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Abstract—It is already known that the superposition property
of wireless multiple-access channels can profitably be exploited
for computing linear functions of the measurements in sensor
networks. If appropriate pre- and post-processing functions are
employed to operate on sensor readings and the superimposed
signal received by a fusion center, respectively, then every function
of the measurements is essentially computable by means of the
channel at a single channel use, provided that pre- and post-
processing functions are not confined to be continuous. If the
continuity property is required, then it has been recently shown
that in general extra resources are necessary, thereby reducing
the computation efficiency. In this paper we extend these results
to the problem of computing vector-valued functions in clustered
sensor networks (i.e., in networks of multiple-access channels)
and show that if interference is appropriately harnessed, the
component-functions can be computed much more efficiently
than with standard approaches that avoid interference, even in
the case of continuous pre- and post-processing functions.

I. INTRODUCTION

One of the major challenges in the wireless sensor network

design is an efficient and universal computation of functions

of the measurements at designated fusion centers [1]. Effi-

ciency refers here to the ability of a network to effectively

use wireless communication resources, while “universality”

implies that transmit strategies are independent of the func-

tion to be computed: both properties lead to reduced energy

consumptions and with it to extended network lifetimes.

Current wireless solutions to the computation problem avoid

interference by using standard protocols such as time-division

multiple access (TDMA) or carrier-sense multiple access

(CSMA) to allow fusion centers the successive reconstruction

of the entire raw sensor readings. This can be very inefficient

since it was recently found that instead the natural superposi-

tion property of the wireless multiple-access channel (MAC)

can profitably be exploited if fusion centers aim to compute1

linear functions [2], [3].

However, many functions of high practical relevance are

nonlinear (e.g., maximum/minimum temperature in a measur-

ing field), why the authors of [4] proposed a novel analog

1To avoid confusion with information-theoretic settings please note that
whenever we write in this paper “computable”, we exclusively mean analog-
computable (i.e., non-digital/uncoded).

computation scheme that employs appropriate pre-processing

functions, operating on real-valued sensor readings prior to

transmissions, and a post-processing function, operating on

the real-valued superimposed signal received by a fusion

center, to match the MAC to a nonlinear function of interest.

Consequently, this abstraction of the wireless channel as an

analog computer merges the processes of communication and

computation, which are usually treated separately.

This approach is a recent example showing that analog

systems become more important for wireless sensor networks,

which is a development that is also confirmed by the fact that

digital signal processing has in this context some fundamental

limits [5]–[7].

A. Preliminary Work

Although some examples of nonlinear functions that are

computable by means of a wireless MAC have been presented

in [4], they are not universally computable since the cor-

responding pre-processing functions depend on the function

to be computed at the fusion center. Above all, however, it

remained unclear which functions are in general computable

over the channel, why we investigated this question in [8]

and found that the corresponding function space is equal

to the space of nomographic functions (see Definition 1).

If no additional restrictions on the pre-processing functions

are imposed, then indeed every real multivariate function is

nomographic and thus essentially computable via a MAC.

A surprising observation was also that the pre-processing

functions can be chosen such that they are independent of

the function the fusion center aims to evaluate at sensor

readings, which results in universal computation schemes.

Since the key advantage of this universality property is that

one-way communication between the nodes and the fusion

center suffices, feedback information about the function of

interest is unnecessary so that the complexity of nodes can

be further reduced.

B. Contributions

All these considerations assume that there is just a sin-

gle fusion center attempting to compute a function of all
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measurements. In this paper, we extend the work of [8] to

sensor networks that consist of multiple fusion centers, each

of which aims at computing an arbitrary function of the sensor

readings from a subset of nodes (i.e., clusters). This results

in a problem of efficiently computing vector-valued functions

over a network of multiple-access channels with a minimum

amount of coordination.

In this context, we first show by a geometric interpreta-

tion of a famous theorem of Kolmogorov (see Theorem 2

and [8])2 that, in order to compute vector-valued functions

over multiple-access channels with continuous pre- and post-

processing functions, a coordinated medium-access of clusters

is not necessary provided that the fusion centers perform

an additional simple processing step before applying their

post-processing functions. The resulting computation scheme

requires fewer wireless transmissions for function computa-

tion than standard TDMA-like protocols that coordinate the

transmissions of clusters and nodes in time to avoid inter-

ference. Fortunately, unlike TDMA, the number of required

transmissions is not proportional to the number of clusters.

