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H∞ Formation Control and Obstacle Avoidance for
Hybrid Multi-agent Systems

Dong Xue, Jing Yao and Jun Wang

Abstract—In this paper, a new concept of H∞ formation
is proposed to handle a group of agents navigating in a free
and an obstacle-laden environment while maintaining a desired
formation and changing formations when required. With respect
to the requirements of changing formation subject to internal
or external events, a hybrid multi-agent system (HMAS) is
formulated in this paper. Based on the fact that obstacles impose
the negative effect on the formation of HMAS, theH∞ formation
is introduced to reflect the above disturbed situation and quantify
the attenuation level of obstacle avoidance via theH∞-norm of
formation stability. An improved Newtonian potential func tion
and a set of repulsive functions are employed to guarantee the
HMAS formation-keeping and collision-avoiding from obstacles
in a path planning problem, respectively. Simulation results in
this paper show that the proposed formation algorithms can
effectively allow the multi-agent system to avoid penetration
into obstacles while accomplishing prespecified global objective
successfully.

Index Terms—H∞ formation; obstacle avoidance; artificial
potential field; hybrid multi-agent system

I. I NTRODUCTION

In recent years, there has been a spurt of interest in the
area of cooperative control for multiple agents due to its
challenging features and many applications, e.g., formation
control [1], [2], obstacles avoidance [3], [4], rendezvous[5],
flocking [6], foraging [7], troop hunting, and payload transport.
Referring to the existing literature, it is obvious that multiple
agents can perform tasks faster and more efficiently than a
single one. The existing approaches for cooperative control of
MASs fall into several categories, including behavior-based,
artificial potential, virtual structure, leader-follower, graph
theory and decentralized control methods. Other methods and
research aspects of the cooperative control for MASs can be
found in [8]–[10].

As one key branch of cooperative control, formation and
obstacle avoidance problems of multi-agent systems have been
received significant attentions [1]–[4], [8], [11]. In thiscase,
the MAS is usually required to follow a trajectory while main-
taining a desired formation and avoiding obstacles. In some
practical situations, the group of agents may be necessary to
perform certain maneuvers, such as split, reunion and reconfig-
uration, in order to negotiate the obstacles [2], [12]. Although
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the formation problem for MASs is attracting increasingly
research attention, there are still several open fields deserving
further investigation, such as robustness, fragility, andeffec-
tiveness of formation. With respect to most robustness analysis
of MASs, such as [13]–[15], the agents are investigated under
uncertain environments with external disturbances. However,
in some sense, obstacles in the navigational path can also
be regarded as a disturbance from environment, which would
impair the performance of formation stability. Furthermore, the
influence of obstacles is usually negligible when the distances
between agents and obstacles exceed certain range threshold.
Inspired by obstacle avoidance issue andH∞ control theory,
we introduce a new concept ofH∞ formation, which treats the
effects of obstacles as certain exterior disturbances, to handle
the formation problem of MASs in clustered environment.
Then a Lyapunov approach is employed to deal withH∞

analysis.
Artificial potential field (APF) method is widely used in

coordination control of MASs due to its simplicity and ef-
ficiency [7], [16], which was first introduced by [17] for
formation and obstacle avoidance of MASs. Since then, several
literatures have attempted to improve the performance of APF
method. In [18], bifurcation theory is used to reconfigure the
formation through a simple free parameter change to reduce
the computational expense. By introducing a new concept
of artificial potential trenches in [11], the scalability and
flexibility of robot formations are improved. The basic idea
of potential field theory is to create a workshop where the
agents are counterbalanced with each other by the interactive
potential force between them, and suffered a repulsive force
from obstacles to steer around them [19]. Despite all the
advantages of APFs, the lack of accurate representations of
obstacles with arbitrary shapes is regarded as one major limi-
tation to generally extend to practical applications. A potential
function based on generalized sigmoid functions which can be
generated from the combinations of implicit primitives or from
sampled surface data, is proposed in [20]. Using the optical
flow, [21] have achieved the automatic detection of obstacles
in virtual environment. The formation control with obstacle
avoidance is highly related to the flocking problems in [6],
where only the obstacles with simple shapes are taken into
account. In this paper, we assume the boundary functions of
arbitrary obstacles can be known from the implicit functions
which can be constructed from sensor readings or image data.
By combining the artificial potential model and the negotiating
results with obstacles, a resultant artificial repulsive force is
developed to guarantee the obstacles avoidance.

