1: i) g(0, n; k, l; 0)

!
= n+l

n+k+l
g(0, n− 1; k, l; 0)

ii) g(0, n; k, l; n)
!
= k−(n−1)

n+k+l−2(n−1)
g(0, n− 1; k, l; n− 1)

iii) g(0, n; k, l; N)
!
= n+l−N

n+k+l−2N
g(0, n− 1; k, l; N)

+ k−(N−1)
n+k+l−2(N−1)

g(0, n− 1; k, l; N − 1) , for 1 ≤ N ≤ n− 1

In case 2: i) g(0, n; k, l; 0)
!
= n+l

n+k+l
g(0, n− 1; k, l; 0)

ii) g(0, n; k, l; N)
!
= n+l−N

n+k+l−2N
g(0, n− 1; k, l; N)

+ k−(N−1)
n+k+l−2(N−1)

g(0, n− 1; k, l; N − 1) , for 1 ≤ N ≤ k

Case 1,i) and case 2,i) are identical:
(0+n−0)!(k+l−0)!(0+k−0)!(n+l−0)!

0! n! k! l! 0! (0+n+k+l+1−0)!
(0+n+k+l+1−2·0)

(
0∑

i=0

(−1)i k!
(k−0+i)!

n!
(n−0+i)!

l!
(l−i)!

0!
(0−i)!

(
0
i

))2

!
= n+l

n+k+l
(0+n−1−0)!(k+l−0)!(0+k−0)!(n+l−1−0)!

0! (n−1)! k! l! 0! (0+n−1+k+l+1−0)!
(0 + n− 1 + k + l + 1− 2 · 0)

(
1
)2

⇐⇒ n!(k+l)!k!(n+l)!
n! k! l! (n+k+l+1)!

(n + k + l + 1) = (n−1)!(k+l)!k!(n+l)!
(n−1)! k! l! (n+k+l)!

. X
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Concerning case 1,ii):
(0+n−n)!(k+l−n)!(0+k−n)!(n+l−n)!

0! n! k! l! n! (0+n+k+l+1−n)!
(0+n+k+l+1−2n)

(
n∑

i=0

(−1)i k!
(k−n+i)!

n!
(n−n+i)!

l!
(l−i)!

0!
(0−i)!

(
n
i

))2

!
= k+1−n

k+l+2−2n
(k+l+1−n)!(k+1−n)! l!

(n−1)! k! l! (n−1)!(k+l+1)!
(k + l + 2− 2n)

(
n−1∑
i=0

(−1)i k!
(k+1−n+i)!

n!
i!

l!
(l−i)!

0!
(−i)!

(
n−1

i

))2

⇐⇒ (k+l−n)!(k−n)! l! (k+l+1−n)
n! k! l! n! (k+l+1)!

(
k!

(k−n)!
n!
0!

)2

= (k+l+1−n)!(k+1−n)! l! (k+1−n)
(n−1)! k! l! (n−1)!(k+l+1)!

(
k!(n−1)!
(k+1−n)!

)2

⇐⇒ k!
(k−n)!

= (k+1−n)k!
(k+1−n)!

. X

Cases 1,iii) and 2,ii):
(n−N)!(k+l−N)!(k−N)!(n+l−N)!

n! k! l! N ! (n+k+l+1−N)!
(n + k + l + 1− 2N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

0!
(0−i)!

(
N
i

))2

!
= (n−1−N)!(k+l−N)!(k−N)!(n+l−1−N)!(n+l−N)

(n−1)! k! l! N ! (n+k+l−N)!

(
N∑

i=0

(−1)i k!
(k−N+i)!

(n−1)!
(n−1−N+i)!

l!
(l−i)!

0!
(−i)!

(
N
i

))2

+ (n−N)!(k+l+1−N)!(k+1−N)!(n+l−N)!(k+1−N)
(n−1)! k! l! (N−1)!(n+k+l+1−N)!

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

(n−1)!
(n−N+i)!

l!
(l−i)!

0!
(−i)!

(
N−1

i

))2

⇐⇒ (n−N)!(k+l−N)!(k−N)!(n+l−N)!
n! k! l! N ! (n+k+l+1−N)!

(n + k + l + 1− 2N)
(

k!
(k−N)!

n!
(n−N)!

)2

= (n−1−N)!(k+l−N)!(k−N)!(n+l−N)!
(n−1)! k! l! N ! (n+k+l−N)!

(
k!

(k−N)!
(n−1)!

(n−1−N)!

)2

+ (n−N)!(k+l+1−N)!(k+1−N)!(n+l−N)!
(n−1)! k! l! (N−1)!(n+k+l+1−N)!

(k + 1−N)
(

k!
(k+1−N)!

(n−1)!
(n−N)!

)2

⇐⇒ (k+l−N)!(n+l−N)! k! n!
l! N ! (n+k+l+1−N)!(k−N)!(n−N)!

(n + k + l + 1− 2N)

= (k+l−N)!(n+l−N)! k! (n−1)!
l! N ! (n+k+l−N)!(k−N)!(n−1−N)!

+ (k+l−N)!(n+l−N)! k! (n−1)!(k+l+1−N)
l! (N−1)! (n+k+l+1−N)!(k−N)!(n−N)!

⇐⇒ (n + k + l + 1− 2N)n = (n + k + l + 1−N)(n−N) + N(k + l + 1−N)

⇐⇒ (n+k+l+1−2N)n = (n+k+l+1−N)n−nN−N(k+l+1−N)+N(k+l+1−N)

⇐⇒ (n + k + l + 1− 2N)n = (n + k + l + 1−N)n− nN

⇐⇒ (n + k + l + 1− 2N)n = (n + k + l + 1− 2N)n . X

e) ∀m, k, l ∈ N0 holds

Pm,0Pk,l =
M∑
i=0

g(m, 0; k, l; i)Pm+k−i,l−i .

Therefore we use the fact that Pm,n = Pn,m , i.e. complex conjugation of the disc
polynomials leads to a change of the two indices:

Pm,0Pk,l = P0,mPl,k
d)
=

M∑
i=0

g(0, m; l, k; i)Pl−i,m+k−i =
M∑
i=0

g(0, m; l, k; i)Pm+k−i,l−i .
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On the other hand by Theorem 5.2 we see ∃g(m, 0; k, l; i) ∈ R:

Pm,0Pk,l =
M∑
i=0

g(m, 0; k, l; i)Pm+k−i,l−i .

So by comparison of the coefficients of the disc polynomials it holds:

g(m, 0; k, l; i)
!
= g(0, m; l, k; i) ∀i : 0 ≤ i ≤ M :

(m+0−i)!(k+l−i)!(m+k−i)!(0+l−i)!
m! 0! k! l! i! (m+0+k+l+1−i)!

(m + k + l + 1− 2i)

(
i∑

j=0

(−1)j k!
(k−i+j)!

0!
(−i+j)!

l!
(l−j)!

m!
(m−j)!

(
i
j

))2

!
= (0+m−i)!(l+k−i)!(0+l−i)!(m+k−i)!

0! m! l! k! i! (0+m+l+k+1−i)!
(m+l+k+1−2i)

(
i∑

j=0

(−1)j l!
(l−i+j)!

m!
(m−i+j)!

k!
(k−j)!

0!
(0−j)!

(
i
j

))2

⇐⇒ (m−i)!(k+l−i)!(m+k−i)!(l−i)!
m! k! l! i! (m+k+l+1−i)!

(m + k + l + 1− 2i)
(

l!
(l−i)!

m!
(m−i)!

)2

= (m−i)!(l+k−i)!(l−i)!(m+k−i)!
m! l! k! i! (m+l+k+1−i)!

(m + l + k + 1− 2i)
(

l!
(l−i)!

m!
(m−i)!

)2

. X

That means for now we have proved that for arbitrary m, k, l, N ∈ N0 the linearization
coefficients of the disc polynomials for the parameter α = 0 of the form g(m, 0; k, l; N)
and g(0, m; k, l; N) are given by the formula in the theorem.
f) now we prove the correctness of the general cases. With part b) of the proof we see
that:

P1,0Pm−1,nPk,l =P1,0

M∑
i=0

g(m− 1, n, k, l, i)Pm+k−1−i,n+l−i

b)
=

M1∑
i=0

g(m− 1, n; k, l; i)
m + k − i

m + n + k + l − 2i
Pm+k−i,n+l−i

+

M2∑
i=0

g(m− 1, n; k, l; i)
n + l − i

m + n + k + l − 2i
Pm+k−1−i,n+l−1−i .

On the other hand one has

P1,0Pm−1,nPk,l
b)
=

(
m

m + n
Pm,n +

n

m + n
Pm−1,n−1

)
Pk,l

=
m

m + n

M3∑
i=0

g(m, n; k, l; i)Pm+k−i,n+l−i

+
n

m + n

M4∑
i=0

g(m− 1, n− 1; k, l; i)Pm+k−1−i,n+l−1−i .
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Like in case d) one can get the unknown linearization coefficients g(m, n; k, l; i) from
known ones, namely, g(m− 1, n− 1; k, l; i) and g(m− 1, n; k, l; i) via

m
m+n

M3∑
i=0

g(m, n; k, l; i)Pm+k−i,n+l−i
!
=

M1∑
i=0

g(m− 1, n; k, l; i) m+k−i
m+n+k+l−2i

Pm+k−i,n+l−i

+
M2∑
i=0

g(m− 1, n; k, l; i) n+l−i
m+n+k+l−2i

Pm+k−1−i,n+l−1−i

− n
m+n

M4∑
i=0

g(m− 1, n− 1; k, l; i)Pm+k−1−i,n+l−1−i .

So again we use induction, this time over m. Let k, l ∈ N0, n ∈ N be arbitrary and
the beginning cases of the induction are given in a),b),c),d),e).

Here, for the terms at the end and the beginning of the left hand side sum, we have
to distinguish between six cases, depending on M3.

1. case: M3 = m + n ≤ k + l,m + k, n + l:
⇒ M1 = m + n− 1 , M2 = m + n− 1 , M4 = m + n− 2 and we have to prove:

i) (Rel1) m
m+n

g(m, n; k, l; 0) = m+k
m+n+k+l

g(m− 1, n; k, l; 0)

ii) m
m+n

g(m,n; k, l; m + n) = n+l−(m+n−1)
m+n+k+l−2(m+n−1)

g(m− 1, n; k, l; m + n− 1)

iii) (Rel2) m
m+n

g(m, n; k, l; N) = m+k−N
m+n+k+l−2N

g(m− 1, n; k, l; N)

+ n+l−(N−1)
m+n+k+l−2(N−1)

g(m− 1, n; k, l; N − 1)− n
m+n

g(m− 1, n− 1; k, l; N − 1) ,

for 1 ≤ N ≤ m + n− 1

2. case: M3 = n + l ≤ k + l ; n + l < m + n , m + k
⇒ M1 = n + l , M2 = n + l − 1 , M4 = n + l − 1 and we have to prove:

i) (Rel1)
ii) (Rel2) for 1 ≤ N ≤ n + l

3. case: M3 = n + l = m + k ≤ k + l ; n + l = m + k < m + n
is an impossible case, because:
m + k < m + n ⇒ k < n ⇒ k + l < n + l which is a contradition to k + l ≥ n + l .

4. case: M3 = m + k ≤ k + l ; m + k < m + n , n + l
⇒ M1 = m + k − 1 , M2 = m + k − 1 , M4 = m + k − 1 and we have to prove:

i) (Rel1)
ii) (Rel2) for 1 ≤ N ≤ m + k − 1

iii) m
m+n

g(m,n; k, l; m + k) = n+l−(m+k−1)
m+n+k+l−2(m+k−1)

g(m− 1, n; k, l; m + k − 1)

− n
m+n

g(m− 1, n− 1; k, l; m + k − 1)
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5. case: M3 = k + l < m + k , n + l , m + n− 1
⇒ M1 = k + l , M2 = k + l , M4 = k + l and we have to prove:

i) (Rel1)
ii) (Rel2) for 1 ≤ N ≤ k + l

iii) n+l−(k+l)
m+n+k+l−2(k+l)

g(m− 1, n; k, l; k + l) = n
m+n

g(m− 1, n− 1; k, l; k + l)

6. case: M3 = k + l = m + n− 1 ; k + l < m + k , n + l
also is an impossible case, because:
k+l < m+k ⇒ l < m ; k+l < n+l ⇒ k < n ⇒ l+1 ≤ m , k < n ⇒ k+l+1 < m+n

which is a contradition to k + l = m + n− 1 .

Proof of (Rel1):

m

m + n
g(m,n; k, l; 0)

!
=

m + k

m + n + k + l
g(m− 1, n; k, l; 0)

⇔ m
m+n

(m+n)!(k+l)!(m+k)!(n+l)!(m+n+k+l+1)
m! n! k! l! (m+n+k+l+1)!

= m+k
m+n+k+l

(m+n−1)!(k+l)!(m+k−1)!(n+l)!(m+n+k+l)
(m−1)! n! k! l! (m+n+k+l)!

⇐⇒ (m+n−1)!(k+l)!(m+k)!(n+l)!
(m−1)! n! k! l! (m+n+k+l)!

= (m+n−1)!(k+l)!(m+k−1)!(n+l)!
(m−1)! n! k! l! (m+n+k+l)!

. X

Proof of case 1,ii)
m

m+n
g(m,n; k, l; m + n) = l+1−m

m+n+k+l−2(m+n−1)
g(m− 1, n; k, l; m + n− 1)

⇔ m
m+n

(m+n−(m+n))!(k+l−(m+n))!(m+k−(m+n))!(n+l−(m+n))!(m+n+k+l+1−2(m+n))
m! n! k! l! (m+n)!(m+n+k+l+1−(m+n))!(

m+n∑
i=0

(−1)i k!
(k−(m+n)+i)!

n!
(n−(m+n)+i)!

l!
(l−i)!

m!
(m−i)!

(
m+n

i

))2

= (m+n−1−(m+n−1))!(k+l−(m+n−1))!(m+k−1−(m+n−1))!(n+l−(m+n−1))!(l+1−m)
(m−1)! n! k! l! (m+n−1)!(m+n+k+l−(m+n−1))!(

m+n−1∑
i=0

(−1)i k!
(k−(m+n−1)+i)!

n!
(n−(m+n−1)+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
m+n−1

i

))2

⇔ (k+l−m−n)!(k−n)!(l−m)!
(m−1)! n! k! l! (m+n−1)!(k+l+1)!

k+l+1−m−n
(m+n)2

(
k!

