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ABSTRACT

Recently, the automatic analysis of likability of a voice has become
popular. This work follows up on our original work in this field
and provides an in-depth discussion of the matter and an analysis
of the acoustic parameters. We investigate the automatic analysis of
voice likability in a continuous label space with neural networks as
regressors and discuss the relevance of acoustic features. We pro-
vide results on the Speaker Likability Database for comparison with
previous work and a subset of the TIMIT database for validation.

1. INTRODUCTION

People have preferences which types of voices they prefer and which
they dislike (cf. [1]). For many technical tasks it is desirable to se-
lect voices that appear pleasant or seem likable to a large number of
people. Examples include the voice of a dialogue system, a chatbot,
announcements in public places, and TV or radio advertisements.
The automatic assessment of voice likability would enable automatic
tuning of voices in such applications towards more pleasant voices
(cf. [2]) while requiring very little human feedback and supervision.
Moreover, it could enable robots and chatbots to build a profile of
their dialogue partners and develop a certain stance (positive or neg-
ative) towards them - in the end making the bot more human like.
While this is not desirable for all applications (e. g., service robots
should always be friendly and not like or dislike a person), it brings
an added value to other areas of application like toy robots, enter-
taining chatbots, and automated characters in computer games.

In previous research [3], it was investigated how “pleasant” a
speaker’s voice appears based on EMO-DB. This is a database of
10 actors, which simulate emotional categories. One of the biggest
drawbacks of that study is the very low number of speakers. A larger
database was introduced in [4] and later made available to the public
as the Speaker Likability Database (SLD) in the INTERSPEECH
2012 Speaker Trait Challenge [5]. The first attempts for systematic
automatic classification of likability were encouraged in the scope
of the Speaker Trait Challenge. Likability thereby was assessed as
a binary classification task (likable and not likable). The results of
the challenge show, that automatic labelling performance based on
a standard set of spectral and prosodic acoustic descriptors is above
chance level, however, only barely significantly. This indicates the
highly challenging nature of this task.

In [6] the authors showed that clear differences exist between
the 30 most likable and the 30 most unlikable speakers in the SLD
(Agender), which suggests that a higher performance is possible.
The two class approach taken in the Challenge, discards informa-
tion about how likable a voice is. In this paper we thus investigate if
a continuous modelling of the likability ratings with neural networks
can bring an improvement or if new acoustic features or even higher
level features are necessary.

This paper is structured as follows: In Section 2 we briefly de-
scribe the Agender database and the subset of the TIMIT speech
database which we have analysed for this paper. In Section 3 the the
acoustic feature set used is described and the results of a correlation
based feature value analysis is discussed.

2. DATABASES

Previous work was based on the “Speaker Likability Database” (SLD)
[7, 4] and the EMO-DB database [3]. In order to validate our ap-
proach on a new data-set, we chose to annotate a subset of the TIMIT
database, which contains speech of over 600 speakers. More details
on this set are found in Section 2.2, while SLD is described in Sec-
tion 2.1.

2.1. Speaker Likability Database

As first evaluation database, the SLD is used [4]. SLD is a subset of
the German Agender database [7], which was originally recorded to
study automatic age and gender recognition from telephone speech.
The speech is recorded over fixed and mobile telephone lines at a
sample rate of 8 kHz. The database contains 18 utterance types taken
from a set listed in detail in [7]. An age and gender balanced set of
800 speakers is selected. For each speaker, we used the longest sen-
tence consisting of a command embedded in a free sentence, in order
to keep the effort for judging the data by many listeners as low as
possible. Likability ratings of the data were established by present-
ing the stimuli to 30 participants (17 male, 13 female, aged 20–42,
mean=28.6, standard deviation=5.4). To control for effects of gender
and age group on the likability ratings, the stimuli were presented in
six blocks with a single gender / age group. To mitigate effects of
fatigue or boredom, each of the participants rated only three out of
the six blocks in randomised order with a short break between each
block. The order of stimuli within each block was randomised for
each participant as well. The participants were instructed to rate
the stimuli according to their likability, without taking into account
sentence content or transmission quality. The rating was done on a
seven point Likert scale. All participants were paid for their service.
A preliminary analysis of the data shows no significant impact of
participants’ age or gender on the ratings, whereas the samples rated
are significantly different (mixed effects model, p < .0001). Con-
trolling for significant effects of variation in the transmission quality
on the ratings is done with the instrumental method recommended
by the ITU for no-reference cases (ITU-T Rec. P.563). As intended
by the instruction, there is no significant correlation between the av-
eraged ratings and quality estimates (Spearman’s % = .04, p = .27).
To establish a consensus from the individual likability ratings (16
per instance), the evaluator weighted estimator (EWE) [8] was used.
As a first step, we calculated the agreement (reliability) of rater



