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Abstract

This paper formulates and studies the distributed formation problems of multi-agent systems (MAS)

with randomly switching topologies and time-varying delays. The nonlinear dynamic of each agent at

different time-interval corresponds to different switching mode which reflects the changing of traveling

path in practical systems. The communication topology of the system is switching among finite modes

which are governed by a finite-state Markov process. On the basis of artificial potential functions (APFs),

a formation controller is designed in a general form. Sufficient conditions for stochastic formation

stability of the multi-agent system are obtained in terms of Lyapunov functional approach and linear

matrix inequalities (LMIs). Some heuristic rules to design a formation controller for the MAS are then

presented. Finally, specific potential functions are discussed and corresponding simulation results are

provided to demonstrate the effectiveness of the proposed approach.
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I. INTRODUCTION

In In recent years we have witnessed a growing recognition and attention of distributed

coordination of multi-agent systems (MASs) across a wide range of disciplines, due to increasing

technological advances in communication and computation. Coordination algorithms have applied

in cooperative control of unmanned air/underwater vehicles (UAVs) and spacecraft [13], [18],

formation control [13], [14], distributed sensor networks [15], and attitude alignment of clusters

of satellites [16]. As one of the most important and fundamental issues in the coordination control

of multi-agent systems, formation aims to achieve and maintain a desired structure which depends

on the specific task. A formation algorithm (or strategy) is an interaction principle that specifies

the information exchange between agents. Numerous methods have been applied to deal with

these problems, such as leader-follower [17], [18], virtual structure [19], potential functions [11],

[12], [20], etc.

Artificial potential functions have been widely developed for robot navigation and coordination

control of multi-agent systems including formation, path-planning, collision, obstacle avoidance,

etc [6], [20]. Derived from the potential force laws between agents-agents, agents-targets, and

agents-obstacles, diverse potential functions are employed in multi-agent systems to achieve

complicated behaviors. It is crucial to design artificial potential functions because different

potentials, even employed in the same multi-agent system, might result in unpredicted and

undesired performances. In particular, the limitation of existing multiple local minima in the

potential function leads to a non-reachable problem. Thus, in this paper we show that by choosing

an appropriate potential function the multi-agent systems will follow a prescribed trajectory and

keep a desirable shape.

In the past, many papers are devoted to the formation problems in the continuous- or discrete-

time dynamics. In [2], a typical continuous-time consensus model was described, which intro-

duced a directed graph to model the connection topology and considered directed networks with

fixed and switching topology, and undirected networks with communication time-delays and

fixed topology. Consensus problems in discrete-time multi-agent systems with fixed topology

are explored in [7]. But many multi-agent systems are hybrid in the sense that they exhibit both

discrete- and continuous-state dynamics. Note that dynamical behaviors of multi-agent system

are subject to not only agent dynamics but also communication topology. As an important class
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of hybrid systems, switching systems which consist of a family of subsystems and are controlled

by some logical rules, are used to describe the communication connections of the multi-agent

systems [4], [24]. Based on the graph theory and nonnegative matrix theory, the asynchronous

consensus problems of continuous-time multi-agent systems with time-dependent communication

topology and time-varying delays are studied in [1]. However, most papers concerning switching

topologies are failed to illustrate the specific switching mechanism among the subsystems. In

this paper, a finite-state Markov process is introduced to describe the jumping communication

topologies.

Furthermore, the interconnection communication delays among agents have to be taken into

deliberation in practical problems. It is well known that researching formation problems with

switching topologies are more challenging than that with fixed topologies, specifically when

time-varying delays are involved. In [2], the consensus problem of continuous-time multi-agent

systems with communication delays is discussed. However, it was often assumed that time-delays

are constants [2], [8], [21]. Moreover, the discriminating time-dependent delays are taken into

account in [1] and asynchronous consensus problems are investigated later. Since the multi-

agent systems modeled in this paper are composed of homogenous agents which have the same

communication capability, we assume that the time-varying delays are identical for each agent.

In this paper, based on artificial potential function and behavior rules of agents a distributed

formation strategy for a multi-agent system is presented. In the real-world multi-agent systems,

one may face the following issues:

1). The communication topology of agents is randomly switching, even the dynamic behaviors

of each agent are switching.

2). It is inevitable that there exist communication delays, which are commonly time-varying

even unknown.

Thus, a formation problem for multiple agents with stochastic switching topology and time-

varying communication delays is discussed in this paper. Specifically, a switching nonlinear

function is presented to characterize the different changes of navigation-track in the real world,

and the switching communication topology is determined by a Markov chain taking values in a

finite set. Then the stochastic Lyapunov functional is employed for the theoretical analysis of this

time-delay system, which modeled by delayed differential equations. The sufficient conditions

are provided in terms of a set of linear matrix inequalities (LMIs) and each LMI corresponds to
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one possible subsystem.

