I

Technische Universitat Miinchen
Fakultat fiir Informatik
Lehrstuhl fiir Computer Graphik und Visualisierung

GPU-Based Compression

for Large-Scale Visualization
Marc Treib

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr. M. G. Bader

Prifer der Dissertation: 1. Univ.-Prof. Dr. R. Westermann

2. Univ.-Prof. Dr. J. Kriiger, Universitat Duisburg-Essen

Die Dissertation wurde am 30.01.2014 bei der Technischen Universitdt Miinchen

eingereicht und durch die Fakultédt fiir Informatik am 13.05.2014 angenommen.

To my family and friends

Abstract

Scientific visualization is used to aid in the analysis and exploration of numerical data
sets. However, in recent years, the size of scientific data sets has increased to such an
extent that typical visualization approaches become problematic. Single pictures or
even videos can not contain even the most essential features of the data anymore, so
interactivity becomes crucial in finding regions or features of interest. On the other
hand, data sizes in the order of terabytes make it challenging to achieve interactive
rates. As keeping all data in fast memory is not possible, data must be streamed from
slower storage media such as hard disks. Data compression can be employed to reduce
both 1/O bandwidth requirements and memory usage. In interactive applications,
the decompression throughput is of crucial importance. At the bare minimum, it
must exceed the raw storage bandwidth in order for the compression to have any
positive effect on the streaming performance. In this thesis, I present a reusable
compression layer for arbitrary data given on 2D or 3D Cartesian grids. It employs
algorithms which are well-known in image compression and thus achieves state-of-
the-art compression rates. It is specifically tailored to exploit the highly parallel
nature of contemporary GPUs. This is made possible by data-parallel formulations
of all computation steps as well as a highly efficient implementation using NVIDIA’s
CUDA platform. To demonstrate the utility and versatility of the library, I have
integrated it into three applications. The first application is a terrain rendering

system allowing the interactive editing of very large and highly resolved terrain data

sets. The second is a turbulence visualization system which employs volume rendering
of derived flow properties. The compression layer allows it to handle data sets where
even a single time step is too large to fit into main memory. The third application
enables particle tracing in extremely large flow fields. On a single desktop PC, it
achieves a performance comparable to previous approaches on supercomputers. In
all cases, the high compression rate and throughput allow the efficient handling of
much larger data sets than would otherwise be possible.

vi

Zusammenfassung

Wissenschaftliche Visualisierung wird bei der Analyse und Exploration numerischer
Datenséatze eingesetzt. Allerdings sind solche Datensétze in den letzten Jahren
so grofl geworden, dass viele gangige Visualisierungsansatze schwierig einzusetzen
sind. Einzelne Bilder oder selbst Videos kénnen nicht einmal mehr die wesentlich-
sten Merkmale der Daten darstellen, so dass Interaktivitat bei der Suche nach rel-
evanten Features oder Regionen unerldsslich wird. Andererseits machen es gerade
die groflen Datenmengen schwierig, Interaktivitiat zu erreichen. Nachdem es nicht
mehr moglich ist, alle Daten in schnellem Speicher zu halten, miissen die Daten
dynamisch von langsameren Medien wie Festplatten nachgeladen werden. Der Ein-
satz von Datenkompression kann die Anforderungen beziiglich Bandbreite wie auch
Speicherbedarf reduzieren. In interaktiven Anwendungen ist der Dekompressions-
Durchsatz von hochster Wichtigkeit. Damit die Datenkompression positive Auswir-
kungen hat, muss dieser mindestens iiber der Bandbreite der Speichermedien liegen.
In dieser Dissertation prasentiere ich eine wiederverwendbare Softwarebibliothek zur
Kompression beliebiger Daten auf kartesischen Gittern in 2D oder 3D. Sie verwendet
bekannte Algorithmen aus der Bildkompression und erreicht daher Kompressions-
raten, die dem Stand der Technik entsprechen. Sie ist aulerdem speziell ausgerichtet
auf die Parallelitdt heutiger GPUs. Das wird ermoglicht durch Daten-parallele For-
mulierungen aller verwendeten Algorithmen, sowie durch eine effiziente Implemen-
tierung basierend auf NVIDIAs CUDA-Plattform. Zur Demonstration des Nutzens

vii

und der Vielseitigkeit der Bibliothek habe ich diese in drei Anwendungen integriert.
Die erste Anwendung ist ein System zum Rendern von Terrain-Daten, welches die
interaktive Bearbeitung sehr grofler und hochauflésender Terrains erméglicht. Die
zweite ist ein Turbulenzvisualisierungssystem, das Techniken aus der Volumenvisua-
lisierung auf abgeleitete Stromungsmerkmale anwendet. Durch den Einsatz von Kom-
pression kann es so grofle Datensétze behandeln, dass selbst ein einzelner Zeitschritt
nicht in den Hauptspeicher passt. Die dritte Anwendung ermoglicht die Berechnung
von Partikeltrajektorien in extrem grofien Stromungsfeldern. Diese Anwendung erre-
icht auf einem einzelnen PC eine Leistung, die vergleichbar ist mit fritheren Verfahren
unter Einsatz von Supercomputern. In allen drei Fallen konnen dank der hohen Kom-
pressionsrate sowie -geschwindigkeit deutlich grofiere Datensétze behandelt werden
als ansonsten moglich wére.

viii

Acknowledgments

I gratefully acknowledge the support of all of the people who made this thesis possi-
ble. First and foremost, I would like to express my sincere gratitude to my advisor
Prof. Dr. Riidiger Westermann for offering me the great possibility to pursue re-
search in the field of scientific visualization. I am very grateful for his guidance,
for his commitment to my work, and for the numerous discussions. I also want to
thank the co-authors of my papers, Stefan Auer, Kai Biirger, Charles Meneveau,
Florian Reichl, and Alexander Szalay, for contributing their suggestions and ideas.
I have always enjoyed working with them. Furthermore, I would like to thank my
current and former colleagues, Stefan Auer, Kai Biirger, Shunting Cao, Matthaus
Chajdas, Ismail Demir, Christian Dick, Florian Ferstl, Roland Fraedrich, Raymund
Filop, Stefan Hertel, Hans-Georg Menz, Mihaela Mihai, Tobias Pfaffelmoser, Marc
Rautenhaus, Florian Reichl, Matthias Reitinger, Jan Sommer, Nils Thuerey, Mikael
Vaaraniemi, and Jun Wu, who have always been available for discussions. I am
enormously thankful to my parents and my friends for giving me all the support
that I needed during this time. I want to thank the King Abdullah University of
Science and Technology (KAUST) for funding my work. Finally, I wish to thank
the Landesvermessungsamt Feldkirch, Austria, for providing the Vorarlberg terrain
data set, as well as Charles Meneveau from Johns Hopkins University, Madhusud-
hanan Srinivasan from KAUST, and Markus Uhlmann from the Karlsruhe Institute

of Technology for providing access to the turbulence data sets.

ix

Contents

Abstract v
Zusammenfassung vii
Acknowledgments ix
Introduction 1
1.1 Outline. 3
1.2 List of Publications 4
Data Compression Fundamentals 5
2.1 Entropy Coding 6
2.1.1 Information and Entropy 7
2.1.2 Huffman Coding 9
2.1.3 Golomb-Rice Coding 14
2.1.4 Arithmetic Coding L. 15
2.1.5 Adaptive Huffman and Arithmetic Coding 19
2.1.6 Comparison Between Huffman and Arithmetic Coding 20
2.2 Run-Length Encoding 21
2.3 Dictionary Techniques, 21
231 LZTT ..o 21

xi

CONTENTS

232 LZ78 22
2.3.3 Use of LZ algorithms in practice 23
2.4 Transform Coding 24
2.4.1 Discrete Cosine Transform 25
2.4.2 Discrete Wavelet Transform 29
2.4.3 Color Space Transforms 41
2.5 Image Compression in Practice 44
251 JPEG 44
2.5.2 JPEG2000 47
GPU Data Compression 53
3.1 Related Work o 55
3.2 Choice of Algorithms 58
3.2.1 Arithmetic Coder 59
3.2.2 Golomb-Rice Coder 59
3.2.3 Huffman Coder 60
3.24 Run-Length Coder 60
3.2.5 Compression Ratio Comparison 61
3.3 Discrete Wavelet Transform 64
3.4 Run-Length Coding 65
3.4.1 Encoder 66
3.4.2 Decoder 66
3.5 Huffman Coding 66
3.5.1 Encoder 67
3.5.2 Decoder 71
3.6 The cudaCompress Library, 71
3.6.1 Usage Example 0oL 73
3.6.2 Performance Lo 73
3.6.3 Compression Quality 7
Interactive Terrain Editing 81
4.1 Introductiono 81
4.2 Related Work 84

xii

CONTENTS

4.3 Gigasample Terrain Editing L. 85
4.3.1 Tile Tree Creation and Reconstruction 86
4.3.2 Renderingo 86
4.3.3 Editing. 87

4.4 Data Compression 89

45 Results. 91
4.5.1 Rendering and Editing 91
4.5.2 Compression Rate and Quality 93
4.5.3 Compression Throughput 94

4.6 Conclusion 95

Turbulence Visualization: Volume Rendering 97

5.1 Introduction 98

5.2 Related Work 101

5.3 System Functionality, Algorithms, and Features 102
5.3.1 Compression Algorithm 102
5.3.2 Visualization Algorithm 103
5.3.3 Turbulence Features 104

5.4 Design Decisions and Tradeoffs 108
5.4.1 Feature Reconstruction 109
5.4.2 Lossy Compression 110
5.4.3 Multiscale Analysis L. 114

5.5 Performance 117

5.6 Conclusion 122

Turbulence Visualization: Particle Tracing 125

6.1 Introduction 125

6.2 Related Work oo 129

6.3 Out-of-Core Particle Tracing, 132
6.3.1 Particle Tracing in Rounds 133
6.3.2 Tracing Across Brick Boundaries 135
6.3.3 Heuristic Brick Selection and Paging 136
6.3.4 Unsteady Flow 139

xiii

CONTENTS

6.3.5 Interpolation Schemes 139
6.4 Turbulent Vector Field Compression 140
6.4.1 Interpolation Error Estimate 140
6.4.2 Error-Guided Data Compression 143
6.5 Evaluation 145
6.5.1 FError Metrics 145
6.5.2 Accuracy Analysis 148
6.5.3 Performance Analysis 149
6.6 Conclusion 155
Conclusion and Future Work 157
Bibliography 159

Xiv

Introduction

Many scientific disciplines involve the analysis of numerical data sets, produced ei-
ther by numerical simulations such as in computational fluid dynamics or by mea-
surements, e.g. in geographical applications. The major challenge is to find the
“interesting information” contained in the data. This is commonly approached with
scientific visualization, which aims to produce images containing the major features.
Then, the impressive capabilities of the human visual system can be employed to an-
alyze the data and detect patterns. Interactive visualization techniques are especially
useful because they facilitate data exploration. For example, a scientist may focus on
a particularly promising region within the data and tune visualization parameters,

all with immediate visual feedback.

However, in recent years, it has become increasingly challenging for visualization
techniques to keep up with growing data sizes. In 1965, Gordon Moore predicted that
the number of components in an integrated circuit would double every year [Moo65].
Looking back, the time interval has turned out to be closer to two years, but the
prediction of exponential growth has stood the test of time so far. One consequence
is that the computing power of processing units has increased at a similar rate in
the past decades. The higher performance of supercomputers in particular has re-
sulted in larger and higher-resolved numerical simulations. Individual pictures or
even videos can not contain even the most essential features of the data anymore, so
interactivity becomes crucial in finding regions or features of interest. Fortunately,

the performance of visualization systems has similarly increased. However, there are

1 INTRODUCTION

two factors which make it difficult to transform the increased computing power into
increased application performance. First, the bandwidths and capacities of transmis-
sion and storage devices has not kept up with the computing power. Today, main
memory, network adapters, and hard drives are all much slower and smaller than
ten years ago, relative to the available computing power at the time. This makes it
increasingly hard to avoid memory and bandwidth constraints. Second, in the past
years, the serial performance of computers has not increased along with the number
of components per circuit. While this has been possible for decades, constraints re-
garding power consumption and heat dissipation have made it necessary to increase
the number of computation units rather than the performance of an individual unit.
In consequence, parallel algorithms are now required to fully utilize the available
computing power.

Interactive visualization systems employ a variety of techniques to handle the grow-
ing amounts of data. As keeping all data in fast memory is not possible, data must
be streamed from slower storage media such as hard disks or even from dedicated
storage systems. Additionally, region-of-interest and level-of-detail methods can of-
ten reduce the amount of data that must be streamed and kept in memory. However,
these techniques may not be sufficient to achieve interactivity. They are also not uni-
versally applicable. In this situation, data compression can additionally be employed
to reduce both I/O bandwidth requirements and memory usage.

In interactive applications, the speed of the decompression step is of crucial impor-
tance. At the bare minimum, the throughput must exceed the raw storage bandwidth
in order for the compression to have any positive effect on the streaming performance.
In applications where data may be modified, a similar argument applies to the com-
pression speed. In previous work, several compression algorithms have been devel-
oped which offer great decompression speed, but they usually sacrifice compression
speed and/or compression rate to achieve this. Additionally, many such algorithms
are very application-specific and can not easily be applied in other scenarios.

In this thesis, I present a reusable compression layer for arbitrary data given on 2D
or 3D Cartesian grids. It is called CUDACOMPRESS and has been released under a
permissive license as a companion to this thesis. It employs algorithms which are well-
known in image compression and achieves state-of-the-art compression rates for both

lossless and lossy compression. However, in contrast to previous work, it is specifically

1.1 OUTLINE

tailored to exploit the highly parallel nature of contemporary GPUs. This is achieved
by data-parallel formulations of all computation steps as well as a highly efficient
implementation using NVIDIA’s CUDA platform. The massive computational power
and memory bandwidth of current GPUs enables the high compression throughput
that is required for interactive applications.

To demonstrate the utility and versatility of CUDACOMPRESS, I have integrated
it into three applications from interactive visualization and computer graphics. In
all cases, the high compression rate and throughput allow the efficient handling of
much larger data sets than would otherwise be possible. The first application is an
interactive terrain rendering and editing system. Both height fields and orthopho-
tos are compressed using CUDACOMPRESS. The high compression ratio as well as
decompression throughput allow rapid streaming from disk. In addition, the com-
pression throughput offered by cubACOMPRESS allows edited data to be compressed
on-the-fly so that it can be stored to disk again.

The second application is a turbulence visualization system which employs volume
rendering of local properties derived from the turbulent flow. The system can handle
turbulence data sets which are so large that even a single time step may not fit into
RAM. Again, the compression layer enables rapid streaming as well as caching large
amounts of compressed data in RAM. Additionally, the system allows filtering the
flow data for the purpose of multiscale analysis. With CUDACOMPRESS, the filtered
data can be compressed and cached for later use.

The third and final application is a particle tracing system for extremely large
flow fields on a desktop PC. The use of CUDACOMPRESS in combination with a
novel smart caching scheme allows the system to achieve a performance comparable
to previous approaches on supercomputers. In this application, particular attention
must be given to the impact of lossy compression on the computed trajectories. A
number of experiments demonstrate that the variations due to lossy compression are

of similar magnitude as those induced by numerical interpolation of velocity values.

1.1 Outline

This thesis is structured as follows. Chapter 2 gives a general introduction to the

topic of data compression, with a focus on image compression techniques. The fol-

1 INTRODUCTION

lowing Chapter 3 evaluates the presented compression algorithms regarding their
suitability for GPU-friendly data-parallel implementations, and presents in detail a
GPU implementation of the discrete wavelet transform as well as run-length and
Huffman coding. Chapters 4, 5, and 6 present three applications which are made
possible only by this efficient data compression layer. Chapter 4 showcases an in-
teractive terrain editing system capable of handling arbitrarily large, high-resolution
terrain data sets. The second application, introduced in Chapter 5, is a visualization
system for very large and time-dependent turbulence simulations based on volume
rendering of derived quantities. Third, Chapter 6 presents a particle tracing system
for extremely large flow fields. All three systems efficiently handle enormous amounts
of data using only the limited capabilities of a single desktop PC. Finally, Chapter 7
briefly summarizes the thesis and presents some directions for future work.

1.2 List of Publications

Some of the research results presented in this thesis have been originally published
in the following peer-reviewed conference papers and journal articles:

1. TREIB M., REICHL F., AUER S., WESTERMANN R..: Interactive editing of gigasample terrain
fields. Computer Graphics Forum 31, 2 (2012), 383-392. doi:10.1111/j.1467-8659.2012.
03017 .x.

2. TREIB M., BURGER K., REICHL F., MENEVEAU C., SZALAY A., WESTERMANN R.: Tur-
bulence visualization at the terascale on desktop PCs. IEEFE Trans. Vis. Comput. Graphics
18,12 (2012), 2169-2177. doi:10.1109/TVCG.2012.274.

Additionally, the source code of CUDACOMPRESS, a GPU data compression library
which was developed in the course of this thesis, has been made publicly available

under a permissive license [Trel3].

http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1109/TVCG.2012.274

Data Compression Fundamentals

Data compression has been studied extensively for several decades, and so only a
cursory review is possible in the scope of this thesis. This chapter gives a brief
summary of the most important concepts and their implementation, with a bias
towards those ideas and techniques that will be used in the following chapters. For
a more complete covering of the area, the reader is referred to textbooks on data
compression. The book by Sayood [Say12]| provides a very readable introduction to
the topic of data compression, including both theoretical background and detailed
descriptions of many practical data compression systems and standards. An even
more comprehensive review of most data compression algorithms that were ever in

use is given in the Handbook of Data Compression [SM10].

On a very high level, compression systems can be categorized as either lossless or
lossy. This is a crucial difference from the perspective of the application: Many ap-
plications can not tolerate any difference between the original and the reconstructed
data. Examples include text and computer programs. For these types of data, even
a small deviation can radically change the meaning of the data. In other cases,
some difference is acceptable as a trade-off for better compression. Here, the most
prominent examples are media files. In images or audio recordings, it is usually not
essential to exactly reconstruct the original data bit-by-bit. A small change in the
color of a pixel will usually not make a significant difference, and may often not even
be noticeable.

In practice, almost any data compression system or standard is a combination

2 DATA COMPRESSION FUNDAMENTALS

of several algorithms taken out of a repertoire of fundamental data compression
algorithms. As such, there is a lot of overlap between the design of a lossless and a
lossy system. The difference can be as small as adding or removing a quantization
stage. The particular application has a much larger impact on the design: A system
for the compression of images will look quite different from one designed for text, even
if both are lossless. Often, the first stage is an application-dependent preprocessing
stage, followed by a quantization step if the system is lossy. Afterwards, the data is
generally compressed further using a lossless compression technique.

This chapter first introduces the most popular lossless compression techniques,
namely entropy coding in Section 2.1, run-length coding in Section 2.2, and dictionary
methods in Section 2.3. A description of transform coding, a class of preprocessing
techniques, follows in Section 2.4. The focus here is on image data, though similar
techniques can be applied to audio and to volumetric data. Finally, in Section 2.5,
the image compression standards JPEG and JPEG2000 are reviewed as practical
applications of many of the presented concepts.

2.1 Entropy Coding

Entropy coding is a class of techniques which makes use of statistical properties of
data to achieve compression. For an explanation of entropy coding, it is necessary
to first introduce some terms from probability theory.

A (random) experiment is characterized by a set of possible outcomes Q = {w;},
collectively called the sample space, each with an associated probability P(w;). A
random variable X : £ — R is a mapping from outcomes w; to numbers z; € R. An
experiment and an associated random variable can be either continuous or discrete.
A continuous random variable has an uncountable number of possible outcomes; a
discrete one only a countable, though possibly still infinite, number. In the following,
only discrete random variables will be employed. Their output numbers z; will usually
be chosen from N.

A data source S can now be modeled as a stochastic process in discrete time,
defined by a sequence of random variables X;. Each X; corresponds to one data
item generated by the source. Here, all X; share a common set of possible outcomes
A = {a;}. Ais called the alphabet of S. The individual a; are called symbols or

2.1 ENTROPY CODING

letters.
In practice, a data set or signal can be seen as one possible realization of such
a random process. The stochastic properties of the data source are generally not

known, and can only be inferred approximately from the given realization.

2.1.1 Information and Entropy

For the purpose of data compression, it is useful to quantify the amount of infor-
mation contained in a piece of data. The first rigorous definition of information was
presented in an extremely influential paper by Shannon, published in two parts in
1948 [Sha48a, Sha48b].

First, it is useful to define the amount of information contained in the outcome of
a random experiment. The self-information I(w) of an event w is defined as

I(w) = log, P<1w) — log, P(w) (2.1)
In the terms of probability theory, the event w can be either one outcome or a set
of outcomes of a random variable. The definition of I seems somewhat arbitrary at
first, but it at least makes intuitive sense: The occurrence of a certain event with a
probability of 1 carries no information at all. The less likely an event, the larger the
amount of information that is contained if it does occur. As the probability goes to
0, the information goes to infinity.
For two independent events wq, ws, the self-information is additive:

I(wy,we) = I(wy) + I(wse) (2.2)

This only holds if the two events are statistically independent. It does not hold if

there is any positive or negative correlation between their occurrences.

The base of the logarithm can be chosen arbitrarily. In the context of data com-

pression, however, it is almost always chosen as b = 2. In this case, the unit of

information is bits. One bit in a computer stores exactly one bit of information.
Given the self-information of each outcome w; of a random variable X, we can

compute its average or expected self-information. This quantity is called the entropy

2 DATA COMPRESSION FUNDAMENTALS

H(X) and defined as
H(X)= Z P(w)I(w;) = — Z P(w;)log, P(w;) (2.3)

The entropy is an important quantity because, as Shannon showed, it corresponds
to the optimum any lossless compression scheme can achieve. That is, no lossless
compression scheme can, on average, use less than H(X) bits per symbol to encode
the outcomes of X.

More interesting than the entropy of an individual random variable is the average
information output by a data source S = (X3, X, ...). The average information per
output symbol is called the entropy rate, though in the literature it is often simply
called the entropy as well. To compute the entropy rate based on the previous defini-
tion of entropy, we would need one random variable describing the joint distribution
of the X;. Equivalently, we can employ the joint entropy

H(Xy,...,X,)==>_...> P(a1,...,z,) log P(z1,...,z,) (2.4)
T Tn

and define the entropy rate H(S) as the limit of the normalized joint entropy

H(S) = Tim ~H(Xy, ... X,) (2.5)

n—oo n,

This is quite inconvenient to compute at best. In practice, the joint probabilities
P(zy,...,x,) are usually not known, so it is not even possible in principle to compute
the entropy rate. However, if the X; are independent and identically distributed (iid),
the joint entropy is equal to the sum of the individual entropies. In this case, the
entropy rate of S is equal to the entropy of any X; and can thus be calculated
analogously to Eq. (2.3) as

H(S) = P(a;)I(a;) = —>_ Pla;)log, P(ay) (2.6)
J J
It must be stressed that this computation of the entropy rate is valid only for iid

random variables X;. However, most real data sources are not iid—rather, their X;
are often heavily correlated. Thus, their entropy rate can not be computed in this

2.1 ENTROPY CODING

way. Eq. (2.6) can still be evaluated, but it only computes a quantity known as the
first-order entropy. It is worth noting that in the literature, these terms are often
not clearly differentiated, and so “entropy” is often written when actually only the
first-order entropy is meant.

In practice, a preprocessing step is often used to decorrelate the data, so that the
processed data is “approximately iid”. Section 2.4 will show some examples of this.
The following sections introduce some of the most common entropy coders, which

exploit the first-order entropy of their input data to achieve compression.

2.1.2 Huffman Coding

Huffman coding is probably the earliest example of entropy coding. The algorithm
was published in 1952 [Huf52] after being developed at the first ever course on in-
formation theory at MIT. It is a variable-length code (VLC) which assigns a binary
codeword to each symbol in the input alphabet. The length of a symbol’s codeword
depends on the symbol’s probability of occurrence. The more frequently a symbol
occurs, the shorter its codeword will be. Huffman developed a method to find the
optimal codewords for a given frequency distribution, in the sense that the total

length of an encoded string will be minimal.

Prefix-Free Codes

An important property of VLCs is their unique decodability: Since a decoder does
not know where one codeword ends and the next one begins, there might be multiple
possible decodings. In a compression system, such ambiguity must of course be ruled
out. A sufficient condition to ensure unique decodability of a VLC is that no codeword
may be the prefix of another codeword. Such a code is called a prefiz-free code or
often, somewhat confusingly, just prefiz code. An example of a prefix-free code is
listed in Table 2.1. Any binary code can be conveniently visualized as a binary tree.
Fig. 2.1 shows the binary tree corresponding to the code in Table 2.1. A codeword
corresponds to a path in the tree, starting from the root. Each edge corresponds
to one bit in the codeword and is labeled 0 or 1 accordingly. In a prefix-free code,
codewords correspond only to the leaves of the tree. It is easy to see that such a

code can be decoded uniquely: The decoder reads the input data bit by bit and

2 DATA COMPRESSION FUNDAMENTALS

Table 2.1: Example of a prefix-free binary code.

symbol codeword

0 000
1 1
2 011
3 0010
4 010
) 0011

Figure 2.1: Binary tree corresponding to the code in Table 2.1. A codeword corresponds
to a path from the root to a leaf node. Each edge corresponds to one bit of the codeword.
The leaf nodes are labeled with the codewords they represent.

walks along the appropriate edges in the tree, starting at the root. When it reaches
a leaf, a whole codeword has been read. The corresponding symbol is output, and
the decoder starts again at the root of the tree.

It is worth noting that the prefix-free property is not a necessary condition for
uniquely decodability. However, the decoding procedure for such a code would likely
be much more complicated. More importantly, it can be shown that such a code can
not provide superior compression performance. In other words, for each uniquely
decodable code, there exists a prefix-free code with codewords of the same lengths.

A proof for this claim can be found e.g. in Sayood’s book [Say12].

10

2.1 ENTROPY CODING

Huffman Code Construction

Huffman’s procedure for generating an optimal prefix code builds the binary tree
(as in Fig. 2.1) in a bottom-up manner. It maintains a list of active nodes which is
initialized with the tree’s leaves, corresponding to the symbols in the input alphabet.
While the list contains more than one element, it picks the two nodes with the lowest
probabilities, removes them from the list, and creates a new node as their parent.
The probability of the new node is set to the sum of the probabilities of the children,
and the node is inserted into the list again. The algorithm finishes when there is only
one node left in the list, corresponding to the root of the tree. The codeword for
each symbol can be obtained by traversing the path from the root to that symbol.
The proof that this procedure indeed results in optimal codewords is reproduced in
many textbooks, e.g. Sayood’s [Say12].

The Huffman code for a given input distribution is not uniquely defined. First,
when choosing the two lowest-probability nodes, there may be ties. In this case,
any two of the tied nodes may be chosen. Second, which of the two chosen nodes
becomes the left child of the new node is arbitrary. Third, all codewords of equal
length can be exchanged. In fact, the algorithm only fixes the codeword lengths.
The actual codewords can be chosen freely as long as the resulting code is prefix-free.
Obviously, none of these choices affect the compression rate. However, they may
affect the efficiency of an implementation. In particular, the freedom in choosing
codewords can be used to achieve compact storage of the Huffman table. We can use
the following rules to assign codewords:

e Assign codewords in order of increasing length.

e The first codeword, i.e. the one with the smallest length, is the binary number
0 with the appropriate number of bits.

e Each subsequent codeword is generated by incrementing the previous codeword

and appending 0 bits until the required length is reached.

It is easy to see that the resulting code is prefix-free. A Huffman code generated in
this way is sometimes called a canonical Huffman code. Table 2.2 lists the canonical
Huffman code for the example from Table 2.1. Fig. 2.2 shows the corresponding
binary tree.

11

2 DATA COMPRESSION FUNDAMENTALS

Table 2.2: Canonical Huffman code for the code from Table 2.1. Symbols are ordered by
the length of the corresponding codeword. The codeword for the first symbol is the binary
number zero with the appropriate number of bits. Each successive codeword is created by
incrementing the previous one and appending zero bits as necessary.

symbol codeword length codeword
1 1 0
0 3 100
2 3 101
4 3 110
3 4 1110
5 4 1111

Figure 2.2: Binary tree corresponding to the Huffman code in Table 2.2.

All that needs to be stored and transmitted to the decoder is the sorted list of
symbols and the number of codewords of each length. That is sufficient for the
decoder to reconstruct the codewords in the same manner as the encoder assigned
them. The actual codewords are not required, thus allowing for a more compact

storage than an explicit mapping of symbols to codewords.

Encoding

Knowing how to construct the Huffman table, the actual encoding process is now

straightforward. The first step is computing the symbol probabilities, i.e. counting

12

2.1 ENTROPY CODING

the number of occurrences of each symbol in the input data. With this information,
the Huffman code can be constructed as described. Finally, each symbol is replaced
by its assigned codeword, and the codewords are concatenated to produce the final
output bit stream. Since the decoder also requires the Huffman code, it has to be
stored along with the encoded data.

Decoding

The decoder receives as input the Huffman code and the bit stream of codewords. The
decoding process is easiest to understand in the tree representation of the Huffman
code. The decoder reads the input data bit by bit and each time moves along the
corresponding edge in the tree, starting at the root. Whenever it reaches a leaf, a
whole codeword has been processed. The decoder outputs the respective symbol and
starts again at the root. This decoding scheme clearly works for any prefix code, not
just for those created by Huffman’s algorithm.

This straightforward tree-based implementation of Huffman decoding is not very
efficient: Each bit of input entails following a pointer. One strategy for more efficient
Huffman decoding is to build an over-complete lookup table which allows decoding
each symbol in a single lookup. If the longest codeword has n bits, then the table
requires 2" entries. It is indexed by the next n bits of the input bit stream. Each
entry contains the length of the first codeword within those n bits, as well as the
corresponding symbol. Table 2.3 lists the corresponding lookup table for the Huffman
code from Table 2.2. The decoding algorithm then becomes simple: Peek the next
n bits from the bit stream, look up the symbol, and advance the position in the bit
stream by the length of the codeword.

A drawback of this method is that the table can become extremely large and thus
consume a lot of memory. It will also take a significant amount of time to build
up such a large table, possibly negating any performance benefit during decoding.
It is therefore often beneficial to take a hybrid approach: Build the lookup table
only for codewords up to a certain length, e.g. 8 bits. For longer codewords, set
the corresponding entry in the table to an invalid value, e.g. set the length entry
to zero. When the decoder encounters such an entry, it reverts to the alternative

implementation described above. Since the shortest codewords are also the most

13

2 DATA COMPRESSION FUNDAMENTALS

Table 2.3: Decoding lookup table for the Huffman code in Table 2.2.

input / index codeword length symbol
0 1 1
0 1 1
0 1 1
0 1 1
0 1 1
0 1 1
0 1 1
0 1 1
100 3 0
100 3 0
101 3 2
101 3 2
110 3 4
110 3 4
1110 4 3
1111 4 5

common ones, this allows decoding most symbols in a single lookup without using

excessive amounts of memory for the lookup table.

2.1.3 Golomb-Rice Coding

The Huffman coder described in the previous section explicitly determines the distri-
bution of symbols and transmits it to the decoder. However, when the distribution is
known beforehand, both these steps can be avoided, saving both computation time
and storage space. Additionally, it is often possible to devise a simpler coding scheme
which still produces optimal codewords, but is more computationally efficient than

Huffman coding.

14

2.1 ENTROPY CODING

When the symbols follow a geometric distribution, i.e.
P(X =Fk)=(1—p)*p for some p € [0, 1]

with & € N, the so-called Golomb code [Gol66] produces optimal codewords. In
a Golomb code, each symbol s is encoded as two numbers ¢ (“quotient”) and r

(“remainder”) according to

S
q:{J and r=s—q-m for some m € N™.
m
For the code to be optimal, the parameter m must be chosen based on p according
to

I=p"+Q=-p™! <1 < Q=p"'+010-p™

Then, ¢ is stored using a unary code, i.e. by ¢ successive 1 bits followed by a single 0
bit. The remainder r is stored in truncated binary encoding: The first 2° —m values
are encoded in plain binary using b — 1 bits with b = [log, m|. The remaining values
are encoded in binary as r + 2° — m using b bits.

If m is a power of two, this is equivalent to the standard b-bit binary encoding.
Restricting the possible values of m to powers of two thus results in a simpler code
called a Golomb-Rice code [RP71, Ric79]. Golomb-Rice codes are sometimes also
referred to as Rice-Golomb codes or simply Rice codes, though the term Rice code
also refers to a more sophisticated coder which employs a Golomb-Rice code as one
component.

In practice, most data to be encoded is not geometrically distributed. Huffman
coding will therefore usually outperform Golomb coding in terms of compression rate.
However, transform coding (see Section 2.4) often results in data which is reasonably
close to a geometric distribution. In such cases, Golomb coding can achieve similar
compression rates as Huffman coding, but at a reduced computational load.

2.1.4 Arithmetic Coding

I have stated previously that Huffman coding generates optimal codewords. How-

ever, the output rate often does not equal the entropy of the data source. In fact,

15

2 DATA COMPRESSION FUNDAMENTALS

Huffman coding achieves the source entropy only when the length of each codeword
exactly corresponds to the self-information of the respective symbol. In other words,
all symbol probabilities must be negative powers of two, so that the self-information
of each symbol is a whole number of bits. In practice, Huffman coding often achieves
bit rates quite close to the entropy nonetheless, so this is not always a significant lim-
itation. However, there are some situations where Huffman coding does not perform
well. For example, a large majority of the input symbols may have the same value.
This is particularly common in a lossy compression context when many values are
quantized to 0. In this case, the self-information of the symbol 0 is close to zero, but
a Huffman coder must still allocate at least one bit to its codeword. Another exam-
ple is the coding of a binary alphabet, that is, an alphabet with only two symbols.
Huffman coding must allocate one bit to each codeword, and so can not achieve any
compression.

To get around this fundamental limitation, a coding scheme must be used which
does not use discrete codewords at all. Arithmetic coding is the most well-known
example of such a scheme. The idea is due to Peter Elias. He developed it during the
same course on information theory in which Huffman developed his coding method,
but he never published it.

In arithmetic coding, the whole message is represented as a single, arbitrary-
precision number in the unit interval [0,1). Since there are infinitely many real
numbers in the unit interval, any message can be represented uniquely.

A straightforward algorithm to arithmetically encode a given input string is the

following: Partition the unit interval [0,1) into sub-intervals and assign one sub-
interval to each symbol in the input alphabet. The sizes of the sub-intervals are
chosen to be proportional to the symbol frequencies. A string of symbols can be
encoded by applying this process recursively: The sub-interval from the previous
step is subdivided again using the same proportions. Fig. 2.3 shows an example of
arithmetic coding using the symbol frequencies given in Table 2.4.
Given the final sub-interval and the symbol frequencies, the decoder can uniquely
reconstruct the message by applying the same subdivision procedure. If the number
of symbols in the message is known to the decoder, it is also sufficient to transmit
any number within the final interval instead of the interval boundaries.

The algorithm as described so far is not very practical because it requires the

16

2.1 ENTROPY CODING

Table 2.4: Symbol frequencies for arithmetic coding example.

symbol frequency
0 5
2

=
BEMN

0O + - 4 -

Figure 2.3: Example: Arithmetic coding of the string “102” using the frequencies given
in Table 2.4. Any number within the final interval may be used to represent the encoded
string.

use of arbitrary-precision arithmetic. Practical variations of the algorithm based on
fixed-precision arithmetic were later developed independently by Pasco [Pas76] and
Rissanen [Ris76, RL79]. The basic observation is that the current sub-interval is
only ever restricted, never expanded. This means that as soon as the leading bit
in the binary representation of the upper and of the lower bound is equal, it can
never change. That happens when the current interval is fully contained in either
the upper or lower half of the unit interval. For example, after encoding the first
symbol in the example in Fig. 2.3, the current interval is contained in the upper half.
Any number contained in the interval must start with this bit. Thus, it must be the
first bit of the encoded message. This bit can be transmitted and is not required

in the encoder anymore. At this point, the interval bounds can be rescaled to cover

17

2 DATA COMPRESSION FUNDAMENTALS

only the remaining half of the unit interval, thus reducing the required precision.
This is equivalent to shifting out the most significant bit of both interval bounds,
and shifting in a 1 bit for the upper bound and a 0 bit for the lower bound. As a 1
bit was shifted out, this corresponds to scaling the upper half of the unit interval to
cover the whole unit interval. This operation is called Sy. After encoding the second
symbol in Fig. 2.3, the current interval is contained in the lower half of the remaining
interval, and thus another rescaling is possible. Now a 0 bit was shifted out, so the
lower half is scaled to cover the whole interval, called an Sy, operation.

So far, if the active interval straddles the middle point, then no rescaling is possible.
This means that the active interval can still become arbitrarily small. To handle
this case as well, it is necessary to introduce another rescaling operation, S;, which
scales the middle half of the interval to cover the whole interval. This finally allows
an implementation with fixed precision, but it creates a problem with encoding: So
far, an Sy operation corresponds to a 1 bit and an Sy, to a 0 bit. There seems to be
no room left to encode an Sy;. The solution is based on the following observation: An
Sy operation followed by an Sy is equivalent to an Sy followed by an Sp. Similarly,
Sy — Sp is equivalent to S, — Spy. Multiple successive occurrences of Sy, can
be resolved in a similar way: Sy, — Sy is equivalent to Sy — Sp. In practice,
whenever an S); occurs in the encoder, this is recorded, but no bit is transmitted.
When an S, or Sy finally occurs, the appropriate sequence of bits is transmitted
based on the number of recorded S,; operations. Fig. 2.4 repeats the example from
Fig. 2.3, but includes the rescaling operations. It also shows the interval bounds as
binary numbers, demonstrating that the encoder only needs to keep track of a small
window into the full binary numbers.

