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ABSTRACT

Proper (i.e., circularly symmetric) Gaussian signals are known to

be capacity-achieving in Gaussian multiple-input multiple-output

(MIMO) broadcast channels with proper noise in the sense that

the sum rate capacity under a sum power constraint is achievable

with proper Gaussian signaling. In this paper, we generalize this

statement by proving that the optimality of proper Gaussian signals

also holds under a shaping constraint, i.e., a sum covariance con-

straint instead of a power constraint. Moreover, we show that not

only the sum rate optimal point, but the whole capacity region can

be achieved with proper Gaussian signals. Finally, we prove that

the worst-case noise in a MIMO broadcast channel with shaping

constraints is proper.

Index Terms— Broadcast channels, capacity region, dirty pa-

per coding, multiuser MIMO systems, proper and improper signals,

covariance constraints.

1. INTRODUCTION

In the recent literature, it was shown that the use of improper [1]

complex transmit signals can be beneficial in various information

theoretic models of communication systems. Even though the most

famous result of this kind was shown for Gaussian interference chan-

nels in [2], performance gains due to improper signals have also been

observed for the Gaussian multiple-input multiple-output (MIMO)

broadcast channel if a restriction to widely linear transceivers is im-

posed [3, 4].

On the other hand, it is accepted as common knowledge (e.g.,

[2–5]) that for Gaussian MIMO broadcast channels without such a

restriction, proper (i.e., circularly symmetric) Gaussian signals are

the optimal input distribution if the noise is proper (see Section 2 for

the details of the system model). Indeed, it was shown in [6] that

dirty paper coding (DPC) with proper Gaussian signals achieves the

Sato upper bound on the sum rate of the Gaussian MIMO broadcast

channel under a sum power constraint. However, from this fact, it

cannot be concluded whether the optimality of proper Gaussian in-

put signals also holds under constraints other than a sum power con-

straint. Moreover, since the result of [6] only concerns the sum rate

optimal point, it does not tell us whether all Pareto optimal points of

the capacity region are achievable with proper signals. This calls for

a rigorous study of the question in what sense the proper Gaussian

distribution is optimal in Gaussian MIMO broadcast channels, i.e.,

for which kind of objective functions and under which constraints.

In [7], it was shown that under any input constraint such that the

input covariance matrix belongs to a compact set of positive semidef-

inite matrices, the whole capacity region of a real-valued Gaussian

MIMO broadcast channel can be achieved by using dirty paper cod-

ing with Gaussian signals. Moreover, it was argued in [7] that by rep-

resenting a complex Gaussian MIMO broadcast channel by a com-

posite real representation (see Section 3), the results can be directly

generalized to complex Gaussian MIMO broadcast channels. How-

ever, as explained in detail in Section 3, this only shows that complex

Gaussian signals achieve the whole capacity region, but does not tell

us whether the optimal Gaussian signals are proper or not.

In our previous work [8], it was observed that a certain mutual

information expression that arises when studying the partial decode-

and-forward rate in a Gaussian MIMO relay channel is equivalent to

a sum rate in a two-user Gaussian MIMO broadcast channel that has

to be maximized under a covariance constraint. In order to prove that

proper signals are the optimal Gaussian signals for partial decode-

and-forward in Gaussian MIMO relay channels, it was thus neces-

sary to first prove optimality of proper Gaussian signals under a sum

covariance constraint for the special case of a sum rate maximiza-

tion in a two-user Gaussian MIMO broadcast channel. However,

since the focus of [8] was on the relay channel, this excursus to the

broadcast channel was not extended to the general case with more

than two users or with an objective function other than the sum rate.

Such a generalization is provided in this paper.

Just like in the special case considered in [8], the proof relies on

the minimax duality with linear conic constraints from [9,10], which

we briefly review in Section 4. The optimality of proper transmit sig-

nals is then proven in Section 5. As an additional result, we show in

Section 6 that the worst-case noise for weighted sum rate maximiza-

tions with shaping constraints is proper as well.

Notation: We use Cx and h(x) for the covariance matrix and

the differential entropy of a real-valued or complex random vectorx,

respectively. The sets SN ⊂ R
N×N and H

N ⊂ C
N×N are the set

of real-valued symmetric matrices and the set of complex Hermitian

matrices, respectively. Orthogonal complements of linear subspaces

are denoted by •⊥, and
⊗K

k=1 Ak is used to denote the Cartesian

product A1 × · · · × AK . The order relations ≻ and � have to be

understood in the sense of positive (semi-)definiteness. We use the

shorthand notation (•k)∀k = (•1, . . . , •K).