In addition, if no restrictions on pre- and post-processing

functions are imposed, the efficiency can further be improved

since additional properties such as continuity requires in

general extra resources even though it can be beneficial in

terms of implementations in practice.

Regardless of whether the pre-processing functions are

continuous or not, the mentioned universality property is pre-

served in clustered sensor networks of arbitrary topology. As

a consequence, simple one-way communication is sufficient in

the entire network since there is no need to inform transmitting

nodes about the functions to be computed at fusion centers.

Although the considerations are interesting in itself, the

results of this paper can be also relevant for other sophisticated

in-network processing such as gossip algorithms that intend to

efficiently achieve a consensus with respect to a function based

on local computations [10]–[12].

C. Paper Organization

The rest of the paper is organized as follows. In Section

II we present some notational remarks, definitions and im-

portant theorems used throughout the paper, while Section III

introduces the system model. Subsequently, in Section IV as

the main section of the paper, we consider the problem of

computing vector-valued functions in a network of multiple-

access channels and propose efficient computation schemes.

Section V refers to some further useful properties that are

inherent in the computation schemes from Section IV. Finally,

Section VI concludes the paper.

II. PRELIMINARIES

The k-times cartesian product A× · · · ×A of a space A is

written as A
k. The natural and real numbers are denoted by

N, R = (−∞,∞), respectively, and E := [0, 1] ⊂ R defines

the closed unit interval. Let Ak be a compact metric space,

2The theorem disproves the conjecture stated by David Hilbert in his famous
13th problem [9].
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Fig. 1. A qualitative representation of a clustered wireless sensor network
consisting of N = 25 nodes and K = 4 clusters for computing any functions
f1, . . . , f4 at fusion centers.

then C[Ak] denotes with the infinity norm ‖ · ‖∞ the Banach

space of real-valued continuous functions of k ∈ N variables,

defined on A
k. Furthermore, F [Bℓ] denotes the space of any

function g : Bℓ ⊆ R
ℓ → R, ℓ ∈ N. Finally, N [Ak] denotes

the space of nomographic functions with domain A
k which

are defined as follows.

Definition 1 (Nomographic Functions). Let Ak, k ≥ 2, be a

metric space. Then, every f ∈ F [Ak] for which a representa-

tion

f(x1, . . . , xk) = ψ

(

k
∑

i=1

ϕi(xi)

)

(1)

exists, with ψ ∈ F [R] and ϕi ∈ F [A], for all i = 1, . . . , k, is

called nomographic function.

Theorem 1 (Buck’79 [13]). Every f ∈ F [Ek] is nomographic

(i.e., N [Ek] = F [Ek]).

In contrast to N [Ak], N0[A
k] denotes in the following the

space of nomographic functions with restrictions ψ ∈ C[R]
and ϕi ∈ C[A], i = 1, . . . , k. In this context, Theorem 1 is no

longer valid such that the following important theorem will be

useful for the considerations in this paper as well.

Theorem 2 (Kolmogorov’57 [14]). Every function f ∈ C[Ek]
can be represented in the form

f(x1, . . . , xk) =

2k
∑

j=0

gj(x1, . . . , xk) , (2)

with 2k + 1 nomographic functions gj(x1, . . . , xk) =

ψj

(
∑k

i=1 ϕij(xi)
)

∈ N0[E
k], where only the functions ψj

depend on f but the k(2k + 1) functions ϕij do not.

Theorem 3 (Sternfeld’85 [15]). To represent every f ∈ C[Ek]
in the form of (2), there are at least 2k + 1 nomographic

functions necessary (i.e., 2k + 1 can not be reduced).

For more details, the reader is referred to [8].

III. SYSTEM MODEL

Consider a wireless sensor network consisting of N ∈ N

spatially distributed nodes that monitor the environment re-

sulting in sensor readings xn ∈ E, n = 1, . . . , N . Assume

that the network is organized into K ∈ N clusters, where

the set of nodes belonging to cluster k is denoted by Ck,



k = 1, . . . , K . Each cluster, consisting of |Ck| nodes, has a

unique node designated as the fusion center and we assume

that Ck

⋂

Cℓ 6= ∅, for all k, ℓ (see Fig. 1).