In addition, it may happen that the MASs are desired
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to perform various formation shapes to achieve specified
navigational objective. As a result, it is necessary for a MAS to
possess the ability of changing formation shape during the nav-
igation, such as split, rejoin and reconfiguration. In this case,
the MASs consist of both continuous variables and discrete
events. In [2], a triple (group elementg, shape variabler, con-
trol graphH) is employed to model the mobile robots and meet
the requirement of changing formations. Furthermore, a Petri-
potential-fuzzy hybrid controller is presented for the motion
planning of multiple mobile robots with multiple targets ina
clustered environment in [22]. In this paper, a hybrid formation
controller is proposed where the formation changes as events
(tasks) occur. In practice, the correspondence between tasks
and formation can be prespecified at the initialization step, as
well as be created intelligently by the embedded processors
in each agent during the implementation. It is remarkable
that the hybrid multi-agent systems exhibit continuous-state
dynamics and discrete behavior jumping between formations.
Then we formulate the HMAS by a hybrid machine owing to
its advantages of illustrating inputs and outputs explicitly [23],
[24].

The paper proceeds as follows. The formation control and
obstacle avoidance problem are addressed in Section II. In
Section III, a new concept ofH∞ formation and technical
proofs are provided. In Section IV, we discuss the obstacle-
avoidance functions. Simulation results to illustrate theresults
are presented in Section V. Conclusions and future work are
provided in Section VI.

Notation I.1. Throughout the paper, letZ be the set of
positive integers andJ = [t0,+∞) (t0 ≥ 0). Rn represents
the real Euclideann-dimensional vector space. Forx =

(x1, . . . , xn)
⊤ ∈ Rn, the norm ofx is ‖x‖ ,

(
x⊤x

) 1
2

, where

the symbol(·)⊤ denotes the transpose of a matrix or a vector.
In denotes the identity matrix of ordern (for simplicity I

if no confusion arises).L2[0,∞) is the Lebesgue space of
Rn-valued vector-functionsg(·), defined on the time interval

[0,∞), with the norm‖g‖2 ,
(∫∞

0
‖g(t)‖2

) 1
2 dt.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a multi-agent system withN nodes and an undi-
rected graph topologyG = (ν, ε); ν and ε are the set of
vertices and the set of edges (i.e,ε ∈ ν × ν), respectively.
The notation(i, j) or (j, i) equivalently denotes the edge of
the graph between nodei and nodej. Furthermore, a graph is
connected if there exists a path between every pair of distinct
nodes, otherwise it is disconnected.

Before proceeding further, the following assumptions are
made in this paper.

1) Each agent is equipped with sensors and computational
hardware that allow it to detect the distances to the
obstacles within the sensing range. Furthermore, the agent
can access its position in the world coordinate system
and broadcast to its neighboring agents. The wireless
communication has a limited range and is assumed to
be imperfect, i.e., links may be broken.

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

U.S. AIR FORCE 602

AMC
40602

Form

Dismiss

Split

Unite

Transform 2Transform 1

Fig. 1. Example of a hybrid multi-agent system performing under different
events

2) The multi-agent system has a task setΣ and a formation
set F which meet actual project needs before initiation.
And suppose all agents know the information ofΣ and
F, as well as the desired formation shape and trajectories
in every step.

Referred to hybrid machine presented in [23], [24] and
associated with the practical application, we consider a special
class of hybrid multi-agent system (HMAS) which is modeled
by an elementary hybrid machine (EHM) [25] as:

HMAS =
(
Q,Σ, Dy,E, (∆0, x(0))

)
. (1)

The elements of HMAS are denoted as follows.Q =
{q0, q1, . . . , qm−1} is a set of vertices (discrete states); in
formation control, each discrete stateqi ∈ Q corresponds to a
desired formation shape∆i, and we denote a set of formation
shape asF := {∆0,∆1, . . . ,∆m−1}. Σ = {Hqiqj , qi, qj ∈ Q}
(i, j = 0, . . . ,m − 1) is a finite (task) set of event labels;
(q0, x(0)) is the initial desired formation and state of HMAS,
respectively.E = {

(
qi,Hqiqj , qj , x

0
q0

)
: qi, qj ∈ Q} is

a set of edges (transition-paths), whereqi is exited ver-
tex and qj is entered one. If the eventHqiqj is triggered,
consequently the formation of HMAS transits from∆i to
∆j . For example, Fig. 1 shows a sequence of admissible
collective behaviors of a HMAS triggered by event setΣ =
{form, dismiss, split, unite, transform 1, transform 2}.