This paper is organized as follows. In Section II, a model of multi-agent system with switching

communication topology and time-varying delays is presented. The stochastic formation-stability

analysis is performed based on a stochastic Lyapunov functional in Section III. Section IV con-

tains some numerical examples with specific potential functions. Finally, in Section V, concluding

remarks are stated.

II. PROBLEM FORMULATION

Let J = [t0,+∞), R+ = (0,+∞), R− = [0,+∞) and Rn denote the n-dimensional Euclidean

space. For x = (x1, . . . , xn) ∈ Rn, denote the norm of x as ∥x∥:=
( n∑
i=1

x2
i

) 1
2 . λmax(·) and

λmin(·) denotes the maximum and minimum eigenvalue of corresponding matrix, respectively.

In the sequel, if not explicitly stated, matrices are assumed to have compatible dimensions, and

identity matrix of order n is denoted as In (or simply I if no confusion arises). E[·] stands for

the mathematical expectation. The asterisk ∗ in a matrix is used to denote a term induced by

symmetry.

Many real-world multi-agent systems have the following properties: every agent has its own

dynamic behaviors which may switch among different modes, and each corresponds to one

navigating path in this paper; the agents can exchange their information, such as velocity

and position in world coordinate system, through wired or wireless communications, but the

interconnection structure of system is time-varying; the exchanged information is often with

time-delays, and specially, which may be (randomly) time-varying and unknown. Consider a

multi-agent system consisting of N identical nodes with communication connections, with each

agent being an n-dimensional dynamical system. This dynamical node is described by

ẋi(t) = fσ1(t, xi) +
N∑
j=1

Dij(σ2(t))xj(t− τ(t)) +Bui(t), (2.1)

where i = 1, 2, . . . , N , xi = (xi1 , . . . , xin)
⊤ ∈ Rn are the states variables of agent i, and B is

known to be positive matrix. D(σ2(t)) = (Dij(σ2(t)))N×N are the switching coupling config-

uration matrix of MAS, describing the communication relationships of agents. Dij(σ2(t)) are

functions of the random jumping process σ2(t), which is a continuous-time discrete-state Markov

jump process, i.e. σ2(t) takes discrete values in a predetermined finite set M = {1, 2, · · · ,m2}
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with transition probability matrix ∇ = [πrl] given by

Pr{σ2(t+∆) = l|σ2(t) = r}

=

 πrl∆+ o(∆), r ̸= l,

1 + πrr∆+ o(∆), r = l,
(2.2)

where ∆ > 0, πrl ≥ 0 is the mode transition rate from r to l(r ̸= l) and

πr:=πrr = −
m2∑
l=1
l̸=r

πrl,

for each mode r (r = 1, 2, . . . ,m2), and o(∆)/∆ → 0 as ∆ → 0. To simplify the notation,

Dij(σ2(t)) will be denoted by Dσ2
ij . If there is a connection between agent i and j (j ̸= i), then

Dr
ij = Dr

ji > 0; otherwise, Dr
ij = Dr

ji = 0, and the diagonal elements of matrix Dr are defined

as

Dr
ii = −

N∑
j=1
j ̸=i

Dr
ij = −

N∑
j=1
j ̸=i

Dr
ji.

Thus, it is easily proved that the following framework is equivalent to (2.1)

ẋi(t) = fσ1(t, xi) +
N∑
j=1

Dσ2
ij

[
xj(t− τ(t))− xi(t− τ(t))

]
+Bui(t). (2.3)

Vector-valued functions f r̃(t, xi) ∈ Rn are continuously differentiable, representing the dy-

namic trajectory of MAS (2.1). For multi-agent system (2.1), assume that, for all i = 1, . . . , N

and r̃ = 1, . . . ,m1, f r̃(t, xi) satisfy Lipschitz condition with respect to xi, i.e., for any xi(t) ∈ Rn

and xj(t) ∈ Rn, there exists a positive constant ϕ such that

∥f r̃(t, xj)− f r̃(t, xi)∥ ≤ ϕ∥xj − xi∥. (2.4)

Switching signal σ1 : R− → {1, 2, · · · ,m1} is a piecewise constant function. In different

time interval, each subsystem of MAS (2.1) corresponds to distinct switching mode. Simi-

lar to the complex spatio-temporal switching network [24], fσ1(t, xi) ∈ {f 1, . . . , fm1} and

Dσ2 ∈ {D1, . . . , Dm2} take constant mode at every time interval between two consecutive

switching times.

Remark 2.1: The switching signal σ1 is supposed to depend on time t in this paper, but it is

available for the switching signal depending on events in practical environment. For a multi-agent

system with collective computational abilities, when an emergent event is sensed, e.g. obstacle

approaching, the corresponding strategy is trigged, e.g. changing traveling track. However, these
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switching frameworks lie on practical performance of agents, but for convenience of theoretical

analysis, only the time-dependent switching is considered in this paper (the main results could

be extended to other switching signals).

