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ABSTRACT: In many practical applications of structural reliability analysis, one is interested in knowing the
sensitivity of the probability of failure to design parameters that enter the definition of the limit-state function.
This information is required for example in reliability-based design optimization. Parameter sensitivities are
obtained by FORM/SORM, in terms of the sensitivity of the respective probability approximation. However, in
several cases FORM/SORM approximations are inaccurate or difficult to obtain. Hence, it is useful to obtain
parameter sensitivities as a by-product of Monte Carlo methods. The derivative of the failure probability with
respect to a parameter of the limit state function is given by a surface integral over the limit state surface.
Application of Monte Carlo methods for the estimation of surface integrals is not straightforward. The surface
integral can be computed applying sampling techniques that detect the failure surface, such as directional or
line sampling. In this paper, we derive an approximation of the surface integral in terms of a domain integral.
The domain integral can then be estimated through standard Monte Carlo or importance sampling simulation.
A numerical example demonstrates the effectiveness of the proposed approximation for estimation with an
importance sampling method.

1 INTRODUCTION

Structural reliability analysis requires the evaluation
of the probability of failure, defined by the following
n-fold integral:

Pf =

∫
g(x)≤0

fX(x)dx (1)

where X is an n-dimensional vector of random vari-
ables described by the joint PDF fX(x) and g(x) ≤ 0
defines the failure event. The function g(x) is usually
termed limit-state function and it can include one or
several distinct failure modes.

It is common to transform the random variables X
to a probability space U consisting of independent
standard normal random variables. This is achieved
by an one-to-one transformation U = T(X) (Hohen-
bichler & Rackwitz 1981, Der Kiureghian & Liu
1986). The probability of failure can be expressed in
the transformed space as

Pf =

∫
G(u)≤0

ϕn(u)du (2)

where ϕn is the n-variate standard normal PDF and
G(u) = g(T−1(u)) is the limit-state function in the
U-space.

The integral in Equation (1) can be evaluated by
a variety of existing approaches (Ditlevsen & Mad-
sen 1996, Lemaire 2009). These include approxima-
tion methods such as the first/second order reliability
methods (FORM/SORM), as well as simulation tech-
niques based on the Monte Carlo method.

FORM/SORM approaches have been successfully
applied to the solution of a large number of struc-
tural reliability problems. These methods are based
on first/second order Taylor series approximations of
the boundary of the limit-state function in the U-
space, performed at the point of the failure region
with largest probability density. The evaluation of
this so-called most probable failure point requires
the solution of an optimization problem. The solu-
tion of this problem might become difficult in cases
where the limit-state function is expressed in terms
of a numerical model or when the dimension n of
the random variable space becomes large. Moreover,
FORM/SORM solutions might become inaccurate
in such high dimensional problems or in problems
with highly nonlinear limit-state functions (Rackwitz
2001,Valdebenito et al. 2010).

On the other hand, the Monte Carlo method is a
simple and robust technique, that is able to handle
any limit-state function, independent of its complex-
ity. Also, the efficiency of the Monte Carlo method in
its standard form does not depend on the dimension



of the random variable space. The classical Monte
Carlo method estimates Pf by generating samples of
X and taking the sample mean of the indicator func-
tion I(X), where I(x) = 1 if g(x) ≤ 0 and I(x) = 0
otherwise. The disadvantage of the crude Monte Carlo
method is that its computational demands for assess-
ing small probabilities are high – the number of sam-
ples required is inversely proportional to the proba-
bility of failure. However, this can be circumvented
through application of variance reduction techniques.

In many practical applications of structural reliabil-
ity, one is interested in knowing the effect of a change
in a deterministic variable that enters the definition
of the reliability problem on the computed probabil-
ity of failure. This variable can either be a parameter
of the distribution of the random variables or a pa-
rameter of the limit-state function. Sensitivities of the
probability of failure in terms of both distribution and
limit-state parameters are obtained as a byproduct of
FORM/SORM solutions (Ditlevsen & Madsen 1996,
Breitung 1994). They involve the evaluation of first-
or second-order derivatives of the transformation T(.)
and the limit-state function g(.) to the respective pa-
rameters at the most probable failure point.

