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Zusammenfassung

Systemisches Risiko in Kreditnetzwerken ist ein wachsendes Gebiet intensiver Forschung.
Es wird der Aufsatz ”Liaisons dangereuses: Increasing connectivity, risk sharing and sys-
temic risk” von Battiston et al. (2012) rezensiert, der systemisches Risiko vom Grad der
Diversifizierung in homogenen Kreditnetzwerken ableitet und dabei die Rolle von nega-
tiven Feedback-Schleifen im Hinblick auf die Konstitution der Akteure des Netzwerkes
mit einbezieht. Zum einen erfolgt eine Zusammenfassung des Aufsatzes in mathematisch
präziser Art und Weise und zum anderen werden die Resultate des Aufsatzes vorgestellt.
Weiterhin wird mit Hilfe von Simulationen geprüft, ob diese Resultate bestätigt werden
können, falls Annahmen, die aus analytischen Gründen eingeführt werden, unberücksichtigt
bleiben. Abschließend wird der deutsche Interbankmarkte betrachtet, der einer Studie zu
Folge eine ”Core-Periphery” Struktur aufweisen soll. Hierbei wird ein Teil des zusam-
mengefassten Aufsatzes verwendet, um eine Aussage über systemisches Risiko auf Kred-
itnetzwerken mit solch einer Struktur treffen zu können.

Abstract

Systemic risk analysis of credit networks is an emerging field of interest. In our work
we will first review the paper ”Liaisons dangereuses: Increasing connectivity, risk sharing
and systemic risk” of Battiston et al. (2012), which deals with systemic risk induced
by interdependencies, diversification and feedback mechanisms on credit networks. This
paper shall be summarized in a mathematically rigorous manner. A subsequent discussion
assesses the procedure of the paper and its results by resorting to some simulations.
Particularly, we deal with the simplifications and assumptions used in the paper which
allow on the one hand an analytical treatment but on the other hand possibly involve the
risk of falsification. Finally, we consider in a practical application the German interbank
market, which possesses, according to a research study, a core-periphery structure. For
an examination we will partly refer to the methods of the summarized paper in order to
figure out some conclusions on systemic risk within networks of such a structure.

Keywords: Systemic Risk, Credit Network, Interbank Market, Financial Contagion,
Financial Accelerator, Core-Periphery Structure
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1

1 Introduction

Credits are an essential component of the global economy. Many investment projects
either of private or public nature may only be financed by the way of credit. On February
24th, 2009 U.S. President Obama (2009) has stated in his speech to the joint session of
the Congress that ”. . . the flow of credit is the lifeblood of our economy.” For guarantee-
ing this flow of credits an economy requires a working credit network. Such a network
may contain all kinds of participants: private consumers, small and large companies, the
government and last but not least the financial industry. Particularly banks execute the
role of financial intermediaries which organize the credit exchange between the network’s
participants. Hereby, banks do not only organize the credit flow but also act as creditors
and debtors on the credit markets themselves. For instance there is a large interbank
market on which banks borrow and lend money among each other in order to run their
businesses. Just this market has came under scrutiny during the financial crisis of the last
decade. Though this financial crisis had first limited to a small segment of the financial
industry it vastly spread to the remaining, global financial system and has resulted in a
tenacious distrust between all agents on the interbank market. The following distortion
of this market, which is for instance examined by the work of Heider et al. (2009) or
Tintchev (2013), was not only a problem for the financial industry but also affected the
credit flow of the remaining economy.

The crisis spread from a small segment of the financial industry to the entire, global
banking system has originated a plenty of research activity about connectivity between
banks and the consequences on systemic risk. For instance, Markose et al. (2012) headline
their work by ”Too Interconnected To Fail” following the title ”Too Big To Fail” of
Sorkin (2009). Their work deals with ”. . . [t]he dominance of a few big players in the
chains of insurance and reinsurance for CDS credit risk mitigation in banks’ assets . . . ”
and the effects of this dominance on systemic risk. Further examinations about banks’
interconnectivity and systemic risk are for instance given by the pioneering work of Allen
and Gale (2000), the work of Hurd and Gleeson (2011) or by Battiston et al. (2012).

In the following we are going to review the work of Battiston et al. (2012) whose core
result is an alternative draft to the classical theory of risk diversification. They state
that a too vast risk diversification on the interbank credit market, which implies a higher
connectivity on this market, may increase systemic risk if negative feedback loops on the
banks’ solvency are additionally assumed to exist. We are going to summarize the setting
of Battiston et al. (2012) in a mathematically rigorous manner and will present their
results in detail. While the motivation of the setting is based on a sophisticated model
containing various aspects of financial contagion, the analytical results of Battiston et al.
(2012) rely on a simplified version of this model. Since it is not obviously clear, whether
the core of the analytical results, namely systemic risk as a non-decreasing function of
diversification in the banks’ credit portfolios, are possibly falsified by these simplifications,
we use a simulation procedure in order to confirm that the originally sophisticated model
also provides systemic risk as a non-decreasing function of diversification.

While the examination of Battiston et al. (2012) is limited to an homogeneous interbank
credit market, that means that every agent of the market has the same degree of diversifi-
cation in her credit portfolio, we partially extend the procedure of Battiston et al. (2012)
to an interbank market consisting of a core and a periphery. The last is a practically
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Figure 1.1: The upper plot shows the number of failures and assistance transactions
per quarter where periods of less or no defaults are partially excluded from the time
line. The lower plots are the cumulative numbers corresponding to the three periods
of noticeable default sequences. The data have been drawn from www.fdic.gov.

relevant structure for the interbank credit market as it is for instance identified by the
works of Bech and Atalay (2008), Craig and von Peter (2010) or Langfield et al. (2012).
In the end of this work we like to examine the fragility of such a network structure relying
on observed data of the German interbank market.

1.1 Historical examples of distressed bank markets

In the forefront of the actual work we like to mention some historical examples on dis-
tressed bank markets in order to illustrate that systemic risk is a cyclical appearance.
For giving an overview about the history of distressed interbank markets we refer to data
of the Federal Deposit Insurance Corporation (FDIC). In Figure 1.1 we illustrate for the
years 1934 - 2013 the counts of failures and assistance transactions1 among commercial
and saving banks which had been member of the FDIC system. Apparently, there are
three periods of noticeable default activity:
The recent financial crisis has its origin in the mid of 2007 when the first financial in-
stitutions - predominantly on the US mortgage market as it is explained by Lang and
Jagitani (2010) - came under pressure and partially defaulted. The following spread of
the mortgage market’s distortions to the remaining financial system has augmented the
list of defaulted institutions by large, internationally well-respected institutions like AIG
or Lehman Brothers. This in turn led to massive liquidity problems on the entire inter-
bank credit market and subsequent failures in the financial industry. Figure 1.1 shows
that after a duration of 5 years we still find ourselves in a noticeable period of bank
defaults.
The second period in the 1980s and early 1990s is often tagged as Savings and Loan
Crisis which is characterized by a massive number of failed savings and loan associations
on the U.S. market. Ely (2008) sees the trigger of this misery in the Federal Reserve’s
reversal to a restrictive monetary policy in 1979 which increased interest rates and led
to accumulated losses of 9 USD billion in the savings and loan industry for the following
two years. These losses in an any case fragile savings and loan industry and a sequence
of wrong policy decisions finally resulted in the high number of failed institutions during
this time.
The observable defaults in the 1930s may be referred to the era of The Great Depression.
Actually, for a complete look on this time we would have to extend the time line up to
the late 1920s. As it is described in Galbraith (1988) The Great Depression’s trigger
dated from the Black Friday in 1929. Losses on banks’ balance sheets, an a priori fragile
banking industry and political disabilities amass in the aftermath a high number of failed
banks in the period between 1929 and the Second World War.2

1Assistance transaction are any activities by the FDIC to prevent a complete failure of troubled banks.
A more detailed definition can be found in FDIC (2003).

2The FDIC had been established in 1934. This is the reason why our observation period about failures
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Interestingly, the intervening periods between these crises possess significantly fewer
counts of defaults. For these periods we calculate an averaged count of defaults per quar-
ter of 1.1. Obviously, this figure is essentially less than the observed counts of defaults in
the described crises.
For the following review on the work of Battiston et al. (2012) we can keep in mind
that distress on bank markets appear cyclically. The idea of Battiston et al. (2012) is
to measure systemic risk on the interbank credit market as the intensity with which such
cycles of instability occur. Hereby the intensity is derived from the first passage time of a
process which ought to represent the system-wide financial constitution of the agents on
the interbank market. This first passage time in turn is driven by the inserted financial
accelerator on the one hand and by the diversification degree of the agents’ credit portfolios
on the other hand. As we will see the interdependence of both elements is the basis for
the core result of Battiston et al. (2012) which states that systemic risk in the presence
of a financial accelerator is a non-decreasing function with respect to diversification.

in the FDIC system illustrated in Figure 1.1 stops in 1934.
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Figure 2.1: The figure illustrates an undirected graph on the left and a directed
graph on the right. Both graphs have the same set of nodes, namely, V = {1, 2, 3, 4, 5}.
While for the left graph the set of edges is {{1, 2}, {1, 3}, {1, 5}, {2, 5}}, the set of edges
for the right one is {(1, 2), (1, 4), (4, 5), (5, 4), (5, 2)}.

2 Modeling an interbank credit mark

This section serves to build up the framework in which systemic risk is going to be
examined. We strictly follow Battiston et al. (2012) by defining the interbank credit
market as a graph whereas the graph’s nodes and edges represent the network’s agents and
their bilateral credit relationships among each other. The discussion on credit networks
by referring to the techniques of graphs is widely used. At this point we again mention
as references the work of Hurd and Gleeson (2011) and Markose et al. (2012). A general
introduction to the theory of graphs may be found in Boccaletti et al. (2006).
First we introduce some definitions which concatenate graphs and credit networks in
general. Secondly we give a small example on contagion effects in credit networks. At the
end of this section we state the assumptions which are used by Battiston et al. (2012) to
restrict their examination on a certain kind of network structure.

2.1 Definitions

We give a general definition on graphs which is borrowed from Boccaletti et al. (2006).

Definition 2.1. An undirected (directed) graph G = (V,E) consists of two sets V and E
such that V 6= ∅ and E is a set of unordered (ordered) pairs of the elements of V . While
the elements of E are the edges of the graph, the elements of V are the graph’s nodes.

This definition emphasizes that we have to distinguish between two kinds of graphs,
namely, directed and undirected ones. While in the latter it would not matter whether
an edge between two nodes starts in the one or the other, the former exactly makes this
difference. As an example see Figure 2.1 which graphically shows an undirected graph on
the left and a directed graph on the right.
Battiston et al. (2012) demonstrate the interlinkage within credit networks by applying
directed graphs, so, the next definitions are used to introduce ordinary expressions and
notations exclusively for directed graphs.

Definition 2.2. Let i ∈ V be a node in the directed graph G = (V,E). Then

Vin(i) = {j ∈ V : (j, i) ∈ E}

is the in-neighborhood of i ∈ V and analogously

Vout(i) = {j ∈ V : (i, j) ∈ E}

the out-neighborhood of i ∈ V . Additionally we define by

din(i) = |{j ∈ V : (j, i) ∈ E}|
dout(i) = |{j ∈ V : (i, j) ∈ E}|,
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the in- and out-degree of i ∈ V respectively, where |S| denotes the cardinality of any set
S.

The next definition presents a convenient way to express graphs in a compact form.

Definition 2.3. Let G = (V,E) be a directed graph with |V | = N < ∞. The N × N
adjacency matrix A = (aij)

N
i=1 of the graph G is defined by the entries

aij =

{
1, if (i, j) ∈ E
0, else

for i, j = 1, . . . , N .

The entries of the adjacency matrix immediately signal whether there is a link between two
nodes and in which direction if so. Unless otherwise stated, we suppose for the adjacency
matrix of any directed graph a zero diagonal. This constraint means an exclusion of
self-loops in directed graphs and implies for all i ∈ V that (i, i) may not be found in E.
To extend the notion of a directed graph a third measure is going to be introduced by the
next definition.

Definition 2.4. A weighted, directed graph is a directed graph Gw = (V,E,W ) with
additional set W , where for all l ∈ E there is a unique weight wl ∈ W .

The weights wl ∈ W allow to distinguish and compare the various links within a graph.
Thus, a weighted, directed graph may be considered as a subtle extension of the primarily
introduced version of a graph and provides more information about the interaction be-
tween its nodes. Based on this we define the weighted adjacency matrix Aw = (awij)

N
i,j=1

with entries

awij =

{
w(i,j), if (i, j) ∈ E
0, else.

The adjacency matrix of a weighted, directed graph with entries

aij =

{
1, if awij 6= 0

0, else

is the corresponding unweighted adjacency matrix, that is the matrix signaling the existing
edges but disregarding the weights.

2.2 Contagion in credit networks

In various scientific disciplines network analysis on graphs is a popular method to inves-
tigate complex interaction and connectivity between network participants. The consider-
ation of disease spread in the field of epidemiology has always been a popular application
of network analysis. In this context, the pioneering work of Kermack and McKendrick
(1927) carried out a theory which resulted in the extensively used SIR-models. Mean-
while, interaction in the world wide web is widely examined - for instance the spread of
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virtually viruses by Berger et al. (2005). The list of examples can be arbitrarily extended,
however, many applications share the same interest: How is the entire network affected by
an initial disruption anywhere in the network? If we now turn to financial credit markets,
not only the last financial crisis revealed that disruptions in the credit market, which are
first locally limited, may lead to market-wide distortions. Not without reasons economists
like referring to the image of a virus spread within a population when they talk about the
development of a crisis on the financial markets.3 In literature the transition of financial
difficulties from one agent to another agent is often tagged as financial contagion. In the
following we exemplify how financial contagion may happen if two agents are linked by a
bilateral credit relationship.

Example 1. 1. Given two agents A and B with initial balance sheets as follows

Balance Sheet (1) of A
Cash 5 Equity 10
Other Assets 35 Debt 30

Balance Sheet (1) of B
Cash 20 Equity 40
Other Assets 60 Debt 40

2. Now, suppose that A is interested in realizing an investment project but has not got
sufficient liquidity. Therefore she borrows cash from B. The balance sheets would change to

Balance Sheet (2) of A
Cash 20 Equity 10
Other Assets 35 Debt 45

Balance Sheet (2) of B
Cash 5 Equity 40
Other Assets 75 Debt 40

3. For any reason A slides into financial difficulties and is not able to reimburse the
loan to B who then must depreciate her accounts receivable on A. Since depreciations are
expenditures this directly results in a reduction of equity.

Balance Sheet (3) of B
Cash 5 Equity 25
Other Assets 60 Debt 40

We see that a primal weakness at A may immediately effect the financial strength of B
subsequently. Obviously, the shape of these effects depend on the amount of credit and B’s
own initial financial situation, however, in worst case it might even develop to the point
of B’s bankruptcy. In this example B probably survived the case due to enough equity,
but imagine that she had defaulted as well, then the creditors of B’s debt had to conduct
depreciations on their balance sheets, too. We can conclude that starting difficulties at
one agent are under certain circumstances not only limited to bilateral business partners
but may indeed spread by financial contagion to other parts of the credit network as well.
The example has supposed a complete payment default of A. Let us now assume that A
does not default in step 3, however, her credit-worthiness is seriously stricken. This might
be reflected by rising spreads on CDS which insure creditors against the default of A. If
and how this is reflected in B’s balance sheet depends on the applied accounting standards.
In the case of strict fair value accounting and if there were also an opportunity to revalue
B’s account receivables against A reliably, B would have to adjust them in her balance

3For instance, see Dodd and Mills (2008) who motivate their presentation on the last financial crisis
by the example of a virus spread.
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sheet downwards. Consequently, not only an actual default but also partial changes in
the financial strength of a debtor may effect the creditor’s strength immediately.4

By continuing along the contents of Battiston et al. (2012) we develop a model which is
thought to examine financial contagion in interbank credit markets based on these kinds
of examples.

2.3 The interbank credit market as a graph

By the next definition we will formulate an interbank credit market as weighted, directed
graph.

Definition 2.5. In the following, a directed, weighted graph Gw = (V,E,W ) matches
a credit interbank market where the market’s agents are represented by the set V . Each
agent i ∈ V manages a credit portfolio Ei ⊆ E, where for all j ∈ V it is (i, j) ∈ Ei if
agent j is a debtor of agent i. It is agreed that for all i ∈ V∑

(i,j)∈Ei

w(i,j) = 1

holds, where a weight w(i,j) ∈ W corresponds to w(i,j) · 100 % of the total credit amount
agent i has issued to other agents in V .

To be in line with Battiston et al. (2012) we underlay the interbank market with the
following specifying assumptions:

• A(1.1) The interbank credit market consists of N agents, i.e. |V | = N .

• A(1.2) Each agent acts as creditor and issues credits to 0 < k ≤ N other agents
from the same market.

• A(1.3) Each issued credit amounts to 1
k
·100 % of the agent’s credit portfolio for the

interbank market.

Assumption A(1.1) restricts our considerations to finite graphs where A(1.2) and A(1.3)
include a simplification of the real world. Obviously in real world credit markets there will
be agents with different credit portfolio sizes, however, A(1.2) and A(1.3) can be thought
as an approximation to an homogeneous credit market with agents all of the same size and
with comparable diversified credit portfolios. Particularly the market does not have any
key player or a group of creditors which comparatively issue a higher number of credits
than the remaining market. Hereby k is taken as measure for the present connectivity
within the credit market and simultaneously as degree of diversification in the agents’
credit portfolios.
If we use the technical expressions from graph theory and referring to Definition 2.2 we
obtain on an interbank market fulfilling assumption A(1.2) for all i ∈ V

dout(i) = k.

The next proposition characterizes the adjacency matrix of a graph representing an in-
terbank credit market with assumptions A(1.1) - A(1.3).

4For a definition and close discussion about fair value accounting as a reason for financial contagion
effects see Ryan (2008).
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Proposition 2.1. Any weighted directed graph Gw = (V,E,W ) which represents an in-
terbank credit market fulfilling assumptions A(1.1) - A(1.3) has a weighted, row stochastic
adjacency matrix Aw = (awij)

N
i,j=1 and an unweighted adjacency matrix A = (aij)

N
i,j=1 for

which it holds that A = kAw.

Proof. By definition one knows that

N∑
j=1

aij = degout(i)

for all i ∈ V . Assumption A(1.2) prescribes that degout(i) = k. Assumption A(1.3) in
turn indicates that w(i,j) = 1

k
for all (i, j) ∈ E. So, we can conclude that

N∑
j=1

awij =
N∑
j=1

1

k
aij =

1

k
degout(i) = 1.

The proposition gives an idea how to represent a credit interbank market in matrix form
which is going to be helpful for approaching some simulations on the suggested credit
interbank market at a later point.
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3 The risk of default in homogeneous networks

Up to now we have implemented a credit market as a graph while such a graph is first a
static formation. Since we are interested in the agents’ risk of default over time, we must
extend the model by a dynamical component. This is going to be done by deriving a
stochastic differential equation. We follow Battiston et al. (2012) by motivating a sophis-
ticated, multivariate system of stochastic differential equations (SDEs) which includes a
series of possible effects impacting the participants of a credit network. However, in order
to receive explicit formulas for determining the individual risk of default for one agent the
system of stochastic differential equations is reduced to a simple, univariate drift-diffusion
model. In an added discussion we deal with the question whether the resulting univari-
ate process still includes sufficient information in order to make inferences on an agent’s
default risk within the originally multivariate system of coupled SDEs.

3.1 Financial robustness in continuous time

Each agent i in our network is going to be endowed by a measure called financial robustness
which shall quantify an agent’s financial constitution. First, there is no concrete financial
ratio such as, for instance, the ratio equity to total assets which matches the financial
robustness directly. Battiston et al. (2012) rather perceive loosely the financial robustness
as a measure for an agent’s level of equity.
In their brief calibration exercise Battiston et al. (2012) use the normalized market
capitalization of financial institutions, where normalized means that market capitalization
is divided by its own maximum value on a given observation time line.
Another possible interpretation of the financial robustness might be just a kind of rating
reflecting the public opinion about an agent’s financial strength.

3.1.1 Specification of the financial robustness

The financial robustness of B in Example 1 would have been suffered during the three
steps due to the default of her debtor A or in other words because the financial robustness
of her debtor A has been dropped to zero and generated a loss on B’s equity. This
functional chain is taken by Battiston et al. (2012) as a motivation to specify the financial
robustness of agent i ∈ V , which we denote in the following by ρDi (n) for discrete time
steps n = 0, 1, . . . , in dependence of the financial robustness of agent i’s debtors. The
specification is enriched by three further assumptions on the credit market and its agents:

• A(1.4) The graph Gw which represents the credit network is fixed in n = 0 and then
stays constant for n > 0, i.e. the composition of one agent’s credit portfolio will not
change over time.

• A(1.5) Next to the robustness of other agents the robustness of any agent i ∈ V is
additionally driven by an external effect which is going to be modeled by a Gaussian
process (σξi(n))n=0,1,... where ξi(n) ∼ N(0, 1) iid and σ > 0 deterministic. The
Gaussian processes are supposed to be independent for all i ∈ V .

• A(1.6) The agents apply fair value accounting to their credit portfolios and adjust-
ments in their balance sheets occur permanently.



10 3 THE RISK OF DEFAULT IN HOMOGENEOUS NETWORKS

By A(1.5) we take into account that the financial robustness of an agent is not only
subject to the developments in her credit portfolio alone but also to some random noise.
We can suppose that an agent i will probably not only finance other banks’ liabilities
but also invest in other projects. Of course, the return on these projects will impact the
financial robustness as well and if one assumes stochastic returns, it is a nearby to insert
the projects’ impact on the financial robustness over time as random noise.

Based on this and following Battiston et al. (2012) we specify the financial robustness ρDi
of agent i as

ρDi (n+ 1) =
∑

j∈Vout(i)

w(i,j)

(
ρDj (n) + σξj(n)

)
=

1

k

∑
j∈Vout(i)

(
ρDj (n) + σξj(n)

)
. (3.1)

for n = 0, 1, . . . . So, the financial robustness of agent i in n+ 1 arises from the weighted
robustness of her debtors in n which is additively adjusted by the random component
from (A5).

This equation implies that each and every minor change ε > 0 in the robustness of a
debtor is directly reflected in the robustness of the creditor with w(i,j) · ε one step later.
Without assumption (A6) only actual losses would affect an agent’s equity in her balance
sheet and we would have a problem to argue for this equation. For instance, suppose an
accounting standard which states, that a creditor must only depreciate account receivables
on a credit if the debtor’s default has indeed occurred, then the equation

ρ?i (n+ 1) =
∑

j∈Vout(i)

w(i,j)1(ρ?j (n)>0) + σξi(n)

would have presumably been more convenient where 1M denotes the indicator function
on the set M .5

By proceeding with Equation (3.1) we see that this equation may be rewritten in multivari-

ate form as matrix-vector notation with column vectors ρD(n) :=
(
ρD1 (n), . . . , ρDN(n)

)T
, ξ(n) =(

ξ1(n), . . . , ξN(n)
)T

and the network’s weighted adjacency matrix Aw as

ρD(n+ 1) = AwρD(n) + σAwξ(n). (3.2)

This representation of the financial robustness, however, is not the final representation
used by Battiston et al. (2012). For deriving analytical results the last equation will be
further extended but also simplified as follows:

• Transformation of the last equation into continuous time

• Inserting the financial accelerator effect as a jump process

• Reduction to one dimension.

5There has not been a discussion on accounting standards and its implications on the model in Battis-
ton et al. (2012), however, we think that for the specification of the financial robustness, as in Equation
(3.1), assumption A(1.6) should be postulated.
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3.1.2 Continuous transformation

The transformation of Equation (3.2) into continuous time takes place in order to rely
for future analytical results on the mean first passage time of stochastic processes in
continuous time. Actually, Battiston et al. (2012) derive a SDE in continuous time from
Equation (3.2). We argue this step by relying on the Euler-Maruyama scheme which is
defined in Mao (1997) as follows.

Definition 3.1. Let (ζ(t))t≥0 be a RN -valued stochastic process in continuous time which
satisfies the stochastic integral equation

ζ(t) = ζ(0) +

∫ t

0

G(ζ(s))ds+

∫ t

0

Σ(ζ(s))dW (s), (3.3)

where G ∈ C
(
RN ;RN

)
, Σ ∈ C

(
RN ;RN×N) and W is a N-dimensional Brownian motion

on a probability space (Ω,F , P ) with filtration (F)t≤0. Then, the Euler-Maruyama scheme
ζm(t) defined on the interval [0, T ] for the equidistant partition tn = n

m
T , 0 ≤ n ≤ m

denotes

ζm(t) = ζm(tn) +G(ζm(tn))(t− tn) + Σ(ζn(tn))(W (t)−W (tn)), (3.4)

for t ∈ (tn, tn+1] and ζm(t0) = ζ(0).

The Euler-Maruyama scheme serves as an approximation procedure of SDEs whose solu-
tions are not explicitly known. For numerical usage one predetermines the time horizon T
and the discretization size T

m
in order to evaluate ζm at the sampling points t = 0, T

m
, . . . , T

by simulating the increments of the Brownian motion. The next theorem ensures strong
convergence of the Euler-Maruyama scheme to the stochastic process ζ as m→∞ under
some regularity conditions for G and Σ.

Theorem 3.1. Assume a Euler-Maruyama scheme ζm(t) for ζ(t) being the unique solu-
tion of Equation (3.3) whereas for functions G and Σ there are two positive constants C̄
and C such that for all x, y ∈ RN the conditions

max
(
|G(x)−G(y)|2, |Σ(x)− Σ(y)|2

)
≤ C̄|x− y|2

max
(
|G(x)|2, |Σ(x)|2

)
≤ C(1 + |x|2)

are fulfilled. Then there is a positive constant C? depending on C̄ and C so that

E

[
sup

0≤t≤T
|ζm(t)− ζ(t)|2

]
≤ C?

m
.

Proof. The proof and the formula on C? may be found in Mao (1997).

We use the last result to argue for the transformation of the process in Equation (3.2)
into continuous time as follows:

1. At first ρD(n) is subtracted on both sides of Equation (3.2) which yields

ρD(n+ 1)− ρD(n) = (Aw − IN×N)ρD(n) + σAwξ(n),

where IN×N denotes the N ×N identity matrix.
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2. We rewrite the last equation as

ρD(n+ 1) = ρD(n) + (Aw − IN×N)ρD(n)(n+ 1− n) + σAwξ(n).

Now, by setting tn+1 = n+ 1, tn = n,G(ρD(tn)) = (Aw − IN×N)ρD(tn),Σ(ρD(tn)) =
σAw and by considering ξ(n) as the increment of a Brownian motion over an interval
of length 1, the last equation fits to the Euler-Maruyama scheme in Equation (3.4),
while the discretization size here is 1.

3. If we reduce the discretization size of the last equation towards zero, we may argue
that ρD(n + 1) converges in the sense of Theorem 3.1 to a stochastic process ρ in
continuous time having the dynamics

dρ(t) = (Aw − IN×N)ρ(t)dt+ σAwdW (t) (3.5)

where W (t) denotes a N -dimensional Brownian motion.

For the last step we additionally have to check whether the functions G and Σ induced by
step 2 fulfill the conditions of Theorem 3.1. Therefore, we argue that the linear functions
G and Σ are Lipschitz-continuous due to their bounded derivatives. Hence, one can find
positive constants C̄ and C so that both conditions from Theorem 3.1 are fulfilled.

Before we proceed with the contains of Battiston et al. (2012) we insert a proposi-
tion which points out the explicit solution of Equation (3.5) denoting the dynamics of a
multivariate Ornstein-Uhlenbeck process. The derivation of this result may be found in
Gardiner (2004).

Proposition 3.1. Let the SDE from Equation (3.5) be given with initial condition ρ(0) =

IN , where IN :=
[
1, . . . , 1

]T ∈ RN .

1. The SDE’s explicit solution is given by

ρ(t) = exp [t(Aw − IN×N)] IN +

∫ t

0

σ exp [(t− s)(Aw − IN×N)]AwdW (s)

with the matrix exponential exp[X] :=
∑∞

m=0
1
m!
Xm.

