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Abstract—Conditions are derived on the interference channel
with single-antenna nodes to achieve maximal degrees-of-freedom
with only two symbol extensions. The conditions for line-of-
sight channels involve choosing only the spacing between two
subcarriers of an orthogonal frequency division multiplexing
(OFDM) scheme. For 3 user pairs an upper bound on the sum-
rate of interference alignment is approached arbitrarily closely.

I. INTRODUCTION

Interference alignment (IA) is a promising method because

it achieves higher throughput in interference limited scenarios

than conventional methods such as time- or frequency-division

multiplexing or treating interference as noise [1]. The main

idea of IA is to use precoding at the transmitters to align

interference at each receiver in one subspace. The orthogonal

subspace is used for interference-free communication.

One commonly measures performance by the sum of the

rates that the users can transmit reliably. The degrees-of-

freedom (DoF) are defined as

D = lim
SNR→∞

Csum(SNR)

log(SNR)
, (1)

where Csum(SNR) is the sum-rate capacity at the signal to

noise ratio SNR. The DoF represent the number of non-

interfering data streams that can be simultaneously transmitted

over the network.

For single antennas IA achieves the maximal DoF asymp-

totically with an infinite number of subcarriers or time-slots

[2]. We derive conditions for which IA achieves the maximal

DoF via two subcarriers for general channels in Section III

and for line-of-sight channels in Section IV. For line-of-

sight (i.e. single-tap) channels these conditions are fulfilled

by choosing the subcarrier spacing carefully, while in prior

art the subcarriers are assumed to be fixed. For line-of-sight

channels we achieve an upper bound on the sum-rate of IA

arbitrarily closely.

II. SYSTEM MODEL

Consider an interference channel with K user pairs, where

each transmitter sends either one or two streams to its receiver.

Each node is equipped with a single antenna and uses the

same two orthogonal subcarriers. The received signal in the

frequency domain at receiver i is

yi = U
†
iHi,iVisi +





K∑

k=1,k 6=i

U
†
iHi,kVksk



+U
†
izi (2)

where sk is the vector of symbols at transmitter k with length

S ∈ {1, 2}, Vk is a 2× S precoding matrix, Hi,k is a 2× 2
channel matrix in the frequency domain between transmitter

k and receiver i, Ui is a S × 2 receive filter matrix. U† is

the complex conjugate transpose of matrix U, while u∗ is

the complex conjugate of scalar u. The precoding and the

receive filter matrices are chosen to satisfy ‖Vk‖F ≤ 1 and

‖Ui‖F ≤ 1, where ‖ ‖F denotes the Frobenius norm. zi is a

proper complex AWGN vector of length 2 and variance σ2
i .

The first term on the right hand side of (2) carries the data of

receiver i, while the sum represents the interference, and the

last term is filtered noise. Channels connecting the transmitter

and receiver of the same user pair are called direct channels;

the other channels (i.e. Hi,k i 6= k) are called cross channels.

For orthogonal subcarriers the channel matrices H are

diagonal1. The diagonal entries are denoted by h
(l)
i,k ∈ C,

where l indicates the subcarrier index. We write

Hi,k=

[

h
(1)
i,k 0

0 h
(2)
i,k

]

=





∣
∣
∣h

(1)
i,k

∣
∣
∣ e

−j∠h
(1)
i,k 0

0
∣
∣
∣h

(2)
i,k

∣
∣
∣ e−j∠h

(2)
i,k



, (3)

where |x| denotes the amplitude of x and ∠x denotes the phase

of x in radians. For line-of-sight channels the amplitudes are

equal for all subcarriers, while the phase rotations depend on

the delay τi,k and the subcarrier frequencies f (1) and f (2):

HLoS
i,k =|hi,k|

[

e−j2πf(1)τi,k 0

0 e−j2πf(2)τi,k

]

. (4)

The amplitudes are bounded as 0 <
∣
∣
∣h

(l)
i,k

∣
∣
∣ to avoid degenerate

channel conditions. We assume perfect channel knowledge of

all channel parameters at all nodes.