In this paper, we discuss the estimation of sensi-
tivities of the probability of failure with Monte Carlo
methods. We focus on sensitivities to limit-state pa-
rameters, such as deterministic design parameters,
that are required for example in reliability-based de-
sign optimization with gradient methods. Application
of Monte Carlo methods for the estimation of sensi-
tivities to distribution parameters is a straightforward
task, as will be discussed later on. In the following, we
introduce the reliability sensitivity problem and re-
view existing simulation approaches. We then discuss
the application of existing variance reduction meth-
ods to reliability sensitivity estimation and introduce
a novel approach for obtaining approximate reliability
sensitivities with standard Monte Carlo methods.

2 RELIABILITY SENSITIVITY ANALYSIS

Let us consider two distinct sets of parameters,
namely θf and θg. The vector θf contains parame-
ters of the joint PDF of X and the vector θg includes
parameters of the limit-state function. The probability
of failure, now a function of θf and θg, is given by

Pf (θf ,θg) =

∫
g(x,θg)≤0

fX(x,θf )dx (3)

For the sake of simplicity, we will consider the case
where the two parameter vectors reduce to a scalar
θ, with θ representing either a distribution or a limit-
state parameter. The probability of failure is then de-
noted Pf (θ). The discussion can be directly extended
to address the general case of Equation (3).

If θ is a distribution parameter, the derivative of

Pf (θ) is given by

dPf (θ)

dθ
=

∫
g(x)≤0

∂fX(x, θ)
∂θ

dx (4)

It is seen that the above is a (possibly high dimen-
sional) domain integral and can be solved by applica-
tion of standard Monte Carlo methods. This has been
acknowledged by Wu (1994), who applied standard
importance sampling for the solution of Equation (4).
Other variance reduction methods can also be applied,
such as subset simulation (Song et al. 2009). How-
ever, it should be noted that these approaches cannot
be applied in the U-space. This can be understood by
considering that in the U-space, distribution parame-
ters enter the definition of the transformed limit-state
function G(.), whereas the PDF ϕn(.) is parameter
free.

A different approach was introduced by Melchers
& Ahammed (2004) for the estimation of distribution
parameter sensitivities. The authors constructed a lin-
ear response surface using Monte Carlo samples and
applied the FORM sensitivity results to this surrogate
model. It is noted here that this approach can also be
applied to evaluate sensitivities to limit-state param-
eters, since the latter are also provided as byproducts
of FORM.

In the case where θ is a limit-state parameter, the
derivative of Pf (θ) is given by the following surface
integral (Breitung 1994)

dPf (θ)

dθ
=−

∫
g(x,θ)=0

fX(x)
1

‖∇xg(x, θ)‖
∂g(x, θ)
∂θ

ds(x)

(5)

where ds(x) denotes surface integration over the sur-
face g(x, θ) = 0. Classical Monte Carlo methods can-
not be applied for the estimation of surface integrals.
However, the integral in Equation (5) can be esti-
mated by simulation methods that monitor the bound-
ary of the limit-state function. Such methods are the
directional sampling (Bjerager 1988) and line sam-
pling (Hohenbichler & Rackwitz 1988, Koutsoure-
lakis et al. 2004). Both approaches require the solu-
tion of a line search problem for each sample to de-
termine the intersection of the sampling direction or
line with the limit-state surface. Application of these
methods to reliability sensitivity will be discussed in
the following section.

Alternative methods for solving the problem of
Equation (5) have been proposed in Royset & Polak
(2004) and in Jensen et al. (2009). The procedure in-
troduced by Royset & Polak (2004) requires solving
the limit-state equation g(x, θ) = 0 for one compo-
nent of x. Estimation of the reliability sensitivity is
achieved by conditional importance sampling in terms



of the remaining random variables. The method pre-
sented in Jensen et al. (2009) involves a linear approx-
imation of the limit-state function in terms of the pa-
rameter vector and an approximation of the probabil-
ity of failure in terms of the limit-state function. The
approximations are constructed perturbing the limit-
state parameters at the samples close to the failure
surface and performing additional limit-state function
evaluations.