2. E [ρ(t)] = exp [t(Aw − IN×N)] IN

3. For any t, t′ > 0

Cov [ρ(t), ρ(t′)] =

min(t,s)∫
0

σ2 exp [(t− s)(Aw − IN×N)]Aw(Aw)T exp
[
(t′ − s)(Aw − IN×N)T

]
ds

where Cov[x, y] := E[xyT ] − E[x]E[y]T denotes the covariance matrix for two RN -
valued random vectors x and y.
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3.1.3 Financial Accelerator

The i-th row of Equation (3.5) contains the component ∑
j∈Vout(i)

1

k
ρj(t)− ρi(t)

 dt,

which may be considered as a kind of mean-reverting element. More precisely, the financial
robustness of agent i is permanently adjusted towards her debtors’ averaged robustness.
This is in line with the motivating Example 1 and the associated notes about fair value
accounting. Battiston et al. (2012) indicate that single losses in the balance sheet which
have at first only a one-time effect on an agent’s robustness may be succeeded by further
negative effects. In order to illustrate such a succession, we are going to extend Example
1 from Section 2.2 by a further step:

Example (cont.) 1. 4. Due to credit losses in step 3 B’s rating is downgraded by several
rating agencies. As a trader of derivatives and other securities B has to face increasing
margin calls by her brokers. In order to satisfy all margin calls she has to sell a set of
her assets under time pressure. In doing so she suffers losses since some of the assets are
sold under book value. Thus, her equity is reduced once again.6

The extension of the example shows that a creditor’s equity does not have to be affected
just by the non-payed credit but might also suffer subsequently further negative effects.
There is a series of other examples which can depict such effects. For one further example,
let us assume that B herself is debtor and has to renegotiate her credit line regularly. If B’s
creditors have been informed about B’s losses in step 3 of Example 1, the new credit terms
will probably turn out worse from B’s perspective. This in turn effects her robustness
negatively again and may eventually trigger a downward spiral on her robustness.
Battiston et al. (2012) name such succession effects financial accelerator and use a jump
process to incorporate these effects into Equation (3.5). The set T = {t0, t1, . . . } is going
to include the assumed deterministic jump times of this process. It is furthermore agreed
that

tn = tn−1 + s

for n ≥ 1 where s > 0. In order to avoid any ambiguities, we additionally set t0 ≥ d + s
for 0 < d < s. Actually, Battiston et al. (2012) have not payed attention to t0, however,
without our restriction we would have to consider the process of the financial robustness
in the later proceeding for time t less than 0, which is not wanted, since the process is
going to be started always in t = 0 and there is no consensus by Battiston et al. (2012)
about how to handle the process for t < 0.
In practice financial accelerator effects presumably arise when an agent has to report her
balance sheets which normally occurs in regular time intervals, hence, the deterministic
jump times with a constant distant should not disturb.

6Suddenly occurring margin calls oftentimes cause irrevocable defaults of stricken agents in the finan-
cial industry. For a practical example one is advised to Abelow (2011), who declares, as the former COO
of MF Global, the reasons of MF Global’s bankruptcy to the US Bankruptcy Court. He argues in point
35 that increasing margin requirements against MF Global as a consequence of rating downgrades have
contributed to MF Global’s bankruptcy due to a hereby stricken liquidity.
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In order to incorporate the jump process of the financial accelerator into the dynamics of
the financial robustness, we apply a measure which is substantiated in the next lemma.
For a general introduction and definitions about measure theory we refer to Elstrodt
(2009).

Lemma 3.1. Let B(R) denote the Borel-algebra over R. Then, the function

πi : B(R)→ [0,+∞], πi(B) =
∑
tn∈T

1B(tn)

defines a measure on B(R) where i ∈ V .

Proof. Per definition of a measure we have to check

(i) πi(∅) = 0,

(ii) πi ≥ 0,

(iii) πi

(⋃∞
j=1Bj

)
=
∑∞

j=1 πi(Bj) for any sequence (Bj)j≥1 of disjoint sets in B(R).

Obviously (i) and (ii) are fulfilled. For (iii) we refer to a well known property of indicator
functions, namely, for any sequence (Bj)j≥1 of disjoint sets it holds

1B(s) =
∞∑
j=1

1Bj(s),

where B :=
⋃∞
j=1Bj. Then, we can deduce that

πi(B) =
∑
tn∈T

1B(tn)

=
∑
tn∈T

∞∑
j=1

1Bj(tn)

=
∞∑
j=1

∑
tn∈T

1Bj(tn)

=
∞∑
j=1

πi(Bj).

The interchange of summations in step 3 is reasoned by Tonelli’s theorem due to the non-
negativity of the occurring summands. The final step is simply obtained by the definition
of πi.

Remark: We can use measure πi for Lebesgue integration, i.e. for any B(R)-measurable
function f : R→ R and any B ∈ B(R), we have∫

B

f(u)dπi(u) =
∑

tn∈T ∩B

f(tn).

We now define the financial accelerator effect as a stochastic process and allude that our
definition is the same as the one of Battiston et al. (2012), though inscribed by a slightly
different way.
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Definition 3.2. We define the financial accelerator of agent i as a stochastic process
(hi(t))t≥0 on the probability space (Ω,F , P ) by setting

hi(t, ω) = −α1Ci(t−d)(ω)1T (t)

with Ci(t− d) supposed to be in F , T = {t0, t1, . . . } as above, α ≥ 0 and 0 < d < s.
The N−dimensional vector h denotes the multivariate financial accelerator, that is

h(t, ω) =
(
h1(t, ω), . . . , hN(t, ω)

)T
.

We rewrite the dynamics in Equation (3.5) by incorporating the financial accelerator effect
as

dρ(t) = (Aw − IN×N)ρ(t)dt+ σAwdW (t) + h(t)dπ(t), (3.6)

where π(t) =
(
π1(t) . . . πN(t)

)T
.

The financial robustness is now driven by two sources: On the one side the multivari-
ate Ornstein-Uhlenbeck Process which contains permanent adjustment of the financial
robustness due to one-time accounting effects resulting from the changes in the debtors’
robustness or some random noise. On the other side there are now additionally periodical
jumps denoting the financial accelerator effect. The jumps’ arrivals are not clear yet since
the set Ci(t− d) has not been specified so far. Prior to their definition we allude that for
any fixed ω ∈ Ω the fibers of hi(t, ω) are subsets of the countable set T . Hence, hi(t, ω)
is B(R)-measurable and the integral∫ t

0

h(s)dπ(s)

is component-by-component defined with respect to Lebesgue-integration.
By following the procedure of Battiston et al. (2012) and recalling the extension of
Example 1 as a motivation, we agree upon specifying the sets Ci as

Ci(t) :=

{
{ρi(t)− ρi(t− s) < −ε} if t ≥ t0 − d
∅, else

(3.7)

with respect to the process ρi resulting from the dynamics in Equation (3.6). In the next
lemma we show that Ci is F -measurable.

Lemma 3.2. For the process ρ with dynamics as in Equation (3.6) and the N-dimensional
Brownian motion W defined on the probability space (Ω,F , P ) the sets Ci(t) of Equation
(3.7) are contained in F for all t ≥ 0 and i ∈ V .

Proof. As ∅ ∈ F the claim is fulfilled for t ∈ [0, t0 − d). For t = t0 − d we have

Ci(t0 − d) = {ρi(t0 − d)− ρi(t0 − d− s) < −ε}

=
{∫ t0−d

t0−d−s

 ∑
j∈Vout(i)

1

k
ρj(u)− ρi(u)

 du+

∫ t0−d

t0−d−s
hi(u)dπi(u)
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+
σ

k

∑
j∈Vout(i)

(Wj(t0 − d)−Wj(t0 − d− s)) < −ε
}
.

By definition of πi it is ∫ t0−d

t0−d−s
hi(u)πi(u) = 0

So, we can deduce that

Ci(t0 − d) =
{∫ t0−d

t0−d−s

 ∑
j∈Vout(i)

1

k
ρj(u)− ρi(u)

 du

+
σ

k

∑
j∈Vout(i)

(Wj(t0 − d)−Wj(t0 − d− s)) < −ε
}
,

where the left side of the inequality within the brackets is according to Proposition 3.1 the
increment of the i-th element of a multivariate Ornstein-Uhlenbeck process. Particularly,
it is well defined on the probability space (Ω,F , P ). Hence, Ci(t0 − d) ∈ F which we use
as base clause for the following induction procedure.
Assume the induction hypothesis Ci(tn − d) ∈ F and let t ∈ (tn − d, tn+1 − d]. Then we
have per definition

Ci(t) =
{∫ t

t−s

 ∑
j∈Vout(i)

1

k
ρj(u)− ρi(u)

 du+

∫ t

t−s
hi(u)dπi(u)

+
σ

k

∑
j∈Vout(i)

(Wj(t)−Wj(t− s)) < −ε
}
,

where ∫ t

t−s
hi(u)dπi(u) =

∫ t

t−s
−α1Ci(u−d)1T (u)dπi(u)

= −α1Ci(tn−d).

Due to the induction hypothesis the last indicator function is F -measurable. Hence, we
conclude that the left side of the inequality in the set Ci(t) is F -measurable as well for
any t ∈ (tn, tn+1]. Particularly, this holds true for t = tn+1 − d so that we deduce the
lemma’s claim.

For any tn ∈ T the set Ci(tn − d) may be regarded as a control set for the financial
accelerator affecting agent i. Only if an ω ∈ Ω has been realized so that the increment
of the realization of ρi undershoots −ε on the interval [tn − d − s, tn − d], the financial
accelerator effect will occur in tn as a jump with size −α. Since tn−1 = tn − s and d < s
the control of the increment on the interval [tn − d − s, tn − d] incorporates a possible
financial accelerator effect in tn−1 which is a justification of the name financial accelerator.
We follow Battiston et al. (2012) by setting for the remaining considerations always

s := 1.
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Equation (3.6) covers all the impacts on an agent’s financial robustness mentioned in
Example 1 and its extension. Due to its computational complexity Battiston et al. (2012),
however, avoid working with these dynamics but reduce their complexity up to a univariate
drift-diffusion SDE, which is then used for deriving analytical results on the financial
robustness in the context of default risk. By following these steps it will admittedly not
be clear whether all of the original motivation entirely covered by Equation (3.6) will be
adequately regained in the later analytical results or whether some of the contains of the
motivation will become lost at the cost of complexity reduction. Having derived analytical
results on the reduced SDE, we will later proceed some simulations on the dynamics in
Equation (3.6) and try to figure out whether the analytical results can still be confirmed.

3.1.4 Reduction to one dimension

In a first step of complexity reduction Battiston et al. (2012) pick out one row of Equation
(3.6), that is

dρi(t) =

 ∑
j∈Vout(i)

1

k
ρj(t)− ρi(t)

 dt+
σ

k

∑
j∈Vout(i)

dWj(t) + hi(t)dπi(t).

At this point Battiston et al. (2012) decouple the row’s dependency on the remaining
system of SDEs by removing the dynamics’ dependency on the adjacency matrix Aw.
Therefore, they first neglect the mean-reverting term ∑

j∈Vout(i)

1

k
ρj(t)− ρi(t)

 dt

and secondly compress the sum of the diffusion term by replacing

σ

k

∑
j∈∈Vout(i)

dWj(t)

with

σ√
k
dW ?

i .

Hereby W ?
i denotes a Brownian motion defined on the same probability space as the N -

dimensional Brownian motion W . The argumentation for the last manipulation is based
on nothing else than the well-known property that the sum of k independent N(0, 1)-
distributed random variables equals a N(0, k)-distributed random variable again.

3.1.5 Transformation of the financial accelerator

The originally multivariate dynamics in Equation (3.6) has thus reduced to

dρi(t) = hi(t)dπi(t) +
σ√
k
dW ?

i (t) (3.8)
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i.e. the reaming effects on the financial robustness are the financial accelerator and some
random noise.
At this point we allude on the specification of the threshold ε in the control set Ci(t) of
Equation (3.7) which is determined by Battiston et al. (2012) as

ε := ε?
σ√
k
.

In Equation (3.8) the random noise impacting ρi is expected to have a magnitude of σ√
k

on an interval of length 1 by neglecting a possible financial accelerator effect. If one sets
ε? = 1 a financial accelerator effect will occur as soon as there is a downward motion
on the process stronger than expected. According to Battiston et al. (2012) that is in
line with practice. If an agent’s performance, during a quarter for instance, has been
worse than expected, her poor performance will be subsequently penalized by measures
of various stakeholders like rating agencies, creditors, investors and so on which is then
modeled by the jump process hi.
A readjustment of ε? may be used to regulate the accelerator’s sensitivity. A value less
than 1 would induce a faster occurrence while a value greater than 1 causes the opposite.
Nervous markets, which respond highly sensitively to negative information, would for
instance suggest a value less than 1.
The term hi(tn), however, still possesses analytical difficulties as it depends on past real-
izations of ρi. Battiston et al. (2012) avoid those difficulties by asking for the expected
value of hi(tn) at any tn ∈ T in order to remove the randomness on the financial accel-
erator. We give the lemma which presents the expected value of the financial accelerator
based on the simplifying dynamics of Equation (3.8).

Lemma 3.3. Assume a process ρi(t) with dynamics

dρi(t) = hi(t)dπi(t) +
σ√
k
dW ?

i (t), (3.9)

where hi is defined by Definition 3.2 with 0 < d < s = 1 and α > 0. For T = {t0, t1, . . . }
we agree upon t0 ≥ 1 + d, tn = tn−1 + 1 and

ε = ε?
σ√
k
.

Then for t0 it holds

E[hi(t0)] = −αΦ (−ε?) ,

where Φ denotes the distribution function of a Gaussian distribution with zero mean and
standard deviation 1. For tn ∈ T with n > 0 we have

E[hi(tn)] = −α

(
Φ

(
−ε? +

α
√
k

σ

)
q(tn−1) + Φ (−ε?)

(
1− q(tn−1)

))
.

Proof. Note that for any tn ∈ T , n ≥ 0

E[hi(tn)] = −αE[1Ci(tn−d)]
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= −αP ((ρi(tn − d)− ρi(tn − d− 1) < −ε)

while we are going to set in the following for the sake of simplicity

q(tn) := P ((ρi(tn − d)− ρi(tn − d− 1) < −ε) . (3.10)

If n > 0 we can deduce that

ρi(tn − d)− ρi(tn − d− 1) =

∫ tn−d

tn−d−1
hi(u)dπi(u) +

∫ tn−d

tn−d−1

σ√
k
dW ?

i (u)

= hi(tn−1) +
σ√
k

(W ?
i (tn − d)−W ?

i (tn − d− 1)) .

By using that W ?
i (tn − d)−W ?

i (tn − d− 1) := ζ?i ∼ N(0, 1), we obtain

q(tn) = P ((ρi(tn − d)− ρi(tn − d− 1) < −ε)

= P

(
ζ?i < −ε? −

hi(tn−1)
√
k

σ

)
.

For n = 0 Equation (3.10) reduces to

q(t0) = P (ζ?i < −ε?) = Φ (−ε?)

since there is no financial accelerator effect at any t < t0.
For the case n > 0 we refine q(tn) by applying the formula of total probability which is
for instance stated in Klenke (2006). We get the recursive formula

q(tn) = P

(
ζ?i < −ε? −

hi(tn−1)
√
k

σ

∣∣∣hi(tn−1) = −α

)
P
(
hi(tn−1) = −α

)
+ P

(
ζ?i < −ε? −

hi(tn−1)
√
k

σ

∣∣∣hi(tn−1) = 0

)
P
(
hi(tn−1) = 0

)
= P

(
ζ?i < −ε? +

α
√
k

σ

∣∣∣hi(tn−1) = −α

)
q(tn−1)

+ P
(
ζ?i < −ε?

∣∣∣hi(tn−1) = 0
)(

1− q(tn−1)
)
.

Now, we use that ζ?i is the increment of the Brownian motion W ?
i on [tn − d− 1, tn − d]

whereas h(tn−1) is a function in W ?
i on the interval [0, tn − d− 1]. Hence, we can assume

stochastically independence between ζ?i and hi(tn−1) so that the last equation may be
written as

q(tn) = Φ

(
−ε? +

α
√
k

σ

)
q(tn−1) + Φ (−ε?)

(
1− q(tn−1)

)
.
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Remark: The lemma’s setting assumed α > 0, i.e. a financial accelerator effect is avail-
able. In the case α = 0, hi(tn) is obviously 0 for all tn ∈ T , hence, we simply have
E[hi(tn)] = 0.

Battiston et al. (2012) keeps on simplifying by arguing that q(tn) moves into a time
independent steady state q as n→∞ which is substantiated in the next lemma.

Lemma 3.4. The sequence (q(tn))n≥0 from Lemma 3.3 is monotonously increasing and
there exists q such that

q(tn)→ q

as n→∞. Particularly, it holds that

q =
Φ (−ε?)

1− Φ
(
−ε? + α

√
k

σ

)
+ Φ (−ε?)

.

Proof. Consider function

f(x) = Φ

(
−ε? +

α
√
k

σ

)
x+ Φ (−ε?) (1− x)

which has the unique fixed point

x? =
Φ (−ε?)

1− Φ
(
−ε? + α

√
k

σ

)
+ Φ (−ε?)

∈ [0, 1].

Obviously f(x) ∈ [0, 1] for all x ∈ [0, 1]. Moreover for any x, y ∈ [0, 1] we have

|f(x)− f(y)| =

(
Φ

(
−ε? +

α
√
k

σ

)
− Φ (−ε?)

)
|x− y|

where

0 ≤ L := Φ

(
−ε? +

α
√
k

σ

)
− Φ (−ε?) < 1

if α > 0. Thus, function f is a contraction mapping on the bounded interval [0, 1] to which
we can apply the Banach fixed point theorem. The theorem can be for instance found in
Süli and Mayers (2003) and states - with respect to our case - that for q(t0) ∈ [0, 1] the
sequence q(tn) = f(q(tn−1)) converges to the unique fixed point of f , which we used to
denote by x?. Hence, the convergence of q(tn) towards

q =
Φ (−ε?)

1− Φ
(
−ε? + α

√
k

σ

)
+ Φ (−ε?)

.

is shown. For the claim on monotonicity we use that for α > 0

f ′(x) = Φ

(
−ε? +

α
√
k

σ

)
− Φ (−ε?) > 0
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and

q(t1) = Φ

(
−ε? +

α
√
k

σ

)
q(t0) + Φ (−ε?) (1− q(t0))

= Φ (−ε?)

(
Φ

(
−ε? +

α
√
k

σ

)
− Φ (−ε?) + 1

)
> Φ (−ε?)
= q(t0)

The last one is taken as base clause for the induction step

q(tn+1) = f(q(tn)) ≥ f(q(tn−1)) = q(tn),

which finishes the proof.

Battiston et al. (2012) use these results in order to replace in the dynamics

dρi(t) = hi(t)dπi(t) +
σ√
k
dW ?

i (t)

the original component of the financial accelerator, namely, hi(t)dπi(t) by the continuous
drift term −αqdt, hence, they do not only remove any randomness from the financial
accelerator but also distribute the jumps onto the whole continuous time. The dynamics
for the financial robustness reads then

dρi(t) = −αqdt+
σ√
k
dW ?

i (t). (3.11)

The replacement of hi involves the advantage that in further analytical research on the
dynamics of the financial robustness one does not have to rely any more on the history of
the robustness’ process in order to execute the financial accelerator effect. Furthermore,
by the usage of q instead of q(tn), any time dependency has been removed, though, this
deduces an approximation error which is going to be discussed later.
In order to close the section about the financial accelerator, we point out the behavior of
the introduced drift term in Equation (3.11) for increasing k which is going to be used
for examining the later analytical results on varying diversification degree k.

Corollary 3.1. Let qk be given as in Lemma 3.3 for α > 0 , ε? > 0 and σ > 0. Then, it
holds that

qk =
Φ (−ε?)

1− Φ
(
−ε? + α

√
k

σ

)
+ Φ (−ε?)

is monotonously increasing and converges towards 1 as k →∞.

Proof. Both claims hold since the distribution function Φ is monotonously increasing,
continuous and Φ(x)→ 1 as x→∞.
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Recall that the size of k denotes on the one side the network connectivity and on the other
side the diversification degree in the agents’ credit portfolios. The last result deduces that
for an increasing diversification degree the financial accelerator’s probability of occurring
is increasing as well. Hence, the degree of diversification has not got a beneficial effect on
the financial accelerator but rather a converse effect. The behavior for q, if k increases,
may be explained by noting that on the financial accelerator’s control set Ci the specified
threshold

ε = ε?
σ√
k

for triggering the financial accelerator effect is scaled down by
√
k, however, at the same

time the magnitude of the financial accelerator effect −α remains constant for all k. So,
once a financial accelerator effect with size−α has occurred in any interval, the probability
of having an effect in the subsequent interval will be higher if k is large. This implies
that agents with highly diversified credit portfolios are more sensitive to downward spiral
- once such a spiral has been triggered. Battiston et al. (2012) point out that q(t0) is
independent of k, hence, initially there is no higher probability for a financial accelerator
if k is large. The deviation in the probability for an occurrence of the financial accelerator,
if k differs, is not noticeable before tn increases. Of course, by replacing q(tn) with q a
priori, one considers already in the beginning a higher probability of having the financial
accelerator, what we are going to examine in the later discussion.
Battiston et al. (2012) reason for an unscaled financial accelerator effect −α with respect
to fixed transaction costs. One of their examples fits to the extension of our Example 1:
The interest rates of agent B will be increased by B’s creditors due to an increasing mis-
trust about the creditworthiness of B, who is financially stricken. However, the increasing
costs of financing for B, which may be regarded as the financial accelerator effect, are in-
dependent of the diversification degree k in B’s credit portfolio. This example illustrates
that the financial accelerator always hits an agent in her position as a debtor whereas
the diversification degree is a matter of the agent’s role as a creditor, thus, by having
this separation in mind, there are, in our point of view good reasons to keep the financial
accelerator unscaled and particularly independent of k.
Furthermore, we also find the scaling in ε comprehensible. Assume a creditor who nego-
tiates with agent B about the conditions of a credit. If the creditor is informed about a
high diversification degree in the credit portfolio of B, she will first expect low fluctuations
in the financial constitution of B and rewards this by offering low interest rates. Then,
however, the creditor will also react more sensitive to small deviations compared to the
case of low diversification degrees in which she would already have considered smaller
deviations in a debtor’s robustness a priori in her initially offered credit conditions.
The increase of the probability for the financial accelerator effect with respect to k is cru-
cial for the observations in the later results. Consequently, if the financial accelerator as
defined does not hold in practice, the results of Battiston et al. (2012) become worthless.

3.1.6 Mean first passage time

Having originally started with a multivariate and coupled system of stochastic differential
equations, the financial robustness of an individual agents has been now reduced to a
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univariate stochastic differential equation with constant drift and common diffusion term.
For further considerations the process ρi is additionally provided with a deterministic start
value x0 > 0 and a reflecting barrier bu ≥ x0 in the sense that the process ρi may not
pass the horizontal line at bu but is immediately bounced back. The following definition
is going to substantiate this, where we quote for the formal definition of a process with
reflecting barrier the procedure of Asmussen et al. (1995).

Definition 3.3. Let (Ω,F , P ) be a probability space and ρ̂i a stochastic process in con-
tinuous time on this probability space with dynamics

dρ̂i(t) = −αqdt+
σ√
k
dW ?

i (t), (3.12)

and initial value

ρ̂i(0) = x0.

The financial robustness ρi with reflecting barrier at bu ≥ x0 is then defined by

ρi(t) = ρ̂i(t) + min

(
inf

0≤s≤t
(bu − ρ̂i(s)), 0

)
. (3.13)

We are not sure but suppose that the reflecting barrier has been introduced by Battiston
et al. (2012) in order to interpret ρi as a ratio ranging between 0 and 1. For a pure
examination of ρi the reflecting barrier complicates things. Obviously, the process ρ̂i is a
simple process consisting of a scaled Brownian motion and a negative drift, however, that
is not true any more for ρi since it is biased by the reflecting barrier.
We start the considerations on the analytical results about the process ρi by a further
definition.

Definition 3.4. Let ρi be the stochastic process of the financial robustness of an agent i.
Then

Ti(bl) = inf{t ≥ 0 : ρi(t) = bl}.

denotes the time at which agent i’s robustness reaches bl the first time.

Battiston et al. (2012) are interested in calculating E[Ti(bl)] for a given absorbing barrier
bl, which may be handled by referring to the concept of mean first passage times. Actually,
for ρi as it is defined, E[Ti(bl)] can be explicitly calculated. Therefore, see the next lemma
which presents a formula on the calculation of E[Ti(bl)] in general.

Lemma 3.5. Assume an univariate stochastic process η which is driven by the dynamics

dη̂(t) = c1dt+
√
c2dWt

where c1 and c2 are constants, c2 > 0 and Wt is a Brownian motion. Let η̂(0) = x0 and
suppose a reflecting barrier bu ≥ x0 for η. Then for

T (bl) = inf{t ≥ 0 : η(t) = bl}
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where bl < bu is an absorbing barrier one obtains

E[T (bl)] = 2

∫ x0

bl

1

Ψ(y)

∫ bu

y

Ψ(z)

c2
dzdy

with

Ψ(x) = exp

(
2
c1
c2

(x− bl)du
)
.

As it is stated in Battiston et al. (2012) the derivation of the formula for the mean first
passage time E[T (bl)] can be found in Gardiner (2004) and demands for some previous
knowledge about the Fokker-Planck Equation, hence, we omit the proof at this point.
Actually, Gardiner (2004) gives the formula for processes that are described by general
homogeneous SDEs, i.e. the coefficients c1 and c2 may depend under some regularity
conditions on η̂(t). However, for our purpose the formula for constant coefficients is
sufficient to calculate E[Ti(bl)]. Therefore see the next theorem.

Theorem 3.2. Let ρi be given by Definition 3.3 and assume an absorbing barrier bl for
this process, where bl < x0 ≤ bu. Then we have

E[Ti(bl)] =

{
exp(2αqkσ−2(bl−bu))−exp(2αqkσ−2(x0−bu))

2α2q2kσ−2 + x0−bl
αq

, for α > 0

−kσ−2 ((bu − x0)2 − (bu − bl)2) , for α = 0.

Proof. Having given the absorbing barrier bl < x0, we can apply Lemma 3.5 on the process
from Definition 3.3 by identifying the constants c1 and c2 as

c1 = −αq, c2 =
σ2

k
.

Hence, we must solve the integral

E[Ti(bl)] = 2

∫ x0

bl

exp
(
2αqkσ−2(y − bl)

)(∫ bu

y

kσ−2 exp
(
2αqkσ−2(bl − z)

)
dz

)
dy

which is for α > 0

E[Ti(bl)] =
1

2α2q2kσ−2
[
exp

(
2αqkσ−2(bl − bu)

)
− exp

(
2αqkσ−2(x0 − bu)

)]
+
x0 − bl
αq

.

For α = 0 the integral simplifies to

E[Ti(bl)] = 2

∫ x0

bl

∫ bu

y

kσ−2dzdy,

= −kσ−2
(
(bu − x0)2 − (bu − bl)2

)
.

The next corollary adjusts the last theorem’s formula to the specifications of x0, bl and bu
as they are used by Battiston et al. (2012).
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Corollary 3.2. For the process ρi from Definition 3.3 it is for x0 = bu = 1 and bl = 0

E[Ti(0)] =

{
exp(−2αqkσ−2)−1

2α2q2kσ−2 + 1
αq
, for α > 0

kσ−2, for α = 0.

To sum up, by applying a series of simplification onto the original dynamic of the financial
robustness from the beginning, the last result delivers an explicit formula to calculate the
expected time of default for an agent if its robustness starts conservatively assumed in 1
and if one previously agreed upon that an agents’ default is triggered in Ti(0). The core
of the research by Battiston et al. (2012) particularly consists of measuring E[Ti(0)] for
varying diversification degrees k. The subsequent section serves to give an overview about
the research’s results where we will refer to the notation

t?(k, α, σ, ε?) := E[Ti(0)].

Moreover, we allude to

f ?(k, α, σ, ε?) :=
1

t?(k, α, σ, ε?)
=

1

E[Ti(0)]

which is the actual function being researched and visualized by Battiston et al. (2012).
While t? normally ranges across larger intervals for varying parameters, f ? is mostly
limited to smaller intervals which features some optical advantages for visualization.7

Battiston et al. (2012) use to refer to f ? as the probability of bankruptcy. Therefore, it is
argued that ”[t]he probability [] that , at any given time t, an agent goes bankrupt is the
expected frequency with which, over time, the robustness of the agent hits the bankruptcy
threshold [bl].” Actually, we have some suspicion with respect to this view since it is not
ensured that f ? is less than one. Thus. it does not appear to be convenient to rely on
it as probability measure. We address this subject once again in the later discussion and
give an alternative view on f ?.
The next lemma discloses the behavior of t? as k →∞.

Lemma 3.6. For parameters ε? > 0 and σ > 0 we have for E[Ti(0)] as given by Corollary
3.2 the convergence

t?(k, α, σ, ε?) := E[Ti(0)]→

{
1
α

for α > 0

+∞ for α = 0

as k →∞.

Proof. The case α = 0 is obvious. For the other case, α > 0, we see that it suffices to
show

exp (−2αqkσ−2)− 1

2α2q2kσ−2
→ 0

7For the sake of simplicity we are going to suppress the arguments of t? and f? respectively, unless
their dependency on one or more arguments shall be highlighted. Mostly, all parameters will be fixed
with the exception of k.
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as k →∞ since we know from Corollary 3.1 that

q = qk → 1.