Furthermore, the time-varying delay τ(t) > 0 is a continuously differentiable function treated

as

0 ≤ τ(t) ≤ p < ∞, τ̇(t) ≤ q < 1, ∀t ≥ t0. (2.5)

and τ(t) is written by τ in the following discussion.

Remark 2.2: In most real engineering, time-delay does not change promptly. Specifically when

the multi-agent systems get the predetermined formation shape, the agents will keep the fixed

relative positions in the formation till another task is trigged. Thus, the communication delays

between agents fluctuate smoothly, i.e. τ̇(t) ≤ q < 1. Similarly with most discussion concerned

homogenous agents [2], [5], the communication delays are assumed to have uniformly function

in this paper.

In general, the negative gradient of the potential function is interpreted as an artificial force

acting on the agents and instructing their motion, i.e. FA(y) = −∇yJ
A(∥y∥) and FR(y) =

−∇yJ
R(∥y∥), where y is a relative position vector between agents, JA and JR are artificial po-

tential functions of the attraction and repulsion between individuals, respectively. The formation

controller ui(t) will be explored based on the artificial potential force which includes attractive

force FA and repulsive force FR. Commonly, the attractive term is used to keep the compactness

of system, and the repulsive term is used to ensure collision avoidance.

Then, the formation controller for agent i is given by

ui(t) = −∇xi

N∑
j=1
j ̸=i

J(∥xj − xi − wij∥),

where wij ∈ Rn is the desired formation vector of agent i and agent j with the properties

wij = −wji and wii = 0. (2.6)

The distance |wij| is the equilibrium distance at which the attraction and the repulsion get

balance. The potential functions can be specified based on the different structure and/or behavior

of the MAS. However, different potentials might result in different performance even for the

same multi-agent system [20]. Associated with the real-world formation and the characteristics

November 8, 2011 DRAFT



7

of potential functions, we suppose J(∥xj − xi − wij∥)(i, j = 1, . . . , N ) satisfy the following

assumptions:

(A) J(∥xj−xi−wij∥) have a unique minimum at a desired position if and only if xj−xi = wij ,

∇xi

N∑
j=1
j ̸=i

J(∥xj − xi − wij∥) = 0.

When ∥xj − xi∥ > ∥wij∥, FA(∥xj − xi −wij∥) > FR(∥xj − xi −wij∥); when ∥xj − xi∥ <

∥wij∥, FA(∥xj − xi − wij∥) < FR(∥xj − xi − wij∥).

(B) There exist corresponding functions g(∥xj − xi − wij∥) : R → R+ such that

−∇xi
J(∥xj − xi − wij∥)

= (xj − xi − wij)g(∥xj − xi − wij∥). (2.7)

For simplicity, g(∥xj − xi − wij∥) is written as gij , for all i, j = 1, 2, . . . , N . Note that

the directions of the potential force and the vector xj(t)− xi(t)−wij should be the same.

Assume that gij ≥ g > 0, where

g = min
i,j=1,...,N

gij. (2.8)

Remark 2.3: It is worth mentioning that existence of multiple local minima in the potential

function results in achieving only local convergence to the desired formation. Due to the limitation

of local minima, Assumption (A) is necessary condition assuring the achievement of formation.

Remark 2.4: The term −∇xi
J(∥xj−xi−wij∥) in the Assumption (B) represents the potential

force between the individuals, which is a vector quantity involving the direction xj−xi−wij

∥xj−xi−wij∥ . The

term gij determines the attraction-repulsion relationship between the individuals. Regarded the

fact that the direction of potential force should be consistent with the vector xj−xi−wij and the

processing of proof, the constraint of gij ≥ g > 0 are given. Compared with the conditions on

potential function in [20], [26], the existence of lower bound of gij is necessary as the coupling

term and nonlinear term are considered in the multi-agent system (2.1), which will be explicitly

illustrated in the next section.

Similarly to our previous work in [6], for practical application, the MAS has the limited

utilization range, i.e. maxi,j=1,...,N ∥xj − xi∥ < L, where L represents the maximum utilization

range. For the predefined formation vectors, there exists w = maxi,j=1,...,N ∥wij∥, and commonly

w < L.
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Initially, it may seem as if the lower bound g is restrictive assumption, since gij must be

known for all i, j = 1, 2, . . . , N . However, note that once the knowledge of J(∥xj − xi − wij∥)

is known and associated with the constraints of limited utilization range of MAS, computing

g is straightforward. For the above assumption, it is satisfied by many potential functions, and

certainly by those considered in [11], [20].