Remark II.1. In practical application, the multi-agent system
is always assigned multiple tasks in the navigation and each
task may correspond to multiple formation shapes. Similarly to
the deterministic automaton described in [26], we suppose the
HMAS is deterministic, namely, there cannot be two transitions
with the same event label. It is worth mentioning that the
following theoretical analysis is available for nondeterministic
HMAS, i.e., there can be multiple transitions triggered by the
same event.

Dy is the dynamics of HMAS and for each agenti and
q ∈ Q, which is described by

ẋi(t) = f(t, x) +
N∑

j=1

Jij(t)xj(t) + u
q
i (t) + Ciwi(t), (2)
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where i ∈ {1, 2, . . . , N}, t ∈ J, xi(t) ∈ Rn×1,
x = [x⊤

1 , x
⊤
2 , . . . , x

⊤
N ]⊤, Ci are real constant matrices with

appropriate dimensions.f(t, x) : J × RN×n → Rn×1 is
continuously differentiable, representing the group motion (i.e.
path of the HMAS).J(t) = (Jij(t))N×N is the time-varying
coupling configuration matrix representing the communication
strength and communicational topology of the HMAS. If there
is an interconnection between agenti and agentj(j 6= i), then
Jij(t) = Jji(t) > 0; otherwise,Jij(t) = Jji(t) = 0 and the
diagonal elements of matrixJ(t) are defined by

Jii(t) = −
N∑

j=1,j 6=i

Jij(t) = −
N∑

j=1,j 6=i

Jji(t). (3)

wi(t) here denotes the obstacle-avoiding function, which will
be derived from potential function in Section VI.

Moreover, the formation controller in this paper is derived
by extending the one in [1] into multi-formation case (q ∈ Q):

u
q
i (t) =

N∑

j=1
j 6=i

2
(
xj(t)− xi(t)−∆q

ij

)

[
Sa

L2
a

e
−

‖xj(t)−xi(t)−∆
q
ij

‖2

L2
a − Sr

L2
r

e
−

‖xj(t)−xi(t)−∆
q
ij

‖2

L2
r

+ Sr

(
1

L2
r

+
1

L2
a

)
e
−( 1

L2
r
+ 1

L2
a
)‖xj(t)−xi(t)−∆q

ij
‖2

]
,

(4)

where ∆q
ij ∈ Rn×1 and ∆q =

(
∆q

ij

)
N×N

∈ F is the
formation-shape matrix of the multi-agent system with∆q

ij =
−∆q

ji and ∆q
ii = 0. ParametersSa, Sr, La, and Lr are

positive constants representing the strengths and effect ranges
of the attractive and repulsive forces, respectively; and with
the constraint:

Sa

Sr
>

L2
a

L2
r

e
−( 1

L2
r
− 1

L2
a
)‖xj(t)−xi(t)−∆q

ij
‖2

−
(
1 +

L2
a

L2
r

)
e
−

‖xj(t)−xi(t)−∆
q
ij

‖2

L2
r ,

(5)

whereLa > Lr.

Remark II.2. Compared to the formation controller given
in [1], the formation controller in this paper is designed
to achieve more complicated control objects, such as forma-
tion switching in clustered environment. Furthermore, it is
worth mentioning that the obstacle-avoiding functionwi(t)
(i = 1, . . . , N ) as a part of the controller is an important
contribution for this paper.

In order to simplify the equation (4), define

ϕ
q
ij(t) =2

[
Sa

L2
a

e
−

‖xj(t)−xi(t)−∆
q
ij

‖2

L2
a − Sr

L2
r

e
−

‖xj(t)−xi(t)−∆
q
ij

‖2

L2
r

+

(
Sr

L2
r

+
Sr

L2
a

)
e
−( 1

L2
r
+ 1

L2
a
)(‖xj(t)−xi(t)−∆q

ij
‖2)

]
.

(6)

According to (5), one can verifyϕq
ij(t) > 0, and the necessity

of this constraint can be addressed by referring that the force
vector and position vector are unidirectional.

Then rewrite the formation controller (4) as:

u
q
i (t) =

N∑

j=1
j 6=i

ϕ
q
ij(t)

(
xj(t)− xi(t)−∆q

ij

)
, q ∈ Q. (7)

Remark II.3. Letϕq
ij(t) be a continuous function with respect

to ‖xj(t) − xi(t) − ∆q
ij‖, and it is easy to prove that if the

bounds of‖xj(t)−xi(t)−∆q
ij‖ exist, thenϕq

ij(t) is bounded
on all set of‖xj(t)−xi(t)−∆q

ij‖ (i, j = 1, . . . , N andq ∈ Q).
Furthermore, regard the fact that most multi-agent systemsare
implemented in finite horizon which means the limitation of
inter-agent distances exists. Throughout the paper, we assume
the lower bound ofϕq

ij(t) exists and denote it as

0 < ϕ ≤ min
i,j=1,...,N
q=0,...,m−1

ϕ
q
ij(t), (8)

where ϕ > 0 can be guaranteed by choosing appropriate
values ofLa, Lr, Sa, Sr in the constraint (5).