We apply l’Hôpital’s rule such that we must compute the derivative of the numerator and
denominator. For the former it is

d

dk
(exp

(
−2αqkσ−2

)
− 1) = −2ασ−2(q + kq′) exp

(
−2αqkσ−2

)
where q′ denotes the derivative of q with respect to k and is given by

q′ = Φ(−ε)

(
1− Φ

(
−ε? +

α
√
k

σ

)
+ Φ (−ε?)

)−2
α

2σ
√
k

Φ′

(
−ε? +

α
√
k

σ

)

=
qα√

8σ2πk

(
1− Φ

(
−ε? +

α
√
k

σ

)
+ Φ (−ε?)

)−1
exp

−1

2

(
−ε? +

α
√
k

σ

)2
 .

So,

kq′ =
qα
√
k√

8σ2π︸ ︷︷ ︸
=γ1

(
1− Φ

(
−ε? +

α
√
k

σ

)
+ Φ (−ε?)

)−1
︸ ︷︷ ︸

=γ2

exp

−1

2

(
−ε? +

α
√
k

σ

)2


︸ ︷︷ ︸
=γ3

.

Obviously, γ1 →∞, γ2 → Φ(−ε?)−1 and γ3 → 0 as k →∞, however, the convergence of
γ3 dominates such that kq′ → 0. Overall, we have for the numerator

d

dk
(exp

(
−2αqkσ−2

)
− 1)→ 0.

The denominator’s derivative is

d

dk
(2α2q2kσ−2) = 2α2(q2σ−2 + 2qkq′σ−2),

where we can use the argumentation from above to conclude

d

dk
(2α2q2kσ−2)→ 2ασ−2

as k →∞. Under consideration of l’Hôpital’s rule the lemma’s claim is shown.

Remark: For the alternative expression f ? Lemma 3.6 allows to conclude for α ≥ 0

f ?(k, α, σ, ε?) =
1

t?
→ α

as k →∞.
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Figure 3.1: For both plots it has been ε? = 1 and σ = 0.25. For the sake of simulations
in Plot 2 we applied an Euler-Maruyama scheme with discretization size of 0.01
where due to the reflecting barrier the simulation algorithm has been adapted to
Algorithm A of Asmussen et al. (1995).

3.1.7 Results on default intensity

Supposing the classical investment theory based on Markowitz (1952), one generally ex-
pects a beneficial effect of risk diversification on the default risk of one agent. In the
setting of Battiston et al. (2012) one might think for k becoming large the value f ? is
decreasing. If we look at Plot 1 in Figure 3.1, we see that this is not the case in general.
For all α a beneficial effect of increasing diversification is indeed initially noticeable, how-
ever, after having reached a minimum, f ? is rising again for positive values of α which is
the contrary behavior of what we have originally expected.
The observation of a regrowing f ? appears maybe surprising, however, it is nothing else
than an interaction between drift and diffusion term in the dynamics of ρi if k changes.
Recall that the robustness’ driving dynamics has been given in Definition 3.3 by

dρ̂i(t) = −αqdt+
σ√
k
dW ?

i (t).

Corollary 3.1 points out that the drift term proceeds from above to −α as k → ∞.
Simultaneously, the impact of the diffusion term disappears for increasing k as σ/

√
k is a

zero sequence, so for k large we approximately have the degenerated dynamics

dρ̂i(t) = −αdt.

These opposing trends of drift and diffusion and their effects on f ? are illustrative ex-
emplified in Plot 2 of Figure 3.1. The plot contains simulated paths on ρi of Definition
3.3 for the case α = 0.055 and different values of k. For k = 1 the path is characterized
by a large fluctuations due to the relatively large coefficient in the diffusion term and a
fast hitting time at 0. For k = 15 the fluctuation of the path already becomes less and
the process stays above 0 for a longer time. In the case of k = 80 and k = 150 hardly
any fluctuation is noticeable, however, the time of defaults becomes earlier again and we
almost exclusively observe a negative, deterministic drift.
It must be mentioned that Plot 2 of Figure 3.1 only contains the outcome of one specific
simulation on ρi for different values of k and does not allow for a general statement about
the behavior of ρi with respect to a change in k, however, the illustration points out the
opposing change of random and deterministic part in ρi and its ostensible effect on the
default times of an agent. The next section more generally examines the reasons for this
effect and the occurrence of a minimum for f ? if k increases.

3.1.8 Identifying two drifts

We’d like to reason the appearing minimum for f ? by pointing out the various forces
on the process’ path and their changing power with respect to k. By definition it is
assumed that the process ρi is affected by a reflecting barrier at 1. This reflecting barrier
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is one of the forces which pushes the process’ paths downwards. One may claim that
the reflecting barrier implies a further negative drift on the process ρi additionally to
the already available negative drift of the financial accelerator, which is the other force
pushing the process downwards. We illustrate this in Plot 1 of Figure 3.2 which contains
for different diversification degrees k the simulation of process ρi, but different from Plot
2 in Figure 3.1 we set α = 0 in order to isolate the drift implied by the reflecting barrier.
The regression lines laid trough the simulations’ interpolation points suggest that the
implied drift is absolutely decreasing for increasing k. We state a lemma which may be
taken as an explanation for this observation.

Lemma 3.7. Let ρ̂i be a stochastic process with dynamics

dρ̂i(t) =
σ√
k
dW ?

i (t)

and initial value ρ̂i(0) = 1. Then, we have for any δ > 0 and fixed t ≥ 0

P

(
inf

0≤s≤t
(1− ρ̂i(s)) < −δ

)
→ 0

as k →∞.

Proof. We deduce that

P

(
inf

0≤s≤t
(1− ρ̂i(s)) < −δ

)
= P

(
inf

0≤s≤t
(− σ√

k
W ?
i (s)) < −δ

)
= P

(
sup
0≤s≤t

W ?
i (s) >

√
kδ

σ

)

and apply to the last expression the reflection principle of a Brownian motion, which may
be found in Klenke (2006). Hence, we have

P

(
inf

0≤s≤t
(1− ρ̂i(s)) < −δ

)
= P

(
1− P

(
W ?
i (t) ≤

√
kδ

σ

))

= 2

(
1− Φ

(√
kδ

σ
√
t

))
,

where Φ→ 1 as k →∞ which finishes the proof.

Recall that in Definition 3.3 we used to consider the reflecting barrier by the term

min

(
inf

0≤s≤t
(bu − ρ̂i(s)), 0

)
which reduces for the initial value ρ̂i(0) = 1 and the reflecting barrier bu = 1 to

inf
0≤s≤t

(1− ρ̂i(s)).
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Figure 3.2: For all plots it has been set ε? = 1 and σ = 0.25. For the sake of simula-
tions in Plot 1 and 2 we applied an Euler-Maruyama scheme with a discretization
size of 0.01 where due to the reflecting barrier the simulation algorithm has been
adapted to Algorithm A of Asmussen et al. (1995). The dashed lines in Plot 1 are
the corresponding regression lines while the dashed vertical lines in Plot 3 signalize
the positions of k̂?α and k?α. In order to distinguish the lines of same color, consider
that in th plot it is always k̂?α > k?α.

If we use this term to measure the influence of the reflecting barrier on the process ρi,
the last lemma’s result suggests that the barrier’s impact disappears for a proceeding
diversification degree k.
Of course, for fixed k, the slope of the regression lines in Plot 1 of Figure 3.2 may vary
for each simulation due to the randomness of the occurring Brownian motion which is
comparable to the case in Plot 2 of Figure 3.1. Hence, for k = 1, . . . , 50 we simulate for
varying k the process’ paths 500 times and calculated the averaged slopes of the regression
lines from the observed simulation outcome, i.e.

b(k) =

∑500
j=1 bj(k)

500
,

where bj(k) denotes the slope of the regression determined by the j-th simulation loop.
The results for b(k) may be found in Plot 2 of Figure 3.2 which confirms the declining
effect of the reflecting barrier. The plot is added by

b(k)+,− = b(k)± σ̂(b(k))

where σ(b(k)) denotes the estimated standard deviation in the sample b1(k), . . . , b500(k).
Actually, we do not have to refer to an estimator for the implied drift, but can directly
state it in a closed form, namely,

β(k) := −f ?(k, 0, σ, ε?) = −σ
2

k

which is according to Corollary 3.2 the negative inverse of the expected mean first passage
time E[Ti(0)] depending on k if α = 0.
In order to understand this claim, draw a line in a coordinate system from (0, 1) to
(E[Ti(0)], 0), where (0, 1) corresponds to the start point of ρi and (E[Ti(0)], 0) to the
expected exit time. The line’s slope obviously equals β = −1/E[Ti(0)], hence, by filtering
out any random fluctuations, the paths of ρi would then imply a drift of β. As a verification
we can refer to the red line in Plot 2 which corresponds to β(k) and properly fits the line
determined by the estimates b(k).
Our actual interest, the minimum of f ?, becomes comprehensible if we superpose both
forces on the robustness’ paths, namely β(k), the drift implied by the reflecting barrier,
and the financial accelerator drift −αq(k) for α > 0. Plot 3 of Figure 3.2 illustrates

µ(k) = β(k)− αq(k)

for different α > 0. We see that first µ(k) absolutely decreases which may be referred
to the beneficial effect of risk diversification, however, for later k the sum µ(k) starts
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to absolutely increase as the changes for the summand −αq(k) begin to dominate the
oppositional changes of the summand β(k) if a k of certain size has exceeded.
One may summarize this core result of Battiston et al. (2012) by stating that the marginal
utility of risk diversification will be overlaid by a stronger increasing financial accelerator
effect if the agent diversifies her credit portfolio too much.
It must be noted that −µ(k) is not identical with f ?(k) if α > 0. We see for instance
in Plot of Figure 3.2 that the maximum of µ(k) does not perfectly fit the minimum of
f ?(k). Actually, for our cases of α, if k?α denotes the minimum of f ?(k) and k̂?α is the
maximum of µ(k), it holds k̂?α > k?α. This can be explained by considering that β(k) is
the implied drift assuming that α = 0, however, the drift implied by the reflecting barrier
will be actually lower than β(k) if α becomes larger than zero. This may also be seen by
the inequality

P

(
inf

0≤s≤t
(1− ρ̂i(s)) < −δ

)
= P

(
inf

0≤s≤t
(αqs− σ√

k
W ?
i (s)) < −δ

)
≤ P

(
inf

0≤s≤t
(− σ√

k
W ?
i (s)) < −δ

)
for a process ρ̂i as in Definition 3.3 with α > 0. The left hand side measures the implied
drift for this process, whereas the right hand side of the inequality implicitly measures the
implied drift for a process with α = 0. So, the drift implied by the reflecting barrier for
the case α > 0 is actually less than β(k), and the resulting overestimate in µ(k) pretends a
longer ongoing positive diversification effect which explains the differences between −µ(k)
and f ?(k).

3.2 Discussion on the financial robustness and its results

Having presented the results of Battiston et al. (2012) about the process ρi and its
behavior with respect to the diversification degree k, we now comment some points which
we came across by presenting the way of how to get these results. First we clarify our
interpretation of the value f ? which will also explain why we choose the name ”Results
on default intensity” for Section 3.1.7. Then, we are going to reconsider the usage of
the steady state q instead of q(tn) for the probability of having a financial accelerator
effect. This example, however, will also illustrate that it is difficult to consider all made
simplifications and assumptions individually since one simplification may have effects on
the examination of another simplification. For a final validation we want to simulate
the originally motivated and more sophisticated process from Equation (3.6) and look
whether the results in Section 3.1.7, which have been deduced from the reduced process
ρi of Definition 3.3, may be regained.

3.2.1 Intensity of a renewal process

As in Battiston et al. (2012) we used to visualize f ? rather than t?, however, different
from Battiston et al. (2012) we avoid referring to f ? as a default probability due to the
commented reasons in Section 3.1.6. Instead of that we offer another way to interpret f ?.
Hereby, we assume that the development of the financial robustness between its initial
value 1 and 0 denoting the agent’s default is an arbitrarily often repeatable experiment.
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In practice, this might mean that if agent j failed at t she will be replaced by a new agent
j + 1 with robustness of 1 while this new agent in turn will then be inductively replaced
at her default and so on.

Definition 3.5. Let (Zi) be an iid sequence of a.s. positive random variables. Then the
random walk

S0 = 0, Sn = Z1 + . . . Zn, n ≥ 1

is said to be a renewal sequence and the counting process

N(t) = #{i ≥ 1 : Si ≤ t} t ≥ 0

is the corresponding renewal (counting) process.

The last definition being borrowed by Mikosch (2004) is popularly applied to insurance
mathematics where Zi denotes the inter-arrival times between the occurrence of claims.
For our purpose we do not consider Zi as inter-arrival time of insurance claims but as the
time which is required by the robustness of the i-th agent in our experiment from above
to reach 0. Frankly speaking, our loss occurrence is the default of an agent. In Definition
3.5 we set

Tj(0) = Zj

where Tj(0) is as defined in Definition 3.4. Hereby, subscript j stands for the j-th agent
in our experiment. Obviously Tj(0) is a.s. positive and to be in line with Definition 3.4
we additionally assume that the Tj(0) are identical and independent across all j.
Hence, Sn from Definition 3.4 becomes the accumulated inter-arrival times of defaults up
to the n-th agent. Correspondingly N(t) is the number of defaults up to t.
Then, the following theorem bares how we can interpret f ?.

Theorem 3.3. If E[T1(0)] = λ−1 is finite, we have the convergence

lim
t→∞

N(t)

t
= λ a.s.

Proof. The theorem and proof may be found in Mikosch (2004) and is named as Strong
law of large numbers for the renewal process.

By pointing out that

f ? =
1

E[T1(0)]
= λ

we can conclude that

lim
t→∞

N(t)

t
= f ?

almost surely. Hence, f ? corresponds approximately to the number of defaults per time
unit and is alternatively called the intensity of the renewal process N(t) whereas for our
purposes we are going to call it the intensity of defaults.
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Figure 3.3: The red line denotes the theoretical value E[Ti(0)] computable via Corol-
lary 3.2. Both black lines rely on the simulations’ outcome where the stars and
points respectively on the lines signalize the interpolation points k, at which the
simulations have been performed. For the sake of simulations we applied an Euler-
Maruyama scheme with a discretization size of 0.01, where due to the reflecting
barrier the simulation algorithm has been adapted to Algorithm A of Asmussen
et al. (1995).

In insurance mathematics it is often assumed that

Ti(0) ∼ exp(f ?)

where the restriction on an exponential distribution allows to deduce further properties
on the renewal process. If such an assumption hold for Ti(0), we would have the well
known property of an exponential distribution, namely,

E[Ti(0)] = (f ?)−1 = V ar[Ti(0)]1/2,

In Figure 3.3 we plotted the exit times averaged over 500 simulations of the process ρi
for different k and α = 0.075. This is denoted by T̂i(0), while σ(T̂i(0)) is the estimated
standard deviation on the observed sample. Apparently, σ(T̂i(0)) is lower than it would
have to be in the case of an exponential distribution. Based on this, we would claim that
an exponential distribution on Ti(0) were not appropriate.

3.2.2 Usage of the steady state

We have described in Section 3.1.4 the replacement of the stochastic jump process hi(t)
by the deterministic term −αq. Besides we have alluded that there might be a bias due
to the usage of the steady state q instead of the actual probability for the occurrence of
the financial accelerator in tn ∈ T , namely q(tn).
According to Lemma 3.4, q(tn) converges towards q bottom up, thus, there will be an
overestimated financial accelerator effect by referring to q. Plot 1 in Figure 3.4 shows the
distance between q(t0) and q for varying k and α. Since on the one hand q is monotonously
increasing towards 1 in k, which has been shown by Corollary 3.4, but on the other hand

q(t0) = Φ(−ε?)

for all k, it is not surprising that the distance between q and q(t0) is increasing in k.
Furthermore, Plot 1 suggests that a higher value for α implies a larger distance.
In order to point out the accumulated size of approximation error between q and q(tn)
over time we define for δ > 0

n? = inf{n ∈ N0 : q − q(tn) < δ},

i.e. the iteration step at which the sequence of q(tn) has reached a sufficiently small
distance to q. Then

S(n?) =
n?∑
j=0

(q − q(tj))
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Figure 3.4: Plot 1 illustrates the absolute distance between q(t0) and q. Plot 2
contains the values n? and S(n?). Hereby, the former is denoted by the step functions
and the latter is represented by the dashed lines. The color code is as follows:
green denotes α = 0.1, red denotes α = 0.05 and blue stands for α = 0.03. For the
calculations of n? we have set δ = 10−4, the remaining parameters have been σ = 0.25
and ε? = 1.

is the accumulated approximation error up to tn? . Both values obviously coincide in Plot
2 of Figure 3.4 with the distance between q(t0) and q and also possess higher values when
α is large.
For measuring the accumulated overestimate on the financial accelerator effect up to tn? ,
S(n?) must additionally be scaled by α. For the specification α = 0.05 and k = 50 we for
instance have

αS(n?) = 0.016

at n? = 12 if δ = 10−4. On the other hand it is

αS(n?) = 0.34

at n? = 43 for the setting α = 0.1, k = 50 and δ = 10−4. While in the first case the
overestimation is low, the latter appears large if one has in mind that ρi only ranges
between 0 and 1.
By a simulation procedure we’d like to figure out the effects of the overestimated financial
accelerator probability on E[Ti(0)] for the case α = 0.1. Our idea hereby is to simulate
the jump-diffusion process

dρ̂?i (t) = hi(t)dπi(t) +
σ√
k
dW ?

i (t)

from Equation (3.8). By additionally considering a reflecting barrier at 1 we denote
in the following the reflected process of this dynamics by ρ?i . In 500 simulation runs
we will then estimate the mean first passage time of this process where we are going to
denote this in the following by T̂i(0) and its estimated standard deviation correspondingly
by σ(T̂i(0)). The simulation is undertaken for different k and finally compared to the
results of E[Ti(0)] which is the expected mean first passage time for the process ρi from
Definition 3.3. Particularly, this process relies on the continuous drift −αq where q has
been found to overestimate the probability of having a financial accelerator effect. Due
to our examination from above we would hypothesize that

T̂i(0) > E[Ti(0)],

i.e. the process driven by ρ̂? is expected to stay longer above 0 than ρi due to the supposed
overestimated financial accelerator effect in q.
We see in Figure 3.5 that our hypothesis is only fulfilled for k larger than 20. We can
explain this unexpected observation by alluding that the calculations on q in Section 3.1.5
have been proceeded by disregarding the reflecting barrier which is in turn incorporated
into the simulation of ρ?i and the calculations of E[Ti(0)]. A reflecting barrier obviously
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Figure 3.5: The plot on the left hand side compares E[Ti(0)], which is known as
closed formula in Corollary 3.2, against T̂i(0). For the simulations we have applied
an Euler-Maruyama scheme with discretization size 0.01. We used to incorporate
the jump process hi into the simulation as suggested by Battiston et al. (2012)
in Appendix B. The reflection barrier has been considered by adjusting the Euler-
Maruyama scheme as in Algorithm A of Asmussen et al. (1995). The parameters
have been α = 0.1, σ = 0.25, ε? = 1. On the right hand side we compare the probability
of having a financial accelerator effect suggested by q against the probability which
is deduced by the simulations.

favors the occurrence of the financial accelerator effect, hence, by having calculated the
probability of its occurrence without considering the reflecting barrier, q(tn) turns out
to be too small. Particularly, this will hold for k small, since in Section 3.1.8 we have
pointed out that the reflecting barrier influences ρi mostly for k small. Due to Figure
3.5 even the steady state q underestimates the occurrence of the financial accelerator
effect for k < 20. Apparently for k > 20 the calculation of q(tn) in Lemma 3.3 serves as
better approximation since the reflecting barrier more and more looses its influence on the
process’ path so that the usage of the steady state begins to incorporate an overestimation.
Hence, for k > 20 our hypothesis is eventually fulfilled.

This explanation is substantiated in Plot 2 of Figure 3.5, where we compare q, the the-
oretical steady state probability of the financial accelerator, against the probability of
observing jumps in the simulations. We hereby count for each simulation run the occur-
rence of the jumps hi whereas we eventually divided this number by the possible number
of jump times in each simulation run up to the time at which the simulated path of ρ?

has reached 0. For theses observations ĥi denotes the average over all simulation runs and
correspondingly σ(ĥi) is the estimated standard deviation.

Apparently the probability of having a jump is indeed higher than it is estimated by q
for k being small. On the other side, while for proceeding k the curve of ĥi seems to slab
to a constant level q is still proceeding towards 1.

The observation of differing exit times between simulation and theoretical value may
be analogously made in Figure B1 of Battiston et al. (2012) which proceed the same
simulation, however, for α = 0.03. Since for this size the overestimate of q on q(tn) is
less significant as we can see in Figure 3.4, the spread between the curves of T̂i(0) and
E[Ti(0)] is less noticeable in their Figure for k becoming large.

To sum up, the examination has shown that the simplifying procedure to replace the jump
process of the financial accelerator by a continuous drift term with a time-independent
coefficient can bias the results on the default intensity, however, it is not possible to
uniquely determine in which direction. While for lower values of k one must suppose that
E[Ti(0)] is too high, we have for larger values of k possibly the contrary. However, the
concrete characteristic of this discrepancy is a matter of parameter values.

Apparently the assessment of E[Ti(0)] as reliable measure for the mean first passage
time of the originally multivariate system of SDEs in Equation (3.6) is challenging if
one considers every step of simplification individually. The problem with analyzing the
usage of q turns out to be the different settings between its calculation in Section 3.1.5,
in which a reflecting barrier has not yet been assumed, and its eventual application with
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respect to the reflected process ρi which assumes a reflecting barrier. In order to cope with
this challenge we will draw a comparison of the mean first passage time in a simulation
procedure between Equation (3.6), that is the originally multivariate SDE system before
simplifications, and the finally univariate process ρi.

3.2.3 Simulation of the full dynamics

If we refer in the following to the multivariate process from Equation (3.6), we are going to
use the notation ρ̂? and for its components ρ̂?i . Recall that the dynamics of Equation (3.6)
contain all elements of the original model before one started to reduce the dynamics to the
simpler, univariate process ρi from Definition 3.3 in order to get analytical results. Our
intention with this final simulation is to figure out whether the analytical results for this
simplified process are still in line with the original model in spite of the different occurring
simplifications. We cannot expect an exact fitting, however, we are more interested in the
general behavior of the default intensity with respect to the diversification degree.

For the simulation of

dρ̂?(t) = (Aw − IN×N)ρ̂(t)dt+ σAwdW (t) + h(t)dπi(t)

a reflecting barrier at 1 is considered for every component where we denote in the following
the reflected multivariate process by ρ? and its reflected components by ρ?i .

The simulations procedure furthermore requires to take the weighted adjacency matrix
Aw into account. We conform with the mean field approach of Battiston et al. (2012)
by not relying on one specific adjacency matrix Aw, but by regenerating a new adjacency
matrix in the beginning of each simulation loop. For generating the adjacency matrices
we keep in mind that assumptions A(1.1) - A(1.3) must be fulfilled which is going to be
treated in the next section. Prior to that still a comment on the specification of N . Craig
and von Peter (2010) allude in their study about the German interbank credit market
to a size of about 2.000 banks consisting of a periphery and a core where the latter is
built up of 40-50 banks. Battiston et al. (2012) mention that their assumption of an
homogeneous network most likely fits the core of an overall credit market. By combining
both, we restrict ourself to N = 50 which would similarly correspond to the core of
the German interbank credit market. The diversification degree will then possibly range
between k = 1, which is almost no diversification, and k = 49, which is the largest possible
diversification degree.

3.2.4 Simulating an homogeneous network structure

For generating the weighted adjacency matrix we apply an algorithm which regards as-
sumptions A(1.1) - A(1.3) by incorporating N and k as input parameters.



36 3 THE RISK OF DEFAULT IN HOMOGENEOUS NETWORKS

Algorithm 3.1: Generating a weighted adjacency matrix which represents an ho-
mogeneous credit network

Data: Parameter N and k
Result: Adjacency matrix Aw with weights
Initialize a N × N matrix Aw with zero entries;
for i = 1 to N do

Select randomly k numbers from the set {1, . . . N} \ {i} and save them in ind;
Aw[i, ind] = 1

k
;

end

The random selection of k numbers in this algorithm intends to determine the k debtors
of agent i, whereas it is additionally controlled that the diagonal entries stay 0. We realize
this in R Core Team (2013) by relying on the function sample() which draws randomly
k numbers from a predefined set without replacement and without any preference on the
choice of the numbers. Hence, for any agent i ∈ V the algorithm’s random selection of
her credit portfolio does not favor any composition. More precisely, if Vout(i) denotes all
subsets of {1, . . . , N} \ {i} with cardinality k, we have

P (Vout(i) = Ṽ ) =
1(

N − 1

k

) =
(N − 1− k)! · k!

(N − 1)!

for all Ṽ ∈ Vout(i). Furthermore, the credit portfolios of all agents are chosen indepen-
dently in the algorithm which yields

P
(
Vout(1) = Ṽ1, . . . , Vout(N) = ṼN

)
=

 1(
N − 1

k

)

N

=

(
(N − 1− k)! · k!

(N − 1)!

)N

for all Ṽ1×· · ·× ṼN ∈ Vout(1)×· · ·×Vout(N). Since the overall network is fully determined
by the agents’ credit portfolios, we conclude that the algorithm generates any possible
network fulfilling assumptions A(1.1) - A(1.3) with the same probability.
While the number of debtors for each agent is predetermined on k, the number of creditors
is random and depends on the concrete realization of the adjacency matrix. We state in
the next lemma the distribution of din(i) as it occurs in Algorithm 3.1. This result will
allow to conclude that the expected value of din(i) will agree with the deterministic value
of dout(i).

Lemma 3.8. Having given a weighted adjacency matrix Aw generated by Algorithm 3.1
and let V be the set of agents. Then, it is

din(i) ∼ Bin

(
N − 1,

k

N − 1

)
for all i ∈ V .
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Proof. If A denotes the unweighted version of the weighted adjacency matrix Aw generated
by Algorithm 3.1, the entries of the i-th column in A will be independent Bernoulli
distributed random variables with success probability

P (aji = 1) =

(
N−2
k−1

)(
N−1
k

)
for all j ∈ V, j 6= i. For j = i the success probability is 0 by definition. We deduce that(

N − 2

k − 1

)
(
N − 1

k

) =
(N − 2)! · (N − 1− k)! · k!

(N − 1)! · (N − 2− k + 1)! · (k − 1)!
=

k

N − 1
.

Now, let d ∈ {0, . . . , N−1}. Since the matrix entries aji are independent for all j ∈ V \{i}
it is

P (din(i) = d) = P (|Vin(i)| = d)

= P (|{j ∈ V : aji = 1}| = d)

=

(
N − 1

d

)(
k

N − 1

)d(
1− k

N − 1

)N−1−d
which finishes the proof.

In directed graphs the condition∑
i∈V

degin(i) =
∑
i∈V

degout(i).

must always hold, hence, we conclude for the convolution on the random variables din(i)
of the last lemma that ∑

i∈V

degin(i) = Nk a.s.

This fact is used in order to prove the next lemma.

Lemma 3.9. For 0 < k < N − 1 the in-degrees din(1), . . . , din(N) of a graph represented
by a weighted adjacency matrix Aw from Algorithm 3.1 are not independently distributed.

Proof. Assumed that din(1), . . . , din(N) were independently distributed, then we know
from probability theory - for an argumentation see for instance Example 3.4 (ii) in Klenke
(2006) - that

D :=
∑
i∈V

din(i) ∼ Bin

(
N(N − 1),

k

N − 1

)
. (?)

By assumption it is 0 < k
N−1 < 1 so that (?) would yield

P (D = l) > 0



38 3 THE RISK OF DEFAULT IN HOMOGENEOUS NETWORKS

for 0 ≤ l ≤ N(N − 1). Particularly, this holds for l = 0 which is a contradiction to∑
i∈V

degin(i) = Nk a.s.

While in Algorithm 3.1 the choice of the adjacency matrix’s rows occur independently the
last result suggests that this is not true for the matrix’s columns.
In the following we will examine the mean first passage times of the simulated financial
robustness with respect to k but disregard the occurring in-degrees which cannot be con-
trolled by our algorithm. That is in line with the approach of Battiston et al. (2012) who
exclusively focus on the agents’ out-degrees in the context of diversification. Nevertheless,
we allude that a given structure with respect to the in-degrees might also be interesting
to examine. For instance, assume that there is a small subset of agents which are highly
active as debtors meaning that they borrow more money than other agents. Some distor-
tion on the financial robustness of these agents will probably effect the network’s stability
in an other way than a distortion on agents which are less active as debtors. We will
later develop an algorithm to generate networks with an heterogeneous core-periphery
structure in which we will find an asymmetrical distribution of the credit exposure and
try to point out the effect of this structure on the network’s stability.