Thus, rewrite the formation protocol of multi-agent system (2.1) as

ui(t) =
N∑
j=1
j ̸=i

(xj − xi − wij) gij. (2.9)

In the rest of the paper, we will solve the stochastic formation stability of the multi-agent

system (2.1) with controller (2.9). Then according to the conditions derived from the formation

analysis, the design criteria of MAS distributed controller for each agent are provided.

III. ANALYSIS OF FORMATION STABILITY

In this section, stochastic formation stability of the multi-agent system with communication

delay and switching topology is presented.

Before proceeding to the theoretical analysis, define a disagreement vector

eij(t) = Xij(t)− wij,

where Xij(t) = xj(t) − xi(t) is a disagreement of relative position between agent i and j.

According to (2.3), the time derivative of eij(t) is

ėij(t) = ẋj(t)− ẋi(t)

= fσ1(t, xj)− fσ1(t, xi) +
N∑
k=1

(
Dσ2

jkXjk(t− τ)−Dσ2
ik Xik(t− τ)

)

+B
N∑
k=1

(gjkejk(t)− gikeik(t)) . (3.1)

It is easy to see that ėij(t) = Ẋij(t), for i, j = 1, 2, . . . , N . Obviously, if all the disagreement

vectors eij(t) (i, j = 1, 2, . . . , N) uniformly asymptotically tend to zero, then the dynamical

system (2.1) realizes formation stability. Namely, the formation stability of system (2.1) is now

equivalent to the problem of stabilizing the system (3.1) using a suitable choice of the control

law, such that

lim
t→∞

N∑
i=1

N∑
j=1

∥eij(t)∥ = 0.
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In the subsequent discussion, assume that for all δ ∈ [−τ, 0], a scalar ε > 0 exists such that

∥eij(t+ δ)∥ ≤ ε∥eij(t)∥. (3.2)

As indicated by [22], this assumption does not bring the conservatism, since ε can be chosen

arbitrarily.

The following definitions and Lemma are needed to facilitate the development of the main

results of this paper.

Definition 3.1: (Formation Stability)[6] If the formation controller u(t) makes ∥xj(t)−xi(t)−

∆ij∥ → 0 hold for (i, j) = { (i, j) | i, j = 1, 2, . . . , N} when t → ∞, then the multi-agent system

is said to be asymptotically formation stabilizable.

Lemma 3.1: For a positive definite matrix P and any vectors x, y ∈ Rn, the matrix inequality

2x⊤Py ≤ x⊤Px+ y⊤Py holds.

Definition 3.2: The formation of multi-agent system (2.1) is said to be stochastically stabiliz-

able if, for all initial mode σ2(0) ∈ M, there exists a formation control law satisfying

lim
T→∞

E


∫ T

0

N−1∑
i=1

N∑
j>i

e⊤ij(t)eij(t)dt|e(0), σ2(0)

 ≤
N−1∑
i=1

N∑
j>i

e⊤ij(0)Ũeij(0), i, j = 1, . . . , N (3.3)

where Ũ is a symmetric positive definite matrix and e(0) is initial condition which defined as

e(0) = [e⊤11(t), . . . , e
⊤
1N(t), . . . , e

⊤
ij(t), . . . , e

⊤
NN(t)]

⊤|t=0.

In order to achieve stochastic formation stability, we design a formation controller to guarantee

the multi-agent system to form a desired shape asymptotically.

Theorem 3.1: The formation multi-agent system (2.1) is stochastically stabilizable, for all

r̃ = 1, . . . ,m1, r = 1, . . . ,m2, i, j = 1, . . . , N , if positive definite matrices Q > 0 and P r > 0,

and a constant g > 0 exist, satisfying the coupling matrix inequalities

Ξr −Dr
ijP

r 0 −Dr
ijP

r

∗ −q̃Q 0 0

∗ ∗ −gB⊤P r + ϕ2

N
I gB⊤P r

∗ ∗ ∗ −gB⊤P r


< 0, (3.4)

where

Ξr = Q+
1

N

m2∑
l

πrlP
l − P r(gB − 1

N
P r),
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and q̃ = 1− q > 0.

Proof: Let the topology mode at time t be Dr, that is σ2(t) = r ∈ M. Choose the stochastic

Lyapunov functional in the form of

V (e(t), σ2(t) = r) ≡ V (e, r)

=
1

2

N∑
i=1

N∑
j=1

(
e⊤ij(t)

P r

N
eij(t) +

∫ t

t−τ
e⊤ij(θ)Qeij(θ)dθ

)
,

where Q is a constant positive definite matrix, and P r is a constant positive definite matrix for

each r.