The number of bits required in the binary upper and lower bound depends on the
frequency distribution of the input data. If the least likely symbol has a probability
Of Pmin, then it must be possible to uniquely identify 1/pm;, sub-intervals within the
active interval. This requires [logy 1/pmin| bits. However, the active interval can be
as small as one quarter of the distance between upper and lower bound. Therefore
the bounds must be represented with at least [logy 1/pmin| + 2 bits.

The decoding process is analogous to encoding. The decoder keeps track of the
current lower and upper bounds. It mimics the rescaling operations of the encoder

based on the bits of the encoded binary number.

18

2.1 ENTROPY CODING

0.111111. 0.111000.. 0.1110001.. 0.1011000.. 0.10110001.. 0.10110001.. 0.10100011.. 0.10x100111..

di
I Te T

SU S U

S

M
s, Tt 1

[0]

[0] [0]

0.000000.. 0.100000.. 0.1000000.. 0.1000000.. 0.10000000.. 0.10101101.. 0.10011010.. 0.10x010100...

Figure 2.4: Example: Arithmetic coding of the string “102” with rescaling operations,
using the frequencies given in Table 2.4. The current sub-interval is indicated in black,
the currently represented interval in gray. The upper and lower interval bounds in binary
are listed above and below; the encoder only needs to track the bits printed in bold. The
rescaling operations ensure that the current sub-interval covers at least one quarter of the
represented interval. Note that after the Sj; operation, the next output bit is not known
yet, indicated by an x in the binary numbers.

2.1.5 Adaptive Huffman and Arithmetic Coding

Both Huffman and arithmetic encoding as described so far require an extra analysis
pass to compute the symbol frequencies. However, in some applications this may
be impractical or at least inconvenient. Additionally, there is some storage overhead
since the frequency information must be transmitted to the decoder. An alternative
approach is to compute the frequency information during the coding process from
previously seen data. This is called adaptive coding, as the coder dynamically adapts
to the statistics of the data source. This approach has two main benefits: First, it
gets rid of the frequency analysis pass in the encoder. Second, it removes the need
for storing the frequency information, since the decoder can reconstruct it from the
codeword stream itself. Additionally, it often achieves slightly better compression
rates in practice. This is due to the fact that many practical data sources do not

have constant statistical properties; in other words, the individual X; making up a

19

2 DATA COMPRESSION FUNDAMENTALS

data source S (see Section 2.1) are not identically distributed. If their distribution
changes smoothly with ¢, then an adaptive coder will automatically adapt to the
local statistical properties and thus better model the source.

For arithmetic coding, an adaptive scheme is easy to realize. The frequency table

is initialized with a constant probability for each symbol. After a symbol has been
encoded or decoded, its entry in the frequency table is incremented. This results in
adjusted interval sizes for the following symbols.
For Huffman coding, the process is slightly more complicated. Changing a single
frequency may change the shape of the Huffman tree, so the Huffman code would
need to be re-built after each symbol. That would introduce a large performance
penalty, so typically the code is re-built only periodically after some fixed number of
symbols has been processed.

2.1.6 Comparison Between Huffman and Arithmetic Coding

Compared to Huffman coding, arithmetic coding has several benefits. The output
rate of arithmetic coding asymptotically approaches the actual data entropy. Thus
it achieves better compression than Huffman coding, where each codeword must
be a whole number of bits. Whether the difference in compression rate is significant
depends on the situation. In many cases, the output rates of Huffman and arithmetic
coding are quite close. However, in some situations, the difference is crucial, e.g. when
coding a binary alphabet.

Another benefit is that the probability table required for arithmetic coding is easy
to update, facilitating adaptive coding as presented in the previous section. It is
also easy to use and maintain multiple probability tables, particularly for binary

alphabets.

The main drawback of arithmetic coding is its comparatively high computational
complexity. The throughput of an arithmetic coder will generally be significantly
lower than that of a Huffman or Golomb-Rice coder. Additionally, in the non-
adaptive case, the storage overhead for the frequency information is slightly higher
than with Huffman coding since Huffman coding does not require the actual symbol

frequencies.

20

2.2 RUN-LENGTH ENCODING

2.2 Run-Length Encoding

The coding techniques introduced so far have assumed that the individual symbols
are all independent, and therefore have not attempted to exploit any correlations
between symbols. The following sections cover techniques which do try to make use
of correlations between symbols, and as such are orthogonal to the entropy coders
discussed so far.

Run-length encoding (RLE) is likely the simplest compression algorithm which
makes use of any correlations between symbols, or “patterns” in the data. It replaces
repeated occurrences of the same symbol (a run) by a pair (s,n), where s specifies
the symbol and n the number of occurrences. An individual occurrence of a symbol
s is thus replaced by (s,1). This means that data which has few or no runs will be
expanded rather than compressed. It is easy to see that for most types of data, RLE
on its own is not very useful. However, it can sometimes be combined with other
techniques in a productive way. An example is the JPEG image compression format
described in Section 2.5.1.

2.3 Dictionary Techniques

Dictionary techniques try to find repeated sequences of symbols in the input data and
replace them by a “back reference” to the previously encountered instance. While
a great variety of different variants of this idea exist, almost all of them are based
on one of two fundamental techniques introduced by Ziv and Lempel in 1977 [ZL77]
and 1978 [ZL78], called LZ77 and LZ78. The initials are swapped in the acronyms;
reportedly this originally happened by accident and stuck.

2.3.1 LZ77

LZ77 uses a sliding window around the current position in the input data. In this
window, it searches for repetitions. The dictionary is thus implicitly defined by a fixed
range of previously processed data. Fig. 2.5 shows an example of the process. The
part of the window to the left of the current position corresponds to the dictionary
and is called the search buffer. The right part is called the look-ahead buffer. The

21

2 DATA COMPRESSION FUNDAMENTALS

encoder searches the longest prefix of the look-ahead data in the search buffer. It
then outputs a triple (i,n, s), where 7 is the index of the longest match in the search
buffer counting left from the current position, n is the length of the match, and s is
the next symbol in the look-ahead buffer after the match. If no match is found, the
output is simply (0,0, s). Explicitly specifying the next symbol s ensures progress
even if a symbol is encountered which does not occur in the search buffer at all.
After outputting a triple, the current position is incremented by n+ 1 and the sliding

window moved accordingly.

current position

search buffer look-ahead buffer
111(2|5(6|1|2|5|1(2|5|1|2|7
_Y_L .]\ .)

(8,1) (7,3) (3,5)

Figure 2.5: Example of LZ77 compression. The algorithm searches for prefixes of the look-
ahead buffer within the search buffer. Three matches are found, labeled with their offset
relative to the current position and their length. Note that the last match actually extends
into the look-ahead buffer. In this case, the output would be (3,5,7), consisting of the
longest match and the following symbol. In practice, the buffers are much larger, typically
at least on the order of kilobytes.

The third value of the triple is really only required when no match could be found.
A common enhancement of LZ77 called LZSS [SS82] makes use of this. Instead of
always outputting triples, it first outputs a single bit which indicates whether a match
was found. If there was a match, the output is a pair (i,n), otherwise it is only the
single symbol s.

2.3.2 LZ78

An implicit assumption in LZ77 is that repeating patterns occur close together. If
a pattern is repeated, but the distance between repetitions is larger than the search
buffer, then LZ77 will “miss” this repetition. In contrast, the LZ78 approach builds
up an explicit dictionary of previously seen patterns. The encoder outputs pairs

(i,s), where i is the index of the longest match in the dictionary, and s is the symbol

22

2.3 DICTIONARY TECHNIQUES

in the input data following the match. The concatenation of the dictionary entry
at index ¢ and the symbol s then becomes a new entry in the dictionary. Given the
sequence of (7, s) pairs, the decoder can construct exactly the same dictionary as the
encoder and thus correctly decode the data.

The idea behind LZ78 is similar to adaptive arithmetic coding in the sense that
information about the input data is learned dynamically from previous data. No
auxiliary information needs to be stored.

LZ78 can in principle capture repeating patterns of arbitrary length and arbitrary
distance to each other. However, there are two problems: First, the memory required
to store the dictionary grows continuously as new entries are added. In practice, the
size of the dictionary has to be limited in some way. Second, the number of bits
required to encode an index ¢ into the dictionary also grows with the size of the
dictionary. This means that there is a trade-off in choosing the size of the dictionary.
A larger dictionary will potentially capture more and longer patterns, but will also
produce a larger storage overhead for the indices.

One option to handle these problems in practice is to limit the dictionary to some
fixed size. When that size has been reached, no new entries in the dictionary are
created. The encoder then watches the compression rate of the output. If the com-
pression rate worsens significantly, the dictionary is flushed so that new entries can
be created.

Similar to the LZSS modification for LZ77, it is possible to avoid the explicit trans-
mission of s in LZ78. The enhanced variant is due to Welch and called LZW [Wel84].
Instead of starting with an empty dictionary, the dictionary is initially filled with all
symbols from the input alphabet. In this way, it is not possible that no match is
found in the dictionary, and consequently it is sufficient to transmit only the indices ¢
instead of the (i, s) pairs of LZ78.

2.3.3 Use of LZ algorithms in practice

The LZ algorithms and their variations have proven to be exceedingly useful and
versatile in practice. In fact, almost all general-purpose compression tools in practical
use are based on some variant of LZ compression. For example, the well-known

DEFLATE algorithm [Deu96] is a combination of LZSS compression with subsequent

23

2 DATA COMPRESSION FUNDAMENTALS

Huffman coding. It is the basis of the widely used .zip and .gz compression formats,
and used as the final compression stage in the .png image format.

LZW is used e.g. in the .gif image format. Algorithms based on LZ78 are much
less common in practice than LZ77-based ones. This is not due to any inherent
disadvantage of the algorithm, but rather because of several patents on LZ78 and
LZW. Though the relevant patents have now expired, LZ77 remains much more
popular.

The LZ algorithms are also surprisingly versatile in the compression rate vs. speed
trade-off. On the one hand, the Lempel-Ziv-Markov chain algorithm (LZMA) in-
troduced by the 7-Zip compression tool is among the best known general-purpose
compression algorithms. On the other hand, Lempel-Ziv-Oberhumer (LZO) [Obell]
and LZ4 [Col13] are LZ variants tuned for speed, and LZ4 in particular can achieve
decompression speeds of multiple gigabytes per second on a single CPU core.

2.4 Transform Coding

The data compression techniques introduced so far, in particular entropy coding and
dictionary techniques, make very few assumptions about the structure of the data.
Entropy coding techniques only assume that some values occur more often than
others. They treat each element individually without making use of any possible
correlations. Dictionary techniques exploit repeating sequences of values and thus
imply a 1D structure in the data. Both make use only of values being exactly equal,
with no concept of similarity between values. In the terms of Stevens’ theory of
scales of measurement [Ste46], they are based on a nominal scale, allowing only to
distinguish elements, but not to order them or to compute a degree of difference
between them. However, when looking at a photographic image, neighboring pixels
will often have similar, but rarely equal values. The same is true for the samples in
many other kinds of numeric data such as volumetric CT or MRI data, flow fields,
or audio data. It therefore makes sense to consider an interval scale, allowing the
computation of differences between elements. When neighboring elements often have
similar values, storing differences instead of values can result in better compression.

This section introduces a class of techniques collectively called transform coding.

In contrast to the dictionary techniques which consider the input data a linear 1D

24

2.4 TRANSFORM CODING

array, transform coding can easily be extended to exploit correlations in two or more
dimensions. Here, the focus is on 2D image data, but similar techniques can be
applied to audio data, volumetric data, etc.

Transform coding techniques, as the name implies, transform the input data to
some other representation. This has two main objectives. The first is to decorrelate
the data and thus compact most of the “content” into a few data elements. The
remaining data elements can then be compressed to a small size. More formally,
the transform should reduce the first-order entropy of the data, and therefore make
entropy coding techniques more effective. The second objective is to decompose
the data into components which have different interpretations. A lossy compression
system can then selectively dismiss some parts which are considered less important,
or store them at a lower fidelity.

The transforms themselves are usually invertible in the mathematical sense, so the
original values can be fully reconstructed from the transform coefficients. However,
when implemented in practice using floating-point arithmetic, rounding errors can
occur and lead to information loss. This means that the transforms are not invertible
anymore. In a lossy context, that is usually not a problem, as the loss of informa-
tion in the following quantization step will eclipse any rounding errors during the
transform. For lossless compression, however, care must be taken that the transform
remains truly invertible. Typically this means that only integer arithmetic may be

used. Luckily, reversible integer variations of many transforms exist.

2.4.1 Discrete Cosine Transform

The well-known Fourier transform, discovered in the 1820s by Joseph Fourier, allows
describing any periodic function as a sum of sine waves of different frequencies. This
provides a different way of looking at a function: Instead of a function value at each
point in time or space, there now is an amplitude for each frequency of sine wave. The
Fourier transform thus allows analyzing the frequency content of a given function.
Accordingly, the representation as a sum of sine waves is often called the frequency
domain, while the “standard” representation is called the time domain or the spatial
domain depending on the application.

The discrete cosine transform (DCT) [ANR74] is a variant of the discrete Fourier

25

2 DATA COMPRESSION FUNDAMENTALS

transform (DFT). In fact, it is equivalent to a DFT of appropriately padded and
replicated data. While the DFT operates on complex numbers, the DCT operates
on real numbers only. Another difference is that the DF'T assumes a periodic signal.
For most practical data, this results in an artificial “edge” between the last and the
first sample. The DCT, on the other hand, is based on a mirrored periodic extension
and so avoids this spurious edge. Overall, the DCT is therefore much better suited
for many practical purposes including data compression.

It is worth noting for completeness’ sake that there are actually eight different
versions of the DCT, along with eight different discrete sine transform (DST) versions.
The difference between them lies in different types of symmetric extension: The
symmetry can be either even or odd at both the left and right boundary of the
signal. Additionally, the points of symmetry can either lie exactly at the last sample,
i.e. at 0 and n—1, or outside the signal by half a sample distance, i.e. at —% and n— %
In the latter case, the last sample of the signal will be replicated by the symmetric
extension. The remainder of this section only discusses the so-called type-II DCT,
which implies even symmetry at both boundaries and points of symmetry between

samples. The type-III DCT is the inverse of the type-II DCT.

The DCT represents a signal as a sum of cosine functions of different frequencies.
It can be interpreted as a basis transform from the “standard basis” consisting of
the unit vectors (1,0,0...), (0,1,0,...), ... to a basis which consists of discretely
sampled cosine functions. Fig. 2.6 shows the DCT basis vectors c;, 0 < 7 < n for
n = 8 samples, along with the underlying continuous cosine functions. The full
transform can be written as a matrix C = [c; ;] consisting of the basis vectors as

rows. In detail, the transform matrix is defined as

2j + 1)i 5 ,i=0
cm-zslwcosM WithSi:{\/; ! (2.7)

n 2 else
n

The scaling factors s; are chosen so that the Ly norm of each basis vector is 1 and
so the transform is orthonormal. The inverse transform can therefore be found by

simply transposing the transform matrix.

The DCT can be extended to multiple dimensions by transforming along each

dimension separately. For 2D data such as images, this means first transforming

26

2.4 TRANSFORM CODING

N A
SN AN

AN AR I AN AN AW AN A A WA
(VAR VAV AR VAV VAV AV RV

Figure 2.6: Discrete cosine transform basis vectors for n = 8.

each row of the image, then each column. The DCT is separable, so transforming
the columns first will give the same result.

The matrix form of the DCT immediately suggests a simple O(n?) implementation
based on a matrix-vector product. As the DCT is based on the DF'T, there also exists
an O(nlogn) algorithm analogous to the fast Fourier transform [CT65] for computing
the DCT. However, this still means that the required computation time grows more
than linearly with the data size. This is very inconvenient in many applications. In
practice, the DCT is therefore applied separately to fixed-size blocks of the input
data. In image compression, a block size of 8 x 8 pixels is most common. Some video
compression formats also allow other block sizes such as 4 x 4 or 16 x 16. Fig. 2.7
depicts the basis functions for a 2D 8 x 8 DCT. Fig. 2.8 shows an example of an
image and its DCT coefficients. It is clear to see that typically only the coefficients
in the upper left of each block have large values. These coefficients correspond to
the low-pass information in the image; the top left coefficient in each block is simply
a scaled average of all values in the block. This satisfies the first goal of transform
coding: Most of the “content” of the image has been contracted into few coefficients.
The second benefit stems from the fact that the human visual system is less sensitive
to high-frequency variations. This means that the high-pass coefficients can be stored
at a lower fidelity than the low-pass coefficients without significantly affecting the
perceived image quality. We will see an application of this idea in Section 2.5.1,

where the JPEG image compression standard is discussed.

The DCT has a few shortcomings with respect to data compression. One stems

from the blockwise application of the transform. If the transform coefficients are

27

2 DATA COMPRESSION FUNDAMENTALS

alnbllalak T
00 0 20K 0 00 o e
(A R W R R S
0 e e e R =
A e e e = =S
MEREEEE
HEEEEES

Figure 2.7: Basis functions of the 8 x 8 2D DCT, computed as the outer product of the 1D
basis vectors in Fig. 2.6. Black corresponds to a value of —0.25, white to 0.25.

compressed in a lossy way, then the block structure can become visible in the recon-
structed data. However, this is usually only a problem when a fairly low bit rate
is used. Additionally, there are transforms derived from the DCT which avoid this
effect: The lapped orthogonal transform (LOT) [MS89] and the lapped biorthogonal
transform (LBT) [Mal98] employ overlapping blocks. This makes it possible to use
basis functions which go to zero on the block boundaries. In turn, this avoids most
visible blocking artifacts; even at low bit rates, a smooth image is reconstructed. The
JPEG-XR image compression format [I[TU09] uses an LBT.

Another potential shortcoming of the DCT is the use of floating-point arithmetic.
Because of the inherent rounding errors, a truly lossless reconstruction is generally
not possible in practice. However, it is possible to construct “DCT-like” transforms
which use only integer arithmetic and which are invertible. Such transforms are used
e.g. in JPEG-XR [ITU09] as well as in the H.264 video compression standard [ITU03].

28

2.4 TRANSFORM CODING

Figure 2.8: Blockwise 8 x 8 DCT applied to a grayscale cutout of image “kodim21” taken
from the Kodak test image suite [FE99]. The block structure is clearly visible in the
transformed image, with the largest coefficients typically appearing to the upper left of
each block. The magnitude of the transform coefficients is exaggerated for clarity.

2.4.2 Discrete Wavelet Transform

Methods based on Fourier analysis, such as the DCT introduced in the previous
section, give excellent localization in frequency space: They tell us exactly which fre-
quencies occur in the data, which is very useful for data compression. However, they
give no spatial localization: They do not tell us where in the signal these frequen-
cies occur. Every DCT basis function has an impact on the whole domain (compare
Figs. 2.6, 2.7). This has implications for data compression. For example, a single
sharp edge in an image will require a large coefficient for some high-frequency basis
function. However, this basis function will introduce high-frequency content in the
whole image. Large values for some lower-frequency coefficients are required to can-
cel out these unwanted effects. This in turn impairs the compression rate.

This effect is one of the reasons why the DCT is applied in small blocks in practice.
However, there is a trade-off involved, as smaller blocks make the compression of
large homogeneous regions less effective. For this reason, some compression stan-
dards such as H.264 video compression [ITU03] allow varying block sizes, but this
significantly complicates the compression process.

A different approach is to use a set of basis functions which have local support. This

29

2 DATA COMPRESSION FUNDAMENTALS

circumvents the mentioned shortcoming of Fourier-based methods: A local feature
will only influence a fairly small number of basis functions.

One option for such a set of local basis functions, and certainly the most popular
one, is the multi-resolution analysis based on wavelets. The term “multi-resolution
analysis” in the context of wavelets was introduced in the late 1980s by Stéphane
Mallat [Mal89], though research on wavelets had been ongoing for several years before
that. There is a large amount of mathematical literature regarding wavelets, their
properties, and their construction. This thesis will only cover the basic idea behind
the wavelet multi-resolution analysis and how the discrete wavelet transform (DWT)
can be implemented in practice. For more mathematical background, the interested
reader is referred to the book by Jensen and Cour-Harbo [JCHO1] for an entry-level
introduction, or to Mallat’s book [Mal08] for a more extensive treatise.

Multi-Resolution Analysis

The idea behind the wavelet multi-resolution analysis is to build a basis out of trans-
lated and scaled versions of one underlying function called the mother wavelet p. The
mother wavelet is non-zero only in a small region, leading to the locality properties.
It is translated to cover the whole domain. It also covers only a small frequency
band, and is scaled to cover higher or lower frequencies. The family of translated
and scaled functions 1);; is generated from v according to

Yalt) =V2liy (2t —i), Licl (2.8)

Incrementing [halves the width of the resulting function, which thus corresponds to
a higher frequency band. Changing ¢ moves the function along the x axis. The size
of each step scales with the width of the function, defined by [. The normalization
factor V2 is chosen so that the L, norm stays constant.

The mother wavelet can be chosen so that the 1);; are pairwise orthogonal and thus
form a basis of some function space. Two functions f, g are called orthogonal if their
inner product (f,g) is zero, i.e. (f,g) = /f(x)g(x)dm = 0. However, representing
a function in this basis will generally require an infinite number of basis functions
;0 To represent a constant component, i.e. content of frequency zero, the wavelet

must be infinitely scaled. To address this, it is necessary to introduce an additional

30

2.4 TRANSFORM CODING

scaling function ¢ which complements the wavelet. It is scaled and translated in
the same way as the mother wavelet. While the wavelet corresponds to some kind
of difference between function values, the scaling functions represents an average.
The scaling function thus covers all frequencies below some limit where the mother
wavelet “takes over”. This avoids the need to scale the mother wavelet infinitely to
cover the lowest frequency content.

The interplay between wavelet and scaling function is easiest to understand with
a concrete example of a wavelet and the corresponding scaling function. For the
simplest and oldest wavelet, the Haar wavelet, the scaling function ¢ and wavelet

are defined as follows:

1 ,0<t<1
o(t) = (2.9)
0 ,else
-1 ,0<t<?
P(t) = 1 ,1<t<1 (2.10)
0 , else

Clearly, all the wavelet functions ;; are orthogonal. Additionally, the scaling func-
tions ¢;; at a fixed level [are orthogonal. The ¢;; are also orthogonal to the wavelet
functions v ;, k > [at the same and all finer levels.

Fig. 2.9 (left) schematically shows the decomposition of a signal into low-pass
components corresponding to the scaling function and high-pass components corre-
sponding to the wavelet. The signal sy, can be represented by the translated scaling
functions at some fine scale ly. It can then be split into the low-pass or approzimation
part s; corresponding to the scaling functions at I; = [y + 1 and the high-pass or
detail part dy corresponding to the wavelet at [;. The coarser signal s; can again be
decomposed into the even-coarser s, and the corresponding differences ds, etc. The
original signal can be reconstructed from the low-pass signal at some chosen scale
and the sequence of high-pass parts up to the finest level, e.g. from s; + d; or from
S3 + ds + dy + dy. Fig. 2.9 (right) shows one of the basis functions corresponding to
each signal component. The remaining basis functions are obtained by translation.

This successive decomposition is the core of the wavelet multi-resolution analysis.
The approximation sequence s;, [> 0 represents the signal at ever-coarser resolu-

tions. This property makes the wavelet transform interact very well with level-of-

31

2 DATA COMPRESSION FUNDAMENTALS

e A
L1 s1 c;rl ¢1,oﬂ— (0
I

1,0

5 &

$2,0 J:l— P20

— | 83 d; | —F— <l53,0—1:L P30 tl

Figure 2.9: Multi-resolution wavelet decomposition. Left: Schematic representation of
successively decomposing a signal into low-pass and high-pass components. A concrete
example signal is also shown. The signal sg is split into the low-pass part s; and the
high-pass part di. The coarser signal s; is further split into s and ds, and so on. Light
gray lines in the example signals delineate the support of individual basis functions. Right:
Some of the employed basis functions from the Haar wavelet.

detail methods, as the approximations created by the wavelet transform can be used
directly as the coarser levels of detail. The detail sequence d;, [> 1 provides the
complementary high-frequency information within different frequency bands.

Filter Banks

The iterative level-by-level structure of the DW'T sketched in Fig. 2.9 also leads to
practical implementations. What is still missing is a way to split a given discrete
signal into its approximation and detail parts. This can be achieved by applying a
specially designed linear filter bank consisting of a low-pass filter corresponding to
the scaling function and a high-pass filter corresponding to the wavelet. At first, this
seems to double the amount of data. However, for the filter banks corresponding to

32

2.4 TRANSFORM CODING

wavelet bases, it is sufficient to keep only every second element of the filter outputs.
Only the even-indexed low-pass coefficients and the odd-indexed high-pass coefficients
are required to reconstruct the input signal.
The inverse transform uses another set of filters. Zeros are inserted in place of
the missing coefficients. Then the appropriate filters are applied, and their outputs
are added. The forward transform is often called analysis, the inverse transform
synthesis.

The coefficients for the filters corresponding to the Haar wavelet (Eqgs. (2.9) and
(2.10)) are listed in Table 2.5. It can be seen that the low-pass filter is simply an
average of two neighboring values, while the high-pass filter gives half their difference.

Table 2.5: Filter coefficients for the Haar wavelet.

-1 0 1
analysis low-pass 0.5 0.5
analysis high-pass —0.5 0.5
synthesis low-pass 1.0 1.0
synthesis high-pass 1.0 -1.0

Table 2.6 shows a concrete example of the forward and inverse transform using the

Haar wavelet. The input data is low-pass and high-pass filtered using the analysis
filters. Only every second filter output is retained in the transformed data. In the
inverse transform, the low-pass and high-pass output are separated again. Both are
“upsampled” by inserting zeros and then filtered using the synthesis filters. The two
arrays of filter outputs are added to once again obtain the original values.
In this example, we performed many redundant computations: In the forward trans-
form, half of the computed filter outputs were discarded. Similarly, in the inverse
transform, half of the filter inputs were zero and thus had no impact on the result.
In practice, these computations are skipped for greater efficiency.

While the Haar wavelet is easy to understand, it does not achieve very good sepa-
ration of low-frequency and high-frequency components. One way to look at this is
in frequency space: The Haar scaling function amounts to a box filter, whose coun-

terpart in frequency space is a sinc function. The sinc is a poor low-pass filter, so the

33

2 DATA COMPRESSION FUNDAMENTALS

Table 2.6: Example of computing the filter-based DW'T using the Haar wavelet.

input data 1.0 2.0 3.0 3.0 1.0 4.0 5.0 3.0
low-pass filtered 1.5 3.0 2.5 4.0

high-pass filtered 0.5 0.0 1.5 —1.0
transformed 1.5 3.0 25 4.0 0.5 0.0 1.5 -1.0
upsampled low-pass 1.5 3.0 2.5 4.0

filtered 1.5 1.5 3.0 3.0 25 25 4.0 4.0
upsampled high-pass 0.5 0.0 1.5 —-1.0
filtered -05 05 00 00 -15 1.5 1.0 -1.0
reconstructed 1.0 2.0 3.0 3.0 1.0 4.0 5.0 3.0

Haar low-pass coefficients will actually contain a lot of high-frequency information

and vice versa. This results in poor compression performance. Fortunately, many

wavelet filter banks have been developed which provide better performance for various

purposes. In the following, we will look at some other wavelets with more favorable

properties. One popular class of wavelets are the Daubechies wavelets, named after
their creator Ingrid Daubechies [Dau88]. The filter coefficients for the Daubechies4

wavelet are listed in Table 2.7. In contrast to the Haar wavelet, there exists no closed-

form expression for the Daubechiesd scaling function and mother wavelet; they are

defined only implicitly by recursive application of the filters. However, it can be

shown that the same orthogonality relations between the basis functions still hold.

Table 2.7: Approximate filter coefficients for the Daubechies4 wavelet.

-2 -1 0 1 2
analysis low-pass 0.3415064 0.5915064 0.1584937 —0.091506
analysis high-pass —0.091506 —0.1584937 0.5915064 —0.3415064
synthesis low-pass —0.183012 0.3169873 1.183013 0.6830127
synthesis high-pass —0.6830127 1.183013 —0.3169873 —0.183012

34

2.4 TRANSFORM CODING

It is worth noting that the Haar and Daubechies wavelets, as well as any other
orthogonal wavelets, are fully defined by any one of the four filters. The analysis
high-pass filter can be built from the analysis low-pass filter by reversing the order
of the coefficients and negating all coefficients with an odd index. Similarly, the
synthesis high-pass filter can be built from the analysis low-pass filter, up to a scaling
factor, by negating all odd coefficients without changing their order. The synthesis
low-pass filter can be constructed from the analysis high-pass filter in the same way.

Boundary Handling

In the DWT example in Table 2.6, some elements of the filtered sequences are missing.
They could not be computed because the corresponding filter operation referenced
elements outside of the input sequence. Conveniently, the missing values would have
been discarded in the following subsampling step anyway. However, this only holds
for the Haar wavelet. All other wavelets use filters of larger support, and thus some
of the “uncomputable” elements will be required. Thus, it becomes necessary to
somehow substitute the missing filter inputs. The simplest way is to assume all out-
of-bounds values to be equal to zero, or to the last existing element. However, this
will result in additional non-zero filter outputs which must be retained to ensure cor-
rect reconstruction. This is obviously very undesirable during data compression. A
different option to supply the missing values is periodic extension. This will result in
a periodic filter output and thus avoids the need to retain any extra values. However,
it will result in an artificial edge between the last and the first signal value where
instantiations of the signal are joined. This is also unfavorable for compression. It
would be better if we could use symmetric extension like it is done in the DCT. For
this to work, the basis functions and thus the filters need to be symmetric. Un-
fortunately, it can be shown that orthogonal wavelets always have an even number
of non-zero filter coefficients and so can never be symmetric. To create symmetric
wavelets, it is necessary to relax the orthogonality constraint, i.e. the simple rela-
tion between the low-pass and the high-pass filter. The resulting wavelets are called
biorthogonal, as only a mutual orthogonality between the analysis and the synthesis
filters remains. The most popular biorthogonal wavelets are taken from a family of
wavelets called CDF after its creators Cohen, Daubechies, and Feauveau [CDF92].

35

2 DATA COMPRESSION FUNDAMENTALS

In particular, the CDF 5/3 and CDF 9/7 wavelets are commonly used, e.g. in the
JPEG2000 standard (see Section 2.5.2). The numbers refer to the number of filter
coefficients in the analysis low-pass and high-pass filters. The coefficients for the
CDF 5/3 and CDF 9/7 filters are listed in Tables 2.8 and 2.9, respectively. Both are
symmetric and thus allow for boundary handling via symmetric extension. This is one
of the reasons why these wavelets are among the most popular for data compression.

Table 2.8: Filter coefficients for the CDF 5/3 wavelet.

0 +1 +2

analysis low-pass 0.75 0.25 —0.125
analysis high-pass 0.5 —0.25
synthesis low-pass 1.0 0.5
synthesis high-pass 1.5 =05 —0.25

Table 2.9: Approximate filter coefficients for the CDF 9/7 wavelet.

0 +1 +2 +3 +4

analysis low-pass 0.6029490 0.2668641 —0.0782233 —0.0168641 0.0267488
analysis high-pass 0.5575435 —0.2956359 —0.0287718 0.0456359

synthesis low-pass 1.1150871 0.5912718 —0.0575435 —0.0912718
synthesis high-pass 1.2058980 —0.5337281 —0.1564465 0.0337282 0.0534975

Multiple Dimensions

So far, we have only looked at the DWT as a one-dimensional transform. In multiple
dimensions, the DW'T can be applied to each dimension individually, similar to the
DCT. The DWT is separable in the sense that, apart from possible rounding errors, it
does not matter in which order the individual 1D DWTs are applied. An example of a
2D DWT applied to an image is shown in Fig. 2.10. The image quadrant labeled “LL"
is the low-pass part in both dimensions, and therefore is just a lower-resolution version

of the input image. The “LH” and “HL” quadrants contain high-pass information

36

2.4 TRANSFORM CODING

in one dimension, i.e. mostly horizontal and vertical edges, respectively. The “HH”
band contains high-frequency content in both dimensions.

Figure 2.10: One-level DWT using the CDF 9/7 wavelet applied to a grayscale cutout of
image “kodim21” taken from the Kodak test image suite [FE99]. The image is decomposed
into four subbands named after their low-/high-pass content: “LL” (upper left), “HL”
(upper right), “LH” (lower left), and “HH” (lower right). The magnitude of the coefficients
in the three high-pass subbands is exaggerated for clarity.

Normalization

It is worth noting that the scaling of the analysis filter coefficients can in practice
be chosen arbitrarily: If all the analysis low-pass coefficients are multiplied by some
constant a > 0, then the synthesis low-pass coefficients must be divided by a so that
synthesis will remain the inverse of analysis. The same is valid for the high-pass
coefficients. There are multiple conventions for scaling or “normalizing” the wavelet
filter coefficients.

In math textbooks, the wavelet filters are most commonly normalized to be or-
thonormal, i.e. to preserve energy (compare the normalization factor in Eq. (2.8)).
This means that the sum of the squares of the signal values will not be changed by
the transform. To achieve this normalization, all analysis filter values listed in Ta-
bles 2.5, 2.7, 2.8, and 2.9 must be multiplied by v/2, the synthesis values accordingly
divided by v/2. A side-effect of this normalization is that no additional scaling is

37

2 DATA COMPRESSION FUNDAMENTALS

necessary when constructing the synthesis filter coefficients from the analysis filter
coefficients.

For multi-resolution applications, however, it is typically most useful to normalize
the analysis filters for unit nominal gain. The (nominal) DC gain ga. and (nominal)
Nyquist gain gnyq of a filter kernel x = (x_,,, ..., zo,...,x,) are defined as

n

gae(®) = D T, Gaa(x)= D (=D'm (2.11)
The low-pass analysis filter is normalized for unit DC gain, the high-pass filter for
unit Nyquist gain. This is the convention used here; the same convention is used
in the JPEG2000 image compression format [TMO01]. Note that the DC gain of the
high-pass filter and the Nyquist gain of the low-pass filter are always zero.
For a constant signal, the low-pass coefficients will then be equal to the signal value,
while the high-pass coefficients will be zero. Conversely, for a signal alternating be-
tween 1 and —1, all high-pass coefficients will be equal to 1, while the low-pass coeffi-
cients will be zero. This is a useful property for multi-resolution image applications,
as the low-pass coefficients can be interpreted directly as a lower-resolution version
of the original image. Additionally, the range of values is expected to be preserved,
which is often convenient. However, this is not guaranteed; some combinations of

input values may still result in a range expansion.

Lifting

The filter bank implementation of the DWT is based on floating-point arithmetic. As
such, it is subject to rounding errors and is thus not admissible for lossless compres-
sion. Fortunately, there is a second, completely different way to implement wavelets
called the lifting scheme [Swe98|. Lifting allows for an integer implementation of
the DWT, and has several other benefits: First, a lifting implementation needs only
about half as many arithmetic operations compared to an implementation based on
filter banks. Second, lifting makes the design of new wavelets straightforward, even
on domains which are not Cartesian grids. Due to this property, the lifting-based
DWT is also called the second-generation wavelet transform. For data compression,

however, the most important factor is that it allows an integer-based implementa-

38

2.4 TRANSFORM CODING

tion. This enables a truly reversible transform in practice, which is a prerequisite for

lossless compression.

In the lifting scheme, the input data [z;] is first split into its even and odd halves:
S, =g d; := T (2.12)

Here, the even part is called s for “signal”, the odd part d for “detail” because
their values are updated by the transformation process to correspond to the low-
pass and high-pass part, respectively. The transform is performed in a number of
so-called lifting steps. Each step either changes the odd elements based on their even
neighbors, or changes the even elements based on their odd neighbors. The former
is commonly called a prediction step, the latter an update step. Changing a data
element is restricted to adding or subtracting a weighted sum of the neighboring
coefficients. Finally, an optional scaling step may be applied. Fig. 2.11 shows the
schematic structure of the lifting scheme including one prediction (P) and one update

(U) operation.

%Iit |Eerge Xi

+ -
d' T~ d d ~ g

i i i i

Figure 2.11: Schematic structure of the lifting scheme with one prediction (P) and one
update (U) step. Left: Forward transform. Right: Inverse transform obtained by reversing
the order of the prediction and update steps and exchanging addition with subtraction.

Every transform based on the lifting scheme is trivially invertible. The inverse
transform can be found by simply reversing the order of the lifting steps and swapping
pluses and minuses, as shown in Fig. 2.11 right. It is easy to see that this exactly
reverts all changes from the forward transform.

For example, the CDF 5/3 wavelet (filter coefficients in Table 2.8) can be repre-

39

2 DATA COMPRESSION FUNDAMENTALS

sented by one prediction and one update step:

d =d — 5+ Sip
(2 7 2
di_y + d;
si= s+ f (2.13)

It can be easily verified that, up to a scaling factor, this corresponds to the CDF 5/3
filters listed in Table 2.8. Table 2.10 shows an example of applying the CDF 5/3
wavelet using lifting steps. The example demonstrates that the lifting steps can be
performed in-place, in contrast to the filter-based DWT implementation. However,
this results in interleaved low-pass and high-pass coefficients. If a subband order as
in Fig. 2.10 is desired, then an additional reordering step is necessary.

Table 2.10: Example of computing the lifting-based DWT in-place using the CDF 5/3
wavelet. Gray values are created by mirrored extension. The signal values are updated
in-place; updated values are indicated in bold. The prediction and update steps produce
the low-pass and high-pass values in interleaved order.

input data 1.0 2.0 3.0 3.0 1.0 4.0 5.0 3.0
predict 1.0 0.0 3.0 1.0 1.0 1.0 5.0 —2.0
update 1.0 00 3.25 1.0 1.5 1.0 4.75 =20
undo update 1.0 00 3.0 10 1.0 10 5.0 =20
undo predict 1.0 2.0 3.0 3.0 1.0 4.0 5.0 3.0

Every wavelet filter bank can be decomposed into a sequence of lifting steps [DS98].
For example, the CDF 9/7 filters can be expressed by the four lifting steps

df = di + a(s; + ;1)
= 4 B)
di = d +~(s] + s7,1)

where a = —1.58613432, # ~ —0.05298012, v ~ 0.88291108, ¢ ~ 0.44350685. Again,

40

2.4 TRANSFORM CODING

it is straightforward to verify that, up to a scaling factor, this is equivalent to the
CDF 9/7 filters listed in Table 2.9.