k = 1, . . . ,K (K = 16) with respect to the arithmetic mean lik-
ability rating ln for each instance n,

ln =
1

K

K∑
k=1

ln,k (1)

where ln,k ∈ {−3,−2,−1, 0, 1, 2, 3} is the likability rating as-
signed by rater k to instance n. As a measure of reliability for each
k, we computed the cross-correlation CCk between (ln,k) and (ln),
n = 1, . . . , N . Results are shown in Table 2. It can be seen that the
the reliability in terms of CCk considerably differed, ranging from
.079 (k = 29) to .668 (k = 4). Hence, as a robust estimate of the
desired rater-independent likability of each instance n, we also con-
sidered the evaluator weighted estimator (EWE) [8], denoted by ln,
besides the mean rating ln in further analyses:

ln =
1∑K

k=1 CCk

K∑
k=1

CCkln,k. (2)

The SLD was used as the official evaluation corpus in the IN-
TERSPEECH 2012 Speaker Trait Challenge in the likability sub-
challenge [5].

2.2. TIMIT

The TIMIT corpus [9] is widely used in the Speech Community. It
contains 630 speakers (438 female, and 192 male) from 8 US regions
with distinctly different dialect. The database contains two so-called
sa sentences for each speaker, where the linguistic content is fixed.
These sentences constitute the subset used herein (1260 utterances
in total). Four annotators (1 female, 3 males) annotated the likabil-
ity/pleasantness of the voices for each utterance on a scale from 1 to
4 using integer numbers. The utterances were presented to the raters
in a randomized order. As there are two sentences for each speaker,
we can compute the consistency of the ratings on these (making the
assertion that ideally both sentences should receive the same rating
as they are from the same speaker) in terms of MLE (Table 1). The
rater consistency is significantly better than the expected consistency
for random rating equally distributed over the labels 1, 2, 3, and 4
(expected MLE 1.25).

Rater MLE
1 0.87
2 0.39
3 0.87
4 0.48

Table 1. Rater consistency on TIMIT likability set. MLE between
ratings of first (sa1) and second (sa2) sentence of the same speaker.
Expected MLE value for two random ratings is 1.25.

3. ACOUSTIC FEATURES

We based our analysis on the ComParE acoustic feature set [10],
which is an improved version of the INTERSPEECH 2012 Speaker
Trait Challenge baseline feature set [5]. The features are a brute-
force set of 6 373 acoustic features where numerous functionals (such
as mean, standard deviation, regression coefficients) are applied to a
large set of commonly used low-level descriptors (LLDs) and their

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Feature ranking agreement

La
be

l a
gr

ee
m

en
t

Fig. 1. Correlation between label agreement (CC of likability ratings
with mean rating) and feature ranking agreement (rank correlation of
per-annotator and average acoustic feature relevance) for each anno-
tator: Spearman’s % = .61 (p < .001). Evaluation on entire SLD.

delta coefficients. The functionals are applied over one utterance re-
sulting in one 6 373 dimensional feature vector for every utterance,
regardless of its length. The features are extracted with our open-
source audio and paralinguistics analysis toolkit openSMILE [11].

In Table 2, we show the feature ranking agreements and label
agreements for the 30 annotators. For each annotator, the feature
ranking agreement is obtained as follows: First, the acoustic features
are ranked by their CC with the annotators’ normalised rating (rater-
specific ranking). Then, the acoustic features are ranked by their CC
with the mean rating (average ranking). Finally, for each annotator
the correlation between rater-specific ranking and average ranking
constitutes the annotator’s feature ranking agreement.

The label agreement of an annotator is simply the correlation
coefficient of the annotator’s rating versus the mean rating, as used
in the EWE calculation (cf. above). Feature ranking agreements and
label agreements are depicted in Figure 1 as a scatter-plot. It can
be seen that they are significantly (p < .001) correlated (% = .61),
indicating that generally those raters who agree with the majority
also agree in the choice of their acoustic features.