Consider the weak infinitesimal operator A [22] of the stochastic process {σ2(t)} (t ≥ 0), is

give by

AV (e(t), σ2(t)) = lim
∆→∞

1

∆

[
E{V (e(t+∆), σ(t+∆))|e(t), σ2(t) = r} − V (e(t), σ2(t) = r)

]
=

N∑
i=1

N∑
j=1

e⊤ij

(
P r

N
ėij +

m2∑
l=1

(
πrlP

l

2N
)eij

)

+
1

2

N∑
i=1

N∑
j=1

[
e⊤ij(t)Qeij(t)− (1− τ̇)e⊤ij(t− τ)Qeij(t− τ)

]

≤
N−1∑
i=1

N∑
j>i

[
e⊤ij

2P r

N

(
f r̃(t, xj)− f r̃(t, xi)

)]
+ V1(e(t), r) + V2(e(t), r)

−
N−1∑
i=1

N∑
j>i

[
(1− q)e⊤ij(t− τ)Qeij(t− τ)− e⊤ij(t)

( 1

N

m2∑
l=1

πrlP
l +Q

)
eij(t)

]
,

(3.5)

where

V1(e(t), r) =
1

N

N∑
i=1

N∑
j=1

N∑
k=1

e⊤ij(t)P
r(Dr

jkXjk(t− τ)−Dr
ikXik(t− τ))

and

V2(e(t), r) =
1

N

N∑
i=1

N∑
j=1

N∑
k=1

e⊤ij(t)
(
P rB +BTP r

)
× (gjkejk(t)− gikeik(t)) .

From Lemma 3.1 and inequality (2.4), the first term of inequality (3.5) becomes for all r̃ =
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1, . . . ,m1

e⊤ij(t)
P r

N

(
f r̃(t, xj)− f r̃(t, xi)

)
≤ e⊤ij(t)

P r(P r)⊤

2N
eij(t) + ∥f r̃(t, xj)− f r̃(t, xi)∥2

≤ e⊤ij(t)
P r(P r)⊤

2N
eij(t) +

ϕ2

2N
X⊤

ij (t)Xij(t). (3.6)

Since eij(t) = −eji(t), eii(t) = 0, the V1(e(t), r) can be

V1(e(t), r) = − 2

N

N∑
i=1

N∑
j=1

N∑
k=1

Dr
jke

⊤
ji(t)P

rXjk(t− τ)

= − 2

N

N∑
i=1

N−1∑
j=1

N∑
j<k

Dr
jke

⊤
ji(t)P

rXjk(t− τ)− 2

N

N∑
i=1

N−1∑
j=1

N∑
k<j

Dr
jke

⊤
ji(t)P

rXjk(t− τ)

= − 2

N

N∑
i=1

N−1∑
j=1

N∑
j<k

Dr
jke

⊤
ji(t)P

rXjk(t− τ)− 2

N

N∑
i=1

N−1∑
k=1

N∑
j<k

Dr
kje

⊤
ki(t)P

rXkj(t− τ).

Noticed that eji(t) + eik(t) = ejk(t), thus

V1(e(t), r) = − 2

N

N∑
i=1

N−1∑
j=1

N∑
j<k

Dr
jke

⊤
jk(t)P

rXjk(t− τ)

= −2
N−1∑
i=1

N∑
j>i

Dr
ije

⊤
ij(t)P

rXij(t− τ)

= −2
N−1∑
i=1

N∑
j>i

Dr
ije

⊤
ij(t)P

reij(t− τ)− 2
N−1∑
i=1

N∑
j>i

Dr
ije

⊤
ij(t)P

rwij. (3.7)

Similar to V1(e(t), r) and by the properties of wij (i, j = 1, . . . , N ) showed in (2.5), V2(e(t), r)

is treated as:

V2(e(t), r) = −
N−1∑
i=1

N∑
j>i

gije
⊤
ij(t)

(
P rB +B⊤P r

)
eij(t)

≤ −g
N−1∑
i=1

N∑
j>i

e⊤ij(t)
(
P rB +B⊤P r

)
eij(t)

= −g
N−1∑
i=1

N∑
j>i

(
e⊤ij(t)P

rBeij(t) + wT
ijB

⊤P rwij

+X⊤
ij (t)B

⊤P rXij(t)− 2X⊤
ij (t)B

⊤P rwij

)
. (3.8)
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Then associated (3.6), (3.7) and (3.8) with (3.5), the weak infinitesimal AV becomes

AV (e(t), σ2(t))

≤
N−1∑
i=1

N∑
j>i

{
e⊤ij(t)

(
Q+

1

N

m2∑
l=1

πrlP
l − P r(gB − 1

N
P r)

)
eij(t)

+2gX⊤
ij (t)B

⊤P rwij − gw⊤
ijB

⊤P rwij − 2Dr
ije

⊤
ij(t)P

rwij −Xij(t)

(
gB⊤P r − ϕ2

N
I

)
Xij(t)

−q̃e⊤ij(t− τ)Qeij(t− τ)− 2Dr
ije

⊤
ij(t)P

reij(t− τ)

}

=
N−1∑
i=1

N∑
j>i

ξ⊤ij(t)Ω
rξij(t) < 0,

where

ξij(t) =
[
e⊤ij(t) e⊤ij(t− τ) X⊤

ij (t) w⊤
ij

]⊤
,

and

Ωr =



Ξr −Dr
ijP

r 0 −Dr
ijP

r

∗ −q̃Q 0 0

∗ ∗ −gB⊤P r + ϕ2

N
I gB⊤P r

∗ ∗ ∗ −gB⊤P r


.