III. A NALYSIS OF H∞ FORMATION STABILITY

Now, this section will analyzeH∞ formation stability of
the above-developed framework of HMAS in a free and an
obstacle-laden environment, respectively.

Since we have property (3), the HMAS (1) is equivalent to

ẋi(t) = f(t, x)+
N∑

j=1

Jij(t) (xj(t)− xi(t))+u
q
i (t)+Ciwi(t).

(9)
Before moving on, we need to note that the formation

switching in the controller will introduce discontinuities to the
right hand side of (9). With respect to the dwell-time theory
in [27], if the switching of a family of individually stable sys-
tems is sufficiently slow, then overall systems remains stable.
As a result, we assume that the intervals between consecutive
switching signals, i.e. dwell time, are large enough. Due to
the introduction of average dwell-time, this assumption does
not represent a restriction because this concept allows the
formation switching mechanism to be more flexible provided
that the average interval between consecutive switching isno
less than certain fixed positive constant.

To investigate the formation control of MAS, we introduce
a measurement errorXij(t) given as

Xij(t) = xj(t)− xi(t). (10)

It follows from (5), (9) and (10) that the time derivative of
Xij(t) is:

Ẋij(t) =
N∑

k=1

(
Jjk(t)Xjk(t)− Jik(t)Xik(t)

)

+ Cjwj(t)− Ciwi(t) +

N∑

k=1

(
ϕ
q
jk(t)(Xjk(t)

−∆q
jk)− ϕ

q
ik(t)(Xik(t)−∆q

ik)
)
.

(11)

For a formation of multiple agents moving in a clustered
environment, it is inevitable to encounter various obstacles
which affect the performance of formation, or even break
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the whole system down. Naturally, the multi-agent system is
desirable to be able to adapt to the environment. In general,
the agents are only affected by the obstacles when they enter
a certain region. At other times, the influence being exerted
from obstacles can be negligible. With the above analysis, the
obstacles can be treated as exogenous disturbances deriving
from the environment, andH∞ analysis can be employed to
investigate the formation stability of HMAS.

Associated the system (2) with the formation controller (7),
we define a disagreement function similar to [28]:

Φ(Xij(t)) =
1

N

N−1∑

i=1

N∑

j>i

‖Xij(t)−∆q
ij‖2, (12)

which demonstrates the formation performance of HMAS for
q ∈ Q.

For the HMAS given in (2),H∞ formation stability means
to find a formation controller (7) such that the following
conditions in (DF1) and (DF2) hold.
(DF1) The formation of HMAS (1) is asymptotically stable

when w(t) = 0, wherew(t) = [w⊤
1 , w

⊤
2 , . . . , w

⊤
N ]⊤, which

is equivalent to the asymptotical formation stability of the
HMAS (1) in the absence of obstacles. That is to say, all agents
asymptotically converge to the desired formation positions, i.e.
‖Xij(t)−∆q

ij‖ → 0 as t → ∞, whereq ∈ Q.
(DF2) The formation controller ensures a certain level of

H∞ formation performance as follows:

sup
Xij(0)

wi 6=0

∫∞

0 Φ(Xij(t))dt

1
4N

N∑
i=1

N∑
j=1

‖Xij(0)−∆q
ij‖2 + 1

N

N∑
i=1

‖wi(t)‖22
< γ

(13)
for initial statesxi(0) ∈ Rn×1 and q ∈ Q, whereγ ≥ 1 is
a constant,Xij(0) = xj(0) − xi(0) andΦ(Xij(t)) is given
by (12). If the conditions (DF1) and (DF2) hold, then the
formation of HMAS (1) is said to achieve theH∞ formation
stability.

Remark III.1. It is worthwhile noting that (DF2) is a
standard condition arising from theH∞ control theory, which
implies thatXij , (i, j = 1, . . . , N), converge to∆q

ij in the
sense ofL2.

Remark III.2. According to (DF2), the attenuation levelγ ≥
1 shows the sensitivity of obstacle avoidance in HMAS (1).
Giving a smallerγ ≥ 1 means the intensity and range of
reaction of HMAS towards obstacles are smaller.

