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Abstract—In this paper we study the system approximation
process, which naturally emerges when a stable linear time-
invariant (LTI) system is applied on the Shannon sampling series,
for the case that the samples of the signal are disturbed by the
non-linear threshold operator, which sets all samples that are
below some threshold to zero. We analyze its behavior for signals
in the Paley-Wiener space PW1

π of bandlimited signals with
absolutely integrable Fourier transform as the threshold tends to
zero. We treat the pointwise as well as the global behavior and
characterize the systems for which there exist signals such that
the approximation error diverges as the threshold tends to zero.
We further show that for those systems in a certain topological
sense almost all signals lead to divergence and that the divergence
can be arbitrarily fast.

Keywords—sampling series, linear time invariant system, thresh-
old operator, Paley-Wiener space, divergence speed

I. INTRODUCTION

According to Brown’s theorem, the Shannon sampling
series convergences uniformly on compact subsets of R for
all signals in the Paley–Wiener space PW1

π [1], [2].

Theorem 1 (Brown). For all f ∈ PW1
π and τ > 0 fixed we

have

lim
N→∞

max
t∈[−τ,τ ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ = 0. (1)

The truncation of the series in (1) is done in the domain of
the signal f because only the samples f(k), k = −N, . . . , N ,
are taken into account. In contrast, it is also possible to control
the truncation of the series in the codomain of f by considering
only the samples f(k), k ∈ Z, whose absolute value is larger
than or equal to some threshold δ > 0. This leads to the
approximation process

(Aδf)(t) :=
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t− k))

π(t− k)
. (2)
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This kind of truncation may appear for example in sensor
networks, where, in order to save energy and to reduce
interference, the sensors only transmit their measurements
to the fusion center if the absolute value of the measured
quantity is above some threshold δ > 0. Apart from this
example, thresholding and quantization, which is closely re-
lated to thresholding, are two fundamental operations in digital
signal processing because in digital circuits signals can only
be represented with a limited resolution and hence must be
quantized [3].

In general, Aδf is only an approximation of f . However,
since all “important” samples of the signal, i.e., all samples
that are larger or equal than δ, are used in the approximation
(2), one would expect that Aδ is close to f if δ is sufficiently
small.

In this paper we analyze a more general approximation
process

(ATδ f)(t) := (TAδf)(t) =
∞∑

k=−∞
|f(k)|≥δ

f(k)hT (t− k), (3)

where additionally a linear time-invariant (LTI) system T is
present. hT = T sinc is the bandlimited impulse response of
the system T . In the sensor network example that was given
before an additional LTI system enters if we do a further
processing of the measured signal. This is for example the case
when we extract certain properties of the underlying physical
process by using signal processing operations. Clearly, (2) is
a special case of (3), which arises if T is the identity operator.

There are two ways to analyze the the approximation
processes (2) and (3). One is to study Aδf and ATδ f for fixed
threshold δ and varying signals f ; and the other is to study the
behavior of Aδf and ATδ f for a fixed signal f as the threshold
δ tends to zero. For fixed threshold δ the approximation
process (2) was analyzed in [4]. It was shown that Aδ is
an unbounded operator. However, from this observation we
cannot conclude a problematic behavior of Aδf as δ tends to
zero, because of the non-linearity of Aδ . The behavior of the
approximation process Aδf as δ tends to zero was analyzed
in [5]. Surprisingly, the approximation error does not always
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decrease as the threshold δ tends to zero, i.e., as more and
more samples are used for the approximation. Depending on
the signal f ∈ PW1

π , the approximation process (Aδf)(t),
and consequently the approximation error |(Aδf)(t) − f(t)|,
can diverge unboundedly, even for fixed t ∈ R, as δ tends to
zero. In contrast to [5] we will study here the situation where
an additional stable LTI system is present.

The goal of this paper is to completely understand the
effects of the threshold operator on the system approximation
process (3). We are interested in the pointwise and the global
behavior of the system approximation process ATδ f as the
threshold δ tends to zero. Further, in the case of divergence, we
analyze the structure of the set of divergence creating signals
and are able to make a statement about the divergence speed.
With the results in this paper we solve three open problems
that were formulated in [5, Questions 1–3]. Question 1 deals
with the divergence speed of the approximation process ATδ f ,
Question 2 with the existence of divergence creating signals,
and Question 3 with the topological structure of the set of
divergence creating signals.