3.2.5 The results of the simulation

For the simulation of ρ? we use the multivariate version of the Euler-Maruyama scheme
with discretization size 0.01. Hereby, the reflecting barrier for each component has been
incorporated by following Algorithm A of Asmussen et al. (1995). In the following
T̂1(0) will denote the estimated mean first passage time of ρ?1 in the simulation procedure
and σ(T̂1(0)) is the estimated standard deviation. Since the network is renewed in each
simulation run, the position in the network of agent 1 permanently changes and the value
of T̂1(0) may be thus considered as the mean first passage time for any agent in any
homogeneous network.
Analogously to Section 3.2.2 we again measure by ĥ1 the observed relative frequency of
the financial accelerator effects for the first component of the simulated vector ρ? and
compare theses values to q.
Before referring to the results we must allude a further subtle detail in our procedure
which has not been elaborately addressed by Battiston et al. (2012). While we are
interested in the default time of agent 1, probably there have already been some defaults
of other agents. In the univariate considerations of Battiston et al. (2012) there is no
need to think about handling such a situation. For our purposes we agree upon that the
robustnesses of the defaulted agents are retained at 0 for the remaining duration of the
simulation loop. In particular, there will be no recovery of any agent in the network.
Secondly, we must lead a discussion how to handle the adjacency matrix. Assumed that
agent i defaults it would be advisable to set the i-th column of the adjacency matrix
to zero in order to prohibit that the stochastic noise arising from the i-th component of
the Brownian motion may still impact the robustness of other agents after i has failed.
However, then, the stochastic impact on an agent’s financial robustness would run dry if



3.2 Discussion on the financial robustness and its results 39

Figure 3.6: The figure compares the simulated mean first passage times at 0 be-
tween a component of the full sytem of SDEs from Equation (3.6) and the univariate
process of Definition 3.3. The simulation has been based on a multivariate exten-
sion of Algorithm A of Asmussen et al. (1995) with discretization size 0.01. The
incorporation of the financial accelerator for each component has been executed as
in the univariate case. Further parameters have been σ = 0.25 and ε? = 1.

Figure 3.7: The figure compares the steady-state probability q of having a financial
accelerator effect with the probability deduced by the simulations.

her debtors subsequently default. In practice, this would then mean, that random noise
impacting an agent’s robustness is going to be reduced for every newly defaulted debtor.
We decide not to change the entries of the adjacency matrix during the simulation loops
in order to ensure that the stochastic impact on the financial robustness is constantly a
sum of k independent Brownian motions. This also ensures a better comparability to the
univariate process ρi which is continuously affected by a constant diffusion term. Actually
we tried out different alternatives to handle this and observe that the outcome of these
alternatives predominantly deviate for small k if the credit portfolios just consist of a few
debtors so that any individual default counts relatively much.

Let us now turn to the results which are illustrated in Figure 3.6 and 3.7 respectively.
First we clarify in the former one the diverging behavior between E[Ti(0)] and T̂1(0) for
α = 0. We know from Lemma 3.6 that α = 0 implies in E[Ti(0)] → ∞ as k → ∞. In
our simulation we restrict the time horizon to T = 300. For large k, however, the paths
have commonly not reached 0 before T = 300. In this case we set the mean first passage
time to 300, which explains the given plot. Certainly, its explanatory power is bounded,
though it at least indicates that the true value of T̂1(0) would also monotonously increase
as E[Ti(0)] for α = 0 if the time horizon is enlarged. Since the simulation of ρ? turned
out to take a long time we avoid doing this. In the cases of positive α the simulated paths
have always arrived in 0 prior to the technical time limit of T = 300 so that there is no
risk of falsification. Apparently for these cases, the mean first passage time E[Ti(0)] runs
underneath the simulated passage time T̂1 for small k whereas for k becoming large we
observe an approach between both lines. That is an interesting result since in Section
3.2.2 we made the contrary observation, that was E[Ti(0)] > T̂i(0) for small k. We
reasoned this by an underestimation of the financial accelerator affect in q if k is small
which has been confirmed by Plot 2 in Figure 3.5. Figure 3.7, however, suggests that
the financial accelerator effect in the simulations of this section occurs first with smaller
probability than it is proposed by q but then rises steeper and intersect the curve of q
at an intermediate level of k. Hence, we have for the simulation of the full dynamic a
mirror-inverted observation compared to the univariate simulation of the jump-diffusion
SDE in Section 3.2.2.
In Equation (3.6) we trace the mean reversion term as main distinctive feature to the
simulated process in Section 3.2.2. Hence, we attribute the oppositional observations
between Plot 2 in Figure 3.5 and Figure 3.7 to the additional consideration of this term.
Apparently, it has at first a restraining effect on the decrease of the paths so that the
financial accelerator effect less frequently occurs, but then expands the negative effect of
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risk diversification on the financial robustness for increasing k. Hereby note, that the
mean reversion term will arrange a transfer of the financial accelerator from the debtors
to their creditors which is completely blended out in the univariate case. Hence, in the
multivariate case an agent’s robustness is not only affected by her own financial accelerator
but also by the one of her debtors. So, we explain the steeper increase of ĥ1 compared to
q by network contagion which becomes recognizable if one refers to the whole system of
coupled SDEs rather than just looking at the univariate, decoupled process ρi.

3.3 Resume on the continuous time process

Our discussion aimed to figure out whether the simplified, univariate process ρi from Def-
inition 3.3 may still reproduce the results of the sophisticated, multivariate system from
Equation (3.6) which includes the whole motivation of the model construction. Admit-
tedly, one cannot expect that the mean first passage times of the univariate process ρi
perfectly fit the mean first passage times of the components from the multivariate pro-
cess. In order to receive an analytically tractable form the costs of complexity reduction
lead to a discrepancy between both values as it is observable in Figure 3.6. However, the
qualitative core result of Battiston et al. (2012), namely, the negative effect on the default
intensity for a too extensive diversification of the credit portfolios is accurately described
by the behavior of the univariate process with respect to a changing k. By the additional
contagion effects through the mean-reverting term, which has been detected in the last
section, the core result of Battiston et al. (2012) actually based on the univariate process
becomes even more distinctive in the multivariate case.
In the following the formulas of the mean first passage time for the univariate process
ρi from Definition 3.3 enables to extend the default intensity of one agent to a general
statement about systemic risk. Due to the last section we may suppose that the core of
these results can be qualitatively transferred to the multivariate case as well, though one
must keep in mind that the missing contagion effects in the univariate case will bias the
results quantitatively.
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4 The cascade mechanism in homogeneous networks

Section 3 has derived and examined a dynamics which reflects the financial constitution
of an agent in continuous time. After all, this section has only presented a model which
allows to investigate the dynamics and default frequency from an individual perspective
but does not manifest the risk of having a system-wide distortion. The further idea
of Battiston et al. (2012) is to examine the stability of an interbank market fulfilling
assumptions A(1.1) - A(1.3) in a hypothesized period of system-wide distortion.
Battiston et al. (2012) argue that in times of distress the financial robustness displays
another behavior than in times of a relaxed interbank market. While they are considering
the dynamics from Definition 3.3 as a description of the financial robustness in calm
times, they argue for a different development in times of distress which is evocative of a
domino-effect or cascade mechanism. We are going to present the setting of this adapted
cascade mechanism for the financial robustness in this section. Its analysis rests upon
simplifying assumptions which incorporate an approximation error. However, as we will
see in the end, the simplification still allow to figure out a mean robustness where the
network becomes fragile for a total collapse.

4.1 Setting of the cascade mechanism in homogeneous networks

Analogously to Section 3 we again proceed on an interbank credit market which fulfills
assumptions A(1.1) - A(1.3). The interbank market is still represented as a graph Gw =
(V,E,W ). We also claim assumption A(1.4) in the following, that is, once the network
has been initialized it will not change over time.

4.1.1 Financial robustness in the cascade mechanism

The core of Section 3.1 consists of deriving a further dynamics for the financial robustness,
however, different from the last section the development of the financial robustness is now
considered in a situation of fast and serial occurring defaults. For a motivation we refer to
the introductory Section 1.1, which named three periods of significantly higher number of
defaults than otherwise. It might be helpful to regard the time between these periods as
the continuous time line on which ρi is developing in the long run as defined in Definition
3.3 while, what follows is the description of the robustness’ dynamics in one of these
periods with frequent defaults. Therefore, we introduce a new definition on the financial
robustness. In order to guard against confusion let us first assume that we are going to
deal with a new process completely disconnected from the last section.

Definition 4.1. Let (Ω,F , P ) be a probability space and i ∈ V . Then the financial
robustness of agent i in the cascade mechanism is a R-valued sequence (ρ̃i(τ))τ∈N0 where
its initial value ρ̃i(0) is a random variable defined on the given probability space with
distribution function Fi. For τ > 0 and a > 0 we set

ρ̃i(τ + 1) = ρ̃i(0)− a
∑

j∈Vout(i)

w(i,j)1(ρ̃j(τ)≤0). (4.1)

We may depict for τ > 0 and initial random vector ρ̃(0) the last definition in matrix-

vector notation, if ρ̃(τ) :=
(
ρ̃1(τ), . . . , ρ̃N(τ)

)T
and z(τ) =

(
1(ρ̃1(τ)≤0), . . . ,1(ρ̃N (τ)≤0)

)T
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respectively, namely, by

ρ̃(τ + 1) = ρ̃(0)− aAwz(τ), (4.2)

where Aw is the adjacency matrix of graph Gw. In the following we will assume that the
elements of ρ̃(0) are independently and identically distributed. This is substantiated by
assumption A(1.7).

• A(1.7) The initial robustnesses ρ̃1(0), . . . , ρ̃N(0) are supposed to be identically and
independently distributed with distribution function F .

4.1.2 Intention of the cascade mechanism

After having redefined the financial robustness technically let us discuss the intention of
Battiston et al. (2012) to use this new definition. The mechanism driving the financial
robustness in Definition 4.1 is thought to describe the process of successive defaults in
a credit network which is suffering a system-wide distortion. Hereby τ = 0 denotes the
starting point of this mechanism, i.e. it may be considered as the origin of the distortion
while the reason for its trigger is not matter of considerations. It is just assumed that
in τ = 0 the values of ρ̃i(0) are randomly drawn with some resulting fraction of defaults
exclusively depending on the assumed initial distribution. The step τ = 0 is followed
by discrete time steps τ > 0 on which further defaults might be induced due to the
given setting in Definition 4.1. Hereby the variable w(i,j) is still the relative part of the
credit portfolio, agent i has issued to agent j. So, if j, being the debtor of agent i, has
defaulted during the cascade in one of the steps 0, . . . , τ , the robustness of agent i from
the beginning of the distortion is reduced in τ+1 by the loss due to j’s default. By relying
on assumption A(1.3) we can replace w(i,j) with 1

k
for all (i, j) ∈ E in the following.

By assumption A(1.7) it is assumed that the initial defaults occur independently. Actually,
a validation of this assumption requires information about interdependencies between
agents prior to a cascade, however, this setting only deals with available correlation, once
a phase of distress has already triggered.
The newly introduced variable a shall indicate to which extent the robustness of i is
affected by j’s default. Let us suppose two different interbank credit markets, where
one market is endowed with a more advanced insolvency law than the other. One might
expect that creditors on the market with advanced insolvency law would probably not
have to suffer a complete debt default but may expect a partial compensation of their
receivables. Consequently, one would choose a lower parameter a there, compared to the
market without advanced insolvency regulations. In Battiston et al. (2012) it is by default
a = 1 which we are going to handle for our purpose similarly.
If the initial financial robustness of agent i is low, it is likely that in any step τ agent i
will default herself due to defaults of her debtors in previous steps. However, the default
of agent i may probably trigger the defaults of her own creditors and so on. What follows
is a sequence of failures, which is called a bankruptcy cascade by Battiston et al. (2012).
Equation (4.2) suggests that the only criteria deciding about an agent’s default in any
time step is on the one side the initial distribution of the agent’s robustness and on the
other side her position in the network, hence, it implies that the realization of ρ̃ in 0
already determines whether an agent will default or survive in τ ≥ 0.
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4.1.3 Assumptions for analytical results

For the given cascade mechanism Battiston et al. (2012) target on the value

s(τ) :=
E
[∑

i∈V 1(ρ̃i(τ)≤0)
]

N

=

∑
i∈V P (1(ρ̃i(τ)≤0) = 1)

N
. (4.3)

By relying on the cascade mechanism in Definition 4.1 we can argue that the variables
1(ρ̃i(τ)≤0) are monotonously increasing in τ . Since s(τ) is furthermore bounded by 1 we
can deduce by the Bolzano-Weierstrass theorem that there is a s ∈ [0, 1] so that s(τ)→ s
as τ →∞.
For an explicit calculation of s(τ) one might start with

P (1(ρ̃i(τ)≤0) = 1) = P

ρ̃i(0) ≤ 1

k

∑
j∈Vout(i)

1(ρ̃j(τ−1)≥0)


=

k∑
u=0

P

ρ̃i(0) ≤ u

k

∣∣∣ ∑
j∈Vout(i)

1(ρ̃j(τ−1)≥0) = u


P

 ∑
j∈Vout(i)

1(ρ̃j(τ−1)≥0) = u


where the second equality is obtained by the formula of the total probability. The possible
complexity of an arbitrary network discloses analytical difficulties for the expression in
the last equation. Particularly, the distribution of the indicator functions’ convolution is
presumably not known.
If we wanted to determine the possible outcomes of 1(ρ̃j(τ−1)≤0), we would have to consider
1(ρ̃j1 (τ−2)≤0) for all j1 ∈ Vout(j), however, in order to determine 1(ρ̃j1 (τ−2)≤0) we must then
in turn consider 1(ρ̃j2 (τ−3)≤0) for all j2 ∈ Vout(j1) and so on. Thus, for proceeding τ and
increasing complexity of the network an explicit calculation of s(τ) and its limit s becomes
intractable. Battiston et al. (2012) resolve this by pragmatically endowing the variables
ρ̃i(0) and 1(ρ̃i(τ)≤0) of Definition 4.1 with relaxing assumptions as follows.

• A(1.8) For all i ∈ V and τ > 0, it is assumed that

P (1(ρ̃i(τ)≤0) = 1) = p(τ),

where p(τ) ∈ [0, 1]. Additionally it is supposed that 1(ρ̃i(τ)≤0) are stochastically
independent for all i ∈ V .

If we apply this assumption on agent i’s credit portfolio it turns out that the distribution
on the number of defaulted debtors in τ ≥ 0, namely

di(τ) :=
∑

j∈Vout(i)

1(ρ̃j(τ)≤0)
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will be implicitly binomial. More precisely, di(τ) ∼ Bin(k, p(τ)) since every agent in the
network is supposed to have k debtors in her portfolio which are now supposed to fail
independently with probability p(τ). Based on this we rewrite the financial robustness of
Definition 4.1 as

ρ̃i(τ + 1) = ρ̃i(0)− 1

k
di(τ). (4.4)

Furthermore assumption A(1.8) implies together with assumption A(1.7)

E
[∑

i∈V 1(ρ̃i(τ)≤0)
]

N
=

∑
i∈V P (1(ρ̃i(τ)≤0) = 1)

N

=

{
F (0), if τ = 0

p(τ), if τ > 0.

Battiston et al. (2012) rely on a further assumption which affects the correlation between
the initial state of the financial robustness and the subsequent defaults.

• A(1.9) ρ̃i(0) and dj(τ) are supposed to be independent for all i, j ∈ V, i 6= j and
τ > 0.

Note that A(1.7) and A(1.8) coincide in τ = 0, however, for τ > 0 assumption A(1.8)
does not hold in the setting of Definition 4.1. Also assumption A(1.9) is actually not
correct. We refer to Section 4.2 which points out in a manageable network of small size
that correlation among agents in the cascade mechanism is indeed present, which is not
surprising since networks are actually characterized by correlation. Admittedly, there is
the question about the usage of introducing assumptions on the variables of Definition
4.1 which must be taken as falsification of the given setting. We will discuss this question
later, however, first we’d like to derive the results of Battiston et al. (2012), which becomes
possible due to accessing assumptions A(1.8) and A(1.9). For a classification we will use
the expression cascade model if we rely on the cascade mechanism from Definition 4.1
together with the introduced relaxing assumptions A(1.8) and A(1.9).

4.1.4 Analytical results for the cascade model

We state the theorem, being drawn from Battiston et al. (2012), which manifests a
recursive formula for the sequence

s̃(τ) =
E
[∑

i∈V 1(ρ̃i(τ)≤0)
]

N
. (4.5)

Note that we use s̃(τ) for the result of the cascade model, while s(τ) still denotes as in
Equation (4.3) the fraction of defaults in the cascade mechanism without relying on the
falsifying assumptions A(1.8) and A(1.9).

Theorem 4.1. Let Gw be a graph that fulfills assumptions A(1.1) - A(1.3). For τ ≥ 0,
agent i’s financial robustness ρ̃i(τ) is defined by Definition 4.1. Furthermore, it is assumed
that A(1.7) - A(1.9) hold. Then, for s̃(τ) as defined in Equation (4.5) we have the
following results:
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(i) s̃(0) = F (0),

(ii) s̃(τ + 1) =
k∑
j=0

(
k
j

)
s̃(τ)j (1− s̃(τ))k−j F

(
a j
k

)
for τ ≥ 0,

(iii) the sequence (s̃(τ)) converges to a value s̃ ∈ [0, 1].

Proof. It has already been showed above that (i) is implied by the assumptions A(1.7)
and A(1.8).
For claim (ii) we remind likewise from above

s̃(τ + 1) = p(τ + 1) = P (ρ1(τ + 1) ≤ 0).

We use the redefining Equation (4.4) and see that

P (ρ̃1(τ + 1) ≤ 0) = P
(
ρ̃1(0) ≤ a

k
d1(τ)

)
.

The formula of the total probability yields for the last expression

P
(
ρ̃1(0) ≤ a

k
d1(τ)

)
=

k∑
j=0

P
(
ρ̃1(0) ≤ a

k
d1(τ)

∣∣∣d1(τ) = j
)
P
(
d1(τ) = j

)
.

With assumption A(1.9) it is then

P
(
ρ̃1(0) ≤ a

k
d1(τ)

)
=

k∑
j=0

P
(
ρ̃1(0) ≤ a

j

k

)
P
(
d1(τ) = j

)
,

which directly results into the second claim if we apply the binomial distribution implied

by A(1.8) on P
(
d1(τ) = j

)
, i.e. to sum up we have shown for τ ≥ 0

s̃(τ + 1) =
k∑
j=0

P
(
ρ̃1(0) ≤ a

j

k

)
P
(
d1(τ) = j

)
=

k∑
j=0

(
k

j

)
s̃(τ)j (1− s̃(τ))k−j F

(
a
j

k

)
.

In order to prove claim (iii) we have to find a value s̃ ∈ [0, 1] such as s̃(τ)→ s̃ for τ →∞.
From its definition we directly see that s̃(τ) ∈ [0, 1]. Furthermore, we can argue that
(s̃(τ)) is a monotonously increasing sequence. Therefore, we consider the last equation as
function in s̃(τ), namely

G(x) =
k∑
j=0

(
k

j

)
xj (1− x)k−j F

(
a
j

k

)
.

The function’s derivative is given by

G′(x) =
k∑
j=1

(
k

j

)
jxj−1(1− x)k−jF

(
a
j

k

)
−

k−1∑
j=0

(
k

j

)
(k − j)xj(1− x)k−j−1F

(
a
j

k

)
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=
k−1∑
j=0

[(
k

j + 1

)
(j + 1)F

(
a
j + 1

k

)
−
(
k

j

)
(k − j)F

(
a
j

k

)]
xj(1− x)k−j−1

where the last step has resulted from an index shift. Furthermore(
k

j + 1

)
(j + 1) =

k! · (j + 1)

(k − j − 1)! · (j + 1)!

=
k! · (k − j)
(k − j)! · j!

=

(
k

j

)
(k − j),

hence, we have

G′(x) =
k−1∑
j=0

[
F

(
a
j + 1

k

)
− F

(
a
j

k

)](
k

j

)
(k − j)xj(1− x)k−j−1.

Due to the monotonicity of distribution functions we can conclude that G′(x) ≥ 0 for all
x ∈ [0, 1].
We can then reason by induction that the sequence s̃(τ) is monotonously increasing on
[0, 1]. As base clause for this induction we show that s̃(0) ≤ s̃(1) holds.

s̃(1) = G(s̃(0))

=
k∑
j=0

(
k

j

)
s̃(0)j (1− s̃(0))k−j F

(
a
j

k

)

≥
k∑
j=0

(
k

j

)
s̃(0)j (1− s̃(0))k−j F (0)

= F (0)

= s̃(0)

The induction hypothesis s̃(τ) ≥ s̃(τ − 1) and the monotonicity of G yield

s̃(τ + 1) = G(s̃(τ)) ≥ G(s̃(τ − 1)) = s̃(τ),

which shows that the sequence s̃(τ) itself is monotonously increasing.
Now, by having a bounded and monotonously increasing sequence on [0, 1], we can apply
the Bolzano-Weierstrass theorem and conclude that there must be a value s̃ ∈ [0, 1] so
that the third claim holds.

The last theorem is going to be extended by the following corollary.

Corollary 4.1. The limit s̃ ∈ [0, 1] of the last theorem is a fixed point of function G.

Proof.

G(s̃) = G( lim
τ→∞

s̃(τ)) = lim
τ→∞

G (s̃(τ)) = lim
τ→∞

s̃(τ + 1) = s̃,

where the second step holds due to the continuity of G.
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Note that the existence of a fixed point for G cannot be proved by the Banach fixed point
theorem. Though G is Lipschitz continuous on the compact set [0, 1], it is not ensured
that G is a contraction mapping, since its derivative does not have to be less than 1 on
the whole set [0, 1]. Thus, we must not conclude that G has a unique fixed point on [0, 1],
which is also confirmed by the later visualization of G in Section 4.1.6.
Besides we allude that claim (i) of the last theorem may also be derived without relying
on the relaxing assumptions A(1.8) and A(1.9) of the cascade model but just on A(1.7).
The same is true for claim (ii) if τ = 0, hence, we conclude s̃(0) = s(0) and s̃(1) = s(1).

4.1.5 Remark on the analytical results

We have to advise of a difference between the results here and the results of Battiston et al.
(2012). By using the notations from here, Battiston et al. (2012) derive the recursive
sequence

s̃(0) = F (0)

s̃(τ + 1) = max

{
s̃(0),

k∑
j=1

(
k

j

)
s̃(τ)j (1− s̃(τ))k−j F

(
a
j

k

)}
in the cascade model. Their argumentation hereto has been the same up to the conclusion

s̃(τ + 1) = P
(
ρ̃1(0) ≤ a

k
d1(τ)

)
in our proof above. Then, different from here, they do not refer to the formula of to-
tal probability, but argue that the possible events for d1(τ) are 1, 2, . . . , k. From their
argumentation it is not clear why they left out the event d1(τ) = 0.
If we had assumed

P (d1(τ) = 0) = 0

in our argumentation, we would have received the same results, however, in our point of
view, this would not be feasible. By neglecting the corresponding summand for j = 0 in
our calculation of s̃(τ + 1), the fraction of defaulted agents in τ + 1 would not include the
part of defaulted agents, which - though their debtors are still solvent in τ - have already
defaulted in 0. One may suppose that such a case is only of little account in cascade
scenarios, nevertheless, it originates the problem, that in general

k∑
j=1

(
k

j

)
s̃(τ)j (1− s̃(τ))k−j F

(
a
j

k

)
does not have to increase monotonously. For instance, if we assume ρ̃1(0) ∼ N(0.2, 0.0036)
and choose k = 10, the recursion

s̃(0) = F (0)

s̃(τ + 1) =
k∑
j=1

(
k

j

)
s̃(τ)j (1− s̃(τ))k−j F

(
a
j

k

)
would yield the following results for τ = 0, . . . , 5:
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s̃(0) s̃(1) s̃(2) s̃(3) s̃(4) s̃(5)
4.29 · 10−4 2.08 · 10−4 1.00 · 10−4 4.82 · 10−5 2.31 · 10−5 1.10 · 10−5

Battiston et al. (2012) indicate that recoveries during a cascade ought to be excluded, i.e.
the cascade size must not decrease in time. That is the reason, why they used to apply
the maximum function as above which eventually results in an increasing and converging
sequence. In the following we will always use the version of s̃ as it has been derived by
us in Theorem 4.1.
As a further remark we want to state a lemma which discloses some monotonicity property
for the cascade size with respect to a variation in the mean robustness m if one assumes
a normally distribution for ρ̃i(0) in our derived formula for s̃(τ).

Lemma 4.1. Let ρ̃1i (0) and ρ̃2i (0) be the initial financial robustnesses adapted to the
cascade sequences (s̃1(τ)) and (s̃2(τ)) respectively from Theorem 4.1 whereas it is assumed
that s̃1(τ)→ s̃1, s̃2(τ)→ s̃2 and

ρ̃1i (0) ∼ N

(
m1,

σ2

k

)
ρ̃1i (0) ∼ N

(
m2,

σ2

k

)
for m1 ≥ m2. Then we have for all τ ≥ 0

s̃1(τ) ≤ s̃2(τ) and s̃1 ≤ s̃2.

Proof. We prove the lemma by induction. First we substantiate the base clause, that is,
we show s̃1(0) ≤ s̃2(0). Recall from Theorem 4.1 that

s̃1(0) = P (ρ̃1i (0) ≤ 0) = Φ

(
−m1

√
k

σ

)

s̃2(0) = P (ρ̃2i (0) ≤ 0) = Φ

(
−m2

√
k

σ

)
,

where the second equality is due to the assumed distribution. Since distribution functions
are monotonously increasing the assumption m1 ≥ m2 yields

s̃1(0) ≤ s̃2(0).

For the induction step we use the induction hypothesis s̃1(τ) ≤ s̃2(τ) and conclude

s̃1(τ + 1) =
k∑
j=1

(
k

j

)
s̃1(τ)j (1− s̃1(τ))k−j Φ

(
aj/
√
k −m1

√
k

σ

)

≤
k∑
j=1

(
k

j

)
s̃2(τ)j (1− s̃2(τ))k−j Φ

(
aj/
√
k −m1

√
k

σ

)

≤
k∑
j=1

(
k

j

)
s̃2(τ)j (1− s̃2(τ))k−j Φ

(
aj/
√
k −m2

√
k

σ

)
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= s̃2(τ + 1).

While the first inequality comes from the monotonicity of G, which has been shown in the
proof of Theorem 4.1, the second inequality is again the monotonicity of the distribution
function Φ. The final claim, that is, s̃1 ≤ s̃2, holds, since we know from analysis that for
general sequences b1(n) → b1 and b2(n) → b2 with b1(n) ≤ b2(n), one can deduce that
b1 ≤ b2 holds as well.

A further remark may give some support to analyze the following visualization of the
analytical results from Theorem 4.1. Recall that the underlying function of s̃(τ) in the
cascade model is given by

G(x) =
k∑
j=0

(
k

j

)
xj(1− x)k−jF (j

a

k
)

for x ∈ [0, 1] and F being the cumulative distribution function of the initial robustness
ρ̃i(0). Apparently, G(x) may also be regarded as the weighted sum of function F evaluated
at the supporting points 0, a

k
, 2a

k
, . . . , 1. The k + 1 weights are defined by

gj :=

(
k

j

)
xj(1− x)k−j, j = 0, . . . , k

and as gj equals the probability mass of having j successes in a binomial experiment
with k trials and success probability x, the weights obviously sum up to 1. Actually, for
a = 1 this type of weighted sum is well known as Bernstein polynomial which is generally
defined in the next definition.

Definition 4.2. The Bernstein polynomial Bk(f, x) is given by

Bk(f, x) =
k∑
j=0

(
k

j

)
xj(1− x)k−jf(

j

k
)

for any function f on [0, 1], x ∈ [0, 1] and k ∈ N.

Based on this general definition we can consider G(x) as the Bernstein polynomial with
respect to function F - assumed that parameter a is set to 1. While Bernstein polynomials
possess a series of useful properties as for instance described by Philips (2003) we just
state the probably most important one in the next theorem.

Theorem 4.2. For a given function f ∈ C(0, 1) and any δ > 0, there exists K ∈ N such
as

|f(x)−Bk(f, x)| < δ

for all x ∈ [0, 1] and k ≥ K.
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Proof. Let x be an arbitrary point in [0, 1]. Note that we can rewrite the Bernstein
polynomial as the expectation

Bk(f, x) = E

[
f
(Sk(x)

k

)]
for a random variable Sk(x) ∼ Bin(k, x), which is binomial distributed with k trials and
success probability x. The idea of the proof is to show first that∣∣∣∣f(x)− E

[
f
(Sk(x)

k

)]∣∣∣∣→ 0

as k →∞ in order to conclude pointwise convergence for the Bernstein polynomial in x.
By Dini’s Theorem we may then immediately follow that the continuous function Bk(f, x)
converges uniformly on the compact set [0, 1] towards f and the theorem’s claim would
have been proved.