Theorem III.1. Given a positive scalarγ ≥ 1, the H∞

formation problem of the HMAS (1) under the conditions
(DF1) and (DF2) is solved at initial positionsxi(0) ∈ Rn ,
if




−πij +
I
N 0 0 −Ci

N

0 −πij
πij+χij

2 0

0
π⊤
ij+χ⊤

ij

2 −χij 0

−C⊤
i

N 0 0 − 2γ
N2


 < 0 (14)

holds for all i, j = 1, 2, . . . , N , where

πij =
(ϕ+ Jij) I

2
, χij =

(ϕ− Jij) I

2
(15)

andϕ is defined in (8).

Proof. Without loss of generality, construct a common Lya-
punov function in the form of

V =
1

4N

N∑

i=1

N∑

j=1

‖Xij(t)−∆q
ij‖2, (16)

whereq ∈ Q. If the derivative ofV with respective to (9) is
constantly negative for all subsystems, then the formationof
HMAS (1) is stable. For the sake of convenience,Xij(t) is
implicitly rewritten asXij , as well asJij(t), ϕ

q
ij(t) andwi(t)

in the proof.
From the above discussion, one has

V̇ =
1

2N

N∑

i=1

N∑

j=1

(
Xij −∆q

ij

)⊤
Ẋij

=
1

2N

N∑

i=1

N∑

j=1

N∑

k=1

[ (
Xij −∆q

ij

)⊤
(JjkXjk − JikXik)

]

︸ ︷︷ ︸
v1

+
1

N

N∑

i=1

N∑

j=1

N∑

k=1

ϕ
q
jk

(
Xij −∆q

ij

)⊤ (
Xjk −∆q

jk

)

︸ ︷︷ ︸
v2

+
1

2N

N∑

i=1

N∑

j=1

(
Xij −∆q

ij

)⊤
(Cjwj − Ciwi)

︸ ︷︷ ︸
v3

.

In respect that the coupling configuration matrixJ(t) is
symmetric andXij = −Xji, ∆q

ij = −∆q
ji, Xii = 0 and

∆q
jj = 0, one has

v1 =− 1

N

N∑

i=1

N∑

j=1

N∑

k=1

(
Xji −∆q

ji

)⊤
JjkXjk

=− 1

N

N∑

i=1

N∑

k=1

N∑

k<j

(
Xji −∆q

ji

)⊤
JjkXjk

− 1

N

N∑

i=1

N∑

k=1

N∑

k>j

(
Xji −∆q

ji

)⊤
JjkXjk

︸ ︷︷ ︸
v11

.

Renamingj in the v11 ask, thus

v1 = − 1

N

N∑

i=1

N∑

k=1

N∑

k<j

[ (
Xji −∆q

ji

)⊤−(Xki −∆q
ki)

⊤
]
JjkXjk.

One can find the fact thatX⊤
ji − X⊤

ki = X⊤
jk and

∆q
ji −∆q

ki = ∆q
jk, then

v1 = − 1

N

N∑

i=1

N∑

k=1

N∑

k<j

(
Xjk −∆q

jk

)⊤
JjkXjk

= −
N∑

i=1

N∑

j>i

(
Xij −∆q

ij

)⊤
JijXij . (17)
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Using the standard completing the square argument, it
follows from (17) that

v1 =− 1

2

N−1∑

i=1

N∑

j>i

Jij
∥∥Xij −∆q

ij

∥∥2

− 1

2

N−1∑

i=1

N∑

j>i

Jij‖Xij‖2 +
1

2

N−1∑

i=1

N∑

j>i

Jij‖∆q
ij‖2.

(18)

Furthermore, thev2 is similarly analyzed as follows:

v2 = −
N∑

i=1

N∑

j>i

ϕ
q
ij

(
Xij −∆q

ij

)⊤ (
Xij −∆q

ij

)
.

With respect to (8), one can easily obtain

v2 ≤− ϕ

N−1∑

i=1

N∑

j>i

(
Xij −∆q

ij

)⊤ (
Xij −∆q

ij

)

=
ϕ

2

N−1∑

i=1

N∑

j>i

(
2X⊤

ij∆
q
ij − ‖Xij −∆q

ij‖2

− ‖Xij‖2 − ‖∆q
ij‖2

)
. (19)

Then, forv3, one has

v3 = − 2

N

N−1∑

i=1

N∑

j>i

(
Xij −∆q

ij

)⊤
Ciwi. (20)

Now, we consider the formation stability of HMAS (1) with
w(t) = 0. From the inequalities (18) and (19),V̇ becomes