2. SYSTEMMODEL

In a Gaussian MIMO broadcast channel, where a transmitter withM

antennas serves a set ofK users withNk receive antennas at user k,

data transmission is described by

yk = Hkx+ ηk (1)



where Hk is the Nk×M channel matrix between the base station

and user k, and ηk ∼ CN (0,Cηk
) with Cηk

≻ 0 is the additive

circularly symmetric complex Gaussian noise at user k. If the trans-

mit signal x is constructed from the input signals (xk)∀k by means

of dirty paper coding [6, 7], the data rate

rk = µ log
det

(

Cηk
+Hk

(
∑

j∈Ik∪{k} Cxj

)

HH
k

)

det
(

Cηk
+Hk

(
∑

j∈Ik
Cxj

)

HH
k

) (2)

is achievable for user k, where Ik is the set of users causing interfer-

ence to user k, i.e., the set of users encoded after user k. The pre-log

factor is µ = 1 in a complex broadcast channel with complex chan-

nel matrices, proper complex noise, and proper complex signals. In

a real-valued broadcast channel with real-valued channel matrices,

real-valued noise, and real-valued signals, we have µ = 1
2
.

3. PROPER AND IMPROPER GAUSSIAN SIGNALS

To characterize a general complex (proper or improper) zero-mean

Gaussian vector, we need the so-called pseudocovariance matrix

C̃x = E
[
xxT

]
in addition to the conventional covariance matrix

Cx = E
[
xxH

]
(see [11] and the references therein). A random

vector is called proper (equivalent to circularly symmetric for zero-

mean Gaussian random vectors) if we have C̃x = 0 so that Cx

suffices to describe the statistical properties. If C̃x 6= 0, x is called

improper.

An alternative description can be obtained using the composite

real representation

Ǎ =

[
ℜ (A) −ℑ (A)
ℑ (A) ℜ (A)

]

and ǎ =

[
ℜ (a)
ℑ (a)

]

(3)

of matricesA and vectorsa. The covariance matrix of the composite

real representation of x ∈ C
N is given by [12]

Cx̌ =
1

2

[
ℜ(Cx) −ℑ(Cx)
ℑ(Cx) ℜ(Cx)

]

︸ ︷︷ ︸

Px

+
1

2

[
ℜ(C̃x) ℑ(C̃x)

ℑ(C̃x) −ℜ(C̃x)

]

︸ ︷︷ ︸

Nx

. (4)

The partitioning into a power shaping component Px ∈ PN and an

impropriety component Nx ∈ NN with

PN =

{

P ∈ S
2N

∣
∣
∣
∣
P =

[
A −B

B A

]

, A,B ∈ R
N×N

}

(5)

NN =

{

N ∈ S
2N

∣
∣
∣
∣
N =

[
C D

D −C

]

, C,D ∈ R
N×N

}

(6)

was proposed in [8]. As shown in [8, Lemma 1],NN is the orthogo-

nal complement of PN in S
2N . Therefore, any Cx̌ can be uniquely

decomposed into Px and Nx (which correspond to unique Cx and

C̃x).

Only ifNx = 0, the complex random vector x is proper. There-

fore, using the composite real representation without restricting the

real-valued covariance matrices to lie in PN corresponds to the gen-

eral (proper or improper) complex case. With this in mind, it is easy

to understand why we cannot draw conclusions about the propriety

of the optimal Gaussian signals based on the real-valued study in

[7]: to do so, we would need to know whether the impropriety com-

ponents of the optimal real-valued transmit covariance matrices are

zero for real-valued channels with the special structure (3). How-

ever, since the authors [7] only considered general channel matrices

without a special structure, we cannot easily answer this question

based on the results obtained in [7].

Instead, we apply the minimax duality framework from [9, 10],

which is reviewed in the next section, to the composite real-

representation in order to obtain insights about MIMO broadcast

channels with general complex signals.

4. UPLINK DOWNLINK DUALITY

Since the classical uplink downlink duality from [6] only holds un-

der a sum power constraint, we make use of the following recently

established duality result.