III. DEGREES-OF-FREEDOM OF INTERFERENCE

ALIGNMENT VIA TWO SUBCARRIERS

For single antenna nodes, the DoF are upper-bounded by

1/2 per user pair [2]. The precoder and receive filters reduce

1We examine only two subcarriers of an OFDM frame that is large as
compared to the length of the cyclic prefix.



to vectors vk and ui and interference is aligned if [3]

u
†
iHi,kvk = 0, ∀i 6= k (5)

∣
∣
∣u

†
iHi,ivi

∣
∣
∣ > 0, ∀i. (6)

The equations (5) mean that the interference lies in the null-

space of the receive filter, while the equations (6) ensure that

the effective channels h̄i = u
†
iHi,ivi (which are interference-

free if the first set of equations is fulfilled) have unit rank. The

question of feasibility asks if there is a solution for ui ∀i and

vk ∀k such that (5) and (6) are fulfilled.

Suppose that all channel coefficients are chosen indepen-

dently with a continuous distribution. The conditions (6) are

fulfilled with probability 1 if the precoder and receive filters

satisfy (5). Hence we need to examine the feasibility of (5) to

show that the maximal DoF are achievable.

The question of feasibility of IA is tackled, e.g., in [2]-[5].

In [2] it is shown that the maximal DoF are asymptotically

achievable with IA for time-varying channels by increasing the

number of symbol extensions (i.e. the number of subcarriers

or time slots). We show that for interesting channel conditions

IA achieves maximal DoF with two subcarriers. We begin by

reformulating the conditions (5).

Lemma 1. For single antenna nodes and two orthogonal

subcarriers the IA conditions (5) are

ln

(

u
(2)∗
i

u
(1)∗
i

)

+ln

(

v
(2)
k

v
(1)
k

)

= jπ (1+2ni,k)−ln

(

h
(2)
i,k

h
(1)
i,k

)

(7)

for all i 6= k, where ni,k ∈ Z can be any integer.

Proof: We write (5) as the equation set

u
(1)∗
i h

(1)
i,kv

(1)
k + u

(2)∗
i h

(2)
i,kv

(2)
k = 0, ∀i 6= k. (8)

There exist trivial solutions of (8):

• ui = 0 or vi = 0, which both violate (6);

• u
(1)
i =v

(2)
k =0 or v

(1)
i =u

(2)
k =0, which, when examining

the equation set ∀i 6= k, lead to the invalid solutions

ui = 0 ∀i or vk = 0 ∀k.

Other trivial solutions with u
(l)
i = 0 or v

(l)
k = 0 do not exist,

since we have h
(1)
i,k 6= 0 and h

(2)
i,k 6= 0 (recall that

∣
∣
∣h

(l)
i,k

∣
∣
∣ > 0).

Hence all ui and vk are non-zero for nontrivial solutions.

Manipulating (8) we obtain

u
(2)∗
i h

(2)
i,kv

(2)
k

u
(1)∗
i h

(1)
i,kv

(1)
k

= −1 (9)

and therefore

ln

(

u
(2)∗
i h

(2)
i,kv

(2)
k

u
(1)∗
i h

(1)
i,kv

(1)
k

)

= jπ (1 + 2ni,k) (10)

where ni,k ∈ Z.

A. 3 User Pairs

We next consider K = 3 user pairs.

Theorem 1. Three DoF over two subcarriers are feasible for

three user pairs with single antennas if the following condition

holds
h
(2)
1,2

h
(1)
1,2

h
(1)
1,3

h
(2)
1,3

h
(2)
2,3

h
(1)
2,3

h
(1)
2,1

h
(2)
2,1

h
(2)
3,1

h
(1)
3,1

h
(1)
3,2

h
(2)
3,2

= 1. (11)

Proof: 2 For three users there are six cross-channels.