(k−n)!
n!
0!

l!
(l−m)!

m!
0!

(m+n)!
m! n!

)2

= (k+l+1−m−n)!(k−n)!(l−m)!
(m−1)! n! k! l! (m+n−1)!(k+l+1)!

(l + 1−m)2
(

k!
(k−n)!

n!
0!

l!
(l+1−m)!

(m−1)!
0!

(m+n−1)!
(m−1)! n!

)2

⇔ 1
(m+n)2

(
k!

(k−n)!
l!

(l−m)!
(m + n)!

)2

= (l + 1−m)2
(

k!
(k−n)!

l!
(l+1−m)!

(m + n− 1)!
)2

. X

Proof of case 4,iii)
m

m+n
g(m,n; k, l; m + k) = n+l+1−m−k

m+n+k+l−2(m+k−1)
g(m− 1, n; k, l; m + k − 1)

− n
m+n

g(m− 1, n− 1; k, l; m + k − 1)

⇔ m
m+n

(m+n−(m+k))!(k+l−(m+k))!(m+k−(m+k))!(n+l−(m+k))!(m+n+k+l+1−2(m+k))
m! n! k! l! (m+k)!(m+n+k+l+1−(m+k))!
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(
m+k∑
i=0

(−1)i k!
(k−(m+k)+i)!

n!
(n−(m+k)+i)!

l!
(l−i)!

m!
(m−i)!

(
m+k

i

))2

= (m+n−1−(m+k−1))!(k+l−(m+k−1))!(m+k−1−(m+k−1))!(n+l−(m+k−1))!(n+l+1−m−k)
(m−1)! n! k! l! (m+k−1)!(m+n+k+l−(m+k−1))!(
m+k−1∑

i=0

(−1)i k!
(k−(m+k−1)+i)!

n!
(n−(m+k−1)+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
m+k−1

i

))2

− n
m+n

(m+n−2−(m+k−1))!(k+l−(m+k−1))!(m+k−1−(m+k−1))!(n+l−(m+k−1))!(m+n+k+l−1−2(m+k−1))
(m−1)! (n−1)! k! l! (m+k−1)!(m+n+k+l−1−(m+k−1))!(

m+k−1∑
i=0

(−1)i k!
(k−(m+k−1)+i)!

(n−1)!
(n−1−(m+k−1)+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
m+k−1

i

))2

⇔ (n−k)!(l−m)!(n+l−m−k)!
(m−1)! n! k! l! (m+k)!(n+l+1)!

n+l+1−m−k
m+n

(
k! n!

(n−k)!
l!

(l−m)!
m! (m+k)!

m! k!

)2

= (n−k)!(l+1−m)!(n+l+1−m−k)!
(m−1)! n! k! l! (m+k−1)!(n+l+1)!

(n + l + 1−m− k)
(
k! n!

(n−k)!
l!

(l+1−m)!
(m− 1)! (m+k−1)!

(m−1)! k!

)2

− (n−1−k)!(l+1−m)!(n+l+1−m−k)!
(m−1)! n! k! l! (m+k−1)!(n+l)!

n2

m+n

(
k! (n−1)!

(n−1−k)!
l!

(l+1−m)!
(m− 1)! (m+k−1)!

(m−1)! k!

)2

⇔ (l + 1−m)(m + k) = (n + l + 1−m− k)(m + n)− (n + l + 1)(n− k)

= (l + 1−m)(m + n) + (n− k)(m + n)− (n + l + 1)(n− k)

= (l + 1−m)(m + n)− (n− k)(l + 1−m)

= (l + 1−m)(m + k) . X

Proof of case 5, iii)
n+l−(k+l)

m+n+k+l−2(k+l)
g(m− 1, n; k, l; k + l)

!
= n

m+n
g(m− 1, n− 1; k, l; k + l)

⇔ n−k
m+n+k+l−2(k+l)

(m+n−1−(k+l))!(k+l−(k+l))!(m+k−1−(k+l))!(n+l−(k+l))!(m+n+k+l−2(k+l))
(m−1)! n! k! l! (k+l)!(m+n+k+l−(k+l))!(

k+l∑
i=0

(−1)i k!
(k−(k+l)+i)!

n!
(n−(k+l)+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
k+l

i

))2

= n
m+n

(m+n−2−(k+l))!(k+l−(k+l))!(m+k−1−(k+l))!(n+l−1−(k+l))!(m+n+k+l−1−2(k+l))
(m−1)! (n−1)! k! l! (k+l)!(m+n+k+l−1−(k+l))!(

k+l∑
i=0

(−1)i k!
(k−(k+l)+i)!

(n−1)!
(n−1−(k+l)+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
k+l

i

))2

⇔ (n− k) (m+n−1−k−l)!(m−1−l)!(n−k)!
(m−1)! n! k! l! (m+n)!

(
k! n!

(n−k)!
l! (m−1)!

(m−1−l)!
(k+l)!
k! l!

)2

= (m+n−2−k−l)!(m−1−l)!(n−1−k)!
(m−1)! n! k! l! (m+n−1)!

(m+n−1−k−l)n2

m+n

(
k! (n−1)!

(n−1−k)!
l! (m−1)!

(m−1−l)!
(k+l)!
k! l!

)2

⇔ (n− k)2
(

n!
(n−k)!

(m−1)!
(m−1−l)!

(k + l)!
)2

= n2
(

(n−1)!
(n−1−k)!

(m−1)!
(m−1−l)!

(k + l)!
)2

. X
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Finally, the last step is to prove (Rel2), what is equivalent to:

(Eq1) : m g(m, n; k, l; N)− (m + n)(m + k −N)

m + n + k + l − 2N
g(m− 1, n; k, l; N)

!
=

(m + n)(n + l + 1−N)

m + n + k + l − 2(N − 1)
g(m− 1, n; k, l; N − 1)− n g(m− 1, n− 1; k, l; N − 1) .

At first we treat the right hand side and the left hand side separately. The left hand
side is:

LHS := m (m+n−N)!(k+l−N)!(m+k−N)!(n+l−N)!
m! n! k! l! N ! (m+n+k+l+1−N)!

(m + n + k + l + 1− 2N)(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

−(m+n) m+k−N
m+n+k+l−2N

(m+n−1−N)!(k+l−N)!(m+k−1−N)!(n+l−N)!
(m−1)! n! k! l! N ! (m+n+k+l−N)!

(m+n+k+l−2N)(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N
i

))2

⇒ (m−1)! n! k! l! N ! (m+n+k+l+1−N)!
(m+n−1−N)!(k+l−N)!(m+k−N)!(n+l−N)!

· LHS

= (m + n−N)(m + n + k + l + 1− 2N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

−(m+n)(m+n+k+l+1−N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N
i

))2

= [(m + n)(m + n + k + l + 1−N)−N(m + n + k + l + 1− 2N)−N(m + n)]×(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

−(m + n)(m + n + k + l + 1−N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N
i

))2

.

With the binomial theorem via (S1 + S2)(S1 − S2) = S2
1 − S2

2 we can go on

= (m + n)(m + n + k + l + 1−N)×[
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
−

N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N
i

)]
×[

N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
+

N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N
i

)]
−N

(
2(m + n−N) + (k + l + 1)

)( N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2
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5.2 Explicit formula for α = 0

= (m + n)(m + n + k + l + 1−N)×[
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(
m− (m− i)

)(
N
i

)
×

N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(
m + (m− i)

)(
N
i

)]
−N

(
2(m + n−N) + (k + l + 1)

)( N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

= (m + n)(m + n + k + l + 1−N)

[
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

i
(

N
i

)
×{

2
N∑

i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
−

N∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

i
(

N
i

)}]
−N

(
2(m + n−N) + (k + l + 1)

)( N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

and together with the wellknown fact i
(

N
i

)
= N

(
N−1
i−1

)
and that the sum starts at

i = 1, as for i = 0 the summand is zero

= (m + n)(m + n + k + l + 1−N)

[
N∑

i=1

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

N
(

N−1
i−1

)
{

2
N∑

i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
−

N∑
i=1

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

N
(

N−1
i−1

)}]
−N

(
2(m + n−N) + (k + l + 1)

)( N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

index shifting and Lemma 5.4 give

= −(m+n)(m+n+ k + l +1−N)N

[
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×{

N−1∑
i=0

2(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
−

N−1∑
i=0

2(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

m!
(m−1−i)!

(
N−1

i

)
+N

N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)}]
−N

(
2(m + n−N) + (k + l + 1)

)( N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

= −(m + n)(m + n + k + l + 1−N)N
[

2
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)N−1∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
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5.2 Explicit formula for α = 0

−2m

(
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

+N

(
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2
]

−N
(
2(m + n−N) + (k + l + 1)

){
(

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

))2

−2
N−1∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

m!
(m−1−i)!

(
N−1

i

)
+

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

m!
(m−1−i)!

(
N−1

i

))2
}

= N
(
2m(m + n)(m + n + k + l + 1−N)−N(m + n)(m + n + k + l + 1−N)

−m2[2(m+n−N)+(k+l+1)]
)(N−1∑

i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−N
(
2(m + n−N) + (k + l + 1)

)(N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

))2

+N
(
2m
(
2(m + n−N) + (k + l + 1)

)
− 2(m + n)(m + n + k + l + 1−N)

)
×

N−1∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
= N

(
(m + n−N)(m + n)(2n + k + l + 1−N)− n2

(
2(m + n−N) + (k + l + 1)

))
×(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−N
(
2(m + n−N) + (k + l + 1)

)(N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

))2

+N
(
2(m + n)(m + n−N)− 2n

(
2(m + n−N) + (k + l + 1)

))
×

N−1∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
and again with the binomial theorem via (nS1 + S2)

2 = n2S2
1 + 2nS1S2 + S2

2

= N(m + n−N)(m + n)(2n + k + l + 1−N)×
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5.2 Explicit formula for α = 0

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

+2N(m + n)(m + n−N)×
N−1∑
i=0

(−1)ik!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
−N

[
2(m + n−N) + (k + l + 1)

](N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
+n

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

.

Now we consider the right hand side of (Eq1):

RHS := (m+n−1−N)!(k+l−N)!(m+k−N)!(n+l−N)
(m−1)! n! k! l! (N−1)! (m+n+k+l+1−N)!

[
(m + n)(m + n−N)(k + l + 1−N)×

(n + l + 1−N)2

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−n2(k + l + 1−N)(m + n + k + l + 1− 2N)(m + n + k + l + 1−N)×(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

(n−1)!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2 ]
.

We divide by the common factor, and split the term (n+ l +1−N) = (n+1−N + i)
+(l − i):
(m−1)! n! k! l! (N−1)! (m+n+k+l+1−N)!
(m+n−1−N)!(k+l−N)!(m+k−N)!(n+l−N)

·RHS = (m + n)(m + n−N)(k + l + 1−N)×(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

(n + 1−N + i) l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−i)!

(l − i) (m−1)!
(m−1−i)!

(
N−1

i

))2

−(k+l+1−N)2(m+n+k+l+1−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−(k+l+1−N)(m+n−N)(m+n+k+l+1−N)

(
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

= (m + n)(m + n−N)(k + l + 1−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2
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5.2 Explicit formula for α = 0

−(k+l+1−N)2(m+n+k+l+1−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−(k + l + 1−N)2(m + n−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−(k+ l+1−N)(m+n−N)(m+n)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

= (m+n)(m+n−N)(k+ l+1−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

+2(m + n)(m + n−N)(k + l + 1−N)
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+(m+n)(m+n−N)(k + l +1−N)

(
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−(k+l+1−N)2
(
2(m+n−N)+(k+l+1)

)(N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−(k+l+1−N)(m+n−N)(m+n)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

.

The first and the last term sum up to zero, and in the second and fourth term we split
up the term (k + l + 1−N) = (k + 1−N + i) + (l − i)

= 2(m + n)(m + n−N)
N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+2(m + n)(m + n−N)

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+(m+n)(m+n−N)(k + l +1−N)

(
N−1∑
i=0

(−1)ik!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−
(
2(m + n−N) + (k + l + 1)

)(N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

.
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5.2 Explicit formula for α = 0

The factors by which we divided the RHS and the LHS are equal up to N , so if
we bring together the two sides again, divide by the common factors, and subtract the
RHS from the LHS, and simplify common sums, we arrive at

0
!
= 2n(m + n)(m + n−N)

(
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

+2(m + n)(m + n−N)
N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
−2(m + n)(m + n−N)

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
−2(m + n)(m + n−N)

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
−
[
2(m + n−N) + (k + l + 1)

]{(N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N−1

i

)
+n

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2

−
(

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

))2
}

.

Now we add the first with the fourth sum, the second with the third, and again use
the binomial theorem in the last term via a2 − b2 = (a + b)(a− b)

= 2(m + n)(m + n−N)

[
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

(
n− (n + 1−N + i)

)
l!

(l−1−i)!
(m−1)!

(m−1−i)!

(
N−1

i

)]
+2(m + n)(m + n−N)

[
N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×
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N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(
m− (m− i)

)(
N−1

i

)]
−
(
2(m + n−N) + (k + l + 1)

){
(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

(
n + (n + 1−N + i)

)
l!

(l−1−i)!
(m−1)!

(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(
m + (m− i)

)(
N−1

i

))
(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

(
n− (n + 1−N + i)

)
l!

(l−1−i)!
(m−1)!

(m−1−i)!

(
N−1

i

)
+

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(
m− (m− i)

)(
N−1

i

)) }
= 2(m + n)(m + n−N)

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(
N−1

i

)
×(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N − 1− i) (N−1)!
i!(N−1−i)!

+
N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

i (N−1)!
i!(N−1−i)!

)
−
(
2(m + n−N) + (k + l + 1)

){
(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(2n + 1−N + i)
(

N−1
i

)
+

N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(2m− i)
(

N−1
i

))
(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N − 1− i) (N−1)!
i!(N−1−i)!

+
N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

i (N−1)!
i!(N−1−i)!