To describe the intra-cluster communication between nodes

and corresponding fusion centers, we use the standard affine

model of a wireless multiple-access channel such that the real-

valued signal received by fusion center k can be written as

yk =
∑

n∈Ck

hknskn(xn) + vk , k = 1, . . . , K, (3)

where skn : E → R denotes a transmit signal of node n ∈
Ck depending on sensed value xn, hkn ∈ R is a flat-fading

coefficient between node n and fusion center k and vk ∈ R

is receiver noise, respectively. Ignoring in (3) the fading and

the noise results then for k = 1, . . . , K in ideal MACs
(

xk1
, . . . , xk|Ck |

)

7→
∑

n∈Ck

skn(xn) (4)

that are connected by the common nodes. The mappings (4)

highlight summation as the natural mathematical operation of

wireless MACs (see Remark 2).

Remark 1. Note that (3) as well as (4) implies that only

the nodes belonging to cluster Ck are able to reach the kth

fusion center, k = 1, . . . , K . This coincides with a scenario

in which clusters are formed due to the connectivity radius

of the N spatially distributed nodes. In other words, there are

K independent fusion centers that aim at exploiting the public

observations of all nodes to compute any function, but they are

limited to node subsets only due to reachability constraints.

In [2], [3] it is shown that superpositions (4) caused by

simultaneously transmitting nodes can profitably be exploited

if fusion centers aim at computing linear functions of the

measurements only. To enable the computation of nonlinear

functions by means of the wireless MACs as well (cf. Def-

inition 1), we employ appropriate pre- and post-processing

functions defined as follows.

Definition 2 (Pre-Processing Functions). We define the real

functions ϕkn : E → R, operating on the sensor readings

xn, n ∈ Ck, k = 1, . . . , K (i.e., ϕkn(xn)), to be the pre-

processing functions.

Definition 3 (Post-Processing Functions). Let yk ∈ R be the

output of the wireless MAC according to (3). Then, we define

the univariate functions ψk : R → R, k = 1, . . . , K , operating

on yk (i.e., ψk(yk)), to be the post-processing functions.

Remark 2. Although practical computation schemes suffer

from limitations such as power constraints, fading, receiver

noise, synchronization issues, we consider in this paper with

skn ≡ ϕkn, for all k, n, computations over ideal MACs

(4) only to focus on the core of the computation problem.

The extension to realistic MACs (3) follows along similar

lines such as in [16]. Furthermore, desired properties (e.g.,

universality) carry over to the practical setting so that the

simplification does not impacts the generality of the results

obtained in this paper.

IV. ANALOG COMPUTATION OF VECTOR-VALUED

FUNCTIONS

We view the clusters Ck, k = 1, . . . , K , as collec-

tions of distributed computation devices with the aim of

efficiently determining desired functions fk(xk1
, . . . , xk|Ck |

),
k = 1, . . . , K , of corresponding sensor readings at fusion

centers, where a strategy is said to be more efficient if it

needs less wireless resources and less coordination to compute

function values with the same precision. Therefore, the task is

to compute the vector-valued function f : EN → R
K ,

f(x1, . . . , xN ) :=







f1
(

x11 , . . . , x1|C1|

)

...

fK
(

xK1
, . . . , xK|CK |

)






(5)

by means of the network of ideal MACs (4). In doing so we

consider in Section IV-A the case where only continuous pre-

and post-processing functions are allowed while in Section

IV-B no restrictions on pre- and post-processing functions are

imposed.

A. Continuous Pre- and Post-Processing Functions

1) Geometry and Scheme: If continuous pre- and post-

processing functions are used, Theorem 2 in conjunction with

Theorem 3 states that, to compute every continuous function

of N sensor readings, a sum over 2N + 1 nomographic

functions from N0[E
N ] is required [8] (cf. Remark 5). This

can be achieved if all nodes carry out 2N + 1 successive and

simultaneous transmissions followed by an additional post-

processing step at fusion centers described below. According

to Theorem 2, however, one could adopt that in each cluster,

say cluster k, 2|Ck|+1 successive transmissions are sufficient

to compute every continuous function of |Ck| variables. Be-

cause of the couplings between clusters due to common nodes

this would, however, require a large amount of coordination3

and a constant adaptation of the pre-processing on the common

sensor nodes, which is explained in the following.

Consider a single cluster containing all N nodes of the

network that aims to compute an arbitrary function f ∈ C[EN ]
(i.e., all nodes are able to reach a single fusion center). Then,

Theorem 2 implies that the corresponding 2N + 1 successive

transmissions of all nodes generate a continuous and bijective

correspondence (x1, . . . , xN ) 7→ (y0, . . . , y2N ),






y0
...

y2N






:=







ϕ10(x1) + · · ·+ ϕN0(xN )
...