According to Lemma 1 six equations of type (7) must be

satisfied. We write these equations in the form Ax = b as

follows:














1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 1 0 1 0 0

0 0 1 1 0 0

0 0 1 0 1 0














︸ ︷︷ ︸

Rank(A)=5























ln
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)

ln
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2

)

ln

(

u
(2)∗
3

u
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3

)

ln

(

v
(2)
1

v
(1)
1

)

ln

(

v
(2)
2

v
(1)
2

)

ln

(

v
(2)
3

v
(1)
3

)























=























jπ(1+2n1,2)−ln

(
h
(2)
1,2

h
(1)
1,2

)

jπ(1+2n1,3)−ln

(
h
(2)
1,3

h
(1)
1,3

)

jπ(1+2n2,3)−ln

(
h
(2)
2,3

h
(1)
2,3

)

jπ(1+2n2,1)−ln

(
h
(2)
2,1

h
(1)
2,1

)

jπ(1+2n3,1)−ln

(
h
(2)
3,1

h
(1)
3,1

)

jπ(1+2n3,2)−ln

(
h
(2)
3,2

h
(1)
3,2

)























. (12)

Since the rank of A is 5, which is less than the number of

equations, a solution exists if and only if the rank of the

augmented matrix (A|b) is equal to the rank of A (b is in

the column space or image of A). This condition is fulfilled

for

ln

(

h
(2)
1,2

h
(1)
1,2

)

− ln

(

h
(2)
1,3

h
(1)
1,3

)

+ ln

(

h
(2)
2,3

h
(1)
2,3

)

− ln

(

h
(2)
2,1

h
(1)
2,1

)

+ ln

(

h
(2)
3,1

h
(1)
3,1

)

− ln

(

h
(2)
3,2

h
(1)
3,2

)

= j2πn, (13)

where n = n1,2 − n1,3 + n2,3 − n2,1 + n3,1 − n3,2 ∈ Z.

B. K User Pairs

For K user pairs there are K(K−1) cross-channels and we

hence have K(K − 1) equations of type (7). We collect them

into an equation system Ax = b, where A is of dimension

K(K − 1)× 2K , but has rank 2K − 1.

The augmented matrix (A|b) again must have the same

rank as A for a solution to exist. Transforming A to row-

echelon form by using Gaussian elimination results in a new

matrix A′ where the last

K(K − 1)− (2K − 1) = K2 − 3K + 1 (14)

rows are zero. We apply the same transformations to b to

obtain b′. The last K2 − 3K + 1 entries of b′ must be zero,

2The proof can also be obtained by examining the subspaces spanned
by the channel matrix and the precoding vector as is done in Section
IV-D of [2]. For interference to align one must have span(H1,2v2) =
span(H1,3v3) and span(H2,3v3) = span(H2,1v1) and span(H3,1v1) =
span(H3,2v2). From this one obtains span(v1) = span(Tv1), where

T = (H1,3)
−1

H2,3 (H2,1)
−1

H1,2 (H3,2)
−1

H3,1. Due to the diagonal
structure of the channel matrices T is also diagonal. Unless T is a (scaled)
identity matrix the precoder v1 must be an eigenvector of all channel matrices,
leading to interference not being aligned. Setting T as a scaled identity matrix
leads to (11).



and are of the form

∑

∀i,k

α
[w]
i.k

(

jπ (1 + 2ni,k)− ln

(

h
(2)
i,k

h
(1)
i,k

))

!
= 0 (15)

where α
[w]
i.k ∈ {−1, 0, 1} are the weights of the w-th row.

Hence we obtain K2 − 3K + 1 equations of type similar to

(13) which must be fulfilled to achieve the maximal K/2 DoF

with IA.

IV. SPECIAL CASE: K = 3 AND LINE-OF-SIGHT

We examine IA for the special case of line-of-sight channels

and K = 3. We show that the maximal DoF can be achieved

by choosing the subcarrier spacing carefully3. We also derive

the amplitudes of the effective channels and show that for

increasing bandwidth an upper bound on the sum-rate of the

presented scheme can be reached arbitrary closely.

