
Lehrstuhl für Steuerungs- und Regelungstechnik
Technische Universität München
Univ.-Prof. Dr.-Ing./Univ. Tokio Martin Buss

Safety Assessment for Motion Planning
in Uncertain and Dynamic Environments

Daniel Althoff

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc. techn. G. Kramer

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing./Univ. Tokio M. Buss

2. Univ.-Prof. G. Cheng, Ph.D.

Die Dissertation wurde am 24.09.2013 bei der Technischen Universität München eingereicht und
durch die Fakultät für Elektrotechnik und Informationstechnik am 12.12.2013
angenommen.

Abstract

The progress of robotic systems in the past decades provides robots with capabilities to operate in
human populated environments. One of the major challenges on the way to obtain the objective
of the robot co-worker is to ensure a safe and reliable operation of robots. Consequently, motion
safety is becoming increasingly important in robotic research. This thesis investigates novel
safety assessment and motion planning methods for robot navigation in dynamic and uncertain
environments with contributions to three problems.

First, the problem of safety assessment of roadmaps in uncertain environments is addressed
and a novel approach is presented which computes the safety by the policy with the smallest ex-
pected collision probability. This policy determines the optimal route in the roadmap depending
on the available information of the environment and enables the robot to replan its route dur-
ing execution. Compared to the common approach of determining the optimal route, the novel
approach is guaranteed to result in a lower collision probability.

Second, novel algorithms for the problem of safety assessment beyond the planning horizon
of trajectories are presented. Motion planning approaches for dynamic environments usually
generate partial trajectories towards the goal since motion prediction is often not reliable for a
long time period. The novel approaches are more efficient than previous methods. Moreover,
this problem is also investigated in uncertain environments taking into account the uncertainties
in the motion prediction of the surrounding objects of the robot.

Next, the problem of reliable and efficient navigation in uncertain populated environments is
addressed that is nowadays still an open problem, especially if the density of moving objects is
high. Due to the high density and the uncertain motion prediction of objects the robot may fail to
find any admissible trajectory. This problem is addressed by presenting novel safety assessment
concepts that consider the avoidance behavior of reactive objects such as humans. It allows a
more reliable and less conservative assessment, especially in dynamic environments with a high
density of objects.

Finally, the integration of the presented safety assessment approaches into motion planning
algorithms is shown. An integration into optimal control approaches is presented that guarantees
safety beyond the planning horizon. Based on the idea of the novel roadmap safety assessment
approach a generic planner is presented that improves any solution to the motion planning prob-
lem by generating additional trajectories resulting in an optimized roadmap. This roadmap is
guaranteed to have lower cost than the optimal trajectory. Furthermore, an interactive motion
planner is presented considering the avoidance behavior of reactive objects. Thus, the robot
and the surrounding objects are reciprocal avoiding each other instead of assuming that only the
robot is avoiding the other objects. The effectiveness of all novel methods for safety assessment
and motion planning are demonstrated by various simulations from the field of mobile robot
navigation and autonomous driving.

Zusammenfassung

Der Fortschritt der letzten Jahrzehnte im Bereich der Robotik ermöglicht es Robotern in der di-
rekten Umgebung von Menschen zu agieren. Um jedoch das Ziel der Mensch-Roboter-Koexistenz
zu erreichen, muss ein für Menschen ungefährlicher Betrieb von Robotern gewährleistet werden.
Deshalb spielt die Bewegungssicherheit von Robotern eine immer größere Rolle in der For-
schung. Diese Dissertation präsentiert neuartige Methoden zur Sicherheitsbewertung und Bewe-
gungsplanung für Roboter in dynamischen und unsicheren Umgebungen.

Zunächst wird die Sicherheit von Roadmaps in unsicheren und dynamischen Umgebungen un-
tersucht und ein neuartiger Ansatz zur Sicherheitsbewertung anhand der Kollisionswahrschein-
lichkeit der optimalen Strategie vorgestellt. Diese Strategie wählt die optimale Route der Road-
map abhängig vom aktuellen Zustand der Umgebung aus. Dadurch kann die Route des Roboters
neu geplant werden und ermöglicht es dem Roboter auf Veränderungen in seiner Umgebung zu
reagieren. Im Vergleich zu vorherigen Ansätzen, welche die Sicherheit anhand der optimalen
Route der Roadmap bestimmen, kann so eine weniger konservative Bewertung garantiert wer-
den.

Des Weiteren werden neue Ansätze für die Sicherheitsbewertung von unvollständigen Trajek-
torien jenseits ihres Planungshorizontes präsentiert. Viele Ansätze der Bewegungsplanung für
dynamische Umgebungen generieren nur unvollständige Trajektorien zum Ziel, weil die Bewe-
gungsprädiktion anderer Objekte nur für einen kurzen Zeithorizont verfügbar ist. Neue Metho-
den werden vorgestellt, die eine effizientere Berechnung als vorherige Methoden ermöglichen.
Außerdem wurden neue Methoden für unsichere Umgebungen vorgestellt, die Unsicherheiten in
der Prädiktion der umliegenden Objekte berücksichtigen.

Als Nächstes wird das Problem einer zuverlässigen und effizienten Navigation in Umgebun-
gen mit Menschen behandelt. Dieses Problem ist eine besonders große Herausforderung, wenn
es sich um eine erhöhte Anzahl von Menschen handelt. Aufgrund der hohen Dichte und der unsi-
cheren Prädiktion der menschlichen Bewegung ist es manchmal unmöglich für den Roboter eine
geeignete Trajektorie zu seinem Ziel zu finden. Um dieses Problem zu lösen werden neue Sicher-
heitskonzepte vorgestellt, die das Ausweichverhalten von reaktiven Objekten, wie zum Beispiel
Menschen, berücksichtigen. Diese Methoden erlauben eine zuverlässigere und weniger konser-
vative Sicherheitsbewertung, besonders in unsicheren Umgebungen mit einer hohen Dichte von
Objekten.

Abschließend werden basierend auf den neuen Sicherheitskonzepten neue Algorithmen zur
Bewegungsplanung vorgestellt. Dazu werden Bewegungsplaner basierend auf dem Konzept der
optimalen Steuerung erweitert, um die Sicherheit der resultierenden Trajektorien für einen un-
endlichen Zeithorizont zu garantieren. Basierend auf dem neuen Ansatz zur Sicherheitsbewer-
tung von Roadmaps wird ein generischer Bewegungsplaner präsentiert, der jede Trajektorie ver-
bessern kann, indem zusätzliche Trajektorien generiert werden, die zu einer optimierten Road-
map führen. Es wurde gezeigt, dass diese Roadmap geringere Kosten besitzt als die optimal
Trajektorie. Außerdem wird ein interaktiver Bewegungsplaner vorgestellt, der das Ausweichver-
halten von reaktiven Objekten berücksichtigt. Dadurch wird das gegenseitige Ausweichverhalten
des Roboters seiner umliegenden Objekte berücksichtigt, anstatt davon auszugehen, dass nur der
Roboter den anderen Objekten ausweicht. Die Effektivität aller neu präsentierten Methoden zur
Sicherheitsbewertung und Bewegungsplanung wird anhand von zahlreichen Simulationsstudien
aus dem Bereich der mobilen Robotik und des autonomen Fahrens veranschaulicht.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Formulation . 2

1.2.1. Safety Criteria . 3
1.2.2. Environment Description . 4
1.2.3. Closed-loop Safety Assessment . 6
1.2.4. Safety Assessment Beyond Planning Horizon 7
1.2.5. Interactive Safety Assessment . 8

1.3. Contributions and Outline of this Thesis . 9

2. Closed-loop Assessment 11
2.1. Motivation and Problem Formulation . 11
2.2. Related Work . 12
2.3. General Idea . 13
2.4. Notation and Environment Description . 14

2.4.1. Workspace Description . 14
2.4.2. Graph Representation . 16
2.4.3. Environment Model . 16
2.4.4. Safety Assessment . 18

2.5. Trajectory with Minimum Collision Probability 19
2.6. Collision Probability Incorporating Replanning 20

2.6.1. Collision Probability Regarding Multi-edges 20
2.6.2. Collision Probability for Serial Edges 23

2.7. Collision Probability for the Entire Graph . 23
2.7.1. Reduction of Vertices with Single Output 24
2.7.2. Graph Reduction . 25

2.8. Implementations . 25
2.8.1. Estimation of Collision Probabilities for the Entire Graph 27
2.8.2. Environment Model for Mobile Robot Applications 28
2.8.3. Environment Model for Automotive Applications 31
2.8.4. Roadmap for Mobile Robot . 34
2.8.5. Roadmap for Automotive Scenario . 35

2.9. Simulations . 35
2.9.1. Determining the Safest Route . 36
2.9.2. Mobile Robot Applications . 36
2.9.3. Automotive Applications . 39

2.10. Discussion . 44

v

Contents

3. Assessment beyond Planning Horizon 47
3.1. Motivation and Problem Formulation . 47
3.2. Related Work . 49
3.3. Inevitable Collision State and Inevitable Collision Obstacle 50
3.4. Union of Inevitable Collision Obstacles . 51
3.5. Motion Safety Regarding Unexpected Objects 54
3.6. Probabilistic Collision State . 55
3.7. Overall Collision Probability . 56
3.8. Probabilistic Collision Costs . 57
3.9. Implementations . 58

3.9.1. Inevitable Collision State Checkers . 58
3.9.2. Probabilistic Collision State Checker 59

3.10. Simulations . 61
3.10.1. Inevitable Collision State Checkers . 61
3.10.2. Motion Safety Regarding Unexpected Objects 64
3.10.3. Probabilistic Collision State Checker 65
3.10.4. Overall Collision Probability . 68
3.10.5. Probabilistic Collision Cost . 68

3.11. Discussion . 70

4. Interactive Assessment 73
4.1. Motivation and Problem Formulation . 73
4.2. Related Work . 75
4.3. Cooperative Inevitable Collision State . 76
4.4. Cooperative Probabilistic Collision State . 77

4.4.1. Definition of cPCSd . 77
4.4.2. Definition of cPCSu . 78
4.4.3. Discussion . 78

4.5. Implementations . 80
4.5.1. Automotive Application . 80
4.5.2. Mobile Robot Application . 84

4.6. Simulations . 88
4.6.1. Automotive Applications . 89
4.6.2. Mobile Robot Application . 92

4.7. Discussion . 95

5. Integration into Motion Planning 97
5.1. Motivation and Problem Formulation . 97

5.1.1. Motion Planning in Deterministic Environments 98
5.1.2. Motion Planning in Uncertain Environments 99

5.2. Related Work . 101
5.2.1. Autonomous Navigation of Vehicles . 101
5.2.2. Mobile Robot Navigation in Populated Environments 103

5.3. Optimal Control Considering Safety Beyond the Planning Horizon 104

vi

Contents

5.4. Motion Graph Planning . 107
5.4.1. On-line Planning . 107
5.4.2. Off-line Planning . 110

5.5. Interactive Motion Planning . 113
5.6. Implementations . 115

5.6.1. On-line Motion Graph Planning . 115
5.6.2. Off-line Motion Graph Planning . 116
5.6.3. Interactive Motion Planning . 116

5.7. Simulations . 119
5.7.1. Optimal Control . 120
5.7.2. Motion Graph Planning . 120
5.7.3. Interactive Navigation . 125

5.8. Discussion . 128

6. Conclusions 131
6.1. Summary . 131
6.2. Discussion and Future Directions . 133

A. Estimation of Collision Probability 135
A.1. Problem Formulation . 135

A.1.1. Notation . 135
A.1.2. Collision Probability for a Single Time Point 136

A.2. Workspace Discretization . 137
A.3. Monte Carlo Approximation . 139
A.4. Discussion . 142

Bibliography 145

vii

Notations

Abbreviations

2D two-dimensional
3D three-dimensional
4D four-dimensional
CDF cumulative distribution function
cICS cooperative inevitable collision state
cICSS cooperative inevitable collision state set
cPCS cooperative probabilistic collision state
CLRHC closed-loop receding horizon control
DOF degrees of freedom
FOV field of view
FRP freezing robot problem
ICO inevitable collision obstacle
ICS inevitable collision state
IND index function
LUT lookup table
MPC model predictive control
OCP overall collision probability
PCC probabilistic collision costs
PCLRHC partially closed-loop receding horizon control
PCS probabilistic collision state
PDF probabilistic distribution function
PMF probability mass function
PMP partial motion planning
POMDP partially observable Markov decision process
PRM probabilistic road map
RHC receding horizon control
RRT rapidly exploring random trees
RVO reciprocal velocity obstacle
SIS sequential importance sampling
SMC sequential Monte Carlo

ix

Notations

Symbols

General

‖ · ‖, ‖ · ‖2 Euclidean norm of a vector
| · | absolute value of a scalar
C collision event
E[·] expected value
N Normal distribution
N� number of
P (·) probability
P (·|·) conditional probability
τ� threshold of
T� time duration
Var(·) variance

Subscripts and Superscripts

x0 initial value of variable x at discrete time point 0

x0 initial value of variable x for dynamic systems
xg goal value of variable x
x∗ optimal value for variable x
ẋ time derivative of variable x

Sets

∅ empty set
A subspace ofW occupied by the robot
Ab subspace ofW occupied by the enlarged robot system
Bi subspace ofW occupied by the ith object
B subspace ofW occupied by all objects
E edges
G graph containing set of edges E and vertices V
Ũ trajectory space
Ũ trajectory space of all objects inW
V vertices
W workspace
X state space
XW state space of all objects inW

Variables

ax acceleration along x
ay acceleration along y

x

Notations

d lateral position
eij edge(s) between vertex i and vertex j
µ mean
µ mean vector
π policy
p position
r route
s longitudinal position
σ standard deviation
Σ covariance matrix
t time
ũ trajectory
u control input
U control input space
v velocity
vi vertex i
w weight factor
x x-Coordinate
x system state
xW state of all objects inW
y y-Coordinate

Functions

cost(·) cost function
D(·) detectability function
dist(·) distance function
f(·) PDF
l(·) length function
L(·) trajectory cost
m(·) motion model
q(·) PMF
S(·, ·) similarity
φ(·) endpoint cost

Constants

NC number of collisions
Nc number of control inputs
Nb number of objects excluding the robot
Ns number of samples
Nk number of time steps
Nm number of maneuvers
n normalizing constant
NV number of vertices

xi

Notations

NE number of edges
Nv number of vehicles
τc threshold improvement
τcoll threshold collision probability

xii

1. Introduction

As a result of the overall progress in robotics, robots are entering environments that are populated
by humans. These new environments pose particular challenges for the safety concept of robots
since robots and humans share the same workspace. Nowadays, the threat of mobile robots
constrain its application to specific tasks under certain conditions. Safe autonomous operation
of robots is essential for widespread applications in human populated environments. Thus, this
thesis focuses on safety assessment for robot motion in dynamic and uncertain environments.
The subsequent chapters address substantial challenges of this problem and provide appropriate
solutions.

This introduction starts with the motivation and presents various application examples. Fol-
lowing, the problem formulation is given starting with some background information and outlin-
ing the challenges of safety assessment. Finally, the outline of this thesis is given, including a
short summary of its contributions.

1.1. Motivation

Robots have evolved immensely in the past decades, but there is still a long way to go in making
them capable to permanently operate in human populated environments. First achievements
include robots which already navigate autonomously to unknown places in urban areas [12, 26]
or guided people at exhibitions in the presence of several hundred pedestrians [93]. Apart from
mobile platforms, autonomous vehicles navigate in urban environments in the presence of human
driven vehicles [118]. Furthermore, robots are able to physical interact with humans, e.g. to
hand over objects [107] and to assist elderly people [95]. Since the barrier between robots and
humans has been started to fade, one of the major challenges for robotics is to ensure safe and
reliable motion in order to achieve the human robot co-existence. This includes all kind of
motions such as locomotion of a mobile platform and manipulator movements. In Fig. 1.1 some
examples of robots operating in human populated environments are shown. The possible tasks
of robot systems vary from navigating to a desired goal location, manipulating objects in the
environment or physically interacting with humans. In order that robots can fulfill their task, a
motion planning algorithm is used that usually generates a trajectory from the start to the desired
goal while minimizing a certain objective. An overview of motion planning algorithms is given
in [73].

A perception system which detects all objects in the environment in conjunction with a reli-
able motion prediction is necessary to provide the motion planning algorithm with a represen-
tation of the environment for a certain time horizon. Based on this representation, the aim of
the motion planning algorithm is to find a trajectory towards the desired goal that optimizes a
certain objective function while avoiding any collision. In human populated environments the
most important objective is to prevent any harm to human beings, this is in line with Asimov’s

1

1. Introduction

(a) RoboX [106] (b) Boss [118] (c) Care-O-bot 3 [61]

Fig. 1.1.: Examples of robotic systems operating in human populated environments.

first law [10]:

“ A robot may not injure a human being or, through inaction, allow a human being
to come to harm. ”

Consequently, motion safety is becoming increasingly important in robotic research. The central
problem: How to ensure safety in human-robot coexistence? A distinction in this thesis is made
between collision mitigation and collision avoidance systems. A collision avoidance system
aims to prevent any collision with objects in the environment, whereas a collision mitigation
system aims to reduce the severity of a collision.

In [46] an exhaustive evaluation on collision mitigation systems for robot manipulators is
given. Therefore, some soft robot control concepts are presented including the analysis of in-
trinsic joint compliance which are evaluated through crash tests. The crash tests include blunt
impacts as well as soft-tissue injury caused by sharp tools.

The common approach for a collision avoidance system is to integrate a reliable safety as-
sessment approach into a motion planning algorithm in order to avoid possible collisions. Some
methods also concentrate on pure collision avoidance meaning that the only objective is to de-
termine a collision-free trajectory. For instance, in [123] a collision avoidance algorithm for
vehicles in emergency situations is presented. The basis of every safe motion planning algorithm
or collision avoidance approach is a reliable motion safety assessment allowing to evaluate the
risk of future motions. In this thesis, the focus is on safety assessment concepts for collision
avoidance systems meaning any collision caused by the robot should be prevented.

1.2. Problem Formulation
This thesis addresses various problems associated with safety assessment of trajectories of
robots in dynamic environments and as such contributes to the desired increase in safe operation
of autonomous systems. A precise mathematical definition of this problem will be given in the
following chapters, for now the less formal description is given:

Safety Assessment Given the current state of the robot, a representation of its environment
and an intended trajectory, the goal is to compute the risk that the robot will collide with any
object in the environment when executing this trajectory.

2

1.2. Problem Formulation

In order to accomplish this, the following subproblems need to be addressed:

Perception The robot is equipped with sensors providing raw sensor data of the environment.
They enable robots with the ability to see, to touch, and to hear. Models of the environment
are used for identification and interpretation of this sensor data to represent and understand the
environment. The common approach for robot perception is to decouple the problem in object
detection and object tracking. A brief overview of object detection approaches is given in [14]
and for object tracking the reader is referred to [128].

Motion Prediction In order to assess a trajectory of the robot, the robot needs to know how
the states of the objects in the environment evolve over time. Hence, the future states of all
objects in the environment need to be predicted. Therefore, motion models are used that require
information about the current state and goal state of the object which is used to compute the
future states of the object. The quality of the safety assessment highly depends on the reliability
of the motion prediction. A brief overview of human motion prediction techniques is given in
[13] and for prediction of vehicles the reader is referred to [122].

Based on the information available from the environment model, it is possible to assess the
motion safety of a robot trajectory. In the following, some criteria are introduced which form the
general basis of a reliable safety assessment approach and the challenges associated with them
are presented.

1.2.1. Safety Criteria

Many common safety assessment approaches or collision avoidance algorithms exists prevent-
ing collisions in many cases, but most of them cannot ensure safety in all possible situations. In
[31] three criteria are introduced for evaluating common navigation approaches regarding their
motion safety in dynamic environments: 1. Consider the robot’s dynamics 2. Consider the envi-
ronment objects’ future behavior 3. Reason over an infinite time-horizon. The authors postulate
that a safety assessment approach has to take into account all of these criteria. In the following,
the criteria are explained in more detail.

Consider the robot’s dynamics The safety of a trajectory can only be evaluated if the
robot is able to execute it. Meaning that the trajectory considers the kinematic and dynamic
constraints of the robot system. Otherwise, the robot moves along a trajectory that was not
evaluated.

Consider the environment objects’ future behavior A possible collision can only be
foreseen, if the future states for all objects in the environment are predicted. Otherwise, the
safety assessment approach is only applicable to static environments.

Reason over an infinite time-horizon At first, this criteria is confusing, since a robot tra-
jectory is usually only valid for a finite time horizon. However, trajectories which are collision-
free can eventually lead to a collision beyond the valid time horizon of the trajectory. To reason

3

1. Introduction

(a) The trajectory of the ego vehicle bypassing the
construction area is generated without consider-
ing the kinematic or dynamic constraints.

(b) The feasible trajectory of the ego vehicle con-
sidering kinematic and dynamic constraints leads
to a collision with the construction area.

(c) The trajectory of the ego vehicle overtaking
the car driving ahead is illustrated.

(d) The trajectory is leading to a collision with the
other car, since it is planned without predicting
the future behavior of the other car.

(e) The ego vehicle executes a trajectory to over-
take the car driving ahead while approaching a
road bottleneck.

(f) The trajectory is collision-free during the plan-
ning horizon, but will eventually lead to collision
immediately after the planning horizon.

Fig. 1.2.: The topmost pictures illustrate the safety criterion consider its own dynamics. The criterion
consider the environment objects’ future behavior is illustrated by the middle pictures. The bottom most
pictures illustrate the criterion reason over an infinite time-horizon.

about an infinite time horizon, the robot system needs to reach a safe state which is proven to be
collision-free regardless the time.

These safety criteria are depicted in Fig. 1.2 by some illustrative examples. Depending on the
environment, this three safety criteria cause different challenges for the safety assessment prob-
lem. In the next section, the different kind of environments are introduced that are considered in
this thesis.

1.2.2. Environment Description

The operating space of the robot is called the environment or workspace. Objects present in
the environment which change their states over time are called dynamic objects. This includes
changing their position, their orientation or their configuration. Objects which states are not
changing over time are called static objects. In this work, four different kind of objects are
distinguished:

4

1.2. Problem Formulation

Static Objects Their states do not change over time, however the information about their
states may be uncertain. Walls or furniture are typical examples for static objects in indoor
environments. Whereas, crash barriers or buildings are examples for outdoor environments.

Ignoring Dynamic Objects Their states change over time, however, their future states are
independent of the future behavior of other dynamic objects. This means, that these objects
move in the workspace while ignoring all other objects. An example is a robot which follows a
predefined trajectory without collision avoidance (pure trajectory following behavior).

Reactive Dynamic Objects Their states change over time and their future states depend
on the future behavior of other objects. This means, that their future behavior depends on the
behavior of the other agents which may result in a mutual dependency between the objects.
Pedestrians or robots with collision avoidance capabilities are examples for this kind of objects.

Controllable Dynamic Objects Their states change over time, and their future states can
be controlled. A robotic system which control inputs can be directly modified is an example for
this kind of objects.

In the next section, different kinds of environment models are presented that represent theses
kind of objects and their future behavior.

Environment Model

In order to assess robot trajectories, the safety assessment approach needs a model of the en-
vironment representing the current and future states of all objects. In this work, three different
kinds of environment models are investigated which are illustrated in Fig. 1.3.

Deterministic It is assumed that no uncertainty exists. The complete state of the environment
is known including the exact prediction of all objects in the environment. Meaning that there ex-
ists no ambiguity in the future behavior of the other objects. This allows performing a binary
assessment of motion safety. Every robot trajectory is either safe or unsafe. However, real-world
problems are never free of uncertainty since no sensor exists which is noise-free. Since the un-
certainty is not taken into account, real-world scenarios may be evaluated wrong, meaning there
can occur false safe or false unsafe classifications concerning the motion safety of trajectories.

Bounded Uncertainty The uncertainty is explicitly taken into account and it is assumed that
the uncertainty is bounded and that the bounds are known. Thus, the worst case deterministic
environment model can be constructed. This model is especially suitable for environments with
a low density of objects and a low level of uncertainty. Otherwise, the set of valid future states
becomes severely restricted leading to very conservative safety assessment results or to the extent
that no valid states exists for the robot. However, the worst case model allows one to guarantee
a conservative safety assessment, meaning no false safe classifications are possible.

5

1. Introduction

Fig. 1.3.: Different environmental models representing the position of one dynamic object over time (in-
spired from [34]). The left image shows the deterministic points at certain time points and the reference
trajectory of the object. The bounded position uncertainty of the object is depicted in the middle and
the right image shows sampled positions of the PDFs at certain time points representing the probabilistic
position uncertainty.

Stochastic Instead of using a worst case approximation, the uncertainty is represented by a
probabilistic model. Therefore, statistic information of the robot perception system is needed to
make some probabilistic estimations of the state of the environment. The uncertainty is usually
expressed by probabilistic density functions (PDFs). In contrast to the other environment models,
it is possible that motion safety cannot be guaranteed for this kind of environmental model.
This is because, the PDFs may have infinite support, such as Gaussian distributions, and thus
any trajectory will have a non-zero risk. Instead of a binary assessment, the collision risk of
a trajectory is estimated which is known as stochastic safety assessment. This model requires
the highest computational effort, however, this kind of model is the only one which is suited for
highly dynamic and uncertain environments.

These different environmental models create new challenges for the safety assessment of robotic
systems. In the following, the challenges 1) closed-loop assessment 2) assessment beyond
planning horizon 3) interactive assessment are briefly explained. These challenges are discussed
in more detail in the subsequent chapters of this thesis.

1.2.3. Closed-loop Safety Assessment

In the recent history of motion planning, sampling-based algorithms have been successfully ap-
plied to navigation problems for mobile robots and robot arms or a combination of both. The
most widely known approaches are rapidly exploring random trees (RRT) [76] and probabilis-
tic roadmaps (PRM) [55]. Both methods generate graphs consisting of many trajectories which
contain multiple solutions for the navigation problem. The common safety assessment concept
is to separately compute the expected safety of each trajectory in the graph. This implies, that
the graph structure is decomposed in all possible trajectories and thus the information about the

6

1.2. Problem Formulation

Fig. 1.4.: The scenario contains one robot and one dynamic object (human) in a corridor. Both objects
want to move along the corridor in opposite direction and avoid any collision. At time t0 the robot is
unsure about the decision on the moving direction of the object. Thus, both trajectories of the robot have
a 50% chance to collide with the object. At time t1 the robot receives an updated prediction of the object
and allows the robot to make a more precise decision on the choice of its trajectory.

connections of the trajectories is lost. In other words, the assessment ignores the fact, that the
robot is able to replan its route during the execution of a certain trajectory depending on the
future states of the other objects. This can be referred to as an open-loop assessment, since it
does not consider the future observations of the objects. Especially in stochastic environments
populated with dynamic objects this results in an unnecessary conservative assessment. This
is mainly caused by the motion prediction of the dynamic objects which uncertainty is continu-
ously increasing over time. One possible way to address this problem is to perform a closed-loop
assessment instead. The main idea behind the closed-loop assessment is that all possible future
trajectories of the robot are considered at once which allows the robot to change its future route.
This is achieved by calculating the safety of all trajectories depending on all possible future states
of the objects. This can be seen as a feedback rule and is therefore called closed-loop assess-
ment. In contrast to the open-loop assessment that calculates the expected risk of each trajectory
individually without considering the replanning possibilities depending on the future states of
the objects. In Fig. 1.4 an illustrative scenario shows the idea of closed-loop assessment. If the
robot trajectories are assessed separately, the collision probability of the robot is 50%. However,
if the replanning possibility at time t1 is taken into account, it is guaranteed that the robot will
avoid the collision (collision probability 0%).

1.2.4. Safety Assessment Beyond Planning Horizon

The goal of motion planning is to find a feasible trajectory from the start to the goal state. Due to
the intrinsic complexity of motion planning it is often impossible to compute the complete tra-
jectory during the available time. Furthermore, objects in a real environment can only be reliably
predicted for a limited time horizon which is usually much smaller than the time necessary to
reach the goal. One possibility to tackle this problem is called the partial motion planning (PMP)
concept [92]. The main idea is that the PMP algorithm computes the best partial trajectory to-
wards the goal until it reaches the time constraint. This step is repeated till the robot reaches the
desired goal. The basic PMP algorithm contains the following steps:

7

1. Introduction

Fig. 1.5.: At time t0 both possible robot trajectories are safe during the planning horizon, but at time t1
one trajectory will inevitably lead to a collision.

1. Generate an updated model of the environment including motion prediction of dynamic
objects.

2. An incremental motion planning algorithm is used for generating partial trajectories con-
sidering the time constraint.

3. When the time constraint is reached, the best available partial trajectory is executed.

The PMP algorithm runs until the partial trajectory reaches the goal. The goal can be a single
state or a closed set of states. However, two problems arise by the PMP concept: safety issues
after the end of the partial trajectory; convergence problem, the planning algorithm can get stuck
in a local minimum and thus will never reach the desired goal. The problem of motion safety
beyond the planning horizon is depicted in Fig. 1.5. As illustrated, the robot may choose a
trajectory which will inevitably lead to a collision behind the planning horizon. The problem of
safety assessment beyond the planning horizon addresses the third safety criteria from Sec. 1.2.1
(reason about an infinite time-horizon) for all kind of objects and all kind of environment models.

1.2.5. Interactive Safety Assessment

In environments which are populated by reactive or controllable dynamic objects, interaction
between the workspace objects occurs. The interaction originates from the fact that the objects
react to each other such that every object has sufficient space for navigation. In this work such
kind of environments are named uncertain and densely packed dynamic environments. Crowded
environments are also referred as environments incorporating interaction between the agents.
However, hundreds or even thousands of agents are a necessary requirement for a crowded envi-
ronment. In contrast, uncertain and densely packed dynamic environments may contain only few
dynamic objects. For instance, in structured environments like narrow indoor corridors, already
few dynamic objects are sufficient to observe interaction between the objects. In Fig. 1.6 such a
scenario is depicted.

Assume a workspace that is populated with several dynamic objects and one robot. All objects
including the robot try to reach their goal state while avoiding collisions. In classical motion
or path planning the aim is to find a collision-free trajectory for the robot to its goal state by

8

1.3. Contributions and Outline of this Thesis

Fig. 1.6.: Without considering the avoidance possibilities of the objects, no trajectory can be found to
prevent a collision. By incorporating this ability, it is possible to find a safe trajectory.

minimizing a certain cost function such as required time or energy consumption. Therefore, the
problem is decoupled into motion prediction of each object and trajectory planning of the robot.
Since in this work, environments are considered that are populated by reactive dynamic objects
that mutually interact with each other, this separation is not valid anymore. An unreliable motion
prediction will inevitably involve an unreliable safety assessment. This includes results of the
safety assessment that are evaluated safer or more dangerous than they actually are.

1.3. Contributions and Outline of this Thesis
This thesis covers three major aspects of safety assessment of robot trajectories: 1. Safety as-
sessment incorporating replanning (closed-loop assessment) 2. Safety assessment beyond the
planning horizon (infinite-horizon assessment) 3. Safety assessment considering reactive objects
(interactive assessment). It is shown that these aspects improve the performance and reliability
of safety assessment for motion planning. Additionally, the proper integration of the improved
assessment enhances also the performance of motion planning algorithms. The safety assess-
ment is performed in different environments populated with static and dynamic objects, with or
without uncertainty in the environment.

The closed-loop assessment is presented in Chap. 2. Its key contribution is the consideration
of the replanning possibilities of the robot while executing a certain trajectory. It is a novel ap-
proach for the probabilistic safety assessment of trajectories in uncertain environments which are
represented as directed graphs. Therefore, possible future measurements of all objects are con-
sidered. These possible future measurements can also be seen as possible future distributions of
the objects representing their future position. The main difference compared to other approaches
is, that the safety assessment considers the fact, that the chosen route can be replanned during
execution if new information about the environment is available. This information decreases the
uncertainty in the prediction of objects and allows a more reliable choice of the desired route
already before this information is available. In order to take this fact into account earlier, the
prediction of each object is not represented by a single distribution but by an infinite set of possi-
ble future distributions. It is proven that the collision risk for the whole graph is always smaller
than that for a single route, since different routes in the graph have a lower collision probability

9

1. Introduction

compared to others for certain distributions. This results in a less conservative safety assessment
approach for uncertain environments.