Integer Implementation

So far, the lifting steps still make use of floating-point numbers: Even if the inputs
are integers, the outputs will generally not be whole numbers. By introducing appro-
priate rounding in the prediction and update operations, the output can be forced to
integers. Somewhat surprisingly, this can be done while still preserving the invert-
ibility of the transform. For the CDF 5/3 wavelet, the lifting steps (Eq. (2.13)) can
be adapted as follows:

2

di_1 + d;
s; =8, + {TJ (2.15)

di —_ d/ o \‘8; + 8;+1J

This transform is often used for lossless compression, e.g. in JPEG2000 (see Sec-
tion 2.5.2). Similarly, an integer version of the CDF 9/7 filters can be constructed.
However, this is not commonly used for the following reason: The rounding operations
effectively change the basis functions. Thus, the carefully constructed properties of
the wavelet basis are slightly deteriorated. Since the lifting implementation of the
CDF 9/7 wavelet requires four lifting steps, there are more rounding operations and
thus a larger deterioration. This negates any advantage of the larger filters.

2.4.3 Color Space Transforms

Apart from the two spatial dimensions which the DCT and DWT exploit, images
also have a color dimension. Digital images typically use the color channels red,
green, and blue (RGB), representing different wavelengths of light, to encode color.
So there are only three samples along this third dimension. This is sufficient because
the human eye can only differentiate between three ranges of wavelengths, which
roughly correspond to the RGB channels.

There is typically a significant amount of correlation between the RGB channels.

Fig. 2.12 top and middle shows an image and its red, green, and blue channels

41

2 DATA COMPRESSION FUNDAMENTALS

Figure 2.12: Top: Image “kodim13” taken from the Kodak test image suite [FE99]. Middle:
RGB channels shown separately. Bottom: YCoCg channels shown separately.

42

2.4 TRANSFORM CODING

displayed separately. Clearly, the individual color channels look much alike. This
correlation can be exploited by converting the RGB values to another color space.
Many different color spaces exist for various purposes. Most useful for image com-
pression are color spaces which separate the image into luma (brightness) and chroma
(color) components. Some of the most common examples are YCbCr (“luma, chroma
blue, chroma red”) and YCoCg (“luma, chroma orange, chroma green”) [MS03a]. The
transformation between RGB and YCoCg is defined as follows:

Y 1/4 12 1/4\ (R R 1 1 -1\ [V
Col=| 172 o0 —12||G| , |Gc|=|1 o 1]]|co| (216
Cy ~1/4 1/2 -1/4) \B B 1 -1 -1/ \cyg

YCoCg has been shown to provide very good decorrelation for many images. It is also
computationally very simple, requiring only integer additions and shifts. A downside
is that the transformation defined above is not reversible when using integer values.
This means that it can not be used for lossless compression. However, the transform
can be made reversible with a simple change which basically amounts to doubling the
values of Co and Cyg in Eq. (2.16) before rounding [MS03b]. The modified transform
is known as YCoCg-R. Note that this increases the dynamic range of the Co and Cg
channels by one bit. That is, for a 3 x 8 bit RGB image, 8 + 9 + 9 bits per pixel are
required to store its YCoCg-R representation.

Fig. 2.12 bottom shows the Y, Co, and Cg channels of the image in Fig. 2.12
top. While some correlation between the channels is still visible, the amount is
clearly much smaller than with the RGB channels. Most of the energy has been
concentrated into the luma channel; the chroma channels have much lower contrast
and thus are more amenable to compression. An additional benefit of this color space
transform stems from the fact that the human eye has a much lower resolution for
color than for brightness. This means that the color information can be stored at a

lower spatial resolution with only a small effect on the visual quality.

43

2 DATA COMPRESSION FUNDAMENTALS

2.5 Image Compression in Practice

The previous sections have introduced many basic data compression techniques. To
see how they can be combined in practice to form effective data compression sys-
tems, we will now look at two popular standards for image compression, JPEG and
JPEG2000. This section will focus on the high-level picture and the justification for
the choices made in JPEG and JPEG2000. It will not cover all the details necessary
for an actual implementation. The books by Pennebaker and Mitchell [PM93] and by
Taubman and Marcellin [TMO01] cover the JPEG and JPEG2000 standards in greater
detail.

2.5.1 JPEG

The JPEG standard [ITU92] was first published in 1992 as the first ever standard for
the compression of photographic images. Today, it is still the most popular format
for this application, even though many alternatives exist. This section explains the
most common way in which JPEG compression is applied. It does not attempt to
cover all aspects of the JPEG standard.

JPEG processes an input image in several stages, most of which have been introduced
in similar form in the previous sections. The stages of JPEG encoding are the

following;:

1. Color space transform. The first step in JPEG encoding is transform-
ing the input RGB image into the YCbCr color space. This is a “luma +
2x chroma” color space similar to the YCoCg color space introduced in Sec-
tion 2.4.3. Strictly speaking, the color space transform is not part of the JPEG
standard; JPEG just assumes that its input is given in the YCbCr color space.

2. Chroma subsampling. As an optional second step, the resolution of the two
chroma channels can be reduced. The rationale for this is that the human
visual system is less sensitive to color than to brightness. Most commonly, the
resolution of the chroma channels is halved in each dimension. This is called
4:2:0 sampling in JPEG. The first number refers to the number of reference
luma samples in one row of pixels. The other two numbers indicate the number

of chroma samples in two rows of pixels—in this case, 2 in the first row and 0 in

44

2.5 IMAGE COMPRESSION IN PRACTICE

the second, resulting in a factor 2 reduction in each dimension. Other possible
chroma samplings are 4:4:4 (no subsampling), 4:2:2 (factor 2 subsampling in x
direction, no subsampling in y direction), or 4:1:0 (factor 4 in x, factor 2 in y).
In the following steps, each channel is processed separately.

. DCT. The data is now split into blocks of 8 x 8 samples. If chroma subsam-
pling was applied, then luma and chroma blocks cover different-sized spatial
regions. Each block is transformed using the DCT, described in Section 2.4.1.
This results in a structure similar to the one shown in Fig. 2.8 where most of
the information is contracted into the top left coefficient in each block. As this
coefficient represents the average value in the block, it is called the DC coeffi-
cient, after the term “direct current”. All other coefficients are called AC for

“alternating current”.

. Quantization. The DCT coefficients are quantized using a uniform scalar
quantizer. This is the stage where most of the information loss occurs. Different
JPEG quality levels are realized by choosing different quantization step sizes.
A floating-point coefficient z; is quantized to an integer ¢; according to ¢; =
round(x;/A), where the quantization step A is an integer between 1 and 255.
The quantization step can be chosen differently for each of the 8 x 8 coefficients
in a block. Typically, the quantization steps get larger toward the lower right of
the block, so that higher frequencies are represented more coarsely than lower

frequencies.

. Coding. Finally, the quantized coefficients are encoded using a somewhat
peculiar scheme. The DC and AC coefficients are handled separately. Due to
the quantization, many of the AC coefficients are expected to be zero. A run-
length coding step makes use of this. The AC coefficients are arranged along
a zig-zag order as shown in Fig. 2.13. This roughly orders the coefficients by
frequency. The 63 coefficients are replaced by a variable-length list of pairs
(2, v) with one entry for each non-zero coefficient. The z value is the number
of zeros that preceded the non-zero coefficient in the input stream, v is the
value of the coefficient. An obvious final step would be entropy coding of the
remaining values. However, the number of distinct values can be quite large.

To reduce the number of input symbols to the entropy coder and thus achieve a

45

2 DATA COMPRESSION FUNDAMENTALS

Figure 2.13: Zig-zag order used in JPEG for the encoding of AC coefficients.

simpler decoder, JPEG represents the coefficient values vy, in a so-called category
code. Each vy, is replaced by a pair (¢, ug), where ¢ is the length of the binary
representation of vy and wuy is this ¢,-bit binary representation. This results in
a list of triples (zy, ¢k, ug). The 2z, and ¢ are appended and used as the input
symbols to a Huffman coder. Both are limited to 4 bits each, so this effectively
limits the number of distinct symbols the Huffman coder has to handle. The
uy, are not further encoded.

The DC coefficients are averages of the 8 x 8 blocks, and so all DC coefficients
together can be seen as a low-resolution version of the original image. For
many images, there will still be correlation between neighboring DC values. To
exploit this correlation, JPEG applies another prediction step before the final
encoding. All DC values are arranged in scan-line order, and each is predicted
by its predecessor. In this way, except for the very first value, only differences
need to be stored, which tend to be much smaller. The differences are converted
to a category code similar to the AC values. Again, the length values ¢, are

Huffman encoded, while the amplitudes u; are stored directly.

The JPEG standard has been extremely successful. More than two decades after
its publication, it remains by far the most widely used format for the compression of
photographic images. However, it does have several shortcomings. One stems from

the blockwise application of the DCT. At very low bit rates, typically under 1 bit per

46

2.5 IMAGE COMPRESSION IN PRACTICE

pixel, the block structure becomes visible. This results in very noticeable artifacts
and correspondingly poor visual quality. The second major shortcoming of JPEG is
that it is fairly inflexible. That is, it is generally not possible to partially decode a
compressed JPEG image, e.g. to extract only a low-resolution or low-fidelity version
of the image, without decoding the full image first. This lack of flexibility becomes
more apparent when comparing JPEG to JPEG2000, which is discussed in the next

section.

2.5.2 JPEG2000

JPEG2000 [ITU02] was developed with the intention of replacing JPEG as the stan-
dard way to compress and store digital images. It is based on a DWT instead of
JPEG’s blockwise DCT and thus avoids the blocking artifacts at low bit rates. It
also offers many improvements in scalability. A JPEG2000-compressed image can be
decoded incrementally in resolution or in quality. That is, it is possible to extract
a lower-resolution or lower-quality image from a JPEG2000 bit stream which also
contains the high-resolution and high-quality data. It is also possible to decode only
some spatial regions of an image, or only individual image components, i.e. color
channels. The scalability modes can also be mixed. The resolution scalability is
achieved naturally through the multiscale nature of the DWT. The quality and spa-
tial scalability are due to JPEG2000’s sophisticated entropy coding stage which will
be described later in this section.

JPEG2000 also allows lossless compression. This feature can be combined with the
scalability options, so that a single JPEG2000 image can offer a progression from
lossy to lossless reconstruction.

In addition to the scalability features, JPEG2000 was supposed to achieve improved
image quality at the same compression rate compared to JPEG. However, whether
this goal was fully reached is questionable. When image quality is measured in terms
of root-mean-square (RMS) error, JPEG2000 consistently outperforms JPEG by a
large margin. However, the RMS error is a fairly poor indicator of visual quality.
With more sophisticated metrics which try to model visual quality as experienced by
human observers, the benefit of JPEG2000 over JPEG is less clear. In fact, the con-
sensus seems to be that JPEG2000 consistently achieves superior quality compared

47

2 DATA COMPRESSION FUNDAMENTALS

to JPEG only at low to medium bit rates; at higher bit rates, often JPEG actually
performs slightly better [ECWO04]. This is one of the reasons why JPEG2000 has not
replaced JPEG in practice, along with the higher implementation complexity and
lower compression/decompression throughput. So while the JPEG2000 standard can
be considered a failure in the sense that is has not been widely adopted, many of the
employed concepts and methods are interesting and useful. The following paragraphs
describe the major components of a JPEG2000 compressor.

Color Space Transform

Similar to JPEG, JPEG2000 encoding starts with a color space transform. JPEG2000
defines two color transforms. One is reversible, i.e. based on integer arithmetic, and
applicable for the lossless compression mode. The other is based on floating-point
arithmetic and thus irreversible because of rounding errors, but results in slightly

better compression rates.

DWT

The second step is applying a multi-level DWT; typically, about five DW'T levels are
used. Again, two different transforms are defined: One is based on an integer version
of the CDF 5/3 wavelet, and suitable for lossless compression. The second uses the
CDF 9/7 wavelet and is not reversible, but gives better compression rates.

Quantization

The DWT coefficients are quantized using a uniform scalar dead-zone quantizer where
the zero bin is twice as large as any other bin. A floating-point coefficient x; is
quantized to an integer ¢; according to ¢; = sign(x;) ||z;|/A]. Due to the way the
DWT coefficients are normalized in JPEG2000 (see Table 2.9), the quantization
step needs to be adjusted for different DWT levels. Compared to an orthonormal
transform, the analysis coefficients are scaled by a factor of 1/4/2, so the quantization
steps needs to be scaled by the same factor per 1D DWT. For each successive 2D
DWT level, the quantization step should thus be halved.

For lossless compression, the quantization step is set to 1 for all levels. Since the

48

2.5 IMAGE COMPRESSION IN PRACTICE

DWT coefficients are already integers in this case, quantization is thereby effectively
skipped.

Entropy Coding

JPEG2000 uses a sophisticated entropy coding scheme called embedded block coding
with optimal truncation (EBCOT). EBCOT individually encodes blocks of DWT co-
efficients, typically of size 64 x 64 or 32 x 32, called code blocks. This enables the
spatial scalability feature of JPEG2000, as the code blocks can be decoded individ-
ually. Fach code block is compressed as a sequence of bit planes. This essentially
means that the most significant bit of each coefficient is encoded first, then the second
most significant bit and so on. In this way, any prefix of the compressed bit stream
can be decoded to get a low fidelity reconstruction, equivalent to using a coarser
quantization step. This gives rise to JPEG2000’s quality scalability.

The encoded bit planes or quality layers of all code blocks can be interleaved arbi-
trarily. Different orderings result in different progressions of resolution, quality, or
spatial location. In the final combined bit stream, each block is preceded by a marker
which identifies its contribution.

The actual entropy coding is performed by an adaptive binary arithmetic coder.
However, straightforward arithmetic coding of the individual bits would be very
inefficient. There exists a significant amount of correlation between the bits in one
coefficient, and also between coefficients in a local neighborhood. To make use of
these correlations, the arithmetic coder uses many different contexts. In the terms
of Section 2.1.4, each context corresponds to a separate symbol frequency table. For
each bit to be encoded, the context is chosen based on previously encoded bits of the
same coefficient as well as the values of neighboring coefficients. The goal is that each
context will closely model the probability distribution for one particular situation,
so that arithmetic coding will be maximally effective.

JPEG2000 groups the bits of each coefficient into sign, significance, and magnitude
refinement, and employs a number of contexts for each group. The significance and
magnitude refinement bits taken together make up the magnitude of the coefficient.
The significance part comprises the leading zero bits up to and including the first non-

zero bit. The magnitude refinement part then contains the remaining bits. During

49

2 DATA COMPRESSION FUNDAMENTALS

encoding, a coefficient is called significant if all its significance bits have already been
visited, i.e. the first non-zero bit has been encountered. Fig. 2.14 demonstrates the
decomposition into groups, and the order in which the individual bits are processed.

G0 GG e

H

v
v
v

oo
A 4
]
A\ 4
\ 4
A A
\ 4

— Hil—{ - =.—| magnitude
'D 'D , ,. | _,D refinement

2 -14 0 3 -1 6

Figure 2.14: Bit plane scan order used in JPEG2000. Each box corresponds to one bit;
each column represents a binary number in sign-magnitude representation. The bits of each
number are grouped into three categories: the sign bit, the significance bits which are the
leading zero bits up to and including the first non-zero bit, and the remaining magnitude
refinement bits. The black arrows indicate the order in which the bits are encoded. The
magnitude bits are processed in decreasing order of significance. The sign bit of each
number is inserted when the first non-zero magnitude bit is encountered.

For significance bits, the context is chosen based on the significance of the eight
immediate neighbors of the current coefficient. The assumption is that a coefficient
is more likely to become significant if many of its neighbors are already significant.
The context selection also takes into account to which DWT subband the current
coefficient belongs (compare Fig. 2.10). In an HL subband, i.e. high-pass in x di-
rection, large coefficients usually result from vertical edges. The context selection
therefore gives more weight to the vertical neighbors. Conversely, in an LH subband,
the horizontal neighbors are assigned greater weight. In HH subbands, the diagonal
neighbors are most strongly weighted. In total, JPEG2000 uses nine contexts for
significance coding, representing different “predictions” for the value of the bit to be
encoded.

Sign coding is based on similar principles. One out of five contexts is chosen based
on the signs of the current coefficient’s four immediate neighbors. Neighbors which

are not significant yet, i.e. whose sign is not known yet, are not useful for the purpose

50

2.5 IMAGE COMPRESSION IN PRACTICE

of context selection and are ignored.

Finally, there are three contexts for coding magnitude refinement bits. Two are
used only for the first magnitude refinement bit of each coefficient. The first is used
if any of the coefficient’s eight neighbors is already significant; the purpose is to make
use of any correlations between the magnitudes of neighboring coefficients. If none of
the neighbors are significant, the second context is used. For all remaining magnitude
refinement bits, there exist little or no useful correlations, so they are all coded in
the third and final context.

51

GPU Data Compression

There are two main criteria to quantify the performance of a compression system. The
first is the compression ratio, or “quality per bit” for lossy compressors. The second
is the throughput, i.e. how much data can be compressed or decompressed in a given
amount of time. Depending on the application at hand, one can be more important
than the other. For example, in a long-term storage scenario where the stored data
is accessed infrequently, a high throughput may not be critical. On the other hand,
in interactive applications, particularly the decompression throughput is often more
important than the compression ratio. Here, the time required for “compressed
transfer + decompression” must be smaller than the time for “uncompressed transfer”
for the compression to be beneficial. If the data may be modified and needs to be
stored again, an analogous argument applies to the compression throughput as well.
Of course, to handle very large data sets interactively, a high compression ratio is

critical as well.

The goal of this chapter is to develop a compression system which is suitable for
interactive applications. The input data will be given on 2D or 3D Cartesian grids,
such as images and height fields (see Chapter 4) or fluid simulation results (see Chap-
ters 5 and 6). Both integer-valued and floating-point data should be supported. The
compression ratio should be high enough so that very large data sets can be han-
dled with limited memory. On the other hand, both compression and decompression
should be fast enough to outperform a hard drive in terms of throughput.

Some existing compression standards such as JPEG2000 are versatile enough to

53

3 GPU Data COMPRESSION

handle integer and floating-point data in 2D and 3D, and they achieve state-of-the-art
compression ratios. However, even highly optimized CPU implementations of com-
mon image compression standards do not attain the necessary throughput. Achieving
significantly higher throughput on the same hardware without sacrificing compres-
sion ratio seems impossible. Therefore, GPUs become an attractive option because
of their massive computational power and high memory bandwidth. However, this
power can only be realized effectively with data-parallel algorithms. This means that
many small, similar, independent tasks are required.

Unfortunately, many data compression algorithms are inherently sequential, or at
least typically formulated in a sequential way (see Chapter 2). So at first glance,
data compression seems to be a poor fit for GPUs. In the course of this chapter, I
will demonstrate that GPUs can be used effectively for data compression. I have im-
plemented the presented algorithms in the CUDACOMPRESS library using NVIDIA’s
CUDA API. The source code of CUDACOMPRESS is publicly available under a per-
missive license [Trel3].

For efficient GPU compression, data-parallel formulations of a set of data compres-
sion algorithms are required. A straightforward technique to achieve parallelism is
blocking: Partition the data into blocks, and compress each block separately. This
allows all blocks to be handled independently and thus in parallel. However, it will
also impact the compression ratio. First, any correlation or redundancy between
blocks will be missed with this approach. Second, the offset of each block inside the
compressed data stream needs to be stored, so that each decoder thread can jump
directly to its segment of data. Thus, there is a trade-off in choosing the block size.
Smaller block sizes will lead to more parallelism and therefore potentially better per-
formance on a GPU. On the other hand, they will generally also result in a worse
compression ratio. So blocking is used only when there is no other way to expose
parallelism.

There are several libraries which provide “parallel primitives”, i.e. operations which
can be used as building blocks for data-parallel algorithms. Examples of such libraries
include CUDPP [HOS*13] and thrust [HB13]. A surprisingly versatile operation
offered by such libraries is the parallel prefix sum or scan. It computes for each
element in an array the sum of all preceding elements. This can often be used

to parallelize seemingly sequential algorithms, and is employed multiple times in

54

3.1 RELATED WORK

CUDACOMPRESS. Another common operation is parallel reduction, i.e. finding the
sum or the maximum of the elements of an array.

In addition to the use of data-parallel algorithms, great care must be taken in the
implementation to achieve good performance on GPUs. For example, the peak mem-
ory bandwidth can only be achieved if neighboring threads always access neighboring
memory addresses simultaneously. The CUDA C Programming Guide [NVI13b] and
CUDA C Best Practices Guide [NVI13a] by NVIDIA contain detailed descriptions
of current GPU architectures along with many performance-related programming
guidelines.

The remainder of this chapter is dedicated to the development and implementation
of a GPU compression library which is efficient enough for interactive applications
while still achieving the compression ratios necessary for handling very large data
sets. The next section analyzes previous work on throughput-oriented applications
of data compression. The goal of the following Section 3.2 is to find a combination
of compression algorithms that fits well to the data-parallel GPU architecture while
still achieving a competitive compression ratio. Afterwards, I describe efficient GPU
implementations of the individual compression stages in detail in Sections 3.3, 3.4,
and 3.5. Finally, in Section 3.6, I introduce the API of the CUDACOMPRESS library

and demonstrate its use with some examples.

3.1 Related Work

In the following, I review the most popular compression options in applications where
throughput is critical. Some of these works make use of the GPU, others use only
the CPU.

First of all, there are some throughput-oriented CPU implementations of general-
purpose dictionary methods which achieve a very high throughput [Obell, Col13].
Consequently, they are suitable for interactive applications and have been applied e.g.
in the context of volume rendering [FSK13]. However, being lossless, they typically
achieve only modest compression ratios. Floating-point data in particular tends to
compress very poorly with dictionary-based methods. For better compression, there
are some lossless compression schemes specialized to floating-point data [BR09, LI06].

A GPU implementation of these methods achieves very high throughput [OB11].

55

3 GPU Data COMPRESSION

However, the achieved compression ratio is still quite moderate.

Several previous works have implemented general-purpose compression algorithms
on GPUs with the goal of achieving higher throughput than is possible on CPUs.
Ozsoy et al. [OS11, OSC12] have implemented the LZSS algorithm on the GPU using
CUDA. They achieve speedup factors of 2-3 compared to a CPU implementation for
both encoding and decoding. However, this still does not result in sufficient through-
put for interactive applications. There is also a significant impact on the compression
ratio compared to the CPU version due to the use of blocking. Patel et al. [PZM*12]
have developed a bzip2-like compression algorithm for GPUs using CUDA, includ-
ing a Huffman encoder and decoder. However, their implementation achieves lower
performance than the reference CPU version. Particularly the Huffman tree design
performs poorly on the GPU due to a lack of parallelism in the algorithm. Overall, it
can be said that the advantages of using GPUs for general-purpose data compression
remain questionable.

However, GPUs have also been employed for efficient entropy coding. For a given
Huffman table, Balevic [Bal09] has shown the efficient GPU realization of a Huffman
encoder, but has not addressed fast decoding. Fraedrich et al. [FBS07] have pre-
sented a GPU Huffman decoder. Olano et al. [OBGB11] have introduced a texture
compression scheme which includes arithmetic decoding on the GPU. In all cases,
very significant speedups could be achieved over comparable CPU implementations.

There are many application areas for which specialized compression schemes have
been developed. Volume rendering [EHK*06] is an application where routinely very
large amounts of data must be handled interactively. Consequently, using data com-
pression is a natural choice. The recent survey by Balsa Rodriguez et al. [BGI*13]
provides a comprehensive treatment of compression techniques used in the context
of volume visualization. In particular, transform coding has been applied to vol-
ume rendering using both the DCT [LMC02, YL95] and the DWT [GS01, GWGS02,
NS01, Wes94].

Another popular compression technique for volume rendering is vector quantization.
In vector quantization, a data set is represented by a small codebook of representative
values and, for each data point, an index into this codebook. This allows for very
fast decoding on the GPU via a single indirection [FMA05, SW03]. However, the
construction of a good codebook is extremely time-consuming, and it is difficult to

56

3.1 RELATED WORK

satisfy the very high quality requirements of some applications (see e.g. Chapter 6).

Throughput-oriented compression techniques are also common for texturing in real-
time graphics. Some special fixed-rate compression formats such as S3TC [INHO3]
are implemented directly in graphics hardware. These formats are popular since they
enable hardware-supported random access on the GPU. This means that rendering,
including hardware-supported interpolation, is possible directly from the compressed
form, thus reducing GPU memory requirements. By adding a second, CPU-based
compression stage, the compression ratio can be improved [NIHO6, NTHO8|. However,
the fixed-rate first stage allows little or no control over the quality vs. compression
ratio trade-off, and these formats lack support for floating-point data. For RGB
data, S3TC achieves a moderate compression ratio of 6:1 in the DXT1 format. By
converting the initial color samples into the YCoCg color space and using the DXT5
format, improved reconstruction quality can be achieved at the cost of doubling the
compressed size [vWCO07|. Additionally, while decompression is extremely fast, the
compression step is usually quite involved. While the efficient compression of color
fields into the S3TC format on the GPU is also possible, this comes at the cost of
quality [vWCO07].

Olano et al. [OBGB11] have presented a variable-rate texture compression format
based on arithmetic coding of a multi-resolution difference pyramid. The format
supports fast decoding on the GPU, but does not address fast encoding.

Terrain rendering [PGO7] is another area where large data sets must be handled
in real-time. There are two data modalities involved: color-valued orthophotos and
scalar-valued height fields. The orthophotos are most commonly compressed with a
GPU-supported format such as S3TC. For the height fields, on the other hand, a large
variety of compression schemes exists [BGMP07, BGP09, DSW09, GMC*06, LC10,
PSM*07, WZY08]. However, these approaches are typically tied to specific height
field representations and are thus not applicable for other tasks. Also, all of these
approaches address only fast decompression, while compression time is considered

less important.

57

3 GPU Data COMPRESSION

3.2 Choice of Algorithms

In Chapter 2, we have seen two classes of techniques to decorrelate data for the pur-
pose of compression: dictionary techniques and transform coding. For data given
on Cartesian grids, transform coding is a natural choice since it is known to provide
excellent compression performance for image data. Many image compression algo-
rithms incorporate transform coding, e.g. JPEG, JPEG2000 and JPEG-XR. Dictio-
nary techniques have been used only in some lossless image compression techniques,
e.g. in PNG and GIF. Additionally, even in optimized GPU implementations, dic-
tionary techniques do not achieve the necessary throughput [OSC12]. On the other
hand, both the DCT and the DWT are easily parallelized and thus fit the GPU
well [OK08, WLHWO07, TSP*08, vdLLJR11]. The DWT achieves significantly better
quality than the DCT at the same compression ratio in the sense of RMS error. Addi-
tionally, the multi-resolution properties of the DW'T interact very well with level-of-
detail approaches which are common in many graphics and visualization applications.
Therefore, the DWT was chosen as the transform to use in CUDACOMPRESS.

The choice of the coder to use for the following entropy coding stage is more
involved. The contestants must be evaluated both regarding their compression ratio
as well as their suitability for an efficient GPU implementation. In the remainder of

this section, I investigate the following options:

An arithmetic coder,

a Golomb-Rice coder,

a Huffman coder,

a run-length coder which only handles runs of zeros, similar to the one used in
JPEG (see Section 2.5.1),

a combined run-length and Golomb-Rice coder, where the Golomb-Rice coder
compresses the remaining symbols as well as the run lengths, and

a combined run-length and Huffman coder, where the Huffman coder compresses
the remaining symbols as well as the run lengths.

All of these coders are usually formulated in a sequential way (see Sections 2.1

and 2.2). I now address what changes must be made to each coder to allow a ba-

o8

3.2 CHOICE OF ALGORITHMS

sic data-parallel implementation. The low-level details necessary to actually achieve
efficient GPU implementations are discussed in Sections 3.4 and 3.5.

3.2.1 Arithmetic Coder

Arithmetic coding is an attractive option because it achieves almost optimal compres-
sion within the framework of entropy coding. However, both encoder and decoder
contain sequential data dependencies due to the incremental updating of the current
interval bounds. The only option for a parallel implementation thus is encoding small
blocks of data individually. Compared to a sequential arithmetic coder, this results
in two kinds of storage overhead. First, the encoder must be “flushed” at the end
of each block. Second, either the compressed sizes of the individual blocks or their
offsets in the combined bit stream must be stored so that each decoder thread knows
where to begin.

A secondary concern is whether to use adaptive coding (see Section 2.1.5). An
adaptive coder does not require a separate frequency analysis pass, and often achieves
a slightly better compression ratio. However, there are two reasons which make

adaptive coding inappropriate in this case:

1. There is a penalty associated with starting the adaptive coding process, as the
coder needs to learn the statistics of the input data before effective compression
is possible. If many small blocks are encoded separately, this penalty becomes

very significant.

2. An adaptive coder must maintain its probability table. Storing such a proba-
bility table for each thread easily exceeds the GPU’s fast memory.

I conclude that a non-adaptive coder is the more appropriate choice for a parallel
implementation. This means that a frequency analysis pass is required before the
actual encoding. This pass basically amounts to the computation of a histogram,
which can be done efficiently on GPUs [Pod07a].

3.2.2 Golomb-Rice Coder

A Golomb-Rice encoder replaces each symbol by a predefined codeword and con-

catenates all codewords to get the final compressed representation. The first step,

59

3 GPU Data COMPRESSION

assigning codewords, is fully parallel: each codeword can be assigned independently.
The second step, concatenating the codewords, seems to be sequential at first. How-
ever, a prefix sum on the codeword lengths produces the position of each codeword
in the compressed data stream. With this information, the concatenation can be
performed in parallel as well.

The decoder, however, can not be parallelized immediately. To allow multiple
decoder threads, it becomes necessary to store an entry point into the compressed
stream for each thread. This results in some storage overhead compared to the
sequential coder.

3.2.3 Huffman Coder

Huffman coding, like arithmetic coding, first requires a frequency analysis step which
amounts to a histogram of the input data. Based on the histogram, a Huffman table
must be constructed (see Section 2.1.2). The table construction algorithm is strongly
sequential, and there is no known practical way of parallelizing it. Fortunately, the
runtime cost of this step is very minor, since typically no more than a few hundred
items need to be handled. It is therefore acceptable to perform this step sequentially
on the CPU.

The actual Huffman encoding and decoding then proceed very similarly to the
Golomb-Rice coder. The only difference is that the codewords are read from the
Huffman table rather than being statically predefined. Thus it is also required to
store entry points into the compressed stream for the decoder threads.

3.2.4 Run-Length Coder

Run-length encoding basically amounts to a stream compaction operation, which in
turn requires little more than a prefix sum. Stream compaction is offered by several
GPU libraries such as thrust [HB13] and CUDPP [HOS*13, HSO07]. Consequently,
no further adjustments are necessary to allow a parallel implementation of run-length
encoding.

The decoder boils down to a scattered write operation. The output indices for the

scattered write can be computed by a prefix sum on the run lengths.

60

3.2 CHOICE OF ALGORITHMS

3.2.5 Compression Ratio Comparison

I used two standard image suites to test the encoders: the Kodak test images [FE99]
(called kodim in the following) and the “New Test Images” (RGB 8-bit) [Rawll]
(newtest). 1 applied the following test procedure:

e Convert the RGB image data to the YCoCg color space.

e Perform a three-level DWT using the CDF 9/7 wavelet to each image channel.
e Quantize all high-pass coefficients.

e Encode the quantizer output for each subband separately.

e Record the final output bit rate as well as the entropy of the quantizer output.

The tests were repeated for a variety of quantization steps between 0.1 and 20. Ad-
ditionally, each test was performed once with the regular sequential coders and once
with the adapted parallel versions. Figs. 3.1 and 3.2 plot the results of the sequential
coders for kodim and newtest, respectively. The graphs show the coding overhead,
i.e. output bit rate minus entropy, plotted vs. the entropy of the coder input. For
reference, “good visual quality” is achieved at an entropy of about 0.5 to 1 bit. The
results mostly concur with the expectations. Arithmetic coding performs very close
to the entropy, with some overhead for storing the frequency tables. Huffman coding
works well at a high entropy, but introduces significant overhead below an entropy
of about 2 bits. Golomb-Rice coding has only a small disadvantage compared to
Huffman coding. Run-length coding on its own is only useful at extremely low en-
tropy. However, when combined with Golomb-Rice or particularly Huffman coding,
it works extremely well. Below one bit of entropy, the run-length + Huffman coder
even slightly beats the entropy.

The results for the parallel case are more interesting. They are plotted in Figs. 3.3
and 3.4 for kodim and newtest, respectively. Where blocking is necessary, the block
size was chosen to be 128 elements as a compromise between exposing parallelism and
limiting storage overhead. The block sizes were stored as 16-bit integers. Accordingly,
the entropy coders, i.e. Golomb-Rice, Huffman, and arithmetic, each suffer a bit rate
penalty of roughly 16/128 = 0.125 bits per element. Run-length coding requires no
blocking and thus suffers no penalty. This is particularly beneficial in combination

61

3 GPU DatA COMPRESSION

1.4

Arithmetic
= Golomb-Rice

5 12
2 Huffman
E_ 1 ——Run-length
w
5 = Run-length + Golomb-Rice
; 0.8 = Run-length + Huffman
5
~
< 06
(5]
L7}
< 04
o
>
o
-]
o
© 0

-0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

entropy / bits

Figure 3.1: Coding overhead (i.e. bit rate minus entropy) vs. entropy for various sequential
coders applied to the kodim suite.

1.4

Arithmetic
= Golomb-Rice
1.2
Huffman
1 = Run-length

= Run-length + Golomb-Rice

0.8 = Run-length + Huffman

0.6

0.4

0.2

coding overhead / bits per symbol

-0.2
0 0.5 1 1.5 2 2.5 3 35 4

entropy / bits

Figure 3.2: Coding overhead (i.e. bit rate minus entropy) vs. entropy for various sequential
coders applied to the newtest suite.

62

3.2 CHOICE OF ALGORITHMS

1.4

1.2

0.8

0.6

0.4

0.2

coding overhead / bits per symbol

-0.2

0.5

Arithmetic
= Golomb-Rice
Huffman
= Run-length

Run-length + Golomb-Rice
Run-length + Huffman

1.5 2 2.5 3 3.5 4
entropy / bits

Figure 3.3: Coding overhead (i.e. bit rate minus entropy) vs. entropy for various parallel
coders with a block size of 128 elements applied to the kodim suite.

1.4

1.2

0.8

0.6

0.4

0.2

coding overhead / bits per symbol

-0.2

0.5

Arithmetic
= Golomb-Rice
Huffman
= Run-length

Run-length + Golomb-Rice

Run-length + Huffman

1.5 2 2.5 3 3.5 4
entropy / bits

Figure 3.4: Coding overhead (i.e. bit rate minus entropy) vs. entropy for various parallel
coders with a block size of 128 elements applied to the newtest suite.

63

3 GPU Data COMPRESSION

with Golomb-Rice or Huffman coding. At low entropy, the run-length coder strongly
reduces the number of elements that have to be handled by the entropy coder. As
a side-effect, this reduces the storage overhead due to blocking. Consequently, the
combined run-length + entropy coders perform extremely well at low entropy. The
run-length + Huffman coder beats the arithmetic coder up to an entropy of about 2
bits.

This makes the run-length 4+ Huffman coder the first choice in terms of compression
ratio. Using Golomb-Rice instead of Huffman coding results in a moderate compres-
sion ratio penalty. If the throughput were significantly higher, then Golomb-Rice
coding could be a valid choice. Both the encoding and the decoding procedures are
very similar, and can be expected to achieve similar performance. The main differ-
ence is the lack of a frequency analysis step in the Golomb-Rice encoder. However, it
is also possible to use static precomputed Huffman tables. This allows skipping the
frequency analysis step during Huffman encoding at the cost of compression ratio.
Thus Huffman coding is the more general choice and has no significant disadvan-
tage compared to Golomb-Rice coding. Therefore, CUDACOMPRESS implements the
run-length + Huffman coder as its entropy coding stage.

Having made a choice regarding the compression algorithms to use, I now proceed

to describe in detail their efficient implementation on current GPUs.

3.3 Discrete Wavelet Transform

In Chapter 2, two implementation strategies for the DWT were introduced: convo-
lution with linear filters and lifting. The DW'T has been implemented on the GPU
using both convolution [WLHWO07, TSP*08] and lifting [vdLLJR11]. Separable image
convolution can be implemented very efficiently using CUDA [Pod07b]. The basic
strategy is to load a block of pixels into shared memory, perform the convolution
on each pixel, and directly write the result back to global memory. Some overlap
between the blocks is necessary to cover the support of the filter kernel—e.g. with the
CDF 9/7 wavelet, a “halo” region of 4 pixels is required. For blocks at the boundary
of the image, the halo pixels are created by mirrored extension.

Only few changes to the basic image convolution implementation are necessary to

support the DWT. In the forward transform, different filters are used for even and

64

3.4 RuUN-LENGTH CODING

odd pixels: the low-pass filter for even pixels, the high-pass filter for odd pixels. The
low-pass and high-pass results are written to separate memory regions to achieve
the subband order which is convenient for further processing (compare Fig. 2.10).
Similar adaptations are necessary in the inverse transform. This implementation is
extremely efficient on current GPUs, achieving a throughput close to the maximum
memory bandwidth of the device (see Section 3.6.2).

A drawback of the convolution-based implementation is that it does not support
a reversible integer DWT. Therefore, CUDACOMPRESS also contains a lifting-based
implementation of the integer CDF 5/3 wavelet. The basic strategy remains the
same as in the convolution case: load a block into shared memory, perform the com-
putations there, and write back the result. In CPU implementations, lifting usually
achieves superior performance because it requires fewer arithmetic operations. On
the GPU, however, the ratio of compute power to memory bandwidth is so large that
the arithmetic operations in the convolution-based implementation do not matter.
On the other hand, the lifting implementation requires synchronization points after
each lifting step as well as multiple round trips to shared memory, resulting in reduced
performance. Therefore, CUDACOMPRESS uses the convolution-based implementa-
tion to compute floating-point DWTs, and reverts to the lifting-based implementation
only for integer DW'Ts.