In this paper, we introduce a novel approach for
approximate reliability sensitivity analysis with stan-
dard Monte Carlo methods. This approach is based
on an approximation of the surface integral of Equa-
tion (5) in terms of a domain integral. The method is
discussed in detail in a subsequent section and its per-
formance is investigated with a numerical example.

3 RELIABILITY SENSITIVITY WITH
EXISTING VARIANCE REDUCTION
METHODS

3.1 Directional sampling

Directional sampling (Bjerager 1988) is a simulation
method for estimation of the probability of failure in
the U-space. Application of the method is limited to
reliability problems with star-shaped limit-states. As
already noted, in the U-space the dependence of either
distribution or limit-state parameters enters the defini-
tion of the transformed limit-state function G(.). Us-
ing a polar coordinate transformation U = RA, where
A is a unit direction vector uniformly distributed on
the n-dimensional hypersphere and R is the radius
in the direction A, the integral of Equation (2) is ex-
pressed as

(6)
Pf (θ) =

∫
D(a)

∫ ∞
r(a,θ)

fR(s)dsfA(a)da

=

∫
D(a)

[1− FR(r(a, θ))]fA(a)da

wherein the dependency on the parameter θ has been
included. fA denotes the uniform distribution on the
n-dimensional unit hypersphere, fR and FR are the
PDF and CDF of the χ distribution with n degrees
of freedom, D(a) is the unit hypersphere and r(a, θ)
is the distance from the origin to the boundary of the
failure domain in the direction a, i.e. G(r(a, θ)a) = 0,
r(a, θ) ∈ R+ (see Fig. 1). Equation (6) can be viewed
as an expectation with respect to the PDF fA. Hence,
Pf (θ) can be estimated by generating ns independent
samples {ak, k = 1, . . . , ns} of A and taking the sam-
ple mean of [1− FR(r(a, θ))], i.e.

Pf (θ) ≈
1

ns

ns∑
k=1

[1− FR(r(ak, θ))] (7)

For each sample ak, the root of G(r(ak, θ)ak) = 0 can
be found by application of any line-search method.

G(u,θ) = 0 

u2 

u1 

ak 

r(ak,θ) fA(a) 

Figure 1: Graphical representation of directional sampling in a
2D standard normal space.

Taking the derivative of Equation (6) with respect
to θ, we have

dPf (θ)

dθ
=

∫
D(a)

[
−fR(r(a, θ))

∂r(a, θ)
∂θ

]
fA(a)da (8)

The intersection point of the direction a with the limit-
state surface is u(a, θ) = r(a, θ)a. It follows that

∂u(a, θ)
∂θ

=
∂r(a, θ)
∂θ

a (9)

Linearization of G(u(a, θ)) = 0 yields

∂G(u(a, θ))
∂θ

+∇uG(u(a, θ))T
∂u(a, θ)
∂θ

= 0 (10)

Combining Equations (9) and (10), we get

∂r(a, θ)
∂θ

= − 1

∇uG(u(a, θ))Ta
∂G(u(a, θ))

∂θ
(11)

Substituting Equation (11) to Equation (8), we get

dPf (θ)

dθ

=

∫
D(a)

[
fR(r(a, θ))

∇uG(u(a, θ))Ta
∂G(u(a, θ))

∂θ

]
fA(a)da

(12)

Taking sample mean of the term in brackets from the
samples {ak, k = 1, . . . , ns}, we finally obtain an esti-
mate of the sensitivity of the probability of failure

dPf (θ)

dθ
≈ 1

ns

ns∑
k=1

[
fR(r(ak, θ))

∇uG(u(ak, θ))Tak
∂G(u(ak, θ))

∂θ

]
(13)

The term in the denominator is the cosine between the
sampling direction and the gradient of the limit-state
function at the intersection point. Hence, evaluation
of the gradient of the limit-state function is required
at each sampling direction.