) }
.

Finally the proof is complete as we can show that one factor of each product is zero,
namely:(

N−1∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N − 1− i) (N−1)!
i!(N−1−i)!

+
N−1∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

i (N−1)!
i!(N−1−i)!

)
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=

(
N−2∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N−1)!
i!(N−2−i)!

+
N−1∑
i=1

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

(m−1)!
(m−i)!

(N−1)!
(i−1)!(N−1−i)!

)
.

An index shift in the second sum gives

=

(
N−2∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N−1)!
i!(N−2−i)!

−
N−2∑
i=0

(−1)i k!
(k+1−N+i)!

n!
(n+1−N+i)!

l!
(l−1−i)!

(m−1)!
(m−1−i)!

(N−1)!
i!(N−2−i)!

)
= 0 .

Corollary 5.6. For m,n, k, l, N ∈ N0 and 0 ≤ N ≤ min{m + n, k + l,m + k, n + l} the
following identity holds:

N∑
i=0

(m+n−N+i)!
(N−i)!(m−N+i)!(n−N+i)!

(k+l−i)!
i!(k−i)!(l−i)!

=
N∑

i=0

(−1)i (m+n−i)!(k+l−i)!(m+k−i)!(n+l−i)!
m! n! k! l! i! (m+n+k+l+1−i)!

(m + n + k + l + 1− 2i)×

(m+n+k+l−N−i)!
(N−i)!(m+k−N)!(n+l−N)!

(
i∑

j=0

(−1)j k!
(k−i+j)!

n!
(n−i+j)!

l!
(l−j)!

m!
(m−j)!

)2

.

Proof: i)

Pm,nPk,l =
min{m,n}∑

j=0

(−1)j (m+n−j)!
j!(m−j)!(n−j)!

zm−j z̄n−j
min{k,l}∑

i=0

(−1)i (k+l−i)!
i!(k−i)!(l−i)!

zk−iz̄l−i

=
min{m,n}∑

j=0

min{k,l}∑
i=0

(−1)i+j (m+n−j)!
j!(m−j)!(n−j)!

(k+l−i)!
i!(k−i)!(l−i)!

zm+k−(i+j)z̄n+l−(i+j)

=
min{m+k,n+l}∑

j=0

(−1)jzm+k−j z̄n+l−j
j∑

i=0

(m+n−j+i)!
(j−i)!(m−j+i)!(n−j+i)!

(k+l−i)!
i!(k−i)!(l−i)!

ii)

Pm,nPk,l =
M∑
i=0

g(m, n; k, l; i)Pm+k−i,n+l−i

=
M∑
i=0

g(m,n; k, l; i)
min{m+k−i,n+l−i}∑

j=0

(−1)j(m+n+k+l−2i−j)!
j!(m+k−i−j)!(n+l−i−j)!

zm+k−i−j z̄n+l−i−j

=
min{m+k,n+l}∑

j=0

(−1)jzm+k−j z̄n+l−j
j∑

i=0

g(m,n; k, l; i)(−1)i (m+n+k+l−i−j)!
(j−i)!(m+k−j)!(n+l−j)!

By comparing the coefficients of zm+k−j z̄n+l−j the identity follows.
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Corollary 5.7. An alternative representation of the linearization coefficients of the disc
polynomials for α = 0 is given by

g(m, n; k, l; N) =
m! n! k! l! (m + n + k + l + 1− 2N)

N ! (m + n + k + l + 1−N)!
×

N∑
i=0

(−1)i

(
m + k −N

m− i

)(
n + l −N

l − i

) N∑
j=0

(−1)j

(
m + n−N

m− j

)(
k + l −N

l − j

)
.

Proof:

g(m, n; k, l; N) =
(m + n−N)!(k + l −N)!(m + k −N)!(n + l −N)!

m! n! k! l! N ! (m + n + k + l + 1−N)!
×

×(m + n + k + l + 1− 2N)

(
N∑

i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

))2

= (m+n−N)!(k+l−N)!(m+k−N)!(n+l−N)!
m! n! k! l! N ! (m+n+k+l+1−N)!

N∑
i=0

(−1)i k!
(k−N+i)!

n!
(n−N+i)!

l!
(l−i)!

m!
(m−i)!

(
N
i

)
×

×(m + n + k + l + 1− 2N)
N∑

j=0

(−1)j k!
(k−N+j)!

n!
(n−N+j)!

l!
(l−j)!

m!
(m−j)!

(
N
j

)
= m! n! k! l! (m+n+k+l+1−2N)

N ! (m+n+k+l+1−N)!

N∑
i=0

(−1)i (m+k−N)!
(k−N+i)!(m−i)

(n+l−N)!
(n−N+i)!(l−i)!

(
N
i

)
×

×
N∑

j=0

(−1)j (k+l−N)!
(k−N+j)!(l−j)!

(n+m−N)!
(n−N+j)!(m−j)!

(
N
j

)
which gives the result.

With the result in Corollary 5.3 one sees that the sum of the explicit linearization
coefficients sums up to one in Theorem 5.5 and Corollary 5.7.

Corollary 5.8. For m,n, k, l ∈ N0 and 0 ≤ N ≤ min{m + k, n + l} it holds

g(m, n; k, l; N) = h0(m + k −N, n + l −N)

∫
D

Pm,n(z)Pk,l(z)Pm+k−N,n+l−N(z̄)dµ0(z)

= (m + n + k + l + 1− 2N)

∫
D

Pm,n(z)Pk,l(z)Pm+k−N,n+l−N(z̄)dµ0(z) .

Proof:

Pm,n(z)Pk,l(z) =
M∑
i=0

g(m, n; k, l; i)Pm+k−i,n+l−i(z)

⇐⇒
∫

D

Pm,n(z)Pk,l(z)Pm+k−N,n+l−N(z̄)dµ0(z)
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=
M∑
i=0

g(m, n; k, l; i)

∫
D

Pm+k−i,n+l−i(z)Pm+k−N,n+l−N(z̄)dµ0(z)

⇐⇒
∫

D

Pm,n(z)Pk,l(z)Pm+k−N,n+l−N(z̄)dµ0(z) =
g(m,n; k, l; N)

h0(m + k −N, n + l −N)

where we used the orthogonality relation. With the explicit formula for the Haar function
the second form follows.

5.3 On a general formula

Of course it would be desirable to have an explicit formula for the linearization coeffi-
cients for general α ≥ 0. The first two coefficients gα(m, n; k, l; 0) and gα(m, n; k, l; 1)
look promising that a certain regularity might be in the formula but already the third
coefficient gα(m,n; k, l; 2) kills this hope. As the amount of terms kind of explodes with
increasing "i" and time for investigations was running out we give here only those first
three general linearization coefficients for 2 < m,n, k, l ∈ N in a closed form which we
could determine explicitely.

1. gα(m, n; k, l; 0) =
(m + n + α)!(k + l + α)!(m + k + α)!(n + l + α)!α!

(n + α)!(m + α)!(k + α)!(l + α)!(m + n + k + l + α)!

2. gα(m, n; k, l; 1) =
(m + n + α− 1)!(k + l + α− 1)!(m + k + α− 1)!

(n + α)!(m + α)!(k + α)!(l + α)!(m + n + k + l + α− 2)!
×

× (n + l + α− 1)!α!

(m + n + k + l + α)

(
k(k + α)n(n + α)− 2 k n m l + m(m + α)l(l + α)

)
.

Recall here that the term in the last parenthesis resembles the corresponding term for
α = 0: (kn−ml)2 in a certain way.

3. gα(m,n; k, l; 2) =
(m + n + α− 2)!(k + l + α− 2)!(m + k + α− 2)!

(n + α)!(m + α)!(k + α)!(l + α)! 2!
×

×(n + l + α− 2)!(m + n + k + l + α− 3)α!

(m + n + k + l + α− 1)!
×(

k(k + α)(k − 1)(k + α− 1)n(n + α)(n− 1)(n + α− 1)

−4(k + α)(k − 1)(n + α)(n− 1)k n m l

+2k(k − 1)n(n− 1)m(m− 1)l(2l − 1)

+2(k + α)(l + α)(n + α)(m + α + 1)k n m l
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+2(m− 1)(n + k + α− 1)(l + α)k n m l

−4(m + α)(m− 1)(l + α)(l − 1)k n m l

m(m + α)(m− 1)(m + α− 1)l(l + α)(l − 1)(l + α− 1)
)

If we compare this last term with the result for α = 0:(
k(k − 1)n(n− 1)− 2knml −m(m− 1)l(l − 1)

)2
one sees that the terms with coefficient "2" don’t fit any scheme given from α = 0.

Anyway we believe that even a small part of the formula for α = 0 can be taken over
to a general formula. We believe that a general linearization coefficient for the disc
polynomials must look like

gα(m, n; k, l; i) =
(m + n + α− i)!(k + l + α− i)!(m + k + α− i)!

(n + α)!(m + α)!(k + α)!(l + α)! i!
×

× (n + l + α− i)!α!

(m + n + k + l + α + 1− i)!
(m + n + k + l + α + 1− 2i)g̃α(m, n; k, l; i)

with a suitable but hard to find g̃α(m,n; k, l; i).

Exactly as in Corollary 5.8 it follows that we have for general linearization coefficients:

gα(m, n; k, l; N) = hα(m + k −N, n + l −N)

∫
D

Pα
m,n(z)Pα

k,l(z)Pα
m+k−N,n+l−N(z̄)dµα(z) .
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6 Approximation on the unit disc with disc
polynomials

6.1 Fourier analysis on the unit disc

In chapter 2 we have seen how classical Fourier analysis is carried over to a setting
where Jacobi polynomials play the role of the trigonometric polynomials in the classical
Fourier analysis. It is clear that it can be tried to adopt this principle for other orthogonal
polynomial systems.

In this chapter we want to set up the basic modules for Fourier analysis with disc
polynomials on the unit disc. One of the main differences to the Jacobian case is the
two dimensionality. At first we want to establish an order on the set of disc polynomials
{Pα

m,n | m, n ∈ N0}. In one dimensional cases the natural ordering of an orthogonal
polynomial system (Pn)n∈N0 works with the degree of each polynomial. As Pn has exact
degree n it is clear that Pn+i, i ∈ N comes on a later position than Pn. But the total
degree of the following two disc polynomial is the same: Pα

m−i,n and Pα
m,n−i, 0 < i ≤ m, n,

namely n + m− i, even though the polynomials are not identical. We see that with the
classical term of total degree we cannot say which of these two polynomials comes first.
In order to be able to distinguish the position of disc polynomials of that kind we
introduce a two dimensional order on the set N2

0 in order to be able to compare two
elements of that set.

Definition 6.1 (two dimensional order, degree). For tuples (m, n), (k, l) ∈ N2
0 we

say that

(k, l) < (m,n) ⇐⇒ k + l < m + n ∨
(
k + l = m + n ∧ l < n

)
.

We say a monomial m(z, z̄) = zkz̄l has degree (k, l)and write degree
(
m(z, z̄)

)
:= (k, l)

. For any polynomial p(z, z̄) that is a linear combination of monomials we say it has
degree (k, l) if the monomial with the highest order has degree (k, l) in the sense of the
introduced order, and write degree

(
p(z, z̄)

)
= (k, l).

Together with this definition we can introduce sets of polynomials that do not exceed a
certain degree.

Definition 6.2. For m,n ∈ N0 the set of two dimensional polynomials with degree not
exceeding (n, m) is given by

Πn,m := {p(z, z̄) | p is a polynomial in z, z̄, degree(p) ≤ (n,m)} .

For brevity we put Πn := Π0,n which corresponds to the set of all polynomials with total
degree ≤ n.

68



6.1 Fourier analysis on the unit disc

The set of monomials of exact degree n has dimension n + 1, and so we see that Πn has
dimension 1

2
(n + 1)(n + 2) and Πn,m has dimension 1

2
(n + m)(n + m + 1) + m + 1.

Now it is clear, that for the disc polynomials we have degree
(
Pm,n(z, z̄)

)
= (m, n). As

well as the fact that the set {Pα
k,l(z)| (k, l) ≤ (m, n)} is a basis of Πn,m. This ordering

will be important later when we are looking at partial Fourier series.

Another point we need to mention here is the following: From now on for brevity we
want to leave out the α in our notations. That means we fix α > 0 and handle it like
a constant and keep in mind that our formulas indeed depend on α. The reason why
we chose α > 0 is that we want to make use of the generalized translation that is only
valid for that range. Some of the following definitions and theorems can also be given
for −1 < α ≤ 0 but as soon as we work with the generalized translation we need α > 0.
And as our focus is on actions that work with the translation we chose only the reduced
range.

Now we can start to define the required instruments for doing Fourier analysis on the
unit disc.

Definition 6.3 (Fourier coefficient). For a function f ∈ L1(D) and natural numbers
m, n ∈ N0 the (n, m)-th Fourier coefficient is defined as

f̂(m, n) :=

∫
D

f(z)Pm,n(z̄)dµ(z) =

∫
D

f(z)Pn,m(z)dµ(z) .

In the next lemma we see that this definition is compatible with the generalized
translation definied in chapter 3. We get a property for the Fourier coefficient well-
known from classical theory.

Lemma 6.4. For functions f, g ∈ L1(D) and m, n ∈ N0 it holds

f̂ ∗ g(m, n) = f̂(m, n)ĝ(m, n) .

Proof: Recall the definition of the translation and the function E(x, y, z) of Lemma 4.4

f̂(m, n)ĝ(m, n) =

∫
D

f(z)Pm,n(z̄, z)dµ(z)

∫
D

g(ȳ)Pm,n(y, ȳ)dµ(ȳ)

=

∫
D

∫
D

f(z)g(ȳ)TzPm,n(y, ȳ)dµ(z)dµ(ȳ)

=

∫
D

∫
D

∫
D

f(z)g(ȳ)Pm,n(ξ, ξ̄)E(z, y, ξ)dµ(ξ)dµ(z)dµ(ȳ)

=

∫
D

∫
D

∫
D

f(z)g(ȳ)E(z, ξ̄, ȳ)dµ(ȳ)dµ(z)Pm,n(ξ, ξ̄)dµ(ξ)

=

∫
D

(g ∗ f) (ξ̄)Pm,n(ξ, ξ̄)dµ(ξ)
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=

∫
D

(f ∗ g) (ξ̄)Pm,n(ξ, ξ̄)dµ(ξ) = f̂ ∗ g(m, n) .