Next, we consider the median of the absolute CCs of the acous-
tic features per rater as a heuristic measurement of how strongly they
weigh acoustic cues in their decision (‘acoustic feature importance’).
The relation of this measurement with the label agreement is de-
picted in Figure 2. It can be seen that there is a significant correla-
tion (Spearman’s % = .51, p < .005). This provides evidence that
generally those raters who agree more with the majority generally
weigh the acoustic cues from the ComParE feature set higher than
those who agree less.

We also computed Pearson Correlation Coefficients (CC) for
each of the 6 373 acoustic features with the mean likability label
and the EWE likability label on SLD and the mean likability label on
TIMIT. In order to summarise and interpret the results, we combined
the CCs for each low-level descriptor over all functionals by choos-
ing the maximum absolute CC value per LLD (max) and the average
absolute CC value (avg) per LLD. We did the same averaging for the
functionals to find relevant functionals. Looking at the top 10 LLDs



Rater 1 2 3 4 5 6 7 8 9 10
CC (Feature ranking) .364 .432 .538 .737 .707 .629 .672 .656 .653 .620
CC (Label) .380 .531 .502 .668 .578 .583 .547 .609 .545 .516
Rater 11 12 13 14 15 16 17 18 19 20
CC (Feature ranking) .600 .241 .444 -.008 .772 .556 .490 .442 .515 .247
CC (Label) .457 .167 .512 .265 .568 .459 .523 .676 .441 .447
Rater 21 22 23 24 25 26 27 28 29 30
CC (Feature ranking) .677 .748 .333 .511 .336 .470 .756 .551 -.152 .443
CC (Label) .557 .638 .481 .514 .564 .326 .548 .595 .079 .578

Table 2. Label agreement and feature ranking agreement (cf. above) for individual raters. Evaluation on entire SLD.
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Fig. 2. Correlation between label agreement (CC of likability ratings
with mean rating) and acoustic feature importance (median CC of
acoustic features with single rating) for each annotator: Spearman’s
% = .51 (p < .005). Evaluation on entire SLD.

and functionals, we selected the best LLD and functionals which oc-
cur highly ranked in both max CC and avg CC groups. For SLD,
the features ranked among the top 10 were nearly the same for mean
and EWE as targets. Therefore we don’t discriminate between these
two cases but instead only report features that were highly ranked
both for mean and EWE likability. The result can be seen in Table 3.

Interestingly the relevant LLD for both corpora (SLD and TIMIT)
are very different. For SLD, the overall signal energy features (RMS
energy and loudness) are clearly dominating the top 10, followed by
specific energies in various (auditory) spectral bands. In conjunction
with the functionals (means, inter quartile ranges, means of peaks,
and standard deviation) it becomes clear that for SLD the mean loud-
ness and the distribution of loudness and energies in certain speech
formant related bands (1–4 kHz) is relevant. As most of the individ-
ual mean energy features are negatively correlated with the target,
it seems that voices which are too loud or have too much energy
variation while speaking are considered as unpleasant. Besides the
energy related LLD, spectral flux (the change in spectral distribu-
tion from one frame to another) and the spectral slope (low-pass,
white, or high-pass spectrum) are also relevant. These findings are
in line with [4], where critical band energy related features (auditory
spectral bands) were also found to be the best performing ones for a
binary classification task of likability on SLD.

LLDs Functionals
SLD

Loudness, Means,
RMS energy, Inter quartile ranges,
Energy 1 kHz–4 kHz, Linear regression offset,
Energy 250–650 Hz, Standard deviation,
Spectral flux and slope, Mean of peaks,
Energy 400–500 Hz,
Energy in critical bands

TIMIT
Probability of voicing, Means,
Harmonicity, Linear regression and
F0, quadratic regression offsets,
75% and 90% spectral Range (max - min),
roll-off freq., Maximum value
Zero-crossing rate,
Psychoacoustic sharpness
(= weighted spectral centroid)

Table 3. Best ranked acoustic LLD and functionals by CC with the
mean likability on TIMIT and both mean and EWE likability on SLD
(note: both mean and EWE have near the same rankings).