Consider a MIMO multiple access channel with channel matri-

ces (HH
k )∀k, input signals (ξk)∀k and receiver noise η. Then, the

downlink minimax problem

min
(Cηk

�0)∀k: (Cηk
)∀k∈Y⊥

∑
K
k=1

tr[BkCηk
]=σ2

max
(Cxk

�0)∀k,Z∈Z
∑

K
k=1

Cxk
�C+Z

K∑

k=1

wkrk (7)

and the uplink minimax problem

min
Cη�0,Cη∈Z⊥

tr[CCη ]=σ2

max
(Cξk

�0)∀k,(Yk)∀k∈Y

Cξk
�Bk+Yk ∀k

K∑

k=1

wkr
UL
k (8)

have the same optimal value [9, 10].

The linear subspaces Z ⊆ H
M and Y ⊆

⊗K

k=1 H
Nk (S instead

ofH in the real-valued case) can be used to model various constraints

on the transmit covariance matrices such as sum power constraints

or shaping constraints [10]. Their orthogonal complements Y⊥ and

Z⊥ determine which noise distributions are allowed in the worst-

case noise optimizations.

The downlink rate rk of user k is given by (2), and the uplink

rate is

r
UL
k = µ log

det
(

Cη +
∑

j∈IUL
k

∪{k} H
H
j CξjHj

)

det
(

Cη +
∑

j∈IUL
k

HH
j CξjHj

) . (9)

The duality established for the proper complex case with µ = 1 in

[9] can be easily extended to real-valued broadcast channels with

µ = 1
2
. Just like in [6], the decoding order in the uplink is the re-

verse downlink encoding order, i.e., the set of interfering users in

the uplink is IUL
k = {1, . . . ,K} \ (Ik ∪ {k}). In all optimization

problems in this paper, we implicitly assume that the optimal encod-

ing/decoding order is used, i.e., the sets Ik and IUL
k are implicitly

optimized.

5. OPTIMALITY OF PROPER SIGNALS

Before stating and proving the main theorem for the Gaussian

MIMO broadcast channel, let us consider the uplink scenario (Gaus-

sian MIMO multiple access channel).

Lemma 1. In a MIMO multiple access channel with proper Gaus-

sian noise, an optimum of any weighted sum rate maximization un-

der constraints on the covariance matrices (Cxk
)∀k is achieved with

proper transmit signals.

Proof. Let us assume without loss of generality thatwK ≥ wK−1 ≥
... ≥ w1. Then, by applying [13, Section I] to the composite real

representation, we have that the optimal weighted sum rate in the



Gaussian MIMO multiple access channel with general complex

Gaussian signals is obtained by maximizing

w1 h(ž1)− wK h(η̌)
︸ ︷︷ ︸

const.

+
K∑

k=2

(wj − wj−1)
︸ ︷︷ ︸

≥0

h(žk) (10)

with zk = η +
∑K

j=k
HH

j ξj . Introducing a proper Gaussian vec-

tor zk,proper with the same covariance matrix as zk, we have that

h(žk) = h(zk) ≤ h(zk,proper), where the equality is by definition

(see, e.g., [14, Section 2.2.3]) and the inequality comes from the

fact that the proper Gaussian distribution maximizes the differen-

tial entropy [15]. Given Cη and arbitrary fixed covariance matrices

(Cξk )∀k that comply with the constraints, h(zk,proper) is constant,
and we can achieve equality h(zk) = h(zk,proper) by setting the

pseudocovariance matrices (C̃ξk )∀k to zero since C̃η = 0 by as-

sumption.

Our main result for the downlink is stated and proven in the fol-

lowing.

Theorem 1. In a complex Gaussian MIMO broadcast channel

with proper noise with fixed covariance matrices (Cηk
= Rk ≻

0)∀k, the complete capacity region under a shaping constraint
∑K

k=1 Cxk
� C is achievable with proper Gaussian input signals.

Proof. Due to convexity of the capacity region, any feasible rate

point can be achieved by time-sharing (convex combinations) be-

tween optimizers of weighted sum rate problems. Therefore, it suf-

fices to prove optimality of proper signals for weighted sum rate

maximizations. Moreover, it suffices to consider the caseRk = INk

since any other case could be treated by introducing equivalent chan-

nels H ′
k = R

− 1
2

k Hk.

We write the weighted sum rate maximization as a minimax

problem in (11) in Table 1 using the composite real representation.

The constraint set for the worst-case noise optimization contains

(Cη̌k
)∀k = ( 1

2
I2Nk

)∀k as the only element. The matrix Z ∈ NM

allows us to choose the impropriety component of the composite real

transmit covariance matrix while the power shaping component is

constrained to be smaller than or equal to P = 1
2
Č ∈ PM in the

sense of positive semidefiniteness. The optimal minimax weighted

sum rate denoted by Rw and the solution to the uplink minimax

problem (12) in Table 1, which we denote by RUL
w , are equal due to

Section 4.