Since the threshold operator is a deterministic operator, we
have chosen to treat it deterministically in our analysis. The
deterministic analysis is difficult because of the non-linearity
of the threshold operator, but it enables us to reveal effects,
which cannot be discovered with an additive noise description
of the threshold operator. The deterministic approach is in the
spirit of [6].

II. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂
is to be understood in the distributional sense. Lp(R), 1 ≤ p <
∞, is the space of all to the pth power Lebesgue integrable
functions on R, with the usual norm ‖ · ‖p, and L∞(R) the
space of all functions for which the essential supremum norm
‖ · ‖∞ is finite.

For σ > 0 let Bσ be the set of all entire functions f with
the property that for all ε > 0 there exists a constant C(ε) with
|f(z)| ≤ C(ε) exp

(
(σ + ε)|z|

)
for all z ∈ C. The Bernstein

space Bpσ consists of all functions in Bσ , whose restriction
to the real line is in Lp(R), 1 ≤ p ≤ ∞. A function in
Bpσ is called bandlimited to σ. By the Paley-Wiener-Schwartz
theorem, the Fourier transform of a function bandlimited to
σ is supported in [−σ, σ]. For 1 ≤ p ≤ 2 the Fourier
transformation is defined in the classical and for p > 2 in
the distributional sense.

For σ > 0 and 1 ≤ p ≤ ∞ we denote by PWp
σ the Paley-

Wiener space of functions f with a representation f(z) =
1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ, σ]. If

f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ , 1 ≤ p <
∞, is given by ‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|p dω)1/p.

III. STABLE LTI SYSTEMS

We briefly review some definitions and facts about stable
linear time-invariant (LTI) systems. A linear system T :
PW1

π → PW
1
π is called stable if the operator T is bounded,

i.e., if ‖T‖ = sup‖f‖PW1
π
≤1‖Tf‖PW1

π
< ∞. Furthermore, it

is called time-invariant if (Tf( · − a))(t) = (Tf)(t − a) for
all f ∈ PW1

π and t, a ∈ R.

For every stable LTI system T : PW1
π → PW1

π there
exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω (4)

for all f ∈ PW1
π . Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW1
π → PW

1
π . We have

hT = T sinc, where

sinc(t) =

{
sin(πt)
πt , t 6= 0,

1, t = 0.

Note that ĥT ∈ L∞[−π, π] ⊂ L2[−π, π], and consequently
hT ∈ PW2

π .

If the samples {f(k)}k∈Z of a signal f are known perfectly,
we can use

N∑
k=−N

f(k)hT (t− k) (5)

to obtain an approximation of Tf . The convergence of (5)
for f ∈ PW1

π as N goes to infinity is delicate and has to be
checked from case. In this paper we analyze the approximation
behavior of (3), where the samples of the signals f ∈ PW1

π
are disturbed by the threshold operator.

IV. THE THRESHOLD OPERATOR

Next, we introduce the threshold operator and discuss some
of its basic properties. For complex numbers z ∈ C, the
threshold operator κδ , δ > 0, is defined by

κδz =

{
z |z| ≥ δ
0 |z| < δ.

Furthermore, for continuous signals f : R → C, we define
the threshold operator Θδ , δ > 0, pointwise, i.e., (Θδf)(t) =
κδf(t), t ∈ R.

In this paper, the threshold operator κδ is applied on the
samples {f(k)}k∈Z of signals f ∈ PW1

π , which gives the
disturbed samples {κδf(k)}k∈Z. This is, of course, equivalent
to applying the threshold operator Θδ on the signal f itself
and then taking the samples, i.e., {(Θδf)(k)}k∈Z. Then, the
resulting samples {(Θδf)(k)}k∈Z are used to build an approx-
imation

(ATδ f)(t) :=
∞∑

k=−∞

(Θδf)(k)hT (t− k)

=
∞∑

k=−∞
|f(k)|≥δ

f(k)hT (t− k), (6)

of the system output Tf . By ATδ we denote the operator that
maps for to ATδ f according to (6). If f ∈ PW1

π we have
limt→∞ f(t) = 0 by the Riemann-Lebesgue lemma, and it
follows that the series in (6) has only finitely many summands,
which implies ATδ f ∈ PW

2
π ⊂ PW

1
π .
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The analysis of the approximation processes (6) is difficult,
because the operator ATδ has several properties, which com-
plicate its treatment: 1) For every δ > 0, ATδ : PW1

π → PW
2
π

is a non-linear operator. 2) For every δ > 0, the operator
ATδ : PW1

π → PW2
π is discontinuous. 3) For certain f ∈

PW1
π , the operator ATδ is also discontinuous with respect to δ.