ϕ1,2N (x1) + · · ·+ ϕN,2N (xN )






∈ Γ , (6)

between sensor readings and ideal MAC output-signals ym,

m = 0, . . . , 2N , with Γ a compact subset of the Euclidean

space R
2N+1. In other words, (6) describes a homeomor-

phism between E
N and Γ such that E

N is continuously

embedded into R
2N+1, for which reason (6) is nothing

else than a bijective correspondence between all continuous

3This in turn requires two-way communication between nodes and fusion
centers which increases the complexity of nodes.



functions f(x1, . . . , xN ) on E
N and all continuous functions

F (y0, . . . , y2N) on Γ .

Would now only a subset of the nodes participate in the

2N + 1 transmissions (i.e., some summands on the right

hand side in (6) are missing), then the image (y0, . . . , y2N )
is not necessarily in Γ which in turn implies that not every

F ∈ C[Γ ] is computable. This is exactly what happens if the

network is organized into overlapping clusters, where each

cluster independently aims to compute a component-function

of f that depends only on a subset of the nodes.

Fortunately, this fact can be easily and independently solved

on each fusion center. For this purpose let us exploit a result

from [17] which states that the N(2N + 1) pre-processing

functions on the right hand side of (6) can be chosen to be

ϕnm(xn) = αnϕ(xn +mβ) , (7)

with ϕ being a well-defined, continuous and monotone in-

creasing function, and {αn}Nn=1, β appropriate nonnegative

real constants. Both ϕ and the constants are independent of

f . Then, the 2N+1 successively received ideal MAC output-

signals at the K fusion centers can be summarized in the

vectors

yk =







yk0
...

yk,2N






=







∑

n∈Ck
αnϕ(xn)
...

∑

n∈Ck
αnϕ(xn + 2Nβ)






, (8)

k = 1, . . . , K , which are in general not points in Γ . However,

if we consider the shifted versions

zk := yk + γk , (9)

with

γk =







γk0
...

γk,2N







:=











∑

n/∈Ck
αnϕ(0)

∑

n/∈Ck
αnϕ(β)
...

∑

n/∈Ck
αnϕ(2Nβ)











, (10)

then unlike yk, zk = (zk0, . . . , zk,2N ) is a member of Γ ,

for all k = 1, . . . , K . It is important to emphasize that γk ∈
R

2N+1 is a constant, and therefore does not depend on the

sensor readings.

Now, provided that each fusion center knows N , we con-

clude from (9) a simple post-processing at fusion centers

that enables the efficient computation of every vector-valued

function consisting of continuous component-functions.

After receiving in the mth time-slot, m = 0, . . . , 2N , the

ideal MAC output-signal ykm and after adding the correction

term γkm, fusion center k, k = 1, . . . , K , applies the corre-

sponding post-processing function to zkm

ψkm(zkm) = ψkm

(

∑

n∈Ck

αnϕ
(

xn +mβ
)

+ γkm

)

, (11)

and stores this intermediate result in a memory. Finally, if

all 2N + 1 ideal MAC output-signals are received and post-

processed, the fusion centers compute the desired component-

functions by summing up the respective memory content to

αk1
mβ

ϕ

mβ

ϕ

γkm

ψkm

fusion center k

xk|Ck|

xk1

sensor k1...

sensor k|Ck|

... mem.
flash-

αk|Ck|

MAC
ideal

Fig. 2. Block diagram for computations in cluster k, k = 1, . . . , K , at time
slot m, m = 0, . . . , 2N , consisting of |Ck| transmitting sensor nodes and
the fusion center. After 2N + 1 receptions, the fusion center has to sum up
the flash memory content which results immediately in the desired function
value fk(xk1

, . . . , xk|Ck|
).

obtain

f(x1, . . . , xN ) =







∑2N
m=0 ψ1m

(

z1m
)

...
∑2N

m=0 ψKm

(

zKm

)






. (12)

A corresponding block diagram for a particular time slot m,

m = 0, . . . , 2N , is depicted in Fig. 2.

Remark 3. Since the pre-processing functions are independent

of the components of f , the fusion centers determine by

appropriately choosing the K(2N + 1) post-processing func-

tions {ψkm}, which continuous functions f1, . . . , fK are to be

computed. Moreover, the constructive proof of Theorem 2 in

[17] provides an algorithm that can be used to determine the

universal pre-processing function ϕ.