The infinite horizon assessment is presented in Chap. 3. Its key contribution is the safety as-
sessment of trajectories beyond the time horizon of the motion planning algorithm. In dynamic
environments this is essential since it cannot be excluded that the robot will reach a state lead-
ing inevitable to a collision with an object beyond the finite time horizon of the motion planner.
Such kind of states are called inevitable collision states (ICS). The sequential computation for
unions of ICS sets and the concept of robot maneuverability for increasing motion safety are pre-
sented. Based on the novel calculation of ICS, two novel ICS-Checker algorithms are introduced
allowing a more efficient computation as former implementations. The introduced robot maneu-
verability showed a significant reduction of robot collisions especially for unexpected objects or
for objects with a limited motion prediction. For uncertain environments, the probabilistic colli-
sion states (PCS) are presented. They directly consider the uncertainty in the states of the objects
and in their motion prediction. In addition, a novel safety assessment cost metric, the probabilis-
tic collision cost (PCC), is introduced which considers the relative speeds and masses of multiple
moving objects the robot may collide with. This allows assessing the harm of a collision instead
of only considering the probability of the collision.

The interactive assessment is presented in Chap. 4. Its key contribution is the consideration
of the avoidance behavior of the dynamic objects in the workspace. Therefore, the extended
definitions of the cooperative ICS for deterministic environments and the cooperative PCS for
uncertain environments are given. Both approaches take into account the avoidance behavior of
the other objects. This interaction originates from the fact that the objects including the robot
need to react to each other, such that every object has sufficient space for navigation. This
increases the reliability of the safety assessment and results in a less conservative assessment.
The later allows the robot to navigate in environments with a high density of objects which is not
possible without considering their reactive behavior.

In Chap. 5 possible integrations of the novel safety assessment approaches into motion plan-
ning algorithms are presented. An incremental optimization of the closed-loop assessment ap-
proach in shown that improves any solution to the navigation problem by generating additional
trajectories for the robot. This allows the robot to replan its route depending on the future state of
the environment. The idea of interactive safety assessment is extended to demonstrate its impact
also for the original motion planning problem. All integrations show substantial improvement
compared to common motion planners in different simulation scenarios.

10

2. Closed-loop Assessment

Summary This chapter discusses the problem of assessing the safety of roadmaps in dynamic
and uncertain environments. The roadmaps are a collection of possible trajectories which are
represented as a directed graph. This allows the chosen route to be replanned during execution,
if new information about the objects is available. Hence, the assessment considers all possible
routes depending on the future measurements of the objects, this is called a close-loop assess-
ment. In highly uncertain environments, this method allows a more reliable safety assessment
compared to methods ignoring the replanning possibilities.

The chapter is organized as follows: Sec. 2.1 gives the motivation and problem formulation.
An overview on related work is presented in Sec. 2.2. In Sec. 2.4 the environment description and
notation for this chapter is given. This allows one to discuss the problem of the safest trajectory
between two vertices in Sec. 2.5. The problem of safety assessment considering replanning is
addressed in Sec. 2.6. This leads to the assessment approach for graphs in Sec. 2.7. Following,
an example implementation for this approach is presented in Sec. 2.8 whose simulation results
are discussed in Sec. 2.9. Finally, a brief discussion of this chapter is given in Sec. 2.10.

2.1. Motivation and Problem Formulation

Motion planning in uncertain environments is a challenging task, one reason is that the uncer-
tainty of the environment increases over time, resulting in PDFs with high uncertainty. This is
especially true for planning problems with long time horizons. Thus, the objects are distributed
over a large space of the workspace, meaning the objects are ”everywhere and nowhere”. This
can be also expressed with the theory of differential entropy [79]. In the extreme case, the dis-
tributions of all objects compose to a uniform distribution in the workspace which is equivalent
to the scenario that no information is given about the objects. As a consequence, the collision
probability can be considered as constant for all possible trajectories, hence no meaningful as-
sessment can be performed for the trajectories.

One possibility to cope with uncertain environments in motion planning methods is to perform
steady replanning. Replanning is performed, if unexpected changes took place in the environ-
ment or if due to the lower uncertainty the replanned solution is superior to the old one. The
replanning strategy can be seen as generating additional solutions to the motion planning prob-
lem, given the robot the possibility to replan its future motion depending on the current state
of the environment. This strategy should be also considered in the safety assessment approach,
meaning that the possibility of replanning should be directly taken into account. During the
assessment the different routes are assessed depending on the possible future object distribu-
tions,this is referred to as closed-loop assessment.

In this chapter, a novel approach for the probabilistic safety assessment of trajectories in un-
certain environments is presented. The trajectories are represented as directed graphs. Directed

11

2. Closed-loop Assessment

graphs arise by applying rapidly exploring random trees (RRT) [76] or roadmap-based planners
[55] to the kinodynamic motion planning problem. The main difference compared to other ap-
proaches is, that the safety assessment considers the fact, that the chosen route can be replanned
during execution if new information about the objects is available. This information decreases
the uncertainty in the prediction of objects and allows a more reliable choice of the desired route
already before this information is available. In order to take this fact into account earlier, the pre-
diction of each object is not represented by a single distribution, but by an infinite set of possible
future distributions. This set comprises all possible distributions of the object resulting from the
possible future measurements. In the following, a brief overview of related work is given.

2.2. Related Work

Following, a brief overview of prior work regarding safety assessment in uncertain and dynamic
environments is given. For safety assessment in dynamic and uncertain environments, it is neces-
sary to consider the uncertain information about the future states of other objects. There are two
possible approaches [34]: worst case prediction of objects resulting in a deterministic assessment
or performing a stochastic assessment. The first approach allows one to perform deterministic
(binary) assessment in stochastic environments and can guarantee safety in many situations, but
it leads to over-approximations and a very conservative assessment. As for the second possible
approach it is common to compute the collision probability for a certain trajectory as a safety
criteria. Therefore, stochastic motion prediction is performed for all objects in the environment
taking into account the uncertainties. A generic approach for estimating the collision probabil-
ity for arbitrary shapes and probability density functions representing the future position of the
obstacles is presented in [65]. For many applications it is essential to have a quantitative mea-
surement for the intensity of a possible collision. In these cases, the probabilistic collision costs
can be used instead of the collision probability as an indication. In [67] the squared speed of
the colliding objects is used which was replaced by the internal energy assuming an inelastic
impact in [135] taking into account the movement direction of the objects. A stochastic threat
assessment algorithm called collision mitigation by braking system is presented by [53]. It aims
at mitigating the harm of an accident by braking the car once a collision is inevitable. The future
trajectories of the other objects are predicted and based on them the probability of collision is
estimated to determine if emergency braking should be executed. A more general approach for
threat assessment in traffic scenes including a driver model was first published by [18] and ex-
tended by [29]. Monte Carlo simulation is used for threat detection of traffic scenes. In stochastic
optimal control, the safety is often expressed with chance constraints, meaning that the collision
probability or probability of failure must be below a certain threshold. The approach of [15]
presents a particle-based approximation technique allowing one to approximate the stochastic
optimization problem as a deterministic optimization problem. The estimation error of the col-
lision probability decreases with the number of samples and approaches zero when the number
of particles tend to infinity. All these approaches are based on the estimation of the collision
probability based on the motion prediction of the objects.

In the field of motion planning, some approaches consider not only the current information of
the environment but also possible future measurements. The partially closed-loop receding hori-
zon control (PCLRHC) presented in [114] is one of these approaches. Since future measurement

12

2.3. General Idea

are taken into account the prediction of the objects becomes more certain. For integration into a
control approach, the PCLRHC strategy assumes that the most probable future measurement will
occur, instead of considering all possible measurements. Since only one measurement of each
object is considered at every state of the robot, the future states of the objects are predictable.
However, this leads to a non-conservative safety assessment of the trajectories, since not all pos-
sible measurements are considered. The same limitation holds for the approach presented in [54],
where the partially observable control problem is transformed to a fully observable underactuated
stochastic control problem by assuming maximum likelihood observations. The linear-quadratic
Gaussian motion planning (LQP-MP) approach presented in [120] assesses the collision proba-
bility of a given path by taking into account the stochastic models representing the motion and
sensing uncertainty. This is possible by integrating the sensors and controller, which are applied
to execute a given path, into the planning approach. Therefore, the a priori probability distri-
butions of the future states and control inputs along the path are computed. Compared to other
approaches of [54] and [114] all possible future measurements are considered instead of only
assuming the maximum-likelihood measurements. However, this approach requires the motion
and sensing uncertainties represented by Gaussian distributions and has only been applied to
static environments.

The motion planning approaches above consider possible future measurements of the envi-
ronment, but they consider or plan only one motion possibility (trajectory) of the robot system.
The concept of bounded uncertainty roadmaps are presented in [45] and addresses the problem
of roadmap-based planning in uncertain environments. The roadmap contains all future motion
possibilities of the robot. Due to the uncertainty, there are no guarantees that the vertices and
edges of the roadmap are collision-free. The goal in this work is to find a route with minimum
cost according to a cost function incorporating the path length and collision probability. It is
similar to [86] but presents a superior algorithm for approximating the collision probability in
terms of scalability to higher dimensions and quantification error.

This chapter presents a safety assessment approach which assesses roadmaps by determining
the policy minimizing the collision probability of the robot reaching a goal configuration. This
policy considers all motion possibilities and the future measurements of the objects.

2.3. General Idea

In this chapter, a novel approach is presented to assess the safety for a robot system reaching
a predetermined goal state in uncertain and dynamic environments. The uncertain future states
of the objects are represented by probability distributions. The robot system behaves determin-
istically but has multiple motion possibilities to reach its goal state which are represented by
a directed graph. This graph can also be called a roadmap [55]. The main idea of this safety
assessment approach is that a policy is determined which replans the route of the robot if new
information about the objects is available. This information decreases the uncertainty in the pre-
diction of objects and allows a more confident choice of the desired route already before this
information is available.

This idea is explained by an illustrative example. A robot and a human are walking towards
each other in a corridor and are approaching an obstacle. The robot is unsure about the future
motion of the human, whether he will choose the upper or the lower trajectory to avoid the

13

2. Closed-loop Assessment

obstacle. The robot has to decide if it passes the obstacle either left or right to reach its goal. In
Fig. 2.1 the scenario is depicted. Starting at t0, the robot moves straight and needs to decide until
time t1 (decision-making vertex) if it takes the upper or the lower trajectory to pass the obstacle.
Both trajectories have a collision probability of 50% if they are evaluated separately based on the
available information at time t0. However, if the replanning possibility at the decision-making
vertex as well as the possible future information of the human are taken into account, the situation
can be assessed more precisely. This is illustrated in Fig. 2.1b and Fig. 2.1c. At time t1 the robot
will have an updated prediction of the human motion which will be less uncertain than at time
t0. On the basis of this information, the robot is able to make a decision which will result in a
collision probability of only 5%. In order to incorporate this replanning possibility already in the
safety assessment at time t0, all possible situations (future states of the human) and the associated
policy (trajectory) need to be considered. In this case, two possible scenarios are simulated each
having a collision probability of 5%. Hence, the resulting collision probability of the roadmap at
time t0 is also 5% instead of the 50% without considering the replanning possibility.

2.4. Notation and Environment Description

In this chapter, the problem of safety assessment in uncertain and dynamic environments is dis-
cussed. The future motion of the robot is deterministic and its future trajectories are represented
by directed finite graphs with multi-edges, also called multigraphs. The state of the moving
objects are not exactly known and represented by probability distributions. In a nutshell: the
safety of trajectories between two vertices is assessed while considering the possibility of re-
planning based on acquired information about the future states of the objects. The two cases of
vertices connected by a single edge and by multi-edges as shown in Fig. 2.2 are discussed in the
following. Therefore, some notation is introduced.

2.4.1. Workspace Description

The workspace of the robot systemA is denoted byW and the subset of the workspace occupied
by A in state x(t) is expressed as A(x(t)) ⊂ W . The state x = [p,v] is represented by its
position p and its velocity v. The occupancy of the ith object in the workspace is denoted by
Bi(t). The unified occupancy of all objects is written in short notation as B =

⋃
i=1,...,Nb

Bi
where Nb is the number of workspace objects. An initial state and a sequence of control inputs
define a trajectory for A, i.e. a time sequence of states. A trajectory of the robot system is
denoted by ũ and a certain time interval of the trajectory is expressed as ũ([ti, tj)), where a round
bracket excludes the endpoint and the square bracket includes it. The workspace occupancy
generated from the input trajectory is denoted by A(ũ(t)) and is deterministic. Due to the lack
of a perfect model of the environment the states of the objects are represented by probability
distributions. The distribution describing the state of the ith object Bi at time t is denoted by
fi(x, t) and the distribution representing their position uncertainty is expressed as fi(p, t). Since
one can only formulate a probability distribution for a random vector and not an occupancy set, fi
represents the probability distribution of the reference point of Bi. The initial information about
the objects is expressed as the initial belief bt0 = {f t01 (x, t), . . . , f t0Nb

(x, t)} which contains all
initial distributions of the objects at time t0

14

2.4. Notation and Environment Description

(a) Situation at time t0, it is not yet clear which trajectory the
human will choose to circumvent the obstacle.

(b) First possible situation at time t1 > t0. The upper trajectory
of the human has a considerably higher probability, thus the
robot chooses the lower trajectory.

(c) Second possible situation at time t1 > t0. The lower trajec-
tory of the human has a considerably higher probability, thus
the robot chooses the upper trajectory.

Fig. 2.1.: This example shows the problem of decision making on the basis of an uncertain motion pre-
diction. The robot and the human are approaching an obstacle, whereby both have the option to take the
upper or lower trajectory.

15

2. Closed-loop Assessment

Fig. 2.2.: Example of a graph with multi-edges. Two possible object distributions f(p, t) are illustrated
by its 2-σ ellipsoids for one time point. The safety assessment for single- and multi-edges is treated
separately.

2.4.2. Graph Representation

The graph G = {VG, EG} contains a list of vertices vi ∈ VG and edges eij ∈ EG . All vertices in
the graph contain information about the state x of the robot system and at which time t it will
reach this vertex (state)

vi = {xi, ti}.

Each edge eij is a set containing all trajectories ũ connecting the vertices vi and vj

eij = {ũ1(vi,vj), . . . , ũm(vi,vj)},

where eij is called a multi-edge if m > 1. If no connection exists, eij is empty. A route r(vi,vj)
in the graph consists of multiple partial trajectories (edges) describing a possible trajectory for
traversing between vertex vi and vj

r(vi,vj) = {ũ(vi,vk1), ũ(vk1 ,vk2), . . . , ũ(vkn ,vj)}

with i = k0, j = kn+1 and

ũ(vkl−1
,vkl) ∈ ekl−1kl ∀l ∈ {1, . . . , n+ 1}.

In Fig. 2.2 an example for a multigraph is shown. In order to generate such a graph structure,
one needs to generate a set of vertices and connect them with trajectories. Such kind of graph
can be seen as a roadmap, generated from a roadmap-based planner [55]. The vertices are
sampled configurations and the edges represent the trajectories to traverse from one configuration
to another. Another sampling-based approach which generates a graph structure to solve the
motion planning problems are rapidly exploring random trees [76], especially in the case of
multi-directional rapidly exploring random trees [73].

2.4.3. Environment Model

The representation of robot motions by a graph structure together with the environment model
are the core parts leading to the novel safety assessment. For the environment model, represen-

16

2.4. Notation and Environment Description

tation and motion prediction of the workspace objects, two different situations are distinguished:
motion prediction during a time interval (ti, tj] between two vertices vi and vj and the prediction
at the time point of the vertices ti and tj . This distinction is necessary to model the information
gain about the states of the objects which is available for the robot system at the vertices.

For predicting the future states of an object for a certain time interval, any state-of-the-art
probabilistic motion prediction algorithm can be used representing the future state x as a dis-
tribution f t′(x, t) for a certain time point t. The superscript t′ indicates the time point of the
information which is used for the prediction. This time point is called the observation time,
since it represents the time of the information at which the object was last detected or observed.

During the execution of a trajectory, it is assumed that the robot system receives new mea-
surements of the workspace objects which are available at each vertex. These new measurements
or information of the objects result in updated distributions for the positions and states of the ob-
jects. The updated distributions will have a lower variance Var

Var(f tj(p, t)) ≤ Var(f ti(p, t)), with ti < tj ≤ t,

where tj and ti indicate the observation times which are used for the prediction at time t. In this
case, the distribution f ti(p, t) is more uncertain than f tj(p, t), since it is based on the information
available at time ti which is older and thus the predicted position for time t is more uncertain.
This assumption also holds if no new information is available (e.g. occluded objects), in this case
the distribution is not updated.

Since the future information or measurements at time tj are not known at time ti, the possi-
ble distributions at time tj are represented as a compound distribution. A compound probability
distribution [44] is described by a parameterized distribution with a parameter vector θ that
is distributed according to another distribution f(θ). The compound distribution results from
marginalizing over the distribution of the parameter vector. It is assumed that the future mea-
surements at time tj (tj > ti) are consistent with the prediction f ti . Thus, the distribution at time
ti can be seen as the compound distribution comprising from all new distributions at time tj

f ti(x, t) = Eθ(ti)[f
tj(x, t|θ)] =

∫
f tj(x, t|θ)f

(
θ(f ti(x, tj))

)
dθ. (2.1)

The parameters θ of f tj(x, t|θ) are distributed according to f
(
θ(f ti(x, tj))

)
which depends on

the distribution f ti(x, tj) at time tj with the observation time ti. The idea of compound distri-
butions is also known from Bayesian Interference [17], there this is called the prior predictive
distribution [39, 99]. It addresses the following problem: Before new information of the envi-
ronment is available which future measurements (distributions) of the objects can be expected?

For better understanding, one example implementation of this environment model illustrates
the interplay of the separated prediction for one moving obstacle in Fig. 2.3. At time t0 the
position uncertainty is represented by one Gaussian distribution f t0(p, t0). For the time interval
(t0, t1] the object is predicted with the constant velocity model (Sec.2.8.2) resulting in the distri-
bution f t0(x, t1), the corresponding position distribution is depicted in the figure. As expected,
the uncertainty of the prediction based on the information at time t0 has increased over time. At
time t1, it is expected that the robot system perceives the object with its sensors. It is assumed that
the updated future distributions have equal variance (measurement noise constant) but the mean

17

2. Closed-loop Assessment

2 3 4 5 6 7 8 9
0

1

2

3

4

Fig. 2.3.: The proposed environment model is sketched for one moving object using Gaussian distributions
to represent its position uncertainty. The constant velocity model is used for the prediction during the time
intervals. Two different time bases of information exist, t0 and t1 which model new measurements of the
object. The compound distribution of f t1 is depicted by 50 possible samples. Three of them (small gray
solid circles) are again predicted with the constant velocity model till time t2 (big gray solid circles).

value of the Gaussians is unknown. 50 position distributions according to possible future distri-
butions f t1(x, t1) based on the information at time t1 are shown. For the time interval (t1, t2] the
possible future distributions are again predicted resulting in the f t1(x, t2) distributions, whereby
three example position distributions are depicted in Fig. 2.3. At time t2, these distributions are
replaced by the updated distributions f t2(x, t2) which are used for predicting the object in the
next time interval. Based on this environment model, the problem of assessing the motion safety
for roadmaps is formulated.

2.4.4. Safety Assessment

This chapter addresses the problem to assess the safety of a given graph of motion possibili-
ties in an uncertain environment. Instead of determining and assessing the safety of the route
r∗(vs,vg,bts) with the minimum collision probability or collision costs in an uncertain roadmap
[45, 86], this work aims to determine the collision probability P (C|G,vs,vg,bts) for travers-
ing from a specified start vertex vs to a goal vertex vg by considering the entire graph G and
the initial belief bts . Thus, the optimal policy to the goal vertex is determined by considering
the current and possible future distributions of all objects and the possibility to replan the route
during execution. This can be seen as a feedback-based or closed-loop assessment (according
to feedback-based planner or closed-loop optimal control) which determines the safest route
depending on the predicted distribution of the objects at the vertices of the roadmap. This prob-
lem is also closely related to the partially observable Markov decision process (POMDP) [113]
problem. A POMDP models the behavior of the robot which tries to maximize its reward by a
sequence of actions in an uncertain environment. The POMDP formulation considers uncertain-
ties in the future motion of the robot and the future observations. The solution to the POMDP

18

2.5. Trajectory with Minimum Collision Probability

problem is to determine the optimal policy π∗ of the robot which maximizes the expected reward.
A policy π : B 7→ A is a mapping from the belief space B to the available action space A. In
this work, the motion of the robot system is deterministic but the future states of the objects are
uncertain. Thus the robot system has only a belief of the future states of the objects. The goal is
to determine the optimal policy which minimizes the expected collision probability for a given
graph G and a given initial belief bts

π∗(vs,vg,bts) := arg min
π

P (C|G, π(vs,vg,bts)). (2.2)

For a given belief b the policy returns a certain action ũ ∈ E . The collision probability of the
graph is defined as the probability that the robot system collides with any object while executing
the optimal policy

P (C|G,vs,vg,bts) := P (C|G, π∗(vs,vg,bts)).

The belief of the state of an object is represented by the compound distribution described in
Sec. 2.4.3. The presented approach for solving this POMDP like safety assessment problem
is closely related to point-based POMDP approaches [108]. In this work a hierarchical tree of
future beliefs (object distributions) is generated, too. For each sample the optimal policy π∗ is
determined allowing one to approximate the expected collision probability for the graph.

2.5. Trajectory with Minimum Collision Probability

Before the safety assessment for vertices connected by multi-edges or single-edges incorporating
replanning are discussed in Sec. 2.6, the problem of determining the collision probability of a
single trajectory is discussed. Since the focus of this work is on the effect and incorporation of
replanning into safety assessment and not on a sophisticated approach for estimating collision
probabilities, some simplifications are used. It is assumed, that the collision probabilities of
the edges of the graph are independent, meaning that truncated distributions are not taken into
account. This allows a separated estimation of the collision probabilities of all edges. In [43]
and [91] the problem of truncated Gaussian distributions is addressed. Furthermore, it is assumed
that the objects move independently thus the collision probability of a trajectory ũ considering
all Nb objects Bi is derived as

P (C|ũ,bt′) = 1−
Nb∏
i=1

(
1− Pi(C|ũ, f t

′

i (x, t))
)
,

where C is the collision event and Pi(C|ũ, f t
′
i (x, t)) is the probability that the trajectory ũ will

lead to a collision with the ith object with the information available at observation time t′. Using
the compound distribution (2.1) the collision probability is computed as

P (C|ũ(vi,vj), f
t′(x, t)) =

∫
P
(
C|ũ(vi,vj), f

ti(x, t|θ)
)
f
(
θ(f t

′
(x, ti))

)
dθ,

where P
(
C|ũ(vi,vj), f

t′(x, t|θ)
)

is the collision probability during the time interval [ti, tj]

based on the prediction f t′(x, t|θ). Two possible implementations for estimating the collision

19

2. Closed-loop Assessment

probabilities P
(
C|ũ, f(x, t)

)
are described in Sec. 2.8. The collision probability for one trajec-

tory considering all workspace objects allows us to define:

Definition 1 (Minimum collision trajectory ũ∗ between two vertices vi, vj).

ũ∗(vi,vj,bt′) := arg min
ũ∈eij

P (C|ũ,bt′),

where t′ is the observation time.

This definition only considers the edge with the lowest risk to assess the safety for traversing
between the vertices vi,vj and ignores all other edges.

For calculating the collision probability of vertices connected by multi-edges, the minimum
collision trajectory concerning one parameterized distribution of one object is defined.

Definition 2 (Minimum collision trajectory ũ∗ between two vertices vi, vj regarding one distri-
bution).

ũ∗(vi,vj, f
t′(x, t|θk)) := arg min

ũ∈eij
P (C|ũ, f t′(x, t|θk)).

Following, it is shown that new information about the location of the objects lead to a more
precise prediction allowing a novel safety assessment for multi-edges.

2.6. Collision Probability Incorporating Replanning

During the execution of a certain trajectory ũ, the robot system has the possibility to decide at
each vertex how to continue. Additionally, new information about the objects will be available.
These two assumptions are used for assessing the safety for traversing between two configura-
tions.

This is shown only for one object, bt′ = {f t′(x, t)} but this can be easily extended to multiple
objects by determining the optimal trajectory minimizing the collision probability regarding all
objects instead of only one.

2.6.1. Collision Probability Regarding Multi-edges

If two nodes are connected by multi-edges, all possible trajectories ũ ∈ eij between vi and vj
have to be considered.

Definition 3 (Collision probability between two adjacent vertices vi, vj with multi-edges). The
collision probability between two adjacent vertices vi and vj connected by multi-edges based on
the information from time tk is defined as

P (C|eij,btk) : = Eθ(tk)

[
P
(
C|ũ∗(vi,vj, f ti(x, t|θ))

)]
=

∫
P
(
C|ũ∗(vi,vj, f ti(x, t|θ))

)
f
(
θ(f tk(x, ti))

)
dθ,

with ti > tk.

20

2.6. Collision Probability Incorporating Replanning

The time tk is the observation time of the information of the state of the objects and ti is the
prediction time based on this information. The according optimal policy for traversing between
two vertices is defined as

π∗(vi,vj,bti) : f ti(x, t|θ) 7→ ũ∗(vi,vj, f
ti(x, t|θ)).

For a given distribution f the policy returns the optimal trajectory ũ∗ to get from vi to vj .
The resulting expected collision probability is smaller than or equal to the minimum collision
probability of all edges

P (C|eij,btk) ≤ min
ũ∈eij

P (C|ũ,btk).

This follows from the fact that each edge represents a possible trajectory between the two
vertices and, therefore, the safest trajectory can be chosen that depends on the predicted dis-
tributions f ti(x, t|θ). This is shown by the following Propositions 1 and 2. Therefore, the
collision probability of all trajectories eij = {ũ1, . . . , ũm} is interpreted as a random vari-
able Xk = P (C|ũk, f(x, t|θ)), depending on the distribution f(x, t|θ) which is distributed
according to f(θ). The collision probability regarding all edges is also a random variable
Y = P (C|eij, f(x, t|θ)) which is defined as Y = min{X1, . . . , Xm}.
Proposition 1. Let X1 and X2 be independent random variables on the support interval [xl, xu]

with distribution fi and cumulative distribution function (cdf) Fi, with i ∈ {1, 2}. Let Y =

min{X1, X2}, with the minimum distribution FY (x) = 1− (1− F1(x))(1− F2(x)). Then

E[Y] ≤ E[Xi], i ∈ {1, 2}

where E is the expectation value.

Proof. The expectation value is computed as

E[Y] =

xu∫
xl

(
f1(x)(1− F2(x)) + f2(x)(1− F1(x))

)
x dx.

Thus, with Fi(x) =
∫ x
xl
fi(ξ) dξ

E[Y] =

xu∫
xl

f1(x)x dx

︸ ︷︷ ︸
E[X1]

−
xu∫
xl

x∫
xl

f2(ξ) dξ f1(x)x dx

+

xu∫
xl

xu∫
x

f1(ξ) dξ f2(x)x dx,

where the third term can be reformulated by Fubini’s Proposition to

xu∫
xl

ξ∫
xl

f1(ξ)f2(x)x dx dξ =

xu∫
xl

x∫
xl

f2(ξ)ξ dξ f1(x) dx

21

2. Closed-loop Assessment

with substituting x by ξ and vice versa. Finally, this leads to

E[Y] = E[X1]−
xu∫
xl

x∫
xl

(x− ξ)f2(ξ) dξ f1(x) dx.

The statement follows, as the integral over positive functions is again positive. The same holds
for E[X2] as the indices can be interchanged.

Proposition 2. Let Xi be a set of independent random variables with distribution fi(x) and cdf
Fi(x) for i ∈ {1, . . . , n} and Y = min{X1, . . . , Xn}. Then

E[Y] ≤ E[Xi], ∀i ∈ {1, . . . , n}.

Proof. By complete induction over n.
Base case n = 2: Proven by Proposition 1.
Step n − 1 → n: Let Z = min{X1, . . . , Xn−1} then Y = min{Z,Xn}. The statement follows
with Proposition 1.

If edges contain only one trajectory eij = {ũ}, they can be considered as a special case of the
above. Therefore, the collision probability results in

P (C|eij,btk) = P (C|ũ(vi,vj),btk).

In contrast to the multi-edge case, the collision probability based on observation time tk for
single edges is the same as the expected collision probability with observation time ti

P (C|ũ(vi,vj),btk) = Eθ(tk)

[
P (C|ũ(vi,vj),bti)

]
, (2.3)

with ti > tk. This is shown by Proposition 3.

Proposition 3. Let the collision probability P (C|ũ,bti) be defined like in Sec. A.2 for a given
trajectory ũ and object distribution f ti(p, t) = bti which is defined as a compound distribution
like in (2.1). Then

P (C|ũ,bti) = Eθti
[P (C|ũ,btj)], ti < tj.

Proof. The expectation value is computed as

Eti [P (C|ũ, tj)] =

∫
P (C|ũ, tj)f(θ) dθ

=

∫ ∫
Ab(ũ(t))

f tj(p, t|θ) dp f(θ) dθ

=

∫
Ab(ũ(t))

∫
f tj(p, t|θ)f(θ) dθ︸ ︷︷ ︸

f ti (p,t)

dp

= P (C|ũ, ti).

22

2.7. Collision Probability for the Entire Graph

This means, that the observation time of the belief is not changing the collision probability for
serial edges. Thus, the initial belief can be used to calculate the collision probability for serial
edges. This result seems obvious, since the robot has no other choice than to take this single
edge.

2.6.2. Collision Probability for Serial Edges

Consider a vertex vk with indegree deg−(vk) ≥ 1 and outdegree deg+(vk) = 1. The collision
probability for the combination of each ingoing and the outgoing edge can be computed sepa-
rately, as no decision has to be made at vk. Therefore, a virtual edge e′ij is defined which can be
parallel to an already existing edge eij . For further collision probability considerations the new
edge eij is assumed to be a multi-edge consisting of the old edge eij and the virtual edge e′ij .
The collision probability for serial edges eik,ekj is calculated as

P (C|e′ij,bt′)) = P (C|eik,bt′) + (1− P (C|eik,bt′))P (C|ekj,bt′) (2.4)

for all ingoing edges eik. The resulting collision probability is computed by the combination of
the two possible cases: 1) a collision occurs on edge eik 2) a collision occurs not on edge eik but
on ekj .

In the next section, the algorithm for assessing the safety for an entire graph is presented.

2.7. Collision Probability for the Entire Graph

The previous definitions allow one to compute the expected collision probability between serial
and multi-edges. In order to assess the safety of a complete graph, an iterative algorithm is used
which combines multi-edges and removes vertices with deg− ≥ 1 and deg+ = 1.

As a preprocessing, the Graph G is pruned so that it only contains all possible routes from vs
which can reach vg. The pruned graphH is defined as:

Definition 4 (Reachable SubgraphH).

H = {V , E} ⊆ G = {VG, EG}
where,

V = {vs,vg} ∪ {vi ∈ VG | ∃r(vs,vi), ∃r(vi,vg)}
E = {eij ∈ EG | vi,vj ∈ V}

In other words, every vertex vi can be reached by at least one valid route from vs and there ex-
ists at least one valid route r to vg. This pruning can be achieved by using the Dijkstra algorithm
and initialize it at the goal vertex.

In the following subsection, a rule is presented that allows removing certain vertices of the
graph, allowing one to assess the entire graph with Def. 3 and (2.4).

23

2. Closed-loop Assessment

(a) Vertex v3 with deg−(v3) = 2,
deg+(v3) = 1 is removed.

(b) The dashed lines represent the old
edge e34 which was appended to e13 and
e23.

Fig. 2.4.: Graph reduction by rule (2.5): vertex v3 is removed by appending e34 to edge e13 and e23.

2.7.1. Reduction of Vertices with Single Output

In order to reduce the graphH to a graph only consisting of two vertices and one edge, Def. 3 is
used to replace multi-edges by a single edge. Similarly, (2.4) can be applied to remove vertices
with deg−(vk) ≥ 1 and deg+(vk) = 1 from the graph by attaching the outgoing edge to all input
edges. Given a set of vertices Vk which are all connected to the vertex vk which in turn is
connected only to the vertex vj , then the vertex vk can be removed by modifying all the edges
of the vertices in Vk going to vk

Vk = {vi ∈ V | vi 6= vk, eik 6= ∅}
e′ij = {eik, ũkj} ∪ eij,

(2.5)

where the original edge eij is replaced by the new edge e′ij . Loosely speaking, every vertex with
deg+ = 1 has no influence on the safety assessment, since the future trajectory is predetermined.
In Fig. 2.4 a graph is shown where this definition is applied.

