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ABSTRACT

High packet rates in telepresence and teleaction systems pose grave
challenges to teleoperation over existing communication infrastruc-
ture like the Internet. To counter these issues, efficient perceptu-
ally motivated packet-rate reduction schemes have been developed.
These schemes are conventionally evaluated for perceived quality
via subjective user tests. Such tests are time-consuming, expensive
and require precise control of experimental conditions. Computer
modeling of telepresence sessions can, on the other hand, bring re-
peatability, ease of observation, definite control over system param-
eters and task description and fairness of comparison. In this paper,
we present first steps towards a methodology and a framework to
model and simulate a networked haptic interaction and evaluate it
objectively for the quality of experience. Towards this purpose, we
model the human control action and haptic perception process in
teleoperation. Our results show that simulations of these models for
a range of data reduction scheme parameters produce quality esti-
mates whose trend is comparable to carefully performed subjective
user tests.

Index Terms: H.1.2 [User/Machine Systems]: haptics—haptic
compression, quality of experience

1 INTRODUCTION

Over the past few decades, telepresence systems have progressed
in a manner that tries to comprehensively transport and aid human
control capabilities by reining in all relevant modalities - audition,
vision and haptics. The acquisition, communication and display of
audio and video are traditionally well researched upon, but as we
shift focus towards haptics, we face more design complexities along
with proportionately powerful capacities. The intricacies of involv-
ing haptics stem, for the most part, from the bidirectional interac-
tion between man and machine, so that not only can he perceive
the haptic feedback offered - similar to other modalities - but also
physically act upon an environment to alter it. It is clear that it is
of utmost importance to ensure a human-centric treatment to design
and analysis of haptic systems from a perceptual perspective.

Quality evaluation in the context of such systems is a vast topic
in general in that a number of factors ranging from control archi-
tectures employed, data communication policies and schemes, in-
terplay between different modalities to design of human system in-
terfaces (haptic devices) engaged for the purpose can populate the
picture [3, 13, 14]. In our work however, we will primarily con-
centrate on the appraisal of quality relevant to schemes employed
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for the communication of haptic data and the artifacts arising out
of their peculiarities. More specifically, compression schemes for
haptic data, e.g. [7], that enable teleoperation over large distances
without compromising system stability shall be inquired for human-
centric perceptual quality.

Traditionally, media compression schemes are evaluated primar-
ily through subjective user tests. These tests are time-consuming
and expensive. This has led to the development of a number of
perceptual models and methodologies for objective quality evalua-
tion (OQE) in the audio and video fields [11, 18], something that
haptics research currently lacks. Computer modeling and simu-
lation of telepresence sessions with appropriate haptic perception
models should be developed to rectify this situation. Such a com-
puter model would simulate a dedicated and consistent human who
gives honest opinions about the system under test, in effect remov-
ing inter-subject variability of subjective tests.

Unlike audio and video, the bidirectional nature of haptic inter-
action necessitates that human action be included in our analyses.
Ideally, the human model should include the active behavior of the
human (central nervous system and the neuromuscular system of
the arm) and the haptic perceptual mechanism. By building, simu-
lating and iteratively refining a signal-based objective quality eval-
uation framework that employs these models, we aim to be able
to progress towards compression quality inference results previ-
ously only achievable by diligently designed psychophysical exper-
iments.

In the past, a number of researchers have carried out quality eval-
uation of haptic feedback systems for different applications and
purposes. Some early approaches to objective quality evaluation
include [8] where the influence of packet loss and time delay on
the displayed impedance is evaluated in a mathematical framework
consisting of a perceptual model of the human. In [5], the authors
performed experiments to gather subjective data for various crite-
ria like fatigue, perceived rendering quality and degree of immer-
sion, etc. in a haptic interaction. Membership functions were de-
fined for each of these criteria and the user data was mapped to
quality-of-experience results using fuzzy rules. In [1], Basdogan
et al. conducted studies to evaluate the role of haptic feedback
in human-human and human-machine haptic interactions. Based
on measurements of specific response variables and questionnaires,
conclusions were drawn regarding the influence of haptic feedback
on task performance and a sense of togetherness with other par-
ticipants. In [17], Sagardia et al. provide a framework of testing
scenarios and measures that help objectively evaluate the quality
of haptic rendering algorithms by comparing the response of the
algorithms with the expected analytical one. Similar to [17], we
take a signal-based approach to the evaluation of haptic feedback,
fundamentally different from the previously mentioned approaches
in [8, 1, 5]. But we include the human element of haptic interaction
in our analyses.