3.4 Run-Length Coding

In general, run-length encoding replaces multiple sequential occurrences of the same
symbol in a data stream (a run) by one single instance of the symbol plus a number
indicating how often the symbol occurs. During transform coding, many runs of
symbols equal to zero are expected, while runs of other symbols are rather unlikely.
Therefore, CUDACOMPRESS implements a variant of run-length encoding which only
handles runs of zeros: Each non-zero symbol in the input stream is replaced by a
pair of values containing the original symbol and the number of zeros that precede

it in the stream, called the zero count.

65

3 GPU Data COMPRESSION

3.4.1 Encoder

Run-length encoding can easily be expressed in terms of data-parallel operations. A
graphical illustration of the run-length encoding implementation in CUDACOMPRESS
is shown in Fig. 3.5. First, each symbol is flagged as either zero (marked by 0)
or non-zero (marked by 1). An exclusive prefix sum over these flags generates the
output indices for all non-zero symbols. Next, the zero count for each symbol is
computed by subtracting from the symbol’s index the index of its predecessor plus
one. Trailing zeros in the data do not need to be stored, since the total number of
symbols is known to the decoder.

An additional complication arises because of the subsequent Huffman coding: Very
large input values to the Huffman coder can result in long codewords and thus reduce
the compression ratio. Therefore, the zero counts should be limited to some maximum
value, which is chosen as 255 in CUDACOMPRESS. To achieve this, additional zeros
are inserted into the compacted symbol stream at locations where the zero count
exceeds the given limit. This is realized by first computing the number of additional
zeros to insert at each index, and then performing an inclusive prefix sum over these
values to obtain an offset for each entry. Finally, each symbol and associated zero
count is re-positioned according to this offset in the symbol stream.

3.4.2 Decoder

Similar to the encoder, the run-length decoder can be written in terms of parallel
operations. Fig. 3.6 illustrates the process. The first step is an inclusive prefix
sum over the zero counts, following by adding to the resulting values the index of the
respective element. This determines the original indices of the non-zero symbols. For
efficiency reasons, both computations are performed in a single kernel. Finally, the
output array is cleared with zeros, and each symbol is written to its target position

in a scattered write operation.

3.5 Huffman Coding

To further compress the run-length encoded symbol stream, CUDACOMPRESS em-
ploys Huffman coding. Since the symbols and zero counts typically occur with very

66

3.5 HurFMAN CODING

@—)0100000430

o;j1,0,0)0|0;j0}1|1,0

Figure 3.5: Parallel implementation of run-length encoding. Input symbols (green arrays)
are flagged as zero or non-zero. A scan operation generates output indices (blue arrays).
The number of removed zeros is stored (red arrays), and zeros may be inserted into the
symbol stream to limit the maximum zero count (to 3 in the example).

different distributions, they are encoded separately.

3.5.1 Encoder

The Huffman encoder performs two basic operations: It computes the Huffman table
for the input data and then performs the encoding of the data stream using this
table.

67

3 GPU Data COMPRESSION

>
° el
Figure 3.6: Parallel implementation of run-length decoding. A scan over the zero counts
(red array) yields preceding zeros of each symbol. Adding each element’s index gives the

original indices (blue array) of stored symbols (green array). A scattered write finally
reconstructs the original data.

Table Design

The computation of the Huffman table can be further subdivided into (a) the com-
putation of the relative probabilities of all occurring symbols and (b) the assignment
of codewords of appropriate lengths to each symbol. The first step is equivalent
to building a histogram of the input data, which can be realized on the GPU us-
ing atomic operations. However, atomic operations become very inefficient if write
conflicts occur and thus concurrent accesses are serialized. As the distribution of
wavelet coefficients is very likely to be heavily skewed towards small values, many

such conflicts are expected in the first few histogram bins.

To avoid these conflicts, CUDACOMPRESS stores one histogram per thread in shared
memory and combines these histograms in a second pass using a parallel reduce
operation per bin [Pod07a]. However, the number of histogram bins that can be
processed per thread is strongly limited by the available shared memory. This means
that many passes over the data may be required if the number of bins is large. Thus,

68

3.5 HurFMAN CODING

CUDACOMPRESS uses this technique for the first few bins, where the largest number
of conflicts is expected. The execution then switches to a kernel that computes one
histogram per warp using shared memory atomics [Pod07a, SKO07]. Even though
this can still lead to memory conflicts, experiments have shown superior performance
since the number of conflicts is small and a much larger number of bins per pass can
be used.

The algorithm for computing the Huffman table exposes little parallelism, and
a GPU implementation has been shown to perform poorly [PZM*12]. Therefore,
CUDACOMPRESS realizes this step on the CPU. This requires a round-trip to the
CPU, but since the Huffman table has to be stored to disk anyway, there is little
additional overhead. The table construction including the GPU-CPU data transfer
consumes less than 10% of the overall encoding time.

Encoding

After the Huffman table has been built, the encoder replaces each symbol by its
codeword and performs a bit stream compaction. A naive implementation writes
for each symbol the bit-length of its codeword into an auxiliary buffer and uses an
exclusive prefix sum over these numbers to compute the position of each symbol
in the bit stream. Then, each symbol can be written to the respective position.
However, as the codewords are not aligned to word boundaries, this step requires
atomic operations, and since most codewords are much shorter than a memory word
(32 bits) the performance is slowed down considerably by a high number of write
conflicts.

The data-parallel implementation used CUDACOMPRESS is illustrated in Fig. 3.7.
To reduce the number of conflicts, each thread writes k& consecutive codewords.
This also means that only every k-th element of the bit index array is needed, so
CUDACOMPRESS first sums every k adjacent codeword lengths and then performs
the prefix sum operation only on the smaller set of elements. For optimal memory
bandwidth use, the compaction step writes to shared memory. The compacted array
can then be written to global memory using coalesced memory transactions.

The decoder needs one of the codeword bit indices to start each decoder thread.
Thus, cUDACOMPRESS stores every m-th element of the index array, i.e. the bit index

69

3 GPU DatA COMPRESSION

@—)41132201221

4 |22 |13]|13|12]2]|3]|3]|2

Write codewords (sequential per thread)

>{ Out I

Figure 3.7: Parallel implementation of Huffman encoding. Lengths of codewords corre-
sponding to input symbols (green array) are written into an auxiliary buffer. Every k
adjacent values (k = 2 in the example) are summed up. A scan operation computes the
output bit index (blue array) for every k-th codeword. Every m-th bit index (m = 2 in the
example) is stored as side information for the decoder. The last element of the index array
carries the length of the compacted stream and is also stored. In the final step, codewords
are written to an output buffer (orange array) in groups of k per thread.

70

3.6 THE CUDACOMPRESS LIBRARY

of every k-m =: n-th codeword, as side information. In the current implementation,
k = 8 and m = 16, so every 128-th index is stored. To save memory, increments
between indices are stored instead of absolute values. This allows storing the in-
crements as 16 bit integers, which is sufficient to accommodate 128 codewords of
511 bits each—far more than the maximum possible codeword length for reasonable
numbers of input symbols [AMMOO].

3.5.2 Decoder

Fig. 3.8 illustrates the parallel implementation of the Huffman decoder. The decoder
receives the codeword stream and the incremental bit indices that were stored by the
encoder as side information. An inclusive prefix sum computes the bit index of every
n-th codeword. For each such index, one thread decodes n symbols sequentially. The
implementation of this step is similar to the one proposed by van Waveren [vWO06],
but cuDACOMPRESS builds the lookup table for short symbols on the GPU.

Every t = 32 consecutive threads (one warp) write their symbols simultaneously
in an interleaved order during decoding. In this way, all threads in one warp write
to consecutive memory addresses, resulting in coalesced accesses. In a second pass,
each block of t x n interleaved values is read into shared memory, reordered, and
written back to global memory. Taking advantage of coalescing in this way results
in an improvement of the decoder throughput by about 40%.

Making the decoder threads each write a symbol simultaneously implies that they
have to read from their input bit streams at different speeds, as their input codewords
generally have different lengths. Therefore, the reads can not be coalesced. To avoid
frequent accesses to the input data in global memory, each thread caches 2 x 32 bits
of the input bit stream in registers. In this way, the threads only have to access the

global memory after a codeword has been decoded completely.

3.6 The cudaCompress Library

I have implemented the described parallel data compression algorithms and released
the resulting library, called cUDACOMPRESS, under a permissive open-source li-
cense [Trel3]. In particular, CUDACOMPRESS contains efficient implementations of

71

3 GPU DatA COMPRESSION

Figure 3.8: Parallel implementation of Huffman decoding. A scan operation over relative
bit indices gives the bit indices (blue array) of every n-th codeword (n = 4 in the example).
n symbols per thread are sequentially decoded (green array) from their codewords (orange
array). To achieve coalesced memory accesses, t consecutive threads (¢t = 2 in the example)
write their output in an interleaved order. A final blockwise reordering operation restores
the correct order of elements.

the DWT using the CDF 9/7 and integer CDF 5/3 wavelets as well as run-length
and Huffman coding. Additionally, CUDACOMPRESS provides utility functions such
as quantization and color space transforms between RGB and YCoCg. This function-
ality can be combined to create efficient lossy compression systems for integer and
floating-point data given on Cartesian grids. Lossless compression of integer data is
also possible. However, effective lossless compression of floating-point data requires
different techniques and is presently not supported.

The core of CUDACOMPRESS is composed of a run-length and a Huffman coder.
For maximum efficiency during encoding and decoding, all temporary resources such
as GPU buffers are preallocated by creating a cudaCompress: :Instance. This
Instance is then passed to the actual encoding functions such as encodeRLHuff

72

3.6 THE CUDACOMPRESS LIBRARY

which performs run-length and Huffman encoding. Other functionality such as the
DWT and quantization, which do not depend on preallocated resources, are provided

in the cudaCompress: :util namespace.

3.6.1 Usage Example

The operations offered by CUDACOMPRESS can be combined with ease to create a
full data compression algorithm. Fig. 3.9 lists the complete source code of a pro-
gram implementing a simple image compression algorithm using CUDACOMPRESS.
The two functions implementing compression and decompression, compressImage
and decompressImage, each consist of only four function calls. While this is a very
simple example, it demonstrates the convenience of implementing data compression
on top of CUDACOMPRESS. As more advanced examples, the CUDACOMPRESS dis-
tribution [Trel3| contains the full source code of the compression algorithms used in

the systems described in Chapters 4, 5, and 6.

3.6.2 Performance

After demonstrating how CUDACOMPRESS can be used, I now present some bench-
mark results to show the achieved performance. All benchmarks were performed on
a PC with an Intel Xeon E5520 CPU (quad core, 2266 MHz), 12 GB of DDR3-1066
RAM, and an NVIDIA GeForce GTX 580 graphics card. Here, I analyze the in-
dividual operations offered by cUDACOMPRESS. Performance results for complete
compression systems built on top of CUDACOMPRESS are given in the following chap-
ters, in particular in Sections 4.5.3, 5.5, and 6.5.3.

Discrete Wavelet Transform

The DWT does not perform any data-dependent operations, so its performance is
independent of the particular input values. Computing the forward floating-point
CDF 9/7 DWT on a 1024 x 1024 grayscale image requires 0.11 ms. This corresponds
to a throughput of 9500 MPix/s, or an effective memory bandwidth of 142 GB/s.
The inverse transform achieves 9200 MPix/s or 137 GB/s. For comparison, a device-

to-device cudaMemcpy achieves 162 GB/s on the same hardware.

73

3 GPU DatA COMPRESSION

#include <fstream>

#include <cuda_runtime.h>

#include <cudaCompress/Instance.h>
#include <cudaCompress/Encode.h>
#include <cudaCompress/util/DWT.h>
#include <cudaCompress/util/Quantize.h>

// Global resources shared by compressImage and decompressImage.
cudaCompress::Instance* pInstance = nullptr; // the cudaCompress Instance.
float* dpScratch = nullptr; // scratch buffer for DWT.

float* dpBuffer = nullptr; // output buffer for DWT.
cudaCompress: :Symboll6* dpSymbols = nullptr; // input/output for entropy coder.

cudaCompress: :BitStream compressImage(

}

const unsigned char* dpImage, // input image in GPU memory
int sizeX, int sizev, // image size
float quantStep) // quantization step

// Expand image values to float and do first-level DWT.
cudaCompress::util: :dwtFloat2DForwardFromByte(

dpBuffer, dpScratch, dpImage, sizeX, sizeY);
// Do second-level DWT in the same buffers. Need to specify pitch now!
cudaCompress: :util: :dwtFloat2DForward(

dpBuffer, dpScratch, dpBuffer, sizex/2, sizeY/2, 1, sizeX, sizeY);
// dpBuffer now contains the multi-level DWT decomposition.

// Quantize the coefficients and convert them to unsigned values (symbols).
// For better compression, quantStep should be adapted to the transform level!
cudaCompress::util::quantizeToSymbols2D(dpSymbols, dpBuffer, sizeX, sizeY, quantStep);

// Run-length + Huffman encode the quantized coefficients.

cudaCompress: :BitStream bitStream;

cudaCompress: :encodeRLHuff(pInstance, bitStream, &dpSymbols, 1, sizeX * sizeY);
return bitStream;

void decompressImage(

cudaCompress: :BitStream& bitStream, // compressed image data
unsigned char* dpImage, int sizeX, int sizeY, float quantStep)

cudaCompress: :decodeRLHuff(pInstance, bitStream, &dpSymbols, 1, sizeX * sizeY);
cudaCompress: :util: :unquantizeFromSymbols2D(dpBuffer, dpSymbols, sizeX, sizeY, quantStep);
cudaCompress::util::dwtFloat2DInverse(

dpBuffer, dpScratch, dpBuffer, sizex/2, sizeY/2, 1, sizeX, sizeY);

cudaCompress::util: :dwtFloat2DInverseToByte(
dpImage, dpScratch, dpBuffer, sizeX, sizeY);

Figure 3.9: Example code for simple image compression using CUDACOMPRESS.

74

3.6 THE CUDACOMPRESS LIBRARY

void main()

{
int sizeX = 1024, sizeY = 1024;
float quantStep = 4.0f;
unsigned char* dpImage = nullptr;
// Read image data from file.
std::vector<unsigned char> image(sizeX * sizeY);
std::ifstream file("image.raw", std::ifstream::binary);
if(!file.good()) return;
file.read((char*)image.data(), sizeX * sizeY);
file.close();
// Initialize cudaCompress, allocate GPU resources and upload data.
pInstance = cudaCompress::createInstance(-1, 1, sizeX * sizeY);
cudaMalloc(&dpImage, sizeX * sizeY);
cudaMemcpy (dpImage, image.data(), sizeX * sizeY, cudaMemcpyHostToDevice);
cudaMalloc(&dpScratch, sizeX * sizeY * sizeof(float));
cudaMalloc (&dpBuffer, sizeX * sizeY * sizeof(float));
cudaMalloc (&dpSymbols, sizeX * sizeY * sizeof(cudaCompress::Symboll6));
// Compress the image.
cudaCompress: :BitStream bitStream = compressImage(dpImage, sizeX, sizeY, quantStep);
// Write compression rate to stdout.
int compressedSize = bitStream.getBitSize();
float ratio = float(sizeX * sizeY * 8) / float(compressedSize);
printf("Compressed size: %i b (%.2f : 1)\n", compressedSize, ratio);
// Rewind bitstream and decompress.
bitStream.setBitPosition(0);
decompressImage(bitStream, dpImage, sizeX, sizeY, quantStep);
// Download reconstructed image and write to file.
std::vector<unsigned char> imageReconst(sizeX * sizeY);
cudaMemcpy (imageReconst.data(), dpImage, sizeX * sizeY, cudaMemcpyDeviceToHost);
std::ofstream out("image_reconst.raw", std::ofstream::binary);
out.write((char*)imageReconst.data(), sizeX * sizeY);
out.close();
// Cleanup.
cudaFree(dpSymbols);
cudaFree(dpBuffer);
cudaFree(dpScratch);
cudaFree(dpImage);
cudaCompress: :destroyInstance(pInstance);
}

Figure 3.9: Example code for simple image compression using CUDACOMPRESS (cont’d).

75

3 GPU Data COMPRESSION

The integer CDF 5/3 DWT applied to a 1024 x 1024 image of 2-byte integers
achieves 11000 MPix/s in the forward and 10400 MPix/s in the inverse transform.
Despite the simpler filters and smaller data elements, this is only slightly more than
in the floating-point case. This is due to the use of integer arithmetic, which on a
GPU is much more expensive than floating-point arithmetic, as well as additional
synchronization points after each lifting step.

In transform coding, computing a forward DW'T is often followed by quantization.
Similarly, the inverse DW'T is often preceded by dequantization. To avoid another
pass over the data to perform the quantization step, CUDACOMPRESS also contains
combined DWT and quantization/dequantization kernels. Since the quantization

step represents very little overhead, these run at essentially the same speed as the
regular DWT kernels.

Coding

In contrast to the DWT, the performance of the run-length and Huffman coders
does depend on the input data. Their performance is therefore more difficult to
analyze comprehensively. Data which compresses better typically also results in fewer
computations and memory accesses and thus higher throughput. Another factor is
how “uniform” the data is, i.e. how well the individual GPU threads are balanced.

I have benchmarked the run-length and Huffman coders using the following proce-
dure on a grayscale image of size 2048 x 2048:

e Apply two levels of a DWT using the CDF 9/7 wavelet.

Split the resulting coefficients into 4 x 4 tiles of size 512 x 512 each.

Discard the tile corresponding to the low-pass subband, because its coefficients

have very different characteristics compared to the other tiles.

Quantize the remaining 15 tiles.

Finally, encode the quantizer labels using the Huffman coder as well as the
combined run-length + Huffman coder.

I have repeated the procedure with a range of quantization steps. The graphs in

Figs. 3.10 and 3.11 plot the run-length 4+ Huffman coding time vs. the entropy of

76

3.6 THE CUDACOMPRESS LIBRARY

the quantized coefficients. All reported times were averaged over 100 runs. The
timings include all required data transfers between CPU and GPU. As expected,
input data of a lower entropy generally results in lower computation times in both
encoding and decoding. The encoding times for the run-length + Huffman coder
range from about 4 ms at 0.1 bits of entropy to 7.5 ms at 5 bits. This corresponds
to a throughput of 520 to 980 million elements per second. The decoding times are
between about 0.5 ms and 4.2 ms for a throughput between 930 and 7860 million
elements per second. When the Huffman coder is applied directly to the data without
the run-length coding step (Fig. 3.12), it achieves a throughput between 710 and 980
million elements per second. The Huffman decoder achieves between 3000 and 6550
elements per second.

3.6.3 Compression Quality

To assess the compression ratio and reconstruction quality that are achieved with
CUDACOMPRESS, [have performed a number of tests using the Kodak test image
suite [FE99] (kodim) and the “New Test Images” suite (RGB 8 bit) [Raw11] (newtest).
On each image a three-level DWT was performed, and the resulting coefficients were
compressed as described.

I have compressed the same images using JPEG, JPEG2000, and the S3TC DXT1
format. For JPEG and JPEG2000 compression, I used the ImageMagick library
v.6.8.7 [Imal3]. The S3TC compression was performed using the Squish library
v.1.11 [Bro08] at the highest quality setting, iterative cluster fit.

Figs. 3.13 and 3.14 show the compression quality in dB of RGB PSNR depending
on the bit rate in bits per pixel (bpp). It can be seen that JPEG2000 gives the best
results in terms of compression rate. The compression using CUDACOMPRESS usually
outperforms JPEG, often significantly, except for bit rates below 1.3 bpp for kodim
and below 0.5 bpp for newtest. However, at such low bit rates, neither algorithm
can produce visually acceptable results. The fixed-rate DXT1 compression is clearly

outperformed by all other approaches.

77

3 GPU DATA COMPRESSION
8 m Huffman encode zero counts
7 ® Huffman encode symbols
6 B Run-length encode
"
g 5
~
GE, 4
s 3
2
1
0
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
entropy / bits
Figure 3.10: Encoding times for the run-length + Huffman coder vs. input entropy.
45 m Huffman decode zero counts
4 m Huffman decode symbols
B Run-length decode
"
£
~
(]
£
-
0 0.5 1 15 2 2.5 3 35 4 45 5
entropy / bits
Figure 3.11: Decoding times for the run-length + Huffman coder vs. input entropy.
6 Huffman encode
5 Huffman decode ‘,_//——’
v 4
£
~
o 3
£
s 2
1
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
entropy / bits

Figure 3.12: Encoding and decoding times for the Huffman coder vs. input entropy.

78

3.6 THE CUDACOMPRESS LIBRARY

45

w B
wv o

dB RGB PSNR

w
o

25

45

40

dB RGB PSNR
w
a

30

25

/
=

——

®

|

——cudaCompress
—JPEG
—JPEG2000

® DXT1

[uny

bits per pixel

T
T

4

Figure 3.13: Graph of PSNR vs. bpp for the test image suite kodim.

/

T

/
—

/

®

%/

——cudaCompress
—JPEG
~——JPEG2000
® DXT1
T

bits per pixel

T

4

Figure 3.14: Graph of PSNR vs. bpp for the test image suite newtest.

79

Interactive Terrain Editing

As a first application of the presented compression methods, I present an interac-
tive terrain rendering and editing system [TRAWI12|. Previous terrain rendering
approaches have addressed the aspect of data compression and fast decoding for ren-
dering, but applications where the terrain is repeatedly modified and needs to be
buffered on disk have not been considered so far. Such applications require both de-
coding and encoding to be faster than disk transfer, which can be achieved with the
CUDACOMPRESS library. I present a novel approach for editing gigasample terrain
fields at interactive rates and high quality. The construction and rendering of a height
field triangulation is avoided by using GPU ray-casting directly on the regular grid
underlying the compression scheme. I demonstrate the efficiency of the method for
interactive editing and continuous level-of-detail rendering of terrain fields comprised
of several hundreds of gigasamples.

4.1 Introduction

Today, high-resolution terrain fields consisting of many billions of color and height
samples are available, and a number of techniques exist to render such fields effi-
ciently. For an overview of the different approaches underlying these techniques let
me refer to the survey by Pajarola and Gobbetti [PGO7]. To avoid bandwidth limi-
tations due to disk transfer and to reduce the number of rendered primitives, height

field compression such as adaptive triangulation or differential vertex encoding has

81

4 INTERACTIVE TERRAIN EDITING

Figure 4.1: A terrain field of over 300 gigasamples (left). Direct editing using a paint and
displacement brush (right) and simultaneous rendering of the resulting changes is performed
at 60 fps on a 1920x 1080 viewport.

Figure 4.2: Creating a street: A forest (left) is cleared along a path (middle) to build a
street (right).

been incorporated into terrain rendering approaches. The orthophoto used to tex-
ture the height field is typically compressed using the fixed-rate compression format
S3TC. The requirement to decode the compressed data at very high rates has played
a major role in the selection of compression schemes for terrain fields.

There is also an increasing interest in techniques that allow editing terrain fields
interactively, including applications ranging from game level design and virtual world
modeling to geographic planning and geological simulation systems. Since the mod-
ified data needs to be buffered in disk memory so that it can be displayed and
modified again at a later time, both decoding and encoding have to be faster than
disk transfer. Current compression schemes for terrain fields are problematic in such
applications because the construction of the compressed data representation requires
extensive preprocessing. Even though medium-quality S3TC compressors come at
the required throughput [vWCO07], no such encoder has been reported for height maps

82

4.1 INTRODUCTION

or high-quality compression. Thus, existing terrain editing approaches have focused
on alterations of uncompressed terrain, not taking into account disk I/O bandwidth
limitations. To the best of my knowledge, interactive visually-guided editing of ter-
rain fields so large that they require compression has not been achieved before.

Contribution: I present a novel approach to interactively edit terrain fields which
are so large that I/O bandwidth becomes the major bottleneck (see Fig. 4.1 for
an example). To handle such fields efficiently, I employ the cUDACOMPRESS library
introduced in Section 3.6 for the compression of both color and height fields.. Special
emphasis has been put on efficiently combining level-of-detail editing and rendering.
To accomplish this, the internal data representation is based on pixel and height field
raster data, and rendering is performed directly on these rasters using ray-casting.

The particular contributions are

e a high-throughput GPU coder which can encode and decode up to 290 and
1070 MPix/s, respectively, at compression rates similar to JPEG2000,

e a push-pull error compensation scheme to avoid the propagation of quantization

errors between resolution levels,

e a progressive and view-dependent update scheme for editing operations to avoid

latencies due to bandwidth limitations, and

e a prototype system that demonstrates interactive editing and rendering of large

terrain fields comprised of more than 300 gigasamples.

The remainder of this chapter is structured as follows: In the next section I review
previous work on terrain editing. Section 4.3 gives an overview of the different parts
my system is comprised of and outlines their interplay. Following in Section 4.4 is a
brief discussion of the GPU compression scheme, making use of the CUDACOMPRESS
library. Next, in Section 4.5, I analyze the compression rates, the reconstruction qual-
ity, and the coding performance that CUDACOMPRESS achieves in this application,
and I demonstrate the efficient interplay between data compression and rendering
in a prototype terrain editing system. The chapter is concluded in Section 4.6 with

some ideas for future enhancements.

83

4 INTERACTIVE TERRAIN EDITING

Figure 4.3: Placing a mountain using a height stamp, painting snow on top, and using a
color stamp to add the EG logo.

4.2 Related Work

Terrain rendering approaches usually incorporate some form of height field compres-
sion to reduce limitations in disk and CPU-GPU bandwidth as well as the number
of rendered polygons. Pajarola and Gobbetti [PG07] discuss the basic principles un-
derlying many of these techniques, and many others [BGMP07, GMC*06, BGP09,
DSW09, LC10] provide specific details on customized compression schemes.

On the other hand, only few approaches have been reported for interactive ter-
rain editing, where the internal data representation is continually modified. He
et al. [HCP02] perform the editing operations on a regular height map and create
an adaptive triangulation on-the-fly. The efficient construction of an error-controlled
mesh hierarchy from a regular height map on the GPU has been demonstrated by
Lambers and Kolb [LK10]. Ammann et al. [AGD10] also edit a regular height map,
but avoid constructing a height field triangulation and perform ray-casting directly
on this map. Brandstetter et al. [BIMW*10] perform edits at coarser resolution levels

84

4.3 GIGASAMPLE TERRAIN EDITING

and discard finer details in the edited regions. None of these approaches, however,
has considered the propagation of changes between different resolution levels.
Atlan and Garland [AGO06] edit the coefficients of a Haar wavelet transform on the
CPU. Thus, for some simple editing operations the propagation of changes is not
required. Bhattacharjee et al. [BPNO8|] apply the editing operations directly on the
GPU, but then also perform the propagation of changes on the CPU. In both cases,
the finest resolution level has to be available in CPU memory.
Bruneton and Neyret [BNO8] propose a method for efficiently embedding vector fea-
tures into the height field by adapting a uniform height field triangulation. Terrain
orthophotos are generated procedurally by an appearance shader and, thus, stream-
ing of high-resolution color data to the GPU is not required. Furthermore, updated
appearance and elevation maps at finer levels are always created on-the-fly once they
become visible. Thus, once these maps get paged out of GPU memory, they have
to be re-created when the user comes back to the respective terrain region. This is
significantly different to my approach.

For multi-resolution editing, I use concepts similar to those proposed by Perlin and
Velho [PV95] for multi-resolution pixel image editing using wavelet transforms.

4.3 Gigasample Terrain Editing

I now give an overview of the different components of the prototype editing system
as well as their interplay. In particular, I describe the internal data structure and
the embedding of the compression scheme into the editing system.

The terrain editing system is intertwined with a visually continuous terrain renderer
based on a tiled quadtree terrain representation, where 2 x 2 adjacent tiles on each
level are exactly covered by one tile on the next-coarser level. Each tile represents the
data on a uniform grid of size 10242, with the leaf nodes corresponding to the original
data. My terrain representation is similar to the one proposed by Dick et al. [DSW09].
In my case, however, instead of storing the data at the according resolution, a tile at
a particular quadtree level stores the compressed differences between this data and a
low-pass filtered copy of it. To compute these differences, a discrete wavelet transform
(DWT) is performed. At runtime, tiles within a spherical prefetching region around

the camera are loaded from disk into CPU memory. The world-space radius of the

85

4 INTERACTIVE TERRAIN EDITING

prefetching region is doubled with every coarser level.

4.3.1 Tile Tree Creation and Reconstruction

After the terrain field has been partitioned into a set of tiles, for each tile a node is
created and the multi-resolution tile tree is constructed in a bottom-up procedure:
One level of a DW'T is computed on the data in each tile, which splits the data into
a lower-resolution approximation and so-called detail coefficients. These coefficients
encode the difference between the approximation and the original data. Only the
detail information is stored at the nodes, and the lower-resolution approximations of
2 x 2 adjacent tiles are merged to form the data at a new parent node. This procedure
is then repeated recursively until the tree has a user-defined depth. Finally, the detail
coefficients at each node are encoded as described in Section 4.4, and the compressed
data stream is stored to disk.

To reconstruct the data at a particular node, the tile tree is traversed along the
path from the root to this node. At each node except the root, an inverse DWT
using the detail coefficients at this node and the coarser approximation stored at the
parent node is performed. The resulting data is the coarse approximation that is
then used to reconstruct the data at the next child node. This process is repeated
along the path until the selected node is reached.

4.3.2 Rendering

In each frame, the set of tiles required to render the current view is determined by
traversing the tile tree in depth-first order. The traversal is stopped when the tile
that is represented by the current node is completely outside of the view frustum, or
if the maximum screen-space error when rendering the data of this tile falls below a
user-defined threshold. A visited node is marked if the tile it represents is visible.
The tree is then traversed again as before, and the data at the marked nodes is
reconstructed as described before. For nodes whose data is not already resident in
GPU memory, the compressed data that is required to perform the reconstruction is
streamed from disk to the GPU. On the GPU, decoding as well as the inverse DW'T
are performed and the reconstructed data is stored in a 2D buffer. Once the data for

86

4.3 GIGASAMPLE TERRAIN EDITING

a tile has been reconstructed on the GPU, it is always tried to keep this data on the
GPU for as long as possible.

The reconstructed 2D raster data is rendered using a GPU ray-caster [DKW09]
which performs a discrete traversal of the raster until a hit with the height field is
determined. At this position, the tile’s orthophoto is evaluated using anisotropic
interpolation and the resulting color is used as the pixel color.

4.3.3 Editing

Editing is performed on the currently rendered tiles. Since all rendered data is stored
in 2D buffers, the editing operations can be realized in a very efficient way. After each
editing operation, the tile tree has to be updated to enforce the applied changes at all
resolution levels. Here, I distinguish between the propagation of the applied changes
upwards (to coarser resolution levels) or downwards (to finer resolution levels) in
the tile tree (see Fig. 4.4). In addition, when the height field was modified, a 2D
maximum mipmap which is used to accelerate the ray-casting process [DKWO09] has
to be recomputed for each affected tile.

Change log:

-==> @ at(xy)

A %& '7%""1\

Figure 4.4: Propagation of changes. Left: The effect of an editing operation in a visible tile
is immediately propagated to the tile’s ancestors. The operation is stored in a change log.
Right: When a finer tile is required, operations in the change log are applied to this tile,
and the modifications are propagated to the ancestors again to ensure consistency.

The propagation to coarser resolution levels is performed instantly whenever an

87

4 INTERACTIVE TERRAIN EDITING

editing operation is performed. It is simply realized by constructing the tile tree
again as described before, but now starting the construction at the nodes storing
those tiles that were affected. To avoid paging during the update operation, the
system keeps the ancestors of all rendered tiles in GPU memory.

The propagation to finer levels is realized differently, since in general the finer tiles
which are affected by an editing operation are not available on the GPU. Therefore,
during editing all applied operations are recorded, i.e. the brush positions and action
parameters. Once a finer tile is requested—either for upload to the GPU or for
rendering—to which the changes have not yet been applied, the data is reconstructed
and the editing operations are first applied before the data is rendered. By means
of this delayed, on-demand propagation, the number of update operations that have
to be applied at once is proportional to the number of requested tiles in the current
frame, regardless of how many tiles in the tree are affected. Whenever such a delayed
update is performed, the resulting changes have to be committed to the coarser
levels again. This is necessary since applying an editing operation to a finer tile and
downsampling the changes to a coarser tile is in general not identical to applying the

operation directly to the coarser tile.

The update of modified tiles on disk is triggered via a backup interval, which is set
to 250 ms in the current implementation. If no further editing operations occurred
within one such interval, the tiles which have been altered are compressed and stored
in CPU memory again, so that they can be removed from GPU memory when they
are not needed for rendering anymore. When no CPU memory is available any more
or a tile falls out of the prefetching region, the modified tiles are written to disk.

To edit the terrain height field and orthophoto my system provides several tools
such as a paint brush and a stamp to draw color and /or height offsets (see Fig. 4.1 and
4.3), a flatten tool to smooth high-frequency details (see Fig. 4.5 for an application),
and a special tool allowing a street to be drawn into the terrain along a user-defined
spline curve as shown in Fig. 4.2. This variety shows that my approach is flexible

enough to integrate more sophisticated terrain editing tools, for instance as proposed
by de Carpentier and Bidarra [dCB09).

88

4.4 DATA COMPRESSION

Figure 4.5: Interactive flattening to remove scanning artifacts.

4.4 Data Compression

In the following, I describe the four different stages the GPU coder is comprised of.
I first discuss the compression of RGB pixel data, and then outline the particular
changes to accommodate the processing of scalar-valued height fields. All these
operations are implemented on top of the CUDACOMPRESS library.

Color space transform: The RGB color values of each tile’s orthophoto are first
transformed into the YCoCg color space [MS03b] to exploit correlations between the
color channels. The YCoCg values are transformed back into RGB values only for
display.

DWT: After color space conversion, a DWT is performed on the channels of the
Y CoCg pixel data separately using the CDF 9/7 wavelet [CDF92]. A multi-resolution
pyramid is constructed in a bottom-up manner by repeatedly applying the DW'T to
the approximation coefficients at each level.

Quantization and push-pull: In a top-down manner, the floating-point detail coeffi-

cients C; at the nodes of the tile tree are quantized into integer values ¢; via standard
|Ci]
A

scalar dead-zone quantization as ¢; = sign(C}) { J, where A is a user-defined quan-
tization step.
To avoid propagating quantization errors from the coarser to the finer levels during

reconstruction, I perform a push-pull error compensation (see Fig. 4.6). At every

89

4 INTERACTIVE TERRAIN EDITING

node the difference is computed between the reconstructed signal from the parent
node and the signal resulting from the DWT on the original data. The difference
values are quantized, and they are encoded and stored in addition to the quantized
detail coefficients. During reconstruction, these values are added to the low-pass
coefficients at the parent node before the inverse DWT is performed. This ensures
that the low-pass coefficients are of the same fidelity as the high-pass coefficients.
Due to the recursive nature of the push-pull procedure, any remaining errors will be
compensated at the next finer level.

Quantization

Quantization

Difference

Further lossy
compression 1

Reconstruction

Figure 4.6: Push-pull error compensation: To avoid propagating errors from coarser to finer
levels, the difference between the original low-pass coefficients and their reconstruction is
stored in addition to the detail coefficients.

A different strategy to circumvent this problem is employed in JPEG2000, where
coefficients at coarser levels are quantized using ever smaller quantization steps. This
results in slightly better compression rates, but has the undesirable effect that the
effective bit rate is increased at every coarser level. Due to the embedding properties
of JPEG2000’s EBCOT coder, this can be compensated by appropriately reordering
the compressed bit stream, at the cost of some storage overhead and a much more
complex coding scheme. My approach, on the other hand, allows the bit rate to

90

4.5 RESULTS

stay approximately constant over all levels without adding undue complexity in the
decoder.

Coding: For encoding, the quantized wavelet coefficients are concatenated into a
sequential stream in scan-line order. The coefficients are compressed using a run-

length + Huffman coder.

Height field compression: For height field compression, besides not requiring a color
space conversion, a maximum compression error should be guaranteed so that the
screen-space error during rendering can be predicted. To achieve this, I first quantize
the scalar height values such that the vertical resolution matches the resolution of
the underlying sampling grid at the current level of detail, e.g. if height samples are
taken at a 1 m spacing, then these samples are quantized such that the quantization
intervals are 1 m as well. The quantized values are then transformed via a reversible
integer DWT using the CDF 5/3 wavelet [CDF92] on the GPU. Difference encoding
to avoid the propagation of quantization errors is performed in the same way as for

color data.

4.5 Results

To demonstrate the efficiency of my terrain editing approach I have used a textured
terrain height field of Vorarlberg, Austria. The orthophoto has a size of 447000 x
677000 pixels or about 300 gigapixels at a spatial resolution of 12.5 cm. The height
field is given on a 2D grid with a spatial resolution of 1 m. All timings were performed
on a PC with an Intel Xeon E5520 CPU (quad core, 2266 MHz), 12 GB of DDR3-
1066 RAM, and an NVIDIA GeForce GTX 580 graphics card, except where explicitly
noted otherwise.

4.5.1 Rendering and Editing

Rendering the terrain at a screen-space pixel error of 0.7 using GPU ray-casting takes
between 15 and 20 ms per frame on a 1920 x 1080 viewport. Compared to rendering,

the cost of applying an editing operation to the uniform height and color maps at a

91

4 INTERACTIVE TERRAIN EDITING

Figure 4.7: Zoom into the Vorarlberg data set.

particular level is negligible in general. Only when a very large part of the terrain
is modified at once, or when many individual editing operations have been logged
and have to be applied at once to update the data, does altering the respective maps
become more costly than rendering. Since for editing purposes the height maps and
orthophotos of all visible tiles including their ancestors need to be available on the
GPU in uncompressed form, for higher-resolution viewports and a thereby increased
number of tiles, the limited GPU memory can become a bottleneck. On the other
hand, even in the current scenario where a very large terrain field is processed, all
required data could always be stored in GPU memory and CPU-GPU bandwidth

limitations were not observed.