Algorithm 1: Graph Reduction
Input : {G,vs,vg,bts}
Output : P (C|G,vs,vg,bts), π∗(vs,vg,bts)

Initialize: GetH = {V , E} ⊆ G (Def. 4)
while |V| > 2 do

Merge multi-edges {e ∈ E | |e| > 1} (Def. 3) and determine g(e,b) (2.6)
Find all vertices Vg which are connected to vg
foreach vk ∈ Vg do

Remove vertices with deg+(vk) = 1 (2.5) and
determine g(eig,btl) (2.7)

P (C|G,vs,vg,bts) = P (C|esg,bts), with |esg| = 1
π∗(vs,vg,bts)← g(esg,bts)
return P (C|G,vs,vg,bts), π∗(vs,vg,bts)

24

2.8. Implementations

2.7.2. Graph Reduction

After obtaining the reduced Graph H, the iterative Alg. 1 is applied to it. For every pair of
vertices connected by multi-edges inH, Def. 3 is applied to determine the function

g(eij,btk)→ [π∗(vi,vj,bti), P (C|eij,btk)] (2.6)

which identifies the optimal policy π∗ for a given observation time ti and the collision probability
between the vertices vi and vj for a given tk. Note, that π∗ and the collision probability can
depend on different observation times.

After merging all multi-edges inH, rule (2.5) is applied to all vertices vk with deg−(vk) ≥ 1

and deg+(vk) = 1 which are connected to the goal vertex vg. Therefore, the two functions
g(eik,btl) and g(ekj,btl) need to be merged by

g(eik,btl)× g(ekj,btl)→ g(eij,btl)

π∗(vi,vj,bti) = {π∗(vi,vk,bti), π∗(vk,vj,btk)}
P (C|eij,btl) = P (C|eik,btl) + (1− P (C|eik,btl))P (C|ekj,btl)

(2.7)

where {π, π′} is the concatenation of two policies.
The operating principle of the single steps are sketched in Fig. 2.5. The result of the algorithm

is a graph which contains only the start vertex, the goal vertex and its edge. The edge represents
the function g(esg,bts) allowing one to calculate the expected collision probability of the entire
graph P (C|esg,bts) and to determine the associated optimal policy π∗(vs,vg,bts).

The following proposition shows that the graph reduction algorithm always converges in finite
time.

Proposition 4. LetH = {V , E} be a graph according to Def. 4 with |V| = n and |E| = m. Then
Alg. 1 converges after at most n+m steps.

Proof of Proposition 4. In every step of our algorithm the number of vertices or edges is reduced
by at least one. So there can be n+m steps at most. In the following the convergence is proven
by contradiction. Assume that the algorithm has not converged, so there has to be nodes

V+ = {v ∈ V/{vs,vg} | deg+(v) > 1},

because if deg+(v) = 1 the node would have been removed from the graph in any step by
rule (2.5). Choose vi as the latest such node, i.e. ti > t, ∀t ∈ v ∈ V+. The outgoing edges
cannot be multi-edges because they would have been removed in any step. Thus, there has to be
an edge eij to vj 6= vg, with tj > ti. As vj was not removed in a previous step, deg+(vj) > 1

must hold. Therefore, vj was not the latest node with deg+ > 1.

2.8. Implementations

In this section two example implementations are presented for the safety assessment approach
presented in Sec. 2.7. The implementation for mobile robot applications uses Gaussian distribu-
tions for representing the uncertain states of the objects and constructs the roadmaps based on

25

2. Closed-loop Assessment

(a) Example graph with multi-edges. (b) Merged edges e24 and e67 (Def. 3).

(c) Removed vertex v6 (rule (2.5)). (d) Removed vertex v5 (rule (2.5)).

(e) Merged edge e47 (Def. 3). (f) Removed vertex v4 (rule (2.5)).

(g) Merged edge e37 (Def. 3). (h) Removed vertex v3 (rule (2.5)).

(i) Merged edge e27 (Def. 3). (j) Removed vertex v2 (rule (2.5))

Fig. 2.5.: Figures depicting single steps of Alg. 1 for an example graph, until the graph contains only the
start and goal vertex connected with one edge. In order to show the result of rule (2.5), the appended
edges are drawn in parallel to the existing edges.

26

2.8. Implementations

Bézier curves. Gaussian distributions are widely used in mobile robots e.g. representing local-
ization error or representing the uncertain position of objects [113]. For generating roadmaps,
many different approaches are available in literature, all having their own advantages for solving
the motion planning problem (e.g. [5, 40]). However, our focus is different, since it should be
possible to directly modify the shape of the trajectories for generating multi-edges. Additionally,
the trajectories should be smooth, i.e. continuous in position, direction, and velocity. Hence, an
implementation based on Bézier curves in combination with a triangular velocity profile is used.

The other implementation for automotive applications uses motion patterns for representing
the uncertain future motion of other vehicles and an optimal control approach for constructing
the roadmap. Motion patterns, also called motion hypotheses, are a common representation for
motion prediction in structured environments such as indoor environments or roadways. In [13]
motion pattern are used to represent the future motions of humans and in [51] the problem of
long term vehicle prediction is addressed with prerecorded trajectories of vehicles. It is also
possible to use e.g. Gaussian distributions [13] or Gaussian processes [71] to represent a motion
pattern. In literature many approaches are available for generating trajectories for autonomous
navigation of vehicles on roadways. Approaches using numeric optimization are not directly
applicable for constructing roadmaps since they do not succeed in generating trajectories ending
in a certain state after a predefined time. For this implementation an optimal control approach
[125] is used which generates minimum jerk trajectories in the lane coordinates of the road by
using quintic polynomials.

In the following, an approximation technique for the future belief of the workspace objects is
presented which is used in both implementations.

2.8.1. Estimation of Collision Probabilities for the Entire Graph

The initial belief contains one distribution for each object representing its uncertain state, but due
to its prediction based on compound distributions (2.1) the future belief of each object contains
an infinite set of parameterized distributions. For implementing Alg. 1, it is necessary to esti-
mate the collision probability for multi-edges according to Def. 3. The definition is not directly
implementable, since for each parameterized distribution of the belief the trajectory with the
lowest collision probability ũ∗ needs to be determined. To overcome this problem, the belief of
the object is represented by a finite set of sampled distributions from the compound distribution.
This idea is similar to the belief tree known from POMDP planning [62]. The root of the tree is
the initial belief bt0 and for every new time point the belief is propagated according to its com-
pound distribution, whereby the compound distribution is represented by a finite set of sampled
distributions. The propagation rule for the belief tree is presented for one object bt0 = {f t0}.
Importance sampling is used to draw samples from the parameter distribution f(θ(f tk−1))) de-
pending on the distribution from the previous time step tk−1. Each sampled parameter vector
results in one sampled distribution fs, where s denotes the number of the sample. The samples
are generated according to

θ ∼ f
(
θ(f tk−1(x, tk))

)
→ f tk(x, tk|θ)

btktk−1
(f tk−1) = {f tks (x, tk|θs)|s = (n− 1)Ns(k) + 1, . . . , nNs(k))}

27

2. Closed-loop Assessment

Tab. 2.1.: Sampling tree for four time steps.
t0 t1 t2 t3

f t0 bt1
t0

(f t0) = {f t1s |s = 1, . . . , Ns}bt2
t1

(f t11) = {f t2s |s = 1, . . . , Ns}

bt2
t1

(f t12) = {f t2s |s = Ns + 1, . . . , 2Ns}...
bt2
t1

(f t1Ns
) = {f t2s |s = Ns

2 −Ns + 1, . . . , Ns
2}

bt3
t2

(f t21) = {f t3s |s = 1, . . . , Ns}

bt3
t2

(f t22) = {f t3s |s = Ns + 1, . . . , 2Ns}...
bt3
t2

(f t2Ns
) = {f t3s |s = Ns

2 −Ns + 1, . . . , Ns
2}

...
bt3
t2

(f t2
Ns

2) = {f t3s |s = Ns
3 −Ns + 1, . . . , Ns

3}

where Ns(k) is the number of samples of btktk−1
and n denotes the level of the belief tree. The

subscript of btktk−1
denotes the observation time of the sampled distribution f tk−1 and the super-

script denotes the observation time of the samples. The resulting belief tree for four time steps
is shown in Tab. 2.1. One can see, that the information of the object is represented by multiple
beliefs, all depending on a sampled distribution from a belief of an earlier time step. It is crucial,
that the sampling is not performed independently for each belief, since for the rules described
in (2.6) and (2.7) it is necessary that each sample can be traced back till the initial belief. It is
noted, that the number of samples depends on the kth time step, in order to adapt the number of
samples to the uncertainty of the sampled distribution. The number of all samples needed for a
complete graph is

Nt−1∑
k=1

Nb(Ns(k))k,

where Nb is the number of objects and Nt is the number of time steps.

The belief tree allows one to approximate the collision probability according to Def. 3 by

P (C|eij,btk) ≈ P̂ (C|eij,btk) :=
1

Ns

Ns∑
s=1

P
(
C|ũ∗s(vi,vj, f tis), tk

)
, f tis ∈ btitk ,

where Ns is the total number of samples and ũ∗s is the trajectory with the lowest collision proba-
bility regarding fs. For estimating the collision probability of ũ∗s, the collision probability for all
possible trajectories is evaluated

P
(
C|ũ∗s(vi,vj, f tis), tk

)
= min

ũs∈eij
P
(
C|ũs(vi,vj, f tis), tk

)
.

The estimations of P̂
(
C|ũ∗s,btk

)
and P̂ (C|eij,btk) allows one to implement Alg. 1. The envi-

ronment model based on Gaussian distributions is presented in the next subsection.

2.8.2. Environment Model for Mobile Robot Applications

First an example implementation for the environment model is shown which assumes a Gaussian
distribution N for the state of each object at a certain time point

x(t) ∼ N (µ(t),Σ(t)) = f(x, t),

28

2.8. Implementations

where µ(t) is the predicted state of the object and Σ(t) the covariance matrix representing the
associated uncertainty. For implementing the environment model described in Sec. 2.4.3, the
compound distribution according to (2.1) and the prediction for the time intervals need to be
specified. For predicting the future states of the objects, the constant velocity model is used. The
position is denoted by p = [x, y]T and the velocity as v = [vx, vy]

T . After a time discretization,
where tk = k T , k ∈ N+ is a time step and T ∈ R+ is the step size, the dynamic model is
transformed into the discrete time form

x

y

vx
vy

 (tk+1)

︸ ︷︷ ︸
x(tk+1)

=

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

︸ ︷︷ ︸

A

x

y

vx
vy

 (tk)

︸ ︷︷ ︸
x(tk)

, tk = kT.

The initial state has the multivariate Gaussian distribution x(t0) ∼ N (µ(t0),Σ(t0)). With the
multiplication rule and the addition rule for independent random variables with Gaussian distri-
bution the mean value and covariance of the state x can be updated as

µ(tk+1) = Aµ(tk)

Σ(tk+1) = AΣ(tk)A
T

for every time point. This update rule allows one to predict the workspace objects for a certain
time interval.

Additionally, the compound distribution according to (2.1) needs to be specified. It is assumed
that at each vertex all objects are detected by the robot perception system and that the noise in
the estimation of their state is constant. The distribution of the object is updated at every vertex,
the updated mean is denoted by µ+ and the covariance as Σ+. The parameter vector is the
mean value θ = µ+(ti) which is distributed according to f(µ+) = N

(
µ(ti),Σ(ti)−Σ(t0)

)
and

the parameterized distribution is f(x, t|µ+) = N (µ+,Σ+). The updated Gaussian distribution
representing the state of the object is specified by

µ+(ti) ∼ N
(
µ(ti),Σ(ti)−Σ(t0)

)
Σ+(ti) = Σ(t0).

This means the new prediction depends on the estimated prediction at the current time and the
covariance Σ+(ti) will be set to the initial covariance Σ(t0) assuming that the uncertainty arises
only from measurement noise which is assumed to be constant. The proof that this parameterized
distribution satisfies (2.1) is given with the following Propositions.

Proposition 5. Let X be a random variable of a one dimensional Gaussian compound distribu-
tion

f(X) = Eθ[f(X|θ)] =

∫
f(X|θ)f(θ) dθ.

with the mean value µc and variance σ2
c

X ∼ N (µc, σ
2
c).

29

2. Closed-loop Assessment

Then a valid parameterized distribution f(X|θ) is a Gaussian distribution N (µp, σp) with the
variance σp and the mean value as the parameter µp = θ distributed according to f(µp) with

µp ∼ N (µc, σ
2
c − σ2

p).

Proof. It will be shown, that the Gaussian compound distribution has the expected mean and
variance. The variance of the compound distribution can be determined as

Var[X] =

∫
((µp − µc)2 + σ2

p)f(µp) dµp

by the law of total variance. Since the covariance of the parameterized distribution is constant
σ2
p = const this can be rewritten as

Var[X] =

∫
f(µp)σ

2
p dθ︸ ︷︷ ︸

σ2
p

+

∫
f(µp)(µp − µc)2 dθ︸ ︷︷ ︸

Var(f(µp))

with the variance of the compound distributions being σ2
p + (σ2

c − σ2
p).

The expectation of the compound distribution is defined as

E[X] =

∫
E[f(X|θ)]f(θ) dθ

according to the law of total expectation. Since E[f(X|θ)] = µp ∼ N (µc, σ
2
c − σ2

p) one can see
that E[X] = µc.

Proposition 6. Let the Gaussian compound distribution f(X) be defined like in (2.1) with
the mean value µc and variance Σc, X = [X1, X2] ∼ N2(µc,Σc). Then a valid param-
eterized distribution f(X|θ) is a Gaussian distribution N2(µp,Σp) with the mean value
µp ∼ f(θ) = N2(µc,Σc −Σp) and the variance Σp.

Proof. The Covariance matrix of the compound distribution is defined as

Σc =

[
E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)]

E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)]

]
.

Applying Proposition 5 to each element will show

Σc = Σp + (Σc −Σp).

This environment model is illustrated with one object in Fig. 2.3. The presented environment
model is a very simplified one. However, it can be easily exchanged by a more sophisticated
model considering e.g. distance to obstacles, sensor model and occlusion of obstacles.

In the following the estimation of the collision probability for one edge is presented. The
method as presented in Sec. A.2 is used for estimating the collision probability for a single
trajectory. Therefore the occupancyA of the robot system is enlarged by the Minkowski addition

30

2.8. Implementations

of the area (−Bi + ci) to A, so the new occupancy of the robot is Abi =A⊕(−Bi + ci). The
point ci is the reference point of the object. The probability of the robot system A, applying the
input trajectory ũ having a collision C with another object Bi at time t is defined as

Pi(C|ũ(t),bt′) = P (A(ũ(t)) ∩ Bi 6= ∅|bt′) =

∫
Abi (ũ(t))

f t
′

i (p, t) dp,

where the index i of the collision probability refers to the ith workspace object and t′ is the
observation time. This integral is approximated by discretizing the workspace and the time
dimension. This is done by generating an occupancy grid with equidistant segmentation.

2.8.3. Environment Model for Automotive Applications

For this implementation, the future motion of the objects is represented by motion patterns. The
set of motion patterns for the ith object is denoted by

Mi = {m̃i,1, m̃i,2, . . . , m̃i,Nm} |Mi| = Nm,

where each trajectory m̃ is a motion pattern. These trajectories have to fulfill the kinematic and
dynamic constraints of the object. In order to represent the uncertainty of the state of the object
a discrete probability function also known as the probability mass function (PMF) is used. The
PMF relates the value of a discrete random variable to its probability. In the case of motion
patterns, the discrete random variables are the states of the motion patterns and the value of the
PMF is the probability that this pattern will be executed by the object. For each motion pattern
a weight w exists representing the probability of the associated motion pattern. The PMF is
denoted by

q(x, t) =

w1, x = m̃1(t),

w2, x = m̃2(t),...
wNm , x = m̃Nm(t),

with
∑
wi = 1. For this environmental model there is no need for a motion prediction algorithm,

since the prediction of the future states of the objects are already included in the motion patterns.
For modeling the possible future distributions of the objects at the vertices, the compound distri-
bution according to (2.1) is defined as

qti(x, t) =

∫
qtj(x, t|w)f(w(ti)) dw, ti < tj ≤ t, (2.8)

where θ = w = {w1, . . . , wNm} is the parameter vector containing all weights and the param-
eterized distribution qtj(x, t|w) is the same PMF as qti(x, t) only with another weight vector.
The motion patterns cannot be changes, since this would lead to another compound distribution.
For this implementation, the distribution f(w(ti)) is modeled by simulated future measurements
at the time of the vertices. Since measurements are never noise free, a Gaussian measurement
model is used. The measurement is generated according to a Gaussian which mean is the ac-
tual position of the vehicle according to the motion pattern and the covariance is assumed to be

31

2. Closed-loop Assessment

constant. The future measurements are distributed according to

z(tj) ∼ N (µs,Σz), µs ∼ qti , ti < tj

where Σz is the covariance of the measurement model and z(tj) is one possible measurement at
time tj based on the pmf qti with the observation time ti. The simulated measurements are used
to generate the novel weight vectors ŵ(tj). The update process is very similar to a particle filter
approach [28] also called sequential Monte Carlo method for tracking objects. Since the focus of
this work is not on a realistic simulation of sensor or tracking models, a very simplified update
step is used. The weights of the weight vector are updated according to the measurement z by
the Euclidean distance of the expected position at the motion pattern and the measured position
ŵi = ‖m̃i(t)− z(t)‖ which requires the normalization of all weights

wi =
ŵi∑
ŵi
, wi ∈ ŵ.

It is noted that this update step can be easily exchanged by a more sophisticated one e.g. by
considering measurement noise and using an appropriate distance metric.

For generating the belief tree according to Sec. 2.8.1 a finite number of weight vectors ŵ

are generated by simulating a finite number of measurements. However, the generated weight
vectors do not fulfill (2.8), since the expectation of the updated weight vectors ŵ(tj) is not
equal to the weight vector w(ti). This is done by performing a second normalization step for all
generated weight vectors. The ith weight vector is normalized by

wi(tj) = ŵi(tj)
w(ti)

E[ŵ(tj)]
,

where E[ŵ(tj)] is the expectation of all generated weight vectors. The environmental model
including the update steps is illustrated in Fig. 2.6 for one propagated sample.

In the following a Monte Carlo based approach as described in Sec. A.3 is used to estimate
the collision probabilities based on the motion patterns of the objects. The principle of motion
patterns can be seen as a specific sampling strategy for the Monte Carlo approach. Thus the
probability of the robot to collide with the ith object while navigating between two vertices can
be estimated by the weighted sample estimator ([100])

P̂i(C|ũ(vj,vk),bt′) =
Nm∑
n=1

Ind(C|ũ(vj,vk), m̃i,n)wn(t′),

with
Nm∑
n=1

wn(t′) = 1 and the indicator function

Ind(C|ũ(vj,vk), m̃i,n) =

{
1, ∃t ∈ [tj, tk] A(ũ(t)) ∩ Bi(m̃i(t)) 6= ∅
0, otherwise.

The indicator function is one, if a collision between the robot trajectory ũ and the nth trajectory
m̃n,i of the ith object occurs and is zero otherwise. In other words, the probability that the

32

2.8. Implementations

(a) The weights of the motion patterns are equally initialized.

(b) It is likely that the car follows motion pattern 1, 2 or 3.

(c) It is likely that the car follows motion pattern 2 or 3.

(d) It is likely that the car follows motion pattern 2.

Fig. 2.6.: The principle of the environment model for motion patterns is sketched for some time steps.
There are 5 possible motion pattern and the weights of the patterns are illustrated by the line thickness.

33

2. Closed-loop Assessment

robot trajectory ũ will collide with the object, is the sum of the weights wn of all trajectories of
the object leading to a collision. For detecting collisions, the states of the ego vehicle and the
other object are sampled along their trajectory according to a fixed time discretization. If their
geometric shapes overlap in at least one time point their trajectories are classified as colliding
trajectories. In this work, rectangles are used to approximate the shape of the vehicles and used
the OBB-tree algorithm [42] for collision detection. It is noted, that compared to the occupancy
grid approach, this method does not discretize the workspace.

In the next section, the implementation for generating roadmaps for mobile robot applications
is presented.

2.8.4. Roadmap for Mobile Robot

Fifth-order Bézier curvesB(λ), λ ∈ [0, 1] and a triangular velocity profile are used for generating
roadmaps for mobile robot applications. The path B(λ) between two vertices vi,vj is defined
by control points Pk, k = 0, . . . , 4, with B(0) = P0 and B(1) = P4. The first two control points
are used to define the start position and its initial direction [xi, yi, θi], the last two control points
are used to define the goal position and direction [xj, yj, θj]. The third control point allows one
to vary the shape of the Bézier curve B(λ).

P0 = [xi, yi], P1 = P0 +
‖
−−→
P0P4‖

4
[cos(θi), sin(θi)]

P4 = [xj, yj], P3 = P4 −
‖
−−→
P0P4‖

4
[cos(θj), sin(θj)]

The control point P2 is set

P2 = P0 +

−−→
P0P4

2
+ α‖

−−→
P0P4‖n,

where n ⊥
−−→
P0P4 and α ∈ [−1, 1] is the parameter determining the shape of the path. In Fig. 2.7

an example path is illustrated.
The velocity profile v(t) is defined by two linear velocity sections and the absolute velocity

of the robot at the ith vertex is denoted as vi = ‖vi‖.

v(t, v′) =

vi +

v′ − vi
Tũ

(t− ti), ti ≤ t < ti + Tũ

v′ +
vj − v′

Tũ
(t− ti − Tũ), ti + Tũ ≤ t ≤ tj

where Tũ =
tj−ti

2
is the desired time duration of the trajectory. The via velocity v′ = v(ti + Tũ)

is defined such that ∫ tj

ti

v(t, v′) dt =

∫ 1

0

‖∇B(λ)‖ dλ =: l(B) = l(ũ),

where l(B) is the length of the Bézier curve and ‖ • ‖ is the Euclidean norm.

34

2.9. Simulations

Fig. 2.7.: Generation of one possible Bézier curve between the vertices vi and vj for one α.

2.8.5. Roadmap for Automotive Scenario

An optimal control approach based on a combined unconstrained optimization of the lateral and
longitudinal movements in street-relative coordinates, so-called Frenet frame [21], with terminal
state sets is used to generate the roadmaps. The shape of the trajectories for lateral and longitudi-
nal trajectories can be changed by varying the desired time to reach the specified end constraints.
The end constraints are position, velocity and acceleration of the associate longitudinal or lat-
eral coordinate. The trajectories are checked for kinematic and dynamic constraints in a second
step. Typical constraints of a vehicle are e.g. limited acceleration, maximum velocity, maximum
curvature. This approach has been successfully evaluated in experiments with the autonomous
vehicle platform Junior [80]. In [137] an extension of this approach is presented addressing for-
mer limitations concerning the safety assessment of the trajectories. For more information to the
trajectory generation approach, the reader is referred to Sec. 5.3 and [124, 125]

In order to generate roadmaps, the vertices needs to be specified and the edges are generated
with the optimal control approach mentioned above. One possibility is to learn or optimize the
states of the vertices in order to achieve a good coverage of the possible trajectories with respect
to the present road course. The roadmap should include trajectories for e.g. overtaking, lane
changes and velocity keeping. In this work the focus is on the safety assessment of roadmaps
and not on its creation process. Thus, in this work, the vertices are manually set on the center
of the different lanes with equal spaces to allow lane changes to all available lanes. The desired
time to reach the vertices is also constant for all trajectories, so no multi-edges are generated in
the roadmap. They appear during the graph reduction algorithm (Alg. 1). An example roadmap
is illustrated in Fig. 2.11b.

2.9. Simulations

In this section the safety assessment concept from Sec. 2.7 is evaluated based on the implemen-
tations presented in Sec. 2.8. Therefore, the safety assessment concept is applied to mobile robot
scenarios as well as to automotive scenarios. It is evaluated by comparison with the common ap-
proach determining the route with the smallest collision probability in the graph. In contrast to
the proposed graph assessment approach, this method does not consider replanning possibilities.
In the following, the common assessment is explained in more detail.

35

2. Closed-loop Assessment

2.9.1. Determining the Safest Route

The simulation results of the proposed graph assessment approach are compared to the safety
assessment approach identifying the route r∗ with the lowest collision probability starting at vs
and ending at vg. This corresponds to the minimum collision trajectory ũ∗(vs,vg,bts) according
to Def. 1. It is determined by estimating the collision probability for all possible routes from the
start to the goal vertex. Since the considered graphs do not allow loops (robot cannot reach a
vertex more than once at the same time if standing still is excluded), the set of all possible routes
is finite. All objects are predicted from ts till tg by using the constant velocity model. Based on
this prediction, the collision probabilities of all edges are estimated allowing one to calculate the
collision probabilities of all routes.

Approaches such as the minimum collision cost planner [86] are similar, but not identical.
This approach applies the A* algorithm to the graph, where the weights of the edges represent
the collision probability. Since the A* algorithm expects a additive cost function, the cost of a
route is the sum of the weighted edges, thus the approach determines the route with the minimum
sum of collision probabilities. This solution may be also the route with the minimum collision
probability, but there can be also a clear difference. One possibility to determine the route with
the minimum collision probability is to apply the more general best-first search algorithm [27]
which does not suffer from the additive restriction on the evaluation function. Since the graphs
in this work contain not more than 9 vertices, a simple brute-force algorithm is used to find
all possible routes which collision probability is calculated in a second step allowing one to
determine the route with the minimum collision probability.

2.9.2. Mobile Robot Applications

In this section the evaluation of the proposed graph assessment approach is shown. Therefore,
some scenarios related to mobile robot navigation in uncertain and dynamic environments are
simulated. The example implementations presented in Sec. 2.8 are used. The robot and the
objects have circular shape with a radius of 0.25 m. For the following simulation scenarios, an
occupancy grid with a cell size of 0.1 m × 0.1 m and a time resolution of 0.1 s was used for
estimating the collision probabilities of the single edges.

Assessment of Multi-edges

The simulation environment consists of one robot system and one dynamic object represented
by a Gaussian PDF. The generated graph (Fig. 2.8) contains the three vertices

v0 = [0 m, 2 m, 0 m/s, 0 m/s, 0 s] v1 = [3 m, 2 m, 3 m/s, 0 m/s, 3 s]

v2 = [6 m, 2 m, 3 m/s, 0 m/s, 4 s]

with vi = [xi, yi, vx,i, vy,i, ti]. The first edge e01 and the middle edge of e12 are generated with
α = 0. For the upper edge of e12 α = 1 and for the lower one α = −1 is used. The initial state

36

2.9. Simulations

310 2 4 5 6

1.5

0.5

4

0

1

2

2.5

3

3.5

Fig. 2.8.: The vertices of the graph are shown by black solid circles and the gray lines are the associated
edges. the dashed circle depicts the 2-σ ellipsoid of f t0 and the solid circles represent the 2-σ ellipsoids
of 50 sampled f t1s .

and the covariance matrix of the object are

x(t0) = [4.5 m, 2.0 m, 0.0 m/s, 0.0 m/s]

Σ(t0) = diag[0.01 m2, 0.01 m2, 0.05 m2/s2, 0.05 m2/s2].

The estimated collision probability of e01 is 0 and [0.204, 0.307, 0.204] for e12 starting with the
upper one. The safest route r∗(v0,v2, t0) to v2 has a collision probability of 0.204, based on the
information available at t0 and without considering the possibility to replan the route at v1.

For calculating the novel expected minimum collision probability according to Sec. 2.8.1 for
e12, 500 distributions f t1s are sampled from f t0(x, t1) to generate the belief bt1t0 . In Fig. 2.8
the distribution f t0 and 50 samples f t1s are depicted. The resulting expected minimum collision
probability according to Def. 3 is 0.023. This is a reduction of 88.73% compared to the optimal
trajectory without considering the opportunity of replanning. This is caused by the fact, that the
robot is able to choose the safest trajectory at time t1 depending on the occurring distribution
f t1 . Additionally, the variance of the object distributions is not large enough to have a significant
effect on all three trajectories of e12 regarding only one possible PDF f t1 . This is illustrated in
Fig. 2.9 for all possible edges at time t = 3.3 s. One can see, that there exists no configuration of
the object, such that its 2-σ ellipsoid of its PDF overlaps with all three possible enlarged robot
systems Ab at this time step.

Graph Assessment

For evaluating the graph assessment approach presented in Sec. 2.8.1, an example graph is gen-
erated and is shown in Fig. 2.10. This example shows, that multi-edges can also appear during
the reduction of the graph effecting the collision probability of the whole graph. The states of

37

2. Closed-loop Assessment

310 2 4 5 6

1.5

0.5

4

0

1

2

2.5

3

3.5

Fig. 2.9.: The dashed circles represent the area of the enlarged robot system Ab at time t = 3.3 s for the
three possible edges. The solid black circles show possible 2-σ ellipsoids of the obstacle at the same time.

0 1 2 3 4 5 6 7 8 9

2

1

3

4

Fig. 2.10.: Example graph for safety assessment. The numbers next to the edges are the collision proba-
bilities.

38

2.9. Simulations

the vertices are

v0 = [0 m, 2 m, 0 m/s, 0 m/s, 0 s] v1 = [0 m, 2 m, 0 m/s, 0 m/s, 2 s]

v2 = [3 m, 3 m, 2 m/s, 0 m/s, 4 s] v3 = [3 m, 1 m, 2 m/s, 0 m/s, 4 s]

v4 = [6 m, 3 m, 2 m/s, 0 m/s, 6 s] v5 = [6 m, 1 m, 2 m/s, 0 m/s, 6 s]

v6 = [9 m, 2 m, 0 m/s, 0 m/s, 8 s].

The vertex v0 is equal to v1 except for the time information. This allows the robot to gain more
accurate information about the objects before it decides to take the edge e12 or e13 at time t1.
Two objects are placed in the workspace and their initial states are modeled as Gaussians

µ1(t1) = [2.5 m, 3.0 m, 0.5 m/s, 0 m/s] µ2(t1) = [2.5 m, 1.1 m, 0.5 m/s, 0 m/s]

Σ1(t1) = diag[0.01 m2, 0.01 m2, 0.05 m2/s2, 0.05 m2/s2]

Σ2(t1) = diag[0.02 m2, 0.02 m2, 0.10 m2/s2, 0.10 m2/s2].

The objects have the same size and the radius of the enlarged robot system is 0.5 m. Using
the common assessment algorithm, the collision probability is 0.73 and the optimal route is
r∗ = {e13, e35, e56}. Using the novel graph assessment algorithm with Ns(k) ≡ 10 results in the
collision probability of 0.32 which is a relative reduction of 56%. This follows from the expected
collision probability of the multi-edge e24 being smaller than the minimum collision probability
of the single trajectories. The collision probability of the best trajectory is 0.80, however the
expected collision probability of e24 is 0.38. During the graph reduction Alg. 1 another multi-
edge occurs between {e12, e24, e46} and {e13, e35, e56} leading to the final collision probability.

2.9.3. Automotive Applications

In this section the implementation from Sec. 2.4.1 is applied to assess the safety for autonomous
vehicle driving. Therefore, an overtaking scenario on a highway is used. In this scenario, the ego
vehicle approaches a group of two trucks and one car. One truck is at the end of its overtaking
maneuver and the future motion of the car is uncertain. Therefore, three different motion patterns
of the other car are considered: slowing down and staying behind the truck; maintaining speed
and overtaking one truck at the middle lane; speeding up and overtaking both trucks at the left
lane. The goal of the ego vehicle is to pass this group without collision. The whole scenario is
sketched in Fig. 2.11a. The initial states of the other vehicles, the trucks xt1 , xt2 and the car xc

are

xc = [50 m,−5 m, 30 m/s, 0 m/s],

xt1 = [110 m,−5 m, 23 m/s, 0 m/s],

xt2 = [120 m, 0 m, 25 m/s, 0 m/s].

The motion patterns of the objects are generated with the same approach which is used for the
generation of the roadmap of the ego vehicle. For a clear presentation, the roadmap of the ego
vehicle is generated with a constant vx = 40 m/s and it has the option to change the lanes at two

39

2. Closed-loop Assessment

(a) Sketched scenario

(b) Roadmap of ego vehicle with resulting collision probabilities. The black numbers
refer to collision probabilities caused by the trucks and the gray ones to collision
probabilities caused by the other car.

Fig. 2.11.: The top figure shows the sketched scenario with the ego vehicle, two trucks and the other vehi-
cle. The bottom figure shows the roadmap of the ego vehicle with the corresponding collision probabilities
of the edges.

40

2.9. Simulations

different time points. The vertices of the roadmap are

v0 = [0 m, 0 m, 40 m/s, 0 m/s, 0 s] v1 = [0 m, 0 m, 40 m/s, 0 m/s, 3 s]

v2 = [3 m,−5 m, 40 m/s, 0 m/s, 6 s] v3 = [3 m, 0 m, 40 m/s, 0 m/s, 6 s]

v4 = [6 m, 5 m, 40 m/s, 0 m/s, 6 s] v5 = [6 m,−5 m, 40 m/s, 0 m/s, 9 s]

v6 = [9 m, 0 m, 40 m/s, 0 m/s, 9 s] v7 = [9 m, 5 m, 40 m/s, 0 m/s, 9 s]

v8 = [9 m, 0 m, 40 m/s, 0 m/s, 12 s],

where v0 is the initial state of the ego vehicle.