With this definition of the Fourier coefficient the formal Fourier expansion and the partial
Fourier series of a function f ∈ L1(D) can be given:

Definition 6.5 (Fourier series). For a function f ∈ L1(D) and n, m ∈ N0 we define
the formal Fourier expansion as

f(z) =
∞∑
i=0

∞∑
j=0

f̂(i, j)h(i, j)Pi,j(z)

and the (n, m)-th partial Fourier series as

Sn,mf(z) :=
n+m−1∑

i=0

i∑
j=0

f̂(i− j, j)h(i− j, j)Pi−j,j(z)

+
m∑

j=0

f̂(n + m− j, j)h(n + m− j, j)Pn+m−j,j(z) .

The (n, m)-th partial Fourier series follows the described ordering of the disc polynomials
which means that we sum up increasing coefficients until (n, m) appears. Of course this
ordering is special for the polynomials of total degree m + n and one could have chosen
a different ordering. The way we sum up should illustrate that we sum up successively
the product of the Fourier coefficients the Haar functions and the disc polynomials in
their ordering.

For our convenience we define the following notation, for a β(i, j) of any kind:

n+m−1∑
i=0

i∑
j=0

β(i− j, j) +
m∑

j=0

β(m + n− j, j) :=

(n,m)∑
(i,j)=(0,0)

β(i, j)

such that we can write our (n, m)-th partial Fourier series as

Sn,mf(z) =

(n,m)∑
(i,j)=(0,0)

f̂(i, j)h(i, j)Pi,j(z) .

Of course for polynomials the formal Fourier expansion is finite and provides a linear
combination of disc polynomials. As an example we will give here the expansion of a
monomial:

zmz̄n =
m! n!

α!

min(m,n)∑
i=0

(m + α− i)!(n + α− i)!(m + n + α + 1− 2i)

i!(m− i)!(n− i)!(m + n + α + 1− i)!
Pm−i,n−i(z, z̄) .
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6.1 Fourier analysis on the unit disc

Proof: Let g(z, z̄) := zmz̄n. Then for k, l ∈ N0 we have

ĝ(l, k) =

∫
D

zmz̄nPl,k(z̄, z)dµ(z) =

∫
D

zmz̄nPk,l(z, z̄)dµ(z)

=

∫ 2π

0

∫ 1

0

rmeimϕrne−inϕPk,l(re
iϕ, re−iϕ)

α + 1

π
(1− r2)α r drdϕ

let w.l.o.g. l ≥ k

=
α + 1

π

k! α!

(k + α)!

∫ 2π

0

ei(m+k−n−l)ϕdϕ

∫ 1

0

rm+n+1+l−kJ
(α,l−k)
k (2r2 − 1) (1− r2)αdr

= 2(α + 1)
k! α!

(k + α)!
δm+k,n+l

∫ 1

0

r2m+1J
(α,m−n)
k (2r2 − 1) (1− r2)αdr

we perform a substitution x = 2r2 − 1

= 2(α + 1)
k! α!

(k + α)!
δm+k,n+l

∫ 1

−1

(
x + 1

2

)m

J
(α,m−n)
k (x)

(
1− x

2

)α
1

4
dx

= 2−m−α−1(α + 1)
k! α!

(k + α)!
δm+k,n+l

∫ 1

−1

(x + 1)mJ
(α,m−n)
k (x) (1− x)αdx

now we take the Jacobi polynomial in the Rodrigues formula

= 2−m−k−α−1(−1)k (α + 1)!

(k + α)!
δm+k,n+l

∫ 1

−1

(x + 1)n dk

dxk

(
(1 + x)m−n+k(1− x)k+α

)
dx

and k times an integration by parts gives

= 2−m−k−α−1 (α + 1)!

(k + α)!
δm+k,n+l

n!

(n− k)!

∫ 1

−1

(x + 1)m(1− x)α+kdx

another substitution via x = 2r − 1 gives

= 2−m−k−α−1 (α + 1)!

(k + α)!
δm+k,n+l

n!

(n− k)!

∫ 1

0

(2x)m(2− 2x)α+k2 dx

=
(α + 1)!

(k + α)!
δm+k,n+l

n!

(n− k)!

∫ 1

0

xm(1− x)α+kdx

the integral is just the beta function which provides the value

=
(α + 1)!

(k + α)!
δm+k,n+l

n!

(n− k)!

m!(k + α)!

(m + k + α + 1)!
.

Altogether we arrive at

ĝ(l, k)h(l, k) =
(α + 1)!

(m + k + α + 1)!

n!m!

(n− k)!
δm+k,n+l

(k + l + α + 1)

α + 1

(k + α)!

k! α!

(l + α)!

l! α!

=
n! m!

α!

(k + α)!(l + α)!(k + l + α + 1)

(n− k)! k! l! (m + k + α + 1)!
δm+k,n+l .
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Our assumption was l ≥ k from which follows together with δm+k,n+l that our monomial
should have fulfilled the condition m ≤ n again w.l.o.g. But then we can see that only
those Fourier coefficients are non-zero which fulfill k = n−m + l:

ĝ(l, n−m + l)h(l, n−m + l) =
n! m!

α!

(n−m + l + α)!(l + α)!(n−m + 2l + α + 1)

(m− l)! (n−m + l)! l! (n + l + α + 1)!
.

From the monomial zmz̄n it is clear that the range of l is l = 0, ...,m. We want to run
through it starting from m therefore we set for i = 0, ...,m : l = m− i

ĝ(m− i, n− i)h(m− i, n− i) =
n! m!

α!

(n + α− i)!(m + α− i)!(n + m + α + 1− 2i)

i! (n− i)! (m− i)! (n + m + α + 1− i)!
.

Recall that we have m = min(m, n) by assumption. For the inverse case change the
roles of k and l. Then the example is proved.

Like we have seen in the chapter on Jacobi polynomials and we know from classical
Fourier analysis the (n,m)-th Dirichlet kernel should be the kernel whose convolution
with a function gives the (n,m)-th partial Fourier series of that function. So the Dirichlet
kernel is the sum of the first (n,m) disc polynomials each multiplied with the correspond-
ing Haar function.

Definition 6.6 (Dirichlet kernel). For disc polynomials and n, m ∈ N0 the (m, n)-th
Dirichlet kernel is defined by:

Dm,n(z) :=

(m,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z)

and we want to write for brevity

Dn(z) :=

(0,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z) .

So here we see that Dn,m ∗ f is indeed the (n,m)-th partial Fourier series of f :

(Dm,n ∗ f)(z) =

∫
D

TyDm,n(z)f(y)dµ(y) =

∫
D

(m,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z)Pk,l(ȳ)f(y)dµ(y)

=

(m,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z)

∫
D

Pk,l(ȳ)f(y)dµ(y) =

(m,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z)f̂(k, l) = Sn,mf(z) .
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6.1 Fourier analysis on the unit disc

Another clear property is the fact, that the (n,m)-th Dirichlet kernel reproduces poly-
nomials of degree (n, m) which means that the convolution with a polynomial of de-
gree ≤ (n, m) gives back the original polynomial. As the set of disc polynomials
{Pk,l(z) | (k, l) ≤ (n,m)} is a basis of Πn,m we can write a polynomial q(z) ∈ Πn,m

in the following way:

q(z) =

(n,m)∑
(k,l)=(0,0)

βk,lPk,l(z) .

And therefore we have:

(Dn,m ∗ q)(z) =

∫
D

TyDn,m(z)

(n,m)∑
(k,l)=(0,0)

βk,lPk,l(y)dµ(y)

=

(n,m)∑
(k,l)=(0,0)

βk,l

∫
D

(n,m)∑
(i,j)=(0,0)

Pi,j(ȳ)Pi,j(z)h(i, j)Pk,l(y)dµ(y)

=

(n,m)∑
(k,l)=(0,0)

(n,m)∑
(i,j)=(0,0)

βk,lPi,j(z)δk,iδl,j = q(z) .

Another observation is the fact, that the sum of Pk,l(z) and Pl,k(z) is two times the real
part of one of the polynomials, as they are just the complex conjugate of each other.

Pk,l(z) + Pl,k(z) = 2 Re
(
Pk,l(z)

)
.

As h(m,n) is symmetric in m and n and real and for k ∈ N0 the Pk,k(z) are also real,
we can at once conclude, that DN(z) ∈ R ∀z ∈ C, N ∈ N0.

To give an illustration, we give the first three Dirichlet-Kernels of the form DN(z) for
N ∈ N0 in polar coordinates where we can see DN(z) ∈ R immediately:

D1(r, ϕ) = 1 + (α + 2)(eiϕ + e−iϕ)r = 1 + 2(α + 2)cos(ϕ)r

D2(r, ϕ) = −(α + 2) + (α + 2)(eiϕ + e−iϕ)r + (α + 2)(α + 3)

(
1

2
(e2iϕ + e−2iϕ) + 1

)
r2

= −(α + 2) + 2(α + 2)cos(ϕ)r + (α + 2)(α + 3) (cos(2ϕ) + 1) r2

D3(r, ϕ) = −(α + 2)− 2(α + 3)(α + 2)cos(ϕ)r + (α + 2)(α + 3) (cos(2ϕ) + 1) r2

+ (α + 4)(α + 3)(α + 2)

(
1

3
cos(3ϕ) + cos(ϕ)

)
r3 .

This leads to an explicit formula for Dirichlet kernels of the form DN(r, ϕ) in polar
coordinates, if we order the terms in the degree of the radius.
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6.2 A generalized de-la-Vallée-Poussin kernel

DN(r, ϕ) =
N∑

j=0

(−1)b
j
2
c (α + N + 1− b j+1

2
c)!

(α + 1)!(b j
2
c)!

N−j∑
k=0

1

k!(N − j − k)!
ei(N−j−2k)ϕ rN−j

=

bN
2
c∑

j=0

(−1)j (α + N + 1− j)!

(α + 1)!j!

N−2j∑
k=0

1

k!(N − 2j − k)!
ei(N−2j−2k)ϕ rN−2j

+

bN−1
2

c∑
j=0

(−1)j (α + N − j)!

(α + 1)!j!

N−1−2j∑
k=0

1

k!(N − 1− 2j − k)!
ei(N−1−2j−2k)ϕ rN−1−2j

This formula can be proven by a simple induction.

6.2 A generalized de-la-Vallée-Poussin kernel

We are interested in the question whether the convolution of a kernel with a function
converges to that function in norm. Like in settings with other orthogonal polynomial
systems one can expect that the Dirichlet kernel for disc polynomials does not provide
norm convergence in general, i.e. in Lp spaces with p 6= 2. In [15] there is introduced a
Poisson kernel on the unit disc of the form

POIα
s (z) :=

∑
i,j

smax(i,j)hα(i, j)Pα
i,j(z)

that provides norm convergence in the Lp spaces 1 ≤ p ≤ ∞ in case α > 0 and 0 ≤ s < 1.
With the value s = 1 this Poisson kernel would just be the Dirichlet kernel.

In this chapter we define a generalized de-la-Vallée-Poussin kernel with disc polyno-
mials that follows the example given in the introduction on approximation in the Jacobi
setting. We can prove that with this kernel we get norm convergence because of the
fact that its norm is uniformly bounded. Together with its reproducing property of
polynomials we can use Theorem 3.7 to get this result.

But we want to go through it step by step and start by defining this generalized
de-la-Vallée-Poussin kernel.

Definition 6.7 ( (*) Generalized de-la-Vallée-Poussin kernel). For α ∈ R+ and
two tuples (k, l) < (m, n) ∈ N2

0 the generalized de-la-Vallée-Poussin kernel is defined in
the following way:

αV(m,n)
(k,l) (z) :=

Dα
m,n(z̄)Dα

k,l(z)

Dα
k,l(1)

.

The generalized de-la-Vallée-Poussin Operator αV
(m,n)
(k,l) : Lp

α → Lp
α for 1 ≤ p ≤ ∞ is

given by: (
αV

(m,n)
(k,l) f

)
:=
(

αV(m,n)
(k,l) ∗

α
f
)

.

74



6.2 A generalized de-la-Vallée-Poussin kernel

And for convinience we will later work with the following operator and kernel:
(M < N ∈ N0)

VN
M := αV(0,N)

(0,M) and similarly V N
M := αV

(0,N)
(0,M) .

At first we will check the reproducing property of the general de-la-Vallée-Poussin
kernel for polynomials of a certain degree, but later on we will only work with the kernels
of the form VN

M because we find out that their reproducing properties are optimal for
our purposes.

Theorem 6.8 ( (*) reproducing property). For the generalized de-la-Vallée-Poussin
kernel V(m,n)

(k,l) with (k, l) < (m, n) we have the following reproducing property for polyno-
mials: (

V(m,n)
(k,l) ∗ P

)
(z) = P (z) or alternatively

(
V

(m,n)
(k,l) P

)
(z) = P (z)

a) if k ≥ m : ∀P ∈ Πm+n−k−l

b) if k < m : ∀P ∈ Πm+n−k−l−1 .

Proof:
Step 1) ∀ Q ∈ Πm,n holds

∫
D

Dm,n(z̄)Q(z)dµ(z) = Q(1). That can be checked in the
following way:

We can write Q ∈ Πm,n as a linear combination of disc polynomials with suitable
βi,j ∈ C:

Q(z) =

(m,n)∑
(i,j)=(0,0)

βi,jPi,j(z) , but then we have:

∫
D

Dm,n(z̄)Q(z)dµ(z) =

∫
D

(m,n)∑
(k,l)=(0,0)

h(k, l)Pk,l(z)

(m,n)∑
(i,j)=(0,0)

βi,jPi,j(z) dµ(z)

=

(m,n)∑
(k,l)=(0,0)

(m,n)∑
(i,j)=(0,0)

δk,i δl,j βi,j =

(m,n)∑
(i,j)=(0,0)

βi,j = Q(1) .