3.2 Line sampling

Line sampling or axis parallel importance sampling
was introduced in Hohenbichler & Rackwitz (1988)
for obtaining a correction factor to FORM/SORM
estimates of the probability of failure by sampling
parallel to the direction pointing to the most prob-
able failure point. The method was further applied
in Koutsourelakis et al. (2004) replacing the initial
FORM/SORM run with a coarse Monte Carlo simula-
tion to determine the sampling direction. The method
solves the reliability problem in the U-space. Therein,
the sampling space is rotated and reduced by one di-
mension, i.e. V = RU, V = [VT

1 , Vn]T , where V1 con-
tains the (n− 1)-dimensional subspace, Vn is the co-
ordinate parallel to a direction a pointing to the limit-
state surface and R is a suitable rotation matrix, whose
nth row is the unit direction a. The probability inte-
gral is expressed as

(14)
Pf (θ) =

∫
D(v1)

∫ ∞
b(v1,θ)

ϕ(vn)dvnϕn−1(v1)dv1

=

∫
D(v1)

Φ(−b(v1, θ))ϕn−1(v1)dv1

where ϕn−1 is the (n − 1)-variate standard normal
PDF on the hyperplane vn = 0, ϕ and Φ are the
standard normal PDF and CDF, D(v1) = Rn−1 and
b(v1, θ) is the distance to the failure surface in a di-
rection orthogonal to the hyperplane vn = 0 at v1, i.e.
the solution of G(RT [vT1 , b(v1, θ)]

T ) = 0 (see Fig. 2).
Pf (θ) can be estimated by generating ns independent
samples {v1k, k = 1, . . . , ns} of V1 and applying

Pf (θ) ≈
1

ns

ns∑
k=1

Φ(−b(v1k, θ)) (15)

where for each sample v1k, the root of
G(RT [vT1 , b(v1, θ)]

T ) = 0 is found by application of a
line-search method.

The derivative of Equation (14) reads

dPf (θ)

dθ
=

∫
D(v1)

[
−ϕ(b(v1, θ))

∂b(v1, θ)

∂θ

]
ϕn−1(v1)dv1

(16)

The intersection point of the line parallel to a at v1

is u(v1, θ) = RT [vT1 , b(v1, θ)]
T . Taking derivatives and

accounting for the fact that the nth column of RT is
the vector a, we get

∂u(v1, θ)

∂θ
=
∂b(v1, θ)

∂θ
a (17)

Linearization of G(u(v1, θ)) = 0 yields

∂G(u(v1, θ))

∂θ
+∇uG(u(v1, θ))

T ∂u(v1, θ)

∂θ
= 0 (18)
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Figure 2: Graphical representation of line sampling in a 2D stan-
dard normal space.

Combining Equations (17) and (18), we get

∂b(v1, θ)

∂θ
= − 1

∇uG(u(v1, θ))Ta
∂G(u(v1, θ))

∂θ
(19)

Substituting Equation (19) to Equation (16), we get

(20)
dPf (θ)

dθ

=

∫
D(v1)

[
ϕ(b(v1, θ))

∇uG(u(v1, θ))Ta
∂G(u(v1, θ))

∂θ

]
ϕn−1(v1)dv1

Taking sample mean of the term in brackets from the
samples {v1k, k = 1, . . . , ns}, we obtain an estimate
of the sensitivity of the probability of failure

dPf (θ)

dθ
≈ 1

ns

ns∑
k=1

[
ϕ(b(v1k, θ))

∇uG(u(v1k, θ))Ta
∂G(u(v1k, θ))

∂θ

]
(21)

The term in the denominator is the cosine between the
direction a and the gradient of the limit-state function
at the intersection point. Therefore, evaluation of the
gradient of the limit-state function is again required at
each sampling line.