Clearly, it is easy to prove that ∥eij∥ < ∥ξij∥, and note that Ωr < 0 and P r > 0. Thus, for

t > 0

AV (e, r)

V (e, r)

≤

N−1∑
i=1

N∑
j>i

ξ⊤ij(t)Ω
rξij(t)

N−1∑
i=1

N∑
j>i

(
e⊤ij(t)

P r

N
eij(t) +

∫ t
t−τ e

⊤
ij(θ)Qeij(θ)dθ

)

=

−
N−1∑
i=1

N∑
j>i

ξ⊤ij(t)(−Ωr)ξij(t)

N−1∑
i=1

N∑
j>i

(
e⊤ij(t)

P r

N
eij(t) +

∫ t
t−τ e

⊤
ij(θ)Qeij(θ)dθ

)
≤ −min

r∈M

{
λmin(−Ωr)

λmax(P r)/N + pε2λmax(Q)

}
.

Define

α:=min
r∈M

{
λmin(−Ωr)

λmax(P r)/N + pε2λmax(Q)

}
.
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Obviously, α > 0, so AV (e, r) ≤ −αV (e, r). Then using Dynkin’s formula [23], for all σ2(0) ∈

M, one has

E {V (e(t), σ2(t))} − V (e(0), σ2(0))

= E
{∫ t

0
AV (e(s), σ2(s))ds

}
≤ −α

∫ t

0
E {V (e(s), σ2(s))} ds.

The Gronwall-Bellman lemma [23] makes

E{V (e(t), σ2(t))} ≤ exp(−αt)V (e(0), σ2(0)).

Since Q > 0, one gets

E


∫ t

t−τ

N−1∑
i=1

N∑
j>i

e⊤ij(s)Qeij(s)

 ds

 > 0.

Thus,

E

 1

N

N−1∑
i=1

N∑
j>i

e⊤ij(t)P
reij(t)|e(0), σ2(0)


= E {V (e, r)|e(0), σ2(0)} − E


∫ t

t−τ

N−1∑
i=1

N∑
j>i

e⊤ij(s)Qeij(s)

 ds|e(0), σ2(0)


≤ exp (−αt)V (e(0), r).

Then, one can obtain

E


∫ T

0

N−1∑
i=1

N∑
j>i

e⊤ij(t)P
reij(t)dt|e(0), σ2(0)


≤ N

∫ T

0
exp(−αt)dtV (e(0), r)

= −N

α
[exp(−αT )− 1]V (e(0), r). (3.9)

Taking limit as T → ∞, matrix inequality (3.9) yields

lim
T→∞

E


∫ T

0

N−1∑
i=1

N∑
j>i

e⊤ij(t)P
reij(t)dt|e(0), σ2(0)


≤ lim

T→∞

{
−N

α
[exp(−αT )− 1]V (e(0), r)

}

≤ N

α

N−1∑
i=1

N∑
j>i

[
e⊤ij(0)

(λmax(P
r)

N
+ ε2pλmax(Q)

)
Ieij(0)

]
.
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Since P r > 0, for each r ∈ M, one has

lim
T→∞

E


∫ T

0

N−1∑
i=1

N∑
j>i

e⊤ij(t)eij(t)dt|e(0), σ2(0)


≤

N−1∑
i=1

N∑
j>i

e⊤ij(0)Ũeij(0),

where

Ũ = max
r∈M

{
λmax(P

r) + ε2pNλmax(Q)

αλmin(P r)

}
I.

Based on Definition (3.2), one can prove that the formation of multi-agent system (2.1) under

control law (2.9) is stochastically stable.

Remark 3.1: Notice the diagonal elements in inequality (3.4), and it is easy to find that the

Assumption (B) can guarantees these diagonal terms to be negative. In order to achieve the

desired formation, the controller is required to trade off the effect from the coupling term and

nonlinearity as modeled in (2.1).

Remark 3.2: It should be noted that the proposed conditions (3.4) are formulated in terms

of linear matrix inequalities (LMIs). Therefore, by using MATLAB LMI Toolbox, for a given

multi-agent system, the upper bound g can be efficiently calculated by optimizing a generalized

eigenvalue problem from LMIs (3.4). Moreover, the results in this paper can be easily extended

to the multi-agent systems with uncertainty and diverse time-varying delays.