Step 2) If P (y) ∈ Πi,j ⇒ TzP (y) ∈ Πi+j w.r.t. z (we can’t get a better result, like
e.g. Πj,i, and that is the limiting factor for our setting), because:

Let P (y) =

(i,j)∑
(k,l)=(0,0)

βk,lPk,l(z) , for suitable βk,l, then

TzP (y) =

i+j−1∑
k=0

k∑
l=0

βk−l,lTzPk−l,l(y) +

j∑
l=0

βi+j−l,lTzPi+j−l,l(y)

=

i+j−1∑
k=0

k∑
l=0

βk−l,lPl,k−l(z)Pk−l,l(y)︸ ︷︷ ︸
∈ Πi+j−1 w.r.t. z

+

j∑
l=1

βi+j−l,lPl,i+j−l(z)Pi+j−l,l(y)︸ ︷︷ ︸
∈ Π1,i+j−1 w.r.t. z
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6.2 A generalized de-la-Vallée-Poussin kernel

+ βi+j,0P0,i+j(z)Pi+j,0(y)︸ ︷︷ ︸
∈ Πi+j w.r.t. z

⇒ TzP ∈ Πi+j w.r.t. z .

Step 3) Dk,l(z)TzP ∈ Πk,i+j+l w.r.t. z, ∀ P ∈ Πi,j, because:

Dk,l ∈ Πk,l and TzP ∈ Π0,i+j .

Step 4) Dk,l(z)TzP ∈ Πm,n w.r.t. z

i) if k ≥ m : ∀P ∈ Πm+n−l−k

ii) if k < m : ∀P ∈ Πm+n−l−k−1

because: in case i) k ≥ m:

P ∈ Πm+n−l−k
Step 2)
=⇒ TzP ∈ Πm+n−l−k w.r.t. z

Step 3)
=⇒ Dk,l(z)TzP ∈ Πk,m+n−k w.r.t. z and Πk,m+n−k ⊆ Πm,n

and in case ii) k < m:

as k < m and (k, l) ≤ (m,n) ⇒ k + l < m + n ⇒ m + n− l − k − 1 ≥ 0

P ∈ Πm+n−l−k−1
Step 2)
=⇒ TzP ∈ Πm+n−l−k−1 w.r.t. z

Step 3)
=⇒ Dk,l(z)TzP ∈ Πk,m+n−k−1 w.r.t. z and Πk,m+n−k−1 ⊆ Πm,n

So finally we can conclude for a polynomial P as in the theorem, we have:

Dk,l(z)TzP (y) ∈ Πm,n w.r.t. z

⇒
∫

D

Dm,n(z̄)
(
Dk,l(z)TzP (y)

)
dµ(z)

Step 1)
= Dk,l(1)T1P (y) = Dk,l(1)P (y)

⇒
(
V

(m,n)
(k,l) P

)
(y) = P (y) .

With this theorem we see that generalized de-la-Vallée-Poussin operators of the type
V N

M reproduce the biggest set of polynomials in relation to (n,m), (k, l). (So we choose
N = n + m and M = k + l). They reproduce all polynomials of total degree N − M ,
i.e. from the set ΠN−M . That is the reason why we will concentrate in the sequel only
on generalized de-la-Vallée-Poussin operators of this type.

The next property which we need for norm convergence ‖V N
M f − f‖ → 0 is the uniform

boundedness of the de-la-Vallée-Poussin operator. Therefore it will suffice to have the
boundedness of the kernel in the L1 norm. That is the assertion in the next theorem.

Recall that for convenience we left out the α. This we will still do so, but in the sequel
it can reappear in the constants which will not affect the uniformity as in our setting we
work with fixed α.

76



6.2 A generalized de-la-Vallée-Poussin kernel

Theorem 6.9 ( (*) boundedness of the de-la-Vallée-Poussin kernel). The gen-
eralized de-la-Vallée-Poussin kernel VN

M is uniformly bounded in L1, if N and M are
related N ∼ M .

For N = CM ; N, M ∈ N, C > 1 we have:

‖VN
M‖L1 ≤ Cdαe+ 3

2 .

We prove this theorem in several steps. Therefore we provide some lemmata.

Lemma 6.10.

(i) The L1-norm of V(m,n)
(k,l) is bounded in the following way:

‖V(m,n)
(k,l) ‖L1 =

∫
D

|V(m,n)
(k,l) (z)|dµ(z) ≤

√
Dm,n(1)

Dk,l(1)
.

(ii) For p = 1,∞ and f ∈ Xp the Xp-norm of
(
V

(m,n)
(k,l) f

)
is bounded by:

‖V (m,n)
(k,l) f‖Xp ≤

√
Dm,n(1)

Dk,l(1)
‖f‖Xp .

Proof (i):
a) ∫

D

|Dm,n(z)|2dµ(z) =

∫
D

|Dm,n(z̄)|2dµ(z) =

∫
D

Dm,n(z)Dm,n(z̄)dµ(z)

=

(m,n)∑
(i,j)=(0,0)

(m,n)∑
(k,l)=(0,0)

h(i, j)h(k, l)

∫
D

Pi,j(z)Pk,l(z)dµ(z)

=

(m,n)∑
(i,j)=(0,0)

(m,n)∑
(k,l)=(0,0)

h(i, j)h(k, l)
δi,kδj,l

h(k, l)
=

(m,n)∑
(i,j)=(0,0)

h(i, j) = Dm,n(1) .

b) With Cauchy-Schwarz inequality we get∫
D

| V(m,n)
(k,l) (z)|dµ(z) =

1

Dk,l(1)

∫
D

|Dm,n(z̄)Dk,l(z)| (1− |z|2)α dz

≤ 1

Dk,l(1)

(∫
D

|Dm,n(z̄)|2(1− |z|2)αdz

) 1
2
(∫

D

|Dk,l(z)|2(1− |z|2)αdz

) 1
2

a)
=

1

Dk,l(1)

(
Dm,n(1)

) 1
2
(
Dk,l(1)

) 1
2 =

√
Dm,n(1)

Dk,l(1)
.
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6.2 A generalized de-la-Vallée-Poussin kernel

Proof (ii):
case p = 1:

‖V (m,n)
(k,l) f‖L1 =

∫
D

|(V(m,n)
(k,l) ∗ f)(x)|dµ(x)

≤
∫

D

∫
D

∫
D

|V(m,n)
(k,l) (y)||f(ξ)|E(y, x, ξ)dµ(ξ)dµ(y)dµ(x)

≤
∫

D

∫
D

|V(m,n)
(k,l) (y)||f(ξ) |

∫
D

E(y, ξ̄, x̄)dµ(x)︸ ︷︷ ︸
=1

dµ(ξ)dµ(y)

= ‖V(m,n)
(k,l) ‖L1‖f‖L1

(i)

≤

√
Dm,n(1)

Dk,l(1)
‖f‖L1 .

case p = ∞:

‖V (m,n)
(k,l) f‖X∞ = sup

x∈D
|
∫

D

∫
D

V(m,n)
(k,l) (y)f(ξ)E(y, x, ξ)dµ(ξ)dµ(y)|

≤ sup
z∈D

|f(z)| sup
x∈D

∫
D

|V(m,n)
(k,l) (y)|

∫
D

E(y, x, ξ)dµ(ξ)dµ(y)

= sup
z∈D

|f(z)| ‖V(m,n)
(k,l) ‖L1 ≤

√
Dm,n(1)

Dk,l(1)
‖f‖X∞ .

Now with Lemma 6.10 we see, that we need to uniformly bound
√

Dm,n(1)

Dk,l(1)
, in order to get

the assertion in Theorem 6.9. Indeed we can find a closed formula for Dm,n(1), which is
the crucial step. To be able to prove that closed formula we need some information about
generalized binomial coefficients, which we provide in the following lemma. Properties
i) and ii) are certainly known.

Lemma 6.11 (properties of generalized binomial coefficients).

(i) ∀α ∈ R,∀k ∈ N :

(
−α

k

)
= (−1)k

(
α + k − 1

k

)
(ii) ∀α, β ∈ R,∀k ∈ N :

k∑
j=0

(
α

j

)(
β

k − j

)
=

(
α + β

k

)

(iii) ∀α ∈ R,∀k ∈ N :
k∑

j=0

(
k − j + α

k − j

)(
j + α

j

)
=

(
k + 2α + 1

k

)

(iv) ∀α ∈ R,∀k ∈ N :
k∑

j=0

(
α + j

j

)
=

(
α + k + 1

k

)
.
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6.2 A generalized de-la-Vallée-Poussin kernel

Proof:
(i) (

−α

k

)
=

(−α)k

k!
=

(−α)(−α− 1) · · · (−α− k + 1)

k!

= (−1)k α(α + 1) · · · (α + k − 1)

k!
= (−1)k (α + k − 1)k

k!
= (−1)k

(
α + k − 1

k

)
.

(ii) By the generalized binomial theorem one knows that ∀γ, x ∈ R, |x| < 1 we can
expand the following function in a Taylor series:

f(x) := (1 + x)γ =
∞∑
i=0

f (i)(0)

i!
xi =

∞∑
i=0

(
γ

i

)
xi .

But then we know by setting γ = α, β, α + β respectively:

(1 + x)α =
∞∑
i=0

(
α

i

)
xi, (1 + x)β =

∞∑
i=0

(
β

i

)
xi, (1 + x)α+β =

∞∑
k=0

(
α + β

k

)
xk .

Multiplying the first two formulas with γ = α and γ = β gives:

(1 + x)α+β =
∞∑
i=0

(
α

i

)
xi

∞∑
l=0

(
β

l

)
xl =

∞∑
k=0

k∑
j=0

(
α

j

)(
β

k − j

)
xk .

By comparing these binomial coefficients with those of the third formula with γ = α+β,
one sees:

k∑
j=0

(
α

j

)(
β

k − j

)
=

(
α + β

k

)
.

(iii)

k∑
j=0

(
k − j + α

k − j

)(
j + α

j

)
(i)
=

k∑
j=0

(−1)k−j

(
−α− 1

k − j

)
(−1)j

(
−α− 1

j

)

= (−1)k

k∑
j=0

(
−α− 1

k − j

)(
−α− 1

j

)
(ii)
= (−1)k

(
−2α− 2

k

)
(i)
=

(
k + 2α + 1

k

)
.

(iv) This identity we prove by induction over k. So for k = 1 we get(
α

0

)
+

(
α + 1

1

)
= 1 + α + 1 =

(
α + 2

1

)
k → k + 1:

k+1∑
j=0

(
α + j

j

)
=

k∑
j=0

(
α + j

j

)
+

(
α + k + 1

k + 1

)
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=

(
α + k + 1

k

)
+

(
α + k + 1

k + 1

)
=

(α + k + 1)k

k!
+

(α + k + 1)k+1

(k + 1)!

=
(k + 1)(α + k + 1)k

(k + 1)!
+

(α + k + 1)k(α + 1)

(k + 1)!

=
(α + k + 1)k(α + k + 2)

(k + 1)!
=

(α + k + 2)k+1

(k + 1)!
=

(
α + k + 2

α + 1

)
.

Now we can prove the closed formula for Dm,n(1). Furthermore it is clear that this
is also the maximal value the (n, m)-th Dirichlet kernel takes on on the unit disc, as
the maximal value of each disc polynomial is taken on there and the Haar function is
positive.

Theorem 6.12 ( (*) ). We have ∀N ∈ N and ∀α ∈ R+:

Dα
N(1) =

2N + 2α + 3

2α + 3

(
2α + N + 2

N

)
.

Proof:

Dα
N(1) =

N∑
k=0

k∑
l=0

hα(k − l, l) =
N∑

k=0

k∑
l=0

k + α + 1

α + 1

(k − l + α)!

(k − l)! α!

(l + α)!

l! α!

=
N∑

k=0

(
k

α + 1
+ 1

) k∑
l=0

(
k − l + α

k − l

)(
l + α

l

)
6.11(iii)

=
N∑

k=0

(
k

α + 1
+ 1

)(
2α + k + 1

k

)

=
N∑

k=0

k

α + 1

(
2α + k + 1

k

)
+

N∑
k=0

(
2α + k + 1

k

)
6.11(iv)

=
N∑

k=0

2k

2α + 2

(2α + k + 1)!

k! (2α + 1)!
+

(
2α + N + 2

N

)
as each term in the sum is multiplied by "k" the sum starts at k = 1

= 2
N∑

k=1

(2α + k + 1)!

(k − 1)!(2α + 2)!
+

(
2α + N + 2

N

)
and an index shifting leads to

= 2
N−1∑
k=0

(2α + k + 2)!

k! (2α + 2)!
+

(
2α + N + 2

N

)
= 2

N−1∑
k=0

(
2α + k + 2

k

)
+

(
2α + N + 2

N

)
6.11(iv)

= 2

(
2α + 3 + N − 1

N − 1

)
+

(
2α + N + 2

N

)
= 2

(2α + N + 2)!

(2α + 3)!(N − 1)!
+

(2α + N + 2)!

(2α + 2)!N !

= (2N + 2α + 3)
(2α + N + 2)!

(2α + 3)!N !
=

2N + 2α + 3

2α + 3

(
2α + N + 2

N

)
.
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But still there is some work to be done. To get the constant from
√

DN (1)
DM (1)

we have to
consider the Dirichlet kernel at 1 as a polynomial in the variable N and M respectively.
This is done in the next lemma where one should be aware that in that lemma the values
of α are explicitly given in each numbering.

Lemma 6.13 ( (*) properties of DN(1)). Let N, M ∈ N so that N = CM, 1 < C ∈ R.
Then we have:

(i) ∀k ∈ N : ∃βi ∈ R+ : Dk
N(1) =

2k+3∑
i=0

βiN
i

(ii) ∀k ∈ N :
Dk

N(1)

Dk
M(1)

≤ C2k+3

(iii) ∀α, δ ∈ R+ :
Dα

N(1)

Dα
M(1)

≤ Dα+δ
N (1)

Dα+δ
M (1)

.

Proof:
(i)

Dk
N(1)

6.12
=

(2N + 2k + 3)

(2k + 3)!
(N + (2k + 2))(N + (2k + 1)) · · · (N + 1)

and so it is clear to see that these are 2k + 3 terms of the form (aN + b) with a, b ∈ R+.
(ii)

Dk
N(1)

(i)
=

2k+3∑
i=0

βiN
i =

2k+3∑
i=0

βi(CM)i
βi≥0,(i)

≤ C2k+3

2k+3∑
i=0

βiM
i = C2k+3Dk

M(1) .