4 APPROXIMATE RELIABILITY SENSITIVITY
WITH MONTE CARLO

4.1 Approximation of the surface integral

In this section we derive an approximation of the sur-
face integral of Equation (5) in terms of a domain in-
tegral. The reliability problem of Equation (1) can be
written as follows

Pf (θ) =

∫
D(x)

I(x)fX(x)dx (22)

whereD(x) = Rn and I(x) is the indicator function of
the failure domain. Standard Monte Carlo estimates
Pf (θ) by generating ns samples {xk, k = 1, . . . , ns}
of X and taking the sample mean of I(X), i.e.

Pf (θ) ≈
1

ns

ns∑
k=1

I(xk) (23)



The indicator function can be expressed by the fol-
lowing limit [e.g. see (Spanier & Oldham 1987)]

I(x) = lim
σ→0

Φ

(
−g(x, θ)

σ

)
(24)

where Φ is the standard normal CDF. Choosing σ
small enough, we can approximate I(x) by the fol-
lowing expression

I(x) ≈ Φ

(
−g(x, θ)

σ

)
(25)

This is illustrated in Figure 3 where Φ(− g
σ
) is plot-

ted for different values of σ. Inserting Equation (25)
into Equation (22), we obtain an approximation of
the probability of failure denoted by P̃f (θ, σ) and ex-
pressed as follows

P̃f (θ, σ) =

∫
D(x)

Φ

(
−g(x, θ)

σ

)
fX(x)dx (26)

Taking the derivative of the above with respect to θ,
we get

∂P̃f (θ, σ)

∂θ
= −

∫
D(x)

1

σ
ϕ

(
g(x, θ)
σ

)
∂g(x, θ)
∂θ

fX(x)dx

(27)

Equation (27) is a domain integral and hence can be
estimated using the Monte Carlo samples {xk, k =
1, . . . , ns}, as follows

∂P̃f (θ, σ)

∂θ
≈ 1

ns

ns∑
k=1

[
− 1

σ
ϕ

(
g(xk, θ)
σ

)
∂g(xk, θ)

∂θ

]
(28)

4.2 Convergence of approximation as σ→ 0

It is clear that the approximation of the probability
of failure P̃f (θ, σ) converges to Pf (θ) as σ → 0. We
now show that under some regularity conditions, the
approximation in Equation (27) converges to the true
surface integral in Equation (5) as σ → 0. To show
this, we change variables in the integral of Equa-
tion (27) by applying the mapping x→ (y, h), where
y is the coordinate system on the surface g(x, θ) = 0
and h is the distance normal to the surface. We then
truncate the integration domain at a distance d to the
limit-state surface, leading to the following approxi-
mation

∂P̃f (θ, σ)

∂θ
≈ −

∫
g(y,θ)=0

∫ d

−d

1

σ
ϕ

(
g(y + hn(y), θ)

σ

)
×

∂g(y + hn(y), θ)

∂θ
J−1(y + hn(y))dhfX(y)ds(y) (29)
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Figure 3: Approximation of the indicator function for different
values of σ.

where n(y) = ‖∇yg(y, θ)‖−1∇yg(y, θ) and J−1(.) is
the Jacobian of the inverse mapping (y, h)→ x. Since
n(y) is orthogonal to the limit-state surface at y one
has always that J−1(y,0) = 1. Therefore, we have

∂P̃f (θ, σ)

∂θ

≈ −
∫
g(y,θ)=0

[∫ d

−d

1

σ
ϕ

(
g(y + hn(y), θ)

σ

)
dh

]
×

∂g(y, θ)
∂θ

fX(y)ds(y) (30)

The integral over h can be approximated making a
Taylor expansion of g at y, which gives

(31)

∫ d

−d

1

σ
ϕ

(
g(y + hn(y), θ)

σ

)
dh

≈
∫ d

−d

1

σ
ϕ

(
g(y, θ) + h‖∇yg(y, θ)‖

σ

)
dh

The above follows from the first order multi-
variate Taylor expansion g(y + hn(y)) − g(y, θ) ≈
hn(y)T∇yg(y, θ) = h‖∇yg(y, θ)‖. Since y runs on
the limit-state surface, one has g(y, θ) = 0 in Equa-
tion (31). The resulting integral can be written as∫ d

−d

1

σ
ϕ

(
h‖∇yg(y, θ)‖

σ

)
dh

=
1

‖∇yg(y, θ)‖

[
Φ

(
d‖∇yg(y, θ)‖

σ

)
−

Φ

(
−d‖∇yg(y, θ)‖

σ

)]
(32)

The term in brackets in the above converges towards
unity as σ → 0. Inserting this into Equation (30)
shows that ∂P̃f (θ,σ)

∂θ
converges to dPf (θ)

dθ
as σ→ 0.