The application of lossy compression schemes in a networked
teleoperation system reduces packet transmission rates making real-



time teleoperation amenable. But it also introduces distortions into
the haptic feedback signals and therefore deterioration of signal
quality. Given a teleoperation system, we seek to optimize com-
pression scheme parameters, so as to have good quality, while main-
taining low packet rates over the communication channel.

This paper is organized as follows. In Section 2, we describe the
haptic data reduction scheme that shall be evaluated for quality in
this work. Section 3 presents the proposed objective quality eval-
uation framework for haptic compression schemes. Further, under
this framework, Section 4 divides the human operator model into
two parts - the model of the human control action and that of the
haptic perception process, and describes experiments for identify-
ing model parameters. Section 5 discusses model simulation results
and the paper is concluded with suggestions for future refinements
to the models and the framework in general.

2 HAPTIC DATA REDUCTION

Transmitting haptic signals over packet-switched networks is char-
acterized by strict delay constraints as well as by high data and
packet rates. Our previous work has shown that these chal-
lenges can be successfully addressed by the so-called deadband
approach [7]. It allows us to significantly reduce the amount of
haptic data as well as the network packet rate without impairing the
system’s quality as shown by human user studies [7]. By exploit-
ing Weber’s law of Just Noticeable Differences (JND), it allows us
to remove haptic information that is imperceptible by the human.
In the following, its background, principle and application are ex-
plained.

2.1 Weber’s law of Just Noticeable Differences

Psychophysical studies have revealed that haptic perception of
forces, velocity, pressure, etc. follows a mathematical relationship
between the physical intensity of a stimulus and its phenomenolog-
ically perceived intensity [19]. In 1834, Ernst Weber proposed the
size of the difference threshold to be a linear function of stimulus
intensity. This has become known as Weber’s law of JNDs:

∆I

I
= k or ∆I = k · I, (1)

where I is the initial stimulus and ∆I is the so called Difference
Threshold (or the JND). It describes the smallest amount of change
of stimulus I which can be detected as often as it cannot be. The
constant k (called the deadband parameter k from now on) describes
the linear relationship between ∆I and the initial stimulus I.

2.2 Haptic data reduction using perceptual deadbands

Based on Weber’s Law, insignificant changes in the processed force
feedback data stream are deemed undetectable and corresponding
haptic samples can be dropped. Only if the difference between the
most recently sent sample and the current value exceeds human per-
ception thresholds, a new signal update is triggered. At the receiver,
a simple zero-order hold strategy allows for upsampling the irreg-
ularly received signal updates to a constant and high sampling rate
required for feeding the local control loops.

The principle of deadband-based data reduction is illustrated in
Fig. 1 for the force feedback channel. Samples shown as filled cir-
cles represent the output of the deadband coding scheme. They
define perception thresholds represented by a perceptual deadband,
illustrated as gray zones. Using the insights provided by Weber’s

Figure 1: Principle of deadband-based data reduction.
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Figure 2: Block diagram of the OQE framework for haptic data compression.

law, the applied deadband size grows in direct proportion to the
magnitude of the most recently transmitted and applied haptic sam-
ple, the constant of proportionality being k. For haptic perception,
k has been found to be in the range of 5% to 15%, depending on
the type of stimulus and the limb/joint where it is applied [2]. If the
haptic signal exceeds expected human perception thresholds then a
signal update is triggered to be sent over the network, which also
redefines the applied deadband threshold.