After the editing operations have been applied at a particular level, the resulting

92

4.5 RESULTS

changes have to be committed into the tile tree. This requires computing a number
of DWTs, encoding the resulting detail coefficients, and finally writing the updated
tiles to disk. For instance, if one tile (height and color) on the finest level of a tile tree
of depth 12 is modified, the DW'Ts take about 15 ms, encoding takes about 120 ms,
and writing the data to disk takes about 60 ms.

4.5.2 Compression Rate and Quality

To assess the compression rate and reconstruction quality of CUDACOMPRESS applied
to the terrain data, I have performed a number of tests using a set of 100 sub-images
of the Vorarlberg orthophoto, each of 2048 x 2048 pixels. On each image a three-level
DWT was performed, and the resulting coefficients were compressed as described.

I have compressed the same images using JPEG, JPEG2000, and the S3TC DXT1
format. For JPEG and JPEG2000 compression, I used the ImageMagick library
v.6.7.0 [Imal3]. The S3TC compression was performed using the Squish library
v.1.11 [Bro08] at the highest quality setting, iterative cluster fit. It is worth noting
that JPEG and DXT1 do not support resolution-incremental decoding. In an appli-
cation where this is required, the effective bit rates would thus be about 1.3 times
higher than the given ones.

— ——
— —

e .

S
o

dB RGB PSNR
w
a

—_——
——cudaCompress
30 / —JPEG |
/ JPEG2000
® DXT1

25 4 f

1 2 3 4 5

bits per pixel

Figure 4.8: Graph of PSNR vs. bpp for 100 images of size 2048 x 2048 taken from the
Vorarlberg orthophoto.

Fig. 4.8 shows the compression quality in dB of RGB PSNR depending on the bit

93

4 INTERACTIVE TERRAIN EDITING

rate in bits per pixel (bpp). It can be seen that JPEG2000 gives the best results
in terms of compression rate. The compression using CUDACOMPRESS outperforms
JPEG, often significantly. However, at such low bit rates, neither algorithm can
produce visually acceptable results. The fixed-rate DXT1 compression is clearly
outperformed by all other approaches.

When compressing the entire Vorarlberg orthophoto, CUDACOMPRESS achieves
37.1 dB PSNR at 1.30 bpp, yielding a compression ratio of 18.4:1. For comparison,
DXT1 achieves 36.4 dB at 5.33 bpp including mipmaps. The scalar height field stored
as 16-bit integers was compressed at 1.54 bpp and a compression ratio of 10.4:1 by
CUDACOMPRESS.

4.5.3 Compression Throughput

To produce realistic and robust performance numbers, I have measured the times
required for encoding and decoding the entire Vorarlberg data set excluding disk 1/O
time. Encoding the 300 gigapixel orthophoto at 1.30 bpp using 11 DWT levels took
17.7 min, including the construction of the multi-resolution pyramid. This corre-
sponds to a throughput of 290 MPix/s. Decoding took 4.7 min, giving a throughput
of 1070 MPix/s.

Encoding the entire 4.9 gigasample height field using 8 DWT levels took 5.3 s at a
920 MPix/s throughput. Decoding took 2.1 s at a 2180 MPix/s throughput.

The encoding times include the download of the compressed data from the GPU,
and the decoding times include the upload of the data to the GPU. Thus, the tim-
ings realistically reflect the performance that can be achieved when embedding the
compression scheme into a terrain viewer, which streams compressed data from disk
to the GPU, where it is decoded, displayed, modified, encoded again, and finally
downloaded to the CPU and stored on disk.

For comparison, encoding to JPEG using the tjbench program from the libjpeg-
turbo library v. 1.3.0 [lib13] at quality 90 and 4:4:4 chroma sampling achieves a
throughput of 53 MPix/s on a single CPU core. The decoder achieves a throughput
of 70 MPix/s. With 4:2:0 chroma sampling, the numbers improve to 80 MPix/s and
95 MPix/s, respectively. Extrapolating to four available CPU cores, the encoder
throughput matches CUDACOMPRESS, but decoding is still significantly slower. It is

94

4.6 CONCLUSION

also worth noting here that the given performance measures for JPEG compression do
not include building and compressing a multi-resolution pyramid. In the performance
measures of CUDACOMPRESS, these operations are always included.

The Kakadu library v. 7.0 with speed pack [Kak13], one of the fastest JPEG2000
implementations, reports a throughput of up to 85 MPix/s for the encoding and
99 MPix/s for the decoding of a large image on a 2.2 GHz Intel Core i7-2720Q quad-
core CPU. However, it is worth noting that the Kakadu software runs entirely on
the CPU, so CPU-GPU bandwidth can become a bottleneck. CUJ2K [FWH*09], a
CUDA implementation of a JPEG2000 encoder (but no decoder), achieves a through-
put of only 22 MPix/s, excluding data transfer between CPU and GPU. Encoding
of RGB pixel data to DXT1 using the NVIT GPU compressor [NVI10] achieves
21 MPix/s.

4.6 Conclusion

I have presented a prototype terrain editing system that allows altering and simul-
taneous rendering of high-resolution terrain fields at high quality and interactive
rates. It employs a regular grid structure for the height field, and employs a GPU-
based ray-caster for rendering. Both pixel and height data are compressed using the
CUDACOMPRESS library, which provides both encoding and decoding at much higher
rates than disk transfer and achieves compression rates that compare favorably to
JPEG and JPEG2000 compression.

95

Turbulence Visualization: Volume Rendering

As the second application of GPU data compression, I present a system for the inter-
active exploration of very large turbulent flow fields [TBR*12]. Despite the ongoing
efforts in turbulence research, the universal properties of the turbulence small-scale
structure and the relationships between small- and large-scale turbulent motions are
not yet fully understood. The visually guided exploration of turbulence features, in-
cluding the interactive selection and simultaneous visualization of multiple features,
can further progress our understanding of turbulence. Accomplishing this task for
flow fields in which the full turbulence spectrum is well resolved is challenging on
desktop computers. This is due to the extreme resolution of such fields, requiring
memory and bandwidth capacities going beyond what is currently available. To over-
come these limitations, I present a system for feature-based turbulence visualization
that works on a compressed flow field representation. A GPU compression layer
based on CUDACOMPRESS enables a drastic reduction of the data to be streamed
from disk to GPU memory. The system derives turbulence properties directly from
the velocity gradient tensor, and it either renders these properties in turn or gener-
ates and renders scalar feature volumes. The quality and efficiency of the system is
demonstrated in the visualization of two unsteady turbulence simulations, each com-
prising a spatio-temporal resolution of 1024*. On a desktop computer, the system
can visualize each time step in 5 seconds, and it achieves about three times this rate

for the visualization of a scalar feature volume.

97

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.1: Visualizations of structures in 1024 turbulence data sets on 1024 x 1024 view-
ports, directly from the turbulent motion field. Left: Close-up of iso-surfaces of the Acpong
invariant with direct volume rendering of vorticity direction inside the vortex tubes. Mid-
dle: Direct volume rendering of color-coded vorticity direction. Right: Close-up of direct
volume rendering of Rg. The visualizations are generated by my system in less than 5
seconds on a desktop PC equipped with 12 GB of main memory and an NVIDIA GeForce
GTX 580 graphics card with 1.5 GB of video memory.

5.1 Introduction

Hydrodynamic turbulence is one of the most thoroughly explored phenomena among
complex multiscale physical systems. It has important applications in engineering
thermo-fluid systems, in the geosciences and environmental transport, even in astro-
physics. In recent years, high performance computing [[GK09] and new experimental
measurement techniques [KS10, WV10] applied to the study of various types of tur-
bulent flows have enabled significant progress. Yet, modeling and understanding
turbulent flows remains a scientifically deep, technologically relevant, but fundamen-

tally unsolved problem.

One grand challenge that significantly increases the complexity of turbulence anal-
ysis is turbulence’s inherently vectorial and tensorial structure: one describes turbu-
lent flows using velocity and vorticity vector fields, and velocity gradient and stress
tensor fields. Some of the most salient features of turbulent flows have emerged from

98

5.1 INTRODUCTION

an examination of the velocity gradient tensor. It is defined according to

8Ui

Ai' -)
J 3xj

where T use index notation; u;(x,t), ¢ = 1,2,3 denote the three components of the
velocity vector field which depend on the position vector x and time ¢. Such gradient
fields of fluid velocity provide a rich characterization of the local quantitative and
qualitative behavior of flows, which is evident from the linear approximation in the
neighborhood of an arbitrary point. Since A is a second-rank tensor, it has nine
components in 3D and these contain rich information about the local properties of
the flow. Since the tensor A encodes much information through each of its matrix
elements, analysis of its properties is quite challenging. Therefore, certain scalar
quantities that characterize basic properties of A have been proposed and are often
analyzed as scalar fields, e.g. the vorticity magnitude, the dissipation rate, the angle
between vorticity and the strain-rate eigenvectors, or the magnitude of the rotation
tensor, to name just a few.

One of the primary challenges in turbulence research is to endow the traditional
statistical analysis of metrics with more geometrical insights into the overall structure
of turbulence affecting more than one specific property. Even though a number of
different feature metrics are known, no single feature can alone explain all relevant
effects. This means that different features must be explored simultaneously and
in an interactive fashion, to be seen in relation to each other. Only then can one
proceed with evaluating more meaningful statistical metrics. For example, one would
like to visualize the high vorticity, high rotation, or high @) regions in the flow, but
in relation with the alignments of the local strain-rate eigen-directions, or together
with another scalar field such as R. Particularly the question whether the geometric
trends in the small-scale turbulence structures are also shared by the coarse-grained
(or filtered) velocity gradient tensor plays a determining role in turbulence research.
A visual indication of the relationship between velocity increments and the filtered
velocity gradients at coarser scales can enable further insights into the complicated
multiscale behavior of turbulence.

The visual exploration of many different intrinsic features of turbulence, however, is

very challenging. The major reason is that the fine-scale structures are fully resolved

99

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

only at the very highest resolution in both space and time. For instance, I address the
visualization of two terascale turbulence simulations, each comprised of one thousand
time steps of size 10243, making every time step as large as 12 GB at 3 floating-point
values per velocity sample. These data sets contain direct numerical simulations of
forced isotropic turbulence (see Fig. 5.1, left) and magneto-hydrodynamic turbulence
(see Fig. 5.1, middle and right), respectively. For a detailed descriptions of the sim-
ulation and database methods used let us refer to the work of Li et al. [LPW*08]
and the web page at http://turbulence.pha. jhu.edu. For such data it is simply
not feasible to precompute multiple feature volumes and inspect these volumes si-
multaneously, in particular because the number of potentially interesting features
and scales is so large. Furthermore, to be able to faithfully represent even the small-
est features in the data, highly accurate reconstruction schemes are necessary which
work directly on the turbulence field by reconstructing features during visualization.

As a consequence, visualization systems necessary to explore the full turbulence
spectrum require an innovative approach that provides extreme /O capabilities, com-
bined with computational resources that allow for an efficient feature reconstruction
and rendering. Since the data to be visualized is so large that even storing one single
time step in CPU memory can become problematic, bandwidth limitations in paging
the data from disk become a major bottleneck.

Following the requirements in turbulence visualization, I have developed a new
holistic approach which combines scalable data streaming and feature-based visu-
alization with novel hardware and software solutions, such as a deep integration of
GPU computing. I employ the capabilities of GPU-based data compression using
CUDACOMPRESS to reduce memory access and bandwidth limitations. Because my
approach reduces disk access and CPU-GPU data transfer, it is suitable for the anal-
ysis of small-scale turbulence structures on desktop systems which are not equipped
with large main memory. To preserve even the finest structures, feature extraction is
embedded into the visualization process, based on the direct computation of vector
field derivatives and on-the-fly evaluation of feature metrics based on the gradient
tensor.

My system distinguishes from previous approaches for visualizing turbulent flow
fields in that it eases bandwidth and memory limitations throughout the entire visu-

alization pipeline. In particular, the system

100

http://turbulence.pha.jhu.edu

5.2 RELATED WORK

e compresses vector data at very high fidelity,

e works on the compressed data up to the GPU, using on-the-fly GPU decom-

pression and rendering,
e enables caching of derived feature volumes via on-the-fly GPU compression, and

e provides multiscale feature visualization via on-the-fly gradient tensor evalua-

tion.

The remainder of this chapter is structured in the following way: First, I review
previous systems and algorithms for the visualization of large volumetric data sets.
In Section 5.3, I then give an overview of the system, including its internal structuring
as well as the basic functionality in a nutshell. The aim is describing what the system
provides and how this is achieved, but not to answer the question why the particular
choices have been made. This question is addressed in the upcoming Section 5.4
where I motivate the design decisions and discuss trade-offs involved in making the
system practical for visualizing large turbulence simulations. This also involves the
demonstration of some advanced features which are made possible by these choices.
I describe the streaming and visualization performance of the system and discuss its
preprocessing costs in Section 5.5. Finally, I conclude the chapter in Section 5.6 with
some ideas for future enhancements and extensions of the system.

5.2 Related Work

Previous efforts in large volume visualization can be classified into two major cate-
gories: a) Parallelization and b) data compression and out-of-core strategies. There
is a vast body of literature on parallelization strategies for volume visualization on
parallel computer architectures and a comprehensive review is beyond the scope of
this work; however, some of the most recent works have addressed volume rendering
on both GPU [FCS*10, MAWM11] and CPU [HBC10] clusters.

A different avenue of research has addressed the visualization of large volumetric
data on desktop PCs. These works employ out-of-core techniques to dynamically
load only the required part of a data set into memory, and many employ some form

of compression to reduce the immense data volume. The most recent works focussing

101

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

on the direct rendering of large-scale volume data [CNLE09, GMI08, FSK13] employ
an octree of volume bricks. During rendering, the octree is traversed on the GPU and
visited nodes are tagged for refinement or coarsening. The tags are read back to the
CPU which then updates the GPU working set accordingly. Such approaches allow
for on-demand streaming of data and efficient rendering in a single pass, provided that
all data required for the current view is available in GPU memory. In turbulent flow
fields, however, using a lower-resolution approximation of the velocity data results in
a significant distortion of the extracted features and is thus not admissible.

5.3 System Functionality, Algorithms, and Features

My approach begins with a sequence of 3D turbulent motion fields, each given on a
Cartesian grid. In a preprocess, each vector field is partitioned into a set of equally
sized bricks. An overlap between adjacent bricks enables proper interpolation at
brick boundaries. Every brick is compressed separately and written to disk. The
preprocess is outlined in Fig. 5.2.

PREPROCESS

EEEN

Velocity Volume Bricks with Overlap Compressed Bricks

Figure 5.2: Preprocessing pipeline.

5.3.1 Compression Algorithm

Once the bricked volume representation has been constructed, each brick is com-
pressed using CUDACOMPRESS. A two-level DWT is performed separately on each
component of the velocity vectors using the CDF 9/7 wavelet [CDF92]. The floating-
point wavelet coefficients C; are quantized into integer values ¢; via standard scalar
dead-zone quantization, i.e. ¢; = sign(C;) [|Ci|/A;], where A; is the quantization
step that is used at level [of the wavelet pyramid. Because the coefficients at coarser

102

5.3 SYSTEM FUNCTIONALITY, ALGORITHMS, AND FEATURES

scales carry more energy than the coefficients at smaller scales, the quantization steps
are decreased with increasing scale, i.e. starting at the finest level [= 0 with a user-
defined step size Ag, on subsequent levels the step size is set to A; = Ay / (2v/2)".
Here, A, provides control over the compression ratio and reconstruction quality.
The quantized wavelet coefficients are finally concatenated into a sequential coeffi-
cient stream in scan-line order. Finally, run-length encoding followed by a Huffman
encoding converts the coefficient stream into a highly compact form.

5.3.2 Visualization Algorithm

For visualizing the 3D vector field, my system uses GPU ray-casting on the bricked
volume representation [KWO03]. At every sample point along a ray, one or multiple
scalar features are derived from the velocity gradient tensor (see Section 5.3.3), and
the respective values are mapped to color and opacity. The velocity gradient tensor
is computed on-the-fly via central differences between interpolated velocity values.
The system supports trilinear interpolation for fast previewing purposes and tricubic
interpolation [SH05, RtHRS08] for high-quality visualization. The visual difference
between trilinear and tricubic interpolation is demonstrated in Fig. 5.4. For shading
purposes, gradients are approximated locally by central differences on six additional
feature samples.

The bricks are traversed on the CPU in front-to-back order. If the compressed rep-
resentation of the current brick is not residing in CPU memory, it is loaded from disk
and cached in RAM using a LRU strategy. After all data for the current time step has
been loaded, the CPU starts prefetching subsequent time steps asynchronously. The
brick is then streamed to the GPU, where a CUDA kernel is executed to decompress
the data and store it in texture memory. My system leverages GPU texture memory
to take advantage of hardware-supported texture filtering. Streaming to the GPU
works asynchronously, meaning that the transmission stalls neither the CPU nor the
GPU.

Once the data has been decompressed, a CUDA ray-casting kernel is launched. It
invokes one thread for every pixel covered by the screen-aligned rectangle enclosing
the projected vertices of the brick’s bounding box. Each thread first determines if the
respective view ray intersects the bounding box and terminates if no hit was detected.

103

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Otherwise, the current frame buffer content at the pixel position is read, and the brick
data is re-sampled along the ray to obtain the color and opacity contribution to be
accumulated with the current values. Early ray termination is performed whenever
the opacity has reached a value of 0.99. Fig. 5.3 illustrates the basic system data

flow at runtime.

RUNTIME

CPU GPU

3
Disk EEEm.- B i =
Compressed Bricks

Figure 5.3: Basic system data flow at runtime.

Based on a set of basic rendering modalities, i.e. direct volume rendering (DVR)
including iso-surface rendering and scale-invariant volume rendering [Kra05], my sys-
tem supports a number of different visualization options, for example, the simulta-
neous rendering of iso-surfaces of multiple turbulence features, or a combination of
different techniques such as DVR and iso-surface rendering. Furthermore, a compar-
ative visualization of the same feature at different scales is supported by enabling
simultaneous operations on the initial and filtered data (see Section 5.4.3). The vi-
sualization of features can also be made dependent on the existence or properties of
other features. Some examples of different visualization options are shown in Figs. 5.1
and 5.5.

5.3.3 Turbulence Features

In my system, turbulence features are derived from the velocity gradient tensor. The
gradient fields of fluid velocity provide a rich characterization of the local quantitative
and qualitative behavior of flows, which is evident from the linear approximation in

the neighborhood of an arbitrary point,

Xp - Ui(X, t) = Ui(Xo,t) + AlJ(Xo,t)(Z’] — 5U03> + ...

104

5.3 SYSTEM FUNCTIONALITY, ALGORITHMS, AND FEATURES

Figure 5.4: Comparison of trilinear (left) vs. tricubic (right) filtering when rendering iso-
surfaces. With trilinear interpolation, the silhouettes of high-frequent iso-surfaces are
poorly resolved.

Since A is a second-rank tensor, it has nine components in 3D and these contain rich
information about the local properties of the flow. The decomposition

A;; = Si; +Qyj, where S;; = % (Aij +Aji), Q= % (Aij — Aji),

is commonplace and separates A into its symmetric part, the strain-rate tensor S,
and its antisymmetric part, the rotation-rate tensor 2. The tensor S has three real
eigenvalues \; that in incompressible flow add up to zero. In the non-degenerate
case when they are different, the tensor S has three orthogonal eigenvectors that
define the principal axes of S. These indicate directions of maximum rate of fluid
extension (A, > 0) and contraction (A, < 0), and an intermediate fluid deformation
that can be either extending or contracting in the third direction. €2 describes the
magnitude and direction of the rate of rotation of fluid elements and is simply related
to the vorticity vector w = V x u. Since the tensor A encodes much information
through each of its matrix elements, an analysis of its properties is quite challenging.
Therefore, certain scalar quantities that characterize basic properties of A have been

proposed and are often analyzed as scalar fields.

For example, it has been found convenient to define the following five scalar invari-

105

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.5: Turbulence visualizations. (a) Direct volume rendering of E. (b) Two semi-
transparent iso-surfaces of Qunt. (¢) Fine-scale iso-surfaces (gray) and coarse-scale iso-
surfaces colored by vorticity direction. (d) Direct volume rendering of Ag; negative values
are red, positive values green.

106

5.3 SYSTEM FUNCTIONALITY, ALGORITHMS, AND FEATURES

ants [Can92, MOCS98]:

. 1 1.3 3
Q= —§Trace(A2) = —5141']' Aji =) > DA Aji,

i=1 j=1

1
R == Ay Ay A
1

1
Qs = =555, Rs = =355, V* = Sj; Sinwjwr.

Additional commonplace, Galilean invariant vortex definitions involve non-trivial
combinations of A, S and €2, such as the Quunt and Acpeng criteria [CPC90, Hal05,
HWMSS|:

_ 1 2 2 o QHunt 3 detA 2
QHunt - 5 (|Q| - ’S’) > 07 AChong — (3) + 9 > 0.

Further vortex classifications employ additional information from the vorticity, or
eigenvalues through an eigendecomposition of symmetric tensors. For example, the
Ao criterion [JH95] identifies vortex regions by A < 0, where)\ is the second largest
eigenvalue of the symmetric tensor S? + Q%. Another option is the enstrophy pro-
duction, which is defined as £ = S;jw;w;.

One striking observation in turbulence research was the preferential vorticity align-
ment found by Ashurst et al. [AKKG87]. They observed that the most likely align-
ment of the vorticity vector w was with the intermediate eigenvector B¢, the direction
corresponding to the eigenvalue Ag that could be either positive or negative. For a
random structureless gradient field, no such preferred alignment would be expected,
and on naive grounds one might have expected the vorticity to align with the most
extensive straining direction instead. Therefore, the observations generated sustained
interest in the problem of alignment properties of the vorticity field and relationships
with features related to the strain-rate tensor—e.g. its eigenvectors’ directions. For
this reason, my system provides mappings of the vector components of w as well
as the eigenvectors ag, fs,vs of the strain-rate tensor to RGB colors during volume
ray-casting.

Besides analyzing the small-scale turbulence structures, a substantial amount of

107

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

research has been devoted to the statistical features of velocity increments in the iner-
tial range [Fri95, SA97]. In particular, it has been shown that a relationship between
fine-grained velocity gradients and coarse-grained or filtered velocity gradients can
be established. The coarse-grained gradients are computed by a convolution kernel,
usually an averaging box filter. To enable a visual multiscale analysis of turbulence,
my system allows simultaneously extracting and visualizing features from filtered ve-
locity fields at different user-selected scales. As filtering and differentiation are linear
operations, filtering is performed on the velocity vector field instead of the gradient
tensor field.

5.4 Design Decisions and Tradeoffs

I now consider some of the decisions made in the implementation of the system
that make it suitable for visualizing large turbulence data. In particular, I want
to emphasize the possible trade-offs that allow the user to choose between highest
quality and highest speed. Despite the careful design of the system with regard to
the application-specific requirements, not always can it respond interactively to the
user inputs. This is because of the extreme amounts of data to be processed and
the complex shaders to be evaluated. However, the results demonstrate a system
performance that facilitates an interactive exploration for most of the supported
visualization options.

The bricked data representation the system builds upon is necessary to keep the
chunks of data that are processed at runtime manageable. In addition, the bricked
representation has the advantage of enabling view frustum culling, resulting in a
considerable reduction of the data to be streamed to the GPU. The integration of
occlusion culling is also possible, but the turbulence structures are typically so small
and scattered that no significant gain can be expected. I also want to mention
that level-of-detail rendering strategies as they are typically employed in volume ray-
casting have not been considered, because the continuous transition between multiple
scales of turbulence in one image has been determined inappropriate by turbulence
researchers.

To avoid access to neighboring bricks in trilinear/tricubic data interpolation and

gradient computation, a 4-voxel-wide overlap is stored around each brick. Thus, the

108

5.4 DESIGN DECISIONS AND TRADEOFFS

smaller the bricks, the more additional memory is required to store the overlaps. Ad-
ditionally, the larger the bricks, the fewer disk seek operations have to be performed
for reading the bricks from disk. Consequently, the bricks are as large as possible,
with the constraint that at least four decompressed bricks should fit into GPU mem-
ory as a working set. The system uses a brick size of 2482, so that a brick including
the overlap can be stored in a texture of size 2563. This results in a memory overhead
of about 10%.

5.4.1 Feature Reconstruction

The visualization system by default reconstructs turbulence features directly from
the velocity field during ray-casting. It is also possible to precompute scalar feature
volumes in a preprocess and to visualize these volumes. However, such an approach
is problematic in the current scenario. First, it would cause a significant increase of
the overall memory consumption. Second, the system would become inflexible to the
extent of the precomputed features, prohibiting an interactive steering of the feature
extraction processes. Third, quality losses are introduced by re-sampling a scalar

feature volume instead of a direct feature reconstruction.

Two examples demonstrating the quality differences are shown in Fig. 5.6. The
images clearly reveal that certain fine-scale structures can no longer be reconstructed
from the scalar feature volumes. Even though the principal shapes are still main-
tained, a detailed analysis of the bending, stretching, merging, and separating be-
havior of the turbulence features is no longer possible.

On the other hand, ray-casting a feature volume can be a viable approach to
obtain an overview of the turbulence structures. Therefore, my system supports the
construction and storage of scalar feature volumes for fast previewing purposes (see
also Section 5.5). Even though the construction of such a volume on the GPU is
straightforward using the system’s functionality, this volume might be too large to
be stored on the GPU in uncompressed form. The requirement to tackle this problem

has significantly steered the selection of the compression scheme.

109

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.6: Features reconstructed from the turbulent motion field (left) and from a pre-
computed scalar feature volume (right).

5.4.2 Lossy Compression

Because of the extreme data volumes to be handled, the reduction of this volume
becomes one of the most important requirements. Without any reduction, expensive
disk-to-CPU data transfer becomes the major performance bottleneck since only a
very small portion of an entire turbulence sequence can be stored in main memory.
To meet this requirement, the system incorporates a data compression layer.

In the decision which compression to use, the following aspects have been con-
sidered. First of all, it is required that no features will be destroyed due to the
compression, and that possible quality losses do not affect the features’ shapes signif-
icantly. For floating-point data, compression schemes like S3TC and vector quanti-
zation [SWO03] do not adhere to this constraint. Second, the compression ratio must
be so high that the data can be streamed from disk fast enough to keep pace with
the data processing speed. Especially due to this requirement, lossless compression
schemes are problematic. In general, lossless schemes [BR09, LI06] can only achieve

110

5.4 DESIGN DECISIONS AND TRADEOFFS

a rather moderate compression ratio.

A last consideration arises from the particular requirement of my system to gener-
ate scalar feature volumes on-the-fly for the purpose of fast previewing. This func-
tionality goes hand in hand with the possibility to efficiently compress the generated
feature volumes on the GPU, so that they can be efficiently streamed to the CPU and
buffered in RAM. While the compressed volumes could also be stored on the GPU,
the time required to transfer the compressed data between the CPU and the GPU
is negligible compared to the compression time. Thus, all generated data is always
buffered on the CPU. To support this option, an alternative data flow as illustrated
in Fig. 5.7 is realized in my system. This rules out compression schemes such as
vector quantization, because the construction of the vector codebook in the coding

phase can not be performed at sufficient rates in general.

CPU GPU

EEEE - | [wen > | B
|

Compressed Bricks
(Vector) | Compute Feature |

EEEE - | vownsrean] | B« {Eme-{f

Compressed Bricks
(Scalar)

Figure 5.7: Alternative data flows at runtime support construction and re-use of derived
feature volumes.

Lossy compression schemes based on the discrete wavelet transform, in combination
with coefficient quantization and entropy coding, are well known to achieve very high
compression rates at high fidelity [TMO01]. Compression schemes based on transform
coding also have a long tradition in visualization, for instance to reduce memory
and bandwidth limitations in volume visualization [GWGS02, NS01, Wes94, YL.95].
However, only with the possibility to perform the entire compression pipeline on
the GPU [TRAW12]—including encoding and decoding—can the full potential of
wavelet-based compression be employed for large data visualization.

111

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

60 e
/
//

50

40 // -+Isotropic PSNR
—-Isotropic SNR

30 / ~~MHD PSNR
--MHD SNR

20 \

0 1 2 3 4 5 6

bits per voxel

Figure 5.8: Rate-distortion curves showing dB (P)SNR vs. bits per voxel for two different
turbulence fields.

To assess the compression ratio and reconstruction quality of the wavelet-based
GPU coder, I have performed tests using two different turbulence simulations, each
consisting of time steps of size 10243. On each brick a two-level DWT was performed,
and the wavelet coefficients were compressed as described. Rate-distortion curves in
(P)SNR vs. bits per voxel (where each voxel contains a 3-component floating-point
vector) for both data sets are given in Fig. 5.8. In addition, Fig. 5.9 plots RMS
error vs. quantization step as well as maximum error vs. RMS error. The graphs
demonstrate that the user can directly control the compression error by choosing an
appropriate quantization step size. The rate-distortion curves demonstrate the high
reconstruction quality of the wavelet-based compression. On the other hand, they
do not provide an intuitive notion of the visual quality. Therefore, Figs. 5.10 and
5.11 compare the visual quality of the rendered structures in the compressed motion
fields to those in the original fields. For comparison purposes, different compression

rates were used.

Even though it is clear that the compression quality depends on the visualization
parameters, such as the transfer function, the selected iso-value, and on the feature
that is visualized, a component-wise wavelet transform can very effectively reduce
the memory consumption, yet it achieves a very high reconstruction quality. In

particular, in the middle images in Figs. 5.10 and 5.11 the structures are reproduced

112

5.4 DESIGN DECISIONS AND TRADEOFFS

- 5E-1 :
-+|sotropic -+|sotropic

-+MHD -+MHD

\
m
N

5E-2

5E-3
5E-3 5E-2 5E-4 5E-3 5E-2
Quantization Step Root-Mean-Square Error

Root-Mean-Square Error
(92} (92}
m m
H w
Maximum Error

n
m
IN

Figure 5.9: Graphs showing RMSE vs. quantization step, and maximum error vs. RMSE
for two different turbulence fields. RMSE and quantization step are of the same order of
magnitude, while the maximum error is consistently about 1 order of magnitude larger

than RMSE.

at almost no visual difference at a remarkable compression ratio of 32:1.

Let us finally mention that the selected compression scheme can in principle be
extended to also exploit the motion coherence between successive time steps for
increasing the compression ratio. The basic idea is to not compress every time step
separately, but rather to encode the differences between a time step and one or
more preceding or succeeding time steps. Popular video compression algorithms such
as MPEG typically employ block-based motion compensation, and this approach
has been applied to volume compression as well [GS01]. However, any temporal
prediction scheme obviously requires access to one or more other time steps to use as
input. If these time steps can not be held in RAM in uncompressed form, then such a
prediction necessarily triggers additional decompression steps and thus significantly
increases the processing time. In this application, the possible gain in compression
ratio does not justify the increase in compression/decompression time. Therefore,

my system compresses each time step separately.

113

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.10: Visual quality comparison for an iso-surface in Qunt in the isotropic turbulence
data set. Structures are reconstructed from the original vector field (top), and a compressed
version at 3.0 bpv (middle) and 1.3 bpv (bottom).

5.4.3 Multiscale Analysis

One particularly challenging endeavor in turbulence research is the analysis of the
shape and evolution of structures at different scales. To enable such an analysis, it
is necessary to filter the velocity field using a low-pass filter. A linear convolution
filter is used in practice. It can then be instructive to compare the original data
with the filtered version, or multiple instances filtered with different radii. Both the
initial and the filtered data are made accessible to the shader, and they are ray-cast
simultaneously. Many options for combined visualizations are now possible such as
iso-surfaces for different iso-values and with different colorings (Fig. 5.5 (c)), or the
conditional visualization of fine features depending on coarse features (Fig. 5.12).

Because a large range of scales may contain relevant features, these scales can not

114

5.4 DESIGN DECISIONS AND TRADEOFFS

Figure 5.11: Visual quality comparison for an iso-surface in Rg in the MHD turbulence data
set. Structures are reconstructed from the original vector field (top), and a compressed
version at 3.0 bpv (middle) and 1.3 bpv (bottom).

be precomputed but must be determined interactively at runtime. Furthermore, the
interesting scales are often quite large, requiring filter radii of 20 and more voxels,
so that an on-the-fly filtering during rendering is not feasible. The large filter radii
also make a separate filtering of each brick impossible, because values from adjacent
bricks are required in the convolution. Unfortunately it is also impossible to keep
all 26 neighbors of one brick in GPU memory at the same time, such that the bricks
required for filtering have to be streamed and accessed sequentially. As a consequence,
every brick needs to be loaded from the CPU and decompressed multiple times.

To avoid this, I have restricted my system to the execution of separable filters, i.e.
filters that can be expressed as three successive 1D filters, one along each coordinate
axis. In this case, only three filtering passes are required, and in each pass only
the two neighbors along the current filter direction need to be available. In each
pass, the bricks are traversed in an order which ensures that each brick needs to be

115

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.12: Multiscale turbulence analysis in a “focus+context” manner. Iso-surfaces in
the fine-scale data (red) are extracted only within iso-surfaces of the coarse-scale version.

decompressed only once. Fig. 5.13 illustrates this ordering.

All intermediate results and the final filtered result are compressed on the GPU
and buffered in CPU memory. Consequently, additional losses will occur besides
those which are introduced by the encoding of the initial vector field. On the other
hand, because the data becomes smoother and smoother after each filtering pass,
at the same compression ratio ever better reconstruction quality can be achieved.
In all of the examples, the additional losses were only very minor, and noticeable
differences between single-pass and multi-pass filtering on the compressed vector
field could hardly be observed. This is demonstrated in Fig. 5.14 for a particular
feature iso-surface in the isotropic turbulence data set.

116

5.5 PERFORMANCE

SRS

Y I E— I
TLZ, e
) 1 3
Figure 5.13: Brick ordering during separable filtering in the x and y dimension (left and

right, respectively). The z dimension is analogous. One exemplary working set during each
filtering pass is indicated in red.

5.5 Performance

In this section, I evaluate the performance of all components of my system and
provide accumulated timings for the most time-consuming operations. All presented
timings were performed on a desktop PC with an Intel Xeon E5520 CPU (quad core,
2266 MHz), 12 GB of DDR3-1066 RAM, an NVIDIA GeForce GTX 580 graphics
card with 1.5 GB of video memory, and a standard hard disk providing a sustained
data rate of about 100 MB/s.

The statistics are based on the two terascale turbulence simulations referenced in
Section 5.1 and shown in Fig. 5.1. EKach comprises one thousand turbulent motion
fields of size 1024. The vector samples are stored as 3 floating-point values. Both
data sets were compressed to 3.0 bpv at a compression ratio of 32:1. The compression
ratios for individual bricks ranged from 53:1 to 22:1, depending on their content.
The performance of all operations in my system scales roughly linearly in the spatial
resolution of the data, so the system performance for data sets of different sizes can
be easily extrapolated from the numbers listed below.

Although preprocessing time is not as important as visualization time, it is still
significant for the practical visualization of very large data sets. On the test hardware,
preprocessing takes about 3 minutes per time step. The majority of this time is spent
reading the uncompressed data from disk; the compression of one time step—once
stored in CPU memory—takes only about 10 seconds. This time includes the upload

117

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

Figure 5.14: Ay iso-surface in an isotropic turbulence simulation. Left: A 3D smoothing
filter with support 25 was applied to the compressed vector field in one pass. Right: The
same filter as before was used, but now the filter was separated and filtering was performed
in 3 passes. After each pass, the intermediate results were compressed and buffered on the
CPU.

of the raw data to the GPU, the compression on the GPU, and the download of the
compressed data to the CPU.

Table 5.1 summarizes typical timings for visualizing one compressed brick of size
2562 and one compressed time step consisting of 5 bricks. I give separate times for
data streaming and compression, performing data operations on the GPU, and ren-
dering. For comparison, the statistics also include timings for an uncompressed data
set. Rendering was always to a 1024 x 1024 viewport. The entire volume was shown
so that view-frustum culling did not have any effect—in zoomed-in views where some
bricks can be culled, decompression and ray-casting are faster accordingly. Further-
more, high transparency was assigned to the structures to eliminate any effects of
early ray termination. Which feature metric was used had no significant effect on the
performance. Since the visualization performance for different time steps and for the
two different data sets was very similar, they are not listed separately in the table.

One can see that the upload and decompression of all bricks of one time step takes
3.0 seconds. This is slightly faster than the upload of the uncompressed data, which
takes 3.2 seconds at a throughput of 4.2 GB/s over PCI-E. It has to be mentioned,
however, that the decompression on the GPU blocks the GPU so that no other
tasks can be performed. When uploading uncompressed data, the data transfer

118

5.5 PERFORMANCE

Table 5.1: Timings for individual system components. Where appropriate, values are given

as min—-avg-max.

Data streaming per brick per time step
Read from disk 35-60-88 ms 4.2's
Upload & decompress (vector-valued) 18-32-39 ms 3.0s
Compress & download (vector-valued) 48-105-230 ms 10.3 s
Upload & decompress (scalar) 7-14-16 ms 1.3s
Compress & download (scalar) 23-43-56 ms 42s
GPU processing per brick per time step
Compute metric 28 ms 2.1s
Filter (per pass) 3.9 ms 0.3s
Rendering per brick per time step
Ray-cast, on-the-fly feature, trilinear 6—25-35 ms 2.1s
Ray-cast, on-the-fly feature, tricubic 27-150-205 ms 12.1s
Ray-cast, multiscale, tricubic 54-305-415 ms 244 s
Ray-cast, precomp. feature, trilinear 0.8-2.3-3.9 ms 0.2 s
Ray-cast, precomp. feature, tricubic 1.7-6.5-10 ms 0.6 s
Data streaming (uncompressed) per brick per time step
Read from disk 19s 2.3 min
Upload or download (vector-valued) 34 ms 3.2s
Upload or download (scalar) 11 ms 1.1s

119

Figure 5.15: Visualizations of forced isotropic turbulence.
the whole data set. Images
Velocity magnitude.
tensor (from left to right: Qunt,

(a) Direct volume rendering of the velocity magnitude in

show a closeup on a 2563
Vorticity magnitude. Images (d-f)

subregion at the center of the simulation domain. (b)
show iso-surfaces of invariants of the velocity gradient
, iso-surfaces of a value equal to 1.0E-2 are shown.