The resulting collision probabilities for the edges are show in Fig. 2.11b. The collision prob-
abilities for the edges e25 and e35 are caused by the trucks and the other ones by the overtaking
car. The result of the common graph assessment is a collision probability of 1

3
and the safest

route (there are multiple ones with the same collision probability) is r∗ = {e01, e12, e26, e68}.

However, the ego vehicle has the option to react on the future PMFs of the overtaking car at
the vertices v1, v2, v3 and v4. The result of the novel graph assessment Alg. 1 incorporating
replanning capabilities is 0.057. Therefore, the mean of 10 trials were calculated with Ns(k) ≡
10 with a variance of 1.14× 10−4. For the generation of the measurements the same covariance
matrix Σz = Σ(t0) as in Sec. 2.9.2 is used. Compared to the common assessment, this means a
relative decrease of 82.9%.

The calculation of the graph assessment incorporating replanning is illustrated by two sam-
ples. Therefore, only the car is considered since the motion prediction of the trucks is determin-
istic and results always in a collision at the edges e25 and e35. The motion prediction for the
car at time steps t1 and time t2/3/4 is shown in Fig. 2.12 and Fig. 2.13 for two different sampled
distributions.

In Fig. 2.12 the probability that the car will slow down and will stay behind the trucks is
already quite high with 76% at time t1. Thus the ego vehicle can choose to take the left lane
or stay at the middle lane to prevent a collision already at vertex v1. At time t2/3/4 the motion
prediction of the car is even sharper and it makes practically no difference if the ego vehicle takes
the left or middle lane.

In Fig. 2.13 the sampled PMF at time t1 is different and the most likely motion pattern of the
car is to take the left lane with a probability of 52%. From the situation at this time the right lane
seems to be the best choice for the ego vehicle. However, the situation at time t2/3/4 shows that
the car is changing to the middle lane with a probability of 93%. The high probability for the
left lane at time t1 was caused by a noisy measurement. As can be seen in Fig. 2.13b, the ego
vehicle can still change its lane at time t2/3/4 before colliding with the car. It would be the best
choice at time t1 for the ego vehicle to stay at the middle lane. Since taking the right lane would
force the ego vehicle at time t2/3/4 to change to the middle lane due to the trucks on the right
lane. This would cause most probable an accident with the other car. This behavior of the ego
vehicle, to stay on the middle lane to allow the vehicle to stay on the middle lane or to change
to the left lane, is the result of the optimal policy calculation. is taken into account in the novel
graph assessment algorithm by the optimal policy π∗.

41

2. Closed-loop Assessment

(a) Motion prediction and measurement at time t1 (3 s).

(b) Motion prediction and measurement at time t2/3/4 (6 s).

Fig. 2.12.: The motion prediction of the car is shown at two different time steps. The solid lines are the
motion patterns and the thickness is proportional to their weights. The cross depicts the measurement
regarding to the sampled distribution. The dashed line represents the x-position of the ego vehicle at the
time steps.

42

2.9. Simulations

(a) Motion prediction and measurement at time t1 (3 s).

(b) Motion prediction and measurement at time t2/3/4 (6 s).

Fig. 2.13.: The motion prediction of the car is shown at two different time steps. The solid lines are the
motion patterns and the thickness is proportional to their weights. The cross depicts the measurement
regarding to the sampled distribution. The dashed line represents the x-position of the ego vehicle at the
time steps.

43

2. Closed-loop Assessment

2.10. Discussion

In this chapter a novel safety assessment concept for trajectories represented as directed graphs
is discussed. This is the main contribution of this chapter and includes the consideration of
two facts during the execution of a trajectory: the possibility of replanning; the collection of
new information of the environment. To the best of the author’s knowledge, this is the first
time that these facts are taken into account in the field of safety assessment. It was shown, that
the collision probability of an entire graph is always smaller than that for a single route, since
all possible trajectories of the graph and future positions of the objects are considered. The
presented approach is independent of the uncertainty model representing the future states of the
objects and is directly applicable to any roadmap-based planner.

Graph Reduction Algorithm The graph reduction algorithm differs from other graph-based
algorithms like solving the dynamic shortest path problem [22] or determining the route with the
minimum collision costs [45]. These approaches use weighted graphs and apply graph search
algorithms such as the A* or Dijkstra algorithm to identify the optimal route. These routes have
the minimum summed costs. But the route with the minimum sum of collision probabilities is
not necessarily the route with the minimum collision probabilities since the collision probability
is not an additive function. Additionally, they do not consider the possibility of replanning by
determining a policy depending on the future state of the environment.

Implementation Two example implementations, one using Gaussian distributions and one
using motion patterns, for representing the future uncertain states of the objects are presented.
Both implementations use a belief tree to approximate the infinitely many possible future distri-
butions of the objects.

The novel closed-loop assessment approach considers the possibility of replanning the future
route at any vertex in the graph based on the information acquired during the execution. This
entails a considerably higher computational effort. For instance, a graph with 4 consecutive ver-
tices at which the robot can replan its future route results in a belief tree with 1111 distributions
for one object if the compound distribution is approximated by e.g. 10 sampled distributions. For
determining the optimal route with the minimum collision probability, the collision probability
is estimated only once for each edge in the graph based on the initial belief. Applying the novel
algorithm, the collision probability must be estimated 1110 times more often for determining the
optimal policy than for determining the optimal route in the graph. The computational load of
the graph reduction algorithm (without the estimation of collision probabilities) can be neglected
compared to the computational effort necessary for estimating the collision probabilities. How-
ever, there are two possibilities to clearly reduce the computational complexity. First of all, the
subgraphs with a high collision risk could be determined and the other subgraphs with a low col-
lision risk should be assessed with the common approach. Second, the samples of the sampling
tree can be merged into one sample at vertices with only one output edge. Thus, the number of
samples can be clearly reduced. This is possible due to Proposition 3. The situation is different
regarding the implementation for automotive applications. Since only the weights of the PMFs
change in the belief tree but not the motion primitives, the number of collision checks is equal to
the common approach. For the implementation for automotive applications, the computational

44

2.10. Discussion

effort for the novel algorithm is comparable to the common approach.

Simulation Results All simulation scenarios showed a considerable reduction of the esti-
mated collision probability for mobile robot and automotive applications. This is caused by
considering all possible future trajectories of the robot in connection with the possible future
distributions of the objects. It could be argued, that the same is possible by continuously re-
assessing the safety of the robot during its navigation. But this could lead the robot to make a
wrong decision regarding its future route due to a wrong assessment at the beginning. In sum-
mary, this work clearly states that considering the possibility of replanning is essential for a more
reliable safety assessment approach.

45

3. Assessment beyond Planning
Horizon

Summary This chapter discusses the problem of assessing the safety of trajectories beyond
the planning horizon. These trajectories are partial solutions to the motion planning problem,
since they do not reach the goal state of the robot, but they bring the robot closer to it. Although
these trajectories are guaranteed to be safe during their time horizon, they may end in a state
leading eventually to a collision. Thus, the final state of the partial trajectories require a specific
safety assessment that evaluates the safety beyond the planning horizon. Different algorithms are
presented to identify these states in deterministic as well as in uncertain environments populated
with dynamic objects. A special focus is on the efficient computation.

The outline of this chapter is as follows: Sec. 3.1 is motivating this chapter and gives the
problem formulation. Sec. 3.2 provides an overview of related work. Then the definition and
properties of the inevitable collision state (ICS) and inevitable collision obstacle (ICO) are pre-
sented in Sec. 3.3. This leads to the discussion of unions of ICS sets in Sec. 3.4 which allows
one to define the robot maneuverability in Sec.3.5. The next section discusses the problem in a
stochastic modeled environment starting with the probabilistic collision state (PCS) in Sec. 3.6.
Based on PCS, the overall collision probability (OCP) is presented in Sec. 3.7 allowing a com-
plete probabilistic assessment of partial trajectories. The probabilistic collision costs (PCC) are
introduced in Sec. 3.8 which are an alternative safety indicator to the collision probability. Im-
plementations of the proposed concepts are shown in Sec. 3.9 and the associate simulation results
are discussed in Sec. 3.10. Finally, a discussion of this chapter is given in Sec. 3.11.

3.1. Motivation and Problem Formulation

For navigation in uncertain or dynamic environments it is often not reasonable to plan the robot
motion until its goal state, since the prediction of such environments is not reliable for a long
time horizon due to uncertainties or the future prediction is not given for the whole time interval.
Thus, the robot plan needs many adaptations that are often unnecessary, since they take place
in the distant future. For this reason, model predictive control (MPC) [38] also called receding
horizon control (RHC) is applied to these kinds of problems. The main idea of RHC is to
apply iterative optimization inside a finite time horizon. Thereby, the problem is partitioned
into subproblems which allow an on-line optimization. For the motion planning problem this
means that instead of optimizing a trajectory from the initial state to the goal state, only a partial
trajectory is optimized for a smaller time horizon leading the robot to its goal state. However,
two problems arise from the partial trajectories: problem of stability (in the sense of reaching the
goal) and problem of feasibility. In this chapter the focus is on the problem of feasibility, since
it ensures that no constraints will be violated (i.e. no collision until reaching the goal). Fig. 3.1

47

3. Assessment beyond Planning Horizon

Fig. 3.1.: The environment contains one robot (black solid circle) which task is to reach a goal state
(dashed circle) lying inside a U-shaped object. Trajectory candidates are represented by solid lines and the
dashed lines depict future possible trajectories. The final states are depicted as circles. The best candidate
is the solid circle, but the robot will eventually collide with the static object beyond the planning horizon.

illustrates these two problems. From the three trajectory candidates the middle one ends closest
to the goal. But as illustrated, all succeeding trajectories will end in a collision with the object.

Another very similar approach for this problem is to apply partial motion planning (PMP) as
proposed by [92]. The PMP approach also calculates the best partial trajectory to the goal for
a certain time horizon. The problem of feasibility is addressed with the concept of inevitable
collision states. If the robot is not colliding during the time interval of a certain trajectory and if
the final state of the trajectory is not an ICS, this trajectory is declared safe.

In this chapter, the problem of feasibility of partial trajectories is discussed which can also
be called the problem of safety assessment beyond the planning horizon. The problem of safety
assessment beyond the planning horizon for deterministic environments which are populated by
static objects, ignoring dynamic objects, and a single robot according to Sec. 1.2.2, is formulated
as:

Safety Beyond the Planning Horizon in Deterministic Environments Given the future state
of the robot system after the planning horizon and the future state of the environment, the state
of the robot is safe if there exists at least one trajectory ending in a state that is guaranteed to be
safe for an infinite time horizon.

The aspect of the infinite time horizon is a necessary criterion as otherwise the safety is again
only guaranteed for a finite time horizon. This would extend the time horizon for which safety
is guaranteed, however, this arises again the same problem of safety assessment beyond this
extended time horizon. This can be illustrated by means of the example from [23] which is
depicted in Fig. 3.2:

“ For example, a car-like vehicle with momentum moving at high speed towards a
wide brick wall obstacle might not have enough braking distance or maneuverability
to avoid impact. Thus, even though the car’s current state is free of collision, the car
will inevitably collide regardless of the future control actions applied. ”

In this chapter, this problem is also investigated for uncertain environments that are populated
by static objects, ignoring dynamic objects, reactive objects, and one robot system according to

48

3.2. Related Work

Fig. 3.2.: Vehicle is driving with high speed towards a brick wall and no control input exists which can
prevent a collision. Three example trajectories are illustrated, representing full braking and full steering
to the left and to the right.

Sec. 1.2.2. The initial state of the objects and their future motion is uncertain. The robot system
behaves deterministically meaning that its future trajectory is completely known. The problem
of safety assessment beyond the planning horizon for uncertain environments is formulated as:

Safety Beyond the Planning Horizon in Uncertain Environments Given the future state of
the robot system after the planning horizon and the uncertain future state of the environment, the
state of the robot is assessed by the trajectory with the minimum collision probability ending in
a state which allows assessing the safety for an infinite time horizon.

Compared to the formulation for deterministic environments, a binary assessment may not be
possible anymore due to the uncertainties in the future states of the objects. Hence, the collision
probability is used to rate the safety of the last state of the trajectory. As mentioned above, the
problem is to find a trajectory ending in a certain state that allows reasoning about the safety of
the robot for an infinite time horizon and at the same time having the lowest possible collision
probability. Thereby, the collision probability of this trajectory as well as the collision probability
of the final state of this trajectory is taken into account.

Next, an overview about related work addressing these problems is given.

3.2. Related Work

The problem of assessing the safety of a given state for an infinite time horizon is also known
as the feasibility problem in receding horizon control (RHC). In order to guarantee feasibility,
no violation of constraints including the collision constraint, invariant set theory [85] is used in
RHC applications. In [56] a non-linear model predictive control framework is presented which
guarantees nominal feasibility using invariant sets. The concept of terminal feasible invariant
set is introduced in which safety is guaranteed for an infinite time horizon in [103]. The main
difference to former approaches is, that this method is applied on-line and needs no complex
offline computation which is not flexible to changes in the environment. A collection of affine
transformations is used to represent these sets. The sets can be seen as an a priori known fallback
solution that is executed if no feasible trajectory can be found in the next iterative optimization.

One of the first works, addressing the problem of identifying states leading inevitably to a
collision in the field of motion planning is presented in [75, 76]. Therefore, the region of in-
evitable collision (RIC) is defined as the set of states which are already in collision or which
are inevitable leading to a collision. In [130] the analytic computation of RIC for convex poly-

49

3. Assessment beyond Planning Horizon

gons and the approximation for unions of RIC sets is discussed with the aim to make motion
planning more efficient and safer. The effectiveness of the RIC approach for motion planning of
vehicles with underactuated dynamics is shown in [23]. Additionally, the RIC extensions region
of potential collision (RPC) and the region of near-collision (RNC) are presented. Instead of
distinguishing between RIC and non-RIC, RPC rates states depending on the number of control
inputs leading to collision and RNC rates the states depending on the time horizon after the state
is inside the RIC. This allows one to perform not only a binary assessment. A state belonging to
RIC is also called an inevitable collision state (ICS) [33]. This concept has already been applied
in dynamic environments [83, 84] and also for car-like vehicles [90]. The ICS approach is also
used in the partial motion planning (PMP) [92] framework. It directly considers the real-time
constraint of the motion planning problem. Therefore, the motion planning algorithms has a fi-
nite time horizon for the computation of the next partial trajectory. This trajectory is guaranteed
to be safe during and beyond the planning horizon. This is done by applying an ICS check to the
final state of the trajectory.

In the following, the concept of ICS is presented identifying states of the robot which will
eventually lead to a collision.

3.3. Inevitable Collision State and Inevitable Collision
Obstacle

The concept of ICS was first introduced in [32] and discussed in more detail in [33] together
with the inevitable collision obstacle (ICO). The concept of ICS is developed for deterministic
environments in which the motion of all objects is known for an infinite time horizon. That
implies, that all information about the environment is noise-free and that the future motion of
the robot system is also deterministic. In the following, the definition and properties of ICS are
recalled from literature based on [33].

Definition 5 (Inevitable Collision State). Given the state x, the inevitable collision state is
defined as

ICS(x) =

{
1, ∀ũ(x) ∈ Ũ ,∃t,∃i : A(ũ(x, t)) ∩ Bi(t) 6= ∅
0, otherwise.

Loosely speaking, the robot is in an inevitable collision state if there exists no trajectory ũ(x)

which begins at state x and can avoid a collision regarding all workspace objects. If only one
object Bi is considered, this is written as ICS(x,Bi). If a reduced set of trajectories I ⊂ Ũ is
considered, this is denoted as ICS(x,Bi, I). The definition of ICS leads to the definition of ICO:

Definition 6 (Inevitable Collision Obstacle). Given an object Bi, the inevitable collision ob-
stacle is defined as

ICO(Bi) = {x ∈ X | ICS(x,Bi) = 1}.

Loosely speaking, the ICO of one object is defined as the set of all states which are an ICS re-
garding this object. If only a subset of trajectories I ⊂ Ũ is used, this is denoted as ICO(Bi, I).
In the following two ICO properties presented in [33] are summarized. A conservative approxi-
mation of ICO can be calculated by using only a subset of all possible future trajectories.

50

3.4. Union of Inevitable Collision Obstacles

Property 1 (ICO Approximation [33]).

ICO(B, Ũ) ⊆ ICO(B, I), with I ⊂ Ũ (3.1)

The following property shows, that ICO(B) can be derived from ICO(Bi, ũ) for every possi-
ble future trajectory ũ.

Property 2 (ICO Characterization [33]).

ICO(B) =
⋂
ũ∈Ũ

Nb⋃
i=1

ICO(Bi, ũ) (3.2)

It is pointed out, that the union of ICO computations is not equal to the ICO computation of
the union of objects.

Property 3 (ICO Union).

ICO(B) 6=
Nb⋃
i=1

ICO(Bi) (3.3)

This is a major drawback of ICO computation, since the computation must start from scratch,
if a new object appears. This property is illustrated in Fig. 3.3 with an example using two
rectangular objects. In the following section a modified computation of ICS is introduced which
allows one to compute the union of ICS sets. Furthermore, this method allows one to compute
the ICS property of a certain robot state more efficiently than other state of the art approaches.

3.4. Union of Inevitable Collision Obstacles

As shown by (3.3), the union of ICS sets (ICOs) is not equal to the ICS set of the union of
objects. That implies, that the computation of ICO(B) cannot be used anymore if a new object
appears in the environment or if the motion prediction of any object is not valid anymore (e.g.
unexpected change of direction) and the computation needs to be done from scratch. In order
to address this problem, the computation is modified, thus that the union of ICS sets can be
efficiently computed in a sequential manner. It is shown, that the union of ICO can be computed
by using only the reduced set of trajectories which are still collision-free regarding the already
investigated objects. Therefore, the case of two objects is considered B = B1 ∪ B2.

Proposition 7. One can show, that the union can be calculated as

ICO(B1 ∪ B2, Ũ) = ICO(B1, Ũ) ∪ ICO(B2, Ũa(B1)), (3.4)

where Ũa(B1)) ⊆ Ũ are all admissible trajectories which are not leading to a collision with B1

Ũa(x,B1) = {ũ ∈ Ũ|∀t,A(ũ(x, t)) ∩ B1 = ∅}.

51

3. Assessment beyond Planning Horizon

(a) Used configuration. (b) ICO({B1,B2}, I).

(c) ICO(B1, I) ∪ ICO(B2, I). (d) ICO(B1, I) ∪ ICO(B2, Ia(B1))

Fig. 3.3.: The pictures illustrate different ICS calculations for the same setup. A rectangular robot is
moving towards a static object. The squares depict the states that have been checked for ICS, whereas
solid black squares are ICS states. The example illustrates, that the union of ICO is not equal to the ICO
of the union of objects. This is visible by the gap of states in the union of the two ICOs which are all ICS
states regarding the ICO of the union of objects.

52

3.4. Union of Inevitable Collision Obstacles

For the ICS calculation of B2, only Ua(B1) needs to be considered. The proof is done for a
single state x.

Proof. According to Def. 5, each trajectory ũ needs to be checked for collision with all objects
B. If one trajectory ũ exists which is not colliding with any object of B, the state is not an ICS.
Hence, it is sufficient to check if all trajectories collide with at least one object. It is shown that

ICS(x,B, Ũ) = ICS(x,B1, Ũ) ∨ ICS(x,B2, Ũa(x,B1))

is true which is the equivalent of (3.4) for just one state. It is shown that all possible trajectories
Ũ are checked for collision with all objects B. The first term ICS(x,B1, Ũ) determines which
trajectories collide with the object B1 and which are collision-free, denoted as Ũa(x,B1). Since it
is sufficient that a trajectory collides with B1 or B2 only the set Ũa(x,B1) needs to be considered
for object B2. If there exists one trajectory of Ũa(x,B1) which does not collide with B2, the state
x is not an ICS according to Def. 5, because one trajectory ũ exists which does not collide with
B1 or B2, so

∀t A(ũ(x, t)) ∩ B(t) = ∅.

Since Ũa(x,B) is the set of trajectories which does not collide with B for the state x the same
can be done for each possible state

ICO(B, Ũ) =
⋃
x∈X

ICS(x,B, Ũ).

Hence, it is shown that (3.4) is valid. For the general case, the union is computed as

ICO(B) =

Nb⋃
i=1

ICO(Bi, Ũai),

where

Uai =

{
Ũ , i = 1

Ũa(B1, . . . ,Bi−1), i 6= 1.

Additionally, it can be shown with ICO Prop. 1 that

ICO(B2) ⊆ ICO(B2, Ũa(B1))

since Ũa(B1) ⊂ Ũ . This property allows one to calculate ICO in a sequential manner. For the
union of ICO, it is sufficient to determine the intersection sets of the admissible trajectory sets
Ũa if an additional object appears:

ICO(B) = {x ∈ X |
Nb⋂
i=1

Ũa(x,Bi) = ∅}

Based on this property, two novel ICS-Checkers are presented in Sec. 3.9.1.

53

3. Assessment beyond Planning Horizon

3.5. Motion Safety Regarding Unexpected Objects

When robots traverse through partially-known environments unforeseen objects can appear
caused by imperfect perception capabilities and occlusions. These situations are in particular
dangerous if the robot is not able to avoid a collision with the unexpected object due to: too
less space to bypass the object; the robot is too fast to brake in time. In [60] this problem is
addressed by adopting the velocity profile of the robot for a given path. The velocity of the robot
is controlled such that the robot can come to a standstill before colliding with any mobile object
possibly intercepting its future path. Therefore, the maximum possible velocity of the objects
and the limited field of view of the robot is taken into account. In [16] a similar problem, the
safety of a robot system with limited field of view in dynamic and uncertain environments, is
discussed. Therefore, the concept of braking inevitable collision states is presented. If the robot
system is in a braking inevitable collision state, it will collide with an object and will not be at
rest at the time point of the collision. Conversely, if the navigation algorithm guarantees that the
robot system will never be in such a state, the robot system will always be in rest if a collision
occurs. This is the main idea of this approach and it is called passive motion safety.

In this section, no deterministic but a simple probabilistic model of the perception system of
the robot is used. Based on this model, the problem of preventing a collision with randomly
appearing objects beyond the planning horizon is addressed. These objects should represent
typical arising situations, which occur due to an imperfect perception system of the robot, such
as: occluded objects; not detected objects due to noisy sensor data; dynamic objects which have
been classified as static ones. In the following, it is shown how to increase the safety of the robot
assuming that an unforeseen object appears.

The workspace contains the known objects B and the current state of the robot system is
x 6∈ ICO(B). Additionally, one unexpected static objects Bu exists which position is uniformly
distributed in W . The probability of collision at the time t with object Bi, as presented in
Sec. A.1.2,

Pi(C|ũ(x, t)) := P (A(ũ(x, t)) ∩ Bi 6= ∅) =

∫
Abi (ũ(x,t))

fi(p, t) dp

is equal for every time step, since f(·) is a uniform distribution. Thus, the collision probability
for every trajectory is equal. It is shown, that the probability of being in an ICS regarding the
known objects and the unforeseen one can be reduced by increasing the maneuverability of the
robot system. The robot has a finite set of trajectories I and its maneuverability is proportional
to the number of collision-free trajectories regarding the known objects.

Definition 7 (Maneuverability). The maneuverability M(x,B) of a robot state x is defined as

M(x,B) =
Na
B(x)

Na(x)
, M(x,B) ∈ [0, 1], Na

B(x) ≤ Na(x),

where Na
B(x) is the number of admissible trajectories regarding all objects B and Na(x) are the

number of all admissible trajectories in I at state x regarding kinematic and dynamic constraints
of the robot.

54

3.6. Probabilistic Collision State

The robot system is not in an ICS, if there exists one trajectory ũ which does not collide either
with B or Bu. According to (3.4) it is sufficient to calculate ICO(Bu, Ia(B)) for determining the
ICS status, because x 6∈ ICO(B). Since every trajectory ũ ∈ Ia(B) has the same probability
to collide with the unexpected object Pu(C|ũ) and the collision events regarding the different
trajectories are independent, the probability that the robot system is in an ICS (all trajectories
lead to a collision) is

P (x ∈ ICO(Bu, Ia(B))) = Pu(C|ũ)N
a
B ,

where Na
B is the number of admissible trajectories of Ia(B). This is equivalent to the probability

that all trajectories, which are not colliding with B, collide with Bu meaning that there exists no
trajectory that is collision-free for B and Bu. The probability can be decreased by increasing the
number of admissible trajectories Na

B resulting in a higher maneuverability. Loosely speaking, if
an unexpected object appears in the workspace, the probability of being in an ICS can be reduced
by increasing the maneuverability regarding the known objects. In Sec. 3.10 simulations results
confirm the idea of the robot maneuverability.

3.6. Probabilistic Collision State

The concept of ICS is limited to deterministic environments and is not directly applicable to
uncertain environments. The reason for this is, that the future states of dynamic objects can only
be predicted with uncertainty. It is assumed that the robot system still behaves deterministically.
A naive approach would be to transform the probabilistic modeled environment to a bounded
uncertain representation as described in Sec. 1.2.2. This could lead to navigation results with
unnecessary high costs, since objects are bypassed with a huge distance. Especially in environ-
ments with a high density of dynamic objects, this may lead to the freezing robot problem (FRP)
[117]. A robot which is caught in a FRP cannot find any valid trajectory to proceed to its goal
location. The reason for this is, that in such environments the bounded uncertain representation
of the objects may overlap and occupy too much space and thus there is not enough space left
for the robot to find a collision-free trajectory.

This problem is addressed by using a stochastic modeled representation of the environment.
Hence, the collision probability is used as a risk indicator instead of a binary collision assessment
which leads to the probabilistic collision state (PCS). The PCS is a probabilistic generalization
of the ICS concept. Instead of verifying the existence of at least one collision-free trajectory
leading to a safe state, the collision probabilities of the trajectories are evaluated. Therefore, it is
necessary to calculate the probability Pi(C|ũ(x)) that the robot system has a collision with the
ith object applying the trajectory ũ starting at x. The collision probability regarding all objects,
assuming that the collision events of the objects are independent, is calculated as

P (C|ũ(x)) = 1−
Nb∏
i=1

(1− Pi(C|ũ(x))).

Since the robot system can choose any input trajectory from the set of possible input trajec-
tories Ũ , the input trajectory causing the minimum collision probability allows one to define the
probability of an inevitable collision state.

55

3. Assessment beyond Planning Horizon

Definition 8 (Probabilistic Collision State). The probability of a state x leading to a collision
is defined as the minimum collision probability under the best possible input trajectory:

PCS(x) := min
ũ∈Ũ

P (C|ũ(x))

with ũ : t ∈ [0,∞) 7→ U is defined for an infinite time horizon.

In other words, for validating the safety of a state x, the collision probability of all possible
future trajectories need to be evaluated. The trajectory with the smallest collision probability is
equal to the probability that the state is an ICS. In the rest of this work, the equivalent notation
PCS(ũ) is used which refers to the PCS value of the last state x when executing ũ.

In the following it is shows that PCS(x) = 1 ⇔ ICS(x) = 1 when computing PCS(x) ac-
cording to Def. 8. In a deterministic scenario, the position of all objects is known such that the
probability distribution of all objects is a Dirac impulse δ:

fi(p, t) =

{
δ, if p(t) = ci(t)

0, otherwise,

where ci(t) is the reference point of object Bi as introduced in Sec. A.2. From this follows
directly that

A(ũ(x, t)) ∩ Bi(t) 6= ∅ ⇔ Pi(C|ũ(x), t) = 1.

Thus, using Def. 5, the statement ICS(x) = 1 can be reformulated to

∀ũ(x) ∈ Ũ ,∃t,∃i : Pi(C|ũ, t) = 1.

Using the computations from Sec. A.2, it is shown that this statement is equivalent to
PCS(x) = 1:

⇔∀ũ(x) ∈ Ũ ,∃t,∃i : Pi(C|ũ(x), t) = 1

⇔∀ũ(x) ∈ Ũ ,∃k, ∃i : Pi(C|ũ(x), [tk, tk+1)) = 1

⇔∀ũ(x) ∈ Ũ ,∃k : P (C|ũ(x), [tk, tk+1)) = 1

⇔∀ũ(x) ∈ Ũ : P (C|ũ, [0,∞)) = 1−
∞∏
k=0

(1− P (C|ũ(x), [tk, tk+1))) = 1

⇔PCS(x) = min
ũ∈Ũ

P (C|ũ(x), [0,∞)) = 1.

In the next section, the concept of PCS is used to define the overall collision probability (OCP)
which defines the collision probability of a trajectory during and beyond the planning horizon.

3.7. Overall Collision Probability

In Sec. 1.2.4 the PMP approach is briefly described which uses the concept of ICS to verify that
the partial trajectories will not end in a collision beyond the planning horizon. In the previous

56

3.8. Probabilistic Collision Costs

section, the probabilistic extension of ICS, the PCS concept is introduced which allows extending
the complete PMP approach to a probabilistic setting. Therefore, the safety of a trajectory ũ is
determined by the collision probability of the trajectory P (C|ũ) during the planning horizon and
the PCS value of its last state PCS(ũ). The collision probability of the trajectory considers the
time interval It = [0, Th] assuming that the trajectory starts at t = 0 and that Th is the planning
horizon. The PCS calculation indicates the future collision probability for the time interval
I+
t = (Th,∞) beyond the planning horizon. Both collision probabilities are combined into the

overall collision probability P∞ which represents the collision probability of a trajectory for an
infinite time horizon:

Definition 9 (Overall Collision Probability). The probability of a trajectory leading to a colli-
sion during or after the trajectory, is defined as

P∞(C|ũ) = 1− (1− P (C|ũ)︸ ︷︷ ︸
t∈It

)(1− PCS(ũ)︸ ︷︷ ︸
t∈I+t

).

In the literature, to the best knowledge of the author, safety assessment of a robot trajec-
tory has never be done in a probabilistic fashion including reasoning about the future collision
probability beyond the planning horizon. It should be noted that it is possible to introduce dif-
ferent weights for both collision probabilities. Depending on the confidence of both estimated
collision probabilities, the weights could be adopted. This is especially relevant for real-world
applications.

3.8. Probabilistic Collision Costs

In general, the aim of the robot is to reach its goal state while minimizing a tradeoff between nav-
igation costs and the collision probability. Regarding an uncertain environment, it is impossible
to guarantee a collision-free trajectory, since in most cases a small collision probability remains
due to uncertainties. But not all possible occurring collisions are equal with respect to their risk
or possible harm: a collision with a very fast and heavy object has a very high potential of danger
compared to a slow and light one. Therefore, the risk function

riskcoll(ũ) = P (C|ũ) costcoll

is introduced to rank each collision, as proposed by [66]. The cost of collision function costcoll

(severity of crash), which only depends on the square of the vehicle speeds, is used in [66]. This
is replaced by the internal energy assuming an inelastic impact

costcoll =
1

2

massi massj
massi + massj

‖vr‖2︸ ︷︷ ︸
internal energy

,

where vr is the relative velocity and massi,massj are the weights of the colliding objects i and
j. The maximum internal energy, which could occur between any objects, is used to normalize

57

3. Assessment beyond Planning Horizon

the collision cost, thus
costcoll ∈ [0, 1].

The normalized collision cost is used to calculate the probabilistic collision cost (PCC). There-
fore, the indicator function (A.8) from Sec. A.3 is replaced by

Indcost(C|ũ,ui) =

{
costcoll, collision detected

0, collision free

and leads to the probabilistic collision cost

PCCi(ũ) =

∫
ˆ̃U

Indcost(C|ũ,ui)f(ui) dui, ui ∈ ˆ̃U .

This integral is approximated by Monte Carlo sampling as described in Sec. A.3. The differ-
ence between the pure collision probability and the probabilistic collision cost is evaluated by
simulations in Sec. 3.10.5.

3.9. Implementations

In this section example implementations of the above presented approaches and definitions are
shown. Two novel ICS checkers based on Sec. 3.4 are presented. They are also used in the
novel ICS based navigation algorithm which considers the robot maneuverability from Sec. 3.5.
Furthermore, an example implementation for the probabilistic collision state checker based on
Sec. 3.6 is shown which is also used for the evaluation of the overall collision probability from
Sec. 3.7. Afterwards, these implementations are evaluated by different simulation scenarios in
Sec. 3.10.

3.9.1. Inevitable Collision State Checkers

The ICS Def. 5 is not directly implementable for two reasons: there is an infinite number of
input trajectories and an unlimited time horizon. The infinite number of input trajectories ũ of
the robot is approximated by computing a finite subset of input trajectories. According to ICS
Prop. 1, this leads to a conservative computation of ICS.