We consider the random variable Sk(x) as the convolution of k independent Bernoulli
random variables ξj(x) with success probability x, i.e.

1

k
Sk(x) =

1

k

k∑
j=1

ξj(x).

Hence, we may apply the weak law of large numbers to 1
k
Sk(x) and conclude that

1

k
Sk(x)

P−→ E [ξ1(x)] = x

where
P−→ denotes convergence in probability. Klenke (2006) states that convergence in

probability implies weak convergence, that means, per definition of weak convergence we
deduce

E

[
g
(Sk(x)

k

)]
→ E[g(x)]

for all g ∈ C(0, 1) and k → ∞. Since, f ∈ C(0, 1) by assumption, the theorem is
proved.

Theorem 4.2 states that Bernstein polynomials uniformly converge to a sufficiently smooth
function f which is a useful result in numerical approximation theory. For our purpose
it enables the insight that - assumed that the distribution function F is continuous on
the interval [0, 1] - function G approximates function F so that characteristics of F are
regained in function G. One example is already stated in Lemma 4.1. So, for plots of G
in the following section it might be useful to keep in mind that a change in F will effect
function G in a similar manner.
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Figure 4.1: For all plots the distribution of ρ̃(0) has been N(m, σ
2

k ) with fixed σ = 0.25.
The parameter k is set to 10 for Plot 1, 2 and 4 - in Plot 3 k is correspondingly
varying. Function G in Plot 2 is in the same way defined as in proof for Theorem
4.1. The dashed line in the same plot represents the line through the origin. The
line in Plot 3 signalizes the values of the critical robustness for different values of
k. τ∗ in Plot 4 is the smallest time step τ for which 1− s̃(τ) < 10−6.

4.1.6 Visualization of the analytical results

Analogously to Battiston et al. (2012) we discuss the results of Theorem 4.1 by visualizing
the sequence s̃(τ). The following plots have been created by resorting to the version of the
sequence as it has been derived by us in Theorem 4.1, i.e. by taking the case d1(τ) = 0
into account. Indeed, we see that the visualized results are structurally the same as
in Battiston et al. (2012) who use the slightly different formula for s̃(τ). To ensure
comparability we assume like Battiston et al. (2012) a normal distribution on the initial
financial robustness, i.e.

ρ̃i(0) ∼ N

(
m,

σ2

k

)
for all i ∈ V , where a diversification effect on the robustness’ variance for an increasing
number of debtors, if parameter σ is assumed to be fixed, is additionally regarded.
The result of Lemma 4.1 has formalized as intuitively supposed, that a lower mean ro-
bustness of ρ̃i(0) implies a higher final cascade size of defaulted agents in the network.
While this fact is indeed recognizable in the following plots, we see in the first illustration
that the cascade size is not necessarily a continuous function in m but may possesses a
jump at a certain mean robustness. Plot 1 of Figure 4.1 illustrates the cascade size at
step τ = 600, fixed diversification degree k = 10 and varying mean robustness m on the
interval [0.215, 0.22]. The discretization size for the given interval has been chosen to be
10−5. Apparently, the observed cascade sizes separate the robustness interval into two
parts, where for m ≤ 0.21904 the cascade sizes in τ = 600 are approximately 1 and for
m ≥ 0.21905 the cascade sizes drop to low values in the field of 0. Hence, the plot suggests
that the cascade size is not continuous in m but rather jumps from almost no defaults
to a total collapse of the system at a mean robustness m? which we’d like to call critical
robustness in the following.
Plot 2 on the right hand side can be taken as insight for the observation in the previ-
ous plot. We here draw function G(x) on the interval [0, 1] for three different values of
parameter m. The dashed line represents the line through the origin and shall help to
detect fixed points. The upper blue line is G(x) for a mean robustness of m = 0.025 which
has no fixed point up to a value close to 1. The lower red line corresponds to G(x) with
m = 0.3. Though it is not visible in this plot, G(0) > 0 holds. What we see, is, that the
red line crosses the dashed line at a value x?1 ≈ 0.18 which is not the fixed point to which
s̃(τ) converges. Actually, there is a further intersection point x?2, where 0 < x?2 < x?1 and
for which we eventually have s̃(τ)→ x?2. If we use Figure 4.2 to zoom into Plot 2 we may
reason the convergence of s̃(τ) into x2 by alluding that the Banach fixed point theorem
holds locally for G on the interval [0, x2]. Finally the black line corresponds to G(x) with
m = 0.21905, which is due to Plot 1 close to the critical robustness. Note that a reduction
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Figure 4.2: The figure is used to zoom into Plot 2 of Figure 4.1.

in m shifts the curve of G towards left so that the first intersection point of G with the
dashed line wanders bottom up to the point at which the black lines is almost tangent to
the dashed line. For these wandering intersection points the Banach fixed point theorem
always locally hold and we can always register a convergence to these points. However, if
m is less than 0.21905 the curve of G is shifted too far so that there is no intersection point
any more with the dashed line - at least on the range of the x-axis which is noticeable
in Figure 4.2. In this situation the first intersection point would be close to 1 implying
a cascade of large size. To sum up, the critical robustness m? is the mean robustness for
which the graph of G switches from intersecting to bothering the line through the origin.
Plot 3 in Figure 4.1, which can be likewise found in Battiston et al. (2012), illustrates the
dependency of the critical robustness on diversification degree k. We used to approximate
these values in the range between k = 5 and k = 90 by an algorithm which is based on
the idea of generating nested intervals. For the algorithm we have to initially set τ ?

sufficiently large, tol sufficiently small and s̃? as the cascade size of interest. Furthermore,
we must define initial values m1, m2 such as s̃m1(τ

?) > s̃? and s̃m2(τ
?) < s̃?. Having given

these input parameters the algorithm works as follows.

Algorithm 4.1: An algorithm for approaching the critical robustness.

Data: m1, m2, s̃
?, tol, τ ?

Result: Critical robustness m
m = m1+m2

2
;

Calculate s̃(τ ?) w.r.t. mean robustness m;
while m2 −m1 > tol and s̃(τ ?) 6= s̃? do

m = m1+m2

2
;

Calculate s̃(τ ?) w.r.t. mean robustness m;
if s̃(τ ?) > s̃? then

m1 = m;
else

if s̃(τ ?) < s̃? then
m2 = m;

else
STOP

end

end

end

The algorithm’s intention is laid out to approximate the robustness m at which s̃(τ ?)
equals s̃? and works as the cascade size increases if m decreases due to Lemma 4.1. If
function G does not possess a stable fixed point in s̃? for any value of m, the algorithm
will approximate

m? = inf{m : s̃m(τ ?) < s̃?}.

For our purposes we set s̃ = 0.5 and have only received approximations m̂? for which the
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cascade size in τ ? is less than 0.05 whereas minor reductions of the found values m̂? effect
jumps to cascade sizes larger than 0.9. We allude that it is not excluded in general that
there might be intermediate cascade sizes on the interval [0, 1], which eventually happens
for a certain setting of parameters m and σ. Actually, such cases would particularly occur
if one chooses a standard deviation σ exceeding the assumed mean m whereas this has
not been considered by Battiston et al. (2012).8 If we talk about large or small cascade
size in the following, we will always assume that the size of cascades is separated by the
critical robustness m? as in Plot 1 of Figure 4.1.
We are not informed how Battiston et al. (2012) found m?, and we could not figure out
any analytical way to determine m? exactly for the assumed normal distribution on ρ̃i(0),
however, Algorithm 4.1 has turned out to work reliably.
In addition to the contents of Battiston et al. (2012) we analyze the duration of conver-
gence for fixed k and σ but varying robustness m below the critical robustness, i.e. how
fast does s̃(τ) approach towards 1. Plot 4 in Figure 4.1 points out that for robustness m
close to the critical robustness the duration exponentially increases, whereas for smaller
m the duration remains a long time on a low level. Figure 4.2 suggests that the contin-
uous derivative of G(x2) converge towards 1 if m goes to m? from above. The Banach
fixed point theorem in turn allows to deduce that a higher value of the derivative in the
fixed point slows the speed of convergence of the fixed point iteration which explains the
increasing duration in Plot 4.

4.2 Discussion on the cascade model

Recall that the original motivation for the relaxing assumptions A(1.8) and A(1.9) has
been to make an inference on s(τ) of Equation (4.3), however, it is not clear at all whether
the analytical result on s̃ in Theorem 4.1 can be effectively taken as a good reference for s.
Battiston et al. (2012) avoid doing a close discussion on this but state about A(1.8) that
”[t]his assumption is strictly valid only when there are few defaults in the system. However,
when there are instead many defaults, the result shows that eventually the cascade involves
the whole network. Thus, the presence of correlation becomes irrelevant and the result
is still correct.”. In our following discussion we will at first illustrate by relying on a
small network that assumptions A(1.8) and A(1.9) does not hold generally in the cascade
mechanism of Definition 4.1 and then point out in a succeeding simulation procedure that
s̃ cannot serve commonly as reliable inference on s, however, we will eventually conclude
that the cascade model has its right to exist in the procedure of Battiston et al. (2012)
anyway.

4.2.1 The cascade mechanism on a small network

For the construction of a counter-example with respect to assumptions A(1.8) and A(1.9)
we rely on a network of small size. More precisely, we will refer to a network with N = 3
and k = 2. This network, illustrated on the left in Figure 4.3, contains only three agents 1,

8Recall that function G approximates the distribution function F as Bernstein polynomial, hence, for
having a stable fixed point of G close to 0.5, F (0) would have to be large, but at the same time the
derivative of F must not to be too large so that a stable fixed point is available at 0.5. This in turns
requires a large σ in order to stretch F .
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Figure 4.3: The left hand side illustrates the network of consideration with N = 3
and k = 2. The upper plot on the right hand side reports the correlation coefficient
as defined in Equation (4.6). The plot below shows F (0) for different values of m
and σ = 0.25 fixed.

2 and 3, and all three agents interchange bilaterally credits. In order to fulfill assumptions
A(1.1) - A(1.3) entirely it is furthermore assumed that the weights of the issued credits
equal 0.5.

Review assumption A(1.8)

We first assume ρ̃i(0) ∼ N(m,σ2) for i = 1, 2 and 3, where it is additionally assumed,
in order to match assumption A(1.7), that ρ̃i(0) are independently distributed In the
following we will denote by F the distribution function of ρ̃i(0).
Recall that assumption A(1.8) has been introduced in Section 4.1.3 in order to elude an
involved analytical treatment of the network structure. The given network, however, is
manageable enough to calculate, for instance, the correlation coefficient between 1(ρ̃2(1)≤0)
and 1(ρ̃3(1)≤0) explicitly by directly relying on the setting of Definition 4.1, while a cor-
relation coefficient unequal 0 will refute assumption A(1.8). The correlation coefficient
between 1(ρ̃2(1)≤0) and 1(ρ̃3(1)≤0) reads

Corr[1(ρ̃2(1)≤0),1(ρ̃3(1)≤0)] =
Cov[1(ρ̃2(1)≤0),1(ρ̃3(1)≤0)]√

V ar[1(ρ̃2(1)≤0)]
√
V ar[1(ρ̃3(1)≤0)]

. (4.6)

For the given network its calculation is based on the identities

E[1(ρ̃2(1)≤0)1(ρ̃3(1)≤0)] = P (ρ̃2(1) ≤ 0, ρ̃3(1) ≤ 0),

E[1(ρ̃2(1)≤0)] = E[1(ρ̃3(1)≤0)] = P (ρ̃3(1) ≤ 0)

which can be combinatorially computed by keeping in mind that due to Equation (4.1)

ρ̃2(1) = ρ̃2(0)− 1

2
1(ρ̃1(1)≤0) −

1

2
1(ρ̃3(1)≤0)

ρ̃3(1) = ρ̃3(0)− 1

2
1(ρ̃1(1)≤0) −

1

2
1(ρ̃2(1)≤0).

It is

E[1(ρ̃2(1)≤0)1(ρ̃3(1)≤0)] = F (0)2 + F (0)(F (0.5)− F (0))2 + 2F (0)2(F (1)− F (0))

+2F (0)(1− F (0))(F (0.5)− F (0))

E[1(ρ̃2(1)≤0)] = F (0)(1 + F (0)(F (1)− F (0)) + 2(F (0.5)− F (0))(1− F (0)))

where a corresponding combination of these terms under consideration of the identity

E[1(ρ̃2(1)≤0)] = E[12
(ρ̃2(1)≤0)]

yields the correlation coefficient of 1(ρ̃2(1)≤0) and 1(ρ̃3(1)≤0).
For fixed σ = 0.25, but varying mean robustness m in the range of [−1.5, 1.5], we draw
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the correlation coefficient in Figure 4.3 on the right hand side. Additionally, the figure
contains below the development of

F (0) = P (ρ̃1(0) ≤ 0)

with respect to m. IF F (0) is high, we will presumably observe independent defaults
for all agents 1, 2 and 3 already in τ = 0. In this case any linkage between the agents
becomes redundant for possible contagion effect and we observe just a low correlation in
τ = 1. On the other side, if F (0) is low, we will have hardly any defaults in τ = 0 and
both agents will be still solvent in τ = 1 without risk of infecting each other. Again, just
a slight correlation is recognizable. One may take this as a kind of illustration for the
statement of Battiston et al. (2012).
However, for an intermediate level of F (0) a correlation between 1(ρ̃2(1)≤0) and 1(ρ̃3(1)≤0)
is clearly noticeable. The occurring correlation may be explained by now having an
indifferent probability for a default or no default in τ = 0. Typically, the fraction of
defaults and no defaults will be balanced in τ = 0, then, however, the linkages between
the agents will influence 1(ρ̃2(1)≤0) and 1(ρ̃3(1)≤0) since the default of one agent will affect
the status of the other agent in τ = 1 which is then displayed by the noticeable correlation.

Review assumption A(1.9)

For reviewing assumption A(1.9) we again rely on the small network of Figure 4.3 fulfilling
assumptions A(1.1) - A(1.3). But therefore we assume for the sake of simplicity a Bernoulli
distribution for ρ̃i(0), that is

P (ρ̃i(0) = 1) = 1− p
P (ρ̃i(0) = 0) = p,

where i = 1, 2, 3. This yields

E[ρ̃1(0)1(ρ̃2(1)≤0)] = E[ρ̃1(0)1(ρ̃2(1)≤0)|ρ̃1(0) = 1]P (ρ̃1(0) = 1)

+ E[ρ̃1(0)1(ρ̃2(1)≤0)|ρ̃1(0) = 0]P (ρ̃1(0) = 0)

= E[ρ̃1(0)1(ρ̃2(1)≤0)|ρ̃1(0) = 1](1− p)

= P

(
ρ2(0) ≤ 1

2
1(ρ̃3(0)≤0)

)
(1− p)

= p(1− p).

Furthermore we deduce that

E[ρ̃1(0)] = 1− p

and

E[1(ρ̃2(1)≤0)] = P
(
1(ρ̃2(1)≤0) = 1

)
= p+ (1− p)p2.

We compose this and obtain the covariance

Cov
[
ρ̃1(0),1(ρ̃2(1)≤0)

]
= p(1− p)− (1− p)(p+ (1− p)p2)
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Figure 4.4: The figure illustrates the correlation between ρ̃1(0) and 1(ρ̃2(1)≤0) for
different values of the initial default probability p.

= −(1− p)2p2.

By

V ar [ρ̃1(0)] = p(1− p)
V ar

[
1(ρ̃2(1)≤0)

]
= p+ (1− p)p2 − (p2 + (1− p)p2)2

we can deduce the correlation coefficient of ρ̃1(0) and 1(ρ̃2(1)≤0), which is plotted in Figure
4.4 for p ranging between 0 and 1. The correlation in Figure 4.4 tends to 0 if the default
probability becomes large or small, which somehow matches the statement of Battiston
et al. (2012) again, however, for intermediate values of the initial default probability
the correlation becomes more distinctive. Actually, we observe a negative correlation
between ρ̃1(0) and 1(ρ̃2(1)≤0) meaning that high a probability for ρ̃1(0) being 1 decreases
the probability of having 1 for 1(ρ̃2(1)≤0) as well and vice versa.

4.2.2 Simulation on a small network

We’d like to proceed a simulation on the small network of Figure 4.3 in order to compare
s, that is the expected fraction of defaults in the cascade mechanism of Definition 4.1
against the outcome of s̃ based on the formula of Theorem 4.1. For the simulation we
construct the network’s weighted adjacency matrix

Aw =
1

2

0 1 1
1 0 1
1 1 0

 ,

generate the random variables ρ̃1(0), ρ̃2(0) and ρ̃3(0) a hundred times for different m and
apply Equation (4.1) for receiving the number of defaulted agents. In this procedure it is
assumed ρ̃i(0) ∼ N(m,σ2) for all i = 1, 2, 3, where σ is set to 0.25 constantly for all runs.
Our particular impetus is to range the mean robustness m so that the three cases high,
low and indifferent default probability in τ = 0 are covered.
The following table lists how often we have observed which count of defaults in percentage
of 100 runs for each selected mean robustness. In the last line we report s̃ which is the
limit for the sequences s̃(τ) as suggested by the cascade model.

m -1 -0.5 -0.25 0 0.25 0.5 0.75 1
Simulation
3 Defaults 100% 100% 100% 88% 39% 3% 0% 0%
2 Defaults 0% 0% 0% 0% 0% 0% 0% 0%
1 Default 0% 0% 0% 0% 0% 1% 0% 0%
0 Defaults 0% 0% 0% 12% 61% 96% 100% 100%

Cascade Model s̃ 1 1 1 1 0.998 0.5 0.002 3.3 · 10−5
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We see that in both cases, low and high default probability in τ = 0, the cascade model
and the simulations estimate likewise the same fraction of defaults, namely, 0% and 100%
respectively. The range between m = 0 and m = 0.5 appears more interesting. While the
expected fraction of defaults is prognosticated to be close to 1 in the cascade model, the
simulations rather suggest that the size of the cascades alternates between total collapse
and no defaults. Obviously, the cascade model only works reliable for the border area of
m, however, if we choose m so that we become an intermediate probability for defaults
in τ = 0, the cascade model tends to overestimate the expected cascade size.
By relying on our review of assumption A(1.8) and A(1.9), it is traceable that s̃ will not
serve as accurate measure for the expected defaults in the cascade mechanism if m is
chosen such that the initial default probability is balanced.
The overestimation appears first as surprising, since one would presumably expect an
underestimation of the default probability due to the neglected correlation for τ > 0.
Note that for the given cascade mechanism without the relaxing assumptions A(1.8) and
A(1.9) we have on a general network

µ1(τ) := P

(∑
i∈V

1(ρ̃i(τ)≤0) = 0

)
= (1− F (0))N

for all τ ≥ 0. However, in the cascade model, it is due to A(1.8)

µ2(τ) := P

(∑
i∈V

1(ρ̃i(τ)≤0) = 0

)
= (1− p(τ))N ,

i.e. the probability of having no defaults in the cascade model is depending on τ . More-
over, since p(τ) = s̃(τ) and s̃(τ) is increasing in the cascade model, the probability of
having no defaults is decreasing with growing τ . Thus, the cascade model cumulatively
underestimates the event of having no defaults in the network over time. The error, which
is induced by this underestimation, depends on the initial state of µ2(0), which coincides
with µ1(0). If it is already low in the beginning, only less underestimation can be incorpo-
rated. On the other side, if the probability is close to 1, s̃(τ) will already terminate in an
early stage and again just less or no underestimation flows into the recursive calculation
of s̃(τ). However, if µ2(0) is not too large, but sufficiently large in order to trigger a
convergence of s̃(τ) towards 1, the calculation of s̃(τ) will incorporate in every step τ the
wrongly decreasing probability µ2(τ). Hereby the error s̃ becomes the larger the longer
the convergence of s̃(τ) takes. We refer to Figure 4.5, which includes µ1, the time to
convergence τ ? with respect to machine accuracy for s̃(τ) → s̃ and the error between s̃
and s, which is going to be ascertained by

κ = s̃− ŝ,

whereas these values are depending on m, and ŝ is the observed average for the simulations
on s from above. We observe that the peak of κ is reached when µ1 bends down from 1
which is simultaneously the point where the convergence of s̃(τ) towards 1 is triggered the
first time and requires the most iterations. Apparently, the calculations of the cascade
model respond sensitively as soon as the probability of having no defaults in the network
slightly leaves a level of almost 1. The error κ will not reach 0 before the probability of
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Figure 4.5: The figure contains the values µ1, κ, and τ? determined on the setting
of the small network illustrated in Figure 4.3 and the assumptions ρ̃i(0) ∼ N(m,σ2),
σ = 0.25.

having no defaults in the network undershoots a certain level close to 0 again.
Admittedly, the last examination has been only executed on a very specific network set-
ting. We are going to undertake in the next section the comparison between simulation
and cascade model on larger networks and will see that the problem of overestimation
may be analogously found on these networks as well.

4.2.3 Cascade model vs. simulation on large networks

As in the last section on the specific, small network we now simulate the cascade mech-
anism on larger networks. For the generation of a general network which satisfies the
assumptions of an homogeneous network we rely on Algorithm 3.1 in Section 3.2.4. Hav-
ing generated this network with the corresponding N × N adjacency matrix Aw, we
simulate the vector ρ̃(0) of dimension N and then iteratively apply Equation (4.2). In
each iteration step we can read out the vector z(τ) which indicates the fraction of de-
faulted agents in the cascade mechanism at τ . With the same argumentation as in Section
3.2.3 we restrict ourself to a network with size N = 50. Additionally, we assume for each
component of the vector ρ̃(0),

ρ̃i(0) ∼ N

(
m,

σ2

k

)
i = 1, . . . , N,

with σ = 0.25 and k fixed but varying values for m. In the following we denote by ŝj(τ)
the fraction of defaults at iteration step τ in the j-th run of the simulation. We repeat
the simulations for all m 300 times and consider the average

ŝ(τ) =

∑300
j=1 ŝj(τ)

300
.

To be in line with the mean field approach of Battiston et al. (2012) the network’s adja-
cency matrix is always renewed for every simulation run j = 1, . . . , 300. Eventually, we
compare ŝ(τ) to the cascade size s̃(τ) proposed by the cascade model and its iterative
formula in Theorem 4.1.
The comparison is illustrated by the contour plots in Figure 4.6, where we focus ourselves
on the cases k = 5 and k = 35. The contour plots consist of a y-axis for τ ranging from 0
to 50 and an x-axis for the mean robustness m. The colors signalize the size of s̃(τ) and
ŝ(τ) respectively for the various values of m and τ . The observations between both cases
k = 5 and k = 35 do not differ and may be analogously made for other degrees of diversi-
fication. Apparently, the sizes of the cascades in the cascade model are strictly separated
between values close to 1 and 0, which is in line with the contents of Section 4.1.6. We see
that the position of the critical robustness, which is highlighted by the horizontal lines,
is indeed a boundary between two regimes in the cascade model. This coincides with the
observation in Plot 1 of Figure 4.1 and we can also observe a long-lasting convergence of
s̃(τ), as already seen in Plot 4 of Figure 4.1, if m proceeds towards the critical robustness
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Figure 4.6: The figure illustrates the size of a cascade suggested by the formula of
the cascade model and simulations respectively with respect to the discrete time
unit τ on the y-axis and the mean robustness on the x-axis. For the code of the
plots we refer to McGilliard et al. (2010).

Figure 4.7: The histogram on the left hand side illustrates the initial distribution
of the cascade sizes for 300 simulations in the case k = 5 and m = 0.225. On the right
hand side we illustrate the distribution of the final cascade size for the same set of
simulations.

from left. Eventually, the both contour plots for the cascade model are just a confirmation
of the observations in Section 4.1.6 by a different form of visualization.
For our purpose it is more interesting to draw a comparison with the contour plots of the
simulations’ outcome. For the boundary area on the interval of the mean robustness we
detect a consensus between cascade model and simulations, however, for a range to the
left of the critical robustness the contour plots display a discrepancy between model and
simulations. While s̃(τ) is already close to 1, ŝ(τ) has just intermediate values.
The interpretation of ŝ(τ) must be taken carefully. We remind of the simulation exercise
on the small network in the last section which has suggested that the final cascade size
alternates in the simulations for some range of m between total collapse and no defaults.
The same holds true for the consideration of larger networks. A value of 0.5 for ŝ(τ) does
not necessarily mean that the outcomes of ŝi(τ) have been 0.5, but it means that in 50%
of the cases the network has completely failed while in the other 50% no or just a few
agents have defaulted.
We refer to Figure 4.7 which confirms on the right hand side that in τ = 50 the simu-
lations’ outcome for k = 5 and m = 0.225 can be indeed grouped into both cases: total
collapse and no or almost no defaults respectively. By bringing together this plot with
the histogram on the left hand side which illustrates the distribution of the cascade sizes
ŝj(0) we conclude that a total collapse - with some exceptions - always occurs in the case
k = 5 and m = 0.225 as soon as there is at least one defaulted agent in τ = 0.
The cascade model always results in a cascade size of 1 for m less than the critical robust-
ness as its recursive calculation procedure responds sensitive as soon as the probability of
having no defaults in the network starts to decrease as explained in Section 4.2.2. This is
also confirmed by the horizontal lines denoting the critical mean robustness at which we
apparently observe in the simulations the first occurrence of subsequent defaults in τ > 0
due to some initial defaults in τ = 0.

4.3 Resume on the cascade model

The discussion has pointed out that the cascade model and its application of a binomial
distribution under the recursive usage of the default probability and assumed indepen-
dence between the initial robustness and the subsequent default counts - are not subtle
enough to determine the expected size of a cascade reliable. It suggests a total collapse
of the system in cases for which the simulations still generate outcomes without any no-
ticeable loss.
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Hence, an isolated application of the cascade model can result in misleading conclusions.
Nevertheless, it has its right to exist in the procedure of Battiston et al. (2012). For the
further procedure we will see that an accurate size of a cascade is actually not required but
for the quantification of systemic risk it is just necessary to identify the mean robustness
at which a network suffers a switch between two regimes: While in the first regime the
network is stable enough so that individual defaults of some agents are absorbed without
any system-wide consequence in the second regime the network becomes instable and is
potentially exposed to a cascade mechanism which results in a total collapse of the system.
The contour plots of the simulations in Figure 4.6 indeed show that the critical robustness,
having been approximated by referring to the formula from the cascade model, indicates
the mean robustness at which the cascade sizes of the simulations start to become slightly
positive. Hence, the critical robustness resulting from the cascade model may be taken
as an identifier of a point at which the network passes over into an instable state.
Independent of the used assumptions for getting the results in Theorem 4.1 the cascade
model appears generally as naive way to model contagion effects between agents in the
situation of a distressed system. Due to Equation (4.1) the cascade mechanism is based on
depreciations in the agents’ balance sheet if a debtor has defaulted. Certainly, the agents’
robustness will be influenced by further impacts in such a situation. One possible impact
might be interventions by policy maker and central banks. Their measures may stabilize
the network’s agents during a cascade and can prevent a total collapse of the system.
Admittedly, such impacts are suppressed by the cascade model. The reasoning of Adrian
and Shin (2008), for instance, may be considered as an argument against the convenience
of the cascade model. So, if one wants to explicitly research the cascade mechanism
in credit networks, we recommend to refer to a more complex model, however, for the
procedure of Battiston et al. (2012), which is rather interested in the point at which a
cascade mechanism with serious consequences for the networks can be possibly triggered,
and in order to examine networks stability in general the assumed cascade mechanism
may be a first attempt to get some insights how network participants effect each other in
times of distressed credit markets.



61

5 Systemic risk in homogeneous networks

This section explains the finalizing step in the procedure of Battiston et al. (2012) which
is ought to quantify the intensity of systemic risk. Up to now we have become acquainted
with risk of default from an individual perspective in Section 3 while Section 4 has talked
about a mechanism which considers defaults in a system-wide context. In their procedure
Battiston et al. (2012) understand systemic risk as the possibility that all individuals of a
network are so far weakened at the same time so that the system is exposed to a cascade
mechanism with serious consequences. In our point of view this might be seen in line with
the following qualitative concept of systemic risk from Kaufman and Scott (2003) which
points out the boundary between individual default risk and the risk of a system wide
distortion:

Systemic risk refers to the risk or probability of breakdowns in an entire sys-
tem, as opposed to breakdowns in individual parts or components, and is
evidenced by comovements (correlation) among most or all of the parts.

The following section points out how Battiston et al. (2012) concatenate the concept of
the individual financial robustness from Section 3 with the cascade mechanism in Section
4. The basic idea is to suppose that on the continuous time line every agent of the network
starts in t = 0 with maximal robustness 1 and it is then measured how long it takes for
the paths to reach a level at which the system-wide robustness is sufficiently low so that
a cascade of large size can be potentially triggered.