From the Schur complement, one can find the matrix inequalities (3.4) are equivalent to
ϖr 0 −Dr

ijP
r

∗ −gB⊤P r + ϕ2

N
I gB⊤P r

∗ ∗ −gB⊤P r



=


Q+

m2∑
l=1

πrl

N
P l − gP rB 0 −Dr

ijP
r

∗ −gB⊤P r gB⊤P r

∗ ∗ −gB⊤P r



+


P r

(
(Dr

ij)
2Q−1

q̃
+ 1

N
I
)
P r 0 0

∗ ϕ2

N
I 0

∗ 0 0


︸ ︷︷ ︸

Ã

< 0,
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where r ∈ M and

ϖr = Q+
1

N

m2∑
l=1

πrlP
l − gP rB + P r

(
(Dr

ij)
2Q−1

q̃
+

1

N
I

)
P r.

With respect to the nonnegative of Ã, one can get
Q+

m2∑
l

πrl

N
P l − gP rB 0 −Dr

ijP
r

∗ −gB⊤P r gB⊤P r

∗ ∗ −gB⊤P r

 < 0.

(3.10)

Let Zr = (P r)−1, Y r = gZr, R = Q−1 and define Kr = diag(Zr, Zr, Zr). Pre- and post-

multiplying (3.10) by Kr, one can see that the coupled matrix inequalities (3.10) are equivalent

to the following matrix inequalities:
Πr 0 −Dr

ijZ
r

∗ −Y rB⊤ Y rB⊤

∗ ∗ −Y rB⊤

 < 0, (3.11)

where

Πr = ZrR−1Zr +
m2∑
l

πrl

N
Zr(Z l)−1Zr −BY r.

Then the inequalities (3.11) are in turn equivalent to the following LMIs for r = 1, . . . ,m2

−BY r + πr

N
Zr 0 −Dr

ijZ
r χr

∗ −Y rB⊤ Y rB⊤ 0

∗ ∗ −Y rB⊤ 0

∗ ∗ ∗ −Υr


< 0, (3.12)

where

χr =
[√

πr1/NZr, · · ·
√
πr,r−1/NZr,√

πr,r+1/NZr, · · ·
√
πrm2/NZr Zr

]
(3.13)

and

Υr = diag
(
Z1 · · · Zr−1 Zr+1 · · · Zm2 R

)
. (3.14)

According to above derivation, the formation stability results are summarized in the following

theorem based on LMIs.
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Theorem 3.2: The formation of multi-agent system (2.1) is stochastically stabilizable, for

r = 1, . . . ,m2, if there exist positive definite matrices R, Zr and Y r, such that the coupled LMIs

(3.12) hold, where χr and Υr are given by (3.13) and (3.14), respectively. And the minimum of

functionals gij can be calculated from g = inf
r∈M

∥Y r∥2
∥(Zr)∥2 .

Note that if the communication topology has only one fixed form, the multi-agent system (2.1)

reduces to a deterministic one. In the subsequent theorem, we present the formation stability

property for the deterministic multi-agent system (2.1).

Theorem 3.3: For the multi-agent system (2.1) with fixed topology and time-varying delay, if

there exist matrices P > 0, Q > 0 and a constant g such that the following LMIs

Ξ̃ −DijP 0 −DijP

∗ −q̃Q 0 0

∗ ∗ −gB⊤P + ϕ2

N
I gB⊤P

∗ ∗ ∗ −gB⊤P


< 0 (3.15)

hold, for all i, j = 1, . . . , N , where

Ξ̃ = Q− P (gB − 1

N
P ),

then the formation of multi-agent system (2.1) is asymptotically stabilizable.

From above theorems, we can conclude an algorithm of formation controller design for multi-

agent system with stochastic switching topology and time-varying communication delays.

(1) According to the Assumption (A) and (B), choose a potential function which is differen-

tiable and has a unique minimum.

(2) For all i, j = 1, . . . , N , validate the lower bound of gij is existed and satisfied the constraint

g > 0. If the lower bound g > 0 does not exist, then adjust the parameters of potential

function and go to (2).

(3) Solve (3.4) and, verify the positive definiteness of Q and P r (r = 1, . . . ,m2). If (3.4) does

not have positive definite solutions P r and Q, regulate the parameters of potential functions

and go to (2).

IV. NUMERICAL EXAMPLES

In this section, some examples are conducted to show the effectiveness of the proposed

theoretical results. As discussed above the formation of multi-agent systems may have distinct
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performance based on different potential function J .