The problem of computing with an infinite time horizon can be solved by applying only
maneuvers that come to a standstill after a finite time horizon. Since the computational effort
increases with time, the main focus lies on braking maneuvers which come to a standstill within
a reasonable time horizon. So only a subset I ⊂ Ũ is used for the computation. In the following
two ICS-Checker algorithms are presented. The first one considers only the trajectory set Ia

that contains all admissible trajectories ũ which are not colliding with the known objects B.
Therefore, the set Ba is introduced which combines all objects which have already been used for
the ICS evaluation. An overview of the sequential ICS-Checker is given in Alg. 2.

Additional to the ICS property of a state x, the algorithm also determines all trajectories of
I which are collision-free regarding all objects B. The aim of the second ICS-Checker is to
determine as fast as possible the ICS status of the state x. Hence, it checks sequentially or

58

3.9. Implementations

Algorithm 2: ICS Checker
Input : x,B = {B1, . . . ,BNb

}
Output : ICS flag, Ia

Initialize: Select I ⊂ Ũ , Ia← I, Ba← ∅
for i← 1 to Nb do
Ia({Bi,Ba})← ICS(x,Bi, Ia(Ba))
Ba = {Bi,Ba}
if Ia(Ba) = ∅ then

return true, ∅
return false, Ia

parallel all trajectories ũ if one exists which is collision-free regarding all objects B. If such a
trajectory is found, the state x is not an ICS and the algorithm returns. Compared to the previous
algorithm, only one trajectory is known to be collision-free and not the set Ia. An overview of
the ICS-Checker is given in Alg. 3.

Algorithm 3: ICS Checker 2
Input : x,B = {B1, . . . ,BNb

}
Output : ICS flag, ũa

Initialize: Select I ⊂ Ũ
foreach ũ ∈ I do

collfree = true
for i← 1 to Nb do

if ICS(x,Bi, ũ) then
collfree = false
break

if collfree = true then
return false, ũa = ũ

return true, ∅

Compared to all other known ICS implementations [23, 83, 84, 90], these two are more ef-
ficient since only collision-free trajectories are considered. In Sec. 3.10.2, simulation results of
the sequential computation of ICS sets according to Sec.3.4 are presented.

3.9.2. Probabilistic Collision State Checker

The implementation of the PCS Def. 8 suffer from the same problems as the implementation of
ICS: there is an infinite number of input trajectories and an unlimited time horizon. The infinite
number of input trajectories ũ of the robot, is solved by computing with a finite subset of input
trajectories. This leads to a conservative computation of PCS. The problem of computing with
an infinite time horizon can be solved by applying only maneuvers that come to a standstill after
a finite time horizon. Since the computational effort increases with time, the main focus lies

59

3. Assessment beyond Planning Horizon

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

Fig. 3.4.: Example generation of a braking trajectory by two different acceleration directions. The direc-
tion of the acceleration is given in the relative coordinate system of the object.

on braking maneuvers which come to a standstill in a reasonable time horizon. A PCS checker
is introduced which is based on Monte Carlo simulation allowing one to investigate multiple
braking trajectories of each object. As described in Sec. 3.6, the collision probability P (C|ũ(x))

PCS(x) := min
ũ∈Ũ

P (C|ũ(x))

is used to calculate the PCS of a robot state x. Therefore, a subset of input trajectories ũ needs to
be generated and then the collision probability P (C|ũ(x)) is estimated for each trajectory. For
estimating P (C|ũ(x)), Monte Carlo simulation is used as explained in Sec. A.3. The robot and
object trajectories need to be generated in order to get discretized object states si(ui) based on
the discretized control inputs ui.

Generation of Braking Trajectories

Trajectories for the objects need to be generated in order to get the discretized object states
si(ui). The SIS algorithm presented in Sec. A.3 is used for generating the braking trajectories
for the robot and the workspace objects. Since only braking trajectories are used, the reduced
control input set UB ⊂ U is applied and the time horizon Th is replaced by the braking time Tb.
The time interval in which all objects come to a standstill is denoted by It = [0, Tb]. The control
inputs are given in the relative coordinate system of the object and not in the global workspace
coordinates. The control input uB ∈ UB is given in polar coordinates [uBr , u

B
θ] with azimuth

uBθ ∈ (3
4
π,−3

4
π) and the radius uBr ∈ [amin, amax]. An example braking trajectory is illustrated

in Fig. 3.4. Under the assumption of amin > 0, the object comes to a standstill within a finite
time horizon. Furthermore, it is assumed that the weights of the sampled trajectories are equal

f(u) = const, ∀u ∈ ˆ̃UB, with

ˆ̃UB = UB×, . . . ,×UB︸ ︷︷ ︸
Nc Cartesian products

.

meaning that there is no preferred trajectory. Hence, the resulting collision probability
Pi(C|ũ) for one robot trajectory ũ is the ratio of the number of trajectories leading to a colli-
sion and the number of all evaluated trajectories of the ith object.

It is also possible to generate not only pure braking trajectories in order to get a less conserva-

60

3.10. Simulations

tive approximation of PCS. The only requirement is, that all objects come to a standstill within a
finite time horizon. But simulating longer trajectories increases the computational effort which
could be used for the safety assessment of more trajectory candidates. Sec. 3.10.3 evaluates the
influence of the number of samples on the PCS calculation.

3.10. Simulations

In this section simulation scenarios are used to evaluate the example implementations from
Sec. 3.9. First, two novel ICS checkers based on Sec. 3.9.1 are evaluated together with the
influence of the robot maneuverability to the collision probability regarding unexpected objects.
Therefore, a simulation setup as in [84] is used. Afterwards, different sampling strategies are
applied to the presented PCS checker from Sec. 3.9.2. This allows one to compare the OCP to
the collision probability of a trajectory by random scenarios containing multiple objects.

3.10.1. Inevitable Collision State Checkers

Robot Model The state x of the robot is represented by its position p and its velocity v. The
dynamics of the robot is determined by the nonlinear differential equation ẋ(t) = m(x(t), u(t))

ẋ

ẏ

v̇x
v̇y

︸ ︷︷ ︸

ẋ

=

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

x

y

vx
vy

︸ ︷︷ ︸

x

+

0

0

u1

u2

︸ ︷︷ ︸

u

amax (3.5)

with respect to the velocity constraint
√
v2
x + v2

y ≤ vmax and the acceleration constraint√
a2
x + a2

y ≤ amax. For the simulation, vmax = 3 m
s

and amax = 2 m
s2

was used. The disc-shaped
robot has a radius of 2 m.

Workspace Description The workspaceW has a size of 100 m × 100 m and is populated
with 15 moving objects. These are ignoring dynamic objects as described in Sec. 1.2.2. Identical
to [84] the objects’ trajectories are modeled as closed B-splines with 10 random control knots.
The disc-shaped objects stir with a random constant velocity between 1 → 2m

s
and their radius

is 2 m. A snapshot of the simulation environment is depicted in Fig. 3.5.
To prevent the robot to drive and stay at corner points, where usually no object trajectories dis-

turb the robot, the workspace of the robotWR is limited to 50 m× 50 m and centrally positioned
inW .

Additional to the known workspace objects, 5 random static objects with radius 2 m are placed
every 5 s at a random position inWR which has a minimum distance of 6 m to the robot to prevent
instantaneous collisions.

Navigation Algorithm The robot is applied with the ICS-Avoid algorithm from [84]. An
overview is given in Alg. 4. The robot system has a fixed number of control inputs J and the
resulting states x are checked one after another for x ∈ ICO(B). The trajectories are generated

61

3. Assessment beyond Planning Horizon

−50 −25 0 25 50
−50

−25

0

25

50

Fig. 3.5.: Snapshot of the workspace, gray circles depict the 15 objects and the gray lines depict the
associated trajectories. The robot is shown as a black circle and the inner black square illustrates the
workspace of the robot.

with the sampling time Ts = 0.1 s and the control inputs are constant for Tc = 1.0 s. The set
J contains five different control inputs [u1, u2] = {[0, 0], [1, 0], [−1, 0], [0, 1], [0,−1]}. The set
of collision-free trajectories K of the ICS-Checker is defined as the safe control kernel. For the
next time step, the safe control kernel is added to the set of control inputs J . Thus, ICS-Avoid
can guarantee a fallback mechanism due to the safe control kernel.

Algorithm 4: ICS-Avoid [84]
Input : x(t),B = {B1, . . . ,BNb

}, I,J (t)
Output : u,J (t+ Tc)

foreach u ∈ J (t) do
x(t+ Tc) = x(t) +

∫ t+Tc
t

m(x(t),u) dt
if ICS(x(t+ Tc)) = 0 then
K = {u ∈ I| ICS(x(t+ Tc),B, u) = 0}
J (t+ Tc) = {I,K}
return u,J (t+ Tc)

As shown in Sec. 3.5, it is possible to decrease the probability of being in an ICS regarding an
unexpected object by increasing the robot maneuverability. Therefore, the ICS-Avoid algorithm
is extended so that the maneuverability of the robot is taken into account. The algorithm is shown
in Alg. 5. The robot chooses the control input u ∈ J which maximizes its maneuverability, thus
increasing its motion safety. While the robot is navigating in the workspace by applying ICS-
Avoid, the performance of three different ICS-Checkers are evaluated: ICS-Checker by [83],
ICS-Checker from Alg. 2 and ICS-Checker from Alg. 3. All algorithms use the same set of

62

3.10. Simulations

Algorithm 5: ICS-Avoid including maneuverability
Input : x(t),B = {B1, . . . ,BNb

}, I,J (t)
Output : u∗,J (t+ Tc)

Initialize: K ← ∅
foreach u ∈ J (t) do

x(t+ Tc) = x(t) +
∫ t+Tc
t

m(x(t), u) dt
if ICS(x(t+ Tc)) = 0 then

Compute Maneuverability M(x(t+ Tc),B)

u∗ = arg max
u

M(x(t+ Tc),B)

x∗ = x(t) +
∫ t+Tc
t

m(x(t), u∗) dt
K = {u ∈ I| ICS(x∗,B, u) = 0}
J (t+ Tc) = {I,K}
return u∗,J (t+ Tc)

Tab. 3.1.: ICS-Checker performance

Algorithm Checks Mean 10−3[s]

NC ∆ to [83] [%]

ICS-Checker [83] 140.00 - 17.93

ICS-Checker Alg. 2 74.64 46.69 10.37

ICS-Checker Alg. 3 58.15 58.46 7.74

trajectories which contains only pure braking trajectories. The braking trajectories are generated
based on a constant deceleration in the robot coordinate frame. As presented in the previous
section (Sec. 3.9.2), the robot comes to a standstill within a finite time horizon, if the direction of
the resulting acceleration vector is chosen from the interval (3

4
π, 5

4
π) and its magnitude is greater

than zero. For this evaluation a fixed control input is applied till the robot comes to a standstill.
7 different directions are considered with an equidistant step size of 0.2 beginning at 3

4
π and the

corresponding magnitude is chosen, such that the duration of the longest braking time lasts not
longer than 5 s. The workspace was populated by 20 known objects and their trajectories are
known for a time horizon of 5 s. For comparison, the mean number of trajectory checks NC

and the mean computation times are listed in Tab. 3.1 for 1654 ICS calculations. The standard
ICS-Checker from [83] needs to evaluate 7 braking trajectories for all 20 workspace objects.
Hence, 140 checks are needed to determine the ICS property of one state. The ICS-Checker
form Alg. 2 needs 46.69% less collision checks compared to the ICS-Checker presented in [83],
despite both algorithms have the same result containing the ICS property of the state and the set
of admissible trajectories. The ICS-Checker Alg. 3 needs even less collision checks, since only
the ICS property is computed. In the following section, random workspaces are generated to
evaluate the two different ICS-Avoid algorithms according to their motion safety.

63

3. Assessment beyond Planning Horizon

Tab. 3.2.: Evaluation of ICS-Avoid

Alg. Run Collisions Maneuverability

Th = 1s Th = 3s Th = 5s Th = 1s Th = 3s Th = 5s

B B ∪ Bu B B ∪ Bu B B ∪ Bu B B ∪ Bu B B ∪ Bu B B ∪ Bu

Alg. 4

1 25 26 4 10 4 9 0.50 0.42 0.67 0.53 0.54 0.48

2 27 33 3 7 0 4 0.40 0.38 0.68 0.63 0.67 0.55

3 14 38 6 15 5 15 0.55 0.37 0.58 0.46 0.62 0.40

4 25 35 4 15 4 10 0.47 0.43 0.66 0.46 0.55 0.42

5 18 31 7 12 1 12 0.57 0.40 0.59 0.47 0.64 0.43

Mean 21.8 32.6 4.8 11.8 2.8 10.0 0.50 0.50 0.63 0.51 0.60 0.46

Alg. 5

1 19 29 5 5 5 3 0.55 0.47 1.00 0.80 0.78 0.87

2 12 15 1 9 0 6 0.70 0.65 0.95 0.70 0.90 0.73

3 16 15 3 17 2 7 0.66 0.63 0.86 0.56 0.84 0.77

4 19 22 5 12 1 6 0.63 0.51 0.77 0.60 0.98 0.68

5 12 28 0 7 2 4 0.73 0.55 0.97 0.80 0.85 0.75

Mean 15.6 21.8 2.8 10.0 2.0 5.2 0.65 0.56 0.91 0.69 0.87 0.76

3.10.2. Motion Safety Regarding Unexpected Objects

For validating the concept of Sec. 3.5, improving safety by increasing the maneuverability of
the robot, the two different ICS-Avoid algorithms are evaluated in the same simulation environ-
ment. Therefore, 5 different random workspaces (runs) are generated which are identical for
both algorithms. As presented in [83], the future trajectories of the objects is only provided for a
fixed time horizon Th. Three different time horizons are considered: 1, 3 and 5 s. Each run was
evaluated according to the number of collisions regarding the known objects B, while ignoring
the unexpected objects Bu, and according to the total number of collisions regarding all objects
B ∪ Bu. The number of collisions considering only the unexpected objects Bu is not discussed,
since the robot may collide with a known object while avoiding an unknown one. Furthermore,
the maneuverability is determined for each run and the simulation results are summarized in
Tab. 3.2.

The ICS-Avoid algorithm maximizing the maneuverability of the robot reduces the average
number of collisions compared to the other one. Regarding the known objects B, the average
number of collision for Alg. 4 is 9.80 and for Alg. 5 is 6.80 which is a relative difference of
30.61%. The difference for the unknown objects Bu is more significant. The average number of
collisions for Alg. 4 is 18.13 and for Alg. 5 is 12.33 which is a relative difference of 31.99%.
The reason for the difference regarding the known objects is because of the limited prediction
horizon Th, thus no significant difference can be observed for objects which prediction is known
for longer time horizons. The time horizon Th has less influence on the difference between both
algorithms regarding all workspace objects B ∪ Bu. The biggest relative difference of the mean

64

3.10. Simulations

Tab. 3.3.: Simulation parameters for different sampling strategies.

strategy amin
[

m
s2

]
TU [s]

hard braking trajectories 0.4 −
soft braking trajectories 0.01 −
various trajectories 0.4 1.0

Tab. 3.4.: Initial states of the objects. The velocity is given in the object coordinate frame.

object p(t0) [m] v(t0)
[

m
s

]
black [0.0, 0.0] [1.5, 0.0]
gray [1.8,−0.2] [1.5, 0.0]

values is 48.00% (10.0→ 5.2) and occurs with the longest time horizon Th = 5s. This is mainly
because most collisions occur due to the unforeseen objects which confirms the influence of the
maneuverability to the motion safety of the robot regarding unexpected objects.

3.10.3. Probabilistic Collision State Checker

The PCS checker presented in Sec. 3.9.2 is designed to assess the safety of a robot state in the
presence of multiple uncertain objects. The quality of the PCS analysis depends on the sampling
algorithm and on the number of samples. Three different sampling strategies are evaluated. The
first two (hard, soft braking) are the same as described in Sec. 3.9.2, with different values for the
minimum applied acceleration amin. The third one (various trajectories) uses the complete input
space U instead of pure braking trajectories UB. Since it is still necessary that all workspace
objects come to a standstill, the complete input space U is only applied for a fixed time horizon
TU and afterwards a braking trajectory is generated by using the first strategy. In Fig. 3.6 one
example scenario for each strategy is depicted and Tab. 3.3 shows the simulation parameters.

The number of samples Ns are varied between 10 and 200 samples. Each configuration was
repeated 10 times to obtain the variance of the estimations. The initial states of the two objects
are shown in Tab. 3.4. The results of the PCS analysis for the different strategies are shown in
Fig. 3.7.

The final values of the PCS computations are in the same range for all three strategies
(0.01→ 0.02). But the approaches have a big difference, if only few samples are used. One
reason for this is, that the final states of the objects are very close for the first strategy due to the
initial state of the objects and the used amin. This is relaxed by the second strategy, applying a
lower amin. The third strategy has the largest result interval 0.13→ 0.02 which is caused by the
biggest input space. As discussed already in Sec.3.9.2, the strategy with the biggest input space
using enough samples will have the most representative result. But instead of using many and
long1 samples for the PCS computation, one can evaluate more trajectory candidates. Finally,
these results are not general, since there is a big dependency on the investigated scenario and
the PCS computation is usually not used isolated. It is still an open problem, how the available

1in the sense of time

65

3. Assessment beyond Planning Horizon

0 0.5 1 1.5

−0.2

0

0.2

0.4

(a) Hard braking trajectories

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

(b) Soft braking trajectories

−1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) Various trajectories

Fig. 3.6.: Example scenarios used to evaluate the three PCS strategies. Each image shows 20 samples of
each object.

66

3.10. Simulations

0.01

0.02

0.03

0.04

0.05

0.06

20 40 60 80 100 120 140 160 180 200

(a) Hard braking trajectories

20 40 60 80 100 120 140 160 180 200

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) Soft braking trajectories

20 40 60 80 100 120 140 160 180 200
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) Various trajectories

Fig. 3.7.: Illustrating the result of the PCS analysis for the three different sampling strategies. The error
bars indicate the standard error of 10 iterations.

67

3. Assessment beyond Planning Horizon

Tab. 3.5.: Object parameters

30 regions
for x[m]

1 region
for y[m]

Init
^v[rad]

Init
‖v‖[m

s
]

vmax[m
s
]amax[m

s2
] Σ(t0)

[0.4, 0.6] · · ·
[6.2, 6.4] [−1.0, 1.0] [3

4
π, 5

4
π] [1.0, 2.0] 2.0 2.0

0.01 0 0 0

0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

Tab. 3.6.: Parameters for trajectory generation.

P (C|ũ) PCS(ũ)

Ts [s] Tc [s] Th[s] Ns Ns amin[m
s2

]

0.025 0.25 1.0 20 5 1.0

computation time is divided for the generation of the trajectories and their corresponding PCS
analysis.

3.10.4. Overall Collision Probability

In order to show the usefulness of the overall collision probability (Sec. 3.7), random scenarios
are generated and the difference between the overall and the trajectory collision probability is
determined. Despite the workspace objects, the initial state of the robot is fixed and has the initial
state x =

[
0m 0m 1.5m

s
0m

s

]T
. The objects are placed randomly in front of the robot facing

towards it. The workspace objects are placed randomly in one of thirty predefined adjacent
regions which are partitioned in x-direction. The evaluated regions and other parameters for
the objects are listed in Tab. 3.5. Furthermore, 10 random robot trajectories are generated for
each scenario. Each of the scenarios is evaluated 50 times. An example scenario using the listed
parameters is shown in Fig. 3.8. For verification, the meanD and the maximum differenceDmax

of P∞(C|ũ) − P (C|ũ) are obtained from all scenarios and the results are shown in Fig. 3.9. It
can be seen that there is a significant difference between the collision probability of the trajectory
and the overall collision probability. The maximum achieved difference is 86%. It can also be
seen that the improvement depends on the distance to the objects when assuming the velocity
range and direction as listed in Tab. 3.5 for the robot and the objects.

3.10.5. Probabilistic Collision Cost

In Sec. 3.8 the probabilistic collision cost is introduced which is an alternative for the collision
probability. Instead of checking if a collision occurs, the strength of the collision is checked,
also called collision cost. In Fig. 3.10 and 3.11 two different scenarios are evaluated with two
different cost functions. The applied simulation parameters are shown in Tab. 3.7. The first cost
function only consists of P (C|ũ) and second one of PCC(ũ). There is no big difference in the
first scenario, since the possible collisions occur with nearly maximum relative speed. The mean
difference is 0.2. In the second scenario the difference is larger, since the objects are facing in a

68

3.10. Simulations

0 0.5 1 1.5 2 2.5 3 3.5

−2

−1.5

−1

−0.5

0

Fig. 3.8.: Random scenario for region 18 in x-direction: the solid lines depict the trajectories within the
planning phase and the dashed lines depict the braking trajectories for the PCS calculation.

5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fig. 3.9.: The solid line depicts the mean difference and the dashed line depicts the maximum difference
of one x - region between P (C|ũ) and P∞(C|ũ).

69

3. Assessment beyond Planning Horizon

Tab. 3.7.: Initial states of the objects. The velocity is given in the object coordinate frame.

object simulation 1 simulation 2

p(t0) [m] v(t0)
[

m
s

]
p(t0) [m] v(t0)

[
m
s

]
black [0.0, 0.0] [1.5, 0.0] [0.0, 0.0] [1.5, 0.0]

light gray [0.5, 1.0] [0.6,−0.6] [2.0, 0.3] [−1.5, 0.0]
dark gray [0.5,−1.0] [0.6, 0.6] [2.0,−0.3] [−1.5, 0.0]

−1 0 1 2 3

−0.5

0

0.5

(a) Collision probability P (C|ũ).

−1 0 1 2 3

−0.5

0

0.5

(b) Probabilistic collision costs PCC(ũ).

Fig. 3.10.: The same scenario is evaluated by two different cost functions. The diameter of the circles is
proportional to the cost of each trajectory.

similar direction and thus the relative speed is much lower, resulting in lower collision costs. The
mean difference is 0.46 resulting in the relative difference of 44%. The probabilistic collision
cost seems to be promising for crowded scenarios if the workspace objects can bear up against
weak2 collisions.

3.11. Discussion

In this chapter, different novel definitions and approaches for assessing the safety of partial tra-
jectories beyond the planning horizon are presented. They comprise methods for deterministic
and stochastic modeled environments. Moreover, the motion safety regarding unexpected objects
is discussed addressing the problem of imperfect perception capabilities of the robot system.

Union of Inevitable Collision States The sequential computation for unions of ICS sets
was presented. This allows one to reuse the computed ICO of all objects if an additional object

2in the sense of a small impact

70

3.11. Discussion

−1 0 1 2 3

−1

−0.5

0

0.5

1

(a) Collision probability P (C|ũ).

−1 0 1 2 3

−1

−0.5

0

0.5

1

(b) Probabilistic collision costs PCC(ũ).

Fig. 3.11.: The same scenario is evaluated by two different cost functions. The diameter of the circles is
proportional to the cost of each trajectory.

71

3. Assessment beyond Planning Horizon

appears in the workspace. Thereby, a major drawback of the ICO computation is addressed. Fur-
thermore, two novel ICS-Checker algorithms are introduced allowing a more efficient computa-
tion than former implementations. Simulation results validate the novel sequential computation
of ICO and showed a significant reduction of computational effort for the ICS calculations.

Safety regarding unexpected Objects The concept of the robot maneuverability for in-
creasing motion safety was presented. It has been shown, that a higher robot maneuverability
decreases the probability to collide with randomly appearing objects in the workspace. However,
this approach cannot consider uncertainties in the states or future states of the objects including
the robot system. The extension of the robot maneuverability to a complete probabilistic setting
would be a future step to assess the safety beyond the planning horizon by considering all possi-
ble sources of uncertainties. For the evaluation of the robot maneuverability, a novel ICS-Avoid
algorithm considering the maneuverability of the robot was used. Simulation results validate this
concept and showed a significant reduction of collisions especially regarding unexpected objects
or objects which future motion is only known for a limited time horizon.

Probabilistic Collision State The novel definition for the probabilistic computation of In-
evitable Collision States was presented. The proposed definition allows reasoning about the
safety of planned trajectories in uncertain and dynamic environments. Furthermore, it is shown
that this definition is a generalization of the inevitable collision state approach. The presented
method is especially useful in dynamic environments where the future motion of other objects
is highly uncertain. The presented computation of PCS preserves the three criteria mentioned
in the Sec. 1.2.1. However, this approach does not consider the uncertainty in the future states
of the robot system. But this is necessary in order to consider all sources of uncertainty. The
example implementation of this definition was evaluated by simulation scenarios and showed
that it is efficient and thus applicable to real world scenarios.

Probabilistic Collision Costs Furthermore, the concept of the probabilistic collision cost
was presented which is an alternative safety criteria instead of the collision probability. This
concept is especially useful in environments with a high density of dynamic objects which tol-
erate collisions with a certain intensity. The probabilistic collision cost allows one to assess the
danger of a collision rather than only its probability. Simulation scenarios confirmed that this
safety criteria is promising for uncertain and densely packed dynamic environments.

Overall Collision Probability The presented definition of the overall collision probability
assesses the safety for a partial trajectory during and beyond the planning horizon. This novel
definition for safety assessment of partial trajectories allows one to apply the PMP framework to
probabilistic modeled environments. Since this approach is based on the probabilistic collision
state approach, it has the same shortcomings. Simulation scenarios showed the relevance of the
new definition.

72

4. Interactive Assessment

Summary This chapter discusses the problem of assessing the safety of future motions of
robotic systems while considering the avoidance behavior of other objects in the workspace. The
avoidance behavior originates from the interaction between reactive or controllable dynamic
objects. In this context, interaction describes the reactive behavior between objects resulting
from the assumption that they incorporate the future motion of the surrounding objects into
their own motion planning and expect similar anticipation from them. Therefore, the definitions
of ICS and PCS are extended in order to consider this kind of interaction. These extended
definitions are applied to car scenarios assessing the safety of highway lanes, and to mobile robot
scenarios, considering the avoidance behavior of humans in the assessment process. Finally,
simulation results show the relevance of these safety assessment approaches and point out that
the consideration of cooperative behavior of reactive objects results in a less conservative and
thus more reliable safety assessment.

The outline of this chapter is as follows: Sec. 4.1 is motivating this chapter and states the
problem. Sec. 4.2 provides an overview of related work. Then, the definition and properties of
the cooperative inevitable collision state (cICS) is presented in Sec. 4.3. This leads to two differ-
ent definitions of the cooperative probabilistic collision state (cPCS) in Sec. 4.4. The following
Sec. 4.5 shows possible implementations of cICS and cPCS. The corresponding simulation re-
sults are presented in Sec. 4.6. Finally, a discussion of this chapter is given in Sec. 4.7.

4.1. Motivation and Problem Formulation

The common approach to robot navigation in dynamic environments is to decompose the prob-
lem into motion prediction and motion planning. The former provides the robot with the pre-
dicted future states of objects in its workspace. Depending on the model of the environment, the
prediction can be either deterministic or probabilistic. The latter tries to find a robot trajectory
which fulfills the objective of the robot while minimizing certain running costs. Additionally, the
motion planner needs to respect certain constraints such as kinematic and dynamic constraints
of the robotic system and constraints preventing the robot from collisions with other objects. In
deterministic environments the objects are represented as forbidden regions in the configuration
space and in stochastic environments as chance constraints [15] (i.e. the collision probability of
the trajectory must be below a predefined threshold) or the objects must be considered in the cost
function by means of the collision risk.

In real-world scenarios this separation can lead the robot to a freezing robot problem (FRP)
as stated in [117]. This means, that the robot cannot find any valid trajectory and freezes. This
problem mainly appears if the density of dynamic objects together with the amount of uncertainty
in their prediction exceeds a certain level. However, even if the future motion of all objects is
exactly known, the FRP can occur. Two different FRP scenarios are depicted in Fig. 4.1. Since

73

4. Interactive Assessment

Deterministic Prediction Stochastic Prediction

Objects

Robot Robot

Objects

Fig. 4.1.: The freezing robot problem is illustrated for a deterministic and a stochastic modeled envi-
ronment. The goal of the robot is to navigate through the corridor in the opposite direction of the other
objects. The gray 2 − σ ellipsoids represent the uncertain position (assuming normal distribution) of the
objects for different time steps. The deterministic prediction of the objects is depicted by gray circles
(Inspired by figures of [117]). In the deterministic case, the robot cannot find any collision-free trajectory
and in the stochastic case all possible trajectories of the robot have a high probability of collision.

better or even exact models for motion prediction cannot solve the FRP, the question is how is it
possible to successfully navigate under these conditions. For instance, people avoid each other
(called joint collision avoidance) by adopting their trajectories [50] which gives each person
more space for navigation. This behavior can mitigate the FRP and is illustrated in Fig. 4.2 and
leads to the idea of interactive safety assessment.

A robot trajectory is safe, if the robot is not colliding with any object in the environment. The
challenge of safety assessment in environments populated with reactive objects is to consider
the avoidance behavior of these objects. But the assessment needs to take into account, that the
avoidance of the objects does not lead to a collision with another object. The problem is stated
as:

Interactive Safety The state of the workspace of the robot (state of all objects including the
robot) is safe, if there exists at least one trajectory for each object and the robot ending in a state
which is guaranteed to be safe for an infinite time horizon.

This problem is very similar to the problem of multi-robot motion planning (e.g. [74]). The
reason for this is that the avoidance behavior of reactive objects is considered which in turn needs
to be assessed concerning its safety. Otherwise, the avoidance behavior can lead to collisions
between other dynamic objects which would contradict the definition of reactive objects from
Sec. 1.2.2. In the next section, a brief overview of related work regarding interactive safety
assessment is given.

74

4.2. Related Work

Deterministic Prediction Stochastic Prediction

Objects

Robot Robot

Objects

Fig. 4.2.: If the avoidance behavior of the objects is considered, the freezing robot problem can be avoided.
The gray 2 − σ ellipsoids represent the uncertain position (assuming normal distribution) of the objects
for different time steps. The deterministic prediction of the objects is depicted by gray circles (Inspired
by figures of [117]).

4.2. Related Work

The problem of assessing the safety while incorporating avoidance behavior of other objects was
investigated in [18, 29] for traffic scenarios. In [18] a threat assessment approach is presented
which estimates the PDF representing the future motion of all vehicles in the scene. This is
achieved by generating as many future trajectories as possible which do not cause any collision
for the complete traffic scene. The collision-free scenarios are ranked by a goal function model-
ing the preferred actions of the drivers. Each scenario contains one collision-free trajectory for
every traffic participant. This work was extended in [29] by new sampling strategies in order to
be more efficient and by adding a visibility model for modeling the driver’s attention.

Another related field is joint collision avoidance. An algorithm that uses interacting Gaussian
processes is presented in [117]. Every trajectory is modeled as a Gaussian process to represent
the uncertain future positions of the objects and the interaction is modeled by an interaction
potential which is proportional to the Euclidean distance of the corresponding agents. Only
few navigation algorithms consider the avoidance possibilities of workspace objects. In [59] the
reflective navigation approach is presented which is based on the recursive probabilistic velocity
obstacles (extension of the probabilistic velocity obstacles). The robot reflects the environment
and incorporates the reactive behavior of the other moving objects into its own planning.

In crowd simulations, where hundreds or even thousands of agents are simultaneously sim-
ulated, joint collision avoidance plays an important role as well. Due to the high number of
agents, the computational efficiency of the navigation algorithms is crucial. A precomputed
roadmap [69] is used by [119] to obtain a high-level cognitive map of the environment. This
is used for the global navigation of the agents. During the execution of the agents, the recipro-
cal velocity obstacle (RVO) approach is used for the collision avoidance behavior of the agents.
The RVO approach is an extension of the velocity obstacles method [30] allowing joint collision
avoidance. Instead of the RVO, a social force model [49] is applied by [110] to continuously

75

4. Interactive Assessment

update the roadmap based on the inter-agents interaction. A more recent approach is the optimal
reciprocal collision avoidance presented in [121] that overcomes some limitations of the RVO
approach. It can guarantee collision-free navigation for multiple robots assuming a deterministic
environment. Some extensions [1, 109] exist which also incorporate the kinematic and dynamic
constraints of the robotic system. However, none of these approaches fulfills all three safety
criteria from Sec. 1.2.1. Hence, the concept of cooperative inevitable collision state is presented
in the following considering all three safety criteria. It identifies states that will eventually lead
to a collision in environments populated by reactive objects.

4.3. Cooperative Inevitable Collision State

In the following, the definition of the cooperative inevitable collision state (cICS) is given that
allows one to perform interactive safety assessment beyond the planning horizon. It is an ex-
tension of the ICS concept presented in Sec. 3.3. Instead of only considering the safety of the
robot system, it also considers the safety of all dynamic objects. The avoidance behavior origi-
nates from the definition of reactive objects in Sec. 1.2.2. Therefore, the workspace state xW is
introduced containing the states of all objects in the workspace

xW = {xA,x1, . . . ,xNb
}.