Corollary 1. For line-of-sight channels the condition of The-

orem 1 simplifies to
(

f (2)−f (1)
)

(τ1,3−τ1,2+τ2,1−τ2,3+τ3,2−τ3,1) = n (16)

where n ∈ Z \ {0}.

Proof: For single tap channels the subcarrier amplitudes

satisfy

∣
∣
∣h

(1)
i,k

∣
∣
∣ =

∣
∣
∣h

(2)
i,k

∣
∣
∣ and hence only the phase rotation

difference remains. Inserting ∠h
(l)
i,k = 2πf (l)τi,k gives

−2π
(

f (2) − f (1)
)

τ1,2 + 2π
(

f (2) − f (1)
)

τ1,3

−2π
(

f (2) − f (1)
)

τ2,3 + 2π
(

f (2) − f (1)
)

τ2,1 (17)

−2π
(

f (2) − f (1)
)

τ3,1 + 2π
(

f (2) − f (1)
)

τ3,2 = 2πn.

After some manipulations one obtains (16). Choosing n = 0
violates the assumption of orthogonal sub-carriers, since this

means f (2) = f (1).

According to (16) line-of-sight channels may create condi-

tions where IA is feasible by choosing the sub-carrier spacing

∆f = f (2) − f (1) carefully. This means that the precoding

and receive filter vectors can be chosen such that (5) holds.

The required spacing depends only on the delays of the cross

channels and the non-zero integer n which can be chosen

freely. Hence we can identify a minimal sub-carrier spacing

∆fmin = 1/ (τ1,3 − τ1,2 + τ2,1 − τ2,3 + τ3,2 − τ3,1) (18)

for which IA is feasible. Any multiple of ∆fmin, except 0,

creates feasibility again.

For the special case

τ1,3 − τ1,2 + τ2,1 − τ2,3 + τ3,2 − τ3,1 = 0 (19)

IA is directly feasible and the subcarrier spacing can be chosen

arbitrarily. For continuously and independently distributed

delays the probability of this event is zero and is not treated

further4.

3Although it may seem counter-intuitive to use OFDM for LoS channels,
we use OFDM here to achieve maximal DoF with IA.

4For the problem of node placement one might aim to fulfill (19).

Note that we are not limited to using two subcarriers. Since

the feasibility depends solely on the spacing, subcarrier pair

f (1)+foffset and f (2)+foffset is feasible if pair f (1) and f (2) is.

Even different user pairs, which require different ∆fmin, can

be scheduled in one OFDM frame. It might not be possible

to use all subcarriers with IA in which case the remaining

subcarriers are used as usual.

A. Effective Channel Amplitudes

If (16) is fulfilled, the ratios of the precoding and receive

filter coefficients are obtained from the system of linear equa-

tions (12). Since A is rank-deficient there is one independent

variable in x, which we choose without loss of generality to

be ln
(

u
(2)∗
1 /u

(1)∗
1

)

. The remaining variables are determined

as

ln

(

v
(2)
2

v
(1)
2

)

= jπ(1+2n1,2+2∆fτ1,2)−ln

(

u
(2)∗
1

u
(1)∗
1

)

(20)

ln

(

v
(2)
3

v
(1)
3

)

= jπ(1+2n1,3+2∆fτ1,3)−ln

(

u
(2)∗
1

u
(1)∗
1

)

(21)

ln

(

u
(2)∗
2

u
(1)∗
2

)

= jπ(1+2n2,3+2∆fτ2,3)−ln

(

v
(2)
3

u
(1)
3

)

(22)

ln

(

u
(2)∗
3

u
(1)∗
3

)

= jπ(1+2n3,2+2∆fτ3,2)−ln

(

v
(2)
2

v
(1)
2

)

(23)

ln

(

v
(2)
1

v
(1)
1

)