4.3 Discussion on the choice of σ

The quality of the approximation of Equation (27) de-
pends on the choice of the parameter σ. As shown in
Section 4.2, the bias of the approximation decreases
with decreasing value of σ. However, a very small σ
would lead to a high coefficient of variation in the
Monte Carlo estimate of Equation (28). This is due
to the fact that for small σ, most of the samples values
away from the limit-state surface will be zero. Hence,
an optimal choice of σ should achieve a compromise
between the bias and the coefficient of variation of the
corresponding Monte Carlo estimate. Here, we illus-
trate this with the help of a simple numerical example.

Consider the limit-state function g(u, θ) =−u+ β,
where u is the outcome of a standard normal random
variable and β is a deterministic parameter. It is noted
that any linear function of normal random variables
can be reduced to a similar form. The probability of
failure equals Φ(−β) and the sensitivity with respect
to β is −ϕ(β). Let us assume that the probability of
failure is estimated with crude Monte Carlo, with a
target coefficient of variation 5%. Knowing the true
value of the probability of failure, we can estimate
the required number of samples ns ≈ 400/Φ(−β).
Therefore, for a given value of β, the integral of Equa-
tion (27) as well as the coefficient of variation of the
estimate of Equation (28) can be evaluated.

Figure 4 plots the relative bias, i.e. the absolute dif-
ference between the approximation and the true value
of the sensitivity divided by the absolute value of the
latter, the coefficient of variation of the sensitivity es-
timate and the Euclidean norm of the two, for β = 3.5
and β = 4.0 and different values of the parameter σ.
The plots show that the minimum value of the norm of
the two error measures, which corresponds to the op-
timal choice of σ, would be acceptable for most prob-
lems, which supports the feasibility of the approach.
Moreover, it is shown that the optimal value of σ leads
to slightly larger coefficient of variation than the one
of the probability estimate. It is noted, however, that
for this example the derivative of the limit-state func-
tion in terms of the parameter equals unity, which is
not the general case. In general, the behavior of this
derivative at the vicinity of the limit-state surface is
shown to greatly affect the optimal choice of σ.

In practical situations, the optimal value of σ can-
not be computed, since the true value of the proba-
bility sensitivity is not known and hence the relative
bias of the approximation cannot be estimated. There-
fore, it is suggested to vary the value of σ and choose
the minimum σ that leads to a coefficient of variation
smaller than a target value. It is noted that the same
samples of the limit-state function and its derivative
with respect to the parameter can be used for estima-
tion of the coefficient of variation for different values
of σ. Therefore, the additional computational cost for
this adaptive procedure is negligible.
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Figure 4: Relative bias and coefficient of variation of estimate
of parameter sensitivity; Linear limit-state in terms of normal
random variable and in terms of limit-state parameter.

5 EXAMPLE

The performance of the Monte Carlo methods dis-
cussed here is demonstrated with the help of a numer-
ical example, presented in Yang & Gu (2004) in the
context of reliability-based optimization. The exam-
ple consists of a cantilever beam subjected to biaxial
bending (Fig. 5). The loads and material properties
of the beam are modeled by independent normal ran-
dom variables, as shown in Table 1. Two limit-state
functions are considered, representing different fail-
ure modes of the beam. The first one represents yield-
ing at the fixed end of the cantilever:

(33)g1(Y,X,y,w, t) = y −
(

600

wt2
Y +

600

w2t
X

)
The second limit-state function restricts the maximum
allowed displacements at the tip of the beam:

g2(Y,X,E,w, t,D0) = D0

− 4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

(34)
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Figure 5: Cantilever beam under biaxial bending

The parameters of the limit-state functions are the
width w and height t of the cross-section of the beam
and the allowable tip displacementD0. The parameter
sensitivities of the probability of failure are estimated
at (w, t,D0) = (2.4,3.9,2.5) [in], which corresponds
to the reliability-based design for an allowable proba-
bility of failure of 3× 10−3.