(iii) The proof of this property is quite clumsy. We have to distinguish some cases,
because for small values of M and N the general proof does not work.

case 1: M = 1, N ≥ 2:

Dα
N(1)Dα+δ

1 (1) ≤ Dα+δ
N (1)Dα

1 (1)
6.12⇐⇒

2N + 2α + 3

2α + 3

(
2α + N + 2

N

)
(2α+2δ+5) ≤ 2N + 2α + 2δ + 3

2α + 2δ + 3

(
2α + 2δ + N + 2

N

)
(2α+5)

⇐⇒ (2α + 2N + 3)

N !

(2α + N + 2)!

(2α + 3)!
(2α + 2δ + 5)

≤ (2α + 2δ + 2N + 3)

N !

(2α + 2δ + N + 2)!

(2α + 2δ + 3)!
(2α + 5) .

case1.1: M = 1, N ≥ 3: in that case we have the terms 1
N !

, (2α + 2δ + 5) and (2α + 5)
on each side of the equality, so it reduces to:

⇐⇒ (2α + 2N + 3)(2α + N + 2) · · · (2α + 6)(2α + 4) ≤
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≤ (2α + 2δ + 2N + 3)(2α + 2δ + N + 2) · · · (2α + 2δ + 6)(2α + 2δ + 4)

and this is obvious by comparing the terms in their order, because α and δ are greater
than zero.

case 1.2: M = 1, N = 2:

⇐⇒ 1

2
(2α + 7)(2α + 4)(2α + 2δ + 5) ≤ 1

2
(2α + 2δ + 7)(2α + 2δ + 4)(2α + 5)

⇐⇒ 8α2δ + 8αδ2 + 40αδ + 20δ2 + 54δ ≥ 0 which is clear.

case2: N > M > 1:

Dα
N(1)Dα+δ

M (1) ≤ Dα+δ
N (1)Dα

M(1)
6.12⇐⇒

(2N + 2α + 3)

N !
(N + 2α + 2)N−1

(2M + 2α + 2δ + 3)

M !
(M + 2α + 2δ + 2)M−1 ≤

≤ (2N + 2α + 2δ + 3)

N !
(N + 2α + 2δ + 2)N−1

(2M + 2α + 3)

M !
(M + 2α + 2)M−1 .

As N > M the following terms appear on both sides of the inequality:
(M + 2α + 2) · · · (2α + 4) and (M + 2α + 2δ + 2) · · · (2α + 2δ + 4)
as well as 1

M ! N !
. Division by these terms provides

⇐⇒ (2N + 2α + 3)(N + 2α + 2) · · · (M + 2α + 3)(2M + 2α + 2δ + 3) ≤

≤ (2N + 2α + 2δ + 3)(N + 2α + 2δ + 2) · · · (M + 2α + 2δ + 3)(2M + 2α + 3)

picking on each side those three terms, that appear ∀N > M > 1 and splitting them
from the rest leads to ⇐⇒

(2N+2α+3)(M+2α+3)(2M+2α+2δ+3) ≤ (2N+2α+2δ+3)(2α+2δ+M+3)(2M+2α+3)

∧ (N + 2α + 2) · · · (M + 2α + 4) ≤ (N + 2α + 2δ + 2) · · · (M + 2α + 2δ + 4)

so the second term again is clear by comparison term by term and the first leads to the
condition:

8α2δ + 8αδ2 + 16αδM + 24αδ + 8δ2M + 12δ2 + 4δM2 + 4δMN + 24δM + 18δ ≥ 0

which is truely fulfilled and that completes the proof.

Now we are finally able to prove Theorem 6.9:

Proof of Theorem 6.9:
First of all let N, M ∈ N with N ∼ M in a way that N = cM with c > 1. From

Lemma 6.10 (i) we know that:

‖VN
M‖L1 =

∫
D

|VN
M(z)|dµ(z) ≤

√
DN(1)

DM(1)
.
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Keep in mind that dαe := min
k∈Z

{k|k ≥ α} and that in our setting α > 0, hence it follows

that dαe ∈ N.
Withs N = cM we can use the results of Lemma 6.13 to further estimate:(

Dα
N(1)

Dα
M(1)

) 1
2 6.13(iii)

≤

(
D
dαe
N (1)

D
dαe
M (1)

) 1
2 6.13(ii)

≤ cdαe+
3
2 .

But this is the conclusion in Theorem 6.9.

The approximation properties of this generalized de-la-Vallée-Poussin operator we will
formulate in a theorem concluding this section.

Theorem 6.14 ( (*) Norm convergence). Let α > 0 and let V N
M := V cM

M with M ∈ N
and 1 > c ∈ N. For 1 ≤ p ≤ ∞ and functions f ∈ Xp(D) we have

1) ‖V N
M f − f‖Xp(D) −→ 0, for M −→∞

2) ‖V N
M f − f‖Xp(D) ≤ (1 + cdαe+

3
2 ) min

Q∈Π(c−1)M

‖f −Q‖Xp(D) .

Proof:
We want to use Theorem 3.7 to prove statement 1). In place of the family of continuous

linear operators let us choose TM := V N
M : Xp(D) → Xp(D). The role of the dense subset

is played by the set of all polynomials Π. It is clear that they are dense in all Xp(D)
spaces. With the reproducing property of TM given in Theorem 6.8 it follows

lim
M→∞

‖TMP − P‖Xp(D) = 0 ∀P ∈ Π

as TM reproduces polynomials of total degree (c − 1)M and c > 1. But then the
precondition for Theorem 3.7 is fulfilled. From the two equivalent statements there we
choose the 2)nd to prove true, i.e.

‖TMf‖Lp(D) ≤ C‖f‖Xp(D) ∀f ∈ Xp(D), M ∈ N

with C to be independent of M and f . But this is done in Lemma 6.10 (ii) (recall that
we use for interpolating the intermediate cases the Riesz-Thorin theorem) with which
we have

‖TMf‖Xp(D) = ‖V cM
M f‖Xp(D)

6.10(ii)

≤
√

DcM (1)
DM (1)

‖f‖Xp(D) ≤ cdαe+
3
2 ‖f‖Xp(D)

and c is the constant giving the proportion of N to M : N = cM . But then Theorem
3.7 provides the statemanet in 1).

To prove statement 2) let Q ∈ Π(c−1)M . Then it holds:

‖V N
M f − f‖Xp(D) ≤ ‖V N

M f −Q‖Xp(D) + ‖Q− f‖Xp(D)

= ‖f −Q‖Xp(D) + ‖V N
M (f −Q)‖Xp(D) ≤ (1 + cdαe+

3
2 )‖f −Q‖Xp(D)
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and as this inequality holds for any Q ∈ Π(c−1)M we can choose the one that minimizes
the norm on the right hand side of the inequality. This is statement 2).

One interesting fact about this generalized de-la-Vallée-Poussin kernel is that the con-
stant with which its norm is bounded is explicitly known. That may be quite useful if in
some settings or situations one wants to know something about the speed of convergence
or error estimation. Then such a kernel can be helpfull.

6.3 Radially almost exponentially localized kernels

The method explained in the chapter on almost exponentially localized kernels in [28]
in the Jacobi setting is taken over to the unit ball Bd in Rd (d > 1) with weights
wα(x) = (1− |x|2)α. We see that this is exactly the same weight as in our setting with
disc polynomials but in [28] are not considered disc polynomials but functions that are
related to the Gegenbauer polynomials. And indeed there is derived a result saying that
the developed kernel Lα

n(x, y) has almost exponential localisation:

|Lα
n(x, y)| ≤ ck

nd√
Wα(n; x)

√
Wα(n; y)(1 + nd(x, y))k

for any k ∈ N, for x, y ∈ Bd and a constant ck that is independent of n, while

Wα(n; x) =
(√

1− |x|2 + n−1
)2α

.

Especially for d = 2 this result is for the unit disc. We want to try to achieve a
similar result for kernels based on disc polynomials. But unfortunately the generalized
translation in our setting is not friendly enough to provide such a strong result.

Nevertheless we want to take a look at the construction of kernels with respect to disc
polynomials that have in other settings almost exponential localisation. We will see that
the problem lies in the estimate of the Jacobi polynomial, given in the definition of the
disc polynomial, that only works with radial properties of the argument and therefore
information about the exact location on the disc gets lost. So in the end we cannot
differentiate two points on the disc having the same radius but different angles.

Definition 6.15. (admissible function) A function â ∈ C∞[0,∞) is called admissible if
â(t) ≥ 0 and

â(t) =


1, if 0 ≤ t ≤ 1

∈ [0, 1], if 1 < t ≤ 2

0, if t > 2 .

And we define a function â : R2 → R by setting

â(x, y) := â(x + y) .
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Then it is clear that â(x, y) is admissible if â(t) is admissible and we have

â(x, y) =


1, if x + y ≤ 1

∈ [0, 1], if 1 < x + y ≤ 2

0, if x + y > 2 .

Definition 6.16 ( (*) ). For n ∈ N0 and α > 0 we define the following reproducing
kernel for an admissible function â:

Lα
n(z) :=

∑
(i,j)=(0,0)

â
( i

n
,
j

n

)
h(i, j)Pi,j(z) .

Note that the support of an admissible function â(t) is only [0, 2]. This allows us to let
the indices go to infinity in Definition 6.16.

Then we provide here two fundamental theorems on Jacobi polynomials that are very
important for the upcoming proofs. We cite them from Szegö’s book on orthogonal
polynomials [33]:

Theorem 6.17 (Identity for Jacobi polynomials). [33], (4.5.3)

n∑
i=0

(2i + α + β + k + 1)(α + β + k + i)!

(β + i)!
J

(α+k,β)
i (x) =

(α + β + n + k + 1)!

(β + n)!
J (α+k+1,β)

n (x) .

Theorem 6.18 (Estimate for Jacobi polynomials). [33], (7.32.6)

|J (α,β)
n (cos θ)| ≤ c(α, β)

{
min{nα, n−

1
2 θ−α− 1

2} if 0 ≤ θ ≤ π
2

min{nβ, n−
1
2 (π − θ)−β− 1

2} if π
2
≤ θ ≤ π .

With Theorem 6.17 we are able to write our new kernel Lα
n in a different way, which will

help us estimate it later on.

Theorem 6.19 ( (*) ). For k ∈ N

Lα
n(z) =

2n∑
β=0

n−dβ
2
e∑

ν=0

(
â
(β + ν

n
,
ν

n

)
zβ + â

(ν

n
,
β + ν

n

)
(1− δβ,0)z̄

β

)
×

(α + 2ν + β + 1)
(α + β + ν)!

(β + ν)!(α + 1)!
J (α,β)

ν (2|z|2 − 1)
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=
2n∑

β=0

∞∑
ν=0

(
Ak(β + ν, ν)zβ + Ak(ν, β + ν)(1− δβ,0)z̄

β
)
×

(α + β + ν + k)!

(β + ν)!(α + 1)!
J (α+k,β)

ν (2|z|2 − 1)

with
A1(β + ν, ν) := â

(β + ν

n
,
ν

n

)
− â
(β + ν + 1

n
,
ν + 1

n

)
and for k ≥ 1

Ak+1(β + ν, ν) :=
Ak(β + ν, ν)

2ν + α + β + k + 1
− Ak(β + ν + 1, ν + 1)

2ν + α + β + k + 3
.

Proof: The first equality is just a re-ordering of the former definition of Lα
n given in 6.16.

This formula can be proved by induction principle. The second equality can be proved
with the result of Theorem 6.17. We will give the proof for k = 1: We will prove it
bottom up beginning with

Lα
n(z) =

2n∑
β=0

∞∑
ν=0

(
A1(β + ν, ν)zβ + A1(ν, β + ν)(1− δβ,0)z̄

β
)
×

(α + β + ν + 1)!

(β + ν)!(α + 1)!
J (α+1,β)

ν (2|z|2 − 1)

and with theorem 6.17 and the definition of A1

=
2n∑

β=0

∞∑
ν=0

((
â
(β + ν

n
,
ν

n

)
zβ + â

(ν
n

,
β + ν

n

)
(1− δβ,0)z̄

β
)

−
(
â
(β + ν + 1

n
,
ν + 1

n

)
zβ + â

(ν + 1

n
,
β + ν + 1

n

)
(1− δβ,0)z̄

β
))
×

ν∑
j=0

(2j + α + β + 1)(α + β + j)!

(α + 1)!(β + j)!
J

(α,β)
j (2|z|2 − 1)

=
2n∑

β=0

∞∑
ν=0

ν∑
j=0

((
â
(β + ν

n
,
ν

n

)
zβ + â

(ν
n

,
β + ν

n

)
(1− δβ,0)z̄

β
))
×

(2j + α + β + 1)(α + β + j)!

(α + 1)!(β + j)!
J

(α,β)
j (2|z|2 − 1)

−
2n∑

β=0

∞∑
ν=1

ν−1∑
j=0

((
â
(β + ν

n
,
ν

n

)
zβ + â

(ν
n

,
β + ν

n

)
(1− δβ,0)z̄

β
))
×

(2j + α + β + 1)(α + β + j)!

(α + 1)!(β + j)!
J

(α,β)
j (2|z|2 − 1)
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=
2n∑

β=0

∞∑
ν=0

(
â
(β + ν

n
,
ν

n

)
zβ + â

(ν

n
,
β + ν

n

)
(1− δβ,0)z̄

β

)
×

(2ν + α + β + 1)
(α + β + ν)!

(α + 1)!(β + ν)!
J (α,β)

ν (2|z|2 − 1) .

But that was the assumption. The cases with k > 1 follow similarly.

Lemma 6.20. For k ∈ N, k ≥ 2 we have

‖Ak‖∞ ≤ c n−2k+1 max
0≤ν≤k

‖â(ν)(·)‖∞

with c = c(α, k).

Proof: The proof can be done inductively and it can be reduced to the case of an
admissible function â(t) in the one dimensional case, which is given in [28]. Note that
our constant is of the factor 22k−1 greater than the constant in [28], but still independent
of n.