In particular the non-linearity leads to the unexpected behavior
of the operator ATδ .

V. RESIDUAL SET

In order to state our main results, we need to introduce the
notion of a “residual set”.

A subset G of a metric space X is said to be nowhere dense
in X if the closure [G] does not contain a non-empty open set
of X . G is said to be of the first category (or meager) if G is
the countable union of sets each of which is nowhere dense in
X . G is said to be of the second category (or nonmeager) if is
not of the first category. The complement of a set of the first
category is called a residual set. Sets of first category may be
considered as “small”. According to Baire’s theorem [7] we
have that in a complete metric space, the residual set is dense
and a set of the second category. Thus, a residual set is “large”
and contains “almost all” elements.

VI. POINTWISE BEHAVIOR

In this section we analyze the behavior of (ATδ f)(t) for
fixed t ∈ R as the threshold δ is decreased to zero.

Definition 1. Let Φ be the set of all continuous, positive, and
monotonically decreasing functions φ defined on (0, 1] that
satisfy limδ→0 φ(δ) =∞ and φ(δ) ≥ 1 for all 0 < δ ≤ 1.

For fixed t ∈ R, we want to characterize the stable LTI
systems T for which the set

D1(T, t, φ) := {f ∈ PW1
π : lim sup

δ→0

|(ATδ f)(t)|
φ(δ)

=∞}

is non-empty, and, in the case where D1(T, t, φ) is non-empty,
we are interested in structure of this set. For a given LTI
system T and time instant t ∈ R the set D1(T, t, φ) contains all
signals f ∈ PW1

π for which (ATδ f)(t) diverges, i.e., all signals
for which the approximation process diverges pointwise. The
function φ ∈ Φ is introduced in the above expression in order
to describe the divergence speed of (ATδ f)(t).

Theorem 2. Let T be an stable LTI system, t ∈ R, and φ ∈ Φ.
Then we have D1(T, t, φ) 6= ∅ if and only if

∑∞
k=−∞|hT (t−

k)| =∞. Further, if
∑∞
k=−∞|hT (t−k)| =∞ then D1(T, t, φ)

is a residual set.

Theorem 2 shows that D1(T, t, φ) is a residual set if and
only if

∞∑
k=−∞

|hT (t− k)| =∞. (7)

This means that in a topological sense almost all signals f ∈
PW1

π lead to a divergent approximation process if (7) is true.
Moreover, since the condition (7) does not depend on φ, it
follows that in the case of divergence D1(T, t, φ) is a residual
set for all functions φ ∈ Φ. That is, the divergence speed

can be arbitrarily fast. Theorem 2 solves the Questions 1–3
from [5]. It is interesting to note that (7) is a necessary and
sufficient condition. That is, Theorem 2 gives us a complete
characterization of the systems T that can be approximated by
using the approximation process ATδ .

The proof of Theorem 2 is technically rather involved and
omitted due to space constraints.

Next, we want to apply Theorem 2. For the LTI system T =
Id, where Id denotes the identity operator, we have hT = sinc
and thus obtain, as a special case of (6), the sampling series

(Aδf)(t) = (AIdδ f)(t) =
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t− k))

π(t− k)
,

which is the Shannon sampling series that uses only the
samples that are larger than or equal to the threshold δ. Since∑∞
k=−∞|sinc(t − k)| = ∞ for all t ∈ R \ Z, we obtain the

next corollary as an immediate consequence of Theorem 2.

Corollary 1. Let t ∈ R \ Z and φ ∈ Φ. Then

{f ∈ PW1
π : lim sup

δ→0

|(Aδf)(t)|
φ(δ)

=∞}

is a residual set.