5.1 Evolution of the initial distribution

Battiston et al. (2012) state in the beginning of their final section that ”. . . robustness
is not a static quantity and that the distribution of robustness that is likely to be realized
at the beginning of a cascade evolves in time[]”, i.e. it becomes somehow necessary to
consider the evolution of the initial distribution in the cascade mechanism over time. In
order to come up to this statement Battiston et al. (2012) refer to a two-stage process
for which they assume that the initial distribution of the cascade mechanism is driven
by the process ρi which is the financial robustness in continuous time from Definition
3.3. Actually, they synchronize the robustness ρ̃i(0) from the cascade mechanism with
the distribution of ρi by agreeing upon

ρ̃i(0) = ρ̃i(0|t)
d
= ρi(t), (5.1)

where
d
= denotes that the left and right hand side are identical in distribution. Hence,

the initial distribution of the financial robustness from the cascade mechanism is assumed
to be dependent on the continuous time unit t which allows for considering its changing
characteristic in the pre-cascade phase while during a cascade the financial robustness ρ̃i
develops unchanged on the cascade mechanism’s time scale τ . At this point Battiston
et al. (2012) argue for the different time scales by alluding that the robustness evolution
in a cascade-free period is rather a long-term development compared to the cascade period
which ”. . . occurs at a time scale (e.g. days) which is much faster than the evolution of
robustness . . . ” in the cascade-free period.
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The agreement in Equation (5.1) is based on the idea that the defaults occurring on the
continuous time line correspond to the initial fraction of defaulted agents in the beginning
of a cascade. Therefore we calculate by v(t) the fraction of defaulted agents in t on an
homogeneous network with N agents all having the same continuous time process ρi from
Definition 3.3 if one supposes no recovery for a defaulted agent between 0 and t. It is

v(t) =
1

N
E[
∑
i∈V

1(ρi(t)≤0)]

=
1

N

∑
i∈V

P (ρi(t) ≤ 0)

= P (ρi(t) ≤ 0).

So by agreeing upon Equation (5.1) we obtain

v(t) = s(0|t),

where s(0|t) denotes the expected, initial fraction of defaults for a cascade starting on the
continuous time line in t. Correspondingly we agree upon that s(τ |t) will be the fraction
of defaults in step τ ≥ 0 within the cascade mechanism if the cascade is triggered in t for
the assumed initial distribution ρ̃i(0|t).
In their given setting Battiston et al. (2012) deal with the question how long it takes in
average for m(t), which denotes the mean of the continuous time process ρi, to reach the
critical robustness m? from Section 4 so that s̃(τ |t) will converge to a value close to 1 as
τ →∞. In the following this time is defined by

Qi(m
?) = inf{t : m(t) = m?}. (5.2)

Obviously, for this procedure it is necessary to know the distribution of ρi(t) for a fixed
t ∈ [0,+∞). Recall hereto Definition 3.3, which states that ρi is driven by an underlying
process ρ̂i with dynamics

dρ̂i = −αqdt+
σ√
k
dW ?

i (t),

and initial condition ρ̂i(0) = 1. By rewriting this SDE in integral form we obtain

ρ̂i(t) = 1− αqt+
σ√
k
W ?
i (t),

that is

ρ̂i(t) ∼ N

(
1− αqt, tσ

2

k

)
however, this does not hold for ρi(t) since it is additionally biased by the reflecting barrier
at 1 and the absorbing barrier at 0. Nevertheless, Battiston et al. (2012) rely on a
normality assumption and use for their purpose the assumption that

ρi(t) ∼ N

(
m(t),

σ2

k

)
. (S1)
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Figure 5.1: Plot 1 explains the trigger of a cascade by the decline of the mean
robustness m(t) of ρi in time. The dashed horizontal line denotes the point at which
m(t) reaches m? which position on the y-axis is in turn highlighted by the horizontal
line. Plot 2 zooms into Plot 1 in order to figure out the behavior of s̃(0|t) and s̃
near Qi(m

?). We set s̃(103|t) = s̃. s̃ does not entirely increase since the simulated
m(t) which is used as input for the calculation of s̃ is not monotonously decreasing
but possesses slight up and down variation which is not noticeable in the plot.

holds approximately true, while m(t) is not further specified. Furthermore, they assume
for the sake of simplification, that

Qi(m
?) ≈ E[Ti(m

?)], (S2)

where the right hand side of the last equation denotes the mean first passage time of
process ρi at m?, which is obviously not in line with the actual definition of Equation
(5.2).
Prior to that we’d like to use Figure 5.1 in order to recap the idea of a triggered cascade
by the decrease of m(t) for the specific case k = 10 and α = 0.075. Plot 1 partitions the
continuous time interval in a pre and post cascade phase. The first phase lasts as long
as m(t) is larger than m? which position on the y-axis is highlighted by the horizontal
line. Hereby m(t) has been drawn from a simulation on the continuous time process ρi.
Additionally we have plotted as a blue line the value of s̃(0|t) from the cascade model
based on the assumption (S1) and by the red line the final cascade size s̃ as it is suggested
by the cascade model for the start value s̃(0|t). We see that exactly in Qi(m

?) - where we
here did not use assumption (S2) but the actual definition of Qi(m

?) from Equation (5.2)
- s̃ explodes, which can be taken as the trigger of a cascade with serious consequences for
the network.

5.2 Results on systemic risk

By the simplifying assumption (S2) we get a formula for the time at which ρi hits m?.
Therefore, we recall Theorem 3.2, which endows us with the formula

E[Ti(m
?)] =

{
exp(−2αqk(1−m?)σ−2)−1

2α2q2kσ−2 + 1−m?
αq

, for α > 0

kσ−2(1−m?)2, for α = 0.
(5.3)

Hence, by neglecting that E[Ti(m
?)] is not measuring the time when the mean of ρi reaches

m?, but the expected time when the path of ρi reaches m? the first time, the last formula
measures in dependence of the assumed financial accelerator α and diversification degree
k the intensity with which a network becomes fragile for system-wide distortion. This is
going to be summarized in the next section.

5.2.1 Visualizing systemic risk

Recall Section 4.1.6 where we used to calculate approximations on m? by Algorithm 4.1
under the assumption

ρ̃i(0) ∼ N

(
m,

σ2

k

)
.
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Figure 5.2: The figure illustrates f?s for different α. The points attached to the lines
signalize the interpolation points at which f?s has been evaluated.

Since assumption (S1) and the agreement in Equation (5.1) imply that

ρ̃i(0|t) ∼ N

(
m(t),

σ2

k

)
we can use the calculations on m? from Section 4.1.6 for determining E[Ti(m

?)]. In the
following we will refer to the notation m̂? in order to point out that the calculations on
E[Ti(m

?)] happen here just with an approximative value of m? as we do not know a closed
formula on m?. In line with Section 3.1.7 we again follow Battiston et al. (2012) and
visualize the inverse of Equation (5.3), that is

f ?s (k, α, σ, ε?, m̂?(k)) :=
1

E[Ti(m̂?(k))]

=

{
αq

σ2(2αqk)−1(exp(−2αqk(1−m̂?(k))σ−2)−1)+1−m̂?(k) , for α > 0
σ2

k(1−m̂?(k))2 , for α = 0

and which can be taken as the intensity of observing network fragility. Hereby, q =
q(k, α, σ, ε?) remains unchanged in the same way as in Section 3.1. Battiston et al. (2012)
particularly focus on the development of f ?s with respect to k whereas the other parameters
are supposed to be fixed - exceptional m̂? which is depending on k.
Figure 5.2 illustrates the systemic risk with respect to the network’s diversification degree
k for various assumed magnitudes of the financial accelerator effect. This visualization is
similar to Plot 1 in Figure 3.1, and the available lines possess the similar progressions.
This is not surprising as in both cases we used to plot the inverse of mean first passage
times just for differing absorbing barriers. So, the observations in Figure 5.2 may be
analogously reasoned as we did it for Plot 1 in Figure 3.1. We repeat the core of our
reasoning there:

The marginal utility of risk diversification will be overlaid by a stronger increasing
financial accelerator effect if the agent diversifies her credit portfolio too much.

Applied to systemic risk in the sense of Battiston et al. (2012) Figure 5.2 allows for the
conclusion that portfolio diversification in the presence of a financial accelerator may -
other than maybe suspected - increase the intensity of having large cascades.
This statement is slightly limited by the observation in Figure 5.2 - noticeable at least for
α = 0.075 - that f ?s decreases again after having passed a certain diversification degree.
The same holds true for the other α > 0, however, it is hardly or not viewable in this
illustration. So, other than f ? in Plot 1 of Figure 3.1, f ?s is not converging towards
αq bottom-up but from above, which changes the statement about systemic risk in the
presence of a financial accelerator only less, since the maximum for f ?s is not reached
before k = 100 and the decrease in f ? occurs later only slowly at least for the range
of α, which we used to consider. Furthermore, Battiston et al. (2012) mention in their
final calibration exercise an estimated diversification degree of 17± 13 in the core of the
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global interbank credit market. Besides they refer to the work of Soramki et al. (2007)
who figure out a core of 25 institutions on the U.S. interbank market, where the average
degree for the overall markets has been estimated to be 11 ± 8 there. Craig and von
Peter (2010) examine the German interbank market consisting of about 2000 institutions
with an average diversification degree of about 11 across the whole network. Hence, a
diversification degree ranging between 0 and 100 seems to be realistic.

5.3 Discussion on the final results

The final step has not entirely been in accordance to the original idea of synchronizing ρi
and ρ̃i but relied on the approximations (S1) and (S2). Obviously, both approximations
do not hold in general and only serve as simplification respectively. We are going to check
whether both simplifying assumptions are nearby or whether the results of Battiston et al.
(2012) must be rethought due to a lack of accuracy. Hereby we restrict our examination
to the case α = 0.075 - the procedure may be analogously applied to other values of α.

5.3.1 Review assumption (S1)

The approximative assumption (S1)

ρi(t) ∼ N

(
m(t),

σ2

k

)
may be considered as the link between the model of the financial robustness in Section
3.1 and the financial robustness from the cascade model in Section 4.1, since by the

agreement ρ̃i(0|t)
d
= ρi(t), the use of N(m(t), σ2/k) for ρ̃i(0|t) in the cascade model is

implied. However, if there is a large discrepancy between (S1) and the actual distribution
of ρi, the calculations of m̂? which then would have been undertaken under the wrong
premise that

ρ̃i(0) = ρ̃i(0|t) ∼ N

(
m,

σ2

k

)
holds, might lead to wrong conclusions on systemic risk. We are going to figure out
whether the distribution of ρi(t

?) is close to N (m?, σ2/k) where t? = E[Ti(m
?)]. Before

we start with our examination procedure we like to allude that assumption (S1) may be
slightly weakened by recalling that the distribution function F for ρ̃i(0) only matters for
positive values within the cascade model.9 Thus, it suffices to compare ρi(t

?) to a variable
defined as

ζ = max(0, ζ?), ζ? ∼ N

(
m?,

σ2

k

)
.

For both ρi(t
?) and ζ we simulate 1000 realizations and compare these realizations by

visualizing the empirical distribution functions for different diversification degrees k. For
the visualization of the empirical distribution function we have referred to the function

9Recall the formula on G in Section 4.1.4. G relies on the distribution function of ρ̃i, that was F , only
for arguments on the interval [0, 1].
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Figure 5.3: The figure compares the empirical distribution functions F̂ (ζ), F̂ (ζadj)

and F̂ (ρi(t
?)) for various k on the intervall [0, 1]. The black line is covering F (ρi(t

?)),
the blue line denotes F̂ (ζ) and the red line represents F̂ (ζadj). In the simulations on
ρi(t

?) it has been taken α = 0.075. For the simulation of ρi(t
?) we used to simulate the

path of ρi on the interval [0, t?] a thousand times by relying on the Euler-Maruyama
scheme with discretization size 0.01. For incorporating the reflecting barrier the
simulation has been adapted to Algorithm A of Asmussen et al. (1995).

ecdf(), which is part of the ”stats” package in R Core Team (2013). In Figure 5.3
we observe that for different diversification degrees k the empirical distribution function
F̂ (ζ) for the simulations of ζ clearly deviates from the empirical distribution function of
the simulations of ρi(t

?) which is denoted by F̂ (ρi(t
?)). Particularly, the plots allow to

conclude a massive discrepancy between the variance of ρi(t
?) and ζ?.

Recall that the underlying process of ρi is ρ̂i, and we know from above that

ρ̂i(t
?) ∼ N

(
1− αqt?, t?σ

2

k

)
holds true. So, in our point of view the choice of

ζadj = max(0, ζ?adj), ζ?adj ∼ N

(
m?, t?

σ2

k

)
appears more accurate as an approximation on ρi(t

?). And indeed, the empirical functions
of F̂ (ζadj) fits F̂ (ρi(t

?)) better than it has been the case for F̂ (ζ).10 By looking at the red
and black lines in Figure 5.3 it is conspicuous that for larger k the approximation error
of (S1) becomes smaller. The reason is given by the decreasing coefficient in the diffusion
term of ρ̂i as k becomes large so that - as reasoned in Section 3.1.8 and illustrated by
Lemma 3.7 - the process ρi is less influenced by the reflecting barrier and thus approaches
towards a Brownian motion with drift. Eventually, (S1) may disturb if diversification
degrees are small but becomes acceptable for k being sufficiently large.

5.3.2 Review assumption (S2)

Assumption (S2)

Qi(m
?) ≈ E[Ti(m

?)].

will not hold in general since for the process ρi with negative drift and upper reflecting
barrier we would expect that the mean first passage time of hitting m? occurs earlier than
the time at which the mean of ρi reaches m?.

10For our purpose the simulations on ζadj have not been obtained by a completely new simulation run
but by referring to the simulations on ζ? and adjust them in the following manner:

ζ?adj = (ζ? −m?)
√
t? +m?.

Thus, we ensure that the observed deviation between F (ρi(t
?)) and F̂ (ζ) is not a matter of simulations

but indeed subject to a wrongly assumed time-invariant variance.
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Figure 5.4: The figure compares for the case α = 0.075 the estimate on Qi(m̂
?) with

E[Ti(m̂
?)] which value is known from Equation (5.3). Additionally we illustrate by

the red line the values of Q̃i(m̂
?). The points on the lines denote the interpolation

points k where values have been calculated.

We want to check the quality of this approximation by drawing Qi(m̂
?) via simulations

and compare it to E[Ti(m̂
?)] whose value is available to us as explicit formula. In our

considerations we restrict ourself to the case α = 0.075 - the remaining cases may be
examined analogously.
We estimate Qi(m

?) by simulating ρi with an applied discretization size of d = 0.01 on
the Euler-Maruyama scheme, where due to the reflecting barrier the simulation algorithm
has been adapted to Algorithm A of Asmussen et al. (1995). For each interpolation point
t̂ in the discretization scheme D = {0, 0.01, 0.02, . . . } we calculate the paths’ empirical
mean over M = 1000 simulations so that we have estimates m̂(t̂) for E[ρi(t̂)] = m(t̂) if
t̂ ∈ D. The value

Q̂i(m̂
?) = inf

t̂∈D
{t̂ : m̂(t̂) ≤ m̂?}

is then our estimate on Qi(m
?) and eventually compared to E[Ti(m̂

?)].
The results are illustrated in Figure 5.4. Not surprisingly, the curve of E[Ti(m̂

?)] runs
permanently below the curve of Q̂i(m̂

?), which makes sense as reasoned above. By con-
sidering the inverse of both curves in Figure 5.4, the intensity f ?s = 1/E[Ti(m̂

?)] must
be actually shifted downwards towards 1/Q̂i(m̂

?) - particularly for k < 20, however, the
results of Battiston et al. (2012), that systemic risk is increasing again for increasing
diversification degree holds true anyway.
The advantage of referring to 1/E[Ti(m̂

?)] instead of 1/Qi(m̂
?) is that the former one

endows us with a closed formula for systemic risk while the latter one must be identified
via simulations.
To complete this review we give an alternative approximative attempt, namely

m(t) = 1− αqt

which would be the the mean of the process ρi disregarding any barriers. This is simple
enough to make an inference on Qi(m̂

?) by solving just for t in

1− αqt = m?.

The results to this calculation denoted by Q̃i(m̂
?) is plotted in Figure 5.4 as red line. For

small k the deviation to the black line arises from the reflecting barrier while for larger
k we see that Q̃i(m̂

?) approaches towards the simulated version of Qi(m̂
?). Eventually,

this is a repetition of the results in Figure 5.3, which suggests for k large enough that ρi
is less effected by the reflecting barrier and close to a normal distribution.

5.3.3 Additional remark on assumptions (S1) and (S2)

We altogether conclude that the procedure of concatenating the continuous financial ro-
bustness with the financial robustness from the cascade model under the two assumptions
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(S1) and (S2) bias the results, however, if one exclusively wants to cave out the core
results of Battiston et al. (2012), that is the principle of systemic risk as a non-decreasing
function in k without desiring an accurate quantification of systemic risk the pragmatical
choice of (S1) and S(2) suffices for this purpose.
Nevertheless it is nearby to give some thought on assumptions (S1) and (S2), and to figure
out whether there are some analytical instruments which allow to abstain from these
biasing simplifications. The difficulty hereby is to deal with the reflecting and absorbing
barrier of ρi. There are concepts, for instance, applied in the valuation of exotic options,
which display some properties about processes with barriers and which might be used to
avoid the biasing simplifications (S1) and (S2). However, most of the concepts, which we
found, disregard either the reflecting or the absorbing barrier but do not consider both at
the same time. As an example we refer to a formula which indicates the mean of

ηi(t) := inf
0≤s≤t

(1− ρ̂i(s)). (5.4)

By recalling the composition of the process ρi in Definition 3.3, we can then consider for
instance

m̃(t) = 1− αqt+ E[ηi(t)].

as the mean of the process ρi without considering an absorption barrier. The formula for
the mean of ηi(t) is stated by the next lemma.

Lemma 5.1. The mean of the process ηi(t) as defined in Equation (5.4) is given by

E[ηi(t)] =
αqt

2
+

σ2

kαq

[(
2Φ(
√

2w)− 1
)(1

2
+ w2

)
+
we−w

2

√
π

]

where

w := −αq
√
tk√

2σ
.

Proof. The calculation follows the procedure of Magdoni-Ismail et al. (2004) and starts
with the consideration of

S(t) := sup
0≤s≤t

x(s), I(t) := inf
0≤s≤t

x(s).

Hereby x(s) denotes a common Brownian motion W with drift, that is

x(s) = µs+ σxW (s)

with µ ∈ R, σ > 0 and x(0) = 0. As, for instance, proved by Dominé (1996) the density
of the absorption time

λ := inf
s≥0
{x(s) = b}
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at an absorbing barrier b > 0 turns out to be the one of an inverse Gaussian distribution,
namely

fλ(u) =
b

(2πσ2
xu

3)1/2
exp

(
−(b− µu)2

2σ2
xu

)
.

We use that

1− FS(t)(b) = P (S(t) ≥ b) = P (λ ≤ t) ,

where FS(t) denotes the distribution function of S(t). Hence,

E[S(t)] =

∫ +∞

0

1− FS(t)(b)db

=

∫ +∞

0

P (λ ≤ t) db

=

∫ +∞

0

∫ t

0

fλ(u)dudb.

Solving the integrals yields as described by Magdoni-Ismail et al. (2004)

E[S(t)] =
µt

2
+
σ2
x

µ

[(
2Φ(
√

2wµ)− 1
)(1

2
+ w2

µ

)
+
wµe

−w2
µ

√
π

]
,

where wµ = µ
√
t√

2σx
. For

x−(s) = −µs+ σW (s) S−(t) := sup
t∈[0,t]

x−(s)

we have the identity E[I(t)] = −E[S−(t)]. Now, recall that ρ̂i is assumed to start in 1,
hence,

1− ρ̂i(s)
d
= x(s)

with µ = αq and σx = σ√
k
. Thus,

E[η(t)] = E[ inf
0≤s≤t

(1− ρ̂i(s))]

=
αqt

2
+

σ2

kαq

[(
2Φ(
√

2w)− 1
)(1

2
+ w2

)
+
we−w

2

√
π

]

with w = −αq
√
tk√

2σ
.

In Figure 5.5 we compare m̃(t) with m(t), where the latter denotes the mean of the process
ρi under the assumption that α = 0.075, σ = 0.25 and k = 20. m(t) has been determined
by a simulation run with both a reflecting barrier at 1 and an absorbing barrier at 0.
Apparently, both curves coincide in the beginning but diverge for proceeding t which is
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Figure 5.5: The figure illustrates the curves of m(t) being the simulated mean of the
process ρi and m̃(t) resulting from Lemma 5.1. For the simulations we applied an
Euler-Maruyama scheme with discretization size of 0.01, where due to the reflecting
barrier the simulation algorithm has been adapted to Algorithm A of Asmussen
et al. (1995).

due to the stated problem of the disregarded absorbing barrier in the calculations of m̃(t).
Nevertheless, for more accurate results with respect to systemic risk it might be worth
to replace (S2) by the usage of m̃(t) as long as Qi(m

∗) is sufficiently small. Anyway,
deriving results on the distribution of ρi(t) in order to entirely eliminate (S1) and (S2)
would require more efforts. Literature for further examination might be given by Dominé
(1996), who states the first passage density of a process with a reflecting and an absorbing
barrier which could be possibly used to derive the accurate expectation of ρi in the manner
of Lemma 5.1.
At this point we content ourselves that, though (S1) and (S2) are not perfect, the core
result of Battiston et al. (2012) with respect to systemic risk may be yet confirmed -
particularly if the diversification degree k is large enough.

5.3.4 Resume

As a resume of the last discussion we suggest to modify the cascade model if it is linked to
the continuous time process ρi, namely, by stating that for the initial distribution ρ̃i(0|t)
it must be rather assumed

ρ̃i(0|t) ∼ N

(
m(t), t

σ2

k

)
. (5.5)

We adjust the variance term by incorporating the time unit t and take herewith into ac-
count that the variance of ρi(t) expands over time. Of course this assumption is still only
approximative correct since ρi(t) ∼ N(m(t), tσ2/k) does not hold in general, but with
respect to the visualization of the empirical distribution functions in the previous section
it appears more accurate than the previously assumed ρ̃i(0|t) ∼ N(m(t), σ2/k). Due to
this adjustment the results on systemic risk in Figure 5.2 must be revalued since m̂? has
been originally calculated under the wrong variance term - disregarding the time unit.
We refit f ?s by now assuming Equation (5.5) which also requires in turn a readjustment
of Algorithm 4.1 in order to find the critical robustness m?.
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Figure 5.6: Plot 1 compares the version of m̂? before variance adjustment and its
recalculated version after variance adjustment denoted by m̂?(adj). Plot 2 points out
the change in systemic risk after having considered the adjustment on the variance
term for the case α = 0.075. The blue line is systemic risk f?s before adjustment, the
black line denotes systemic risk after adjustment. The points on the lines signalize
the interpolation points k where values have been calculated.

Algorithm 5.1: Adjustment of Algorithm 4.1 with respect to the time-dependent
variance

Data: m1, m2, s, tol, τ
?

Result: m
m = m1+m2

2
;

Calculate tm = E[Ti(m)] ;

Calculate s(τ ?) w.r.t. mean robustness m and variance tm
σ2

k
;

while m2 −m1 > tol and s(τ ?) 6= s do
m = m1+m2

2
;

Calculate tm = E[Ti(m)] ;

Calculate s(τ ?) w.r.t. mean robustness m and variance tm
σ2

k
;

if s(τ ?) > s then
m1 = m;

else
if s(τ ?) < s then

m2 = m;
else

STOP
end

end

end

The algorithm has been extended by calculating additionally E[Ti(m)] which is then
incorporated into the variance term. This is done by referring to the assumption (S1) and
sure enough just approximatively correct.
The recalculation of f ?s , which is denoted by f ?s (adj) and relies on the newly approximated
critical robustness m̂?(adj), may be found in Figure 5.6. We observe that systemic risk is
under the new assumption throughout higher than before. One can consider the increase
of the systemic risk as the part of uncertainty resulting from time uncertainty which has
not been considered before in the examination of Battiston et al. (2012). However, we
also allude once again that the structure of systemic risk with respect to k does not change
its face.
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6 The cascade mechanism in heterogeneous networks

We remind that the examination of systemic risk by Battiston et al. (2012) has taken place
on networks with an homogeneous network structure. Assumptions A(1.2) and A(1.3)
state that the networks’ agents are alike in their lending behavior and it is not possible to
find any agent or a group of agents whose position in the credit market significantly differs
from the position of other agents. However, there is evidence that interbank credit markets
possess rather an heterogeneous structure than the assumed homogeneous structure of
Battiston et al. (2012). We refer to the work of Langfield et al. (2012) who detect a
core-periphery structure for the UK interbank system. Bech and Atalay (2008) in turn
point out an heterogeneous structure for the U.S. funds market and Craig and von Peter
(2010) see evidence for a core-periphery structure on the German interbank market. Their
common conclusion is that the interbank market contains a core of a few but large banks
who act as intermediaries for the remaining smaller banks, which account for the majority
of the interbank market. For instance Langfield et al. (2012) write that . . . [s]maller
domestic banks [. . . ] are predominantly exposed to the large UK banks. This implies that
the large UK banks act as intermediaries to cross-border transactions.” Craig and von
Peter (2010) describe the banks on the core as money center banks which provide services
to the periphery in their role as market maker ”. . . including government securities, FX,
derivatives, and offshore markets.” Battiston et al. (2012) themselves allude that their
procedure is rather a method for examining the core of a credit network which most likely
fulfills the assumptions A(1.2) and A(1.3).
In this last section we first present some results of Craig and von Peter (2010) about the
core-periphery structure on the German interbank market and do a brief data analysis.
Afterwards, we’d like to point out the misleading effect of assuming homogeneity on a
credit network though an heterogeneous structure is present. For measuring network
stability we refer to the idea of the cascade mechanism from Section 4 and compare
the magnitude of such an effect on a credit network under assumed homogeneity and
heterogeneity respectively. In order to consider heterogeneous networks we will extend
the setting of Battiston et al. (2012) so that groups of varying diversification degrees
may be considered which is applied to observed data about connectivity in the German
interbank market. Eventually, for simulating heterogeneous networks we will suggest a
straightforward extension of Algorithm 3.1.

6.1 Core-periphery structure on the German interbank market

The work of Craig and von Peter (2010) aims to find statistically significance for a core-
periphery structure on the German interbank market. First they reason theoretically for
a tiered structure of the interbank market by arguing the existence of two sorts of banks
forming the interbank market: top-tier banks and lower-tier banks. In a purely tiered
network top-tier banks can potentially lend and borrow to any bank on the network while
lower-tier banks exclusively interact with top-tier banks but not with banks from the own
tier. Craig and von Peter (2010) formalize the tiered structure of a network as a model
by relying on a blockmodel technique for the network’s adjacency matrix A as

A =

(
CC CP
PC PP

)
. (6.1)
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Hereby, the adjacency matrix indicates - as in the procedure of Battiston et al. (2012)-
the bilateral credit relationships between the agents of the network by entries of ones
and zeros. While the block CC lists the relationships among the top-tier banks, PP
provides the informations about the relationships between the banks of the lower-tier.
Correspondingly, the blocks PC and CP cover the exchange of credits between both
tiers. Craig and von Peter (2010) require the blocks to fulfill the following properties in
their model :

• P(1) CC is a matrix of ones exceptional the zero diagonal,

• P(2) PP is a matrix of zeros,

• P(3) CP is row regular, that is, each row is covered by at least one 1,

• P(4) PC is column regular, that is, each column is covered by at least one 1.

While due to P(1) all top-tier banks are linked among each other, P(2) excludes any
direct credit relationships between banks of the lower-tier. On the other side P(3) and
P(4) ensure the intermediary function of the top-tier banks, so that the linkage between
banks of the lower-tier may be found as an indirect linkage via the top-tier banks. We
allude that due to the given properties a lower-tier bank does not have to act necessarily
as a creditor on the interbank market.
A network with properties P(1) - P(4) serves only as an illustrative model of a perfectly
tiered interbank market, however, one cannot expect that the set of agents on a real world
interbank credit network may be partitioned under consideration of the available linkages
into a top-tier and lower-tier so that P(1) - P(4) are entirely fulfilled. Craig and von
Peter (2010) rather take this strict structure as a benchmark for measuring whether an
observed real world network approaches such a perfectly tiered structure. As a measure for
the distance between the theoretical perfectly tiered network and the real world network
they refer to an error score which involves penalties for every deviation of the real world
network from the properties P(1) - P(4).
It is not obviously clear on networks of large size which set of banks should determine
the set of top-tier banks so that the distance to a perfectly tiered network is minimized.
In order to find this optimal set Craig and von Peter (2010) apply an algorithm which
first initializes an arbitrary choice of top-tier banks and then subsequently adjusts this
set towards the set of top-tier banks which eventually minimizes the error score. The
partition of the network into top-tier and lower-tier found by the algorithm does not have
to fulfill properties P(1) and P(2), however it is shown that properties P(3) and P(4)
indeed hold.
For a final validation Craig and von Peter (2010) design a test procedure which aims
to assess whether the distance of the real world network to a perfectly tiered structure
is significantly small. Hereby, they generate random networks, which are not supposed
to have a tiered structure, and compare the distance between a perfectly tiered network
and theses random networks to the distance observed for the real world network. In the
context of this test procedure they indeed point out significance for a tiered structure on
the German interbank market. In their analysis they also conclude that this structure is
resilient over time and they found low probabilities for a bank switching from one tier
to the other tier. Commonly, Craig and von Peter (2010) call the found top-tier of the
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German interbank market as the core of the market, while the lower-tier is ought to form
the periphery.