For TIMIT mostly LLD which describe the spectral quality of
the signal are relevant. Energy related features never appear among
the top 10 features. Instead the pitch, voicing probability, and har-
monicity, as well as spectral distributions (centroid/sharpness) and
roll-off points are relevant. In conjunction with the functionals this
suggests that pleasantness is correlated with the pitch and perceived
sharpness of the voice.

4. AUTOMATIC REGRESSION

According to the analysis of acoustic features a weak correlation has
been found between several features and the likability target. We will
now describe experiments on the feasibility of automatic regression
of the likability scores. The goal of these experiments is to find out
whether a regressor which takes all features jointly into account can
improve the correlation with the likability target over the single best
acoustic features.

In this study we use neural networks configured as a multi-layer
perceptrons with one hidden layer containing neurons with sigmoid
transfer functions. We investigated hidden layer sizes of 5, 10, 20,
40, 80, 120, and 160 neurons. The networks’ input layers are of size
6 373, which corresponds to the number of features. The networks
have one linear output neuron corresponding to the EWE or mean
likability target. Networks were trained with standard gradient de-



net. size: 20 40 80 120 160
IS12 Challenge test partition

CC .19 .25 .30 .18 0.21
UAR [%] 59.5 57.7 64.6 57.6 58.3
p-val. 0.15 0.14 0.02 0.09 0.14
AUC .585 .634 .654 .622 .604

IS12 Challenge development partition
CC 0.32 0.31 0.36 0.29 0.32
UAR [%] 59.8 54.2 59.1 63.9 59.8
p-val. 0.09 0.30 0.16 0.03 0.10
AUC .638 .605 .643 .645 .621

Table 4. Regression and classification results.

scent and output error back-propagation. The initial weights in the
network were initialized with random weights uniformly distributed
in the range [−0.1; 0.1] In order to smooth out variations in the re-
sults due to different initialisations and local minima in the search
space, we repeat each network training 5 times with different initial
random weights (generated by using different random seeds in the
random number generator for the weights).

The networks were trained on the INTERSPEECH 2012 Chal-
lenge training partition of the SLD. As training target the EWE lika-
bility score is used. The development set was used for early stopping
of the network training to avoid over-fitting to the training data. If
no improvement of the quadratic error on the development set was
observed for 10 training iterations the training is aborted on the best
network on the development is evaluated on the test set. The re-
sulting Pearson correlation coefficient (CC) for predicted likability
output with the ground truth EWE ratings is shown in Table 4.

A binary classification result was produced from the continuous
outputs and the ground truth by applying a decision threshold of 0
to both. Unweighted Average Recall (UAR) and the corresponding
p-values of a paired T-test where the predictions are compared to a
set of random predictions are given in Table 4.

The results in Table 4 show that the best results are achieved with
networks between 80 and 120 hidden units. The UAR of the best
network (80 hidden units for the test partition and 120 hidden units
for the development partition) is significantly over random guess at
a level of α = 0.05, while all other UAR results are not. We see
a similar trend as in the Challenge baseline paper [10] that a better
CC can be achieved on the development partition than on the test
partition, while UAR is lower.

5. CONCLUSION AND OUTLOOK

We have presented two publicly available databases for research of
speaker likability. An in-depth analysis of acoustic features was
given, showing that between prosodic and spectral acoustic features
and likability a rather low correlation exists. The best correlated
features suggest that the energy level and energy modulations affect
the likability as well as the spectral distribution of the speaker (wrt.
high/low frequencies, white or harmonic spectrum). The automatic
classification results reflect the challenging nature of the problem
and are in line with the baseline results of the INTERSPEECH 2012
Speaker Trait Challenge. The best result is 64.6% Unweighted Av-
erage Recall on the test partition.

The work presented here undermines the findings of previous
work ([6]) that spectral features are less important than higher level
features such as dialect and speaking style. For the Speaker Likabil-
ity Database [6] suggests that the amount of disfluencies and thus the

speech rhythm has an influence on likability. This, in turn, concurs
with our finding that standard deviation and the quartiles of loudness
and signal energy are best correlated with likability on the Speaker
Likability Database.

Future work will focus on higher level acoustic and linguistic
analysis, such as automatic retrieval of disfluencies, advanced de-
scriptors of speech rhythm, and acoustic analysis with knowledge of
the phonetic context.
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