Definition 10 (Cooperative Inevitable Collision States). The workspace state xW is an cICS iff

cICS(xW , Ũ) =

{
1, ∀ũ(xW) ∈ Ũ ∃t ∃(i, j|i 6= j) BAi (ũi) ∩ BAj (ũj) 6= ∅
0, otherwise.

(4.1)

Where BA is a set containing the occupancy of all objects and the robotic system. The future
trajectories of BA are ũ = {ũA, ũ1, . . . , ũNb

} and the set of all possible trajectories is denoted
as Ũ = ŨA × Ũ1 × · · · × ŨNb

. The operator × denotes the Cartesian product. Compared to the
ICS Def. 5, a valid control input for all objects must be found instead of one control input for
the robotic system. The definition of cICS leads to the definition of the cooperative inevitable
collision state set (cICSS):

Definition 11 (Cooperative Inevitable Collision State Set). The Cooperative Inevitable Colli-
sion State Set is defined as

cICSS(Ũ) = {xW ∈ XW | cICS(xW , Ũ) = 1},

where XW = XA ×X1 × · · · × XNb
.

Loosely speaking, the cICSS is defined as the set of all workspace states which are an cICS.
If only a subset of trajectories I ⊂ Ũ is used, this is denoted as cICSS(I). If the trajectory set is
not specified, the complete set is considered. The ICO property Prop. 1 of Sec. 3.3 applies also
for cICSS, thus a conservative approximation of cICSS can be calculated by using only a subset
of all possible future trajectories.

76

4.4. Cooperative Probabilistic Collision State

Property 4 (cICSS Approximation).

cICSS(Ũ) ⊆ cICSS(I), with I ⊂ Ũ (4.2)

Proof.

cICSS(Ũ)

⇔ {xW ∈ XW |∀ũ(xW) ∈ Ũ ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅}
⇔ {xW ∈ XW |∀ũ(xW) ∈ I ∪ (I ∩ Ũ) ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅}
⇔ {xW ∈ XW |∀ũ(xW) ∈ I ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅} ∩
{xW ∈ XW |∀ũ(xW) ∈ I ∩ Ũ ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅}

⇔ cICSS(I) ∩ cICS(I ∩ Ũ)

The same property holds for cICS, thus the calculation of cICS with a reduced input space
leads to a conservative result. In the next section, the concept of cICS is extended to stochastic
environments.

4.4. Cooperative Probabilistic Collision State

In order to apply the presented cICS concept to stochastically modeled environments, the co-
operative probabilistic collision state (cPCS) is introduced. Therefore, Def. 10 is extended to a
probabilistic setting. Instead of evaluating the workspace state xW representing a deterministic
environment, the PDF

f(xW) = f(xA,x1, . . . ,xNb
) with∫

XA

∫
X1

. . .

∫
XNb

f(xA,x1, . . . ,xNb
) dxA dx1 . . . dxNb

=∫
XW

f(xW) dxW = 1, with XW = XA ×X1 × · · · × XNb

is now evaluated which represents the uncertainty of the workspace state xW by this joint proba-
bility distribution. Two definitions for the probabilistic extension of cICS are given which differ
in the available information to the agents. The first definition cPCSd assumes that the objects
perceive the environment without any uncertainty, however, the robot is unsure about the present
scenario due to sensor noise. The second definition cPCSu assumes that the objects try to mini-
mize the expected collision probability regarding all possible scenarios.

4.4.1. Definition of cPCSd

The definition of cPCSd assumes optimal behavior of all objects in the environments in order to
avoid any collision, although the initial scenario is not exactly known.

77

4. Interactive Assessment

Definition 12 (Cooperative Probabilistic Collision State cPCSd). The probability that an uncer-
tain workspace state xW is an cICS is

cPCSd(f(xW)) :=

∫
XW

cICS(xW)f(xW) dxW .

Compared to Sec. A.3, the definition can be seen as a Monte Carlo simulation, whereby
cICS(xW) is the indicator function.

4.4.2. Definition of cPCSu

The definition of cPCSu assumes optimal behavior of all objects in the environments in order to
avoid any collision regarding the distribution of all possible scenarios. The minimum collision
probability allows defining the probability of an inevitable collision state for reactive objects.

Definition 13 (Cooperative Probabilistic Collision State cPCSu). The probability of a workspace
state xW leading to a collision assuming reactive objects is defined as the collision probability
under the best possible input trajectories ũ regarding all possible scenarios XW:

cPCSu(f(xW)) := min
ũ
P (C|f(xW), ũ)

where P (C|f(xW), ũ) is the collision probability that at least one collision occurs when apply-
ing ũ to all objects.

4.4.3. Discussion

Both definitions consider the avoidance behavior of reactive objects for safety assessment. The
difference of the definitions is in the optimization of the future control inputs of the objects.
The control inputs are optimized separately for each possible scenario in Def. 12, whereas in
Def. 13 the control inputs are optimized for all possible scenarios. This can be interpreted in the
following way. Objects in Def. 12 behave like they exactly know the current scenario, but the
robotic system is unsure about the current scenario due to sensor noise. According to Def. 13,
all objects are unsure about the current scenario and behave in order to minimize the expected
collision risk considering all possible scenarios. For better understanding some properties of
both definitions are presented.

Property 5 (Conservative Property of cPCSu).

∀f(xW), cPCSu(f(xW)) ≥ cPCSd(f(xW))

Proof. Def. 13 can be rewritten with (A.3) as

cPCSu(f(xW)) = min
ũ∈Ũ

∫
XW

Ind(C|xW , ũ)f(xW) dxW

78

4.4. Cooperative Probabilistic Collision State

with

Ind(C|xW , ũ) =

{
1, if ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅,
0, otherwise.

With the definition of the optimal control inputs

ũ∗(f(xW)) := arg min
ũ∈Ũ

∫
XW

Ind(C|xW , ũ)f(xW) dxW

the equation can be rewritten as

cPCSu(f(xW)) =

∫
XW

Ind(C|xW , ũ∗(f(xW)))f(xW) dxW .

We define the optimized control inputs for one scenario ũ∗(xW) as

ũ∗(xW) := arg min
ũ∈Ũ

Ind(C|xW , ũ),

meaning, that the control inputs avoid a collision if it is possible. Since the optimized control
inputs ũ∗(xW) have a higher chance to avoid a collision than the control inputs ũ∗(f(xW)) which
are optimized regarding all possible scenarios xW ∈ XW , it follows

{xW ∈ XW | Ind(C|xW , ũ∗(f(xW)))} ⊇ cICSS(ũ∗(xW))

∀f(xW)

∫
XW

Ind(C|xW , ũ∗(f(xW)))f(xW) dxW ≥
∫
XW

cICS(xW , ũ
∗(xW))f(xW) dxW

∀f(xW) cPCSu(f(xW)) ≥ cPCSd(f(xW))

Property 6 (Upper bound of cPCS).

cPCSd(f(xW)) = 1⇔ cPCSu(f(xW)) = 1

Proof. If cPCSd(f(xW)) = 1 it follows cPCSu(f(xW)) = 1 with

∀ũ∗(xW) ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅.
Thus no ũ exists which can prevent a collision with any possible scenario xW

∀ũ∗(f(xW)) ∃t ∃(i, j|i 6= j) BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅.
This implies

cPCSu(f(xW)) = 1.

The other direction, cPCSu(f(xW)) = 1 follows cPCSd(f(xW)) = 1 is analogous.

Property 7 (Lower bound of cPCS).

cPCSu(f(xW)) = 0→ cPCSd(f(xW)) = 0.

This follows directly from Prop. 5. In the next section, example implementations for cICS,

79

4. Interactive Assessment

cPCSu and cPCSd are presented.

4.5. Implementations
In this section an example implementation for cICS and for both definitions of cPCS are shown.
Therefore, one implementation for automotive applications – navigation on a highway – and one
implementation for mobile robot applications – navigation in densely packed environments – are
presented.

4.5.1. Automotive Application

In this section, cICS and cPCSd are used for assessing the safety of road scenes. To make use
of the structured environment of roads, the safety of each road lane is assessed separately. For
this application, the cPCSd definition is used since the PCS definition (Def. 8) would result in
an unrealistic assessment of the motion safety. As explained by Fuller [37]:

“ [. . .] the experience of subjective risk is aversive and so drivers are motivated to
escape from situations which elicit the experience or to avoid those situations. ”

Thus, the driver behaves to avoid collisions in the present situation. For this implementation a
nonlinear one-dimensional vehicle model is used which is described in the next section.

Vehicle Model

In most traffic situations the human driver plans the vehicle’s lateral movement relative to the
lanes rather than to the absolute ground [125]. Imitating this approach, most trajectory generation
approaches use the so-called Frenet frame. Since the assessment is performed for each lane
separately, the state x(t) = [s(t), v(t)] of the vehicle at time t is represented by the vehicle
position in s and its velocity v in the direction of the lane. The initial state is denoted as x(0).
The reference point of the vehicle position is its volumetric center point. A nonlinear model is
used as presented in [3], since it shows a good trade-off between accuracy and complexity. It
was validated against the high fidelity simulation veDYNA [24]. The longitudinal dynamics of
the vehicles are described by the equations

ṡ = v, v̇ =

u amax, u ≤ 0 ∨ 0 < v ≤ vsw

u amax vsw

v
, u > 0 ∧ v > vsw

0, v ≤ 0

(4.3)

with respect to the constraints

u ∈ [−1, 1], v ≤ vmax, (4.4)

where vmax is the maximum velocity of the vehicle. The model prevents backward driving.
For positive accelerations, the dynamics of the model switch at velocity vsw. For velocities
0 < v ≤ vsw ∨u ≤ 0 the acceleration is limited due to tire friction. For faster velocities v > vsw,
the acceleration is limited due to the available engine power. The acceleration constraints model

80

4.5. Implementations

Fig. 4.3.: The state of the lane is shown for one example scenario.

the maximum possible tire friction according to Kamm’s circle amax. The acceleration consists
of the lateral and longitudinal, respectively normal aN and tangential acceleration aT:

amax =
√
a2

N + a2
T, aN :=

v2

ρ(s)
, aT := v̇.

The function ρ(s) transforms the path coordinate s to the radius of the curve. The tangential
acceleration aT and the normal acceleration aN is derived from the radius of curvature.

Assuming constant u, the analytic solution for u > 0 and v > vsw is

x(t) =

{
s(t) = s(0) + (v(0)2+2amaxvswut)

3
2−v(0)3

3amaxvswu
,

v(t) =
√
v(0)2 + 2amaxvswut.

(4.5)

For the other cases the analytic solutions are analogous.

Problem Statement

For this problem, the workspace state is identical with the complete state xW of a lane containing
Nv vehicles. It is described by the initial velocities v(0) = [v1(0), . . . , vNv(0)] and the initial
position along the lane s(0) = [s1(0), . . . , sNv(0)]. An example road scene is illustrated in
Fig. 4.3. In order to classify a road lane as safe the cICS Def. 10 is used. This entails that instead
of evaluating the safety of a single object, the safety of a group of objects is evaluated. Loosely
speaking, to fulfill Def. 10, one trajectory ũ must be determined for each vehicle which will be
collision-free regarding an infinite time horizon. For this implementation, we assume constant
control inputs for all vehicles ũ→ u. Thus, the goal is to find the set of control inputs

u = [u1, . . . , uNv] subject to

∀(i, j|i > j) ∀t ∈ [0,∞) distij(t) ≥ 0.
(4.6)

The function distij(t) measures the free space between the vehicles i and j along s(t)

distij(t) = si(t)− sj(t)−
li
2
− lj

2
,

where li and lj are the lengths of the ith and jth vehicle. In the next section, the problem
described in (4.6) is reformulated as a set of nonlinear programming sub-problems.

81

4. Interactive Assessment

Pairwise Safety Assessment

The complexity of (4.6) depends on the number of cars on the lane. In order to break down
the problem, it is reduced to a set of sub-problems. Thus, only two cars are considered and
the maximum control input umax

r of the rear vehicle is determined which will never collide with
the front vehicle for the given control input uf . The index f refers to the front vehicle and the
index r to the rear vehicle. This can be formulated as a nonlinear programming problem with the
objective function cost(ur):

cost(ur) = ur, max
ur∈Ur

cost(ur) subject to

distfr(t, ur, uf) ≥ 0, ∀t ∈ [0,∞).
(4.7)

The function distfr(t, ur, uf) determines the distance between the front vehicle and the rear ve-
hicle at time t, when the control inputs ur and uf are applied. The valid sets of control inputs
for the rear and the front vehicle are denoted as Ur respectively Uf . The calculated maximum
control input ur is the control input for the front car of the next pair of vehicles. The control input
of the very first car is set to uNv ≡ 1. The reason for this is, that the relative distance between
two cars distfr(·, ·, uf) is a monotonic function regarding uf , thus the maximum allowed control
input will lead to a solution for ur iff one exists. In the following, it is shown that there exists a
solution regarding (4.7), if there exists a solution according to (4.6) and vice versa.

Proof. The vector us contains a solution of the nonlinear programming problem (4.7) and ug is
a solution of the global problem (4.6). First it is shown, that every solution us is also a solution
of the global problem. Since a vehicle can only collide either with the front or the rear vehicle,
it is sufficient to make sure that no rear vehicle collides with the front car. This is explicitly
modeled by the constraint in (4.7). Next, it is shown that every solution ug is also a solution of
the nonlinear programming problem. For each solution of us, it is valid that

∀i ug
i ≤ us

i, with ug
i ∈ ug, us

i ∈ us,

since the nonlinear programming problem determines the largest possible ui which satisfies the
constraints. It is shown by the counter-evidence, that it is not possible that there exists a global
solution ug which is not found by the pairwise nonlinear programming approach. This means,
there exists one control input for which ug

i > us
i is valid. Since us

i is the maximum possible
control input, one can see that ug

i+1 > us
i+1 is true. This is carried on till ug

Nv
> us

Nv
. This cannot

be true, since us
Nv
≡ 1 and a larger control input violates the model constraints in (4.4).

In order to reduce computational demand and to guarantee deterministic response times, the
solution of the nonlinear programming problem is stored in a 4D lookup table (LUT). The input
of the LUT are both initial velocities vr(0), vf(0), the initial free space distfr(0) and the constant
control input uf . The output of the LUT is the maximum possible control input ûmax

r of the rear
vehicle. Due to the discretization of the inputs, the resulting control input

ûmax
r = LUT(distfr, vr, vf , uf)

may violate the constraint in (4.7). In order to ensure a conservative approximation of umax
r , the

82

4.5. Implementations

input parameters are over (·) or respectively under approximated (·)

ûmax
r = LUT(distfr, vf , vr, uf).

Based on the LUT, an cICS based and a cPCSd based safety assessment algorithm are presented
in the following sections. It is noted that it is also possible to solve the nonlinear programming
problem directly instead of using the LUT.

Lane Safety Assessment

In this section a cICS and a cPCSd checker for road lanes are presented. Both algorithms are
based on the pairwise nonlinear programming problem discussed above.

Cooperative Inevitable Collision State Checker Compared to known ICS checkers, the
cICS checker presented in this section uses the continuous input space of the system instead of
a finite subset. Thus, it can ensure to find a solution if one exists. The basic idea of the cICS

checker is, that it performs an ICS check for each rear car state regarding the front vehicle. By
applying the ICS check pairwise to all vehicles the lane is classified as safe if a valid control
input is found for each vehicle. The control input of the front car is the maximum possible
control input ur of the previously evaluated pair of vehicles. The definition of cICS Def. 10
requires to set the control input for the first car in the lane to one. This guarantees that a valid
control input of each car can be found if one exists. However, this implementation allows one to
use an arbitrary control input of the first car, whereby the assessment becomes more conservative.
The control input of the first car can be set to the last observed value, this corresponds to constant
velocity prediction. Another possibility is to simulate the worst case by setting the control input
to minus one which means full braking of the front car. The complete algorithm is shown in
Alg. 6. Furthermore, the cICS checker determines the minimum allowed control input um of all

Algorithm 6: cICS based assessment
Input : s(0), v(0), uNv

Output : cICS flag, um

foreach i = Nv : 2 do
vf ← vi
vr ← vi−1

distfr ← si, si−1

uf ← ûmax
i

ûmax
i−1 = LUT(distfr, vf , vr, uf)

if ûmax
i−1 < −1 then
return true, 0

um = min{ûmax
Nv−1, . . . , û

max
1 }

return false, um

vehicles. It can be interpreted as the safety margin of the lane state. Additionally, the difference
of the allowed control inputs with and without the ego car can be used to measure the disturbance

83

4. Interactive Assessment

caused by the ego car. This can be used as an additional cost factor for a navigation algorithm in
order to minimize the disturbance of the ego vehicle.

Cooperative Probabilistic Collision State Checker For evaluating cICS, the state of all
vehicles in the lane and the control input of the first car in each lane must be known without
any uncertainty. Since this is an unrealistic assumption for real-world situations due to sensor
noise and the hardly predictable human drivers, the cPCSd approach is used. For this implemen-
tation, independent variables are assumed, thus the joint probability distribution f(xW) can be
computed as

f(xW) = fA(x)f1(x) · · · fNb
(x).

The PDFs of all vehicles representing their initial state comply to the uncertain initial state of
the entire road scene f(xW(0)). It is noted, that the assumption of independent variables does
not mean that the vehicles also behave independently. The uncertain state of each object is
represented by the uncertain velocity and the uncertain position along the lane

fi(x) = fi(s)fi(v), with i ∈ {A, 1, . . . , Nb}

assuming that the random variables v and s are independent. The PDFs fi(s(0)) and fi(v(0))

represent the uncertain initial position and the initial velocity of the ith vehicle, respectively.
Additionally, a probabilistic driver model is used for the first car in the lane and is represented
by the PDF fNv(u). For solving the cPCSd calculation, Monte Carlo simulation is used as de-
scribed in Sec. A.3. Therefore, Ns samples are drawn from the distributions. As presented in
[135] importance sampling is used that allows one to calculate the cPCSd value by the ratio
between the number of collision scenarios NC and all simulated scenarios Ns. An overview of
the complete algorithm is given in Alg. 7. The cPCSd method is especially suitable for proba-
bilistic predictions of the other vehicles, while the cICS approach is applicable to deterministic
predictions.

4.5.2. Mobile Robot Application

In this section, an example implementation of cPCSu is used for assessing the safety in densely
packed dynamic environments. A typical scenario for this application is an autonomous mobile
robot navigating in environments populated with humans. The definition of cPCSu allows arbi-
trary workspaces and has no restriction on the shape, kinematics or dynamics of the object, how-
ever, in this section a cPCSu checker is presented for disk-shaped objects in a two-dimensional
workspace with position coordinates x and y.

In contrast to the previous section, the cPCSu definition is used instead of the cPCSd. The
reason for this is, that the cPCSd approach would exceed the computational resources and the
limited computing time for a 2D workspace. According to Prop. 5 the assessment by cPCSu be-
comes more conservative compared to cPCSd, however, it is less conservative than PCS which
does not consider any interaction between the objects. In order to perform safety assessment
based on the cPCSu definition, the model for the motion prediction of reactive objects is de-
scribed after the general idea of this implementation. Then, the optimal input trajectory of the
robot is obtained which is then used to determine the probability density function for reactive

84

4.5. Implementations

Algorithm 7: cPCSd based assessment
Input : f(xW) fNv(u)
Output : cPCSd value

Initialize: NC = 0
foreach i = 1 : Ns do
{Sample from distributions}
uNv ∼ fNv(u)
foreach j = 1 : Nv do

sj ∼ fj(s)
vj ∼ fj(v)

foreach j = Nv : 2 do
vf ← vj
vr ← vj−1

distfr ← sj, sj−1

uf ← ûmax
j

ûmax
j−1 = LUT (distfr, vf , vr, uf)

if ûmax
j−1 < −1 then
NC = NC + 1
Break

return cPCSd = NC

Ns

objects. Finally, the collision probabilities are computed resulting in the cPCSu evaluation.

General Idea

The definition of cPCSu requires to solve the optimization problem described in Def. 13. This
problem can be seen as a multi-robot motion planning problem where the objective is to minimize
the collision probability of the entire system. In addition, this needs to be done for an infinite
time horizon (see Sec. 3.1). Since the presented cPCSu checker provides an additional safety
check to extend the safety assessment of common motion planning approaches, a computational
efficient implementation is crucial. Thus, a two-stage optimization is used to improve the tradeoff
between computational complexity and quality of the result.

In a first step, the robot trajectory ũ∗A is determined which minimizes the PCS value assuming
ignoring objects. In the second step, the reactive objects will modify their future motion in order
to minimize their collision probability. In other words, the objects react on the robot trajectory to
minimize their collision risk. The ignoring objects are modeled with a PDF f(x, t) which is given
by a motion prediction algorithm. The reactive objects are represented by a PDF f(x, t, ũ∗A)

which depends on the robot trajectory ũ∗A.

85

4. Interactive Assessment

Motion Model

For this implementation, a constant acceleration model is used for the prediction of the reactive
workspace objects. The dynamic system of the constant acceleration model is

ẋ

ẏ

v̇x
v̇y

 =

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

x

y

vx
vy

+

0

0

ax
ay

 ,
where the absolute value of the acceleration

√
a2
x + a2

y ≤ amax is limited. The velocity is indi-
rectly limited by the initial velocity since only braking trajectories are considered as discussed
in Sec. 3.9.2. After a time discretization with tk = k T , where k ∈ N+ has been introduced as
the time step and T ∈ R+ is the time step size, the dynamic model can be exactly transformed to
the discrete time form:

x

y

vx
vy

 (tk+1)

︸ ︷︷ ︸
x(tk+1)

=

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

︸ ︷︷ ︸

A

x

y

vx
vy

 (tk)

︸ ︷︷ ︸
x(tk)

+

ax

T 2

2

ay
T 2

2

axT

ayT

︸ ︷︷ ︸

u

. (4.8)

It is further assumed that the initial state of the objects has a multivariate Gaussian distribution
x(0) ∼ N (µ,Σ) with mean value µ and covariance matrix Σ. From the multiplication rule and
the addition rule of independent random variables with Gaussian distributions, it follows that the
mean value and the covariance of the state x in (4.8) are updated as

µ(tk+1) = Aµ(tk) + u

Σ(tk+1) = AΣ(tk)A
T ,

(4.9)

where AT is the transpose of the system matrix A. Note that the input u has no influence on
the covariance matrix because this input is deterministic. For predicting the reactive objects, the
control input u must be specified depending on the robot trajectory. For this implementation,
ignoring objects can be seen as a special case of reactive objects. Their control input is set to
u = [0, 0, 0, 0] resulting in a constant velocity prediction. The optimization of the robot trajectory
is described in the next section.

Input Trajectory of the Robot

Under the assumption that the workspace objects move independently of the robot, i.e.
∀i : fi(x, t, ũA)→ fi(x, t), the input trajectory ũ∗ that minimizes PCS(x) for the robot state
x according to Def. 8 must be determined

ũ∗ := arg min
ũ∈ŨB

P (C|ũ(x),B) with

P (C|ũ∗(x),B) = PCS(x),

86

4.5. Implementations

Fig. 4.4.: Braking trajectory of the robot. The direction of the acceleration is constant in the relative
coordinate system of the robot and the magnitude is constant over time.

where B is represented by {f1(x, t), . . . , fNb
(x, t)} assuming ignoring dynamic objects. There-

fore, a finite set of possible input trajectories ŨB of braking trajectories, i.e. trajectories for which
the velocity is constantly decreasing, is generated. The finite set of braking trajectories is cho-
sen as follows: use the maximum possible absolute acceleration such that

√
a2
x + a2

y = amax,
where the maximum absolute acceleration is limited through the contact friction of the robot.
The parameter that is varied is the direction φA of the acceleration, where the subscript A em-
phasizes that the direction is given in the relative coordinate system of the robot and not in the
global workspace coordinates. The scalar product of the velocity vector and the direction vector
φA (both in relative coordinates) is always negative to ensure braking trajectories, see Fig. 4.4.
The state trajectories are computed from the input trajectories with the constant acceleration
model of (4.8). The collision probability for the robot trajectories is computed by discretizing
the workspace as described in Sec. A.2.

Next, the computed input trajectory ũ∗A minimizing PCS(x) is used to adapt the probability
distribution fi(x, t) for reactive objects such that it depends on ũ∗A: fi(x, t)→ fi(x, t, ũ

∗
A).

Reactive Object Modeling

One of the difficulties in the implementation is that the probability distribution fi(x, t, ũA) of
reactive workspace objects depends on the input trajectory ũA, while the choice of the robot
trajectory ũA depends on the probability distribution fi(x, t, ũA). This mutual dependency is
broken up by first assuming that the probability distribution of the workspace objects is indepen-
dent of the robot trajectory ũA. In this section, the distribution of the reactive objects is described
based on the optimized robot trajectory ũ∗A that is defined in the previous section. In order to
distinguish the trajectories of the workspace objects Bi from the ones of the robot, they are de-
noted by ũi which are element of Ũi. A finite number of input trajectories ũi,k ∈ Ũi is generated
for each object as presented in the previous section. Therefore, the direction of the acceleration
φ is varied while the maximum absolute acceleration amax is applied. The additional index k in
ũi,k indicates the kth input trajectory for the ith object. The input trajectory causing the small-
est value for cPCSu(f(xiW)) is denoted by ũ∗i . Here, the workspace state xiW contains only the
state of the robot and the ith object, meaning that collisions between the workspace objects are

87

4. Interactive Assessment

Fig. 4.5.: Acceleration applied to an object in order to avoid collision with the robot.

neglected for this implementation to reduce the computational complexity. The optimal input
trajectories ũ∗i model the case when reactive workspace objects try to avoid a collision with max-
imum effort or willingness. However, reactive objects may not react with maximum effort to the
trajectory of the robot. For this reason, the PMF q(e) is introduced, where e is the effort varying
in the interval (0, 1] 1. The applied absolute acceleration for the optimal acceleration direction of
ũ∗i is obtained as

√
a2
x + a2

y = e amax. If e = 0, the acceleration of the object is ax = ay = 0 and
if e = 1, the full acceleration for avoiding the robot is applied as for ũ∗i . But the direction of the
acceleration is always the one used for generating ũ∗i . Since only a finite number of values of e is
used, the kth values is denoted by ek. The PMF of e and the acceleration direction are depicted
in Fig. 4.5. The final probability distribution is computed as

fi(x, t, ũ
∗) =

Ne∑
k=1

q(ek)fi,k(x, t, ũ
∗),

where Ne is the number of considered values of e and fi,k(x, t, ũ∗) is the distribution of the ith
object when applying the acceleration direction of ũ∗i with the effort ek. This motion prediction
of the objetcs allows one to compute the collision probability for a robot trajectory leading to
the cPCSu. In the next section, the evaluation of the cICS and cPCSd implementation for the
automotive application and the implementation of cPCSu for the mobile robot applications based
on simulation scenarios are presented.

4.6. Simulations

In this section simulation scenarios are used to evaluate the definitions of cICS, cPCSd and
cPCSu. Therefore, the two example implementations for automotive and service robotic appli-
cations are used.

1The interval [−1, 1] would also consider hostile objects which do not fulfill the definition of reactive objects from
Sec.1.2.2.

88

4.6. Simulations

4.6.1. Automotive Applications

In order to check collisions during the planning horizon and to evaluate the safety of the final
state, the future state of the other traffic participants need to be predicted. For the following sim-
ulation scenarios a constant velocity (CV) prediction is used. It is noted, that any deterministic
prediction can be used for the cICS approach and any probabilistic prediction can be applied for
the cPCSd approach.

In order to apply the cICS or cPCSd checker, the control input uNv of the first car in the road
lane needs to be predefined. One possibility is to use the current control input which is similar
to a constant acceleration prediction. For conservative results, the control input can be set to
uNv = −1 meaning full braking. For the following simulation scenarios the control input was
set to zero assuming constant velocity for the first car.

Two different common driving situations are considered. In the first scenario, the ego vehicle
has a much higher velocity than the other vehicle driving ahead of it. Driving towards the end
of a traffic jam is a typical example for such kind of scenario. The second scenario represents
a lane change situation, at which the ego vehicle wants to change to the right-hand lane after
overtaking.

End of a Traffic Jam

The first simulation setup represents the danger resulting from driving towards the end of a traffic
jam. The initial state of the ego vehicle is [s(0), v(0)] = [0 m, 30 m/s] and the initial state of the
front vehicle is [55 m, 8 m/s]. For the generation of possible trajectory candidates for the ego
vehicle, the motion planning approach described in [125] is used. The planning horizon and the
time span of the trajectories of the motion planner are set to 4.0 s and the replanning time to 1.5 s.
In Fig. 4.6a the scenario with the final states of the generated trajectories is illustrated. In the
following, the concept of cICS and cPCSd are applied to this scenario to assess the safety of the
final states of the trajectories beyond the planning horizon.

cICS During the planning horizon all considered trajectories are collision-free, without con-
sidering the result of the cICS evaluation. The resulting positions of the ego vehicle at time 4.0 s
are shown in Fig. 4.6b as circles. The apparently best collision-free trajectory (most comfort-
able) is the one resulting in the rightmost state, since it does not change its velocity of 30 m/s and
thus has zero jerk (maximum comfort). All other states result in a slower velocity. In Fig. 4.6c
the replanning result after 1.5 s is shown after applying the apparently best trajectory. It can
be seen, that all generated trajectories are leading to a collision with the front vehicle and no
collision-free trajectory can be found when lane changes are not considered. The result of the
cICS evaluation is depicted in Fig. 4.6b. It can be seen, that only braking trajectories with high
deceleration are classified as safe by the cICS evaluation that will prevent the collision beyond
the planning horizon.

cPCSd In order to evaluate this scenario with the cPCSd checker from Alg. 7 the PDF func-
tions fNv(u), fi(s), fi(v) need to be specified. They are modeled as Gaussian distributions with
the mean value of the CV prediction and the corresponding standard deviations are σu = 0.2,

89

4. Interactive Assessment

0 10 80 90 100

(a) The ego vehicle drives towards a much slower vehicle.

0 10 110 120 130

(b) Planning result at t = 0 s.

45 55 130 150140

(c) Planning result at t = 1.5 s. The final states of the trajec-
tories are not cICS since the trajectories are already colliding
during the planning horizon.

Fig. 4.6.: The images illustrate the scenario of a car driving towards the end of a traffic jam. The ego
vehicle is shown on the left and the slower driving vehicle on the right. The circles depict the final states
of the planning result, where solid circles represent states classified as cICS states.

0 10 110 120 130

Fig. 4.7.: The image shows the result of the cPCSd evaluation of the traffic jam scenario shown in Fig. 4.6.
Circles depict the final states of the planning result. The color indicates the value of the cPCSd evaluation.
Black meaning 1.0 and white meaning 0.0.

σs = 5.0 and σv = 2.0. For evaluating this scenario, 100 samples were generated accord-
ing to these PDF functions. In Fig. 4.7 the result is depicted. The quantitative evaluation is
cPCSd = [0.00, 0.05, 0.59, 0.91, 0.99, 1.00] starting from the left state. It can be seen, that the
cPCSd checker is able to relax the binary evaluation of the cICS checker and allows one to
consider the uncertainties from the prediction of other vehicles.

Lane Change Scenario

The aim of this simulation scenario is to show the result of the presented method during a lane
change scenario. The ego vehicle starts on the left lane, while two other cars are driving on the
right one. The aim is to find a safe trajectory that allows the ego vehicle to merge between the
other vehicles. The simulation scenario is depicted in Fig. 4.8a. Using the navigation algorithm
from [125], seven trajectories are generated that lead the ego vehicle into the desired gap. All

90

4.6. Simulations

0 10 20 30 40

(a) The ego vehicle drives on the left lane and the other vehicles
drive with a constant gap of 30m.

150 160 170 180

1 2 3 4 5 6 7

(b) The final states are depicted by circles, where solid ones are
classified as cICS states.

Fig. 4.8.: The images illustrate the scenario of a car merging on another lane and the corresponding cICS
evaluation.

seven final states have different velocities, where the state 1 has the lowest and state 7 the highest
velocity. The seven states are evaluated by the cICS algorithm and the result is illustrated in
Fig. 4.8b. Only three states are non cICS states, while the others would eventually lead to a
collision beyond the planning horizon. The velocity of the left cICS states (1, 2) is too slow, thus
the rear vehicle cannot prevent a collision. In contrast to the right cICS states (6, 7), where the
velocity is too high, thus the ego vehicle will eventually collide with the front vehicle.

As mentioned in Sec. 4.5.1, the minimum determined control input um and the difference
of the control inputs ∆ur regardless of the ego vehicle are provided. Without considering the
ego vehicle, the maximum control input of the rear vehicle is 0.0, since the front vehicle has an
control input of uf = 0 and the same velocity. The difference of the control inputs of the rear car
considering the ego vehicle are ∆ur = [−0.51,−0.32,−0.25] for the states 3 to 5. As might be
expected, the state 5 results in the least braking force (disturbance) for the rear vehicle. It is be
mentioned, that this leads to tailgating with the front car and this behavior is not considered in
this evaluation.