V̇ ≤
N−1∑

i=1

N∑

j>i

Ω⊤
ij



−πij 0 0

0 −πij
πij+χij

2

0
π⊤
ij+χ⊤

ij

2 −χij


Ωij ,

where Ωij = [(Xij − ∆q
ij)

⊤, X⊤
ij , (∆

q
ij)

⊤]⊤, πij and χij

are given in (15). By the Schur complement formula, the
achievement of inequality (14) is equivalent to the following
inequalities satisfied



−πij +

I
N 0 0

0 −πij
πij+χij

2

0
π⊤
ij+χ⊤

ij

2 −χij


 < 0,

and



Ci

N
0
0




⊤


πij − I

N 0 0

0 πij −πij+χij

2

0 −π⊤
ij+χ⊤

ij

2 χij




−1 


Ci

N
0
0



 <
2γ

N2
.

By nonnegative matrix theory, one can easily find that



−πij 0 0

0 −πij
πij+χij

2

0
πij+χij

2 −χij





≤



−πij +

I
N 0 0

0 −πij
πij+χij

2

0
π⊤
ij+χ⊤

ij

2 −χij


 < 0,

(21)

which impliesV̇ < 0. This proves that condition (DF1) holds
for the HMAS (1) withw(t) = 0.

Next, we prove theH∞ performance constraint (DF2) for
all nonzerowi(t) ∈ L2[0,∞) and a prescribedγ ≥ 1. Define

Ṽ =

∫ ∞

0

(
Φ(Xij(t)) − γ

1

N

N∑

i=1

w⊤
i (t)wi(t)

)
dt

− γ

2N

N−1∑

i=1

N∑

j>i

‖xj(0)− xi(0)−∆q
ij‖2,

and one has

Ṽ =

∫ ∞

0

(
Φ(Xij(t)) −

γ

N

N∑

i=1

w⊤
i (t)wi(t) + V̇ (x(t))

)
dt

− V (x(∞)) +
1− γ

2N

N−1∑

i=1

N∑

j>i

‖xj(0)− xi(0)−∆q
ij‖2

≤
∫ ∞

0

(
Φ(Xij(t))−

γ

N

N∑

i=1

‖wi(t)‖2 + V̇ (x(t))

)

︸ ︷︷ ︸
Ξ

dt.

(22)

Combining (18), (19) and (20) one obtains

Ξ =

N∑

i=1

N∑

j=1

{
1

2N
‖Xij −∆q

ij‖2 −
γ

N2
w⊤

i wi

− 1

N

(
Xij −∆q

ij

)⊤
Ciwi

+Ω⊤
ij



−πij

2 0 0

0 −πij

2
πij+χij

4

0
π⊤
ij+χ⊤

ij

4 −χij

2


Ωij

}

=

N∑

i=1

N∑

j=1

ξ⊤ij




−πij

2 + I
2N 0 0 − Ci

2N

0 −πij

2
πij+χij

4 0

0
π⊤
ij+χ⊤

ij

4 −χij

2 0

−C⊤
i

2N 0 0 − γ
N2


 ξij ,

whereξij = [Ω⊤
ij , w

⊤
i (t)]

⊤. From the LMI (14), it is easy to
proveΞ < 0 which impliesṼ < 0 and immediately leads to
the inequality (13).

Therefore, the formation of HMAS (1) has the property of
H∞ criteria (DF1) and (DF2). This completes the proof.

Remark III.3. By studying the LMIs(14), the variables
χij > 0 in (15) indicate the connectivity strength among
agents. In particular, due to the monotone decreasing prop-
erty of ϕij with respect to norm‖xj(t)− xi(t)−△ij‖ and
the discussion inRemark II.3, this connectivity strength is
inversely proportional to the relatively active scope of MASs.

IV. D ESIGN OBSTACLE-AVOIDING FUNCTIONS

In this section, collision avoidance in trajectory tracking is
achieved using mutual repulsion between agents and obstacles,
which is resulted from the Newtonian potential-based model.
By regarding the agents and obstacles as conductors with
uniform charges, the repulsive force in inversely proportional
to the distance of them, can be derived in closed form.
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Based on practical applications in robotics and haptic
rendering, an ideal potential field should possess all of the
following attributes.
(i) With respect to the property of obstacle avoidance,

the magnitude of potential and corresponding repulsion
should be infinite at the boundary of obstacles and drop
off with distance. And the range of potential is bounded,
which is accordant with the limited detective scope of
agent’s built-in explorer in this paper.