Corollary 1 shows the difference between the Shannon
sampling series

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
,

where the truncation is controlled in the domain of the signal,
and our approximation process Aδf , where the truncation is
controlled in the codomain of f . The Shannon sampling series
is locally uniformly convergent for all f ∈ PW1

π according to
Brown’s theorem, whereas Aδf can be divergent for certain
signals f ∈ PW1

π .

In particular, Corollary 1 shows that for fixed t ∈ R \ Z
there exists a signal f ∈ PW1

π such that

lim sup
δ→0

|(Aδf)(t)|
φ(δ)

=∞. (8)

The next corollary strengthens this assertion. It states that
there exists a universal signal f ∈ PW1

π such that we have
divergence as in (8) for all t ∈ R \ Z.

Corollary 2. Let φ ∈ Φ. Then

{f ∈ PW1
π : lim sup

δ→0

|(Aδf)(t)|
φ(δ)

=∞ for all t ∈ R \ Z}

is a residual set.

Proof: Let t1 ∈ R \ Z and φ ∈ Φ be arbitrary but fixed.
According to Corollary 1, there exists a residual set G ⊂ PW1

π
such that

lim sup
δ→0

|(Aδf)(t1)|
φ(δ)

=∞
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for all f ∈ G. We further have, for t2 ∈ R \ Z, 0 < δ < 1,
and f ∈ PW1

π that∣∣∣∣ (Aδf)(t1)

φ(δ) sin(πt1)
− (Aδf)(t2)

φ(δ) sin(πt2)

∣∣∣∣
=

1

φ(δ)π

∣∣∣∣∣∣∣∣
∞∑

k=−∞
|f(k)|≥δ

f(k)
(−1)k

t1 − k
−

∞∑
k=−∞
|f(k)|≥δ

f(k)
(−1)k

t2 − k

∣∣∣∣∣∣∣∣
≤
‖f‖PW1

π

π

∞∑
k=−∞
|f(k)|≥δ

|t2 − t1|
|t1 − k||t2 − k|

=: C1(t1, t2, f),

where C1(t1, t2, f) < ∞ is a constant that depends only on
t1, t2, and f . It follows that

|(Aδf)(t2)|
φ(δ)

≥ |(Aδf)(t1)|
φ(δ)

∣∣∣∣ sin(πt2)

sin(πt1)

∣∣∣∣− C2(t, t2, f) (9)

for all t2 ∈ R\Z, 0 < δ < 1, f ∈ G. Taking the limit superior
on both sides of (9) gives

lim sup
δ→0

|(Aδf)(t2)|
φ(δ)

=∞

for all t2 ∈ R \ Z and all f ∈ G.

VII. GLOBAL BEHAVIOR

In this section we study the behavior of ‖ATδ f‖∞, i.e., the
L∞-norm of the approximation process, as the threshold δ is
decreased to zero. The set of interest in this case is

D∞1 (T, φ) = {f ∈ PW1
π : lim sup

δ→0

‖ATδ f‖∞
φ(δ)

=∞}.

Theorem 3. Let T be a stable LTI system and φ ∈ Φ. Then
we have D∞1 (T, φ) 6= ∅ if and only if hT /∈ B1π . Further, if
hT /∈ B1π then D∞1 (T, φ) is a residual set.

For the proof of Theorem 3 we need the following lemma.

Lemma 1. Let hT ∈ Bπ . If

∞∑
k=−∞

|hT (k)| <∞ (10)

and
∞∑

k=−∞

∣∣∣∣hT (k +
1

2

)∣∣∣∣ <∞ (11)

then we have hT ∈ B1π .

Lemma 1 follows directly from the fact that conditions (10)
and (11) together correspond to oversampling with oversam-
pling factor 2.

Proof of Theorem 3: Let φ ∈ Φ be arbitrary but fixed.

We prove the “⇒” direction of the if and only if assertion
by showing that hT ∈ B1π implies D∞1 (T, φ) = ∅. Thus, let T
be a stable LTI system such that hT ∈ B1π . For all δ > 0 and
f ∈ PW1

π we have

|(ATδ f)(t)| ≤
∞∑

k=−∞
|f(k)|≥δ

|f(k)hT (t− k)|

≤ ‖f‖PW1
π

∞∑
k=−∞

|hT (t− k)|.