Remark 4. The constants αn need not to be different for all N

nodes in the network such that they can be reused in different

clusters without any kind of arrangement between them.

2) Performance: In the following we highlight the advan-

tages of the computation approach depicted in Fig. 2 in a

network of K clusters over standard TDMA approaches. To

this end, let us first consider the case mentioned at the begin-

ning of Section IV-A1, where the clusters use only 2|Ck|+1,

k = 1, . . . , K , successive transmissions instead of 2N +
1. Then, there exist homeomorphisms (xk1

, . . . , xk|Ck|
) 7→

(yk0, . . . , yk,2|Ck|) between E
|Ck| and Γk ⊂ R

2|Ck|+1 that

enable each cluster to compute every fk ∈ C[E|Ck|] because

of the existence of representations

fk
(

xk1
, . . . , xk|Ck|

)

=

2|Ck|
∑

m=0

ψkm

(

∑

n∈Ck

ϕ(k)
nm(xn)

)

, (13)

k = 1, . . . , K . Since the compact sets Γk will unfortunately

differ in general, the pre-processing functions in (13) depend

on k such that the common nodes between clusters have

to adapt their pre-processing functions in dependency of the

fusion center to which they transmit next. This in turn requires

the coordinated activation of clusters as indicated in Fig.
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Fig. 3. The clustered sensor network example from Fig. 1 with an additional
coordination layer that coordinates the medium-access of clusters such as in a
standard TDMA approach. This requires bidirectional wireless communication
links between the coordination layer and the computation layer as well as
between the nodes and the fusion centers in each cluster (represented by
arrows with two peaks).

3. But to guarantee an appropriate coordination, two-way

communication between nodes and fusion centers has to be

implemented. In contrast, the proposed computation method

from Section IV-A1, depicted in Fig. 2, do not requires any

global coordination since all clusters can transmit simultane-

ously such that one-way communication suffices. Furthermore,

due to the universality property of pre-processing functions,

cluster topologies are allowed to change without to reconfigure

transmitting nodes.

If a standard TDMA protocol is used to compute vector-

valued functions in a clustered wireless sensor network, be-

sides the orthogonalized medium-access of the nodes in each

cluster, clusters themselves have to be appropriately separated

in time (see Fig. 3). Unlike the 2N + 1 transmissions, a

standard TDMA would induce KL ≥ Kmaxk |Ck| sepa-

rated transmissions to convey the entire raw sensor readings

interference-free to the K fusion centers, which subsequently

compute the component-functions {fk}
K
k=1. In contrast to KL,

it is obvious that 2N + 1 does not scales with the number of

clusters such that huge performance gains are possible.

Remark 5. We conclude from Theorem 3 that unfortunately

the number 2N +1 of transmissions can not be reduced since

otherwise there exists an f ∈ C[EN ] that is not representable

in the form (2).

B. Arbitrary Pre- and Post-Processing Functions

If no restrictions on pre- and post-processing functions are

imposed, the situation is much less complicated than in the last

subsection since Theorem 1 states that every function of ℓ ≥ 2
variables is nomographic according to N [Eℓ]. This means that

already a single simultaneous transmission of the nodes in each

cluster is sufficient to compute every f ∈ F [E|C1|] × · · · ×
F [E|CK |]. Consider therefore the ideal MAC output-signals

yk = gk
(

xk1
, . . . , xk|Ck|

)

=
∑

n∈Ck

ϕn(xn) (14)

received by the fusion centers, which are mappings gk :
E

|Ck| → Λk ⊂ R, k = 1, . . . , K . Then, the post-processing

at fusion centers consists merely in the application of appro-

priate post-processing functions such that every vector-valued

function (5) can be represented as

f(x1, . . . , xN ) =







ψ1(y1)
...

ψK(yK)






. (15)

But what is the difference to the previous case where contin-

uous pre- and post-processing functions are desired?

We know from [18, Lemma 1] that a necessary and

sufficient condition to compute every vector-valued function

(15) is that the functions {gk}Kk=1, such as defined in (14),

are bijective. In other words, the pre-processing functions

{ϕn}Nn=1 have to be chosen such that for all sensor read-

ings (x
(1)
1 , . . . , x

(1)
N ) ∈ E

N , (x
(2)
1 , . . . , x

(2)
N ) ∈ E

N , with

(x
(1)
1 , . . . , x

(1)
N ) 6= (x

(2)
1 , . . . , x

(2)
N ), and all k = 1, . . . , K ,

always
∑

n∈Ck
ϕn(x

(1)
n ) 6=

∑

n∈Ck
ϕn(x

(2)
n ) holds. This can

never be achieved for every f with continuous pre- and post-

processing functions [18], why it was necessary in Section

IV-A to appropriately embed E
N into a higher dimensional

space, resulting in a bijection between function spaces C[EN ]
and C[Γ ] instead. If pre- and post-processing functions are

allowed to be discontinuous, however, such an embedding is

superfluous.