= jπ(1+2n2,1+2∆fτ2,1)−ln

(

u
(2)∗
2

u
(1)∗
2

)

. (24)

From (20)-(24) one obtains, for i ∈ {1, 2, 3},
∣
∣
∣u

(1)∗
i

∣
∣
∣

∣
∣
∣v

(1)
i

∣
∣
∣ =

∣
∣
∣u

(2)∗
i

∣
∣
∣

∣
∣
∣v

(2)
i

∣
∣
∣ . (25)

Together with ‖vi‖F ≤ 1 and ‖ui‖F ≤ 1 one obtains

∣
∣
∣u

(1)∗
i v

(1)
i

∣
∣
∣ ≤

∣
∣
∣v

(1)
i

∣
∣
∣

√

1−
∣
∣
∣v

(1)
i

∣
∣
∣

2

≤ 1/2. (26)

For all else held fixed the i-th amplitude is largest if
∣
∣
∣v

(1)
i

∣
∣
∣ =

∣
∣
∣v

(2)
i

∣
∣
∣ =

∣
∣
∣u

(1)∗
i

∣
∣
∣ =

∣
∣
∣u

(2)∗
i

∣
∣
∣ = 1/

√
2 (27)

which we use when obtaining the amplitudes.

The amplitude of the first direct channel is

∣
∣h̄1

∣
∣=
∣
∣
∣u

†
1H1,1v1

∣
∣
∣

=|h1,1|
∣
∣
∣u

(1)∗
1 e−j2πf(1)τ1,1v

(1)
1 + u

(2)∗
1 e−j2πf(2)τ1,1v

(2)
1

∣
∣
∣

(a)
=
|h1,1|
2

∣
∣
∣
∣
1+e

−j2π∆fτ1,1+ln
(

u
(2)∗
1 /u

(1)∗
1

)

+ln
(

v
(2)
1 /v

(1)
1

)

∣
∣
∣
∣

(b)
=
|h1,1|
2

∣
∣
∣1−ej2π(∆f(−τ1,1+τ2,1−τ2,3+τ1,3)+n2,1−n2,3+n1,3)

∣
∣
∣

(c)
=|h1,1| |sin(πn∆fmin∆τ1)| (28)

where ∆τ1 = τ1,1 − τ2,1 + τ2,3 − τ1,3. For (a) we used (27).

For (b) we inserted (24), into which we inserted (22) and (21).

For (c) we used ∆f = n∆fmin,
∣
∣1− ejθ

∣
∣ = 2 |sin(θ/2)| and

|sin(θ + πl)| = |sin(θ)| for l ∈ Z.



The amplitudes of the second and third direct channels

follow similarly and are
∣
∣h̄2

∣
∣=|h2,2| |sin(πn∆fmin∆τ2)| (29)

∣
∣h̄3

∣
∣=|h3,3| |sin(πn∆fmin∆τ3)| (30)

where ∆τ2 = τ2,2− τ2,3+ τ1,3− τ1,2 and ∆τ3 = τ3,3− τ3,2+
τ1,2 − τ1,3.

Examining the effective channel amplitudes, we observe that

the amplitude of the i-th channel is bounded by5

0 ≤
∣
∣h̄i

∣
∣ ≤ |hi,i| . (31)

For a given channel one can influence only the integer n of

the argument of the sine function, as the ∆τ and the ∆fmin

are fixed.

B. Upper Bound

The sum-rate of the proposed scheme for a three user pairs

system with line-of-sight channels is upper bounded by

Rsum =
∑

∀i

log2

(

1+

∣
∣h̄i

∣
∣
2

σ2
i

)

≤
∑

∀i

log2

(

1+
|hi,i|2
σ2
i

)

. (32)

Since the sum-rate is different for different choices of n, one

can optimize the choice of ∆f = n∆fmin within the available

bandwidth to obtain the optimal sum-rate.