Firstly, according to assumption of potential function, the formation controller ui(t) is chosen

as in [6]

ui(t) = 2
N∑
j=1
j ̸=i

eij(t)

(
Ca

L2
a

exp

(
−∥eij(t)∥2

L2
a

)

−Cr

L2
r

exp

(
−∥eij(t)∥2

L2
r

)
+ Cr

(
1

L2
r

+
1

L2
a

)

× exp

(
−(

1

L2
r

+
1

L2
a

)(∥eij(t)∥2)
))

, (4.1)

with constraints La > Lr and

Ca

Cr

>
L2

a

L2
r

exp

(
−(

1

L2
r

− 1

L2
a

)∥eij(t)∥2
)
−
(
1 +

L2
a

L2
r

)
exp

(
−∥eij(t)∥2

L2
r

)
,

which guarantees gij > 0. Obviously, the potential function developed in (4.1) has a unique

minimum at a desired value, when Xij(t) = wij for all i, j = 1, 2, . . . , N . La Lr Ca, and Cr are

positive parameters representing ranges and strengths of attraction and repulsion, respectively.

Let La = 0.5 Lr = 0.32 Ca = 21, Cr = 0.8, N = 4, n = 2, B = I and the time-varying delay

τ(t) = 0.5 sin t in the multi-agent system (2.1). The coupling configuration matrix are designed

to be stochastically switching with equal probability between two modes:

D1 =



−0.64 0.32 0 0.32

∗ −0.64 0.32 0

∗ ∗ −0.64 0.32

∗ ∗ ∗ −0.64


,

and

D2 =



−0.64 0 0.32 0.32

∗ −0.32 0 0.32

∗ ∗ −0.64 0.32

∗ ∗ ∗ −0.96


.

Moreover, set

f(t, xi) = 0.3 ∗ [cos (0.5 ∗ xi1(t)), sin (0.25 ∗ xi2(t))]
⊤,

and one can get ϕ = 0.13 and g = 0.4021 in this example. The goal of this task is to drive this

MAS to keep a formation of square. From theorem 3.1, the formation of multi-agent system
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with switching topology and time delay (2.1) is stochastically stable. Fig.1 shows four agents

achieve the predefined formation from the initial positions (1.1, 3.0)T , (3.0, 4.0)T , (3.7, 3.2)T ,

and (2.6, 2.0)T . An error function

d(t) =
N−1∑
i=1

N∑
j>i

(∥xj(t)− xi(t)∥ − ∥wij∥)

is given to visualize the effectiveness of formation which is showed in Fig.2. From Fig.1 and

Fig.2, one can find the multi-agent system with time-varying delays obtains the desired formation

shape in a short period of time.

Furthermore, the multi-agent system will perform more complex tasks following the switching

track scheme showed in Table I with a square formation. The initial position of agents are given as

(1.0, 1.2)T , (2.0, 4.0)T , (6.7, 3.0)T , and (4.2, 2.0)T . It should be mentioned that the predesigned

tracks in this example could be derived from embedded microprocessor in each agent which are

responsible for collecting information from environment and providing the accessible path. The

trajectories of the system (2.1 exploring in a cave-like scenario and corresponding formation

error are described in Fig.3 and Fig.4, which demonstrates the effectiveness of the proposed

formation protocol (2.9) in this paper.

V. CONCLUSIONS

The formation protocol of a multi-agent system with stochastic switching topology and time-

varying delays is addressed in this paper. The formation controller based on artificial potential

functions has been designed in a general form. By introducing a disagreement function, the for-

mation problem of multi-agent system is translated into the stochastic stability of an error system.

Then by employing stochastic Lyapunov functional approach and linear matrix inequalities, the

sufficient conditions for formation keeping of the MAS are obtained. The main contribution of

this paper is to provide a valid distributed formation algorithm that overcomes the difficulties

caused by unreliable communication channels, such as stochastic information transmission,

switching communication topology, and time-varying communication delays. Therefore this

approach possesses great potential in practical applications. Finally, examples have been provided

to verify the effectiveness of the proposed approach.
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Fig. 1. Formation of multi-agent system with stochastic switching topology and time-varying delay
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Fig. 2. Formation disagreement of multi-agent system with stochastic switching topology and time-varying delay
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TABLE I

TRACK TABLE

Period of time t/(s) fσ1(t, xi)

0− 10 [3, 0]⊤

10− 21 [0, 0.5]⊤

21− 29 [1, 0]⊤

29− 31 [4, 0.8]⊤

31− 36 [3, 0]⊤

36− 38 [4,−0.8]⊤

38− 40 [3, 0]⊤
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Fig. 3. Formation of multi-agent system with switching trajectories

November 8, 2011 DRAFT



23

0 10 20 30 40 50
−20

0

20

40

60

80

100

Time t

E
rr

or
 F

un
ct

io
ns

 d
(t

)

Fig. 4. Formation disagreement of multi-agent system with switching trajectories
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