(ii) The shapes of equipotential surface should be similar
with the obstacle surface, and spherical symmetrical at
the boundary of potential field.

(iii) The first and second derivatives of potential function
should exist and be continuous, so that the resulting force
field is smooth.

Before moving on, for making this paper self-contained,
we revisit the general definition of external disturbance inthe
H∞ problem.H∞ techniques are usually used to evaluate the
incremental gain of external input signal in any direction and
at any frequency. In the context ofH∞ theory, the external
signals with finite energy are often investigated, i.e.‖w(t)‖ ≤
∞. More explicitly, the finite energy signalw(t) is said to
belong toL2[0,∞), which implies

[∫ ∞

0

‖w(t)‖2dt
]1/2

=

[∫ ∞

0

N∑

i=1

w⊤
i (t)wi(t)dt

]1/2
< ∞.

In order to utilizeH∞ theory to design obstacle-avoidance
controller, we assume that multi-agent systems ultimatelyget
far from the obstacles as time evolves. Incorporated with
attributes (ii) this assumption leads tolimt→∞ w(t) = 0.
That is, the obstacle-avoidance functionswi(t) are available
in finite time intervals. In addition, for avoiding obstacles, the
agent-obstacle distances are intuitively greater than zero, and
consequently the supremum of functionwi(t) (i = 1, . . . , N )
is existed. Based on above analysis on obstacle-avoidance
function, one can easily derive the conclusion thatw(t)
belongs toL2[0,∞).

Now, we will discuss the obstacle-avoiding function be-
ginning with the instance of mass points (when the bulks
of agents and obstacles are close to each other), and then
extend to bulky obstacles (over10 times bigger than agent)
with arbitrary shapes.

Consider an agenti navigates in an obstacle-laden environ-
ment with M ∈ Z+ obstacles, and assumesl ∈ Rn is the
position of obstaclel (l ∈ {1, 2, . . . ,M}). The potential at
agenti due to obstaclel is

P o
il(t) =

ρil

‖xi(t)− sl‖
, (23)

whereρil is the repulsion coefficient for obstacles avoidance
and defined as follows:

ρil =

{
ρ, ‖xi(t)− sl‖ < δ

0, ‖xi(t)− sl‖ ≥ δ,
(24)

whereρ is a positive scalar andδ is the maximal sensing range
of agent. When the relative distance of agenti and obstaclel is
shorter than the detective scopeδ, agenti will receive a signal
of possible collision and the obstacle-avoiding function will

work. In other words, the repulsive potentials between agents
and obstacles act only when they get close to certain range.
Now, the obstacle-avoiding function for agenti is introduced
based on the negative gradient of the potential (23) in the
following form

wi(t) = −∇xi
P o
il(xi, sl) =

M∑

l=1

ρil
xi(t)− sl

‖xi(t)− sl‖3
. (25)

Then we extend the obstacle-avoiding function for bulky
objects with arbitrary shapes. In practical situations, particu-
larly in many exploration applications, the implicit functions
of obstacles to be modeled are not available. But by samples
of boundary surfaces obtained from camera, laser range finder
and sonar and with the help of some techniques such as signal
sampling and image processing, the implicit functions can be
obtained and then to construct the APFs [20]. For convenience,
in this paper, assume the boundary function of obstac lel is
known asBl, and βl here is the position of arbitrary point
on the boundary of obstacle. In fact, most of obstacles can be
mathematically approximate with polyhedron. In this paperwe
focus on the convex polyhedra obstacles. Moreover, the results
can be easily extended to obstacles with arbitrary shapes.
The repulsion between agenti and an arbitrary point of the
obstacle’s boundary is

F o
il(t) = ρil

xi(t)− βl

‖xi(t)− βl‖3
,

whereρil are defined in (24). Then for the agenti the obstacle-
avoiding function is defined as

wi(t) =

M∑

l=1

∮

Bl

dF o
il, (26)

where
∮
Bl

represents the surface integrals on boundary of

obstacles.
In view of above analysis, the obstacles laden in the terrain

are static. However, it is worth mentioning that all the obstacle-
avoidance functions are available for moving obstacles except
for those with high-speed. In this case, the position vector
βl(t) is a vector-valued function over timet ∈ J.

V. NUMERICAL EXAMPLES

In this section some simulation results illustrate the per-
formance of the proposed control laws to achieve formation
and obstacles avoidance. To avoid triviality, the advantage of
formation controllers (4) compared with others is omitted in
this paper and the reader is referred to [1].