Lemma 2. For continuously and independently distributed de-

lays the upper bound on the sum-rate of the presented scheme

is achieved arbitrarily closely for increasing bandwidth.

Proof: The minimal sub-carrier spacing depends only on

the delays and the delays are continuously and independently

distributed. Hence also the products λi = ∆fmin∆τi are con-

tinuously distributed. They are even independently distributed,

since τi,i appears only in ∆τi. We can write λi mod 1 with

its infinitely long decimal expansion as

λi mod 1 = 0.λ
[1]
i λ

[2]
i λ

[3]
i . . . , (33)

where each element λ
[l]
i of the sequence is i.i.d. and takes on

the values {0, 1, 2, . . .9} with equal probability.

We wish to show that ∃n ∈ {Z : 0 < n < N} with N → ∞
such that (nλi mod 1) ∀i is arbitrarily close to some number

µ ∈ (0, 1). We do this, inspired by the proof of Theorem 1 in

[4], by looking for strings of decimal places of λi which are

equal for all i and which are, when shifted to the first decimal

places, close enough to the desired number µ. We then choose

n to shift the resulting sequence to the first decimal places.

We choose M ∈ Z such that 10−M < ǫ, where 0 < ǫ < 1.

Our goal is to find an r such that the random variables Mr ={

λ
[w]
i : ∀i, w = r, r + 1, . . . , r +M − 1

}

fulfill the condition

λ
[r]
i λ

[r+1]
i . . . λ

[r+M−1]
i = µ[1]µ[2] . . . µ[M ], ∀i, (34)

where µ[w] is the w-th position of the decimal expansion of

µ. The probability that the variables Mr fulfill the conditions

5For continuously and independently distributed delays the probability of
achieving the lower bound (zero amplitude) exactly is zero.

(34) for a given r is positive. There are infinite independent

realizations of the set Mr, hence ∃r such that the set Mr

fulfills conditions (34). We complete the proof by choosing

n = 10r and µ = 1/2.

Lemma 2 ensures that by increasing the bandwidth and

optimizing the choice of ∆f = n∆fmin we can get arbitrarily

close to the upper bound of the presented scheme

C. Connection to Time Based Interference Alignment

Time based IA aligns interference by transmitting only in

every other time slot and by (possibly) using different offsets.

Interference is aligned when the interference arrives in the

same time slot at the receivers, while the useful signals arrive

in a different time slot. Analyses of time based IA can be

found in [4], [6] or [7] for example.

We show that time based IA is a special case of subcarrier

IA. Choosing a precoder vk in the frequency domain translates

to the time domain signal

[

Xk[t]

Xk[t+ 1]

]

=

[

1 1

1 −1

]

︸ ︷︷ ︸

F†

[

v
(1)
k

v
(2)
k

]

sk=





(

v
(1)
k + v

(2)
k

)

sk
(

v
(1)
k − v

(2)
k

)

sk



 (35)

where F† is the IDFT matrix. Since for time based IA nothing

is transmitted in the second time slot, we have v
(1)
k −v

(2)
k = 0.

Thus ln
(

v
(2)
k /v

(1)
k

)

= 0, ∀k follows. In a similar way we

obtain ln
(

u
(2)∗
i /u

(1)∗
i

)

= 0, ∀i. This means that the right-

hand side in (12) must be b = 0, which automatically fulfills

(13) and hence (11) and (16). From b = 0 it follows that

jπ(1 + 2ni,k) = ln

(

h
(2)
i,k

h
(1)
i,k

)

= −j2π∆fτi,k, ∀i 6= k (36)

from where we obtain the conditions on the subcarrier spacing

∆f =
1 + 2ni,k

2τi,k
, ∀i 6= k. (37)

For K = 3 there are six fractions that must be equal to

each other and which determine ∆f . The denominators of

the fractions are real numbers while the numerators are in-

tegers. Since the delays are continuously and independently

distributed, equality of these fractions is approached only by

choosing larger integer numerators. This means that feasibility

is achieved only asymptotically for increasing ∆f , which

translates to decreasing slot lengths in the time domain. This

is precisely what Theorem 1 in [4] states. But we are able

to determine subcarrier spacings which achieve feasibility

exactly for K = 3. This shows that restricting the choice of

the precoder, as time based IA does, prohibits achieving the

maximal DoF exactly. However, time based IA does achieve

the upper bound arbitrarily closely [4].