Remark 6. Note that similar to the continuous case (see Re-

mark 3), the pre-processing functions in (14) can be chosen to

be independent of the component-functions fk, k = 1, . . . , K ,

the fusion centers intend to compute. Thus, they decide by an

appropriate choice of the post-processing functions {ψk}Kk=1

which component-functions are computed. This implies once

more that one-way communication between nodes and fusion

centers is sufficient since coordination is not needed.

V. FURTHER PROPERTIES

In this section we refer to some further useful properties

that are implied by the approaches proposed in Section IV.

Due to the universality of the computation approaches

from Sections IV-A and IV-B, they guarantee a kind of

“embedded security”. Assume therefore, that an eavesdropper

tries to identify which component-function is computed at a

particular fusion center. Then, this attempt is hopeless even

if the eavesdropper knows all transmit strategies (i.e., pre-

processing functions), since the pre-processing functions are

independent of the function the fusion center wants to com-

pute. Hence, eavesdropping superimposed transmit-signals is

useless as a result of the fact that each fusion center determines

the component-function by employing corresponding post-

processing functions.

Another useful property is the robustness of the proposed

computation schemes against variations in the topology of

clusters. In other words, the universality property is preserved

if nodes drop out of the network (due to for instance failures

or battery depletion). If no restrictions on pre-processing

functions are imposed, this follows immediately from [18,

Theorem 1]. In the case of continuous pre- and post-processing



functions, the fusion centers only need to adjust the shift (10)

by appropriately adding further constants that correspond to

the dropped out nodes.

VI. CONCLUSION

In the present paper we investigated the problem of analog

computing vector-valued functions in clustered wireless sensor

networks, where nodes were allowed to transmit simultane-

ously to exploit the natural superposition property of multiple-

access channels. By employing appropriate pre- and post-

processing functions operating on real sensor readings and

on the superimposed signals received by designated fusion

centers, respectively, essentially an unlimited number of linear

and nonlinear functions is universally computable over the

channel. Universality means in this context that the pre-

processing functions are independent of the functions to be

computed at fusion centers such that they do not need to be

updated if desired functions change. In other words, universal-

ity implies that coordination is not needed and thus one-way

communication between nodes and fusion centers suffices.

If no restrictions on pre- and post-processing functions are

imposed, we have shown that in fact every function on each

fusion center can be efficiently and universally computed,

where the number of required transmissions/time-slots is of

the order O(1), while a standard TDMA approach requires

O(KL) transmissions. This number scales with the number K

of clusters and with the number L of nodes belonging to the

largest cluster such that huge performance gains are possible

if computations are performed over the channel.

Since for practical implementations continuous pre- and

post-processing functions are preferable, a corresponding re-

striction generates the need for an additional processing step

at fusion centers to ensure the computability of every con-

tinuous multivariate function. Moreover, the continuity of

pre- and post-processing functions requires additional wireless

resources. In this context, we have shown that the number

of required transmissions to compute an arbitrary vector-

valued function with continuous component-functions is of

the order O(2N +1), which offers the potential of significant

performance gains in comparison to a standard TDMA, since

the number of transmissions is proportional to the number N

of nodes but not proportional to the number of clusters K .

The work in this paper demonstrates that analog systems are

well suited to efficiently solve arbitrary computation problems

in wireless sensor networks. Indeed, it was recently even

shown in [6] that with ordinary sampling, purely analog linear

systems are not always stable representable in discrete time do-

main. Moreover, sampling is usually followed by quantization,

which generates additional instabilities that are not always

controllable by oversampling [5], [7]. Thus, digital signal

processing has some fundamental limits and analog systems

are gaining attention in the sensor network community.

Remark 7. Finally, we point out that we considered in this

paper sensor readings which are drawn from the unit interval

E. This, however, is in no way a loss in generality since

Theorem 2 were for example in [19] extended to continuous

functions that are defined over arbitrary compact metric spaces

of covering dimension k ∈ N. Similarly, Theorem 3 holds for

arbitrary compact metric spaces [15].
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