In the following, the phrases ‘haptic compression’ and ‘hap-
tic data reduction’ are used interchangeably. They both refer to
schemes aimed at reducing network traffic by minimizing intersam-
ple transmissions as described above rather than the size of intra-
sample content.

3 A QUALITY EVALUATION FRAMEWORK FOR HAPTIC DATA

REDUCTION

While analyzing performance of different compression schemes or
different settings of the same scheme, fairness demands having a
common basis for comparison. This is automatically ensured in
audio and video coding schemes since exactly the same media con-
tent can be subjected to compression and tested for in subjective
as well as objective evaluation. The additional manipulative abil-
ity afforded in haptics, however, might result in possibly different
user experiences, on account of performed actions among users de-
viating from each other. It follows that there is a need for stan-
dardization of description of the task to be performed by the user,
to enforce similar experiences as far as is possible. This motivates
us to consider a trajectory tracking task, for which operator models
have been derived in detail in the past [6, 16]. A specified posi-
tion signal for such a task will standardize measurements across all
users, for a given static environment.

It is important to note here that the choice of task and the hu-
man control model that is elicited from it has no influence on the
efficacy of the results. The results are applicable at a signal-level,
independent of the varied descriptions of haptic interaction tasks
in practice. Our sole purpose of investigating a tracking task is to
buy a definite degree of control over physical stimuli that different
subjects will experience, by regulating the user input to the system
over a reasonably wide dynamic range in amplitude and frequency.
This range will be dictated by device limits and limits of human
manipulation.

In our setting, the user performs a compensatory tracking task.
Tracking error is visually displayed and the user attempts to keep
this error at a minimum while being subjected to force feedback
generated from the environment. This is a kind of negative feed-
back control, where the user applies corrections through the phys-
ical motion of his muscular system to achieve a specified control
objective. Figure 2 shows an abstract block diagram of the pro-
posed framework.

The point-to-point error between the reference trajectory to be
followed θre f and the actual trajectory θo is fed back to the op-
erator visually. The operator responds to this error by producing
a torque τh while continuously perceiving the torque reflected by



the haptic device. Together with τh, the torque τenv generated by
the environment in response to user motion collectively drives the
hand-device model to produce a position signal at its output. The
output position of the device on the operator (OP) side is communi-
cated to the remote environment over the forward communication
channel. In the other direction, before the environment torque τenv

is sent over the reverse channel to the OP side for display, the data
compression scheme operates on it to minimize transmission rate.

Altering the compression scheme parameter vector~k appropriately
allows us to tune the strength of compression. For lossy compres-
sion schemes, it generally holds that the stronger the compression,
the larger the savings in the transmission rate, but larger the dis-
tortion introduced into the feedback signal. For a given parameter
setting, the compressed feedback signal τc is mapped to the percep-
tual domain along with the reference uncompressed one (τre f ,k=0,
where k = 0 implies that the deadband scheme is inactive) based on
psychophysical laws. A distance metric measures the distortion of
the compressed signal in the perceptual domain with respect to the
uncompressed one, inverting it to produce an estimate of the feed-
back signal quality. We construct a linear model of the dynamics of
such an haptic interaction in the following.

4 MODELING THE HUMAN OPERATOR

In the following, we divide the framework into two main parts - 1.
model of the active control behavior of the human operator, and 2.
model of the human haptic perceptual mechanism. Such a partition
of the human model is a simplification that is necessary to make the
modeling problem tractable.