6.1.1 Data analysis

Craig and von Peter (2010) rely on a data set consisting the quarterly observed linkage
within the German interbank market for a sample period which starts in the first quarter
of 1999 and goes up to the fourth quarter in 2007. We have been endowed with the counts
of out and in-degrees in the blocks CP , PC and PP in the second quarter 2003 which
allows for giving an overview about connectivity in core and periphery respectively. We
introduce a definition which extends Definition 2.5 in order to allow for distinguishing
between a possible core and periphery on a general interbank market.

Definition 6.1. For a directed, weighted graph which represents according to Definition
2.5 a credit interbank market we additionally define the set V C and V P where both sets
partition the set V , and |V C | := NC , |V P | := NP . We agree upon the following notation
for the partition of the agents’ credit portfolios:

Vout(i) =

{
V CC
out (i) ∪ V CP

out (i) = {j ∈ V C : (i, j) ∈ E} ∪ {j ∈ V P : (i, j) ∈ E}, if i ∈ V C

V PP
out (i) ∪ V PC

out (i) = {j ∈ V P : (i, j) ∈ E} ∪ {j ∈ V C : (i, j) ∈ E}, if i ∈ V P .

The out-degrees are given by

dout(i) =

{
dCCout (i) + dCPout (i) = |{j ∈ V C : (i, j) ∈ E}|+ |{j ∈ V P : (i, j) ∈ E}|, if i ∈ V C

dPPout (i) + dPCout (i) = |{j ∈ V P : (i, j) ∈ E}|+ |{j ∈ V C : (i, j) ∈ E}|, if i ∈ V P .

The in-degrees are analogously composed by

din(i) =

{
dCCin (i) + dCPin (i) = |{j ∈ V C : (j, i) ∈ E}|+ |{j ∈ V P : (j, i) ∈ E}|, if i ∈ V C

dPPin (i) + dPCin (i) = |{j ∈ V P : (j, i) ∈ E}|+ |{j ∈ V C : (j, i) ∈ E}|, if i ∈ V P .

The data which we have at hand are the vectors OCP , OPC , OPP , IPC , ICP and IPP where

Ozẑ =

 dzẑout(1)
...

dzẑout(N
z)

 and Izẑ =

 dzẑin(1)
...

dzẑin(N z)

 (6.2)

for z, ẑ ∈ {C,P} contain the observed out- and in-degrees for the blocks CP , PC and
PP by recalling the adjacency matrix in Equation (6.1).
The examination of the second quarter 2003 has displayed a core set V C with cardinality
NC = 45 and a periphery of size NP = 1, 757. Craig and von Peter (2010) point out
that over the sample period the adjacency matrices for the overall network have been
rather sparse and only 0.61% of all cells have been 1. If we take the overall network size
N = 1, 802 in the second quarter 2003 and excluding the possibilities of self-loops in the
network, we will thus get an averaged out-degree of

d̂out = 0.0061
N2 −N
N

≈ 11. (6.3)
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At the same time Craig and von Peter (2010) allude that for the block CC, which denotes
the linkage just among core banks, 66% of the possible cells had an entry of 1. We thus
conclude an averaged out-degree for the linkage among core banks of

d̂CCout = 0.66
(NC)2 −NC

NC
≈ 29. (6.4)

By taking into account that core banks will possibly issue credits into the periphery as
well, the averaged diversification degree for core banks is noticeably higher than for banks
from the periphery. We can confirm this by relying on the data at hand which suggest
that11 (

d̂CCout d̂CPout
d̂PCout d̂PPout

)
=

(
29.00 114.11
6.56 0.98

)
. (6.5)

Consequently, we have

d̂Cout := d̂CCout + d̂CPout = 143.11,

d̂Pout := d̂PPout + d̂PCout = 7.54

which points out the difference between the out-degrees in the core and in the periphery
respectively. Also note that we have

d̂CCout > d̂PCout
d̂CPout > d̂PPout ,

which illustrates that in the mean a creditor from V C will always establish on the same
set of potential debtors more bilateral relationships than an agent from V P . Due to the
stable structure of the network over time we may suppose that this does not only hold
for the observed quarter but also in other periods.
The data at hand additionally provide the absolute credit exposures in billion EUR which
are given by (

XCC XCP

XPC XPP

)
:=

(
321.2 442.0
147.8 17.0

)
. (6.6)

For the sake of clarification, XCC = 321.2 means hereby, for instance, that in the obser-
vation period core banks had outstanding credit receivables worth 321.2 billion EUR to
other banks in the core. If we connect the absolute credit exposure to the the size of core
and periphery, we may deduce by(

x̂CC x̂CP

x̂PC x̂PP

)
=

(
XCC/NC XCP/NC

XPC/NP XPP/NP

)
=

(
7.1378 9.8222
0.0841 0.0097

)
(6.7)

an estimator for the total credit exposure per agent in each block and additionally by(
x̂CCb x̂CPb
x̂PCb x̂PPb

)
=

(
X̂CC/(NC d̂CCout ) XCP/(NC d̂CPout )

XPC/(NP d̂PCout ) XPP/(NP d̂PPout )

)
=

(
0.2461 0.0861
0.0128 0.0099

)
(6.8)

an estimator for each bilateral credit exposure in each block. These figures suggest that
core and periphery banks do not only differ with respect to the counts of issued credits
but also with respect to credit exposure in absolute values.

11As stated above the data at hand list the out and in-degrees in the blocks PP , PC, and CP . These
data suffice to calculate the averaged out-degrees for the three blocks. The block CC is missing in the
data set due to reasons of confidentiality, so, the number of d̂CC

out is taken from Equation (6.4).
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6.2 Setting of the cascade mechanism in heterogeneous net-
works

In order to analyze the German interbank market with the procedure of Battiston et al.
(2012) one opportunity would be to neglect the periphery and to exclusively examine the
core by assuming homogeneity in the sense of assumptions A(1.2) and A(1.3). Then it
would be nearby to set k = 29. For a consideration of the overall network a first attempt
would be to set k = 11 by following the result in Equation (6.3). However, as stated above
this would disregard that we can find by the core a group of creditors who are more active
and interconnected than the group of periphery banks. It is not clear whether there is a
difference on the fragility of the network if one refers to the core-periphery structure in
stead of assuming an homogeneous structure. We are going to extend the procedure of
Battiston et al. (2012) which will be flexible enough to consider two groups with differing
diversification degrees as it occurs in the core-periphery structure and measure network
stability by relying on the cascade mechanism of Section 4.

6.2.1 Redefining the interbank market as a graph

For the extension we avail ourselves of Definition 6.1 which has revised the originally
homogeneous interbank market from Definition 2.5 with respect to a partition of the
interbank market agents into sets V C and V P respectively. Our idea is to consider agents
from the same set as homogeneous, however, out-degrees may vary between agents from
different sets.

• A(2.1) The interbank credit market consists of 0 < N <∞ agents and it is |V C | =
NC and |V P | = NP respectively.

• A(2.2) We agree upon that

dCCout (i) = kCC , 0 ≤ kCC ≤ NC − 1, ∀i ∈ V C ,

dCPout (i) = kCP , 0 ≤ kCP ≤ NP , ∀i ∈ V C ,

dPPout (i) = kPP , 0 ≤ kPP ≤ NP − 1, ∀i ∈ V P ,

dPCout (i) = kPC , 0 ≤ kPC ≤ NC , ∀i ∈ V P .

• A(2.3) Each agent acts as a creditor, i.e. it must be

max{kCC , kCP} > 0

max{kPP , kPC} > 0.

So far, we have adjusted assumptions A(1.1) and A(1.2) by adding some more out-degrees
so that we can now differ between agents from two groups with differing diversification.
Note that these assumptions imply that we still consider agents from the same groups
as homogeneous with respect to their out-degrees, hence, we still arrange a mean field
approach, however, this approach now allows for two groups with different means.
Recall that assumption A(1.3) has determined the weight of every issued credit with
respect to the overall credit portfolio of an agent. In the mean field approach of Battiston
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et al. (2012) it has been assumed that these weights are uniformly 1
k

for every credit
issued to the network. For our extension a naive way would be to set by default

w(i,j) =

{
1

kCC+kCP
, if, i ∈ V C

1
kPP+kPC

, if, i ∈ V P ,
(6.9)

for all j ∈ V . Let us refer to the example of the German interbank market in order to
validate this assumption. By relying on the rounded values in Equation (6.5) we choose
as a specification of assumption A(2.2)(

kCC kCP
kPC kPP

)
=

(
29 114
7 1

)
.

The agreement in Equation (6.9) would then yield that any credit issued by a core bank
would compose 1

143
= 0.7% of her credit portfolio while we have for a periphery bank the

percentage 1
8

= 12.5%. This means, for instance, in the case of a creditor from the core
that the default of a debtor from the periphery would imply the same loss to the credit
portfolio as the default of a debtor from the core. However, the figures in Equation (6.7)
and (6.8) rather suggest that credits to the core and periphery differ with respect to the
part in an agent’s credit portfolio. We denote by ŵzẑ the estimated weight on the German
interbank market of a credit in the credit portfolio of an agent i ∈ V z, issued to a debtor
j ∈ V ẑ where z, ẑ ∈ {C,P} and calculate(

wCC wCP
wPC wPP

)
=

(
x̂CC

x̂CC+x̂CP
1

kCC

x̂CP

x̂CC+x̂CP
1

kCP
x̂PC

x̂PP+x̂PC
1

kPC

x̂PP

x̂PP+x̂PC
1

kPP

)
=

(
1.45% 0.51%
12.81% 10.32%

)
.

These figures suggest that credits to the core should sustain more weights in the agents’
credit portfolios. Hence, we agree upon the following assumption.

• A(2.4) The percentage of a credit issued to agent j on the credit portfolio of i is
given by the weight

w(i,j) =


wCC = eCC

1
kCC

, if, i, j ∈ V C

wCP = (1− eCC) 1
kCP

, if, i ∈ V C , j ∈ V P

wPP = ePP
1

kPP
, if, i, j ∈ V P

wPC = (1− ePP ) 1
kPC

, if, i ∈ V C , j ∈ V P

if kCC , kCP , kPC and kPP > 0, where

eCC :=
xCC

xCC + xCP

ePP :=
xPP

xPP + xPC
,

denotes the percentage of the credit portfolio which is exposed to agents from the
same group. If kzẑ = 0 for z, ẑ ∈ {C,P}, we set wzẑ = 0.



78 6 THE CASCADE MECHANISM IN HETEROGENEOUS NETWORKS

Note that by agreeing upon assumptions A(2.1) - A(2.4), the requirements of a perfectly
tiered structure of the interbank market as given by properties P(1) - P(4) are not met.
While P(1), P(2) and P(3) can be possibly fulfilled by determining the out-degrees corre-
spondingly, we can never guarantee the validity of P(4) since this property is a matter of
in-degrees which are not addressed in assumptions A(2.1) - A(2.4). However, we will later
state a probability of having property P(4) fulfilled in a network resulting from A(2.1) -
A(2.4).
For approaching towards a perfectly tiered structure of the network as suggested by Craig
and von Peter (2010), it might be constructive to further assume kPP = 0. In this case the
name periphery would become adequate for the set V P . In the following, we will suppose
that connectivity in V P is rather low but will not fully restrict ourselves to kPP = 0 in
order to maintain the option to consider the German interbank market for which the data
analysis in Section 6.1.1 suggests that some connectivity among periphery banks - though
it looks low - is present.

6.2.2 Adjusted cascade mechanism

The idea of this section is to conform the cascade model from Section 4 to the refined
setting of a network with groups of different out-degrees and weights. We start this section
by readjusting the cascade mechanism of Definition 4.1 for our purposes and with respect
to a network fulfilling assumptions A(2.1) - A(2.4). Therefore we rely on the notations

V CC
out (i) := {j ∈ V C : (i, j) ∈ E}
V CP
out (i) := {j ∈ V P : (i, j) ∈ E}

for i ∈ V C and equivalently

V PP
out (i) := {j ∈ V P : (i, j) ∈ E}
V PC
out (i) := {j ∈ V C : (i, j) ∈ E}

for i ∈ V P . The adjusted definition of the cascade mechanism is given as follows.

Definition 6.2. Let (Ω,F , P ) be a probability space and i ∈ V C , j ∈ V P . Then the
financial robustness of agent i and j respectively are R-valued sequences (ρ̃Ci (τ))τ∈N0 and
(ρ̃Pj (τ))τ∈N0 where the initial values ρ̃Ci (0) and ρ̃Pj (0) are random variables defined on the
given probability space with given distribution functions FC

i and F P
j . For τ > 0 we set

ρ̃Ci (τ + 1) = ρ̃Ci (0)− aC
∑

q∈V CCout (i)

wCC1(ρ̃Cq (τ)≤0) − aC
∑

q∈V CPout (i)

wCP1(ρ̃Pq (τ)≤0)

ρ̃Pj (τ + 1) = ρ̃Pj (0)− aP
∑

q∈V PCout (j)

wPC1(ρ̃Cq (τ)≤0) − aP
∑

q∈V PPout (j)

wPP1(ρ̃Pq (τ)≤0),

for aP , aC > 0.

This definition extends Definition 4.1 by incorporating a second sequence, thus, we may
distinguish between the financial robustness for agents from V C and V P during a cascade.
The parameters aP and aC allow to assume different effects of a defaulted debtor on the
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financial robustness of an agent from V C and V P respectively, which gives some more
flexibility to the model, however, in our later application we will always set aC = aP = 1.
The adjustment on the cascade mechanism with respect to the new, heterogeneous struc-
ture of the network targets on constructing a two dimensional sequence (sC(τ), sP (τ))τ=0,1,...,
where the first component denotes the expected cascade size on the set V C in step τ and
the second component contains the expected cascade size on the set V P , i.e.

sC(τ) :=
E[
∑

i∈V C 1(ρ̃Ci (τ)≤0)]

NC
, (6.10)

sP (τ) :=
E[
∑

i∈V P 1(ρ̃Pi (τ)≤0)]

NP
. (6.11)

Obviously, the expected fraction of defaults in the overall network is then given by

s(τ) =
NC

NC +NP
sC(τ) +

NP

NC +NP
sP (τ).

Similar to assumption A(1.7) it is assumed that the initial state of the financial robustness
is independently and identically distributed for all agents from the same group.

• A(2.5) The initial robustnesses ρ̃C1 (0), . . . , ρ̃CNC (0), ρ̃PNC+1(0), . . . , ρ̃PNC+NP (0) are sup-

posed to be stochastically independent with distribution function FC for all i ∈ V C

and F P for all i ∈ V P .

In Section 4.1.3 we have pointed out the difficulty to compute expressions as in Equation
(6.10) and (6.11) respectively. The results of Battiston et al. (2012) for the univariate
case stated by Theorem 4.1 may be analogously derived in the two dimensional case as
well. Therefore we introduce the following relaxing assumptions.

• A(2.6) Let z ∈ {C,P}. For an agent i ∈ V z we assume

P (1ρ̃zi (τ)≤0) = 1) = pz(τ),

where pz(τ) ∈ [0, 1]. Additionally, it is supposed that 1(ρ̃zi (τ)≤0) are stochastically
independent for all z ∈ {C,P} and i ∈ V z.

• A(2.7) For i ∈ V z, where z ∈ {C,P} it is supposed that ρ̃zi (0) and 1(ρ̃ẑi (τ)≤0) are
independent for all τ > 0 and ẑ ∈ {C,P}.

Having the discussion about assumptions A(1.8) and A(1.9) in mind, we allude that A(2.6)
and A(2.7) likewise do not hold in general for the setting of Definition 6.2. Nevertheless,
we rely on these assumptions in order to derive the analogon for Theorem 4.1. Therefore
we use the notations

s̃C(τ) :=
E[
∑

i∈V C 1(ρ̃Ci (τ)≤0)]

NC
(6.12)

s̃P (τ) :=
E[
∑

i∈V P 1(ρ̃Pi (τ)≤0)]

NP
(6.13)
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in order to point out that the following results for Equations (6.10) and (6.11) are based
on the falsifying assumptions A(1.8) and A(1.9). Furthermore, we are going to use the
notations

dCCi (τ) =
∑

q∈V CCout (i)

1(ρ̃Cq (τ)≤0)

dCPi (τ) =
∑

q∈V CPout (i)

1(ρ̃Pq (τ)≤0),

if i ∈ V C and equivalently for j ∈ V P it is agreed upon

dPPi (τ) =
∑

q∈V PPout (i)

1(ρ̃Pq (τ)≤0)

dPCi (τ) =
∑

q∈V PCout (i)

1(ρ̃Cq (τ)≤0).

Theorem 6.1. Let Gw be a graph that fulfills assumptions A(2.1) - A(2.4). For τ ≥ 0 the
financial robustnesses ρ̃Ci (τ) and ρ̃Pi (τ) are defined by Definition 6.2 and A(2.5) - A(2.7)
are assumed to hold true. FC and F P denote the distribution functions of ρ̃Ci (0) and ρ̃Pi (0)
respectively. Then, for

(
s̃C(τ), s̃P (τ)

)
as defined in Equations (6.12) and (6.13) we have

the following results:

(i)
(
s̃C(0), s̃P (0)

)
=
(
FC(0), F P (0)

)
,

(ii) s̃z(τ + 1) =
∑kzz

x=0

∑kzẑ
y=0

[
F z (azwzzx+ azwzẑy)

(
kzz
x

)
s̃z(τ)x

(
1− s̃z(τ)

)kzz−x
(
kzẑ
y

)
s̃ẑ(τ)y

(
1− s̃ẑ(τ)

)kzẑ−y]
, for τ ≥ 0 and z ∈ {C,P}, ẑ ∈ {C,P} \ {z},

(iii) the sequence
((
s̃C(τ), s̃P (τ)

))
τ=0,1,...

converges to a value
(
s̃C , s̃P

)
∈ [0, 1]2.

Proof. For claim (i) we use the definition of s̃C(τ) in Equation (6.12) and assumption
A(2.5) that ρ̃Ci (0) is identically distributed for all i ∈ V C . Hence, we obtain for τ = 0

s̃C(0) =
E[
∑

i∈V C 1(ρ̃Ci (0)≤0)]

NC

=

∑
i∈V C P (ρ̃Ci (0) ≤ 0)

NC

= P (ρ̃C1 (0) ≤ 0)

= FC(0),

where we have supposed without loss of generality that 1 ∈ V C . The calculations on the
claim s̃P (0) = F P (0) work similar.
For claim (ii) we again rely exclusively on s̃C(τ) and allude that the argumentation for
s̃P (τ) is the same again. Per definition we have for s̃C(τ + 1) and τ ≥ 0,

s̃C(τ + 1) =
E[
∑

i∈V C 1(ρ̃Ci (τ+1)≤0)]

NC
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=

∑
i∈V C P (1(ρ̃Ci (τ+1)≤0) = 1)

NC

= P (1(ρ̃C1 (τ+1)≤0) = 1),

since 1(ρ̃Ci (τ+1)≤0) are supposed to be identically distributed for all i ∈ V C . With respect
to Definition 6.2 the last one may be equivalently written as

P

ρ̃C1 (0) ≤ aCwCC
∑

q∈V CCout (1)

1(ρ̃Cq (τ)≤0) + aCwCP
∑

q∈V CPout (1)

1(ρ̃Pq (τ)≤0)

 ,

which we rewrite more convenient as

P
(
ρ̃C1 (0) ≤ aCwCCd

CC
1 (τ) + aCwCPd

CP
1 (τ)

)
.

We apply the formula of total probability and obtain

s̃C(τ + 1) =

kCC∑
x=0

kCP∑
y=0

[
P

(
ρ̃C1 (0) ≤ aCwCCd

CC
1 (τ) + aCwCPd

CP
1 (τ)

∣∣∣∣dCC1 (τ) = x, dCP1 (τ) = y

)
P
(
dCC1 (τ) = x, dCP1 (τ) = y

) ]
.

Due to A(2.6) and A(2.7) the last one becomes

s̃C(τ + 1) =

kCC∑
x=0

kCP∑
y=0

[
FC (aCwCCx+ aCwCPy)

(
kCC
x

)
s̃C(τ)x

(
1− s̃C(τ)

)kCC−x
(
kCP
y

)
s̃P (τ)y

(
1− s̃P (τ)

)kCP−y]
which is the claim of (ii).
For claim (iii) we first allude that

(
s̃C(τ), s̃P (τ)

)
∈ [0, 1]2 per definition. Secondly, we

show as an induction base for the following procedure that s̃C(1) ≥ s̃C(0):

s̃C(1) =

kCC∑
x=0

kCP∑
y=0

[
FC (aCwCCx+ aCwCPy)

(
kCC
x

)
s̃C(0)x

(
1− s̃C(0)

)kCC−x
(
kCP
y

)
s̃P (0)y

(
1− s̃P (0)

)kCP−y]
≥ FC(0)

kCC∑
x=0

(
kCC
x

)
s̃C(0)x

(
1− s̃C(0)

)kCC−x kCP∑
y=0

(
kCP
y

)
s̃P (0)y

(
1− s̃P (0)

)kCP−y
= FC(0)

= s̃C(0)

In the same way one may show that s̃P (1) ≥ s̃P (0) is true. For the further argumentation
we insert a function Hz : R2 → R,

Hz(u1, u2) =
kzz∑
x=0

kzẑ∑
y=0

[
F z (azwzzx+ azwzẑy)

(
kzz
x

)
ux1

(
1− u1

)kzz−x(kzẑ
y

)
uy2

(
1− u2

)kzẑ−y]
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for z ∈ {C,P} and ẑ ∈ {C,P} \ {z}. Obviously, it is

Hz (s̃z(τ), s̃ẑ(τ)) = s̃z(τ + 1).

By recalling the argumentation for determining the derivative of function G in the proof
on Theorem 4.1 we deduce for the partial derivative of H

∂Hz

∂u1
=

kzz∑
x=1

kzẑ∑
y=0

{[
F z (azwzz(x+ 1) + azwzẑy)− F z (azwzzx+ azwzẑy)

]
(
kzz
x

)
(kzz − x)ux1

(
1− u1

)kzz−x−1(kzẑ
y

)
uy2

(
1− u2

)kzẑ−y}
which is greater or equal zero for

(
u1, u2

)
∈ [0, 1]2. Due to symmetry we also have

∂Hz

∂u2
≥ 0.

Hence, if ∇Hz denotes the gradient of Hz it is

∇Hz(u1, u2) ≥ 0

for all
(
u1, u2

)
∈ [0, 1]2.

Due to the mean value theorem we then know for
(
s̃z(τ), s̃ẑ(τ)

)
and

(
s̃z(τ − 1), s̃ẑ(τ − 1)

)
∈

(0, 1)2 that there must be λ ∈ (0, 1) with(
s̃1, s̃2

)
= λ

(
s̃z(τ), s̃ẑ(τ)

)
+ (1− λ)

(
s̃z(τ − 1), s̃ẑ(τ − 1)

)
∈ (0, 1)2

so that

Hz(s̃z(τ), s̃ẑ(τ))−Hz(s̃ẑ(τ − 1), s̃z(τ − 1)) = ∇Hz(s̃1, s̃2)
T

(
s̃z(τ)− s̃z(τ − 1)
s̃ẑ(τ)− s̃ẑ(τ − 1)

)
holds true, where the last one is greater or equal zero by recalling the stated value of the
gradient and the present induction hypothesis s̃z(τ) ≥ s̃z(τ − 1) and s̃ẑ(τ) ≥ s̃ẑ(τ − 1).
Thus, the last yields

s̃z(τ + 1) = Hz(s̃C(τ), s̃P (τ)) ≥ Hz(s̃C(τ − 1), s̃P (τ − 1)) = s̃z(τ)

For the marginal conditions sz(τ) = 0, sẑ(τ) = 0, sz(τ − 1) = 1 or sẑ(τ − 1) = 1 function
Hz reduces to an univariate function in one variable so that we can examine monotonicity
by relying on function G in Theorem 4.1. For the other possible marginal conditions the
monotonicity is shown by the definition of Hz as it has been executed for deriving the
induction base which is skipped here.
To sum up, we have a sequence

((
s̃C(τ), s̃P (τ)

))
τ≥0 which components monotonously

increase on the bounded set [0, 1]2, hence, by applying the Bolzano-Weierstarss theorem,
we find that there must be a point

(
s̃C , s̃P

)
∈ [0, 1]2 so that the claim(

s̃C(τ), s̃P (τ)
)
→
(
s̃C , s̃P

)
holds for τ →∞.
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6.2.3 Simulating an heterogeneous network structure

Analogously to Section 3.2.4 we want to simulate an adjacency matrix of an interbank
market being in line with assumptions A(2.1) - A(2.4). Therefore, we rely on the block-
model technique of Craig and von Peter (2010) and define the weighted adjacency matrix
Aw as follows.

Aw =

(
AwCC AwCP
AwPC AwPP

)
,

where AwCC denotes a NC ×NC matrix, AwCP is NC ×NP , AwPC is NP ×NC and AwPP is
a NP ×NP matrix all having entries of zeros or the corresponding weights for each block
as stated in assumption A(2.4). By being endowed with the out-degrees kCC , kCP , kPC ,
kPP and the exposure percentages eCC and ePP , we generate Aw by extending Algorithm
3.1 as follows.

Algorithm 6.1: Generating a weighted adjacency matrix which represents a het-
erogeneous credit network.

Data: Parameter NC , NP , kCC , kCP , kPC , kPP , eCC and ePP
Result: Adjacency matrix Aw with weights
Initialize a (NC +NP )× (NC +NP ) matrix Aw with zero entries;
Initialize block matrices AwCC , A

w
CP , A

w
PC and AwPP with zero entries and dimensions

as above;
for i = 1 to NC do

Select randomly kCC numbers from the set {1, . . . NC} \ {i} and save them in
indC;
Select randomly kCP numbers from the set {1, . . . NP} and save them in indP ;
if kCC > 0 then

AwCC [i, indC] = eCC
1

kCC
;

end
if kCP > 0 then

AwCP [i, indP ] = (1− eCC) 1
kCP

;

end

end
for i = 1 to NP do

Select randomly kPP numbers from the set {1, . . . NP} \ {i} and save them in
indP ;
Select randomly kPC numbers from the set {1, . . . NC} and save them in indC;
if kPP > 0 then

AwPP [i, indP ] = ePP
1

kPP
;

end
if kPC > 0 then

AwPC [i, indC] = (1− ePP ) 1
kPC

;

end

end
Compose adjacency matrix Aw by the blocks AwCC , A

w
CP , A

w
PC and AwPP .
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Figure 6.1: The figure illustrates Network 1,2 and 3. The blue nodes compose the
set V C .

For the random selection of the debtors we suggest - as in Algorithm 3.1 - the usage of
the function sample() from R Core Team (2013).
In Figure 6.1 we illustrate three alternative networks which would be in line with assump-
tions A(2.1) - A(2.4), that is, they possess two groups with agents of different connectivity.
The following table reports the chosen out-degrees for the networks:

kCC kCP kPP kPC
Network 1 3 1 1 1
Network 2 3 4 4 3
Network 3 4 2 0 1

Additionally, we have chosen NC = 5 and NP = 10. Note, that the out-degrees in network
2 are also in line with assumption A(1.2) of homogeneous networks, namely

dout(i) = 7

for all i ∈ V . However, the block of the set V C is denser than the block of V P . In
particular, with respect to the procedure in Algorithm 6.1 and recalling the proof of
Lemma 3.8 we have

P
(
j ∈ Vout(i), j, i ∈ V C

)
=

3

4
>

4

9
= P

(
j ∈ Vout(i), j, i ∈ V P

)
,

that means, for any pair of agents from the same group there is a higher probability for an
interlinkage within the set V C than in V P . Nevertheless, network 2 in Figure 6.1 does not
give the impression of a tiered structure - particularly a periphery cannot be identified.
For network 3 we have chosen the out-degrees so that properties P(1) - P(3) of a perfectly
tiered network in the context of Craig and von Peter (2010) are fulfilled. Furthermore,
we set in network 3 the out-degree kPP to 0. Consequently, we can eventually recognize
a factual core-periphery structure with the core formed by the blue nodes.
The probability for receiving a network from Algorithm 6.1, which additionally fulfills
property P(4), can be explicitly determined. Of course, for kPC = NC this probability
becomes 1 and for kPC = 0 we have probability 0. If 0 < kPC < NC we will obtain the
probability

P
(
dCPin (i) > 0 ∀i ∈ V C

)
= P

( ⋂
i∈V C

{
dCPin (i) > 0

})

= 1− P

( ⋃
i∈V C

{
dCPin (i) = 0

})

= 1−
NC−1∑
z=kPC

P
(
|{i ∈ V C : dCPin (i) = 0}| = NC − z

)
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= 1−
NC−1∑
z=kPC

(
NC

NC − z

)
(

z

kPC

)
(
NC

kPC

)

NP

,

where for the meaning of dCPin (i) we recall Definition 6.1. This probability turns out to be
close to 1 for network 2 and 0.40 for network 1 and 3 respectively.
Finally, we extend Lemma 3.8 with respect to the variables dCCin (i), dCPin (i), dPCin (i) and dPPin
from Definition 6.1.