Since (Yk)∀k only has to satisfy a trace constraint on the sum
∑K

k=1 Yk, the individual constraints on tr[Cξ̌k
] become equivalent

to a sum power constraint
∑K

k=1 tr[Cξ̌k
] ≤

∑K

k=1 2Nk (similar as

in the proper complex case in [10]), which corresponds to a con-

straint on the covariance matricesCξk , but not on the pseudocovari-

ance matrices C̃ξk . Moreover, due to the constraint Cη̌ ∈ PM ,

we have proper noise in the dual uplink. Therefore, Lemma 1 ap-

plies, and we have R
UL,proper
w = RUL

w = RDL
w , where R

UL,proper
w is the

optimizer of (13) in Table 1.

Let R
DL,proper
w be the optimizer of (14) in Table 1, where the fea-

sible set for the worst-case noise optimization contains only the ele-

ment (Cηk
)∀k = (INk

)∀k. Again due to the uplink-downlink dual-

ity (Section 4), we have R
DL,proper
w = R

UL,proper
w = RUL

w = RDL
w .

Note that the optimal decoding order in the uplink (which we

implicitly assume to be chosen) is such that the condition on the

weights (wk)∀k given in the proof of Lemma 1 would be fulfilled

after reindexing. The optimal downlink encoding order is then given

by the reverse ordering.

Since a constraint
∑K

k=1 Cxk
∈ SM can be related to sum co-

variance constraints of the form
∑K

k=1 Cxk
� C, C ∈ SM as in

[7, Lemma 1], we obtain the following corollary.

Corollary 1. In a complex Gaussian MIMO broadcast channel with

proper noise with fixed covariance matrices (Cηk
= Rk ≻ 0)∀k,

the complete capacity region under a sum covariance constraint
∑K

k=1 Cxk
∈ SM , where SM is an arbitrary compact subset of

the set of positive semidefinite M ×M matrices, is achievable with

proper Gaussian signals.

6. PROPRIETY OF THEWORST-CASE NOISE

In the preceding section, we have considered the case of fixed noise

covariance matrices in the downlink. However, the duality frame-

work applied to prove Theorem 1 is capable of treating worst-case

noise optimizations in the downlink, as well.

If we perform a worst-case noise optimization, but keep the as-

sumption of proper Gaussian noise, the optimality of proper transmit

signals still has to hold: since Theorem 1 holds for arbitrary noise

covariance matrices in the case of proper noise, it also holds for the

optimizers of the worst-case noise optimization.

An interesting question is, however, what we obtain as a result

of the worst-case noise optimization if we allow arbitrary (proper or

improper) complex Gaussian noise and only fix the total noise power.

The answer to this question for the case of a shaping constraint is

stated in the following theorem.

Theorem 2. For the weighted sum rate maximization in a com-

plex Gaussian MIMO broadcast channel with a shaping constraint
∑K

k=1 Cxk
� C, the worst-case noise under a sum noise power

constraint is proper.

Proof. In (11) in Table 1, replace Y̌⊥ by Y̌ ′⊥ =
⊗K

k=1 S
2Nk . Then

we have Y̌ ′ = {(0)∀k} in the uplink, i.e., the uplink shaping con-

straints become Cξ̌k
� I2Nk

, ∀k. It is easy to verify that the

weighted sum rate in the uplink as written in (10) is nondecreasing in

all uplink transmit covariance matricesCξ̌k
(assuming that the opti-

mal decoding order is chosen). Therefore, there is an optimizer for

which the shaping constraints in the uplink are active, which implies

that the signaling is proper sinceCξ̌k
= I2Nk

∈ PNk .

Let us now consider a relaxed maximization in the uplink with

Y̌ ′′ =
{

(Yk)∀k ∈
⊗K

k=1
S
2Nk

∣
∣
∣ Yk ∈ NNk

}

, (16)

i.e., the uplink transmit signals may be improper, and the covariance

constraint becomes a constraint on the power shaping component

only. Moreover, the uplink noise is still restricted to be proper as in

the proof of Theorem 1 since Ž⊥ is unchanged. Therefore, due to

Lemma 1, proper transmit signals are optimal in the relaxed uplink

problem. Consequently, there is an optimizer with Yk = 0, and the

relaxed problem has the same optimal value as the original problem.

Translating the relaxed problem back to the downlink, the new

Y̌ ′′⊥ restricts the downlink noise to be proper, but the same optimal

value as without this restriction is achieved.