4.1 The human operator as a controller

A well established isomorphic structural model of the human op-
erator for compensatory manual control is presented in [6] and is
shown here in Figure 4 (dashed box). It was applied by Penin et
al. for simulating a teleoperation system with kinesthetic feedback
in [16]. The internal feedback structure of this model reflects the
hypothesized human proprioceptive feedback activity. The model
has been divided into the central nervous system and the neuromus-
cular system that clearly delineates the signal processing involved.
Control signals uc(t) are produced by the human, proportional to
the tracking error (the proportionality constant being Ke) and inher-
ently delayed (do) by transport along neuro-motor signal pathways
and response dynamics (e.g. visual stimulus processing delay). The
control signal uc(t) is the input command to the closed-loop system
consisting of the active open-loop neuromuscular dynamics Ypn

of
the arm and elements Y f and Ym. These elements represent in an
approximate fashion the combined effects of the muscle spindles,
Golgi tendon organs, joint angle receptors and the dynamics asso-
ciated with higher level signal processing. As proposed by Hess
in [6], for the neuromuscular system, the following characteristic
values were selected: ωn = 10 and ζ = 0.707.

In the tracking task, the hand operates in conjunction with the
haptic device manipulator. The passive hand and device charac-
teristics are represented by the block diagram shown in Figure 3.
The superposition of the device actuator torque and the torque com-
manded by the CNS is denoted by τin. Output θhand = θD denotes
the collective position of the hand and the device. The human hand
impedance is modeled as a linear time-invariant 2nd order model
with effective mass Mh, damping Bh and stiffness Kh:

H(s) =
τhand(s)

θhand(s)
= Mhs2 +Bhs+Kh (2)

The transfer function of the haptic device dynamics with mass
Md and damping Bd can be represented as:

D(s) =
θD(s)

τD(s)
=

1

Mds2 +Bds
(3)

Dhand ��  in2 D2
D(s)

H(s)

( )

hand2

Figure 3: hand-device model structure.

From (2) and (3), we have the overall transfer function:

HD(s) =
θD(s)

τin(s)
=

D(s)

1+D(s) ·H(s)

=
1

(Mh +Md)s2 +(Bh +Bd)s+Kh

(4)

where M , (Mh +Md), B , (Bh +Bd) and K , Kh further on.
The hand-device model fits into the rest of the operator control

framework which we refer to later on as the operator model, as
shown in Figure 4. Again, under the assumption of linearity, the
operator output torque τh together with the torque τenv generated
by the environment (τc after compression) drive the hand-device
model.

For this work, we neither insist on nor claim rigor. Human op-
erator modeling has been studied in great depth and much more
detailed models for tracking tasks have been developed [15]. Re-
cently, researchers have also begun to focus on tracking tasks with
haptic feedback [12]. Our intention here is primarily to lay the
foundations of a preliminary framework which would be subject to
refinements in the future.

4.1.1 Parameter estimation

Parameters are estimated for the system in two successive experi-
ments. In the first experiment, we identify the hand-device model
for a specified grip force typical of desktop haptics. Thus depen-
dence of the passive hand dynamics on the grip force can be ig-
nored. The parameter values determined from the first experiment
are then fixed in the second experiment, where we identify the op-
erator model that drives the hand-device model.

Experimental setup Experiments were performed using a
PHANToM Omni haptic device (Sensable Technologies Corp.,
Woburn, MA) equipped with a FlexiForce force sensor to sense grip
forces (TekScan Corp., Boston, MA). We made use of only the first
(base) joint of the haptic device for simplicity. A usb sensor in-
terface kit from Phidgets Inc. (Calgary, Alberta, Canada) acquired
data from the grip force sensor. A real-time executable application
built using MATLAB/Simulink running on a standard Windows PC
(dual core, 2.13 GHz) ran a servo loop that reads the high-precision
Omni device position encoders and commanded torque values to it
at the standard 1 kHz haptic sampling rate.