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

In all three images

120

5.5 PERFORMANCE

Table 5.2: Aggregate timings for some common scenarios.

Scenario startup per frame
Preview rendering (precomp. feature, trilinear) 9.3 s 1.5s
Standard rendering (on-the-fly feature, trilinear) 0.0 s 4.9 s
HQ rendering (on-the-fly feature, tricubic) 0.0s 15.1s
HQ rendering w/ multiscale analysis 40.8 s 29.8 s

could be performed in parallel with other GPU tasks, such as rendering. Thus,
operations on uncompressed data are usually slightly faster than the operations on
the compressed data, but only if the data is already available in CPU memory. This
can not be assumed in general, e.g. when stepping through multiple time steps, or
when multiple (e.g. filtered) volumes are required simultaneously (see Sections 5.3.2
and 5.4.3). Whenever disk access becomes necessary, working on the compressed
data becomes significantly faster. Reading a single compressed time step from disk
takes only about 4.2 seconds. Additionally, reading can be performed concurrently
with decompression and rendering, and, thus, it can usually be hidden completely.

In contrast, reading an uncompressed time step from disk takes about 2.3 minutes.

The display rates that my system achieves can not be compared to those reported
for ray-casting of large scalar fields [CNLE09, GMIO§], even though volume ray-
casting on the bricked velocity field representation is used. This is because a) clas-
sical volume ray-casting systems make use of level-of-detail rendering, which is not
admissible in this application, and b) exploit empty space skipping, which has no ef-
fect with data sets that do not contain empty space. It is also worth mentioning that
my system executes much more complex shaders for feature reconstruction. Here,
high-quality visualization using on-the-fly feature extraction and tricubic interpola-
tion takes about 15.1 seconds, of which only 3 seconds are required for decompressing
the velocity field and 12.1 seconds are required for ray-casting. The reason lies in
the extremely complex shaders on the velocity gradient tensor, which are evaluated
at every sample point to evaluate the selected feature metrics. As an alternative, a
preview-quality visualization of a precomputed scalar feature volume using trilinear

interpolation takes about 1.5 seconds. The computation and compression of a scalar

121

5 TURBULENCE VISUALIZATION: VOLUME RENDERING

feature volume from a compressed vector field requires about 9.3 seconds. If the
whole feature volume can be stored on the GPU, e.g. on a Quadro or Tesla card with
4-6 GB of video memory, rendering takes only 0.2 seconds. Since in this case the
feature volume does not need to be compressed, it can be generated on the GPU in
about 5.1 seconds.

Filtering of the 3D velocity field is a very expensive operation. It requires the
entire data set to be uploaded to the GPU, decompressed, filtered, and compressed.
All this must be done once per dimension. Even though the raw compute time to
filter the data on the GPU is only 0.3 seconds per filtering pass for a filter with a
support of 51, it takes about 40 seconds until the result is available in CPU memory.
This time is vastly dominated by the GPU decompression, and in particular the
GPU compression of the intermediate and final results. Compression is about three
times as expensive as decompression because the run-length and Huffman encoders
are more complex than the respective decoders [TRAW12]. In particular, Huffman
encoding requires a round-trip to the CPU, where the Huffman table is constructed.
Table 5.2 summarizes the startup and per-frame time required for some common
scenarios as outlined above. These times do not include the times required to load
the data from disk because disk access is performed concurrently with rendering and
processing and can usually be hidden.

From the measured timing statistics it becomes clear that for the given data sets
my system can not achieve fully interactive display rates. The reason is that the
system was developed with the intent of visualizing extremely large turbulence data
sets. This requires complex shaders for feature extraction to provide the significant
amounts of fine detail at the smallest scale. However, the memory-efficient design of

the system makes it well suited for implementation on desktop machines.

5.6 Conclusion

In this chapter, I have presented a system for the exploration of very large and time-
dependent turbulence data on desktop PCs. The interactive exploration of terascale
data with limited available memory and bandwidth is made possible by the integra-
tion of a GPU-based compression scheme. The CcUDACOMPRESS library provides fast
GPU implementations of both compression and decompression which are necessary

122

5.6 CONCLUSION

for fast streaming of velocity data and the efficient storage of derived data. The
very high quality of the compression ensures the faithful preservation of turbulence
features. A preview mode in the renderer based on precomputed feature volumes al-
lows the interactive navigation to features of interest at only slightly reduced quality.
On the other hand, the high-quality rendering of time-dependent image sequences is
accelerated by an order of magnitude compared to the use of uncompressed data.

By using my system, a turbulence researcher can interactively explore terascale
data sets and tune visualization parameters. For instance, a 70-year-old result on
magnetic “flux-freezing” could recently be disproved using interactive visualization of
fully resolved turbulence [EVL*13]. Additionally, a trend has been discovered with
the help of my system which had not been observed before: In multiscale visual-
izations such as Fig. 5.12; the large-scale vortices contain small-scale vortices that
appear to form helical bundles within the large-scale vortices. These visualizations
suggest new statistical measures such as the alignment angle between large- and
small-scale vorticity, to be implemented in future research as a result of the present
observations.

While the current system is tailored for desktop PC systems, I believe that many
of the presented techniques also have applications in supercomputing. When moving
to the petascale, numerical simulations at unprecedented resolution and complexity
will become possible, going beyond even the present turbulence data sets. Although
the raw compute power of separate visualization computers keeps pace with those
of supercomputers, bandwidth and memory issues in networking and file storage
present significant restrictions. For visualizing the peta- or even exabytes of data we
will be confronted with, writing the raw data to disk or moving it across the network
has to be avoided. A promising direction for future research is the integration of
a compression layer similar to the one used here, which could alleviate bandwidth

limitations between compute nodes and the visualization system.

123

Turbulence Visualization: Particle Tracing

As the third and final application of GPU compression using CUDACOMPRESS, |
present a particle tracing system designed for very large flow fields [TW13]. Since
particles can move along arbitrary paths through large parts of the domain, parti-
cle integration requires access to the entire field in an unpredictable order. Thus,
techniques for particle tracing in such fields require a careful design to reduce perfor-
mance constraints caused by memory and communication bandwidth. One possibility
to achieve this is data compression, but so far it has been considered rather hesitantly
due to supposed accuracy issues. I investigate the use of data compression for tur-
bulent vector fields, motivated by the observation that particle traces are always
afflicted with inaccuracy. I therefore integrate a data compression layer based on
CUDACOMPRESS into a block-based particle tracing approach. I quantitatively ana-
lyze the additional inaccuracies caused by lossy compression. Furthermore, I present
a priority-based GPU caching scheme to reduce memory access operations. I confirm
through experiments that the compression has only minor impact on the accuracy of
the trajectories, and that on a desktop PC my application can achieve comparable
performance to previous approaches on supercomputers.

6.1 Introduction

One of the most intriguing and yet to be fully understood aspects in turbulence re-

search is the statistics of Lagrangian fluid particles transported by a fully developed

125

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

Figure 6.1: Stream lines in Mix (3072 x 600 x 1024; left; with iso-surfaces of vorticity
magnitude) and MHD (10243; right), generated by my system in 2.0 and 4.4 seconds,
respectively, including disk I/0O.

turbulent flow. Here, a fluid particle is considered a point moving with the local
velocity of the fluid continuum. The analysis of Lagrangian statistics is usually per-
formed numerically by following the time trajectories of fluid particles in numerically
simulated turbulent fields. Let x(y,t) and u(y,t) denote the position and velocity
at time t of a fluid particle originating at position y at time ¢t = 0. The equation of
motion of the particle is

Ix(y,1)

—~ =u(y,t),
Y (v:1)

subject to the initial condition

x(y,0) =y.

The Lagrangian velocity u(y,t) is related to the Eulerian velocity u*(y,t) via
u(y,t) = ut(x(y,t),t). By using a numerical integration scheme, the trajectory of a
particle released into the flow can now be approximated.

Particle tracing in discrete velocity fields of a sufficient spatial and temporal reso-
lution to resolve the higher wavenumber components in turbulent flows is nonetheless
difficult. For reasonably-sized particle ensembles, the performance is strongly limited
by the available memory bandwidth capacities due to the massive amount of data
to be accessed during particle tracing. In particular the fact that particle trajecto-
ries often traverse large parts of the spatial domain and even turn back into regions
already visited makes efficient data caching and parallelization strategies difficult to
realize. As a consequence, up to now particle tracing in fully resolved turbulence

126

6.1 INTRODUCTION

Wign
g
g

W
il
wngn
ninfn =
L0 T e
=
LI T
W falw
=
LT [T D

Figure 6.2: Stream lines in Mix, clearly showing the fast-moving fluid on the top and the slow-moving fluid on the
bottom, as well as the turbulent mixing layer in between. The lines were generated in 6.4 seconds including disk 1/0,

and are rendered with a striped texture to indicate the local velocity. Each stripe corresponds to a time interval of

equal size.
Figure 6.3: Stream lines (left) and path lines (right) in Iso (10243 x 1024), created in 0.8 and 42 seconds including

disk 1/0.

127

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

fields has mainly been performed in a non-interactive way.

However, especially the possibility to interactively visualize the motion of turbu-
lence features evolving with the flow can significantly improve our understanding of
the properties of the turbulence small-scale structures [BTW*12]. To achieve similar
insights related to Lagrangian statistics of turbulent flows, novel mechanisms and
systems are required to enable interactivity.

In this chapter, I present a system for particle tracing in fully resolved turbulent
flow fields which intertwines scalable data streaming and GPU particle integration
to reduce bandwidth requirements and exploit parallelism among many particles. To
handle the immense data volume, I employ the following strategies: The velocity field
is subdivided in a brick-based partitioning scheme to create reasonably-sized units
of data. The individual bricks are compressed using CUDACOMPRESS to alleviate
bandwidth and memory constraints. Additionally, I introduce a novel caching strat-
egy on the GPU to further reduce bandwidth limitations. This is necessary because
in particle tracing the order in which the bricks are accessed depends on the selected
trajectories.

I devote particular consideration to the quantization error that is introduced by
the compression scheme. It is well known in turbulence research that in fully resolved
turbulent flow fields, interpolation is the major source of errors in numerical particle
tracing. This is due to the fact that turbulent velocity fields are highly nonlinear.
The time-stepping error in numerical integration is generally much less significant,
because the time-step is restricted to small values by enforcing the Courant number
stability condition. The interpolation errors accumulate and are transmitted to the
calculated trajectories. Thus, before embedding a lossy data compression scheme
into particle tracing, one has to carefully analyze the additional inaccuracies that are
introduced by that scheme.

I analyze the additional inaccuracies in particle trajectories which are caused by
the compression of the turbulent vector field. As one major contribution, I show
that these inaccuracies are in the same regions of variation as the inaccuracies due
to interpolation.

I use four vector-valued data sets describing turbulent flow fields to validate my
methods. Two terascale turbulence simulations originate from the JHU turbulence

database cluster and are publicly available at http://turbulence.pha. jhu.edu.

128

http://turbulence.pha.jhu.edu

6.2 RELATED WORK

Each is comprised of one thousand time steps of size 10242, making every time step
as large as 12 GB at 3 floating-point values per velocity sample. The data sets con-
tain direct numerical simulations of magneto-hydrodynamic (MHD) turbulence (see
Fig. 6.1 (right) and Fig. 6.5) and forced isotropic turbulence (see Fig. 6.3), and are
called “MHD” and “Iso” in the following. For a description of the simulation meth-
ods used to compute these data sets, refer to Li et al. [LPW*08]. The third data
set, “Mix”, involves a spatially developing mixing layer between two fluids entering
the simulation volume at different velocities [AB12] (Fig. 6.1 (left) and Fig. 6.2). I
use the final time step (at ¢ = 11650) with a spatial resolution of 3072 x 600 x 1024
(21.1 GB). The fourth data set, “Hom”, contains homogeneous turbulence in flow
around solid particles (see Fig. 6.4) and has a resolution of 2048 x 2048 x 4096
(192 GB) [Uhl05, DU13|.

The remainder of this chapter is organized as follows: Next, I review previous work
on particle tracing. I then give an overview of the architecture of the proposed out-of-
core particle tracing system in Section 6.3, including the underlying data structures
and algorithms as well as the GPU caching scheme. Section 6.4 briefly describes the
used compression scheme, and I discuss the error-sensitive adaptive compression. I
continue in Section 6.5 with a detailed accuracy analysis of particle trajectories in the
presence of lossy compression, and I relate the compression errors to those introduced
in other parts of the computation. Next, a performance evaluation is given, including
a comparison to previous approaches. I conclude the chapter in Section 6.6 with some

remarks on future research.

6.2 Related Work

I do not attempt here to survey the vast body of literature related to flow visualization
approaches based on stream and path line integration because they are standard in
flow visualization. For a thorough overview, however, let me refer to the reports by
Post et al. [PVH*03], Laramee et al. [LHD*04], and McLoughlin et al. [MLP*10].
Teitzel et al. [TGE97] put special emphasis on the investigation of the numerical
integration error and the error introduced by interpolation. They conclude that an
RK3(2) integration scheme provides sufficient accuracy compared to linear interpo-

lation, but they do not consider higher-order interpolation methods. There is also

129

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

Figure 6.4: Stream lines in Hom (2048 x 2048 x 4096), generated in 1.8 seconds including
disk I/0.

a number of works dealing especially with accuracy issues of particle tracing in tur-
bulence fields [YP88, BM89, RHB94|. One of the conclusions was that Lagrange
interpolation of order 4 to 6 provides sufficient accuracy, and it is therefore often
used in practice (cf. Li et al. [LPW*08]).

The use of graphics hardware is popular for interactive particle tracing [SGvR*03,
KKKWO05, SBK06, BSK*07, Mur12]. The fundamental problem in GPU-based ap-
proaches is the limited memory available on such architectures, allowing only data
sets of moderate size to be handled efficiently. To the best of my knowledge, no
previous approach has addressed the problem of GPU particle tracing when even a
single time step does not fit into GPU memory.

Precomputed particle traces: In a number of approaches it has been proposed
to precompute and store particle trajectories for a number of prescribed seed points,
and to restrict the visualization to subsets of these trajectories [Lan94, BKHJO01,
EGMO04]. In this way, all computation is shifted to the preprocessing stage, and
storage as well as bandwidth limitations at runtime can be overcome.

Conceptually, the approach to restrict the flow field analysis to a set of precom-
puted trajectories can be seen as a kind of lossy data compression, where the seeding
positions are quantized rather than the flow data itself. However, since even very
small perturbations of the seeding positions can lead to vastly different trajectories,
the resulting visualizations might not contain all relevant structures that are present
in the data.

130

6.2 RELATED WORK

Figure 6.5: All eddies are not created equal. Left: Path lines in one eddy in the MHD data
set. Middle: A side view reveals that most particles stay roughly in the plane of rotation.
Right: In another eddy, there is much stronger movement in the normal direction.

Parallelization on compute clusters: Another possibility to address scalabil-
ity issues in particle tracing is to employ parallel computing architectures such as
tightly coupled CPU clusters or supercomputers. The larger memory capacities and
I/O bandwidth on such systems make them attractive for handling large data sets.
However, the highly data-dependent nature of particle tracing makes it difficult to
effectively parallelize particle tracing on large distributed memory architectures.

There are two basic parallelization strategies, called parallelize-over-seeds (PoS)
and parallelize-over-blocks (PoB) [PCG*09]. In both strategies, the data set is parti-
tioned into blocks. In PoS,; the seeding positions are distributed over the processors,
and each processor dynamically loads those blocks required by its particles. This
usually leads to fairly even load-balancing of computations, but it also results in the
duplication of blocks in memory and increased 1/O load since a block might be ac-
cessed by many processors. In PoB, the blocks are distributed across the processors,
and each only handles particles within its assigned blocks. This avoids the duplica-
tion of blocks in memory, but causes severe load imbalance when many particles fall
into the same processor’s blocks while other processors remain idle. It also requires
communication of particle positions between processors whenever a particle enters
another processor’s domain.

A number of approaches have been presented to mitigate the drawbacks of PoS
or PoB. Pugmire et al. [PCG*09] have introduced a hybrid approach which seeks to
combine the strengths of both. Camp et al. [CGC*11] have improved the efficiency
of both PoB and PoS by making CPU cores in the same node share their memory.
With PoS, this effectively increases the size of each CPU’s block cache and thus low-

131

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

ers I/O load. With PoB, it increases the number of blocks available to each CPU
and thus lowers the amount of communication between processors. Nouanesengsy
et al. [NLS11] have attempted to improve load imbalances in PoB. They guide the
assignment of blocks to processors by an estimated workload per block based on a
precomputed flow graph which stores the probabilities of particles traveling from a
given block to any of its neighbors. This typically improves the trajectory compu-
tation times significantly, but it comes at the cost of an expensive preprocess. In
contrast to the aforementioned approaches, Peterka et al. [PRN*11] have also ad-
dressed large unsteady flow fields. They employ a PoB strategy and initially assign
blocks to processors in a round robin manner. To improve load balancing, blocks are
re-assigned in subsequent time steps based on the previous per-block load.

Yu et al. [YWMO07] perform a hierarchical clustering of a time-dependent vector
field based on the similarity between neighboring velocity vectors. Instead of fixed
bricks, they use the resulting clusters for data partitioning among processing nodes.
They avoid any inter-processor communication by tracing path lines only within each
cluster. This results in very good performance and scaling. However, it artificially
limits the length of the characteristic lines, and the seeding locations must be chosen
at or close to the cluster centers.

As reported e.g. by Camp et al. [CGC*11], particle tracing approaches on clusters
typically spend only a small fraction of the total time on the computation of particle
traces. Most of the time is spent on either node-to-node communication, 1/O, or
waiting due to load imbalances. It can be concluded that despite its embarrassingly
parallel nature, particle tracing is not very well suited for computation on distributed
memory clusters. The main benefit of such systems appears to be the large amount

of aggregated memory, which can often prevent expensive trips to external memory
such as hard disks.

6.3 Out-of-Core Particle Tracing

The proposed system for out-of-core particle tracing takes as input a sequence of 3D
velocity fields given on a Cartesian grid. Each field represents the state of a flow field
at a different time step. In a preprocess, each grid is partitioned into a set of equally-

sized bricks. A halo region is added around each brick to allow proper interpolation

132

6.3 OUT-OF-CORE PARTICLE TRACING

at brick boundaries. The bricks are compressed before being stored sequentially on
disk. An index structure is stored along with the brick data to enable fast access to
individual bricks at runtime. For one time step consisting of 10243 velocity values,
this process takes about 5 minutes.

At runtime, the computation of particle trajectories is performed on the GPU. For
that, bricks which are required to perform the numerical integration are requested
from the CPU. The CPU decides based on a particular strategy (see Section 6.3.3)
which bricks to upload to the GPU from main memory or disk. Compressed brick
data is cached in CPU memory. The compression reduces disk bandwidth require-
ments and allows caching a large number of bricks. For use on the GPU, the com-
pressed brick data is uploaded into GPU memory and immediately decompressed.
The decompressed brick is stored in a large 3D texture map, the so-called brick at-
las. In this way, all GPU memory stores ready-to-use flow data, apart from a small
temporary buffer for the upload of compressed data. In the current implementation
I use bricks of size 1283 each, including a halo region of size 4. I have found that this
size provides the best trade-off between locality of access and storage overhead for
the halo voxels. The size of the brick atlas is chosen based on the amount of available
GPU memory.

6.3.1 Particle Tracing in Rounds

Fluid particles are advected in parallel on the GPU to exploit memory bandwidth and
computational capacities. I use the CUDA programming API and issue one thread
per particle, grouped into thread blocks of size 128. Each thread advects the position
of its particle while the required flow data is available in the brick atlas. Since the
set of bricks which are required to perform the computation of all trajectories does
not fit into GPU memory in general, only a subset can be made available at a time.
An index buffer stores the mapping from spatial brick index to position in the brick
atlas. It is indexed by the 3D brick index b, which can be computed from a particle’s
position p and the brick size s as b = |p/s]|. If a brick is not currently available
in the brick atlas, the corresponding index entry contains the value —1. Fig. 6.6
illustrates the employed data structures and the CPU-GPU interaction using a 2D

example.

133

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

bricks

brick boundary

halo region

o|Oo

»

0
- __—-‘1
2

Y
W

OfF

wlOo|lO|O|O

0
1

2
requests brick atlas

Figure 6.6: Out-of-core particle tracing (2D example): (1) Particle positions are uploaded to
the GPU where trajectories are computed in parallel. Requests of required bricks are issued
(corresponding entries in the requests buffer are incremented). (2) The CPU downloads
the requests buffer, uploads some requested bricks into the GPU brick atlas, and clears the
requests buffer. The index buffer stores each brick’s index in the atlas and is also uploaded
to the GPU. (3) The GPU advects each particle until it requires a brick not yet resident in
GPU memory. The requests buffer is incremented again based on the new particle positions,
and the process continues at step (2).

To start the computation, the user specifies the number of fluid particles to trace
and the seed region in which they are spawned. Random positions inside the seed
region are stored in the particle buffer on the GPU (not shown in the figure). Particle
tracing then proceeds in a ping-pong fashion between the GPU and the CPU: The
GPU advances all particles in parallel. Whenever a particle enters a brick which is
not stored in the brick atlas (indicated by a —1 entry in the index), the GPU requests
this brick for the next round of tracing. This is realized by atomically incrementing
the corresponding entry in a requests buffer. The particle’s last position and any
additional information, such as the current step size for adaptive integrators, are
stored in the particle buffer. The GPU stops when all particles a) must stop because
they are waiting for a brick to be uploaded to the GPU, b) have reached their
maximum age, or ¢) have been advanced by a fixed maximum number of steps (64
in the current implementation). The CPU then downloads the requests buffer and
determines the bricks to be uploaded next into the atlas. With these bricks being
available on the GPU, particle tracing is restarted. The process is finished once all
particles have either reached their maximum age or left the domain.

134

6.3 OUT-OF-CORE PARTICLE TRACING

6.3.2 Tracing Across Brick Boundaries

Special care has to be taken whenever a particle moves close to a brick boundary.
In this case it has to be ensured that all velocity values required in the integration
step are available in the current brick. The number of required values depends on
the support of the interpolation kernel. Fig. 6.7 depicts the admissible locations for
velocity interpolation near a brick boundary for several interpolation schemes. For
a multi-stage integration method, not only the initial particle location but also all
intermediate stages of the integrator must lie within the admissible area. This can be
guaranteed by limiting the maximum integration step size At appropriately: When
the distance of the particle to the boundary of the admissible region in dimension ¢ is
b;, then At must be limited to min,(b;/v; max), Where v; may is the maximum absolute
value of the i'th velocity component in the region. This value is computed in the

preprocess and stored along with the brick data.

gasduesdeq

woy-[|nwied
‘yo8uesdeq
Y
gaduesSeq

halo region inside brick

brick boundary

Figure 6.7: Velocity sampling near a brick boundary. Texel boundaries are shown in gray;
grid points and cell boundaries in black. A halo region is stored to allow sampling of
velocity values in a small region outside of the brick. The size of the required halo region
depends on the interpolation scheme.

135

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

6.3.3 Heuristic Brick Selection and Paging

Since the full set of bricks required to trace a given set of particles cannot be stored
in GPU memory, subsets of these bricks have to be paged in and out, and processed
sequentially in a number of rounds. However, it can always happen that a brick
which has been paged out is later visited by some particle and has to be paged in
again. Thus, an appropriate paging strategy is required to reduce the number of
bricks which are uploaded multiple times.

Besides multiple uploads of the same brick, the paging strategy also has to take
into account the number of particles which can be advected using the currently
available bricks. The massively parallel nature of GPUs can only be exploited to its
full potential when many particles can be processed in parallel.

These two requirements, however, contradict each other: According to the first
requirement, a brick should be kept in GPU memory as long as possible to avoid
multiple uploads. Conversely, the second requirement demands that a brick through
which few or no particles are moving should be paged out immediately, so that bricks
required by a large number of particles can be paged in.

Since it is not known in advance which bricks are to be visited at which times, it
is not possible to devise an optimal paging strategy. Instead, I have devised a simple
yet very effective heuristic paging strategy which attempts to balance the two goals.
It is based on the following observations:

e Paging out a brick which is currently required by some particles will always

result in a repeated upload of this brick later on.

e A brick which is not required by any particle might be visited again later on,
so it might still be beneficial to keep it on the GPU. However, since keeping
such bricks at least currently wastes GPU memory, a balance must be found
between minimizing premature swap-outs and maximizing GPU occupancy.

e Processing spatially close bricks at the same time tends to improve brick re-
use and thus helps to avoid repeated uploads. It also increases the chances
of particles moving between available bricks within one round, which increases
the average number of active particles at any time and thus improves GPU

utilization.

136

6.3 OUT-OF-CORE PARTICLE TRACING

Based on these observations, the paging strategy operates as follows. Note that
paging out a brick does not entail any data transfer, but simply means clearing the
corresponding entry in the index buffer.

e Only bricks which are not required by any particle are ever paged out.

e A brick which is not required by any particle is kept on the GPU for a fixed
number of rounds, r, before it is paged out. I have found that paging out such
bricks after r = 4 rounds works well, with each round limited to a maximum of
64 integration steps per particle. In my experiment, increasing the value of r
could only reduce the number of brick uploads by up to 10%, while increasing
the particle advection time by an order of magnitude due to the less efficient
GPU usage. Smaller values, on the other hand, significantly increased the

number of brick uploads.

Whenever a slot in the brick atlas is available, the next brick to upload is selected

according to the following priorities:

e Only bricks required by at least one particle are considered in order to avoid

spurious uploads.
e Bricks which are required by a large number of particles are preferred.

e Bricks are favored or disfavored based on the availability of their neighbors in
GPU memory, as well as the numbers of particles their neighbors contain. Par-
ticles expected to travel between the brick under consideration and an available
neighbor result in a priority bonus in order to enhance locality and data re-use.
Particles traveling in from an unavailable neighbor result in a penalty—in this
case, it would be better to process the neighbor first, so these particles can
coalesce with those in the current brick. Finally, particles traveling out into an

unavailable neighbor carry neither bonus nor penalty.

Taking these rules into account, a heuristic load parameter, [, is computed for each
brick b as follows:

Cb - Do + /Cn - Pnb , N available in GPU memor
l(b):\/c_b—irh-z V/Cb * Pbn T /Cn " Pnp y
neN®) | —+/Cn * Db else

137

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

o 12 .
€11 %, e |so a MHD Mix ¢ Hom
s
«
21N
5094 N oo
508 3 o, aNg, y X 5
2 X4 @0o » S50 0 L4
207 il fadafiiete Zuba A
© .t T ® e el ™
E 0.6 Y :‘w.vm%.."*"“\""-m__
0.5
0 5 10 15 20 25

h parameter

Figure 6.8: Relative times for tracing 4096 stream lines in four data sets (including CPU-
GPU data transfer and GPU advection), depending on the heuristic parameter h. The
absolute times at h = 0 are 27.2, 23.3, 29.0, and 99.8 seconds for Iso, MHD, Mix, and Hom,

respectively.

This parameter is then used to assign priorities to the requested bricks. Here, ¢ is
the number of particles in brick b, and N(b) is the set of neighbors of b. p,; is the
probability of a particle from brick a traveling into brick b. Note that in general
Dab 7 Pba- These probabilities can be precomputed by tracing a number of parti-
cles within each brick and storing in which direction they leave the brick, i.e. a flow
graph (cf. [NLS11]). Computing such a flow graph for a 1024® flow field takes around
1 minute in my system excluding disk I/O. However, I have found that when a flow
graph is not available, simply substituting a constant value for the probabilities works
surprisingly well, increasing the total trajectory computation time by less than 10%
is most cases.

The user-defined parameter h > 0 is used to weight the neighborhood-based bonus
and penalty terms. Larger values correspond to a larger preference for locality.
Fig. 6.8 shows the time required to trace 4096 stream lines in four data sets for
different values of h. Choosing an appropriate value for A reduces the total tracing
time by about 30-40% in all data sets. In the following experiments, I always use a

value of h = 8.

Bricks are loaded from disk into CPU memory using the same priorities. However,
bricks which currently do not contain any active particles are also prefetched into
the cache if the disk would otherwise be idle.

138

6.3 OUT-OF-CORE PARTICLE TRACING

6.3.4 Unsteady Flow

So far, I have addressed only the case of steady flow, i.e. stream line computation.
Path lines are computed in much the same way, with some straightforward extensions
to account for the time-dependent nature of the flow. Each slot in the brick atlas now
contains multiple time steps of the same spatial brick; the number of slots is reduced
accordingly. The index records which time steps are currently available. Similarly,
the requests buffer holds not only the number of requests to a spatial brick but also
the earliest time step that was requested. The CPU also tracks the earliest time step
which was requested globally and pages out all brick time steps older than that, since
they will not be visited again by the current particles. Finally, during the selection of
bricks to upload, priority is given to older time steps, so that all path lines advance

at roughly the same speed and multiple uploads of the same data are avoided.

6.3.5 Interpolation Schemes

My system supports a number of different interpolation schemes which are used in
numerical particle integration. The simplest one is linear interpolation, which comes
“for free” on the GPU. Lagrange interpolation of order n fits a polynomial of degree
n—1 through the n grid points centered around the interpolation point. Second-order
Lagrange interpolation is thus equivalent to linear interpolation. I have implemented
4th, 6th, and 8th order Lagrange interpolation (called Lagrange4/6/8), corresponding
to cubic, quintic, and septic polynomials, respectively. It is worth noting here that
Lagrange6 can be considered one of the standard methods in turbulence research.
The application of higher-order schemes can hardly be found in the literature. Addi-
tionally, I have implemented an interpolation scheme based on Catmull-Rom splines.
This approach fits a cubic polynomial to the values and first derivatives, estimated
via central differences, at two grid points. Compared to 4th order Lagrange interpo-
lation, this has the advantage of creating a globally Cl-continuous interpolant, while
Lagrange interpolation is only C0. All described interpolation schemes are extended
to multiple dimensions by a tensor product approach.

The minimum size required by the halo around each brick depends on the size of
the chosen interpolation kernel, e.g. 2 voxels for Lagrange4 and 4 voxels for Lagrange8

(cf. Fig. 6.7). Thus, a selected halo size of 4 allows for any interpolation scheme with

139

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

a support of up to 8 voxels. If only lower-order interpolation is required, a smaller
halo size can be used which slightly reduces memory and bandwidth requirements.

6.4 Turbulent Vector Field Compression

In the absence of data compression, the performance of the proposed system for
particle tracing in large turbulence fields is vastly restricted by bandwidth limitations
when reading the data from disk. For instance, the computation of stream lines as
shown in Fig. 6.1 (right) in one single uncompressed time step involves a working set
of almost 5 GB. The visualization takes roughly 45 seconds, of which over 98% are
spent waiting for data from disk. Thus, there is a dire need for compression in order
to reduce the amount of data to be streamed.

When using data compression, the introduced compression error has to be carefully
examined. Since no error is introduced by lossless compression schemes, they might
be an attractive choice in particle tracing applications. However, for floating-point
data the achieved compression ratio is usually quite modest. For instance, the lossless
schemes proposed by Isenburg and Lindstrom [ILS05, LI06] can only compress the
turbulence data to roughly % of its original size. They achieve a decoding throughput
of about 10 million floating point values per second, corresponding to over 600 ms for
the decompression of a single 1283 grid of 3D velocities. More sophisticated prediction
schemes can slightly improve the compression ratio [FM12], but they come at the
expense of lower throughput.

In comparison, lossy GPU compression based on CUDACOMPRESS provides high
compression ratio and decompression throughput. For the present flow data, it
achieves a decoding throughput of over 650 million floating-point values per second.

6.4.1 Interpolation Error Estimate

When a lossy scheme for vector field compression is used, it is clear that the re-
constructed field is afflicted with some error compared to the initial field. At first,
this seems to preclude lossy compression schemes in particle tracing, because the
local reconstruction errors accumulate along the particle trajectories. On the other

hand, this error has to be seen in relation to the error that is inherent to particle

140

6.4 TURBULENT VECTOR FIELD COMPRESSION

trajectories even when computed in the original data. Even without compression the
reconstructed samples are not exact in general, due to the interpolation which is used
to reconstruct the data values from the initially given discrete set of samples. This in-
terpolation makes assumptions on the continuous field which, in general, do not hold.
As a consequence, it has to be accepted that the trajectories computed numerically
using interpolation diverge from those in reality, even without compression.

It therefore makes sense to choose the compression quality so that the additional
error introduced by the compression scheme is in the order of the error introduced by
interpolation. It is worth noting, however, that without additional information about
a data set it is impossible to accurately compute or even estimate the interpolation
error. In some cases, theoretical error bounds depending on higher-order derivatives
of the continuous function can be given; see, for instance, Fout and Ma [FM13] for
such a bound when linear interpolation is used. On the other hand, the derivatives of
the continuous function are typically not known exactly. In that case, such bounds
themselves come with some uncertainty. In addition, even with exact knowledge of
the derivatives, they often overestimate the actual error significantly [ZXM10].

Therefore, I have adopted a different approach to estimate the interpolation error:
I take the difference between interpolation results from a reference high-order inter-
polator and a lower-order interpolator as an estimate for the error in the low-order
interpolator. For two of the discrete turbulence data sets analyzed in this work, Iso
and MHD, an exact interpolator is known. Due to the pseudo-spectral method that
was used to simulate the turbulent motion [LPW*08], the velocity field is guaranteed
to be band-limited in the Fourier sense. As a consequence, Fourier or trigonometric
interpolation using trigonometric polynomials of infinite support gives exact veloc-
ity values between grid points [RHB94|. Due to efficiency reasons, however, what
is used in practice for particle tracing is some interpolation scheme of “sufficiently
high order” which resembles Fourier interpolation, e.g. Lagrange6. For instance, in
Fig. 6.9 (left) the trajectories using trigonometric and Lagrange6 interpolation are
compared. It is worth noting that even though in the turbulence community it is
usually agreed that Lagrangeb6 is of sufficient accuracy for particle tracing, significant
deviations from the ground truth can be observed.

In cases where a “good” interpolator for a given data set is not known, i.e. for Mix

and Hom, I use Lagrangel6 interpolation as the reference. It is clear that without

141

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

Figure 6.9: Top: Particle trajectories using trigonometric (blue) and Lagrange6 (red) inter-
polation for velocity sampling. Bottom: Particle trajectories using trigonometric interpola-
tion in the original data (blue) and Lagrange6 interpolation in compressed data (yellow) for
velocity sampling. It is worth noting that the yellow lines appear to be of similar accuracy
as the red lines.

knowledge of the exact continuous velocity field a reliable statement about the inter-

polation error is impossible. However, in the absence of any further information, the

142

6.4 TURBULENT VECTOR FIELD COMPRESSION

implied assumption of “sufficient smoothness” seems very reasonable. Otherwise, the
given discrete set of velocity samples have to be deemed insufficient for accurately
representing the continuous field.

The interpolation error over the whole volume for a given interpolator can now
be computed. I upsample the volume to four times the original resolution using
the interpolator under consideration as well as the reference interpolator. The root-
mean-square (RMS) of the difference between the upsampled volumes then is a good
approximation of the average error introduced by the interpolation. With local inter-
polators like Lagrange, this process can be done block-by-block in a straightforward
manner. For a 10243 velocity field, it takes about 2 hours to evaluate the errors
in linear and Lagrange4/6/8 interpolation vs. Lagrangel6. Trigonometric interpola-
tion, on the other hand, has to be evaluated globally. To generate the trigonometric
interpolant in a computationally efficient way, I use the following approach: First,
I perform a fast Fourier transform (FFT) on the flow field using the FFTW li-
brary [FJ05]. In the frequency domain, I then quadruple the data resolution in each
dimension by zero padding. Finally, I perform an inverse FF'T to generate a flow field
of four times the original resolution. This field agrees with the original field at every
fourth vertex, and the other vertices lie on the trigonometric interpolant between the
original data samples. Fig. 6.10 illustrates FFT-based upsampling in 1D, but only
doubling the data resolution. Generating the 4096° trigonometric interpolant from
a 1024% velocity field in this way takes about 1.5 hours including disk I/O. Given
the 40963 trigonometric interpolant, evaluating the interpolation errors in a 10243

velocity field for all four listed interpolation schemes takes another 2 hours including
disk 1/0.

6.4.2 Error-Guided Data Compression

Equipped with the average interpolation error for any chosen interpolation scheme, a
quantization step can be chosen so that the compression error is equal to or falls below
the interpolation error. In the wavelet-based scheme provided by cUDACOMPRESS,
the average error is roughly equal in magnitude to the quantization step and, thus, the
acceptable error is a reasonable choice for the quantization step. Table 6.1 lists the

RMS interpolation errors in the four data sets for a number of different interpolation

143

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

2 -
== Continuous Function
1.5 =X = Discrete Approximation
1
0.5
/
~
0 .. 5
~ . . PS
-05+
_1 1 L)
0 1 3 4
05y o O Real
Imaginary
0 9 O O
-05¢
-4 -3 -2 -1 0 1 2 3
2 -
== Continuous Function
15} =@ = Upsampled Approx.

X Original Samples

1

4

Figure 6.10: FFT-based upsampling process. Left: A periodic band-limited function with
a period of 4, and its discrete approximation sampled at a frequency of 1. Middle: FFT
coefficients of the function in magenta and cyan. Because the input function was real,
the coefficients have a Hermitian symmetry. The coefficients are padded with zeros to the
left and right, corresponding to higher frequencies with an amplitude of zero. Right: The
inverse FFT of the padded coefficients results in a higher-resolution approximation to the
continuous function. Note that the even grid points of the upsampled approximation agree
with the original grid points.