Discussion

The first simulation scenario demonstrates that the cICS check is indispensable to prevent a col-
lision beyond the planning horizon. A shorter replanning time or a longer planning horizon may
also prevent the collision, but there is no guarantee for this and it will result in a higher computa-
tional effort. Additionally, unnecessary motion oscillations of the vehicle can be avoided which
are caused by a misleading safety assessment. For instance, during the lane change scenario an
unsafe trajectory is applied which forces the ego vehicle to abort the maneuver or at least to adopt
its trajectory by replanning. Furthermore, the proposed approach can also be used to validate the
safety of possible navigation goals. Therefore, the cICS check is performed first and then the

91

4. Interactive Assessment

Tab. 4.1.: Simulation parameters for the obstacles

Eight regions for x[m] [0.1, 0.3] · · · [1.5, 1.7]

One region for y[m] [−0.5, 0.5]

Initial velocity direction ^v[rad] [3
4
π, 5

4
π]

Initial absolute velocity ‖v‖ [m
s
] [0.0, 0.5]

Acceleration direction ^a[rad] [3
4
π, 5

4
π]

Absolute acceleration [m
s2

]: {0.1, 0.3, 0.5, 0.7, 0.9}

Initial covariance Σ(0) (see (4.9))

0.01 0 0 0

0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

trajectories are generated. This order can reduce the calculation time if the used motion planner
has a high computational complexity compared to the complexity of the cICS check.

4.6.2. Mobile Robot Application

In this section, simulations are used to validate the cPCSu concept. The following simula-
tions show the influence of the probabilistic effort q(e) (for avoiding the robot) on the result
of cPCSu(xA) for reactive objects. In order to show the usefulness of computing with a dis-
tribution of the effort for avoiding the robot, random scenarios are generated and evaluated.
Despite the workspace objects, the initial state of the robot is fixed and has the initial state
x =

[
0m 0m 0.5m

s
0m

s

]T
. The objects are placed randomly in front of the robot facing to-

wards it. Each scenario consists of one robot and three workspace objects. The workspace
objects are placed randomly in one of eight predefined adjacent regions which are partitioned in
x-direction. The regions and other parameters for the objects are listed in Tab. 4.1.
An example scenario using the listed parameters is shown in Fig. 4.9. In this scenario, the
collision probability is reduced by 45% when considering reactive objects. For each of the eight
regions 100 initial states are randomly generated for the objects. For this implementation, the
ignoring and reactive objects are modeled as:

• Ignoring objects, i.e. objects that are not trying to avoid the robot. Thus, the probability

distribution for the effort is q(e) =

{
0, if e ∈ (0, 1]

δ, if e = 0
, where δ is the Dirac impulse.

• Reactive objects, i.e. objects that are trying to avoid the robot. For the simulations, a
Gaussian distribution for q(e) is used with mean value µ = 0.5 and standard deviation
σ = 0.2. In order to obtain a finite number of effort values ek, the Gaussian distribution is
discretized.

92

4.6. Simulations

(a) Motion prediction assuming ignoring objects, the associated
collision probability is PCS(xA) = 40%.

(b) Motion prediction assuming reactive objects, the associated
collision probability is cPCSu(f(xW)) = 18%.

Fig. 4.9.: Random scenario for x[m] region 4: Gaussian distributions are illustrated by 2σ-ellipsoids.

93

4. Interactive Assessment

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4.10.: Relative difference between PCS (ignoring objects) and cPCSu (reactive objects).

In order to obtain relevant results, randomly generated situations with a collision probability of
less than 0.01 are discarded. To verify the usefulness of modeling the avoidance capabilities of
the objects, the mean relative difference

D =
1

Ns

Ns∑
1− cPCSu

PCS

obtained from all Ns scenarios is shown in Fig. 4.10. It can be seen that there is a significant dif-
ference between reactive and ignoring workspace objects. The maximum achieved difference is
48%. It can also be seen that the improvement depends on the distance of the robot to the objects
when considering the velocity range and direction as listed in Tab. 4.1. There is no difference
for greater distances than 1.3m since the collision probabilities are zero for reactive and ignoring
workspace objects. During the evaluation, PCS was calculated 600 times for three workspace
objects. The algorithm is implemented in Matlab and was executed on a AMD Phenom with 2.5
GHz. The mean computational time of cPCSu for one workspace state is 0.1s.

Discussion

The simulation results show a clear improvement of the safety assessment using cPCSu instead
of PCS. Therefore, a suboptimal two-stage approach is used which brakes up the mutual de-
pendency of the robot and object trajectories. However, it is not possible to give an upper error
bound for this approach due to the decoupling of the original problem. The focus of these imple-
mentations is on an on-line capable algorithm which is suitable to be integrated into a navigation
framework improving its safety assessment. The original cPCSu problem can be more complex
than the classic motion planning problem. Since the cPCSu can be seen as an additional safety
check, the response time of the algorithm is more important than the quality of the result as long
as the result of cPCSu is conservative.

94

4.7. Discussion

4.7. Discussion

In this chapter, the problem of assessing the safety of scenarios containing reactive or control-
lable objects is addressed. The main contributions of this chapter are novel definitions for safety
assessment that reason over an infinite time horizon while taking into account the cooperative
behavior of all reactive objects in the workspace. These includes the extension of the ICS con-
cept, cICS for deterministic environments, and the two novel concepts cPCSd and cPCSu for
stochastic environments. These concepts can be used as an additional safety assessment for
PMP planners as described in Sec. 1.2.4. The following paragraphs briefly discuss the concept
of cICS and cPCS.

Cooperative Inevitable Collision State The definition of cICS is suited for deterministic
environments which are populated by reactive or controllable objects. The aim of this approach
is to determine a safe future motion for all object including the robotic system, thus the motion
safety can be guaranteed for an infinite time horizon. In other words, this concept assesses the
states of all objects so that no one is an ICS state, while taking into account the cooperative
behavior of the workspace objects. This concept is especially useful for densely packed environ-
ments that can cause the FRP [117]. Taking into account the reciprocal collision avoidance of
these objects will lead to a less conservative assessment and is the only solution to relax the FRP.

An example implementation is presented for autonomous driving on highways. The compu-
tational complexity can be reduced by assessing each lane separately resulting in an 1D opti-
mization problem for each vehicle. However, this leads to a conservative assessment since lane
changes or variable control inputs are not considered in this implementation. If lane changes
and variable control inputs for all vehicles would be taken into account, this may lead to an even
more complex task than the original motion planning problem of the ego vehicle. Thus, this kind
of extension would not be appropriate for an on-line application for autonomous driving.

Simulation scenarios showed the relevance of this safety assessment approach. In addition to
the pure safety assessment, it is also possible to measure the disturbance of the other vehicles
caused by the ego vehicle. In challenging situations, like a high density of vehicles, the cICS

implementation can also be used to evaluate promising goal states before wasting computational
time by generating trajectories to unsafe states.

For real-world applications, it is necessary to consider the reaction time of human drivers and
their limited perception capabilities. A model for the perception system of the human driver will
prevent the algorithm to react to vehicles which the driver cannot perceive.

The proposed concept can be applied to other motion planning methods in order to preserve
the three criteria for motion safety mentioned in Sec. 1.2.1. This is particularly the case for the
third criteria: reasoning over an infinite time horizon.

Cooperative Probabilistic Collision State The proposed definitions of cPCSu and
cPCSd allow reasoning about the safety of planned motions in uncertain dynamic environments
beyond the planning horizon. The presented definitions are especially useful in densely packed
environments where the future motion of other objects in the workspace is highly uncertain. Due
to the high uncertainty the collision risk of future trajectories of the robot increases which may
lead to a FRP. To address this problem for stochastic modeled environments, cPCS is applied

95

4. Interactive Assessment

considering the cooperative behavior of reactive objects. Two different definitions of cPCS are
given which differ in the behavior of the objects. While objects according to the definition of
cPCSd behave optimal regarding the present scenario, the objects behave optimal regarding all
possible scenarios according to the definition of cPCSu.

Two different applications, autonomous driving on highways and robot navigation in densely
packed environments, are used to evaluate the presented concepts. For the automotive application
the cPCSd definition is used which is based on the definition of cICS. It allows one to relax the
binary assessment and considers uncertainty in the state of all objects.

For the mobile robot application in densely packed environments, the cPCSu definition is
used which is less computational complex than the cPCSd definition. Moreover, the required
optimization for estimating cPCSu is decomposed into: an optimization of the robot trajectory
assuming ignoring objects; an optimization for the reactive trajectories of the objects based on
this robot trajectory. This is done in order to avoid the mutual dependency of the robot and object
trajectories. But this results in a non-optimal solution and in turn leading to a more conservative
implementation of cPCSu. In this example implementation, the willingness of objects to avoid
the robot was considered which showed a big impact on the collision risk. Hence, the simulation
results show that the consideration of the cooperative behavior of reactive objects is necessary
to avoid the FRP. The simulations of the cPCSu checker showed that it is efficient and thus
applicable to real-world scenarios.

96

5. Integration into Motion Planning

Summary The purpose of this chapter is to present the integration of the safety assessment
concepts from previous chapters into motion planning approaches. The concept of cICS from
Chap. 4 is integrated into a navigation framework for autonomous navigation on highways. It
allows one to overcome former limitations regarding its safety assessment by guaranteeing mo-
tion safety during and beyond the planning horizon. The idea of closed-loop assessment from
Chap. 2 is used to develop two motion planners which generate multiple motion possibilities
for the robot to reach its goal. Thereby, the robotic system is able to react to changes in the
environment improving the safety as well as the expected cost for the navigation task. The mo-
tion planners are evaluated by simulation scenarios from the field of mobile robot navigation. In
Chap. 4 the problem of safety assessment considering the avoidance behavior of reactive objects
is discussed. This idea is used in an interactive motion planning approach that considers the
avoidance behavior as well as the goal directness of reactive objects.

The outline of this chapter is as follows: Sec. 5.1 provides the motivation and a general
problem formulation for motion planning. Then Sec. 5.2 provides a brief overview of related
work on motion planning. The integration of the cICS concept into a navigation framework
for autonomous driving on highways is presented in Sec. 5.3. In Sec. 5.4 a motion planner for
on-line and off-line planning incorporating replanning possibilities is presented. Inspired by the
interactive safety assessment, a sampling-based motion planner considering the interaction and
goal-directness of all objects in the workspace is described in Sec. 5.5. Sec. 5.6 presents example
implementations of the proposed navigation approaches. The corresponding simulation results
are presented in Sec. 5.7. Finally, a discussion of this chapter is given in Sec. 5.8.

5.1. Motivation and Problem Formulation

The novel safety assessment approaches from the previous chapters can be used to evaluate the
safety of trajectories in a subsequent step after the trajectory generation. In the following sec-
tions, the integration of these safety assessment approaches into motion planning are presented
allowing for a more efficient computation and a wider application to motion planning problems.
First, the motivation and problem formulation for two different classes of motion planning prob-
lems are presented: motion planning in deterministic and in uncertain environments.

For deterministic environments the motion planning task is formulated as a continuous-time
optimal control problem. In order to show the advantages of integrating the idea of safety as-
sessment beyond the planning horizon into optimal control, a brief overview of related work
on motion planning approaches for deterministic environments with the focus on autonomous
driving is given in the next section.

For navigation in uncertain environments, the motion planning task is formulated as a discrete-
time optimal control problem. Two variants are presented for considering dynamic objects in the

97

5. Integration into Motion Planning

problem formulation: chance constraints and cost functions including the collision probability
of the robot. Additionally, a brief overview of related work on motion planning approaches for
uncertain environments is presented.

5.1.1. Motion Planning in Deterministic Environments

In this section the problem of navigation in deterministic and dynamic environments is discussed.
In order to formally define the problem, the optimal control problem for deterministic environ-
ments is introduced [57]:

Problem 1 (Optimal Control Problem). The optimal control problem is to find the control func-
tion u∗c(t) which causes the system

ẋ = m(x(t), u(t), t), x(0) = x0

to minimize the cost function

cost(u(t)) = φ(x(T), T) +

∫ T

t0

L(x(t), u(t), t) dt

u∗c(t) : = arg min cost(u(t))

subject to

x(T) = xg

∀t x(t) ∈ X a(t) with X a(t) = {x ∈ X |A(x(t)) ∩ B(t) = ∅} (5.1)

∀t u(t) ∈ U(t).

The term T represents the time duration of the optimal trajectory u∗c(t) and x(t) describes
the state along the trajectory. The subscript c indicates that a cost function is optimized instead
of the pure collision probability. The admissible control set U(t) and the admissible state space
X a(t) at time t ensure the kinematic and dynamic constraints of the robot. The admissible state
space is time dependent in order to take into account dynamic objects in the workspace. In order
to ensure that the robot reaches the goal state xg at the final time T , the constraint x(T) = xg is
introduced. The cost function contains the two terms φ(·) and L(·) which are the endpoint cost
and the trajectory cost, respectively.

This kind of formulation allows one to exactly define the motion planning problem: find a
solution which starts at the initial state x0 and reaches the goal state xg. Many applications
demand not only to reach the goal but also to choose the controls such that a predefined cost
function is minimized. The cost function depends on the environment and task of the robot.
Length, time duration, energy consumption or jerk of a trajectory are common criteria that are
minimized. Furthermore, constraints are introduced to ensure that the optimized trajectories are
executable by the robot and to define forbidden regions in order to prevent the robot from colli-
sions. Thus, optimal control provides a natural formulation for motion planning in deterministic
environments.

98

5.1. Motivation and Problem Formulation

5.1.2. Motion Planning in Uncertain Environments

In this section, the problem of navigation in uncertain and dynamic environments is discussed.
The challenges of motion planning in uncertain environments rise from the different sources of
uncertainty [77]:

• Uncertainty in robot sensing (RS)

• Uncertainty in robot predictability (RP)

• Uncertainty in environment sensing (ES)

• Uncertainty in environment predictability (EP)

In this chapter, the focus is on applications that arise from mobile robot navigation in human
populated environments. The occurring uncertainty originates mostly from the sources ES and
EP in such kind of environments. Motion prediction of humans or human controlled systems is a
difficult challenge, because it depends on internal states and intentions that cannot be measured
directly. For example, the goal of the human is crucial information which is needed to predict
his long-term motion. Since the uncertainty caused by the robot is usually much smaller than the
one caused by the environment, we neglect the sources RS and RP to reduce the complexity of
the motion planning problem. The same assumptions hold for autonomous car navigation in the
presence of other human controlled vehicles or pedestrians [36].

In order to formally define the problem, the discrete-time optimal control problem without
considering any other objects is introduced:

Problem 2 (Discrete-Time Optimal Control). The optimal control problem is to find a set of
inputs ũ∗c = {u∗,1c , u∗,2c , . . . , u∗,NT} which causes the system

xk+1 = m(xk, uk), x0 = x0 (5.2)

to minimize the cost function

cost(u0, u1, . . . , uNT−1) = φ(xNT) +

NT−1∑
k=0

L(xk, uk) (5.3)

ũ∗c : = arg min cost(u0, u1, . . . , uNT−1)

subject to
∀k xk ∈ X k

∀k uk ∈ Uk

xNT = xg.

(5.4)

The variable tk with k ∈ {0, 1, . . . , NT − 1} describes the discrete time points and NT is
the horizon or number of applied control inputs. xk describes the state and uk the control input
at time tk. The set Uk is the admissible input space and X k is the admissible state space at
time tk for the robot. In order to ensure that the robot reaches the goal at the final stage NT,
the constraint xNT = xg is introduced. The cost function (5.3) contains the two terms φ(·) and
L(·) which are the endpoint costs and the trajectory costs, respectively. This formulation does

99

5. Integration into Motion Planning

not consider any uncertain objects in the workspace of the robot. In principle there are two
possibilities to consider uncertain objects in optimal control based motion planners: introducing
chance constraints or adapting the cost function to consider the collision probability of the robot.
Chance constraints are defined as

∀t P (C|ũ(x(0), t)) < τcoll, (5.5)

where P (C|ũ(x(0), t)) is the collision probability that the robot will collide at time t while
executing the trajectory ũ starting at x(0). For integration into Prob. 2, (5.5) is added to the con-
straints in (5.4). This chance constraint ensures that at each time point the collision probability
of the robot trajectory is below a predetermined threshold τcoll. The upper bound of the resulting
collision probability of an entire trajectory is

P̄ (C|ũ∗c) = 1−
(
1− τcoll)

NT .

In [15] chance constraints are introduced for static objects which positions are exactly known
without any noise. This approach is extended by [8] allowing chance constraints to be used for
uncertain dynamic objects.

Instead of using chance constraints, a different cost function can be used which depends on the
trajectory costs and the collision probability, also called probability of failure of the trajectory,

cost(ũ) = h
(
P (C|ũ(x(0))), L(ũ)). (5.6)

For integration into Prob. 2 the original cost function (5.3) is replaced by this cost function (5.6).
The function h(·, ·) can, for instance, be a weighted sum or a product and adjust the tradeoff
between both criteria. The trajectory costs L(·) are now calculated for the entire trajectory rather
than an additive cost function for each stage.

In order to illustrate the difference between both possibilities, an illustrative example is
used. The scenario is sketched in Fig. 5.1. The task of the robot is to reach a predefined
goal location while minimizing the length of the trajectory. As can be seen, with chance con-
straints the robot prefers to navigate between the noisy objects assuming a probability of col-
lision close to the predefined threshold τcoll. Integrating the objects in a cost function, e.g.
h = P (C|ũ(x(0))) + l(ũ(x(0))) with l(·) is the length of ũ, results in a trajectory which is
slightly longer than the other solution but with a clearly smaller collision probability. This exam-
ple shows that the solutions from chance constrained optimal control may lead to unnecessary
risky trajectories. The reason for this is, that the chance constraints do not allow optimizing the
tradeoff between trajectory cost and the collision probability but rather define an upper bound
of collision probability. In many applications, especially in the presence of humans, the robot
should minimize the tradeoff between efficiency of the trajectory and the collision probability. If
the threshold for the chance constraints is too low, the robot may often get stuck since no trajec-
tory can be found that fulfills the constraints. Otherwise, choosing a higher threshold may result
in unnecessary risky trajectories in many situations, as shown in Fig. 5.1. Thus, in this chapter
the motion planning approaches for uncertain and dynamic environments consider the objects
in the cost function by the collision probability of the robot trajectory. In the next section, a
brief overview of related work on motion planning in deterministic and uncertain environments

100

5.2. Related Work

Fig. 5.1.: This example scenario of motion planning in uncertain environments sketch the different result
if the objects are considered as chance constraints or in the cost function by the collision probability of
the trajectory.

is given. Therefore, the focus is set on autonomous driving and on mobile robot navigation in
populated environments as an example application for deterministic environments and uncertain
environments, respectively.

5.2. Related Work

In order to allow a robotic system to fulfill a certain navigation task, a motion planning problem
must be solved. Motion planning or its related problem path planning are known to be complex
tasks. In [97] it was shown that the problem of finding a path for a robot represented by several
polyhedral parts in environments with polyhedral objects is PSPACE-hard. An algorithm for
non-polyhedral objects in the environments is presented in [105]. Its time complexity is twice
exponential in the dimension of the configuration space. A more efficient algorithm is presented
in [19] which has single exponential complexity regarding the configuration space.

In the last decades, many different solutions for a variety of motion planning problems are
developed. For a general and detailed overview of motion planning approaches the reader is
referred to the well-known monograph of Latombe [69] which presents most of the basic ap-
proaches and their properties for various motion planning problems. The books of LaValle [73]
and Laugier and Chatila [70] include more recent methods.

5.2.1. Autonomous Navigation of Vehicles

Many approaches for autonomous driving belong to the class of sampling-based motion plan-
ners. These include rapidly exploring random trees (RRT) [72] and state lattices planner [94].
The state lattice approach can be seen as a generalization of a grid and allows performing effi-
cient constrained motion planning as a heuristic search. In the construction phase the state lattice
planner generates a grid of lattice nodes and adds connections to it if there exists a feasible path

101

5. Integration into Motion Planning

between any two nodes. Inverse trajectory generation is used for computing the edges between
the lattice nodes. The lattice grid is overlaid by a cost map to include objects in the motion plan-
ning. Then, heuristic graph search algorithms are applied to find the optimal sequence of edges
in the lattice to a predefined goal location. The RRT algorithm belongs to the class of proba-
bilistic motion planners. States in the configuration space of the robot are randomly sampled
and connected to the closest node in the tree. It is not required that these two states are ex-
actly connected which makes this approach also applicable to systems with difficult constraints.
Moreover, the RRT planner satisfies the criteria for probabilistic completeness: the probability
that a trajectory is found connecting the start and goal approaches 1 if the number of samples
approaches infinity. Both approaches, the RRT and the lattice planner, have been applied suc-
cessfully in full-scaled autonomous vehicles [63, 82]. As stated in [125], these methods are most
useful for combinatorial difficult problems encountered in environments such as parking lots, but
they cannot guarantee to find the optimal solution in finite time or to provide solutions to a set of
specified goals.

Another related field is model predictive control (MPC) also called receding horizon control
(RHC). Instead of solving the complete motion planning task at once, it iteratively generates
partial trajectories using a dynamic model of the robotic system to predict its future states. Most
approaches use open-loop MPC which generates a sequence of control inputs. The algorithm
directly takes into account the kinematic and dynamic constraints of the robot as well as the en-
vironment constraints. At the same time the control inputs are optimized to minimize a specified
cost function. Due to its incremental character, this approach is especially useful for dynamic
environments. In [104] a RHC problem is formulated as a mixed-integer linear programming
problem for multi-vehicle planning. Due to the integer variables, hard objects and collision
avoidance constraints can be integrated in the RHC approach. In [6] a MPC approach is used in
a semi-autonomous control framework. The MPC generates continuously an optimal trajectory
which is used to obtain the minimum threat posed to the vehicle. Based on the result of the
threat assessment, the level of intervention is adjusted to prevent the vehicle from leaving a safe
corridor. Due to the high complexity of the MPC-based trajectory generation, this method is not
suitable for generating trajectories for long time horizons.

The two capabilities, considering a set of alternative goal states and replanning with high fre-
quencies, are important requirements for motion planning at high-speeds including object avoid-
ance. Therefore, in [52] and [88] a strategy is suggested which takes advantage of the structure in
the road environment by considering multiple final states. Based on this idea, an optimal control
motion planner is presented in [125] using quintic polynomials. It generates optimal trajectories
to a variety of goal states resulting in a so called fan-shaped trajectory set. An unconstrained
optimal control approach is used to generate this set of trajectories which is checked for feasi-
bility in a subsequent step. This allows a replanning cycle time of less than 100 ms whereby a
maximum of more that 1000 alternative trajectories are generated. The alternative trajectories in
combination with the high replanning frequency enable the system to react to unforeseen traffic
changes.

Recently, the project HAVEit compared two approaches for high-speed driving in structured
environments in [98]. As a result, the above mentioned quintic polynomial based approach out-
performed the other method based on searching the optimal solution in the discretized command
space. The special demands for high-speed driving are: smooth maneuvers, high level of safety,

102

5.2. Related Work

hard real-time constraints and a long foresight. Hence, the approach of [125] is applied to this
problem in Sec. 5.3. The purpose is to show the integration of the safety assessment concept
from Chap. 3 since safety beyond the planning horizon was originally not considered by this
approach.

5.2.2. Mobile Robot Navigation in Populated Environments

In [13] a navigation approach is presented based on motion patterns of people. These motion
patterns are learned from recorded human motions in the environment allowing for predicting the
future motion of humans. The predicted patterns of the humans are mapped in a 2D occupancy
grid storing the probability of occupancy of each cell. Based on this map, an A* search is applied
to find a minimum-cost path to the goal of the robot. If the robot path intersects with a human, the
robot changes its velocity or stops to allow the human to pass the robot. The work of [101] uses
a similar method for predicting the future motion of humans, however, the robot uses also the
same motion patterns for its navigation. Thus, the robot behaves more human like and chooses
motion patterns that minimize the risk of disturbing the humans. These two approaches are
typical examples predicting the future motion of humans and applying common path or motion
planners to find an optimal trajectory which minimizes the disturbance for humans as well as
the navigation cost for the robot. Other similar approaches are e.g. [68] and [111]. More recent
approaches for human motion prediction, such as [9, 129] and [87], use inverse optimal control
to determine the cost function explaining the motion of humans.

Due to the highly uncertain motion prediction of humans, the approaches mentioned before
may generate trajectories with high collision probabilities. One reason for this is, that these
approaches ignore the collection of new information about the environment while executing a
trajectory. There are only few navigation approaches taking into account multiple future distribu-
tions of objects representing their future states. These distributions can also be seen as unknown
future measurements. In [116] a stochastic dynamic programming formulation is given which
needs to solve the optimal control problem for all possible measurements resulting in an optimal
feedback policy. In a stochastic environment the set of possible measurements is infinite. That
is why most common approaches ignore the possible measurements beyond the current state of
the robot. This is called an open-loop receding horizon control problem. As stated in [127] this
leads to conservative results. However, a closed-loop receding horizon control (CLRHC) prob-
lem is in most cases not applicable due to the infinite set of possible future measurements. This
argument induced the authors of [116] to introduce their partially closed-loop receding horizon
control (PCLRHC) approach. Instead of considering all possible future measurements, only the
most likely measurement is assumed. But this may lead to a non-conservative result, meaning
that this approach can violate some constraints of the receding horizon control problem such as
chance constraints. For instance, if the most likely measurement and the real measurements vary
considerably for a certain time horizon, the real collision probability for the future robot motion
may be higher than the predicted one.

The work of [117] claims that even the perfect motion prediction without any uncertainty can
still lead the robot to an FRP. The reason for this is that the interaction between the objects and the
robot is ignored in the common motion planning algorithms for populated environments. Hence,
it is not valid to decouple the motion planning problem into motion prediction and trajectory
generation. Crowd simulation is a related field of motion planning in populated environments

103

5. Integration into Motion Planning

considering reciprocal collision avoidance. During a crowd simulation hundreds or even thou-
sands of agents are simulated simultaneously, thus the computational efficiency of the navigation
algorithm is crucial. A precomputed roadmap [69] is used in [119] to obtain a high-level cogni-
tive map of the environment. During the execution of the agents, the reciprocal velocity obstacle
(RVO, extension of the velocity obstacle approach [30]) approach is used for the collision avoid-
ance behavior of the agents. Instead of the RVO, a social force model [49] is applied by [110] to
update the roadmap continuously based on the inter-agents interaction forces. A more recent ap-
proach is the optimal reciprocal collision avoidance presented by [121] which overcomes some
limitations of the RVO approach. It can guarantee collision-free navigation for multiple robots
assuming a complete model of the environment. Some extensions exist which also incorporate
the kinematic and dynamic constraints of the robot model as done in the work of [109] and [1].
If the future motion of the surrounding objects is only available through stochastic motion pre-
diction, the problem becomes more challenging. Only few navigation algorithms consider the
avoidance possibilities of workspace objects in uncertain environments. One of the first ap-
proaches was published by [58]. It is called reflective navigation and uses recursive probabilistic
velocity obstacles which are an extension of the probabilistic velocity obstacles. The robot re-
flects on its environment and incorporates the avoiding behavior of the other moving objects into
its own planning. An algorithm for joint collision avoidance, which uses interacting Gaussian
processes, is presented by [117]. Every trajectory of the objects is modeled as a Gaussian pro-
cess and the interaction between all objects including the robot is represented by an interaction
potential which is proportional to the Euclidean distance of the corresponding agents.

In the following, two novel motion planning algorithms for uncertain environments based on
the closed-loop assessment from Chap. 2 are shown in Sec. 5.4 and an interactive motion planner
based on Chap. 4 is presented in Sec. 5.5.

5.3. Optimal Control Considering Safety Beyond the
Planning Horizon

In this section the cICS concept from Chap. 4 is integrated in an optimal control approach with
focus on high-speed driving in structured environments like country roads as well as highways.
It is noted, that the integration is not limited to autonomous driving and can be used for various
motion planning tasks formulated as optimal control problems. The special demands for high-
speed autonomous driving are: smooth maneuvers, high level of safety, hard real-time constraints
and a long foresight. As mentioned in Sec. 5.2.1, the approach described in [125] is appropriate
for this kind of task. This approach makes use of quintic polynomials but instead of generating
trajectories in world coordinates they are represented in lane coordinates of the road. This al-
lows for generating comfortable minimum jerk maneuvers at a wide speed range. Therefore, an
optimal control approach is used excluding other vehicles and kinodynamic constraints which
is presented in the following subsections. This approach, which is presented in detail in [125],
is combined with the cICS concept from Sec. 4.3 addressing the problem of safety beyond the
planning horizon. Since no on-line optimization is included in this motion planning framework,
it has a bounded response time and is on-line capable. The following brief description of the
optimal control approach is taken from [137].

104

5.3. Optimal Control Considering Safety Beyond the Planning Horizon

trajectory

center line

Fig. 5.2.: Vehicles represented in the Frenet Frame.

Street Relative Coordinates and Cost Decomposition

In most traffic situations the human driver plans the vehicle’s lateral movement relative to the
lanes rather than to the absolute ground. Imitating this approach, the trajectory generation prob-
lem is formulated in the so-called Frenet frame [nc, tc] of the street, shown in Fig. 5.2. Here,
the offset to the lane center is denoted by d(t) and s(t) describes the covered arc length of the
frame’s root point r(s) along the center line. Next, it is assumed that the trajectory cost cost

may be separated into a lateral and a longitudinal component, costd and costs, according to the
weighted sum cost(d, s) = costd(d) +ws costs(s), ws > 0. It can be shown (see e.g. [125]) that
the unconstrained movement (no restrictions such as objects) of d(t) that transfers the vehicle
from the initial state [d(0), ḋ(0), d̈(0)] to a given end state [d(T), ḋ(T), d̈(T)] while minimizing
the cost function (Jerk) is a fifth-order polynomial. This gives us the general shape of the lateral
trajectory, such that only the end state and the end time is left for optimization. The target ap-
plication narrows a priori a set of reasonable solutions. The vehicle should generally progress
along the road and not crosswise, thus, d(t)’s first and second derivative at time T is constrained
to be zero. As for the choice of the terminal time, reaching the end state too early might lead to
uncomfortable, energetically wasteful actions, whereas a too late arrival implies lagging move-
ments. Since these issues are also strongly coupled with the end state, the goal is to find the best
trade-off by defining the terminal cost to be

φ(d(T), T) := (wT t+ 1
2
wd[d(t)− dref]

2)T

with wT , wd > 0 which penalize both slow convergence and final deviations from the reference
trajectory with e.g. dref = 0. In order to reduce the number of end states, the lateral trajectory is
only allowed to arrive at certain points in absolute time as well as with certain discrete distances
to the reference trajectory dref. Consequently, all admissible polynomials form an entire fan-
shaped trajectory set evenly covering the maneuver space as shown on the left of Fig. 5.3. Analog
considerations lead to a set of polynomial movements for the longitudinal velocity ṡ(t) which
can be seen on the right of Fig. 5.3.

Compared to the optimal-control approach from Sec. 5.1.1, this approach does not consider
any kinematic or dynamic constraints of the robot nor other objects in the workspace. There-
fore, the longitudinal set is crosswise superimposed with the lateral set and back-transformed to
global coordinates to compute parameters such as accelerations, curvature and velocities of the
trajectories. Afterwards, trajectories which do not satisfy the constraints of the vehicle are ne-

105

5. Integration into Motion Planning

0 1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

Fig. 5.3.: Simulation of an optimal transfer to the dashed reference by replanning [137]. In each step the
thick line is the optimal trajectory, black are the valid and gray the invalid alternatives.

glected from the fan-shaped trajectory set. Furthermore, trajectories which are colliding during
the planning horizon are identified by the approach described in [78] and are also removed from
the trajectory set. Loosely speaking, the constrained optimal control approach is decoupled into
unconstrained trajectory generation and a subsequent constraint check. In the following, the in-
tegration of cICS is presented which identifies trajectories that are colliding with objects beyond
the planning horizon of the trajectories.

cICS Integration

The presented trajectory generation approach can be characterized as a partial motion planning
(PMP) [92] method since the trajectories have a limited time horizon and do not reach the global
navigation goal. Thereby, the problem arises that the final state of the vehicle may have a non-
zero velocity. As pointed out in [92] it is indispensable to assess the safety of partial trajectories
by using ICS [33] for evaluating the final state of the trajectory. For the integration in the frame-
work of [125] the cICS approach is used considering the reactive behavior of the surrounding
vehicles. This results in a less conservative assessment compared the the ICS assessment as dis-
cussed in Chap. 4. The improved framework fulfills all three safety criteria presented in 1.2.1.
The presented cICS checker from Sec. 4.3 is used to evaluate the safety of the final state of
each trajectory in the fan-shaped trajectory set. It is recalled that a workspace state xW is an
Cooperative Inevitable Collision State (cICS) iff

cICS ⇔ ∀ũ(xW) ∈ Ũ ∃t ∃(i, j|i 6= j) : BAi (ũi(t)) ∩ BAj (ũj(t)) 6= ∅.