Subjects Nine right hand dominant subjects (7 male, 2 female,
ages 20-30 yrs.) participated in this study. All subjects were healthy
with fully operational limbs and tested using their (dominant) right
arm. The same subjects participated in both the experiments. The
experimental procedures were reviewed in detail before each exper-
iment and are described below.
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Figure 4: Structural model for the compensatory tracking task.
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Experimental procedure In the hand-device identification
experiment (see Figure 5), the subjects were displayed a slider
on the screen which corresponded directly to the position of their
hand (the same as that of the device). Standard system identifi-
cation methods using input signals such as frequency sweeps, dis-
crete sinusoidal signals, and random noise produce comparable re-
sults. However, we commanded a Gaussian white noise force in-
put to the device, low pass filtered with a cutoff frequency of 30
Hz [4]. This is because when the human hand is subjected to ran-
dom force disturbances, it is less likely to trigger its reflexes (which
our model does not account for). The subjects were instructed to
attempt to hold the visual slider position at the center without forc-
ing the device against the applied torque, while maintaining a grip
force of roughly around 3 N typical to desktop haptic applications.
A visual cue in the form of a dial was shown on the screen too,
so that the subjects could correct their grip force when necessary.
The commanded input torque and the corresponding output posi-
tion of the haptic device were recorded for subsequent analysis.
Figure 7 shows an excerpt of the time domain input and output sig-
nals recorded during the experiment. The low pass character of the
hand-device combination is evident herein.

In the operator model experiment (see Figure 6), subjects were
displayed the tracking error with respect to the reference trajectory.
They were then asked to attempt to keep the error at a minimum
by adjusting hand position to make the slider position approach the
center of the scale, which corresponds to zero tracking error. They
were well trained for this tracking task before the actual experiment.
Proportional force feedback according to a spring model (with stiff-
ness KV E = 0.8Nm/rad) for the environment was computed and
commanded to the haptic device to be applied to the hand after un-
dergoing deadband compression. The subjects were requested to
maintain a consistent grip force on the device, for which purpose
a visual cue is provided, similar to the first experiment. The refer-
ence input trajectory, the actual trajectory traced by the user and the
corresponding feedback torque were recorded. Figure 8 shows an
example of the time domain input signal that was to be followed and
the corresponding actual signal that the user produced in response.

Each subject was initially trained to recognize the step-like dead-
band artifacts haptically. He then performed the tracking task (100
sec. long) multiple times for a range of deadband parameter k val-
ues. To avoid learning effects, the k values were chosen randomly
across experimental runs. After each run, a subjective rating corre-
sponding to the perceived distortion in the haptic feedback because

Table 1: Hand-device model parameters (rounded up for convenience)

M(kgm2) B(kgm2/rad) K(Nm/rad)
0.003 ± 0.002 0.45 ± 0.21 9.25 ± 3

Table 2: Operator structural model parameters (rounded up for convenience)

Ke do(sec) K1 K2
1
T1
, 1

T2
(sec−1)

141 ± 34 0.28 ± 0.07 65 ± 15 38 ± 10 23 ± 7
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Figure 6: Experiment 2 - human model identification.

of the compression scheme was solicited and recorded (see [7] for
a more detailed description of the rating scale). It is noted that for
a reasonable range of k, no operational instabilities have been ob-
served during experiments even though no additional measures for
the passification of the deadband scheme have been implemented
(see [9] for details). This may be attributed to device and human
damping, which dissipate energy injected into the haptic loop.

System identification Figure 9 shows the Bode plot of the
transfer function estimated from the first half of input-output data
measured in the hand-device identification experiment, averaged
across all users. Averaging was possible since exactly the same
input torque was used for each of the users. A second order transfer
function was then fitted to the experimental data, and the estimated
parameters are listed in Table 1. The second half of the experimen-
tal data was used for model validation.

For the second experiment, the input signal was designed to be
a summation of thirteen sinusoids to ensure a random appearing
input to the user. The input frequencies were distributed evenly over
the range interesting for manual control (0 ≤ fin ≤ 3Hz) [6]. The
presence of delay do in the OP model makes parameter adjustment
in the frequency domain difficult and therefore parameter values
(Table 2) were estimated in the time domain by least squares-based
optimization. An initial guess of do = 0.2sec was used for the OP
delay [6].