Now we can formulate the result that is the crucial theorem in [28] and in the one
dimensional cases. An estimate where only one variable is involved, with an kernel on
which later on the translation should be applied. Also in the disc polynomial case this
result can be achieved, but as mentioned before the translation in our case together with
the definition of the disc polynomials don’t provide the result of the almost exponential
localisation in case the two variables x, y have the same radial part.

Theorem 6.21 ( (*) ). Let â be admissible and α > 0. Then for every k ∈ N and
z ∈ D we have

|Lα
n(z)| ≤ ck

n2α+3

(1 + n arccos
(
2|z|2 − 1

)
)k

with a constant ck independent of n.

Already here we see that the angular part of the complex variable got lost. But the
angular part gives the position on the disc apart from the radial part. That will lead to
the situation that for TyL

α
n(z) we don’t get almost exponential localisation in case that

y and z have the same radius.

Proof of Theorem 6.21: Of course we want to use the estimate of Theorem 6.18. There-
fore we make the substitution cos θ = 2|z|2−1 for θ ∈ [0, π] from which we can conclude
|z| = cos

(
θ
2

)
for θ ∈ [0, π] with the addition formula for trigonometric functions. First

we see that we want to estimate
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|Ln(z)| =
∣∣∣ 2n∑

β=0

∞∑
j=0

(
Ak(β + j, j)zβ + Ak(j, β + j)(1− δβ,0)z̄

β
)
×

(α + β + j + k)!

(α + 1)!(β + j)!
J

(α+k,β)
j (2|z|2 − 1)

∣∣∣
≤

2n∑
β=0

∞∑
j=0

2

(α + 1)!
‖Ak‖∞

∣∣∣ cos

(
θ

2

) ∣∣∣β|β + j|α+k
∣∣J (α+k,β)

j (cos θ)
∣∣

≤ C

2n∑
β=0

∞∑
j=0

n−2k+1
∣∣∣ cos

(
θ

2

) ∣∣∣βnα+k
∣∣J (α+k,β)

j (cos θ)
∣∣

where in the last inequality we have used the result from Lemma 6.20. Now with
Theorem 6.18 it is clear that we have to split into four cases.

1.) For θ ∈ [0, π
2
] we have

|J (α+k,β)
n (cos θ)| ≤ c(α, β) min{nα+k, n−

1
2 θ−α−k− 1

2} .

1.a) Let min{nα+k, n−
1
2 θ−α−k− 1

2} = nα+k =⇒ θ ≤ 1
n

and we can further estimate:

|Ln(z)| ≤ C n2α+3 = C
n2α+3

(1 + nθ)k
(1 + nθ)k

θ≤ 1
n

≤ C̃
n2α+3

(1 + nθ)k
.

1.b) Now let min{nα+k, n−
1
2 θ−α−k− 1

2} = n−
1
2 θ−α−k− 1

2 =⇒ θ ≥ 1
n

and:

|Ln(z)| ≤ C
n2α+3

(nθ)k+α+ 1
2

≤ C
n2α+3

(1 + nθ)k+α+ 1
2

(1 + nθ)k+α+ 1
2

(nθ)k+α+ 1
2

1≤nθ

≤ C
n+2α+3

(1 + nθ)k

(2nθ)k+α+ 1
2

(nθ)k+α+ 1
2

≤ C̃
n2α+3

(1 + nθ)k
.

2.) The second case is for θ ∈ [π
2
, π] and we have

|J (α+k,β)
n (cos θ)| ≤ c(α, β) min{nβ, n−

1
2 (π − θ)−β− 1

2} .

2.a) First let min{nβ, n−
1
2 (π − θ)−β− 1

2} = nβ =⇒ θ ≥ π − 1
n
. So

|Lα
n(z)| ≤ C

nα+3

nk

∣∣∣ cos

(
θ

2

) ∣∣∣βnβ ≤ C
nα+3

nk

∣∣∣ cos

(
π − 1

n

2

) ∣∣∣βnβ

= C
nα+3

nk

∣∣∣ cos

(
π

2
+

1

2n

) ∣∣∣βnβ = C
nα+3

nk

∣∣∣ sin( 1

2n

) ∣∣∣βnβ
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6.3 Radially almost exponentially localized kernels

but the sine we can estimate in the following way:

sin

(
1

2n

)
=

∞∑
j=0

(−1)j

(
1

2n

)2j+1
1

(2j + 1)!
=

1

2n
+

∞∑
j=0

(−1)j

(
1

2n

)2j+1
1

(2j + 1)!︸ ︷︷ ︸
≤0

≤ 1

2n

thus we can go on

≤ C
nα+3

nk

(
1

2n

)β

nβ ≤ C̃
n2α+3

(1 + nθ)k

(1 + nθ)k

nk
≤ C

n2α+3

(1 + nθ)k

(2πn)k

nk
≤ C̃

n2α+3

(1 + nθ)k
.

2.b) Finally let min{nβ, n−
1
2 (π − θ)−β− 1

2} = n−
1
2 (π − θ)−β− 1

2 =⇒ θ ≤ π − 1
n
:

|Ln(z)| ≤ C n−k+α+3− 1
2 (π − θ)−β− 1

2

∣∣∣ cos

(
θ − π

2
+

π

2

) ∣∣∣β
= C n−k+α+3− 1

2 (π − θ)−β− 1
2

∣∣∣ sin(θ − π

2

) ∣∣∣β
= C n−k+α+3− 1

2 (π − θ)−β− 1
2

∣∣∣ sin(π − θ

2

) ∣∣∣β
≤ C n−k+α+3− 1

2 (π − θ)−β− 1
2

(
π − θ

2

)β

≤ C̃
n2α+3

nk+1
≤ C̃

n2α+3

(1 + nθ)k

(1 + nθ)k+1

nk+1
≤ C

n2α+3

(1 + nθ)k
.

A final resubstitution via θ = arccos(2|z|2 − 1) gives the result.

Now we are applying the generalized translation on this kernel:

|TyL
α
n(z)| =

∣∣∣ ∫
D

Lα
n(zȳ +

√
1− |z|2

√
1− |y|2ξ)dµα−1(ξ)

∣∣∣
and the simply use of Theorem 6.21 delivers

≤ C

∫
D

n2α+3(
1 + n arccos

(
2
∣∣zȳ +

√
1− |z|2

√
1− |y|2 ξ

∣∣2 − 1
))k

dµα−1(ξ) .

Recall the properties of the generalized translation and the situations in figure 3. As
soon as z and y have the same radial part the domain over which we integrate (in figure
3: Br(zȳ)) includes a point with absolute value 1. And then we have for our estimate:

≤ C

∫
D

n2α+3(
1 + n arccos

(
1)
)k

dµα−1(ξ) ≤ C n2α+3
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6.4 Exponentially localized kernels

even though the points z and y may lie diametrically opposed but on a circle with the
same radius, e.g. z = reiϕ and y = rei(ϕ+π).

On the other hand, if the two numbers have different radial parts the domain Br(zȳ)
has a positive distance to the boundary of the unit disc and

arccos
(
2
∣∣zȳ +

√
1− |z|2

√
1− |y|2 ξ

∣∣2 − 1
)

> 0

such that the almost exponential localisation principle t, albeit only very weak. It is
easy to show that for z = r1e

iϕ1 and z = r2e
iϕ2 we can estimate

|TyL
α
n(z)| ≤ n2α+3(

1 + n arccos
(
2
∣∣r1r2 +

√
1− r2

1

√
1− r2

2

∣∣2 − 1
))k

and arccos
(
2
∣∣r1r2 +

√
1− r2

1

√
1− r2

2

∣∣2 − 1
)

behaves like a metric for r1 and r2.
Clearly this result is not satisfying for the reason that two elements of the unit disc

with maximal distance (e.g. z1 = 1 and z2 = −1) show no localisation effect. Therefore
we will no longer study this type of kernel and besides we studied kernels that are
exponentially localised. With these kernels we will deal in the next section.

6.4 Exponentially localized kernels

Here we will discuss the construction of kernels K̃n with respect to disc polynomials that
are exponentially localized, which means that they can be estimated in the following way:∣∣K̃n(x, y)

∣∣ ≤ c n2α+3 exp
(
− nφ(1− cos(d(x, y)))

)
with an increasing function φ and an appropriate distance d(·, ·). We follow the way we
described in section 2.4.2 for Jacobi polynomials.

We are dealing with distances and with the generalized translation in the disc poly-
nomial setting. So the first point is to find a distance function on the unit disc which is
suitable for our purposes. And the second point is the question how our translation is
connected to this distance. So here is the first point:

Lemma 6.22 ( (*) ). For x, y ∈ D with x = |x| (cos(θ) + i sin(θ)), y = |y| (cos(ϕ) +
i sin(ϕ)), θ, ϕ ∈ [0, 2π)

d(x, y) = arccos
(
|xy| cos(θ − ϕ) +

√
1− |x|2

√
1− |y|2

)
is a metric.

Proof: It is a well-known fact that on the unit sphere for two points a, b we have a
metric by putting dS(a, b) := arccos(a · b) the so called spherical distance. This means
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6.4 Exponentially localized kernels

for our points x, y ∈ D the following: we project them orthogonally w.r.t the disc (here
for exemplification x) via

x =
(
|x| cos θ , |x| sin θ

)
7→
(
|x| cos θ , |x| sin θ,

√
1− |x|2

)
on the unit sphere and use the metric dS there. It is clear that this projection preserves
the relation between two points on the disc. Important is, that the euclidean distance
of x 6= y on the disc is smaller than the spherical distance of the projections on the
sphere, and equal when x = y, namely zero. So for x = |x| (cos(θ) + i sin(θ)) and
y = |y| (cos(ϕ) + i sin(ϕ)), θ, ϕ ∈ [0, 2π) we have:

d(x, y) := dS

((
|x| cos(θ) , |x| sin(θ),

√
1− |x|2

)
,
(
|y| cos(ϕ) , |y| sin(ϕ),

√
1− |y|2

))
= arccos

(
|xy|

(
cos(θ) cos(ϕ) + sin(θ) sin(ϕ)

)
+
√

1− |x|2
√

1− |y|2
)

= arccos
(
|xy| cos(θ − ϕ) +

√
1− |x|2

√
1− |y|2

)
.

Of course our new distance on the disc inherits the properties of a metric from the
spherical distance and the proof is done.

Now we want to take a look at the relation between our new distance on the unit disc
d(·, ·) and the argument of the generalized translation xȳ +

√
1− |x|2

√
1− |y|2z with

x, y, z ∈ D:

Lemma 6.23 ( (*) ). ∀x, y, z ∈ D with x = |x| (cos(θ) + i sin(θ)), y = |y| (cos(ϕ) +
i sin(ϕ)), θ, ϕ ∈ [0, 2π) , z = z1 + iz2 we have:

∣∣ 1− xȳ −
√

1− |x|2
√

1− |y|2z
∣∣ ≥ 1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2 .

Proof: We see that the right hand side of the inequality is equal to 1 − cos d(x, y). A
first step towards this inequality is

a)

1− |xy| cos(θ − ϕ)−
√

1− |x|2
√

1− |y|2 z1 ≥ 0

⇔ |xy| cos(θ − ϕ) +
√

1− |x|2
√

1− |y|2 z1 ≤ 1

⇔ Re
(
xȳ +

√
1− |x|2

√
1− |y|2 z

)
≤ 1

But the last line is a property of the argument of the translation which we already proved
after the definition of the generalized translation. Also confer figure 3 for that fact. This
inequality we need in
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6.4 Exponentially localized kernels

b) ∣∣1− xȳ −
√

1− |x|2
√

1− |y|2 z
∣∣

=
∣∣1− |xy|ei(θ−ϕ) −

√
1− |x|2

√
1− |y|2 (z1 + iz2)

∣∣
=
∣∣(1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2 z1

)
+ i
(
|xy| sin(θ − ϕ) +

√
1− |x|2

√
1− |y|2 z2

)∣∣
=
{(

1− |xy| cos(θ − ϕ)−
√

1− |x|2
√

1− |y|2 z1

)2
+
(
|xy| sin(θ − ϕ) +

√
1− |x|2

√
1− |y|2 z2

)2︸ ︷︷ ︸
≥0

} 1
2

≥
{(

1− |xy| cos(θ − ϕ)−
√

1− |x|2
√

1− |y|2 z1︸ ︷︷ ︸
≥0 because of a)

)2} 1
2

= 1− |xy| cos(θ − ϕ)−
√

1− |x|2
√

1− |y|2 z1

≥ 1− |xy| cos(θ − ϕ)−
√

1− |x|2
√

1− |y|2

where the last inequality holds as z1 ∈ [0, 1] by definition. So the lemma is proved.

Before we come to the construction of exponentially localized kernels we prove a technical
lemma. Then we want to prove a general theorem on exponentially localized kernels and
after that take a look at a concrete kernel where our generalized de-la-Vallée-Poussin
kernel could possibly be applied. But at first the technical lemma:

Lemma 6.24 ( (*) ). Let F ∈ L1(D); φ♦ : [0, 2] → [0,∞] a nonincreasing function,
and for some constant A > 0 : |F (z)| ≤ Aφ♦(|1− z|),∀z ∈ D. Then we have for almost
all z, y ∈ D with z = |z|eiθ, y = |y|eiϕ; θ, ϕ ∈ [0, 2π):

|TyF (z)| ≤ Aφ♦
(
1− |zy|cos(θ − ϕ)−

√
1− |z|2

√
1− |y|2

)
.

Proof:

|TyF (z)| by definition
=

∣∣∣ ∫
D

F (zȳ +
√

1− |z|2
√

1− |y|2 x)dµα−1(x)
∣∣∣

≤
∫

D

|F (zȳ +
√

1− |z|2
√

1− |y|2 x)|dµα−1(x)

precondition
≤ A

∫
D

φ♦
(
|1− zȳ −

√
1− |z|2

√
1− |y|2 x|

)
dµα−1(x)

and with Lemma 6.23 and the precondition that φ♦ is nonincreasing we conclude

≤ A

∫
D

φ♦
(
1− |zy|cos(θ − ϕ)−

√
1− |z|2

√
1− |y|2

)
dµα−1(x)
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6.4 Exponentially localized kernels

= Aφ♦
(
1− |zy|cos(θ − ϕ)−

√
1− |z|2

√
1− |y|2

)
where in the last equality we used that µα−1 is a probability measure and the argument
of the function φ♦ is independent of the integration variable.