144

6.5 EVALUATION

schemes. To verify that the lossy compression does not unduly affect the interpolant,
I have computed the interpolation errors a second time after compression, comparing
the reconstructed volumes to the original reference solution. It can be seen that
by setting the quantization step equal to the RMS interpolation error, the error is
increased by less than 50% in all cases. It is worth mentioning that performing the
same test with an upsampling factor of only 2 instead of 4 yields results within 5% of
the listed numbers. This indicates that the discrete computation approximates the
actual interpolation error very closely. This is expected, as the reference interpolant
is by definition band-limited with respect to the original resolution, so no high-
frequency deflections can occur between the original grid points.

It remains to show that the accumulation of the additional quantization errors
does not introduce significantly larger regions of variation in the trajectories. A first
experiment can be seen in Fig. 6.9 (right), where the trajectories computed on the
compressed field using Lagrange6 interpolation are compared to the ground truth
trajectories. Compared to Fig. 6.9 (left), the deviations seem to be in the same
order of variation. A detailed quantitative accuracy analysis is given in the following

section.

6.5 Evaluation

To evaluate the performance of the system as well as the accuracy of the resulting
trajectories, I have conducted a number of experiments. In the first set of experiments
I analyze the accuracy of trajectories in the presence of lossy compression. In the
scope of a second set of experiments I evaluate the performance of the system. In
the following, I first introduce the error metrics used to analyze the accuracy of the

computed trajectories.

6.5.1 Error Metrics

Due to errors induced by the employed interpolation scheme and by lossy compres-
sion, a trajectory may gradually diverge from the ground truth over time. To evaluate
the accuracy of computed trajectories, an error metric is required to quantitatively

measure the difference between two trajectories starting at the same seed point.

145

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

One obvious metric is the maximum or average distance between trajectories so(u),
s1(u) along their parameter u. In addition, several metrics exist which measure
different kinds of distance between two curves, such as the (discrete) Fréchet dis-
tance [EM94] and the distance under dynamic time warping (DTW). While the
Fréchet distance corresponds to a type of maximum distance, the DTW distance is
akin to an average distance. Both disregard the u parametrization and instead are
concerned only with the shape of the curves. All these metrics measure the distance
along the complete trajectories. However, once two particles have diverged by some
critical distance, their further behavior depends only on the characteristics of the
flow field: They might diverge further or even converge again, but this provides no
insight into the accuracy of the trajectory computation. Therefore, I introduce a
new metric taking this into account, called the (clamped) divergence rate. Instead
of measuring a distance between trajectories, it computes the rate at which they
diverge. Given two trajectories so(u), s1(u) over a parameter interval [ug, Umax], |
define their divergence rate as

L diStsO’sl (udiv)
s0,81 *—

d

, where
Udiv — Uo

dists, s, (u) := [|so(u) — s1(u)|| and

Ugiy 1= MAaX {u € [uo, Umax] | VU € [ug, u] : disty, s, (@) < As} .

ugiy is the last point along the trajectories at which they have not yet diverged by
more than As. In the following experiments, I have set the critical distance As equal
to the grid spacing.

My definition of the trajectory divergence rate is similar in spirit to the idea of
the finite-size Lyapunov exponent (FSLE) [ABC*97]. The FSLE measures the time
it takes for two particles, initially separated only by an infinitesimal €, to diverge by
some given distance, usually specified as a multiple of e. A fundamental difference
is that here both trajectories start at exactly the same position, and I measure their

divergence as an absolute distance rather than relative to their initial separation.

146

6.5 EVALUATION

I'6€ET 9O 691 688 dIN 96¢ ¢qy dIN T€E 68 dIN L8E 20T ATOA
L'98 gD IL¢C V'ey dIN 799 I'Te dIN ¢I. 6'LT dIN €78 MO
0.9 dOI9¢€ 99¢ dIN 0¢. 09T dIN ¢¥6 9€¢€T dO 80T WNIPa
8¥s¢ gD 67 8'6¢ dIN €88 6°¢€T 9O 90T 8 IT db §e'l USTH
¢ey dO LG I'ee dDITT 876 gD §9'1 128 dD6LT USTH AToA

- a9 0°6€¢ - g0 L'q¢ - g0 L7l - g0 L71 possaadumoouy
1030 oz1s8 1030 az1s 1030 oz1s 1030%] SVAS Anrenty

WoH XTIN dHIN 0s]

"Qo8uRISR Ul IOLID oY) J[RY
0} ‘ybipy fiua 103 (179 o[qe], J0) A[earpoadsar ‘worjejodisjur §/9/feSurider] pur Iesul] Ul 1016 a1} 0} [enbs wasoyd
sem dogs uoryezijuenb oy ‘ybry pue ‘wnipapy ‘moy ‘mor fiuaf 104 -s1030%} uorsserdwiod pue sozIs Il g9 O[qR],

V-HLGC VHIYC €HLET € HGTT €HI8e €-H6¢¢ €H%99 €HaT¢ Teaul]
U89 GHE99 VHSTY VHIOY PHE9'6 VHOC L EHIV'e €HILT podueIde]
G¢H8V'E GHICE V-HIvV'e ¥HIT'¢C y-dce9 v-Hesv €HO9'T €HOT'T 9odueige]
GHIT'C G HT6'T VHLY'T VHIET VHL6Y VHSTE €HICT €-HI80 gosueIder]
duroo 310 duroo 3110 duroo 3110 duroo 3110 uoryejodrojuy
(L&°7 o8uel) WoOH (1g°¢ e8uer) X1 (12T 8uer) QHIN (099 :o8uer) os]
"UOTJTOSOI

[euI3LIO oY) SowIl} INOJ JO PLIS ' Ul pPajenfeAd Usd(ser| Iole uorjejodiojul oy, ‘(WO pue XI\ I0j gJasurider]
‘QHIN PU® OS] 10J 9LI30WOUO0SLIY) Jue[odIojul 0d0UsI9oI o1} 0} pareduod ‘(dwiod) uolsserduwiod Iojje pue (6H..0) o10Joq
SP[eY MO} JUd[NQIN} INOJ Ul SoUWYDs uorje[jodIojul JUSISHIP I0J SIolld uolje[odiajul orenbs-urouwi-j00Y :1'9 9[qe],

147

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

6.5.2 Accuracy Analysis

To compare the accuracy of particle trajectories computed in the original and com-
pressed data sets, and via different interpolation schemes, a reference solution is
required to which the trajectories can be compared. For two of the test data sets, Iso
and MHD, trigonometric interpolation is known to be exact. Since evaluating the
trigonometric interpolant during particle tracing is impracticable, I have upsampled
the data sets to four times the original resolution (see Section 6.4.1) as the ground
truth. Particle trajectories traced in the upsampled versions using 16th order La-
grange interpolation then act as the reference solution. While this is not equivalent to
true trigonometric interpolation in the original data, the remaining error is expected
to be negligible since the difference between the two times and four times upsampled
versions is already very small (cf. Section 6.4.1). For the other two data sets, Mix
and Hom, I assume Lagrangel6 interpolation as the reference solution, in line with
the analysis of the interpolation error in Section 6.4.1.

For analyzing the accuracy of computed trajectories, I have generated a set of 4096
seed points in each data set. In Iso and MHD, the seeds are distributed randomly
over the entire domain. In Mix and Hom, they are on a plane near the inflow. Parti-
cles were traced from the seed points through different versions of the data sets: The
upsampled reference version (for Iso and MHD), the original uncompressed data, and
compressed versions at different compression ratios. The quantization steps for the
compressed versions were chosen equal to the errors in linear and Lagrange4/6/8 in-
terpolation as listed in Table 6.1. In addition, in one high-quality compressed version
of each data set the quantization step was set to half the Lagrange8 interpolation
error. The compressed file sizes and compression ratios are listed in Table 6.2.

To minimize the impact of inaccuracies due to numerical integration errors, I used
the Runge-Kutta method by Dormand and Prince [DP80] in all experiments. The
method provides a 5th order solution and a 4th order error estimate which is used
for adaptive step size control. The error tolerance for step size control was reduced
until the accuracy of the results did not improve any further.

Figs. 6.11 and 6.12 provide the main results of the accuracy analysis. The graphs
show the RMS of the average, maximum, Fréchet, and DTW distance, as well as the
divergence rate, over all trajectories for different compression ratios and interpolation

148

6.5 EVALUATION

schemes. For reference, the grid spacing is approximately 0.00614 in Iso and MHD,
0.154 in Mix, and 0.00192 in Hom. The most prominent finding is that linear inter-
polation performs very poorly and eclipses the errors introduced at even the highest
compression ratios. The differences between the other interpolation schemes are com-
paratively small; as expected, with some advantage of the higher-order schemes. All
distance metrics give qualitatively similar results. However, all metrics except for my
novel divergence rate display a significant amount of noise in the results, especially
in Hom. This is caused by a few individual trajectories with a very large distance
to their reference. These trajectories have a very large impact on the RMS distance,
but actually carry little information on the accuracy of the results, as explained in
Section 6.5.1. The divergence rate, on the other hand, handles such trajectories well.

The most important observation with regard to the lossy compression is that when
the quantization step is chosen smaller than the interpolation error (e.g. Lagrange4
interpolation and a compression quality of “Medium” or higher), the additional error
introduced by the compression is extremely small. For example, switching from
Lagrange6 to Lagrange4 interpolation has a larger impact on the accuracy than
switching from uncompressed data to the “High” compression quality in all four data
sets.

6.5.3 Performance Analysis

The performance of any particle tracing system depends on a multitude of factors,
such as the characteristics of the data set, the number and placement of seeding
locations, and the total integration time. This makes an exhaustive performance
evaluation and comparison to other approaches fairly difficult. Instead, I tried to
capture the typical performance characteristics of my system. For Iso and MHD, I
investigated the following two scenarios:

1. Sparse: This is the same scenario that was used for pursuing the accuracy
analysis. 4096 seeding locations are distributed uniformly in the domain, and
particles are traced for 2.5 and 5 time units in Iso and MHD, respectively.

2. Dense: This scenario models an interactive exploration. 1024 seed points are
placed within a small box with an edge length of 10% of the domain size. The
particles are traced over 5 and 10 time units in Iso and MHD, respectively.

149

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

Iso MHD

= 010 0.10 -
k% s
o
w 0.08 B e — 0.08 — 2
& - - . °
g 0.06 0.06
g 004 — 0.04 x
2 £
S 002 S ——e—o—o 0.02 — <
o hd A ® — ® —3 ———%

0.00 0.00 —
k7S I
5 0.10 0.08 \/ E
E 0.08 ‘\.———A,‘—A——A 0.06 : - : ?
£ 06
1] 0.04 =
é 0.04 £
= s 0.02 . @
: 002 . ° = P ® *%;‘ &
= 0.00 0.00 i
o
2 0.008 0.004]
Y =t
g 0006 A, . _ 0003 A X , . °
e x x a—a " x n "
[o
g " oo ¥Tﬁ\‘§‘ :
(] oo
2 5
© 0.002 0.001 & * >
g i ©
& 0.000 0.000 [<]

A AN\ A EN AN\ (o) A\ A\ D EN A\ S
@™ @ @ @M @2 ARSI RS \qfa” &
W o X o W WV oY @Y e o
nt T W W o ¥ T Y Ao W o
\e W R G W Qe o
= |inear Catmull-Rom — Lagrange4 - Lagrange6 = Lagrange8

Figure 6.11: Accuracy of stream lines vs. compression quality in the Iso and MHD data sets
using different interpolation schemes. Accuracy is reported as the root mean square (RMS)
of the individual trajectory distances (see Section 6.5.1), computed against trajectories
traced using the reference trigonometric interpolation. For comparison, the grid spacing in
both data sets is 27/1024 ~ 0.0061.

150

6.5 EVALUATION

Mix Hom

2 20 0.020 o
© S A — ®
) 15 0.015 ©
g & — .
<
= 10 0.010
€ 3
n 5 0.005 g
= | G —"——— <

0 0.000 —
k73 —
2 20 0.020 3

e
E 15 0.015 e
(=) []
= W
|5 10 0.010 -
< Q
K S
2 5 0.005 0
0 ——————3 o " s — .
5 0 0.000 ¢ - » ® <]
9 0.0015 0.0005]
c — — A A =
o & & A A 0.0004 ©
Q
¢ 0.0010 0.0003 o
EO Ld L 3 L A g
g 0.0002 a0
2 0.0005 — g
A 0.0001 ; - n + 2
E 0.0000 0.0000 | <
AN N A 3 A AN A A A 3
ISR R q}\s& q}\\ﬁ} o W O (O e o
\O \O O \X\ \e(\ 0‘(\ \O A N\ AN AN O
Qeﬂ S N2 “eﬂ N\G Q@N \)‘\C
= |inear Catmull-Rom - agrange4 - Lagrange6 = |agrange8

Figure 6.12: Accuracy of stream lines vs. compression quality in the Mix and Hom data sets
using different interpolation schemes. Accuracy is reported as the root mean square (RMS)
of the individual trajectory distances (see Section 6.5.1), computed against trajectories
traced using the reference Lagrangel6 interpolation. For comparison, the grid spacing is
0.154 in Mix and 0.00192 in Hom.

151

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

For Mix and Hom, where there is a primary flow direction, 4096 seeding locations
are placed on a plane near the inflow. In Mix, the seeding plane spans 80% of the
domain in the spanwise and 10% in the crosswise direction, so that most stream lines
travel through the region where the two fluids mix. In Hom, the size of the seeding
plane is half of the domain size in the x and y dimension.

All timings were measured on a PC with an Intel Core i5-3570 CPU (quad-core,
3.4 GHz) with 8 GB of DDR3-1600 RAM, equipped with an NVIDIA GeForce
GTX 680 GPU with 4 GB of video memory. The size of the brick atlas was set
to 64 bricks of size 1283 each, corresponding to 2 GB of video memory. Because
CUDA does not support 3-channel textures, each velocity value had to be padded by
an additional “w” component.

I have traced particles starting from the selected seed points in both the uncom-
pressed and the compressed data sets to demonstrate the performance gains that can
be achieved via compression. In all experiments, Lagrange6 interpolation was per-
formed; the particle integration times are about 3x higher with Lagrange8, and about
4x lower with Lagrange4 or Catmull-Rom interpolation. When particle tracing was
performed on the compressed data, the timings refer to the “High” compression qual-
ity. The decompression times for other compression ratios differ only very slightly.
To measure the impact of disk I/O, I ran every benchmark a second time, so that
all required data was already cached in CPU memory. With uncompressed data,
however, this was only possible for the dense scenario in Iso and MHD; in all other
cases, the size of the working set exceeded the available CPU memory. Table 6.3
lists the time required for running each scenario, and Table 6.4 lists the sizes of the
corresponding working sets.

It can be seen that the use of compression facilitates the tracing of thousands of
characteristic lines within seconds in the dense seeding scenario in Iso and MHD. In
the sparse seeding case as well as in Mix and Hom, the required time is around an
order of magnitude higher. The reason becomes clear when looking at the size of the
working sets, which are larger by roughly the same factor in those cases.

Without compression, the overall system performance is clearly limited by disk
bandwidth. In particular, in Iso sparse, MHD sparse, and Hom, the working set
is so much larger than main memory (cf. Table 6.4) that some bricks had to be

loaded from disk multiple times. Even when all required data is already cached in

152

6.5 EVALUATION

Table 6.3: Times in seconds for computing stream lines, both for the cached case (C) and
the uncached case including disk access times (U). Individual times for uploading the data
to the GPU (Upl, including decompression), particle integration (Int), and disk I/O (10,
overlapping Upl and Int) are listed separately.

Scenario Quality U C Upl Int 10

High 23 14 0.8 0.6 1.9
Iso dense

Uncomp 186 1.3 0.7 0.6 17.8

High 21.6 16.4 124 3.8 149
Iso sparse

Uncomp 156.9 n/a 10.7 3.8 156.4

High 3.4 23 1.4 0.8 2.8
MHD dense

Uncomp 26.3 2.3 1.4 0.8 256

High 19.9 16.2 11.8 4.2 136
MHD sparse

Uncomp 139.7 n/a 10.4 4.2 138.8

. High 19.8 18.6 8.8 94 10.0

Mix

Uncomp 72.1 n/a 98 94 68.1

High 63.7 63.5 469 16.1 16.2
Hom

Uncomp 890.0 n/a 60.9 16.1 886.0

Table 6.4: Working set sizes in both compressed (High) and uncompressed (Uncomp) form.
Also shown is the number of bricks in the working set (#B) as well as the number of brick
uploads during particle integration (#U).

Scenario High Uncomp #B #U
Iso dense 165.9 MB 2155.5 MB 92 92
Iso sparse 1280.6 MB 15058.9 MB 728 1341
MHD dense 243.8 MB 3231.0 MB 138 155
MHD sparse 1095.5 MB 15066.5 MB 729 1298
Mix 745.0 MB 9322.1 MB 408 1093
Hom 1174.3 MB 70836.0 MB 3023 7164

153

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

CPU memory (which was only possible in the dense scenario in Iso and MHD), the
performance of the compressed and uncompressed cases is very similar—the runtime
overhead caused by the additional decompression step is very minor.

It is clear that when tracing path lines, the working sets are much larger because
often many different time steps of the same spatial brick are required. In particular,
in the two time-dependent data sets the temporal distance between successive time
steps is extremely small: 0.002 time units for Iso, 0.0025 for MHD. Because of this,
the time required for path line computation is spent almost exclusively on disk-to-
CPU data transfer and GPU decompression, and less than 1% of the total time is
spent on the actual particle integration. For example, tracing a set of path lines
with the dense seeding configuration through Iso takes about 6 minutes, with a
working set size of over 25 GB of compressed data. In the uncompressed setting, the
working set comprises over 300 GB. Correspondingly, tracing these path lines in the
uncompressed data set takes almost an hour, and most of that time is spent on disk
[/O. In MHD, the time required for path line tracing is similar; in all cases, the time
scales proportionally to the working set size.

Comparison to Previous Work

To the best of my knowledge, all previous techniques for particle tracing in very large
flow fields have employed large compute clusters. Pugmire et al. [PCG*09] have used
512 CPUs to trace 10K stream lines in two steady flow fields comprising 512 million
grid cells each. They report wall times of 10 to 100 seconds. Camp et al. [CGC*11]
later improved those timings to a few seconds for tracing thousands of stream lines
on 128 cores. Nouanesengsy et al. [NLS11] achieve timings between 10 and 100
seconds using 4096 cores for the computation of 256K stream lines in regular grids
of up to 1.67 billion grid points, but at the cost of an expensive preprocess. Peterka
et al. [PRN*11] report computation times of about 20 seconds using 8192 cores for
128K stream lines in a 10243 steady flow, and several minutes for 32K lines in a
2304 x 4096 x 4096 steady flow. In contrast to all other mentioned approaches, they
have also addressed large unsteady flow fields. In a 1408 x 1080 x 1100 x 32 unsteady
flow, the processing time is several minutes for 16K path lines on 4096 cores.

While an exact performance comparison is not possible due to the different data

154

6.6 CONCLUSION

sets and interpolation/integration schemes used, an order-of-magnitude comparison
reveals that my method achieves competitive timings to the previous approaches in
many cases, particularly in dense seeding scenarios, while making use of only a single
desktop PC.

All in all it can be said that due to the use of an effective compression scheme,
the performance of particle tracing in extremely large flow fields can be improved
significantly. It is clear that due to the immense working set that is required when
computing path lines, fully interactive rates cannot be achieved in this case. How-
ever, a simple preview mode which shows the already-computed parts of the current
trajectories enables the interactive exploration of very large flow fields. For example,
the preview allows the user to quickly discard trajectories originating from “uninter-
esting” seed points, instead guiding the process interactively towards more interesting

regions.

6.6 Conclusion

In this chapter, I have presented an out-of-core system for particle tracing in very
large and time-dependent flow fields. It does not require a high-performance com-
puting architecture but runs entirely on a desktop PC. Thus, the system can be used
on demand by a turbulence researcher to explore data sets and validate hypotheses. 1
have employed lossy data compression to overcome bandwidth limitations due to the
extreme data volumes that have to be processed. In a number of experiments I have
demonstrated that compared to interpolation errors, the compression errors do not
significantly affect the accuracy of the computed trajectories. In the statistical sense,
the quality of the computed trajectories remains in the same order. A performance
analysis indicates that my system achieves a throughput that is comparable to that
of previous systems running on high-performance architectures.

The most challenging future avenue of research will be the investigation of the
effect of lossy data compression in scenarios other than turbulence research. The
question will be whether lossy data compression can also be applied to other flow
fields without unduly affecting the accuracy of the resulting trajectories. The main
difficulty is that for most flow fields a “correct” interpolation scheme is not available,

so the interpolation error can not be estimated accurately. However, different criteria

155

6 TURBULENCE VISUALIZATION: PARTICLE TRACING

might be found to steer the compression quality, e.g. given confidence intervals for
the velocity values.

156

Conclusion and Future Work

In this thesis, I have presented a highly efficient GPU compression technique. After a
general introduction to data compression, I have analyzed the available compression
algorithms regarding their compression ratio, their performance, and their feasibility
for an efficient data-parallel implementation. The analysis identified transform cod-
ing using the discrete wavelet transform followed by run-length and Huffman coding
as an efficient and effective compression technique. Based on these findings, I have
implemented the CUDACOMPRESS library. This library provides optimized imple-
mentations of the chosen compression algorithms. It makes use of NVIDIA’s CUDA
API for an efficient low-level implementation on current GPUs.

I have then presented three applications which employ CUDACOMPRESS. The first
was an interactive terrain rendering and editing system. Thanks to an efficient com-
pression layer, it could handle arbitrarily large and highly resolved terrain data. The
second application was a turbulence visualization system applying volume rendering
techniques to derived properties of the flow field. Here, the use of compression made
it possible to visualize data sets so large that even a single time step would not fit into
main memory. Finally, I have presented a particle tracing system for very large flow
fields. Data compression in combination with a novel GPU caching scheme allowed
my system, running on a single desktop PC, to process data sets which previously

required the use of a supercomputer.

There are several ways in which CcUDACOMPRESS could be further improved. So
far, only Cartesian grids are supported. By adding support for other decorrela-

157

7 CONCLUSION AND FUTURE WORK

tion techniques besides the DW'T, support for data on additional grid types could
be added. Regarding performance, CUDACOMPRESS was developed and optimized
mostly on Fermi-class GPUs (NVIDIA GeForce 400/500 series). Making use of the
new features available in current and future GPUs could likely improve the perfor-
mance even further. On the other hand, a reimplementation using OpenCL would
make AMD GPUs available for compression as well, thus significantly increasing the
number of supported PCs.

However, the most important and interesting future work will be to identify ad-
ditional application areas where efficient data compression can push the frontiers of
what is possible. A recent work by Reichl et al. [RTW13] is a first example of another
application making use of CUDACOMPRESS. They employ an octree grid to resample
large SPH simulations and visualize them interactively. Compressing the individual
octree nodes significantly improves the streaming performance.

In conclusion, I have demonstrated that effective data compression on GPUs is
possible. By making my code publicly available, I am enabling others to use my
work in their own applications. This significantly eases the handling of large data
sets, and thus helps to tackle one of the main challenges in contemporary scientific

visualization.

158

[AB12]

[ABC*97]

[AGO6]

[AGD10]

[AKKGST7]

[AMMO0]

[ANR74]

Bibliography

AtTILT A., BISETTI F.: Statistics and scaling of turbulence in a spatially developing
mixing layer at Rey = 250. Physics of Fluids 24, 3 (2012), 035109-1-035109-21.
doi:10.1063/1.3696302. 129

AURELL E., BOFFETTA G., CRISANTI A., PALADIN G., VULPIANI A.: Predictabil-
ity in the large: an extension of the concept of Lyapunov exponent. J. Physics A:
Mathematical and General 30, 1 (1997), 1-26. doi:10.1088/0305-4470/30/1/003.
146

ATLAN S., GARLAND M.: Interactive multiresolution editing and display of large ter-
rains. Computer Graphics Forum 25, 2 (2006), 211-223. doi:10.1111/j.1467-8659.
2006.00936.x. 85

AMMANN L., GENEVAUX O., DISCHLER J.-M.: Hybrid rendering of dynamic height-
fields using ray-casting and mesh rasterization. In Proc. Graphics Interface (GI) (2010),
pp- 161-168. URL: http://dl.acm.org/citation.cfm?id=1839214.1839243. 84

AsHURST W., KERSTEIN R., KERR R., GIBSON C.: Alignment of vorticity and scalar
gradient with the strain rate in simulated Navier-Stokes turbulence. Physics of Fluids
30 (1987), 2343-2353. doi:10.1063/1.866513. 107

ABU-MoOSTAFA Y. S., McELIECE R. J.: Maximal codeword lengths in Huffman
codes. Computers & Mathematics with Applications 39, 11 (2000), 129 — 134. doi: 10.
1016/S0898-1221(00)00119-X. 71

AHMED N., NaTArRAJAN T., Rao K.: Discrete cosine transform. IEEE Trans.
Comput. C-23, 1 (1974), 90-93. doi:10.1109/T-C.1974.223784. 25

159

http://dx.doi.org/10.1063/1.3696302
http://dx.doi.org/10.1088/0305-4470/30/1/003
http://dx.doi.org/10.1111/j.1467-8659.2006.00936.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00936.x
http://dl.acm.org/citation.cfm?id=1839214.1839243
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1016/S0898-1221(00)00119-X
http://dx.doi.org/10.1016/S0898-1221(00)00119-X
http://dx.doi.org/10.1109/T-C.1974.223784

BIBLIOGRAPHY

[Bal09]

[BGI*13]

[BGMPO7]

[BGPOY]

[BIMW*10]

[BKHJO1]

[BM89)

[BNOS]|

[BPNOS]

[BROY]

[Bro08]

BALEvVIC A.: Parallel variable-length encoding on GPGPUs. In Proc. Par-
allel and Distributed Computing (FEuro-Par) (2009), pp. 26-35. doi:10.1007/
978-3-642-14122-5_6. 56

BALSA RODRIGUEZ M., GOBBETTI E., IGLESIAS GUITIAN J., MAKHINYA M., MAR-
TON F., PAJAROLA R., SUTER S.: A survey of compressed GPU-based direct volume
rendering. In Eurographics 2018 - STARs (2013), pp. 117-136. doi:10.2312/conf/
EG2013/stars/117-136. 56

BeTTIO F., GOBBETTI E., MARTON F., PINTORE G.: High-quality networked terrain
rendering from compressed bitstreams. In Proc. 3D Web Technology (Web3D) (2007),
pp. 37-44. doi:10.1145/1229390.1229396. 57, 84

BoscH J., Goswami P.; PajarorLA R.: RASTeR: Simple and efficient terrain
rendering on the GPU. In FEurographics 2009 - Areas Papers (2009), pp. 35-42.
doi:10.5167/uzh-29729. 57, 84

BRANDSTETTER 111 W. E., MAHSMAN J. D., WHITE C. J., DAscALU S. M., HAR-
ris JrR. F. C.: Multi-resolution deformation in out-of-core terrain rendering. In Proc.
Computer Applications in Industry and Engineering (CAINE) (2010), pp. 98-104. 84

BRUCKSCHEN R., KUESTER F., HAMANN B., Joy K. I.: Real-time out-of-core
visualization of particle traces. In Proc. IEEE Parallel and Large-Data Visualization
and Graphics (PGV) (2001), pp. 45-50. doi:10.1109/PVGS.2001.964403. 130

BALACHANDAR S., MAXEY M. R.: Methods for evaluating fluid velocities in spectral
simulations of turbulence. J. Computational Physics 83, 1 (1989), 96-125. doi:10.
1016/0021-9991(89)90224-6. 130

BRUNETON E., NEYRET F.: Real-time rendering and editing of vector-based terrains.
Computer Graphics Forum 27, 2 (2008), 311-320. doi:10.1111/j.1467-8659.2008.
01128.x. 85

BHATTACHARJEE S., PATIDAR S., NARAYANAN P.: Real-time rendering and ma-
nipulation of large terrains. In Proc. Computer Vision, Graphics & Image Processing
(ICVGIP) (2008), pp. 551-559. doi:10.1109/ICVGIP.2008.85. 85

BURTSCHER M., RATANAWORABHAN P.: FPC: A high-speed compressor for double-
precision floating-point data. IEEE Trans. Comput. 58, 1 (2009), 18-31. doi:10.
1109/TC.2008.131. 55, 110

BROWN S.: Squish library, version 1.11, 2008. URL: http://code.google.com/p/
libsquish/. 77, 93

160

http://dx.doi.org/10.1007/978-3-642-14122-5_6
http://dx.doi.org/10.1007/978-3-642-14122-5_6
http://dx.doi.org/10.2312/conf/EG2013/stars/117-136
http://dx.doi.org/10.2312/conf/EG2013/stars/117-136
http://dx.doi.org/10.1145/1229390.1229396
http://dx.doi.org/10.5167/uzh-29729
http://dx.doi.org/10.1109/PVGS.2001.964403
http://dx.doi.org/10.1016/0021-9991(89)90224-6
http://dx.doi.org/10.1016/0021-9991(89)90224-6
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x
http://dx.doi.org/10.1109/ICVGIP.2008.85
http://dx.doi.org/10.1109/TC.2008.131
http://dx.doi.org/10.1109/TC.2008.131
http://code.google.com/p/libsquish/
http://code.google.com/p/libsquish/

BIBLIOGRAPHY

[BSK*07]

[BTW*12]

[Can92]

[CDF92]

[CGC*11]

[CNLE09)

[Col13]

[CPCY0]

[C'T65]

[Dau8s|

[dCBOY]

[Deu9t]

BURGER K., SCHNEIDER J., KONDRATIEVA P., KRUGER J., WESTERMANN R.: In-
teractive visual exploration of unsteady 3D flows. In Proc. EG/IEEE VGTC Visual-
ization (EuroVis) (2007). doi:10.2312/VisSym/EuroVis07/251-258. 130

BURGER K., TREIB M., WESTERMANN R., WERNER S., LALEScU C. C., SZALAY
A., MENEVEAU C., EYINK G. L.: Vortices within vortices: hierarchical nature of
vortex tubes in turbulence, 2012. arXiv:1210.3325. 128

CANTWELL B. J.: Exact solution of a restricted Euler equation for the velocity
gradient tensor. Physics of Fluids A 4 (1992), 782-793. doi:10.1063/1.858295. 107

CoHEN A., DAUBECHIES I., FEAUVEAU J.-C.: Biorthogonal bases of compactly
supported wavelets. Comm. Pure and Applied Mathematics 45, 5 (1992), 485-560.
doi:10.1002/cpa.3160450502. 35, 89, 91, 102

CampP D., GArTH C., CHILDS H., PuaMIRE D., Joy K.: Streamline integration
using MPI-hybrid parallelism on a large multicore architecture. IEEE Trans. Vis.
Comput. Graphics 17, 11 (2011), 1702-1713. doi:10.1109/TVCG.2010.259. 131, 132,
154

CrassIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: GigaVoxels: Ray-guided
streaming for efficient and detailed voxel rendering. In Proc. ACM SIGGRAPH Inter-
active 3D Graphics and Games (13D) (2009). doi:10.1145/1507149.1507152. 102,
121

COLLET Y.: LZ4 library, version 1.4, 2013. URL: https://code.google.com/p/1z4/.
24, 55

Cuone M. S., PERRY A. E., CANTWELL B. J.: A general classification of three-
dimensional flow fields. Physics of Fluids 2 (1990), 765-777. doi:10.1063/1.857730.
107

CooLEY J. W., TukEY J. W.: An algorithm for the machine calculation of com-
plex Fourier series. Mathematics of Computation 19 (1965), 297-301. doi:10.1090/
S50025-5718-1965-0178586-1. 27

DAUBECHIES I.: Orthonormal bases of compactly supported wavelets. Comm. Pure
and Applied Mathematics 41 (1988), 909-996. doi:10.1002/cpa.3160410705. 34

DE CARPENTIER G. J. P., BIDARRA R.: Interactive GPU-based procedural heightfield
brushes. In Proc. Foundations of Digital Games (FDG) (2009), pp. 55-62. doi:10.
1145/1536513.1536532. 88

DeutscH P.: DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), 1996. URL: http://www.ietf.org/rfc/rfc1951.txt. 23

161

http://dx.doi.org/10.2312/VisSym/EuroVis07/251-258
http://arxiv.org/abs/1210.3325
http://dx.doi.org/10.1063/1.858295
http://dx.doi.org/10.1002/cpa.3160450502
http://dx.doi.org/10.1109/TVCG.2010.259
http://dx.doi.org/10.1145/1507149.1507152
https://code.google.com/p/lz4/
http://dx.doi.org/10.1063/1.857730
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1002/cpa.3160410705
http://dx.doi.org/10.1145/1536513.1536532
http://dx.doi.org/10.1145/1536513.1536532
http://www.ietf.org/rfc/rfc1951.txt

BIBLIOGRAPHY

[DKW09)

[DPS0]

[DS98]

[DSW09)

[DU13]

[ECWO04]

[EGMO04]

[EHK*06]

[EM94]

[EVL*13]

[FBSO07]

[FCS*10]

Dick C., KrRUGER J., WESTERMANN R.: GPU ray-casting for scalable ter-
rain rendering. In Eurographics 2009 - Areas Papers (2009), pp. 43-50. URL:
http://diglib.eg.org/EG/DL/conf/EG2009/areas/043-050.pdf. 87

DorMAND J. R., PrRINCE P. J.: A family of embedded Runge-Kutta formu-
lae. J. Computational and Applied Mathematics 6, 1 (1980), 19-26. doi:10.1016/
0771-050X(80)90013-3. 148

DAUBECHIES 1., SWELDENS W.: Factoring wavelet transforms into lifting steps. J.
Fourier Analysis and Applications 4, 3 (1998), 247-269. doi:10.1007/BF02476026. 40

Dick C., SCHNEIDER J., WESTERMANN R.: Efficient geometry compression for GPU-
based decoding in realtime terrain rendering. Computer Graphics Forum 28, 1 (2009),
67-83. doi:10.1111/j.1467-8659.2008.01298.x. 57, 84, 85

DovycHEvV T., UHLMANN M.: Settling of finite-size particles in an ambient fluid: A
numerical study. In Proc. Multiphase Flow (ICMF) (2013). URL: http://www-turbul.
ifh.uni-karlsruhe.de/uhlmann/particle/report/icmf13.pdf. 129

EBrRAaHIMI F., CHAMIK M., WINKLER S.: JPEG vs. JPEG 2000: An objec-
tive comparison of image encoding quality. Applications of Digital Image Processing
XXVII/Proc. SPIE 5558 (2004), 300-308. doi:10.1117/12.564835. 48

ELLswORrTH D., GREEN B., MORAN P.: Interactive terascale particle visualization.
In Proc. IEEFE Visualization (2004), pp. 353—-360. doi:10.1109/VISUAL.2004.55. 130

ENGEL K., HADWIGER M., Kniss J. M., REzZK-SALAMA C., WEISKOPF D.: Real-
Time Volume Graphics. A K Peters, Ltd., 2006. doi:10.1201/b10629. 56

EiTteEr T., MANNILA H.: Computing Discrete Frechet Distance. Tech. Rep. CD-
TR 94/64, Technische Universitdat Wien, 1994. URL: http://www.kr.tuwien.ac.at/
staff/eiter/et-archive/cdtr9464.pdf. 146

EviNk G., VisuNiac E., LAtescu C., ALuiE H., Kanov K., BURGER K., BURNS
R., MENEVEAU C., SZALAY A.: Flux-freezing breakdown in high-conductivity mag-
netohydrodynamic turbulence. Nature 497, 7450 (2013), 466-469. doi:10.1038/
naturel12128. 123

FRAEDRICH R., BAUER M., STAMMINGER M.: Sequential data compression of very
large data in volume rendering. In Proc. Vision, Modeling and Visualization (VMV)
(2007), pp. 41-50. 56

FogaL T., CHILDS H., SHANKAR S., KRUGER J., BERGERON R. D., HATCHER P.:
Large data visualization on distributed memory multi-GPU clusters. In Proc. High
Performance Graphics (HPG) (2010), pp. 57-66. doi:10.2312/EGGH/HPG10/057-066.
101

162

http://diglib.eg.org/EG/DL/conf/EG2009/areas/043-050.pdf
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1007/BF02476026
http://dx.doi.org/10.1111/j.1467-8659.2008.01298.x
http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/particle/report/icmf13.pdf
http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/particle/report/icmf13.pdf
http://dx.doi.org/10.1117/12.564835
http://dx.doi.org/10.1109/VISUAL.2004.55
http://dx.doi.org/10.1201/b10629
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
http://dx.doi.org/10.1038/nature12128
http://dx.doi.org/10.1038/nature12128
http://dx.doi.org/10.2312/EGGH/HPG10/057-066

BIBLIOGRAPHY

[FE99)

[FJ05]

[FM12]

[FM13]

[FMAO5]

[Fri95]

[FSK13]

[FWH*09)]

[GMC*06]

[GMI08]

[Gol66]

[GSO1]

FrANZEN R., EASTMAN KoODAK COMPANY: Kodak lossless true color image suite,
1999. URL: http://rOk.us/graphics/kodak/. 29, 37, 42, 61, 77

Frico M., JOHNSON S. G.: The design and implementation of FFTW3. Proc. IEEE
93, 2 (2005), 216-231. doi:10.1109/JPROC.2004.840301. 143

Fout N., MA K.-L.: An adaptive prediction-based approach to lossless compression
of floating-point volume data. IEEE Trans. Vis. Comput. Graphics 18, 12 (2012),
2295-2304. doi:10.1109/TVCG.2012.194. 140

Four N., MA K.-L.: Fuzzy volume rendering. IEEE Trans. Vis. Comput. Graphics
18,12 (2013), 2335-2344. doi:10.1109/TVCG.2012.227. 141