Firstly, drive 4 agents with the initialization positions
(−1.2,−1.1)⊤, (−2.0, 3.8)⊤, (5.3, 2.0)⊤ and (4.2, 2.0)⊤, to
form a shape of square and realize obstacle avoidance in the
navigation. The formation-shape matrix∆q is set as

∆1
12 = [

√
2

2
,

√
2

2
]⊤, ∆1

23 = [

√
2

2
,−

√
2

2
]⊤,

∆1
34 = [−

√
2

2
,−

√
2

2
]⊤, ∆1

41 = [−
√
2

2
,

√
2

2
]⊤,

∆1
13 = [

√
2, 0]⊤, ∆1

24 = [0,−
√
2]⊤
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Fig. 2. Formation of MAS without obstacle-avoidance functions case
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Fig. 3. Formation of MAS with obstacle-avoidance functionscase

and two obstacles locate at[2.50, 5.00]⊤ and[−0.82, 15.90]⊤.
The target trajectory off(t, x) in HMAS (1) is given by

f(t, x) =

[
−0.1 0
0 0.1

]
xi +

[
cos(0.4 ∗ t)
sin(0.25 ∗ t)

]

and the time-varying configuration matrix switches from one
mode to another. They are:

J1 =




−0.6 0.3 0 0.3
0.3 −0.6 0.3 0
0 0.3 −0.6 0.3
0.3 0 0.3 −0.6




and

J2 =




−0.9 0.3 0.3 0.3
0.3 −0.9 0.3 0.3
0.3 0.3 −0.9 0.3
0.3 0.3 0.3 −0.9


 .

For the formation controller (5), letSa = 8.1, La = 0.31,
Sr = 0.69, LR = 0.3, andδ = 3, ρ = 0.5 in obstacle-avoiding
function (25).
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Fig. 4. Formation error of MAS controlled by obstacle-avoidance functions
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Fig. 5. Investigation of parameterγ, ρ, δ

According to Fig. 2 and Fig. 3 one can demonstrate the
control laws presented in this paper realize the formation
keeping while avoiding collision with obstacles (marked by
black stars in the figures) in complex environment. For the
sake of measuring and visualising the formation effectiveness,
we introduce the following formation error

e(t) =

N−1∑

i=1

N∑

j>i

(‖xj(t)− xi(t)‖ − ‖∆q
ij‖),

which is shown in Fig. 4. Then, the sensitivity of obstacle-
avoiding function is investigated in Fig. 5, which depicts the
curves of left term in inequality (13) under different repulsion
coefficientρ and repulsion rangδ. From Fig. 5, one can verify
the fact that the performance indexγ in inequality (13) reflects
the sensitivity of HMAS towards obstacles, i.e. smallerγ

requires HMAS less active (smallerρ andδ) towards obstacle.
Next, in an attempt to demonstrate the effectiveness of

obstacle-avoidance function (26), a rectangle obstacle stands
in the way of the HMAS path. Fig. 6 and Fig. 7 show the
HMAS steers around the obstacle smoothly with the help of
obstacle-avoidance functions and keeps a predefined formation
in the whole process, as well as the corresponding formation
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Fig. 6. Obstacle avoidance of MAS in 2-D
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Fig. 7. Formation error for obstacle avoidance of MAS in 2-D

error.
In many practical situations, the HMAS occasionally en-

counters the trench-shape obstacles which are impossible for
the whole system keeping original shape to pass through.
In such case, the HMAS has to transform formation to a
feasible one. In this example, task is to transition from a
square formation to a straight line to pass the trench safely.
When the HMAS detects the trench existed in the tracking
path, specified task is triggered and corresponding formation
is determined according to the predetermined task-formation
scheme. As shown in Fig. 8, the HMAS breaks formation and
go in a straight line when meets the trench and transforms
back into the original formation after passing the trench.

VI. CONCLUSION

In this article, new formation and obstacle-avoidance pro-
tocols of multi-agent systems are presented. A notion ofH∞

formation has been first defined to characterize the perfor-
mance of obstacle-avoiding, and theH∞ performance index
is concreted as a sensitivity of obstacle-avoidance in thispaper.
Then a hybrid formation controller with a task set and a
formation set is introduced to handle distinct obstacles. By
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Fig. 8. Formation change for HMAS in the presence of trench-shaped obstacle

designing diverse task-formation mapping, the HMAS can ac-
complish various complex missions. Then obstacle-avoidance
functions using potential field model are specified to realize
multi-agent systems avoiding arbitrarily shaped obstacles on
the path. According to the simulation results, not only can the
HMAS steer around the obstacles with proposed approach,
but the reconfiguration of formation can be achieved in the
complex environment.
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