Lemma 6.1. Having given a weighted adjacency matrix Aw generated by Algorithm 6.1.
Then, it is

dCCin (i) ∼ Bin(NC − 1,
kCC

NC − 1
) ∀i ∈ V C ,

dCPin (i) ∼ Bin(NP ,
kPC
NC

) ∀i ∈ V C ,

dPCin (i) ∼ Bin(NC ,
kCP
NP

) ∀i ∈ V P ,

dPPin (i) ∼ Bin(NP − 1,
kPP

NP − 1
) ∀i ∈ V P .

Proof. The proof works as the proof for Lemma 3.8 whereas, for the off-diagonal blocks
AwCP and AwPC we do not have to regard cells which require zero entries.

As in the aftermath to Lemma 3.8 we allude that Lemma 6.1 states an agent’s in-degrees
unconditioned on the in-degrees of some other agents from the same block. If we are
informed about the realized in-degrees for some agent, the distribution for the in-degree
of another agent from the same block will change since we do not have independence for
the in-degrees of the same block. However, the in-degrees for different blocks are - by the
construction of Algorithm 6.1 - supposed to be independent.

6.3 Application: German interbank market

Section 6.2.2 has extended the concept of Section 4 in order to consider the cascade
mechanism within a credit network, which can be partitioned into two groups of different
out-degrees and exposure to the interbank market as assumed by Section 6.2.1. We are
going to use this extension in order to figure out, whether network stability is affected
by an heterogeneous structure of its agents. Hereby we are going to assess this stability
by measuring the expected cascade size for networks with heterogeneous structure in
comparison to the size on homogeneous networks. This examination can be motivated
from two different points of view: On the one hand we see whether network stability
changes if the exposure of the credit network is not distributed homogeneously over each
agent in the network but rather heterogeneously as it is the case on the German interbank
market. On the other hand we can draw conclusions what happens if one examines a
network with a lack of information on its structure. While we are endowed by a widely
detailed list of links within the German interbank market, such data are normally not
available for public use. If at all, one knows the averaged degree of diversification for the
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overall network, that is according to Equation (6.3) on the German interbank market k
= 11. From the data at hand we know that due to the given core-periphery structure
this is just a rough estimation. Moreover, the credit exposure is apparently concentrated
on a few agents and we can find a group of debtors who will account to more weight
in the portfolios of the network’s creditors. However, as mentioned, this information
are commonly not provided to the public and due to the lack of information one might
be tempted to refer to the procedure of Battiston et al. (2012) and assume k = 11
as a diversification degree for all agents on the network and uniformly 1

k
as a weight

for the issued credits. By relying on the data of the German interbank market, our
approach in the next section will be based on this problem and tries to figure out, whether
the homogeneity assumption generates cascade sizes which deviate noticeably from the
cascade sizes in an heterogeneous structure.

6.3.1 Starting point of the application

We now present the setting on which we are going to undertake our application. The idea
is to create for the given German interbank market three different settings for which we
calculate the final cascade size. For all settings we will examine the German interbank
market, that is we consider a network where its overall size is given by N = 1802. In the
following we specify the three different settings in which we make different assumptions
with respect to weights and out-degrees on the network. The settings may be taken as the
result of having different stages of knowledge about the structure of the German interbank
market starting with almost no information in setting one.

Setting 1

In setting 1 we assume for the out-degrees

k = 11

for all i ∈ V which is according to Equation (6.3) the averaged out-degree for the overall
German interbank market. Furthermore we agree upon that this setting fulfills assumption
A(1.3), i.e. every issued credit composes uniformly 1

11
·100% of the agents’ credit portfolios.

The total credit exposure on the interbank market, that is according to Equation (6.6)
X = 928 billion EUR, is supposed to be uniformly distributed on every existing credit,
hence, each credit amounts to

xb,1 =
X

kN
=

928

11 · 1802
= 0.0468 (6.14)

billion EUR.
This setting can be taken as the one which comes into consideration if one has just limited
information for the overall network like total exposure or the overall average for the out-
degrees but not any information about a possible partition of the networks into groups
with different out-degrees or varying credit exposure. This setting would be in line with
assumptions A(1.1) - A(1.3) for the procedure of Battiston et al. (2012)
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Setting 2

This setting relies on the idea of Section 6.2.1 and corresponds to assumptions A(2.1) -
A(2.4). Compared to Setting 1 we now have some more information about the interbank
market. Particularly, we are provided by the information that the adjacency matrix of
the network may be partitioned into a core V C and a periphery V P where the sizes of
these groups are given by NC = 45 and NP = 1757. In setting 2 we assume too now
know the averaged out-degrees for the four different blocks which are given in Equation
(6.5). Correspondingly, we set(

kCC kCP
kPC kPP

)
=

(
29 114
7 1

)
.

Furthermore we are informed about the credit exposure in each block. The figures can be
found in Equation (6.6) and read(

XCC XCP

XPC XPP

)
=

(
321.2 442.0
147.8 17.0

)
.

For the weights of the credit links we take the results of the calculations in Section 6.2.1,
that is (

wCC wCP
wPC wPP

)
=

(
1.45% 0.51%
12.81% 10.32%

)
.

The absolute values for each credit in the different blocks are assumed to be given in
billion EUR by12(

xCCb,2 xCPb,2
xPCb,2 xPPb,2

)
=

(
XCC/(NCkCC) XCP/(NCkCP )
XPC/(NPkPC) XPP/(NPkPP )

)
=

(
0.2461 0.0862
0.0120 0.0097

)
. (6.15)

Setting 3

Setting 3 may be considered as the situation with the most filtrated information. We rely
on the vectors OCP , OPC and OPP , which have been defined in Equation (6.2) and which
contain the observed out-degrees in the blocks CP , PC and PP . Thus, we do not have
to rely on averages but can construct an adjacency matrix with out-degrees as actually
observed on the German interbank market. However, the data are somewhat restricted:
First we have not been endowed by the vector OCC , i.e. for the block CC we do not know
the out-degrees individually but can only refer to the average of 29 for this block. We
pragmatically create OCC by setting dCCout (i) = 29 for all i ∈ V C . Secondly, we must allude
that the vectors OPC and OPP are not ordered in the sense that the i-th element in both
vectors possesses the out-degrees for one and the same agent. That means if we choose
the first element of OPC as the out-degree of the first periphery agent in the block PC, we
do not know for sure the out-degree of this agent on the block PP and can only guess the
adequate out-degree in vector OPP . In order to construct an adjacency matrix we agree
upon that the elements of OPC and OPP are given in a descending order meaning that the

12The figures slightly deviate from the figures in Equation (6.8) since we here use rounded out-degrees
in the numerator.
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first periphery agent is assumed to be simultaneously the largest creditor on both blocks
PC and PP .

For the distribution of the credit exposure we can only make inferences as in the previous
settings. We assume that the credit exposure in each block is uniformly distributed to
the sum of the available links, that is

(
xCCb,3 xCPb,3
xPCb,3 xPPb,3

)
=

(
XCC/

∑
i∈V C d

CC
out (i) XCP/

∑
i∈V C d

CP
out (i)

XPC/
∑

i∈V P d
PC
out (i) XPP/

∑
i∈V P d

PP
out (i)

)
.

The portfolio weights of each issued credit may vary from agent to agent though, for one
and the same agent the weights only differ between the blocks. We define

wCC(i) =
xCCb,3

dCCout (i)x
CC
b,3 + dCPout (i)x

CP
b,3

, wCP (i) =
xCPb,3

dCCout (i)x
CC
b,3 + dCPout (i)x

CP
b,3

, if i ∈ V C

wPP (i) =
xPPb,3

dPPout (i)x
PP
b,3 + dPCout (i)x

PC
b,3

, wPC(i) =
xPCb,3

dPPout (i)x
PP
b,3 + dPCout (i)x

PC
b,3

, if i ∈ V C .

There are agents i ∈ V P for which it is dPPout (i) = dPCout (i) = 0. These agents do not act as
creditor on the interbank market and in this case we nearby set 0 for wPP (i) and wPC(i).
While we have already settled by Algorithms 3.1 and 6.1 opportunities to simulate the
networks of setting 1 and 2, we now give an extension which allows to generate a network
being in line with setting 3. The principle is the same as in the two previous algorithms,
i.e. for each agent the algorithm generates a random composition of the agent’s credit
portfolio, whereas all agents of the same block have the same probability to become
debtor. The extension may be eventually found in the input parameters which are now
the individual out-degrees of the vectors OCC , OCP , OPC , OPP and the weights as defined
above.
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Algorithm 6.2: Generating a weighted adjacency matrix which represents the net-
work of the German interbank market.

Data: Parameter NC , NP , OCC , OCP , OPC , OPP and weights
Result: Weighted adjacency matrix Aw

Initialize a (NC +NP )× (NC +NP ) matrix Aw with zero entries;
Initialize block matrices AwCC , A

w
CP , A

w
PC and AwPP with zero entries and dimensions

as above;
for i = 1 to NC do

Select randomly OCC [i] numbers from the set {1, . . . NC} \ {i} and save them in
indC;
Select randomly OCP [i] numbers from the set {1, . . . NP} and save them in
indP ;
AwCC [i, indC] = wCC(i);
AwCP [i, indP ] = wCP (i);

end
for i = 1 to NP do

Select randomly OPP [i] numbers from the set {1, . . . NP} \ {i} and save them in
indP ;
Select randomly OPC [i] numbers from the set {1, . . . NC} and save them in
indC;
AwPP [i, indP ] = wPP (i);
AwPC [i, indC] = wPC(i);

end
Compose adjacency matrix Aw by the blocks AwCC , A

w
CP , A

w
PC and AwPP .

6.3.2 Procedure of the application

Our application arranges the consideration of the expected cascade size for the three
different settings. Recall Section 4.2.3 where we used to compare the cascade size from
the formula of the cascade model with the outcome of simulating the cascade mechanism.
Due to both Theorems 4.1 and 6.1 we are endowed by a formula - based on falsifying
assumptions - for the expected cascade size within the settings 1 and 2. The corresponding
results for the expected fraction of defaults from these formulas are denoted by s̃1 and
s̃2 in the following. Such a formula is not available for setting 3. Next to the expected
cascade sizes from the Theorems 4.1 and 6.1 we will undertake simulations as in Section
4.2.3 for all three settings.
In order to examine the cascade mechanism we have to determine for both formula and
simulation the distribution of the initial financial robustness. Hereby we agree upon that
in all three settings it is assumed that

ρ̃i(0) ∼ N(m,σ2) (6.16)

for all i ∈ V identically and independently distributed. Particularly, we do not distinguish
between core and periphery in the settings 2 and 3. It might be arguable to assume the
same mean and variance for the financial robustness on the core and periphery. For
instance, one could argue for a higher variance on the core due to the riskier business
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models of the larger core banks. However, that is just speculation and as we do not know
it will be better to keep σ constant.
An identical mean for the core and periphery becomes reasonable, if take for the initial
value of the financial robustness in the cascade mechanism, the ratio of a bank’s equity
to the receivables on the interbank market. We may then argue that such a ratio is
determined by regulation authorities which do not distinguish between banks from the
core and periphery but do apply the same rules for all banks on the interbank market.
Consequently, the expected robustness in the beginning of a cascade mechanism should
not differ. Due to the data of Deutsche Bundesbank13 this ratio has been about 21%
for the overall German banking industry in the second quarter 2003. In the context of
our cascade mechanism this ratio means that in average 21% of the credit portfolio must
default before an agent fails herself.

We are going to simulate a cascade for each setting 50 times while in each run the adjacency
matrix is newly generated by the corresponding algorithms. The random vector ρ̃(0) is
generated once in each run and then used as an input vector for the cascade simulations
of each setting, i.e. the deviating results of the cascade size are just due to network
structure.

The cascade sizes are calculated and simulated respectively for fixed σ = 0.1 but a vari-
ation of the mean robustness m on the interval [0.15, 0.3]. In the following ŝ1, ŝ2, ŝ3
denote the observed fraction of defaults in the whole network averaged over all simulation
runs in setting 1, 2 and 3. The iteration of the cascade mechanism has been limited to
τ = 15, however, the simulations of the three settings have already terminated for smaller
τ , hence, τ = 15 indeed indicates the final value of the cascade size.

6.3.3 Results of the application

The outcome of the application is illustrated in Figure 6.2. Hereby the fat continuous lines
represent ŝ1, ŝ2, ŝ3. We observe that all three lines leave a zero level at approximately
m = 0.25 and approach towards 1 if the mean robustness becomes smaller. However, in
setting 1 this occurs noticeably faster. While ŝ1 has already reached 1 in m = 0.225, the
values of ŝ2 and ŝ3 still possess intermediate values. We allude that the values of ŝ2 and
ŝ3 - analogously to the simulation’s outcome in Section 4.2.3 - may be taken as the part
of large cascades, which have been observed in the 50 simulation runs for each m. Hence,
there is a range of the mean robustness m for which the simulation suggests that in setting
1 we always have to expect a total collapse of the system while in setting 2 and 3 we still
find a balanced chance for a cascade of small and large size. The thin dashed lines denote
ŝ1, ŝ2 and ŝ3 adjusted up- and downwards by their observed standard deviations. This
suggests more variation in the simulations of setting 2 and 3.

The fat dashed lines represent the values of s̃1 and s̃2 in τ = 15. We see that the time
lag between setting 1 and 2 in the simulations may be regained by comparing the cascade
model in both settings. Apparently s̃2 requires a lower mean robustness to jump from
small to large values, however, its discrepancy with respect to ŝ2 suggest that it does not
indicate the expected fraction of defaults reliably.

13Data has been retrieved from www.bundesbank.de, ESCB time series: Aggregated balance sheet of
euro area monetary financial institutions position 2.5 dived by position 1.1.1
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Figure 6.2: The figure illustrates the expected fraction of defaults in the network
of setting 1 - 3. The fat continuous lines represent the outcome of the simulation.
The thin dashed lines report the observed standard deviations in the simulations
and the fat dashed lines correspond to the expected fraction of defaults suggested
by the formulas of Theorem 4.1 and 6.1 respectively. The thin continuous blue line
denotes r(m) which is the probability of having at least one default on the core in
τ = 0.

Interestingly, we can observe a simultaneous development of ŝ2 and ŝ3. Recall that in each
simulation run the randomly generated vector ρ̃(0) has been the same for setting 2 and 3,
hence, the observed distance between both lines points out the approximation error in the
different settings. The simultaneity between ŝ2 and ŝ3 allow the conclusion that ŝ2 might
serve as a credible alternative to make inferences on network stability without relying on
the actually observed out-degrees but just by taking into account the fragmentation of
the network. A slight constraint about this must be stated by alluding that the block
CC has been treated equivalently in setting 2 and 3 by assuming the same out-degree
for all core agents on this block. In the next section we point out that the core mainly
determines the network stability, hence, assumed that we had in setting 3 the actually
observed out-degrees of block CC, the fit between ŝ2 and ŝ3 might be effected negatively.
Nevertheless we will use the common trend of ŝ2 and ŝ3 in the next section by comparing
setting 1 and 2 which are more simple to examine and then conclude that the outcome of
this comparison would also hold approximately if one compares setting 1 with setting 3.

6.3.4 Asymmetrical distribution of debt

For reasoning the less frequent observation of large cascades in setting 2 compared to
setting 1 we recall Equation (6.6), which shows the fragmentation of the credit exposure

in the core-periphery structure. Note that the core consists only NC

N
= 2.5% of all network

agents, however, this small fraction of agents holds

XCC +XPC

X
= 47.8%

of the total interbank market debt. This fact is not considered in the homogeneous
network of setting 1. We are going to substantiate this in the following theorems, which
disclose the distribution of debt on the interbank market of setting 1 and 2.

Theorem 6.2. Assume a credit network with the properties of setting 1 and generated by
Algorithm 3.1, then the distribution function of

D1(i) := xb,1din(i)

is given by

P (D1(i) ≤ a) =

(
N − 1

ba/xb,1c

)(
k

N − 1

)ba/xb,1c(
1− k

N − 1

)N−1−ba/xb,1c
for all i ∈ V and a ∈ [0,+∞). Hereby b·c denotes the floor function.
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Proof. For a ≥ 0 we have

P (D1(i) ≤ a) = P (xb,1din(i) ≤ a)

= P (din(i) ≤ a/xb,1)

=

(
N − 1

ba/xb,1c

)(
k

N − 1

)ba/xb,1c(
1− k

N − 1

)N−1−ba/xb,1c
.

The usage of the binomial distribution in the last step is due to the result of Lemma
3.8.

While Lemma 6.2 states the distribution of debt per agent on setting 1, the next theorem
is the analogon for the debt per agent on a network of setting 2. For the sake of simplicity
we are going to set in the following

P (R ≤ a) := B(a,M, p), P (R = a) := b(a,M, p)

for R ∼ Bin(M, p).

Theorem 6.3. Assume a credit network with the properties of setting 2 and generated by
Algorithm 6.1, then the distribution function of

D2(i) :=

{
xCCb,2 d

CC
in (i) + xPCb,2 d

CP
in (i), if, i ∈ V C

xPPb,2 d
PP
in (i) + xCPb,2 d

PC
in (i), if, i ∈ V P

for a randomly chosen agent i ∈ V , where it is assumed that

p := P (i ∈ V C) =
NC

NC +NP
,

is given by

P (D2(i) ≤ a) = p
NP∑
k=0

B

(
b(a− xPCb,2 k)/xCCb,2 c, NC − 1,

kCC
NC − 1

)
b

(
k,NP ,

kPC
NP

)

+ (1− p)
NC∑
k=0

B

(
b(a− xCPb,2 k)/xPPb,2 c, NP − 1,

kPP
NP − 1

)
b

(
k,NC ,

kCP
NP

)
for a ∈ [0,∞).

Proof. For a ≥ 0 it is

P (D2(i) ≤ a) = P (D2(i) ≤ a|i ∈ V C)p+ P (D2(i) ≤ a|i ∈ V P )(1− p)

= pP
(
xCCb,2 d

CC
in (i) + xPCb,2 d

CP
in (i) ≤ a

)
+ (1− p)P

(
xPPb,2 d

PP
in (i) + xCPb,2 d

PC
in (i) ≤ a

)
= p

NP∑
k=0

P
(
dCCin (i) ≤ (a− xPCb,2 k)/(xCCb,2 )

)
P
(
dCPin (i) = k

)
+ (1− p)

NC∑
k=0

P
(
dPPin (i) ≤ (a− xCPb,2 k)/(xPPb,2 )

)
P
(
dPCin (i) = k

)
.

The occurring distribution functions for the final claim are provided by Lemma 6.1.
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For a < 0 we have for D1 and D2 a zero probability since negative debt is due to the
given settings 1 and 2 not designated. We give a final proposition which states that the
means of D1 and D2 coincides.

Proposition 6.1. Having given D1 and D2 as in Theorem 6.2 and 6.3 respectively, it is

E[D2(i)] = E[D1(i)] = xb,1k.

Proof. The mean of D1 is given by

E[D1(i)] = xb,1E[din(i)]

= xb,1k.

for all i ∈ V where the distribution of din(i) is given by Lemma 3.8. For D2(i) we deduce

E[D2(i)] = pE[D2(i)|i ∈ V C ] + (1− p)E[D2(i)|i ∈ V P ]

= pE[xCCb,2 d
CC
in (i) + xPCb,2 d

CP
in (i)] + (1− p)E[xPPb,2 d

PP
in (i) + xCPb,2 d

PC
in (i)]

= p

(
xCCb,2 kCC + xPCb,2

NP

NC
kPC

)
+ (1− p)

(
xPPb,2 kPP + xCPb,2

NC

NP
kCP

)
,

where the third equality is deduced by Lemma 6.1. Recall from Equation (6.15) that(
xCCb,2 xCPb,2
xPCb,2 xPPb,2

)
=

(
XCC/(NCkCC) XCP/(NCkCP )
XPC/(NPkPC) XPP/(NPkPP )

)
This applied to E[D2(i)] and noting that p = NC

NC+NP yields

E[D2(i)] = p

(
XCC

NC
+
XPC

NC

)
+ (1− p)

(
XPP

NP
+
XCP

NP

)
=

XCC +XPC +XPP +XCP

NC +NP

=
X

N
= xb,1k

where the last equality results from the agreement of Equation (6.14).

Note that in our simulation procedure of Section 6.3.2 we used to assume that ρ̃i(0) are
identically distributed for all i ∈ V meaning that a possible default in τ = 0 occurs with
the same probability for all i ∈ V . Theorems 6.2 and 6.3 endow us with the probability
about the credit value which must be depreciated by the creditors of a randomly defaulted
agent. Apparently the distribution of D2, which is illustrated by the blue line in Figure
6.3, possesses an asymmetrical structure which is due to the remark from the beginning
of this section, namely, most of the debt is concentrated on the small group of core agents
while the majority of the agents - located in the periphery - only displays small amounts
of debt. On the contrary, in setting 1 the homogeneous structure on the asset side is
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Figure 6.3: The plot on the left hand side compares the distribution function of D1

and D2 from Theorem 6.2 and 6.3. The horizontal line denotes the position of the
mean value of both distributions as derived in Proposition 6.1. On the right hand
side we see the illustration of the final application assuming different variance on
core and periphery respectively. The fat continuous lines belong to the scenario
of no variance on the periphery, while the fat dashed lines denote the case of no
variance on the core. The thin dashed lines indicate the observed standard deviation
during the simulations.

regained on the debt side in the sense of a symmetrical distribution of the debt around
the expected value.
Hence, if the defaulted agents in the beginning are chosen uniformly, there is a larger
probability in setting 2 to have debtors which owe less money to the interbank market,
hence, the accumulated depreciations in the agents’ balance sheets will be lower in τ = 0
and larger cascades are less frequently observed compared to the case of setting 1.
The possibility of a large cascade is dominated by the state of the core in τ = 0. A
detailed insight into the behavior of the cascade for individual simulation has shown that
a default of a core bank in τ = 0 is not always but commonly the trigger for a large
cascade. This is also confirmed by the probability of having at least one default on the
core in τ = 0 which is due to the assumed distribution in Equation (6.16) given by

r(m) := P
(
|{i ∈ V C : 1(ρ̃i(0)≤0) = 1}| ≥ 1

)
= 1−

(
1− Φ

(
−m
σ

))NC

.

Obviously, this probability grows in Figure 6.2 simultaneously with the expected cascade
size in setting 2.
The fragmentation of the credit exposure is of course also given in setting 3, however,
the distribution of an agent’s debt size may not be computed in such a straightforward
way as for setting 1 and 2. Actually, for a computation one must rely on the Poisson
binomial distribution in order to cope with the varying out-degrees in setting 3, which we
skip at this point. Alternatively, we state, as setting 2 can be taken as an approximation
of setting 3, that the asymmetrical distribution of debt will be presumably regained on
setting 3 as well. The lower expected cascade size of setting 3 in comparison to setting
2, highlighted in Figure 6.2, suggests that we must suppose in setting 3 an even more
asymmetrical distribution of debt than in setting 2.

6.3.5 The core as the key driver of systemic risk

A final application reconfirms the importance of the core in the context of network sta-
bility. We repeat the simulation for setting 2 and 3, however, this time we assume in a
first attempt a zero variance for the periphery, i.e. we set

ρ̃i(0) ∼ N(m,σ2), ∀i ∈ V C , ρ̃i(0) = m,∀i ∈ V P

and in a second attempt we inversely assume

ρ̃i(0) = m,∀i ∈ V C , ρ̃i(0) ∼ N(m,σ2),∀i ∈ V P .
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As in Section 6.3.2 we again rely on σ = 0.1 and 50 simulation runs for each m - this time
from the interval [0.125, 0.3]. Moreover, the same generated outcome of ρ̃i(0) is again
used for both settings 2 and 3 simultaneously.
Figure 6.3 shows that for large cascades it requires a lower value for the system-wide mean
if we assume no variance on the core in comparison to the inverse case. This somehow
confirms what one would have probably expected, namely, that most of the systemic
risk emanates from the core on which both the majority of receivables and debt of the
interbank market are concentrated.
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7 Conclusion

Our work has conducted a detailed review of quantifying systemic risk in the sense of
Battiston et al. (2012). In Sections 2 - 5 we undertook a reformulation of the setting used
by Battiston et al. (2012) in a more rigorous manner. Particularly, the derivation of the
univariate process in Section 3, which later served as the starting point for the quantifi-
cation of systemic risk, has been disassembled stepwise so that we were able to point out
the various chances of falsification in the pragmatical procedure of Battiston et al. (2012).
We recall, for instance, the transformation of the financial accelerator, originally modeled
as a jump process, into a deterministic negative drift or the entirely negligence of the
mean-reverting component in order to decouple the multivariate dynamics in Equation
(3.6), which has been aimed at reducing complexity for an analytical examination of the
financial robustness over time. Simulations in Section 3.2 suggest that the derived mean
first passage time for the simple univariate process does not exactly match the mean first
passage times of the financial robustness prior to complexity reduction, hence, the uni-
variate process’ usage for quantifying systemic risk will involve a forwarded bias. Figure
3.6, for instance, provides the information that this bias due to simplification is predom-
inantly viewable vertically, which means, that deviation of the mean first passage time
occurs for a fixed k. However, if one is exclusively interested in the behavior of the mean
first passage times for different diversification degrees k, the results on the univariate
process can be taken as a good indication. Similarly, in Section 5 we used to point out
the approximative simplifications (S1) and (S2) for completing the procedure of Battiston
et al. (2012). Again, we observed that this pragmatical approach distorts the final results
about systemic risk, however, the shape of the final core result, that is systemic risk as
non-decreasing function of connectivity and diversification respectively, is unaffected.
We generally conclude for the work of Battiston et al. (2012) that it yields the principle of
systemic risk if one assumes that network contagion is accurately described by the sophis-
ticated multivariate dynamics in Equation (5) and if an interbank market may be indeed
approximatively described by assumptions A(1.2) and A(1.3). In this context the most
crucial point in the work of Battiston et al. (2012) is in our point of view less the prag-
matical approach but rather the specification of the financial accelerator. As described in
Section 6 the final outcome about systemic risk basically relies on the agreement of scaling
the sensitivity of the financial accelerator with respect to the degree of diversification but
not the magnitude. If this is not in line with practice, the conclusion of Battiston et al.
(2012) about systemic risk in dependence of diversification must be rethought.
In Section 6.3 we examine the effect of different structures of the interbank market with
respect to its stability and the chance of system-wide distortions. The core of this section
has been the finding that exposure on the interbank market is asymmetrical distributed
between core and periphery. Our extension of the setting of Battiston et al. (2012) to a
known heterogeneous structure has allowed to refer to the cascade mechanism in order to
examine network stability, though, we did not develop a setting for examining systemic
risk in the comprehensive sense of Battiston et al. (2012). Particularly, we blended out,
different from the idea of Battiston et al. (2012), the financial robustness during the pre-
cascade phase, and thus, we do not supply the opportunity to incorporate the financial
accelerator effect into an heterogeneous structure. However, Section 6.3.5 suggests that
the overall network stability and the size of a cascade is predominantly depending on the
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core’s state. Based on this one might be advised to restrict the examination of systemic
risk exclusively to the core, i.e. an inclusion of the periphery into the setting of Battiston
et al. (2012) appears redundant. Nevertheless, it might be necessary to analyze what
happens to the mean field approach reflected by assumptions A(1.2) and A(1.3) if the
core itself possesses strongly varying diversification.
Admittedly, one must also challenge the attempt to research systemic risk on interbank
markets in the whole manner of Battiston et al. (2012). Even the sophisticated dynam-
ics in Equation (3.6) will probably not contain all information which are necessary to
entirely describe the behavior of the financial robustness over time. Furthermore, the
cascade mechanism in Section 4 is the most simple way to describe contagion during pe-
riods of distressed interbank markets, whereas it does not consider further elements such
as asymmetrical information between agents in such a period as exemplified by Bullard
et al. (2009) or the accelerating impact of falling asset prices if markets are distorted,
which is discussed by Adrian and Shin (2008). Further advancements in the setting of
Battiston et al. (2012) are conceivable in order to incorporate such effects, however, it
always remains on the one hand the question whether a full description of systemic risk
for the complex interdependence between agents on the interbank market is indeed fully
covered and on the other hand the problem of arising complexity for the analytical treat-
ment which probably makes a pragmatical avoidance necessary again.
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