Four N., MaA K.-L., AHRENS J.: Time-varying, multivariate volume data reduc-
tion. In Proc. ACM Applied Computing (SAC) (2005), pp. 1224-1230. doi:10.1145/
1066677.1066953. 56

Friscu U.: Turbulence, the legacy of A.N. Kolmogorov. Cambridge University Press,
1995. 108

FogaL T., SCHIEWE A., KRUGER J.: An analysis of scalable GPU-based ray-guided
volume rendering. In Proc. IEEE Large-Scale Data Analysis and Visualization (LDAV)
(2013), pp. 43-51. doi:10.1109/LDAV.2013.6675157. 55, 102

FURST N., WEISs A., HEIDE M., PAPANDREOU S., BALEvIC A.: CUJ2K library,
version 1.1, 2009. URL: http://cuj2k.sourceforge.net. 95

GOBBETTI E., MARTON F., CiaNONI P., DI BENEDETTO M., GANOVELLI F.: C-
BDAM - compressed batched dynamic adaptive meshes for terrain rendering. Com-
puter Graphics Forum 25, 3 (2006), 333-342. doi:10.1111/j.1467-8659.2006.
00952.x. 57, 84

GOBBETTI E., MARTON F., IGLESIAS GUITIAN J.: A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric datasets. The
Visual Computer 24, 7-9 (2008), 797-806. doi:10.1007/s00371-008-0261-9. 102,
121

GorLomB S. W.: Run-length encodings. IEEE Trans. Inf. Theory 12, 3 (1966), 399—
401. doi:10.1109/TIT.1966.1053907. 15

GUTHE S., STRASSER W.: Real-time decompression and visualization of animated
volume data. In Proc. IEEFE Visualization (2001), pp. 349-356. doi:10.1109/VISUAL.
2001.964531. 56, 113

163

http://r0k.us/graphics/kodak/
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/TVCG.2012.194
http://dx.doi.org/10.1109/TVCG.2012.227
http://dx.doi.org/10.1145/1066677.1066953
http://dx.doi.org/10.1145/1066677.1066953
http://dx.doi.org/10.1109/LDAV.2013.6675157
http://cuj2k.sourceforge.net
http://dx.doi.org/10.1111/j.1467-8659.2006.00952.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00952.x
http://dx.doi.org/10.1007/s00371-008-0261-9
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/VISUAL.2001.964531
http://dx.doi.org/10.1109/VISUAL.2001.964531

BIBLIOGRAPHY

[GWGS02]

[Hal05]

[HB13]

[HBC10]

[HCPO2]

[HOS*13]

[HSO07]

[Huf52]

[HWMSS]

[IGKO09]

[ILS05]

[Imal3]

[INHO3]

GUTHE S., WAND M., GONSER J., STRASSER W.: Interactive rendering of large
volume data sets. In Proc. IEEE Visualization (2002), pp. 53-60. doi:10.1109/
VISUAL.2002.1183757. 56, 111

HALLER G.: An objective definition of a vortex. J. Fluid Mechanics 525 (2005), 1-26.
doi:10.1017/50022112004002526. 107

HoBERrROCK J., BELL N.: Thrust: A parallel template library, version 1.7.0, 2013.
URL: http://thrust.github.io. 54, 60

HowisoN M., BETHEL E. W., CHILDS H.: MPI-hybrid parallelism for volume ren-
dering on large, multi-core systems. In Proc. EG Parallel Graphics and Visualization
(EGPGYV) (2010). doi:10.2312/EGPGV/EGPGV10/001-010. 101

HE Y., CREMER J. F., PAPELIS Y. E.: Real-time extendible-resolution display of
on-line dynamic terrain. In Proc. Graphics Interface (GI) (2002), pp. 151-160. URL:
http://www.graphicsinterface.org/proceedings/2002/139/. 84

HARRIS M., OWENS J. D., SENGUPTA S., TZENG S., ZHANG Y., DAVIDSON A.,
PaTEL R.: CUDPP: CUDA data-parallel primitives library, version 2.1, 2013. URL:
http://cudpp.github.io. 54, 60

HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum (scan) with cuda. In
GPU Gems 8. Addison Wesley, 2007. 60

HUFFMAN D. A.: A method for the construction of minimum-redundancy codes.
Proc. Institute of Radio Engineers 40, 9 (1952), 1098-1101. doi:10.1109/JRPROC.
1952.273898. 9

HunT J., WRAY A., Moin P.: Eddies, streams, and convergence zones in turbulent
flows. In Proc. Studying Turbulence Using Numerical Simulation Databases (1988),
pp. 193-208. URL: http://ctr.stanford.edu/Summer/201306111537.pdf. 107

IsHiHARA T., GoTOH T., KANEDA Y.: Study of high-Reynolds number isotropic
turbulence by direct numerical simulation. Annu. Rev. Fluid Mechanics 41 (2009),
165-180. doi:10.1146/annurev.fluid.010908.165203. 98

ISENBURG M., LINDSTROM P., SNOEYINK J.: Lossless compression of predicted
floating-point geometry. Computer Aided Design 37, 8 (2005), 869-877. doi:10.
1016/j.cad.2004.09.015. 140

IMAGEMAGICK STUDIO LLC: ImageMagick library, version 6.8.7-10-q16, 2013. URL:
http://www.imagemagick.org. 77, 93

TourcHA K., NAYAK K., HONG Z.: System and method for fixed-rate block-based
image compression with inferred pixel values, 2003. US Patent 6658146. 57

164

http://dx.doi.org/10.1109/VISUAL.2002.1183757
http://dx.doi.org/10.1109/VISUAL.2002.1183757
http://dx.doi.org/10.1017/S0022112004002526
http://thrust.github.io
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://www.graphicsinterface.org/proceedings/2002/139/
http://cudpp.github.io
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://ctr.stanford.edu/Summer/201306111537.pdf
http://dx.doi.org/10.1146/annurev.fluid.010908.165203
http://dx.doi.org/10.1016/j.cad.2004.09.015
http://dx.doi.org/10.1016/j.cad.2004.09.015
http://www.imagemagick.org

BIBLIOGRAPHY

[ITU92]

[ITU02]

[ITU03]

[ITU09)

[JCHO1]

[JHO5]

[Kak13]

[KKKWO05]

[Kra05]

[KS10]

[KWO03]

[Lan94]

[LC10]

ITU: CCITT Recommendation T.81 (09/92) / ISO/TEC 10918-1: 1994: Digital com-
pression and coding of continuous-tone still images, 1992. URL: http://www.w3.org/
Graphics/JPEG/itu-t81.pdf. 44

ITU: ITU-T Recommendation T.800 (08/02) / ISO/IEC 15444-1: 2002:
JPEG2000 image coding system, 2002. URL: http://www.itu.int/rec/T-REC-T.
800-200208-1/en. 47

ITU: ITU-T Recommendation H.264 / ISO/IEC 14496-10: Information technology —
jpeg xr image coding system — image coding specification, 2003. URL: http://wuw.
itu.int/rec/T-REC-H.264. 28, 29

ITU: ITU-T Recommendation T.832 / ISO/IEC 29199-2: Advanced video coding for
generic audiovisual services, 2009. URL: http://www.itu.int/rec/T-REC-T.832. 28

JENSEN A., COUR-HARBO A. L.: Ripples in Mathematics: The Discrete Wavelet
Transform. Springer, 2001. doi:10.1007/978-3-642-56702-5. 30

JEONG J., HUSSAIN F.: On the identification of a vortex. J. Fluid Mechanics 285
(1995), 69-94. doi:10.1017/S0022112095000462. 107

Kakapu SorTwARE: KDU-S7: Kakadu SDK with speed pack, version 7.0, 2013.
URL: http://www.kakadusoftware.com. 95

KRUGER J., KIPFER P., KONDRATIEVA P., WESTERMANN R.: A particle system for
interactive visualization of 3D flows. IEEE Trans. Vis. Comput. Graphics 11, 6 (2005),
744-756. doi:10.1109/TVCG.2005.87. 130

KrAUs M.: Scale-invariant volume rendering. In Proc. IEEE Visualization (2005),
pp- 295-302. doi:10.1109/VIS.2005.88. 104

Karz J., SHENG J.: Applications of holography in fluid mechanics and parti-
cle dynamics. Annu. Rev. Fluid Mechanics 42 (2010), 531-555. doi:10.1146/
annurev-fluid-121108-145508. 98

KRUGER J., WESTERMANN R.: Acceleration techniques for GPU-based volume ren-
dering. In Proc. IEEE Visualization (2003), pp. 287-292. doi:10.1109/VISUAL.2003.
1250384. 103

LANE D. A.: UFAT—a particle tracer for time-dependent flow fields. In Proc. IEEE
Visualization (1994), pp. 257-264. doi:10.1109/VISUAL.1994.346311. 130

LinDsTROM P., COHEN J. D.: On-the-fly decompression and rendering of multireso-
lution terrain. In Proc. ACM SIGGRAPH Interactive 3D Graphics and Games (13D)
(2010), pp. 65-73. doi:10.1145/1730804.1730815. 57, 84

165

http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.itu.int/rec/T-REC-T.800-200208-I/en
http://www.itu.int/rec/T-REC-T.800-200208-I/en
http://www.itu.int/rec/T-REC-H.264
http://www.itu.int/rec/T-REC-H.264
http://www.itu.int/rec/T-REC-T.832
http://dx.doi.org/10.1007/978-3-642-56702-5
http://dx.doi.org/10.1017/S0022112095000462
http://www.kakadusoftware.com
http://dx.doi.org/10.1109/TVCG.2005.87
http://dx.doi.org/10.1109/VIS.2005.88
http://dx.doi.org/10.1146/annurev-fluid-121108-145508
http://dx.doi.org/10.1146/annurev-fluid-121108-145508
http://dx.doi.org/10.1109/VISUAL.2003.1250384
http://dx.doi.org/10.1109/VISUAL.2003.1250384
http://dx.doi.org/10.1109/VISUAL.1994.346311
http://dx.doi.org/10.1145/1730804.1730815

BIBLIOGRAPHY

[LHD*04]

[L106]

[lib13]

[LK10]

[LMC02]

[LPW*08]

[Mal89]

[Mal9s]

[Mal0g]

[MAWM11]

[MLP*10]

[MOCS98]

LArRaMEE R. S., HAUuSER H., DoLEIsSCH H., VROLUK B., PosT F. H., WEISKOPF
D.: The state of the art in flow visualization: Dense and texture-based techniques.
Computer Graphics Forum 23, 2 (2004), 203-221. doi:10.1111/j.1467-8659.2004.
00753.x. 129

LiINDSTROM P., ISENBURG M.: Fast and efficient compression of floating-point data.
IEEFE Trans. Vis. Comput. Graphics 12, 5 (2006), 1245-1250. doi:10.1109/TVCG.
2006.143. 55, 110, 140

LIBJPEG-TURBO PROJECT: libjpeg-turbo library, version 1.3.0, 2013. URL: http://
www.libjpeg-turbo.org. 94

LAMBERS M., KoLB A.: Dynamic terrain rendering. 3D Research 1, 4 (2010), 1-8.
doi:10.1007/3DRes.04(2010)01. 84

Lum E. B., MA K.-L., CLYNE J.: A hardware-assisted scalable solution for interactive
volume rendering of time-varying data. IEEE Trans. Vis. Comput. Graphics 8, 3
(2002), 286—270. doi:10.1109/TVCG.2002.1021580. 56

L1 Y., PERLMAN E., WAN M., YANG Y., MENEVEAU C., BURNS R., CHEN S.,
SzALAY A., EYINK G.: A public turbulence database cluster and applications to study
Lagrangian evolution of velocity increments in turbulence. J. Turbulence 9 (2008), N31.
doi:10.1080/14685240802376389. 100, 129, 130, 141

MALLAT S. G.: A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 7 (1989), 674-693. doi:
10.1109/34.192463. 30

MALVAR H.: Biorthogonal and nonuniform lapped transforms for transform coding
with reduced blocking and ringing artifacts. IEEE Trans. Signal Process. 46, 4 (1998),
1043-1053. doi:10.1109/78.668555. 28

MALLAT S.: A Wawvelet Tour of Signal Processing: The Sparse Way, third ed. Aca-
demic Press, 2008. 30

MoLoNEY B., AMENT M., WEISKOPF D., MOLLER T.: Sort-first parallel volume
rendering. IEEE Trans. Vis. Comput. Graphics 17, 8 (2011), 1164-1177. doi:10.
1109/TVCG.2010.116. 101

McLouGHLIN T., LARAMEE R. S., PEIKERT R., PosT F. H., CHEN M.: Over two
decades of integration-based, geometric flow visualization. Computer Graphics Forum
29,6(2010),180771829.doi:10.1111/j.1467—8659.2010.01650.x.129

MARTIN J., Oo1r A., CHONG M. S., SORIA J.: Dynamics of the velocity gradient
tensor invariants in isotropic turbulence. Physics of Fluids 10 (1998), 2336-2346.
doi:10.1063/1.869752. 107

166

http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1109/TVCG.2006.143
http://dx.doi.org/10.1109/TVCG.2006.143
http://www.libjpeg-turbo.org
http://www.libjpeg-turbo.org
http://dx.doi.org/10.1007/3DRes.04(2010)01
http://dx.doi.org/10.1109/TVCG.2002.1021580
http://dx.doi.org/10.1080/14685240802376389
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1109/78.668555
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1111/j.1467-8659.2010.01650.x
http://dx.doi.org/10.1063/1.869752

BIBLIOGRAPHY

[Moo65]

[MS89)

[MS03a]

[MS03b)]

[Mur12]

[NIHO6]

[NIHO0S]

[NLS11]

[NSO01]

[NVIL0]

[NVI13a]

[NVI13b]

MooORE G. E.: Cramming more components onto integrated circuits. Electronics 38,
8 (1965), 114-117. Reprinted in Proc. IEEE 86, 1 (1998), 82-85. doi:10.1109/jproc.
1998.658762. 1

MALVAR H., STAELIN D.: The LOT: Transform coding without blocking effects. IEEE
Trans. Acoust., Speech, Signal Process. 37, 4 (1989), 553-559. doi:10.1109/29.17536.
28

MALVAR H., SULLIVAN G.: Transform, Scaling & Color Space Impact of Profes-
sional Ezxtensions. Joint Video Team (JVT) of ISO/TEC MPEG & ITU-T VCEG
(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 2003. URL: http://wftp3.
itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H031.doc. 43

MaLvar H., SULLIVAN G.: YCoCg-R: A Color Space with RGB Reversibility and
Low Dynamic Range. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG
(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 2003. URL: http://wftp3.itu.
int/av-arch/jvt-site/2003_09_SanDiego/JVT-1014.doc. 43, 89

MURRAY L.: GPU acceleration of Runge-Kutta integrators. IEEE Trans. Parallel
Distrib. Syst. 23,1 (2012), 94-101. doi:10.1109/TPDS.2011.61. 130

NAGAYASU D., Ino F., HaciHARA K.: Two-stage compression for fast volume render-
ing of time-varying scalar data. In Proc. Computer Graphics and Interactive Techniques
(GRAPHITE) (2006), pp. 275-284. doi:10.1145/1174429.1174478. 57

NAGAYASU D., INoO F., HAGIHARA K.: A decompression pipeline for accelerating out-
of-core volume rendering of time-varying data. Computers & Graphics 32, 3 (2008),
350-362. doi:10.1016/j.cag.2008.04.007. 57

NOUANESENGSY B., LEE T.-Y., SHEN H.-W.: Load-balanced parallel streamline
generation on large scale vector fields. IEEE Trans. Vis. Comput. Graphics 17, 12
(2011), 1785-1794. doi:10.1109/TVCG.2011.219. 132, 138, 154

NcuyeN K. G., SAUPE D.: Rapid high quality compression of volume data for visu-
alization. Computer Graphics Forum 20, 3 (2001), 49-57. doi:10.1111/1467-8659.
00497. 56, 111

NVIDIA Corp.: NVIDIA Texture Tools, version 2.08, 2010. URL: http://

developer.nvidia.com/gpu-accelerated-texture-compression. 95

NVIDIA Corp.: CUDA C Best Practices Guide, version 5.5, 2013. URL: http://
docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf. 55

NVIDIA Corp.: CUDA C Programming Guide, version 5.5, 2013. URL: http://
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_ Guide.pdf. 55

167

http://dx.doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.1109/29.17536
http://wftp3.itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H031.doc
http://wftp3.itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H031.doc
http://wftp3.itu.int/av-arch/jvt-site/2003_09_SanDiego/JVT-I014.doc
http://wftp3.itu.int/av-arch/jvt-site/2003_09_SanDiego/JVT-I014.doc
http://dx.doi.org/10.1109/TPDS.2011.61
http://dx.doi.org/10.1145/1174429.1174478
http://dx.doi.org/10.1016/j.cag.2008.04.007
http://dx.doi.org/10.1109/TVCG.2011.219
http://dx.doi.org/10.1111/1467-8659.00497
http://dx.doi.org/10.1111/1467-8659.00497
http://developer.nvidia.com/gpu-accelerated-texture-compression
http://developer.nvidia.com/gpu-accelerated-texture-compression
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY

[OB11]

[Obell]

[OBGBL11]

[OKO8]

[0S11]

[0SC12]

[Pas76]

[PCG*09)

[PGO7]

[PMO3]

[Pod07a]

[Pod07b]

O’NEIL M. A., BURTSCHER M.: Floating-point data compression at 75 Gb/s on a
GPU. In Proc. General Purpose Processing on Graphics Processing Units (GPGPU)
(2011), pp. 7:1-7:7. doi:10.1145/1964179.1964189. 55

OBERHUMER M. F. X. J.: LZO library, version 2.06, 2011. URL: http://www.

oberhumer.com/opensource/lzo/. 24, 55

OLANO M., BAKER D., GRIFFIN W., BARCZAK J.: Variable bit rate GPU texture
decompression. Computer Graphics Forum 30, 4 (2011), 1299-1308. doi:10.1111/j.
1467-8659.2011.01989.x. 56, 57

OBUKHOV A., KHARLAMOV A.: Discrete Cosine Transform for 8x8 Blocks with
CUDA. NVIDIA Corp., 2008. URL: http://developer.download.nvidia.com/
compute/DevZone/C/html/C/src/dct8x8/doc/dct8x8.pdf. 58

Ozsoy A., SWANY M.: CULZSS: LZSS lossless data compression on CUDA. In Proc.
IEEE Cluster Computing (CLUSTER) (2011), pp. 403-411. doi:10.1109/CLUSTER.
2011.52. 56

Ozsoy A., SwWaNy M., CHAUHAN A.: Pipelined parallel LZSS for streaming data
compression on GPGPUs. In Proc. IEEE Parallel and Distributed Systems (ICPADS)
(2012), pp. 37-44. doi:10.1109/ICPADS.2012.16. 56, 58

Pasco R. C.: Source coding algorithms for fast data compression. PhD thesis, Stanford
University, 1976. 17

PuaMIRE D., CHILDS H., GARTH C., AHERN S., WEBER G. H.: Scalable computa-
tion of streamlines on very large datasets. In Proc. High Performance Computing, Net-
working, Storage and Analysis (SC) (2009), pp. 16:1-16:12. doi:10.1145/1654059.
1654076. 131, 154

PajarorA R., GOBBETTI E.: Survey of semi-regular multiresolution models for in-
teractive terrain rendering. Visual Computer 23, 8 (2007), 583-605. doi:10.1007/
s00371-007-0163-2. 57, 81, 84

PENNEBAKER W. B., MiTCHELL J. L.: JPEG: Still Image Data Compression Stan-
dard. Kluwer Academic Publishers, 1993. 44

PODLOZHNYUK V.: Histogram calculation in CUDA. NVIDIA Corp., 2007.
URL: http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/
histogram/doc/histogram.pdf. 59, 68, 69

PODLOZHNYUK V.: Image Convolution with CUDA. NVIDIA Corp., 2007.
URL: http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/

convolutionSeparable/doc/convolutionSeparable.pdf. 64

168

http://dx.doi.org/10.1145/1964179.1964189
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://dx.doi.org/10.1111/j.1467-8659.2011.01989.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01989.x
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/dct8x8/doc/dct8x8.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/dct8x8/doc/dct8x8.pdf
http://dx.doi.org/10.1109/CLUSTER.2011.52
http://dx.doi.org/10.1109/CLUSTER.2011.52
http://dx.doi.org/10.1109/ICPADS.2012.16
http://dx.doi.org/10.1145/1654059.1654076
http://dx.doi.org/10.1145/1654059.1654076
http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.1007/s00371-007-0163-2
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/histogram/doc/histogram.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/histogram/doc/histogram.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/convolutionSeparable/doc/convolutionSeparable.pdf

BIBLIOGRAPHY

[PRN*11]

[PSM*07]

[PV95]

[PVH*03]

[PZM*12]

[Rawl1]

[RHBY4]

[Ric79]

[RisT76]

[RL79]

[RP71]

PETERKA T., Ross R., NOUANESENGSY B., LEE T.-Y., SHEN H.-W., KENDALL
W., HuaNG J.: A study of parallel particle tracing for steady-state and time-varying
flow fields. In Proc. IEEE Parallel & Distributed Processing (IPDPS) (2011), pp. 580—
591. doi:10.1109/IPDPS.2011.62. 132, 154

PrRADHAN B., SANDEEP K., MANSOR S., RAMLI A. R., SHARIF A. R. B. M.: Second
generation wavelets based GIS terrain data compression using Delaunay triangulation.
Engineering Computations 24, 2 (2007), 200-213. doi:10.1108/02644400710729572.
57

PeErRLIN K., VELHO L.: Live paint: Painting with procedural multiscale textures. In
Proc. Computer Graphics and Interactive Techniques (SIGGRAPH) (1995), pp. 153—
160. doi:10.1145/218380.218437. 85

Post F. H., VROLUK B.; HAUSER H., LARAMEE R. S., DOLEISCH H.: The state
of the art in flow visualisation: Feature extraction and tracking. Computer Graphics
Forum 22, 4 (2003), 775-792. doi:10.1111/j.1467-8659.2003.00723.x. 129

PaTeEL R. A., ZHANG Y., MAK J., DAVIDSON A., OWENS J. D.: Parallel lossless
data compression on the GPU. In Proc. Innovative Parallel Computing (InPar) (2012),
pp. 1-9. doi:10.1109/InPar.2012.6339599. 56, 69

RAwzOR: The new test images, 2011. URL: http://www.imagecompression.info/
test_images/. 61, 77

RovELSTAD A. L., HANDLER R. A., BERNARD P. S.: The effect of interpolation
errors on the Lagrangian analysis of simulated turbulent channel flow. J. Computational
Physics 110, 1 (1994), 190-195. doi:10.1006/jcph.1994.1015. 130, 141

Rice R. F.: Some Practical Universal Noiseless Coding Techniques. Tech. Rep.
JPL Publication 79-22, Jet Propulsion Laboratory, California Institute of Tech-
nology, 1979. URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
19790014634_1979014634.pdf. 15

RISSANEN J.: Generalized kraft inequality and arithmetic coding. IBM J. Research
and Development 20, 3 (1976), 198-203. doi:10.1147/rd.203.0198. 17

RISSANEN J., LANGDON G.G. J.: Arithmetic coding. IBM J. Research and Develop-
ment 23, 2 (1979), 149-162. doi:10.1147/rd.232.0149. 17

RicE R. F., PraunT J. R.: Adaptive variable-length coding for efficient compression
of spacecraft television data. IEEE Trans. Circuit Theory 19, 6 (1971), 889-897. doi:
10.1109/TCOM.1971.1090789. 15

169

http://dx.doi.org/10.1109/IPDPS.2011.62
http://dx.doi.org/10.1108/02644400710729572
http://dx.doi.org/10.1145/218380.218437
http://dx.doi.org/10.1111/j.1467-8659.2003.00723.x
http://dx.doi.org/10.1109/InPar.2012.6339599
http://www.imagecompression.info/test_images/
http://www.imagecompression.info/test_images/
http://dx.doi.org/10.1006/jcph.1994.1015
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014634_1979014634.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014634_1979014634.pdf
http://dx.doi.org/10.1147/rd.203.0198
http://dx.doi.org/10.1147/rd.232.0149
http://dx.doi.org/10.1109/TCOM.1971.1090789
http://dx.doi.org/10.1109/TCOM.1971.1090789

BIBLIOGRAPHY

[RtHRS08]

[RTW13]

[SA97]

[Say12]

[SBKO6]

[SGvR*03]

[SHO5]

[Sha48a]

[Sha48b]

[SK07]

[SM10]

RULITERS D., TER HAAR ROMENY B. M., SUETENS P.: Efficient GPU-based texture
interpolation using uniform B-splines. J. Graphics, GPU, and Game Tools 13, 4 (2008),
61-69. doi:10.1080/2151237X.2008.10129269. 103

REeicHL F., TREIB M., WESTERMANN R.: Visualization of big SPH simulations via
compressed octree grids. In Proc. IEEE Big Data (2013), pp. 71-78. doi:10.1109/
BigData.2013.6691717. 158

SREENIVASAN K., ANTONIA R.: The phenomenology of small-scale turbulence. Annu.
Rev. Fluid Mechanics 29 (1997), 435-472. doi:10.1146/annurev.fluid.29.1.435.
108

SAayooD K.: Introduction to Data Compression, fourth ed. Morgan Kaufmann Publ.
Inc., 2012. doi:10.1016/B978-0-12-415796-5.00006-5. 5, 10, 11

ScHIRSKI M., BiscHOF C., KUHLEN T.: Interactive particle tracing on tetrahedral
grids using the GPU. In Proc. Vision, Modeling, and Visualization (VMV) (2006),
pp. 1563-160. 130

SCHIRSKI M., GERNDT A., VAN REIMERSDAHL T., KUHLEN T., ADOMEIT P., LANG
O., PISCHINGER S., BiscHor C.: ViSTA FlowLib — a framework for interactive
visualization and exploration of unsteady flows in virtual environments. In Proc. EG
Virtual Environments (EGVE) (2003), pp. 77-86. doi:10.1145/769953.769963. 130

Sica C., HADWIGER M.: Fast third-order texture filtering. In GPU Gems 2. Addison-
Wesley, 2005, pp. 313-329. URL: http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter20.html. 103

SHANNON C. E.: A mathematical theory of communication. The Bell System Technical
Journal 27, 3 (1948), 379-423. Part 1. doi:10.1002/j.1538-7305.1948.tb01338.x.
7

SHANNON C. E.: A mathematical theory of communication. The Bell System Technical
Journal 27, 4 (1948), 623-656. Part 2. doi:10.1002/j.1538-7305.1948.tb00917 . x.
7

SHAMS R., KENNEDY R. A.: Efficient histogram algorithms for NVIDIA CUDA
compatible devices. In Proc. Signal Processing and Communication Systems (ICSPCS)
(2007), pp. 418-422. URL: http://users.cecs.anu.edu.au/~ramtin/papers/2007/
ICSPCS_2007.pdf. 69

SALOMON D., MoTrTA G.: Handbook of Data Compression, fifth ed. Springer, 2010.
doi:10.1007/978-1-84882-903-9. 5

170

http://dx.doi.org/10.1080/2151237X.2008.10129269
http://dx.doi.org/10.1109/BigData.2013.6691717
http://dx.doi.org/10.1109/BigData.2013.6691717
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1016/B978-0-12-415796-5.00006-5
http://dx.doi.org/10.1145/769953.769963
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter20.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter20.html
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://users.cecs.anu.edu.au/~ramtin/papers/2007/ICSPCS_2007.pdf
http://users.cecs.anu.edu.au/~ramtin/papers/2007/ICSPCS_2007.pdf
http://dx.doi.org/10.1007/978-1-84882-903-9

BIBLIOGRAPHY

SS82]

[Ste46]

[SW03]

[Swe98]

[TBR*12]

[TGE97]

[TMO1]

[TRAW12]

[Trel3]

[TSP*08)]

[TW13]

[Uh105]

STORER J. A., SzyMANSKI T. G.: Data compression via textual substitution. .J.
ACM 29, 4 (1982), 928-951. doi:10.1145/322344.322346. 22

STEVENS S. S.: On the theory of scales of measurement. Science 103, 2684 (1946),
677-680. doi:10.1126/science.103.2684.677. 24

SCHNEIDER J., WESTERMANN R.: Compression domain volume rendering. In Proc.
IEEE Visualization (2003), pp. 293-300. doi:10.1109/VISUAL.2003.1250385. 56,
110

SWELDENS W.: The lifting scheme: A construction of second generation
wavelets. SIAM J. Mathematical Analysis 29, 2 (1998), 511-546. doi:10.1137/
S0036141095289051. 38

TREIB M., BURGER K., REICHL F., MENEVEAU C., SZALAY A., WESTERMANN R.:
Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput.
Graphics 18, 12 (2012), 2169-2177. doi:10.1109/TVCG.2012.274. 97

TeITZEL C., GROSSO R., ERTL T.: Efficient and reliable integration methods for
particle tracing in unsteady flows on discrete meshes. In Visualization in Scientific
Computing. Springer, 1997, pp. 31-41. URL: http://cumbia.visus.uni-stuttgart.
de/eng/research/pub/pub1997/egvis97teitzel.pdf. 129

TAUBMAN D. S., MARCELLIN M. W.: JPEG2000: Image Compression Fundamentals,
Standards and Practice. Kluwer Academic Publ., 2001. 38, 44, 111

TrREIB M., REICHL F., AUER S., WESTERMANN R.: Interactive editing of gigasample
terrain fields. Computer Graphics Forum 31, 2 (2012), 383-392. doi:10.1111/j.
1467-8659.2012.03017.x. 81, 111, 122

TREIB M.: cudaCompress: GPU data compression using CUDA, 2013. URL: https:
//github.com/m0bl0/cudaCompress. 4, 54, 71, 73

TENLLADO C., SETOAIN J., PrRIETO M., PINUEL L., TiRADO F.: Parallel imple-
mentation of the 2D discrete wavelet transform on graphics processing units: Fil-
ter bank versus lifting. IEEE Trans. Parallel Distrib. Syst. 19, 3 (2008), 299-310.
doi:10.1109/TPDS.2007.70716. 58, 64

TREIB M., WESTERMANN R.: Compression and heuristic caching for GPU particle
tracing in turbulent vector fields. Submitted for publication (2013). 125

UHLMANN M.: An immersed boundary method with direct forcing for the simulation
of particulate flows. J. Computational Physics 209, 2 (2005), 448-476. doi:10.1016/
j.jcp.2005.03.017. 129

171

http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1126/science.103.2684.677
http://dx.doi.org/10.1109/VISUAL.2003.1250385
http://dx.doi.org/10.1137/S0036141095289051
http://dx.doi.org/10.1137/S0036141095289051
http://dx.doi.org/10.1109/TVCG.2012.274
http://cumbia.visus.uni-stuttgart.de/eng/research/pub/pub1997/egvis97teitzel.pdf
http://cumbia.visus.uni-stuttgart.de/eng/research/pub/pub1997/egvis97teitzel.pdf
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
https://github.com/m0bl0/cudaCompress
https://github.com/m0bl0/cudaCompress
http://dx.doi.org/10.1109/TPDS.2007.70716
http://dx.doi.org/10.1016/j.jcp.2005.03.017
http://dx.doi.org/10.1016/j.jcp.2005.03.017

BIBLIOGRAPHY

[vALJR11]

[VW06]

[VWCO7]

[Wel84]

[Wes94]

[WLHWO07]

[WV10]

[WZYO08]

[YL95]

[YP8S]

[YWMO7]

[ZL77]

VAN DER LAAN W. J., JALBA A. C., ROERDINK J. B. T. M.: Accelerating wavelet
lifting on graphics hardware using CUDA. IFEE Trans. Parallel Distrib. Syst. 22, 1
(2011), 132-146. doi:10.1109/TPDS.2010.143. 58, 64

VAN WAVEREN J. M. P.: Real-Time Texture Streaming & Decompression. Tech. rep.,
id Software, Inc., 2006. URL: http://software.intel.com/file/17248/. 71

VAN WAVEREN J. M. P., Castano I.: Real-Time YCoCg-DXT Compression.
Tech. rep., id Software, Inc. and NVIDIA Corp., 2007. URL: http://developer.
download.nvidia.com/whitepapers/2007/Real-Time-YCoCg-DXT-Compression/
Real-TimeYCoCg-DXTCompression.pdf. 57, 82

WELCH T.: A technique for high-performance data compression. Computer 17, 6
(1984), 8-19. doi:10.1109/MC.1984.1659158. 23

WESTERMANN R.: A multiresolution framework for volume rendering. In Proc. Volume
Visualization (VVS) (1994), pp. 51-58. doi:10.1145/197938.197963. 56, 111

Wonag T.-T., LEung C.-S., HENG P.-A., WANG J.: Discrete wavelet transform
on consumer-level graphics hardware. IEEE Trans. Multimedia 9, 3 (2007), 668-673.
doi:10.1109/TMM.2006.887994. 58, 64

WALLACE J., VUKOSLAVCEVIC P.: Measurement of the velocity gradient tensor in
turbulent flows. Annu. Rev. Fluid Mechanics 42 (2010), 157-181. doi:10.1146/
annurev-fluid-121108-145445. 98

WaNG X., ZHENG X., YIN Q.: Large scale terrain compression and real-time ren-
dering based on wavelet transform. In Proc. Computational Intelligence and Security
(CIS) (2008), vol. 2, pp. 489-493. doi:10.1109/CIS.2008.115. 57

YEeEO B.-L., Liu B.: Volume rendering of DCT-based compressed 3D scalar data.
IEEFE Trans. Vis. Comput. Graphics 1, 1 (1995), 20-43. doi:10.1109/2945.468390.
56, 111

YEUNG P. K., POPE S. B.: An algorithm for tracking fluid particles in numerical
simulations of homogeneous turbulence. J. Computational Physics 79, 2 (1988), 373~
416. doi:10.1016/0021-9991(88)90022-8. 130

Yu H., WanG C., MA K.-L.: Parallel hierarchical visualization of large time-varying
3D vector fields. In Proc. ACM/IEEE Supercomputing (SC) (2007), pp. 24:1-24:12.
doi:10.1145/1362622.1362655. 132

Ziv J., LEMPEL A.: A universal algorithm for sequential data compression. IEEFE
Trans. Inf. Theory 23, 3 (1977), 337-343. doi:10.1109/TIT.1977.1055714. 21

172

http://dx.doi.org/10.1109/TPDS.2010.143
http://software.intel.com/file/17248/
http://developer.download.nvidia.com/whitepapers/2007/Real-Time-YCoCg-DXT-Compression/Real-Time YCoCg-DXT Compression.pdf
http://developer.download.nvidia.com/whitepapers/2007/Real-Time-YCoCg-DXT-Compression/Real-Time YCoCg-DXT Compression.pdf
http://developer.download.nvidia.com/whitepapers/2007/Real-Time-YCoCg-DXT-Compression/Real-Time YCoCg-DXT Compression.pdf
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1145/197938.197963
http://dx.doi.org/10.1109/TMM.2006.887994
http://dx.doi.org/10.1146/annurev-fluid-121108-145445
http://dx.doi.org/10.1146/annurev-fluid-121108-145445
http://dx.doi.org/10.1109/CIS.2008.115
http://dx.doi.org/10.1109/2945.468390
http://dx.doi.org/10.1016/0021-9991(88)90022-8
http://dx.doi.org/10.1145/1362622.1362655
http://dx.doi.org/10.1109/TIT.1977.1055714

BIBLIOGRAPHY

[Z1.78] Ziv J., LEMPEL A.: Compression of individual sequences via variable-rate coding.
IEEFE Trans. Inf. Theory 24, 5 (1978), 530-536. doi:10.1109/TIT.1978.1055934. 21

[ZXM10] ZHENG Z., Xu W., MUELLER K.: VDVR: Verifiable volume visualization of
projection-based data. IEEE Trans. Vis. Comput. Graphics 16, 6 (2010), 1515-1524.
doi:10.1109/TVCG.2010.211. 141

173

http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/TVCG.2010.211

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Outline
	List of Publications

	Data Compression Fundamentals
	Entropy Coding
	Information and Entropy
	Huffman Coding
	Golomb-Rice Coding
	Arithmetic Coding
	Adaptive Huffman and Arithmetic Coding
	Comparison Between Huffman and Arithmetic Coding

	Run-Length Encoding
	Dictionary Techniques
	LZ77
	LZ78
	Use of LZ algorithms in practice

	Transform Coding
	Discrete Cosine Transform
	Discrete Wavelet Transform
	Color Space Transforms

	Image Compression in Practice
	JPEG
	JPEG2000

	GPU Data Compression
	Related Work
	Choice of Algorithms
	Arithmetic Coder
	Golomb-Rice Coder
	Huffman Coder
	Run-Length Coder
	Compression Ratio Comparison

	Discrete Wavelet Transform
	Run-Length Coding
	Encoder
	Decoder

	Huffman Coding
	Encoder
	Decoder

	The cudaCompress Library
	Usage Example
	Performance
	Compression Quality

	Interactive Terrain Editing
	Introduction
	Related Work
	Gigasample Terrain Editing
	Tile Tree Creation and Reconstruction
	Rendering
	Editing

	Data Compression
	Results
	Rendering and Editing
	Compression Rate and Quality
	Compression Throughput

	Conclusion

	Turbulence Visualization: Volume Rendering
	Introduction
	Related Work
	System Functionality, Algorithms, and Features
	Compression Algorithm
	Visualization Algorithm
	Turbulence Features

	Design Decisions and Tradeoffs
	Feature Reconstruction
	Lossy Compression
	Multiscale Analysis

	Performance
	Conclusion

	Turbulence Visualization: Particle Tracing
	Introduction
	Related Work
	Out-of-Core Particle Tracing
	Particle Tracing in Rounds
	Tracing Across Brick Boundaries
	Heuristic Brick Selection and Paging
	Unsteady Flow
	Interpolation Schemes

	Turbulent Vector Field Compression
	Interpolation Error Estimate
	Error-Guided Data Compression

	Evaluation
	Error Metrics
	Accuracy Analysis
	Performance Analysis

	Conclusion

	Conclusion and Future Work
	Bibliography