4.2 Haptic perceptual mapping

In this section, we present a haptic perception model based on a
well established law of psychophysics, namely the Weber-Fechner
law [20]. Inspired by this law, we hypothesize that the psycho-
logical sensation registered by the brain when experiencing haptic
stimuli varies logarithmically with the magnitude of the physical
haptic stimulus:

S = c · ln(
x

xo
) (5)

where S denotes the perceived sensation, c is a scaling constant typ-
ically determined experimentally, x represents the stimulus magni-
tude, and xo denotes the absolute threshold below which no stimu-
lus can be perceived at all.

For an N-long time-sampled signal, we define a distortion metric
-perceptual mean square error or pmse - in the perceptual domain
as:

pmse =
1

N

N−1

∑
i=0

(S(i)− Ŝ(i))2

=
c2

N
·

N−1

∑
i=0

(

ln(
x(i)

x̂(i)
)

)2

(6)

where in the perceptual domain, S is the undistorted reference,
while Ŝ is the signal distorted by data compression, x and x̂ being
the corresponding time-domain signals.
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Figure 7: Experiment 1 - time domain plots.

5 SIMULATION RESULTS

With the model parameters obtained before, the model of the human
operator interacting haptically with an environment is simulated for
a range of values of the compression scheme parameter k. The qual-
ity of the resultant compressed force feedback signals, distorted due
to the lossy compression scheme is evaluated using our metric pmse
for perceptual distortion. Figures 11, 12, 13 and 14 show the time
domain position and feedback torque waveforms for a couple of
deadband parameter k values. Figure 15 shows results of the sim-
ulations performed for various values of the deadband parameter k.
It can be seen that with increasing k, the predicted perceived signal
quality as well as transmission packet rates decrease.

Figure 16 shows subjective quality ratings obtained experimen-
tally (experiment 2) for comparison. It can be seen here that the
trend of the quality curve plotted against increasing values of the
deadband parameter k is coherent with that predicted by the simu-
lations.

6 CONCLUSIONS AND FUTURE WORK

A framework and a methodology for objective quality evaluation
of haptic compression schemes was proposed and validated by ex-
periments and simulations. Quality results predicted by the simula-
tions match in trend with those obtained from psychophysical tests.
The optimal compression parameter k can be chosen from the sim-
ulation results depending upon what operation quality is regarded
as acceptable. By design, the haptic task investigated in this work
generates low-frequency haptic feedback. The perceptual distortion
metric deployed is especially well suited to capture artifacts within
this framework. However, the detection of more complex features
(e.g. communication artifacts arising out of receiver-side signal re-
construction in presence of packet loss, network delay and jitter)
in the haptic signals will necessitate more complex psychophysical
models.

More detailed models of the human manual control action ex-
ist that, for instance, additionally consider vestibular feedback, an
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important component of the human movement regulating and stabi-
lizing system. Remnant signals that account for the non-linearities
that are not captured by the linear human model have also been
modeled in detail by researchers. The adaptability of such mod-
els for our purpose needs to be evaluated in the future. Moreover,
a comprehensive model of the human haptic perception needs to
be developed. It is expected that such future refinements shall im-
prove the statistical correlations between objective quality results
obtained by simulation and those from subjective tests.
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Figure 11: Simulation waveforms for deadband parameter k = 0: positions.
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Figure 12: Simulation waveforms for deadband parameter k = 0: torques (the uncom-

pressed and compressed waveforms coincide for k = 0).
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Figure 13: Simulation waveforms for deadband parameter k = 0.15: positions.
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Figure 14: Simulation waveforms for deadband parameter k = 0.15: torques. Flat areas

on the black curve represent areas of no packet transmission. Each vertical step on this

curve represents one packet transmission.
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Figure 15: Quality estimates using pmse and packet rate simulation results. The nor-

malized packet rate at k = 0 is 1.
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Figure 16: Normalized mean subjective quality ratings obtained from experiment 2,

with corresponding standard deviations.