Combining both theorems of this paper, we obtain that the opti-

mal transmit signals used in combination with the worst-case noise

are proper as well.



composite real (=̂ general complex) proper complex

downlink

uplink

⇒

duality (Section 4)

⇒
L
em

m
a
1

⇒duality (Section 4)

min
(Cη̌k

�0)∀k : (Cη̌k
)∀k∈Y̌⊥

∑
K
k=1

tr[Cη̌k
]=

∑
K
k=1

Nk

max
(Cx̌k

�0)∀k,Z∈Ž
∑

K
k=1

Cx̌k
�P+Z

K
∑

k=1

wkrk,real (11)

Ž = NM

Y̌⊥ =

{

(Cη̌k
)∀k ∈

⊗K

k=1
S
2Nk | Cη̌k

= αI2Nk
∀k, α ∈ R

}

rk,real =
1

2
log

det
(

Cη̌k
+ Ȟk

(

∑

j∈Ik∪{k} Cx̌j

)

ȞT
k

)

det
(

Cη̌k
+ Ȟk

(

∑

j∈Ik
Cx̌j

)

ȞT
k

)

min
Cη̌�0 :Cη̌∈Ž⊥

tr[PCη̌ ]=
∑

K
k=1

Nk

max
(C

ξ̌k
�0)∀k,(Yk)∀k∈Y̌

C
ξ̌k

�I2Nk
+Yk ∀k

K
∑

k=1

wkr
UL
k,real (12)

Ž⊥ = (NM )⊥ = PM (see Section 3)

Y̌ =

{

(Yk)∀k ∈
⊗K

k=1
S
2Nk

∣

∣

∣

∣

∣

K
∑

k=1

tr[Yk] = 0

}

rULk,real =
1

2
log

det
(

Cη̌ +
∑

j∈IUL
k

∪{k} ȞT
j Cξ̌j

Ȟj

)

det
(

Cη̌ +
∑

j∈IUL
k

ȞT
j Cξ̌j

Ȟj

)

min
Cη�0

tr[CCη ]=
∑

K
k=1

Nk

max
(Cξk

�0)∀k,(Yk)∀k∈Y

Cξk
�INk

+Yk ∀k

K
∑

k=1

wkr
UL
k (13)

Z⊥ = H
M (anyCη corresponds to a Pη ∈ Ž⊥ = PM )

Y =

{

(Yk)∀k ∈
⊗K

k=1
H

Nk

∣

∣

∣

∣

∣

K
∑

k=1

tr[Yk] = 0

}

rULk = log
det

(

Cη +
∑

j∈IUL
k

∪{k} HH
j CξjHj

)

det
(

Cη +
∑

j∈IUL
k

HH
j CξjHj

) .

min
(Cηk

�0)∀k : (Cηk
)∀k∈Y⊥

∑
K
k=1

tr[Cηk
]=

∑
K
k=1

Nk

max
(Cxk

�0)∀k∑
K
k=1

Cxk
�C

K
∑

k=1

wkrk (14)

Z = (HM )⊥ = {0}

Y⊥ =

{

(Cηk
)∀k ∈

⊗K

k=1
H

Nk |Cηk
= αINk

∀k, α ∈ R

}

rk = log
det

(

Cηk
+Hk

(

∑

j∈Ik∪{k} Cxj

)

HH
k

)

det
(

Cηk
+Hk

(

∑

j∈Ik
Cxj

)

HH
k

) (15)

Table 1. Steps of the proof of Theorem 1.

7. DISCUSSION

It is intuitively understandable that proper Gaussian signals are opti-

mal in MIMO broadcast channels with proper Gaussian noise: since

the user encoded last does not see any interference, the situation for

this user is similar as in a point-to-point transmission, where proper

transmit signals are optimal. Choosing a proper transmit signal for

this user, the noise-plus-interference signal at the second last user is

proper so that a proper transmit signal should be chosen for this user

as well, and so forth. However, a formal proof under sum covariance

constraints is nontrivial and was provided in this paper by exploiting

the uplink downlink duality for minimax problems with linear conic

constraints from [9, 10].

The result that the worst-case noise under shaping constraints is

proper has an intuitive explanation as well: proper Gaussian noise

has maximal entropy for given noise power, and it makes sense that

this is the worst case unless we require the transmit signals to be

improper (e.g., by using a modulation scheme with improper con-

stellation). Again, the formal proof of this result is based on the

minimax uplink downlink duality.
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