V. SIMULATION RESULTS

Consider a 3 user pair line-of-sight channel, where the

transmitter-receiver distances di,k are continuously and inde-

pendently distributed. The delays are related to the distances



by

τi,k =
c

di,k
(38)

where c is the speed of wave propagation, which we set to

the speed of light c = 3 ·108 m/s. The channel amplitudes are

obtained from the distances as

|hi,k| =
(
1m

di,k

)γ

(39)

where we choose the path-loss exponent γ = 3.76.

The distances of the direct channels are distributed uni-

formly as di,i ∈ [150m, 250m], and the distances of the cross

channels as di,k ∈ [250m, 350m], i 6= k. The direct channels

thus have the largest amplitudes and we do not have too small

distances (for which treating interference as noise works best).

We average over 105 channel realizations.

As benchmark schemes we consider (I) treating Interference

as Noise and (II) an orthogonal access scheme, where we use

TDMA. For treating Interference as Noise, each transmitter

transmits two streams for every channel use and at the re-

ceivers the interference is treated as noise. For the TDMA

scheme, each transmitter transmits only in every K-th slot, but

with K times the power. Since only one pair communicates per

slot, the receiver can receive two streams without interference.

To obtain the precoder and receive filter for IA, we use the

pseudo-inverse of A to obtain a solution (or a least-squares

solution, if IA is infeasible) for the system of linear equations

(12). Since we are interested mainly in the DoF, we consider

only interference-zero-forcing approaches. Other approaches,

e.g. MaxSINR or MMSE, will be examined in future work.

The values of ∆fmin seem to be Rayleigh-distributed, where

more than 95% of the values are between 106Hz and 108Hz for

the considered scenario. These values depend strongly on the

distances and the speed of wave propagation. For increasing

distances or decreasing c (e.g. under-water communication)

the distribution of ∆fmin shifts to lower frequencies.

Figure 1 shows the average sum-rate of the benchmark

schemes and of IA for an average received SNR from the

direct channels of 30dB.6 The x-axis is normalized to 1/∆fmin,

where ∆fmin is different for every channel realization. As

expected, the benchmark schemes perform independent of the

subcarrier spacing. For IA we plot three curves. The curve

labeled IA ZF is the average sum-rate with the current subcar-

rier spacing. As expected, we observe peaks at multiples of

∆fmin. Note that for small deviations from the optimal ∆fmin

there are small reductions in sum-rate. A subcarrier spacing

between multiples of ∆fmin leads to leakage interference.

However, at finite SNR some channel realizations achieve a

better performance when a higher direct channel’s amplitude

compensates the interference. The curve labeled Max IA ZF

is obtained in two steps: For each channel realization the

maximal sum-rate possible within the bandwidth equal to the

x-axis’ value is determined. In the next step we take the

average and obtain the curve labeled Max IA ZF. A steep

6The average received SNR from the cross channels is 12.9dB.

increase of this curve can be observed around ∆fmin due to the

feasibility of IA. With increasing bandwidth the curve labeled

Max IA ZF approaches the curve labeled IA Upper Bound,

which is the average of the upper bounds (32).
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Fig. 1. Average sum-rate for randomly distributed distances, where di,i ∈
[150m, 250m] and di,k ∈ [250m, 350m], i 6= k and γ = 3.76 and the
average received SNR from the direct channels is 30dB.

VI. CONCLUSIONS

We derived conditions to achieve maximal DoF with IA via

two orthogonal subcarriers. For line-of-sight channels these

conditions can be fulfilled by carefully choosing the subcarrier

spacing.
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