We see that the argument on the right hand side of the inequality in Lemma 6.24 can
be written in terms of our distance function via 1− cos

(
d(x, y)

)
.

In the following definition we give the form of the kernels we want to allow:

Definition 6.25. For n ∈ N let {bk,l;n}k,l=0,1,2,... be a sequence with bk,l;n ∈ R. Then we
define for α > 0 the kernel Φ̃n(z) in the following way:

Φ̃n(z) :=

(0,4n)∑
(k,l)=(0,0)

bk,l;nh
α(k, l)Pα

k,l(z̄) .

The next theorem is a general result on a special class of exponentially localized kernels
with respect to disc polynomials. In the theorem we can take any kernel of the form Φ̃n

given in Definition 6.25 but in practice one naturally chooses a summation kernel that
is uniformly norm-bounded. To find a suitable function Sn ∈ Πn (compare 3.4.2) is also
a task that needs some reflections but first of all we want to give the theorem:

Theorem 6.26 ( (*) ). Let φ : [0, 2] → [0,∞] a nondecreasing continuous function.
For n ∈ N let Φ̃n as in Definition 6.25 and Sn ∈ Πn with:

Sn(1) = 1; |Sn(z)| ≤ c1 exp
(
− nφ(|1− z|)

)
; ∀z ∈ D .

Then with the same c1 as above and x = |x|eiθ, y = |y|eiϕ; θ, ϕ ∈ [0, 2π) we have:

1. |Ty(SnΦ̃n)(x)| ≤ c1‖Φ̃n‖∞ exp
(
− nφ(1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2)

)
2. sup

x∈D

∫
D

|Ty(SnΦ̃n)(x)|dµα(y) ≤ c1

∫
D

|Φ̃n(z)|dµα(z)

3. if bk,l;n = 1 for k + l = 0, 1, . . . , 2n; 0 ≤ k, l ≤ 2n:(
(SnΦ̃n) ∗ P

)
(x) = P (x) ∀P ∈ Πn and x ∈ D.

Proof:
1.) φ(t) is nondecreasing ⇒ exp

(
− nφ(t)

)
is nonincreasing ⇒ we can use Lemma

6.24 with φ♦ = exp(−nφ) which means that we have:

|Ty

(
SnΦ̃n

)
(x)| ≤ ‖Φ̃n‖∞|TySn(x)|

≤ c1‖Φ̃n‖∞ exp
(
− nφ(1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2)

)
.
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6.4 Exponentially localized kernels

2.) Sn ∈ Πn , Φ̃n ∈ Π4n ⇒ (SnΦ̃n) ∈ Π5n and ∃βk,l :
(
SnΦ̃n

)
(z) =

(0,5n)∑
(k,l)=(0,0)

βk,lP
α
k,l(z).

Hence

sup
x∈D

∫
D

|Ty(SnΦ̃n)(x)|dµα(y) = sup
x∈D

∫
D

|Ty

 (0,5n)∑
(k,l)=(0,0)

βk,lP
α
k,l(x)

 |dµα(y) .

The product formula for disc polynomials gives the following two equations

= sup
x∈D

∫
D

|
∑

βk,lP
α
k,l(ȳ)Pα

k,l(x)|dµα(y)

= sup
x∈D

∫
D

|Tx̄

(∑
βk,lP

α
k,l(ȳ)

)
|dµα(y)

the boundedness of the translation, Lemma 4.5 ii) gives

≤
∫

D

|
∑

βk,lP
α
k,l(ȳ)|dµα(y)

=

∫
D

|Sn(ȳ)Φ̃n(ȳ)|dµα(y)

a simple substitution of the radial part of y shows

=

∫
D

|Sn(y)Φ̃n(y)|dµα(y)

≤ ‖Sn‖∞
∫

D

|Φ̃n(y)|dµα(y)

and finally the condition of the exponential boundedness of Sn gives

≤ c1

∫
D

|Φ̃n(y)|dµα(y)

3.) Q ∈ Π2n ⇒ Q(y) =

(0,2n)∑
(k,l)=(0,0)

Q̂(k, l)Pα
k,l(y). If bk,l;n = 1 for k + l = 0, 1, . . . , 2n;

with 0 ≤ k, l ≤ 2n :

∫
D

Φ̃n(y)Q(y)dµ(y) =

∫
D

 (0,4n)∑
(k,l)=(0,0)

bk,l;nh(k, l)Pk,l(ȳ)

(0,2n)∑
(i,j)=(0,0)

Q̂(i, j)Pi,j(y)

 dµ(y)

=

(0,4n)∑
(k,l)=(0,0)

(0,2n)∑
(i,j)=(0,0)

bk,l;n δk,i δl,j Q̂(i, j) =

(0,2n)∑
(i,j)=(0,0)

Q̂(i, j) = Q(1)

Hence with a polynomial P ∈ Πn and Sn ∈ Πn ⇒ (PSn) ∈ Π2n, and as Sn(1) = 1:

⇒
∫

D

Φ̃n(y)Sn(y)P (y)dµ(y) = P (1)
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⇒
(
(SnΦ̃n) ∗ P

)
(x) =

∫
D

Ty(SnΦ̃n)(x)P (y)dµ(y)

=

∫
D

Sn(y)Φ̃n(y)TyP (x)dµ(y) = T1P (x) = P (x)

For technical reasons in a proof below we give the definition of a function that always
gives back a value in [−π, π]. Because of their periodicity we can avoid values outside
of the inteval [−π, π] for trigonometric functions.

Definition 6.27. For θ, ϕ ∈ [0, 2π) holds: ∃a ∈ [−2, 2] : (θ − ϕ) = aπ.
Then let

|θ − ϕ|min :=


aπ, −1 ≤ a ≤ 1

(a + 2)π, −2 ≤ a < −1

(a− 2)π, 1 < a ≤ 2 .

If we think of it geometrically in the setting of complex numbers this function has the
effect, that we take the smaller angle between the angular parts of two complex numbers.

Finally we want to give a concrete example for the function Sn.

Definition 6.28. For n ∈ N let

Sn(z) :=

(
1 + z

2

)n

Φ̃∗
n(z) :=

(
1 + z

2

)n

Φ̃n(z)

Φ∗
n(z, y) := TyΦ̃

∗
n(z) .

Theorem 6.29 ( (*) ). Let n ∈ N

1. For x = |x|eiθ; y = |y|eiϕ holds:

|Φ∗
n(x, y)| ≤

4−
(
1− cos

(
d(x, y)

))2

4


n
2

‖Φ̃n‖∞

≤ exp
(
− n

2π4
|xy|2|θ − ϕ|4min

)
‖Φ̃n‖∞

2.
sup
x∈D

∫
D

|Φ∗
n(x, y)|dµ(y) ≤

∫
D

|Φ̃n(z)|dµ(z)
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3. If bk,l;n = 1 for 0 ≤ k + l ≤ 2n , 0 ≤ k, l ≤ n :∫
D

Φ∗
n(x, y)P (y)dµ(y) = P (x) ∀P ∈ Πn, x ∈ D .

Proof: As we want to apply Theorem 6.26, we have to check the following conditions:
Sn(1) = 1 and Sn ∈ Πn are clear so it remains to show:

|Sn(z)| ≤ c1 exp
(
− nφ(|1− z|)

)
, z ∈ D, with c1 = 1 and φ(t) = log

[(
4

4− t2

) 1
2

]

φ : [0, 2] → [0,∞], φ is continuous and nondecreasing. So:

|Sn(z)| ≤ c1 exp
(
− nφ(|1− z|)

)
⇔
∣∣∣∣(1 + z

2

)n∣∣∣∣ =

(
|1 + z|

2

)n

≤ exp

(
−n log

(
4

4− |1− z|2

) 1
2

)

⇔ log

(
|1 + z|

2

)n

= n log

(
|1 + z|

2

)
≤ −n log

(
4

4− |1− z|2

) 1
2

= n log

(
4− |1− z|2

4

) 1
2

log is nondecreasing⇐⇒ |1 + z|
2

≤
(

4− |1− z|2

4

) 1
2

⇐⇒ |1 + z|2

4
≤ 4− |1− z|2

4

⇔ |1 + z|2 + |1− z|2

4
≤ 1

z:=z1+iz2⇐⇒ (1 + z1)
2 + z2

2 + (1− z1)
2 + z2

2

4
≤ 1

⇔ 1 + 2z1 + z2
1 + z2

2 + 1− 2z1 + z2
1 + z2

2

4
=

1 + z2
1 + z2

2

2
≤ 1 ⇔ |z|2 ≤ 1

which is clear from the fact that z ∈ D. With Theorem 6.26, 1.) follows:

|Φ∗
n(x, y)| = |TyΦ̃

∗
n(x)| = |Ty

(
SnΦ̃n

)
(x)|

≤ ‖Φ̃n‖∞ exp
(
−nφ

(
1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2

))
≤

(
4−

(
1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2

)2
4

)n
2

‖Φ̃n‖∞ .

Parts 2.) and 3.) follow directly from Theorem 6.26, 2.) and 3.) respectively.
So it remains to show the following result from part a):

(
4−

(
1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2

)2
4

)n
2

≤ exp
(
− n

2π4
|xy|2|θ − ϕ|4min

)
.
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So: (
4−

(
1− |xy| cos(θ − ϕ)−

√
1− |x|2

√
1− |y|2

)2
4

)n
2

=

(
4−

(
1−

√
1− |x|2

√
1− |y|2 − 2|xy| cos(θ−ϕ)

2
− |xy|+ |xy|

)2
4

)n
2

=

(
4−

(
1 + |xy| −

√
1− |x|2

√
1− |y|2 − 2|xy|1+cos(θ−ϕ)

2

)2
4

)n
2

=

(
4−

(
1 + |xy| −

√
1− |x|2

√
1− |y|2 − 2|xy|

(
1− sin2( θ−ϕ

2
)
) )2

4

)n
2

=

(
4−

(
1− |xy| −

√
1− |x|2

√
1− |y|2 + 2|xy| sin2( θ−ϕ

2
)
)2

4

)n
2

=


4− [

( ≥0 ⇔ (∗)︷ ︸︸ ︷
1− |xy| −

√
1− |x|2

√
1− |y|2

)
+
( ≥0︷ ︸︸ ︷
2|xy| sin2(

θ − ϕ

2
)
)

]2

4



n
2

(∗) 1− |xy| −
√

1− |x|2
√

1− |y|2 ≥ 0 ⇔ (1− |xy|)2 ≥ (1− |x|2)(1− |y|2)

1− 2|xy|+ |xy|2 ≥ 1− |x|2 − |y|2 + |xy|2 ⇐⇒ (|x| − |y|)2 ≥ 0

so we can further estimate

≤

(
4−

(
2|xy| sin2( θ−ϕ

2
)
)2

4

)n
2

=

(
1− |xy|2 sin4

(θ − ϕ

2

))n
2

= exp

(
n

2
log
(
1− |xy|2 sin4

(θ − ϕ

2

)))
.

Now, because of the 2π peridiocity of the sine it holds: sin4
(

θ−ϕ
2

)
= sin4

( |θ−ϕ|min
2

)

= exp

n

2
log
(

1− |xy|2 sin4
( |θ − ϕ|min

2

)
︸ ︷︷ ︸
≤1 & log(1−t)≤−t, t∈[0,1]

)
≤ exp

(
−n

2
|xy|2 sin4

( |θ − ϕ|min

2

))
.
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6.4 Exponentially localized kernels

By the definition of |θ − ϕ|min follows: |θ−ϕ|min
2

∈ [−π
2
, π

2
] but then for the sine term we

have:
sin4

(
|θ−ϕ|min

2

)
≥
(
|θ−ϕ|min

π

)4

, because for x̃ ∈ [−π
2
, π

2
] : sin2(x̃) ≥

(
2x̃
π

)2
⇔ x ∈ [0, π

2
] : sin(x) ≥ 2x

π
⇔ g(x) := sin(x)− 2x

π
≥ 0. Indeed for g holds:

g(0) = g(π
2
) = 0; g′′(x) = − sin(x) ≤ 0 ∈ [0, π

2
] ⇒ g is nonnegative in [0, π

2
]

and we get our final estimation

≤ exp
(
− n

2π4
|xy|2|θ − ϕ|4min

)
and the theorem is proved.

Again we can conclude this section with a final theorem on the approximation properties
of a special kernel of that kind, namely that this kernels provides norm convergence:

Theorem 6.30 ( (*) ). Let Sn like in Theorem 6.26 and Φ̃n(z) := V4n
2n (z). With

Φ̃∗
n(z) = Sn(z)Φ̃n(z) we have for 1 ≤ p ≤ ∞ and α > 0

1) ‖Φ̃∗
n ∗ f − f‖Xp(D) −→ 0 for n →∞

2) ‖Φ̃∗
n ∗ f − f‖Xp(D) ≤ c min

Q∈Πn

‖f −Q‖Xp(D) .

Proof: Because of the similarity of this proof to the proof of Theorem 6.14 we will sketch
it here only:

i) We have Φ̃∗
n ∗ P = P for polynomials P ∈ Πn .

ii) The L1 norm of Φ̃∗
n is uniformly bounded via:

‖Φ̃∗
n‖L1(D) =

∫
D

|Sn(z)Φ̃n(z)|dµ(z) ≤ c1

∫
D

|V4n
2n (z)|dµ(z) ≤ 2dαe+

3
2 c1 .

iii) For p = 1,∞ and f ∈ Lp(D) we have

‖Φ̃∗
n ∗ f‖Lp(D) ≤ ‖Φ̃∗

n‖L1(D)‖f‖Lp(D) ≤ 2dαe+
3
2 c1 ‖f‖Lp(D) .

iv) With Theorem 3.7 follows statement 1).
v) For polynomials Q ∈ Πn holds:

‖Φ̃∗
n ∗ f − f‖Lp(D) ≤ (1 + 2dαe+

3
2 c1)‖f −Q‖Lp(D) .

So we even see that the constant in 2) is explicitly known.
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