We present results obtained by directional sam-
pling, line sampling as well as estimates of the pro-
posed approximation obtained by an importance sam-
pling method. The latter involves an initial Monte
Carlo run that estimates the point closer to the limit-
state surface with minimum distance to the origin
of the U-space and a subsequent importance sam-
pling run with importance sampling density centered
at this point. It is noted that the efficiency of this ap-
proach depends on the importance sampling density
estimated by the initial Monte Carlo run. The param-
eter σ of the approximation is evaluated following the
adaptive procedure described in Section 4.3 with a tar-
get coefficient of variation of 5% for the sensitivity
estimates. In the line sampling, the sampling direc-
tion is also estimated by an initial Monte Carlo run.
Moreover, the results are compared with the probabil-
ity sensitivities obtained by FORM.

Table 2 shows the results for the limit-state func-
tion g1. The function g1 is linear in the normal ran-
dom variables and therefore the results obtained by
FORM will be exact. The results obtained by direc-
tional and line sampling show excellent agreement
with the FORM results, with the line sampling be-
ing the most efficient of the two. It is noted, however,
that both methods require the evaluation of the gradi-
ent of the limit-state function in terms of the random
variables at each sample. The estimates of the pro-
posed approximation with importance sampling are
very close to the exact sensitivity results. In Tables
2 and 3, the number of samples of the initial Monte
Carlo run are indicated for the line sampling and im-
portance sampling methods.

In Table 3, the reliability sensitivities obtained for
the limit-state function g2 are shown. This function is
nonlinear in all three random variables, therefore the
FORM results are approximate. The results obtained
by line sampling are considered closer to the exact
sensitivities due to their small coefficient of variation.
Directional sampling produces estimates very close to
the ones by line sampling, although with a signifi-
cantly larger number of samples required to achieve
a small coefficient of variation. The estimates based
on the proposed approximation with importance sam-

Table 1: Uncertain parameters of the cantilever beam.
Parameter Distribution Mean CV

Load X [lb] Normal 500 20%
Load Y [lb] Normal 1000 10%
Yield strength y [psi] Normal 40000 5%
Young’s modulus E [psi] Normal 29× 106 5%

pling are again close to the exact results, further in-
dicating that the proposed approximation can be used
for reliability sensitivity estimation to acceptable ac-
curacy.

6 CONCLUSION

This paper discussed Monte Carlo methods for the es-
timation of reliability sensitivities to limit-state pa-
rameters. The application of two existing variance
reduction techniques to reliability sensitivity estima-
tion, namely directional and line sampling, was con-
sidered and it was pointed out that both methods re-
quire the evaluation of the gradient of the limit-state
function in terms of the random variables at each sam-
ple. Standard Monte Carlo cannot be applied to the
estimation of sensitivities to limit-state parameters,
since these consist of surface integrals over the limit-
state surface. An approximation of the surface integral
through a domain integral was introduced, which al-
lows application of standard Monte Carlo as well as
importance sampling techniques for estimation. The
applicability of the approximation in conjunction with
an importance sampling strategy was demonstrated
through a numerical application.

Finally, it should be noted that estimation of the
proposed approximation requires the derivative of the
limit-state function in terms of the parameters at each
sample. In problems involving limit-state functions
expressed in terms of numerical models this task
can involve significant additional computational cost.
However, an optimization of the method aiming at re-
ducing the number of derivative evaluations can be at-
tempted, since the contribution of most samples away
from the limit-state surface is insignificant. This task
is left to future research.
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