It follows, using Nikol’skiı̆’s inequality [8, p. 49], that

‖ATδ f‖∞ ≤ ‖f‖PW1
π

sup
t∈R

∞∑
k=−∞

|hT (t− k)|

≤ ‖f‖PW1
π
‖hT ‖1,

which implies D∞1 (T, φ) = ∅.
Next, we prove the second assertion of the theorem, i.e.,

that D∞1 (T, φ) is a residual set if hT /∈ B1
π . This also proves

the “⇐” direction of the if and only if assertion. Let the stable
LTI system T be such that hT /∈ B1π . Then we have

∞∑
k=−∞

|hT (k)| =∞

or ∞∑
k=−∞

∣∣∣∣hT (k +
1

2

)∣∣∣∣ =∞,

according to Lemma 1. From Theorem 2 it follows that
D1(T, 0, φ) or D1(T, 1/2, φ) is a residual set, which in turn
implies that D∞1 (T, φ) is a residual set.

The proof of Theorem 3 has also revealed the following
corollary.

Corollary 3. Let T be a stable LTI system and φ ∈ Φ. Then
we have D∞1 (T, φ) 6= ∅ if and only if

∞∑
k=−∞

|hT (k)| =∞ or
∞∑

k=−∞

∣∣∣∣hT (k +
1

2

)∣∣∣∣ =∞.

Moreover, if D∞1 (T, φ) 6= ∅ then D∞1 (T, φ) is a residual set.

VIII. DISCUSSION

In this paper we studied the system approximation process
under thresholding and solved three open problems that were
posed in [5, Questions 1–3]. The results in this paper illustrate
that the threshold operator leads to completely new phenomena
in the approximation of stable LTI systems.

Corollary 3 and Theorem 2 show the significant difference
between the approximation behavior of ATδ and the approxi-
mation behavior of the Shannon sampling series

(SNf)(t) :=
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)
,

which is described by Brown’s theorem. Although the L∞-
norm of the Shannon sampling series ‖SNf‖∞ diverges for
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certain signals in PW1
π , we still have, for fixed t ∈ R,

convergence for all signals in PW1
π . In contrast, the divergence

of the L∞-norm of ATδ f for one signal f ∈ PW1
π results in

the divergence of (ATδ f)(t) for t = 0 or t = 1/2 and all
signals from a residual set.

We gave a complete characterization of the stable LTI
systems that can be approximated by the approximation pro-
cess ATδ . For the approximation process (5) such a complete
characterization is still unknown, although the operators in this
problem are linear.

As for the divergence speed, we have the following differ-
ence. For the Shannon sampling series it can be shown that
there exists a constant C3 > 0 such that for all f ∈ PW1

π we
have ‖SNf‖∞ ≤ C3 log(N + 1)‖f‖PW1

π
for all N ∈ N, i.e.,

the growth speed of ‖SNf‖∞ is bounded above and cannot be
arbitrarily fast. This is contrast to the approximation process
ATδ f where the pointwise as well as the global divergence can
be arbitrarily fast, as Theorems 2 and 3 have shown.

Thresholding is closely related to quantization, because the
mid-tread quantization operator sets all small signal values to
zero, like the threshold operator. Hence, we conjecture that
similar results as those which where obtained in this paper are
also valid for the quantization operator.

Greedy approximation [9], [10] is a topic which seems
to be related to the approximation with thresholding that is
studied in this paper. However, in greedy approximations the
truncation is usually performed in the frequency domain and
divergence in the frequency domain does not always translate
to divergence in the time domain. For example, it is easy to
construct a sequence of PW2

π-signals {fn}n∈N with uniformly
bounded PW2

π-norm, for which the corresponding sequence of
Fourier transforms {f̂n}n∈N diverges everywhere in [−π, π].
Further, the uniform boundedness of the PW2

π-norm implies
the uniform boundedness of the L∞(R)-norm. Hence, the
results in greedy approximations cannot be simply transfered
to our problem.

In general, oversampling is known to improving the con-
vergence behavior of approximation processes. However, in
[11] it was shown that, for certain stable LTI systems, over-
sampling cannot resolve the divergence of the approximation
process with thresholding. It is an interesting open problem
to characterize the systems that can be stably approximated if
oversampling is used in the approximation process.
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