For integration into the optimal control formulation the following constraint is added to (5.1) in
the optimal control problem Prob. 1:

cICS(xW(T)) = 0, with xW(T) = {xA(T),xB1 , . . . ,xBNb
}.

The state xA is equivalent to the state x in the optimal control formulation. This constraint
replaces the former end state constraint x(T) = xg, since for the application of driving on a
highway there is no real goal state. Furthermore, the time T describes the planning horizon of
the motion planner rather than the end time. Considering the same motion planning problem,
but assuming ignoring objects in the environments, the ICS approach can be used by adding the

106

5.4. Motion Graph Planning

constraint
ICS(x(T)) = 0.

This extended motion planning approach for autonomous driving on highways including
safety assessment beyond the planning horizon is evaluated by simulations in Sec. 5.7.1. There-
fore, the implementation described in Sec. 4.5.1 is used to evaluate each final state of the fan-
shaped trajectory set if it is an cICS state.

5.4. Motion Graph Planning

In this section, two possibilities are shown to integrate the safety assessment approach from
Chap. 2 into motion planning algorithms. Two different kind of integration possibilities are
given: an on-line and an off-line integration. The integration into roadmap-based planners is
used as an example for off-line planning. The trajectories are generated without any information
about the dynamic objects. The on-line integration uses a given solution to the motion planning
problem and improves this result by generating multi-edges allowing the route to be replanned
during execution. The multi-edges are optimized by minimizing the expected cost between two
vertices taking into account the motion prediction of the dynamic objects. The first proposed
integration is the on-line and the second the off-line approach.

5.4.1. On-line Planning

The problem of motion planning in uncertain and dynamics environments with a deterministic
robot can be stated as an optimal control problem (Sec. 5.1.2). In this case, the objects B of
the workspace are considered in the cost function (5.6). The cost function contains the term
P (C|ũ) which penalizes the collision cost regarding the objects B. The second term of the
cost function, L(·), defines the trajectory cost of the robot. Common cost functions are length,
duration or energy consumption of the trajectory. The purpose of the function h(·) is to adjust
the tradeoff between trajectory cost and safety (collision probability) of the optimal trajectory
ũ∗c . The solution to the optimal control problem is the optimal trajectory ũ∗c between the initial
and goal state of the robot.

However, the idea of closed-loop assessment from Chap. 2 shows that it is possible to re-
duce the expected collision probability by generating additional motion possibilities. Thus, it is
possible to generate a motion graph which has a lower expected collision probability than the
optimal trajectory ũ∗c that ignores future observations. The goal of motion planning in uncer-
tain environments is not to reduce the expected collision probability but the expected cost. To
make this possible, it is necessary to adapt some definitions from Chap. 2. Therefore, the same
environmental model from Sec. 2.4.3 is assumed and Def. 2 (minimum collision trajectory) is
adopted:

Definition 14 (Minimum cost trajectory ũ∗c between two vertices vi, vj regarding one distribu-
tion).

ũ∗c(vi,vj, f
t′(x, t|θk)) := arg min

ũ∈eij
cost(ũ, f t

′
(x, t|θk)).

107

5. Integration into Motion Planning

This definition allows one to adopt the Def. 3 (collision probability between vertices con-
nected by multi-edges) to determine the expected cost between two vertices vi and vj regarding
multi-edges.

Definition 15 (Expected cost between two adjacent vertices vi, vj with multi-edges).

cost(eij,btk) : = Eθ(tk)

[
cost

(
ũ∗c(vi,vj, f

ti(x, t|θ))
)]

=

∫
cost

(
ũ∗c(vi,vj, f

ti(x, t|θ))
)
f
(
θ(f tk(x, ti))

)
dθ,

with ti > tk and ũ∗c is the trajectory with the lowest cost.

According to Prop. 1 and Prop. 2 it can be shown that

cost(eij,btk) ≤ min
ũ∈eij

cost(ũ,btk).

Thus, it is possible to generate a motion graph with lower expected cost than the optimal trajec-
tory ũ∗c . In the following, the graph reduction algorithm from Sec. 2.7.2 is adapted to compute
the navigation cost of an entire motion graph instead of the pure collision probability. There-
fore, the equations (2.6) and (2.7) need to be adopted. For every pair of vertices connected by
multi-edges, Def. 3 is applied to determine the function

gc(eij,btk)→ [π∗c (vi,vj,bti), P (C|π∗c (vi,vj,bti),btk), L(π∗c (vi,vj,bti),btk)] (5.7)

which identifies the optimal policy π∗c for a given believe bti , the collision probability between
the vertices vi and vj , and the trajectory cost for a given btk . The optimal policy is defined as

π∗c (vi,vj,bti) := arg min
π

h
(
P (C|π(vi,vj,bti)), L(π(vi,vj,bti))

)
,

and π(vi,vj,bti)) returns the optimal trajectory given the belief bti . Note, that π∗c and the
collision probability as well as the trajectory cost can depend on different observation times.
After merging all multi-edges in H (subgraph according to Def. 4), rule (2.5) is applied to all
vertices vk with deg−(vk) ≥ 1 and deg+(vk) = 1 which are connected to the goal vertex vg.
Therefore, the two functions gc(eik,btl) and gc(ekj,btl) need to be merged by

gc(eik,btl)× gc(ekj,btl)→ gc(eij,btl)

π∗c (vi,vj,bti) = {π∗c (vi,vk,bti), π∗c (vk,vj,btk)}
P (C|π∗c (vi,vj,bti),btl) = P (C|π∗c (vi,vk,bti),btl)

+ (1− P (C|π∗c (vi,vk,bti),btl))P (C|π∗c (vk,vj,btk),btl)

L(π∗c (vi,vj,bti),btl) = L(π∗c (vi,vk,bti),btl) + L(π∗c (vk,vj,btk),btl),

where {πc, π′c} is the concatenation of two policies. The collision probability and the trajectory
cost are stored separately to allow for a fast calculation of the overall navigation cost cost(·) if
the function h(·) is changed. These two adopted rules allow for computing the cost for an entire
graph by the graph reduction algorithm from Sec. 2.7 and in turn to define the problem of optimal
motion graph planning.

108

5.4. Motion Graph Planning

Problem 3 (Optimal Motion Graph). Given a cost function

cost(ũ,bts) = h
(
P (C|ũ,bts), L(ũ)

)
the optimal motion graph problem is to find a graph G∗ = {V∗, E∗} which enables the system

xk+1 = m(xk, uk), x0 = x0,

to minimize the cost function by determining the optimal policy π∗c (vs,vg,bts) traversing the
graph form the initial vertex vs to vg given the initial belief bts of the environment. The optimal
policy returns the optimal trajectory in the graph for a certain belief

π∗c (vi,vj,bti) → ũ∗c(vi,vj), ũ
∗
c := arg min

ũ∈eij
cost(ũ,bti), eij ∈ E∗

subject to

∀ũ ∈ E ∧ Ũ
vg ∈ V , vg = {xg, tg}
vs ∈ V , vs = {x0, t0}
|E∗| = NE

|V∗| = NV .

The time points t0 and tg indicated the time when the robotic system is at the start state
and the goal state, respectively. This motion planning problem requires to solve a combined
optimization of the vertices V∗ and edges E∗ to obtain the optimal motion graph G∗. It is obvious
that this optimization problem is considerable more complex than the optimal control problem
Prob. 2. In order to ensure the requirements for an on-line motion planner some simplifications
and heuristics are introduced in the following.

The definition of the expected cost between two adjacent vertices allows one to define the
optimal additional edge between two vertices:

Definition 16 (Optimal edge between two adjacent vertices vi, vj). The optimal additional tra-
jectory ũ+

c for reducing the cost between the vertices vi and vj is defined as

ũ+
c (eij,btk) := arg min

ũ∈Ũ(vi,vj)

cost(eij ∪ {ũ},btk). (5.8)

This definition allows one to perform an incremental optimization of edges between two ver-
tices and is the centerpiece of the following incremental optimization approach.

The optimal motion graph planning Prob. 3 requires to solve a coupled optimization of the
set of vertices V∗ and Edges E∗. As already mentioned, the original problem is to complex
for an on-line optimization. Hence, an algorithm is presented which incrementally optimizes
a given solution to the motion planning problem by constructing a finite motion graph. The
initial solution is denoted as ũ0

c with ũ0
c(t0) = x0, ũ

0
c(tg) = xg. This novel motion planning

algorithm allows improving any given solution to the motion planning problem by adding multi-
edges allowing one to replan the route during execution. In Alg. 8 the overview of the algorithm
is given. First, the given solution ũ0

c is transformed to a graph structure. Therefore, the start

109

5. Integration into Motion Planning

and final state of the trajectory are stored as vertices and Nv additional states are sampled from
the trajectory. The partial trajectories between the vertices are the edges of the graph. These
edges are stored in the edge list and represent the candidates for the on-line optimization. In
order to reduce the expected cost of the existing plan, additional trajectories are generated for
these edges to obtain multi-edges according to Def. 16. Since the possible improvement gained
by an additional edge is not known before the optimization, a heuristic is applied to determine
the order of the optimization for the edges in the edge list. In this implementation the edge with
the highest cost is used as an heuristic. This step is repeated until the improvement is below the
predefined threshold τc, then the edge is removed from the edge list. The algorithm terminates
when the edge list is empty. One could also specify a maximum number of iterations or abort
the algorithm after a certain time duration resulting in an anytime algorithm.
The principal steps of this algorithm for three iterations are illustrated in Fig. 5.4 for one example

Algorithm 8: On-line Planning
Input : ũ0

c

Output : π∗c

Initialize: Sampling Nv vertices
V = {v1, . . . ,vN | vi ∈ ũ0

c},
Edges are the associated parts of ũ0

c

edge list = E = {e12, . . . , eN−1N}
while edge list 6= ∅ do

Get cost of all edges
foreach eij ∈ edge list do

cost(eij,bt′)

Find edge with the highest cost
emax
ij = arg max(cost(eij,bt′))

Generate optimal edge
ũ+
c (eij,bt′) (5.8)

Determine improvement
∆ cost = cost(eij,bt′)− cost(eij ∪ {ũ+

c },bt′)
if ∆ cost < τc then

edge list = edge list \ {emax
ij }

Append to edges
eij = eij ∪ {ũ+

c }
Determine optimal policy π∗c (adopted Alg. 1)
return π∗c

scenario. An example implementation for this novel algorithm is presented in Sec. 5.6.1.

5.4.2. Off-line Planning

Instead of optimizing a given solution to the motion planning problem, the safety assessment
concept from Chap. 2 is also integrated into a roadmap-based planner. The idea of roadmap-
based planners [55] is to divide the original motion planning problem into two subproblems:

110

5.4. Motion Graph Planning

(a) Example scenario with two moving objects
and initial solution ũ0

c .

(b) Initialize step: sampled vertices with result-
ing edges.

(c) Optimized edge ũ+
c added to edge e23 since

it has the highest cost.

(d) Another edge is added since edge e23 has
still the highest cost and improvement was big-
ger than τc.

(e) Optimized edge ũ+
c added to edge e34 since

it has the highest cost.
(f) Resulting multigraph after three iterations.

Fig. 5.4.: Figures depicting single steps of Alg. 8 for an example scenario, until three optimization steps
are performed.

111

5. Integration into Motion Planning

construction of the roadmap and the query problem. The roadmap generated off-line provides
a graph of vertices (sampled robot states) which are connected by edges (trajectories). In this
phase the kinematic and dynamic constraints as well as static objects of the environment are
usually considered. This means that the robot is able to follow any route in the roadmap without
colliding with any static object. However, dynamic objects are not considered in the construction
phase, this is done by the query phase. In the query phase, graph search algorithms are applied
to find the optimal trajectory which minimizes a predefined cost function. For integrating the
novel graph reduction algorithm from Sec. 5.4.1 can be used in the query phase to determine the
optimal policy rather than the optimal route. Additionally, another possible integration for the
construction phase is presented in the following.

The aim of this integration is to generate additional edges between vertices to reduce the col-
lision probability regarding dynamic objects. In this case, the cost is not optimized since the
trajectory cost is not so sensitive to multi-edges than the collision probability. For instance, the
length of trajectories between two vertices which are relatively close together, may vary between
±10%. The influence on the collision probability can be much more sensitive, in some cases an
additional edge can reduce a collision probability of 20% close to zero, as shown in Sec. 2.9.2.
In other words, the goal is to construct a roadmap which minimizes the expected collision prob-
ability while avoiding to generate a very large number of vertices. Since no information about
dynamic objects is available during the construction phase, the trajectories cannot be optimize
based on the motion prediction of dynamic objects. However, the trajectories are generated in
such a way, that vertices are connected with multi-edges consisting of trajectories with a low sim-
ilarity. The proposed similarity between trajectories is based on the intersection of the enlarged
occupancy (see Sec. A.2) of the robot while executing the trajectories.

Definition 17 (Similarity of two trajectories). The similarity S between two trajectories ũi and
ũj is defined as

S(ũi, ũj) =

∫
|∆Abij(t)| dt∫
|Ab(t)| dt

,

where |Ab(t)| is the area of the enlarged robot system and

|∆Abij(t)| = |Ab(ũi(t)) ∩ Ab(ũj(t))|

is the common area of the two trajectories.

Proposition 8. If no information is given about the future positions of the dynamic objects,
it is optimal to generate trajectories with minimal similarity between two vertices in order to
minimize the expected collision probability.

Proof. Let ũi be a given trajectory and ũ∗j the trajectory that minimizes the common collision
probability

ũ∗j = arg min
ũj

P (Cũi ∩ Cũj),

where Cũi and Cũj are the collision events, that the robot collides during the execution of the

112

5.5. Interactive Motion Planning

trajectory ũi and ũj , respectively. It can be derived

min
ũj

P (Cũi ∩ Cũj) = min
ũj

∫
P (Cũi(t) ∩ Cũj(t)) dt

= min
ũj

∫ ∫
∆Ab

ij(t)

f(p, t) dp dt.

Since only ∆Abij is depending on ũj , this term can just be minimized by reducing the common
occupancy area of the robot for both trajectories, thus

ũ∗j = arg min
ũj

P (Cũi ∩ Cũj)

⇔ ũ∗j = arg min
ũj

∫
|∆Abij(t)| dt

⇔ ũ∗j = arg min
ũj

S(ũi, ũj).

Therefore, the common collision probability is minimized iff the similarity is minimized.

This approach allows generating a roadmap which has a lower expected collision probability
during the query phase. Multi-edges should be generated especially in regions which have a
higher collision risk, such as narrow corridors or regions with a poor visibility. An example
implementation for generating multi-edges with minimum similarity is presented in Sec. 5.6.2.

5.5. Interactive Motion Planning

In this section, a navigation approach is presented that is based on the idea of interactive safety
assessment from Chap. 4. This approach is developed for addressing the freezing robot problem
(FRP). It was shown in [117] that the FRP cannot be solved without considering the avoidance
possibilities of the objects. In addition, [59] claims that a robot which is navigating to defensively
will surely get stuck in dense pedestrian traffic. It is recalled from Chap. 4, that the idea of
interactive safety is to find at least one safe trajectory for all objects in the workspace in order
to guarantee that there exists a solution to prevent any collision. To transfer this idea to motion
planning, the goal of each object needs to be taken into account.

Interactive Motion Planning The goal is to find a collision-free trajectory for the robot which
brings it closer to its goal while minimizing a cost function which depends on the future motion
of all objects in its environment. Furthermore, the future motion of the reactive objects depends
on their goal state and on the future motion of all other objects including the robot resulting in a
mutual dependency.

The interaction describes the mutual dependency of the objects on their motion to reach their
individual goal. Therefore, it is assumed that reactive objects incorporate the future motion
of surrounding objects into their own motion planning and expect similar anticipation of the
other objects. One possibility to give a mathematical formulation for this problem is to use

113

5. Integration into Motion Planning

game theory, more precisely discrete-time infinite dynamic games [11]. This kind of motion
planning problem is clearly more complex than the common optimal control problem for one
robot assuming ignoring objects in its workspace. Since in this case, Nb + 1 coupled optimal
control problems (one for each object including the robot) need to be solved. The coupled
optimal control problem shows that it is not possible to decouple the problem of interactive
motion planning into motion prediction of the objects and trajectory planning based on this
prediction as done in most common motion planning approaches.

The purpose of this section is to present a motion planner which incorporates the interaction
between the workspace objects. The resulting algorithm can be seen as a preliminary study to
evaluate the potential of interactive motion planning compared to the common motion planning
approach assuming ignoring objects in the workspace. Therefore, the workspace of one robotic
system which is populated by reactive objects (see Sec. 1.2.2) is assumed. The proposed algo-
rithm to address the problem of interactive motion planning is based on three assumptions:

1. Reactive objects avoid the robot if they are aware of it

2. Reactive objects move in order to avoid collisions with favored trajectories of the robot

3. Reactive objects move in order to come closer to their goal state

Since the cost function of the robot is not known to the other objects and it is not directly possible
to measure if the other objects are aware of the robot, the future motion of the reactive objects
are represented by PDFs. The PDF describing the future motion of the ith object is denoted as
fi(ũ, ũA), where ũ is a possible future trajectory of the object and ũA is the trajectory of the
robot. The subscriptA is added for a clear distinction between trajectories of the robot and other
objects.

The main idea of the algorithm is to consider the interaction by defining two collision events
as presented by [29]: CA, collision between any object and the robot and CB, collision between
any objects, excluding the robot. Both events are the two essential elements for the cost function
of the robot. The goal is to find the robot trajectory ũ∗A,c such that it minimizes the following cost
function

cost(ũA) = wαP (CA|ũA) + wβP (CB|ũA) + wγ(1− L(ũA))

ũ∗A,c : = arg min
ũA∈ŨA

cost(ũA), (5.9)

where wα, wβ, wγ are weight factors, P (CA|ũA) is the collision probability that the robot will
collide with at least one object, P (CB|ũA) is the collision probability that at least two objects
(excluding the robot) will collide and L(ũA) is the normalized trajectory cost of the robot also
called goal function. This goal function

L(ũA) ∈ [0, 1] (5.10)

represents the performance of the trajectory ũ in order to achieve the navigation goal. It is nor-
malized over all considered trajectories. In order to determine the two collision probabilities
P (CA|ũA) and P (CB|ũA) the PDFs of the reactive objects need to be specified. Therefore,
all possible trajectories of the objects are ranked by their goal functions. These goal functions
represent their preferred motion assuming free-space, meaning that surrounding objects are not

114

5.6. Implementations

considered. This behavior is equivalent to ignoring workspace objects. In contrast the distribu-
tions of the reactive objects are defined as

fi(ũ, ũA) = nie
−La

i (ũ,ũA), with ni being a normalization constant

and with
Lai (ũ, ũA) = wa(ũA, ũ)Li(ũ), wa ∈ [0, 1] (5.11)

being the goal function for reactive objects. The weightwa is introduced which models the avoid-
ance behavior of reactive objects by adopting the results from the goal function Li(·) assuming
ignoring objects

wa(ũA, ũi) = 1− (L(ũA)︸ ︷︷ ︸
predictability
∈ [0, 1]

Di(ũA)︸ ︷︷ ︸
detectability
∈ [0, 1]

). (5.12)

It depends on the predictability of the robot trajectory (assumption 2) and its detectability (as-
sumption 1). Predictable trajectories are those trajectories which are reasonable for the robot
(e.g. trajectories that are smooth and lead to its goal) and thus are predictable for other objects.
Detectable trajectories are those trajectories that allow other objects to observe the robot during
the execution of its trajectory. Assumption 3 (goal directness) is modeled by the goal function
of the object. This navigation approach is not directly implementable since it needs to con-
sider an infinite set of trajectories for each object including the robot. In Sec. 5.6.3 an example
implementation is presented.

5.6. Implementations

In this section, example implementations of the proposed approaches from the previous sections
are presented. First, one possible implementation for the off-line and on-line integration of the
motion planning approach from Sec. 5.4 are shown. Afterwards, an algorithm for interactive
motion planning based on the idea of Sec. 5.5 is described.

5.6.1. On-line Motion Graph Planning

The algorithm from Sec. 5.4.1 allows one to improve any given solution to the motion planning
problem by adding multi-edges allowing one to replan the route during execution. This even
holds if the motion planning algorithm finds the optimal trajectory based on the information
available at the initial state. This approach requires to solve the optimization problem from (5.8)
which is not directly implementable due to the infinite number of possible PDFs representing the
future position of the objects. Thus, as described in Sec. 2.8, a belief tree containing only a finite
set of possible distributions is used to estimate ˆcost(·) ≈ cost(·). The optimization problem
results in

ũ+
c (eij,b

ti
tk

) := arg min
ũ∈Ũ(vi,vj)

ˆcost(eij ∪ {ũ},btitk), with

ˆcost(eij,b
ti
tk

) : =
1

Ns

Ns∑
s=1

cost
(
ũ∗c,s(vi,vj, f

ti
s),btitk

)
, f tis ∈ btitk

(5.13)

115

5. Integration into Motion Planning

where Ns is the number of sampled distributions for one object representing its belief. Using
the trajectory generation approach described in Sec. 2.8.4 the optimization problem becomes an
one-dimensional nonlinear programming problem

α∗(eij,btk) := arg min
α∈[−1,1]

ˆcost(eij ∪ {ũ(α)},btk).

However, this optimization problem is still challenging due to its nonlinear characteristic and
the possible existence of local minima. That is why a generic random search algorithm [96] is
applied with a fixed collection of candidates which are uniformly sampled from the complete
interval of α ∈ [−1, 1]. For optimizing each candidate, the discrete Newton algorithm is used.
The result of the global optimization is the candidate with the smallest cost. This approach is
evaluated by simulation results in Sec. 5.7.2.

5.6.2. Off-line Motion Graph Planning

For implementing the off-line integration presented in Sec. 5.4.2 one has to solve the optimiza-
tion problem

ũ∗j := arg min
ũj∈Ũ

S(ũi, ũj).

Using the trajectory generation approach described in Sec. 2.8.4 it results in a nonlinear pro-
gramming problem

α∗ := arg min
α∈[−1,1]

S(ũi, ũj(α)).

Since this problem also suffers from possible local minima, the same numerical optimization
approach described above in Sec. 5.6.1 is used. This numeric optimization allows generating
roadmaps with multi-edges resulting in a lower expected collision probability regarding the entire
roadmap as stated in Prop. 8. In Sec. 5.7.2 this proposition is verified by simulations using the
described optimization in order to minimize the similarity of multi-edges.

5.6.3. Interactive Motion Planning

In this section, an example implementation for the interactive motion planning approach from
Sec. 5.5 is shown. This approach is not directly implementable since it requires to consider the
infinite trajectory space of all objects and the robot in order to determine the trajectory which
minimizes (5.9). Hence, a finite set of robot candidate trajectories is generated and Monte Carlo
simulation is used to estimate the collision probabilities for each candidate. The sampled trajec-
tories are generated as described in Sec. A.3. Thus, all trajectories are now described by a vector
of control inputs ũ → u. The implementation for reactive objects is descried first followed by
the overall algorithm.

The probability distribution f(·) is calculated based on a goal function L(·) which models the
fact that objects have preferred trajectories. As presented by [29], the preference depends on the
goal of the objects, the preferred velocity and smooth trajectories (avoiding high accelerations
and fast changes in the motion direction). Hence a goal function is introduced which evaluates
each sample according to this behavior. Since the goal function of [29] was designed for traffic
scenarios, the path deviation is replaced by a goal directness and the lateral and longitudinal

116

5.6. Implementations

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Fig. 5.5.: The arc depicts the field of view (FOV) model of the considered object. The black objects are
inside the FOV and the gray ones are outside.

accelerations are replaced by the absolute acceleration. Each trajectory of the robot or the objects
is ranked according to goal directness, smoothness or collision risk by

L(ui) = wdist dist(xg
i ,xi(T))︸ ︷︷ ︸

goal directness

+

∫
[wvel (v(t)− vd)2︸ ︷︷ ︸

favors desired velocity vd

+ (5.14)

wacc a(t)2︸︷︷︸
favors smooth trajectories

] dt,

where dist(·) is a distance function between the final state of the object trajectory xi(T) and its
goal state xg

i . The distance between two states x1 and x2

dist(x1,x2) = we‖p1 − p2‖+ wv|v1 − v2|

is calculated by the Euclidean distance for position and velocity difference, with the correspond-
ing weights we and wv. This goal function is used to determine the density function f(·)

f(ui) = ne−L(ui),

where n is a normalizing constant. The goal function (5.14) is suited for ignoring objects since it
is independent of the motion of other objects in the workspace. In the following the calculation of
the weight wa for transforming the prediction of ignoring objects to reactive objects is shown. In
order to integrate the avoidance behavior of workspace objects, an additional weight wa is used
to decrease the goal function value. Therefore, the detectability and the predictability of the robot
trajectory need to be measured. In order to get a measure for the detectability, a deterministic
field of view (FOV) model is used which is described by an angular and linear constraint. The
FOV model has a certain opening angle dα and a limited range dr which results in an arc. In
Fig. 5.5 an example FOV model is depicted. An object is detected if its center point is closer
than dr and if the relative angle between the center points of the objects is smaller than dα. The

117

5. Integration into Motion Planning

detectability Di that the ith object detects the robot during its trajectory uA is defined as

Di(uA) =
1

Nd

Nd∑
n=1

Ind(D|uA,xni), (5.15)

with xni is the nth time-equidistantly sampled state along the trajectory of the ith object and the
indicator function is defined as

Ind(D|uA,xni) =

{
1, robot detected

0, robot not detected.

Loosely speaking, for every sampled state xni ∈ ui, the FOV model is evaluated and the number
of successful detections is normalized by the number of tests Nd. The detectability is calculated
for each trajectory of the ith object. In order to determine the cost for one robot trajectory ac-
cording to (5.9), the two collision probabilities P (CA|uA) and P (CB|uA) need to be calculated.

For the calculation of P (CA|uA) the collision probability between the robot trajectory uA and
the ith object

Pi(CA|uA) =

∫
UCA
i

Ind(CA|uA,ui)f(ui) dui (5.16)

must be calculated, where Ind(·) is an indicator function which is one if the trajectory of the
robot uA collides with the trajectory of the object ui and zero otherwise. The set UCAi contains
all control inputs of the ith object which does not collide with another object excluding the robot.
The collision probability considering all objects

P (CA|uA) = 1−
Nb∏
i=1

(1− Pi(CA|uA))︸ ︷︷ ︸
probability of no direct collision

.

is defined by the probability that no object collides with the robot.

The calculation of P (CB|uA) is similar to the calculation of P (CA|uA). Only the subset UCB
of the trajectories of the objects which do not collide with the robot are investigated.

UCBi ⊂ Ui, ∀ui ∈ UCBi Ind(CA|uA,ui) = 0

The probability of collision excluding the robot is determined by considering all trajectories

UCB = UCB1 × UCB2 × · · · × UCBNb

which do not collide with the robot

P (CB|uA) =

∫
UCB

Ind(CB|uB)f(uB) duB, uB = [u1, . . . ,uNb
]. (5.17)

Where Ind(·) is an indicator function which is 1 if a collision between any trajectory of the

118

5.7. Simulations

objects occurs and 0 if no collision occurs. Both integrals (5.16) and (5.17) cannot be calculated
directly due to the infinite number of possible trajectories, hence, Monte Carlo simulation is
used to estimate the collision probabilities. This is done as explained in Sec. A.3. Therefore,
a finite set of NBũ trajectories ŨCBi is generated for each object and each trajectory is weighted
as described above. So far, the cost for any robot trajectory can be estimated considering the
behavior of reactive objects in the workspace. In order to determine the optimal robot trajectory,
the infinite set of robot trajectories is approximated by a finite set ŨCA containing NAũ trajectory
candidates. The trajectories are generated with the same method as the object trajectories for the
Monte Carlo simulation. The finite set of trajectories is also used for determining the normalized
goal function L(·) ∈ [0, 1] which is used to measure the predictability of the robot trajectory.
The overview of the resulting algorithm is shown in Alg. 9. This implementation is evaluated

Algorithm 9: Interactive Motion Planning
Input : xA(0), f1(x, t0), . . . , fNb

(x, t0)
Output : u∗A,c

Initialize: Generate robot trajectories (see Sec. A.3)
ŨCA = {uA,1, . . . ,uA,NAũ }

Determine normalized predictability of each uA
L(uA) according to (5.10) and (5.14)

Generate object trajectories for each object (see Sec. A.3)
ŨCBi = {ui,1, . . . ,ui,NBũ }

Determine weights assuming ignoring objects
L(ui) according to (5.14)

foreach ũA ∈ ŨCA do
Determine detectability of each object trajectory

Di(uA) according to (5.15)
Determine weights for each object trajectory
wa according to (5.12)

Determine cost for robot trajectory
cost(uA) according to (5.9)

Determine optimal trajectory
u∗A,c = arg min

uA

cost(uA)

return u∗A,c

by simulation scenarios in Sec. 5.7.3.

5.7. Simulations

In the following sections various simulation scenarios are presented to evaluate the proposed
algorithms from this chapter by their implementations described in Sec. 5.6. First, simulation
scenarios for motion planning in dynamic uncertain environments are presented to evaluate the
usefulness of motion graphs that allow the robot to replan its route during execution. Therefore,
the off-line (Sec. 5.4.2) and the on-line approach (Sec. 5.4.1) are evaluated separately. After-

119

5. Integration into Motion Planning

wards, simulation scenarios which could lead to a FRP are generated to evaluate the idea of
interactive motion planning from Sec. 5.5.

5.7.1. Optimal Control

In this section, simulations are provided to evaluate the extended motion planning approach from
Sec. 5.3. First, the individual steps of the complete approach through the use of an example sce-
nario representing a common highway situation is presented. The ego vehicle (black) is driving
in the middle lane and generates trajectories for all three lanes. In order to avoid illustration
difficulties, only trajectories for the current velocity are drawn. The snapshot of the scenario
as well as the generated trajectories and the results of the safety assessment are illustrated in
Fig. 5.6. The motion of the other vehicles are predicted assuming constant velocity in their cur-
rent lane. All trajectories leading to collision during or beyond the planning horizon are correctly

Fig. 5.6.: The resulting fan-shaped trajectory set of the ego vehicle is shown. The thick line depicts the
best collision-free trajectory and the solid lines are collision-free during and beyond the planning horizon.
Trajectories leading to collision during the planning horizon are illustrated by short dashed lines, long
dashed lines represent trajectories leading to an cICS. The alleged best trajectory is shown by the thick
line.

identified: the ego vehicle will collide with the trucks on the left during the planning horizon.
Furthermore, it will collide with the vehicle on its left lane beyond the planning horizon accord-
ing to Def. 10 (cICS), since the velocity of the ego vehicle is higher than the velocity of the
purple one. Ignoring constraints by traffic regulations and aiming to keep the current velocity,
the trajectory with the lowest cost is the constant velocity trajectory.

In order to evaluate the computational performance of the presented algorithm, a 6:23 min
simulation highway drive is used. The current C++ implementation was tested on a Intel core I5-
2500 using only a single core. The average response time was 0.010 s with an average of 469.26
generated trajectories for the ego vehicle and 9.25 surrounding vehicles. At the worst instant of
our scenario, the algorithm had to check 677 trajectories with 17 vehicles for collision resulting
in a worst case response time of 0.121 s. The performance of the presented algorithm has been
exhaustively tested for hours of collision-free driving under various conditions by simulation
scenarios.

5.7.2. Motion Graph Planning

In this section simulation results of the motion planning algorithms presented in Sec. 5.4.1 and
Sec. 5.4.2 are demonstrated.

120

5.7. Simulations

Tab. 5.1.: Evaluation of Alg. 8

Scenario α-Parameters cost(e24, f)

Rand α1,α2 Opt α2 Rand Opt ∆

1 0.20, −0.99 −0.81 1.10 1.02 7.5%

2 −0.93, 0.80 0.34 2.08 1.79 13.8%

3 −0.75, 0.65 0.39 0.84 0.73 12.7%

4 0.69, 0.38 −0.46 1.37 0.75 45.4%

5 −0.91, 0.27 0.28 1.11 1.10 1.3%

Optimization for On-line Planning

For evaluating the algorithm from Sec. 5.6.1 the same simulation environment from Sec. 2.9.2
is used. Instead of three multi-edges between vertex v2 and v4 only one vertex is randomly
generated and the second one is either randomly generated or optimized according to (5.13).
For the evaluation, multiple scenarios are generated with different edges. The one given edge
e24 is randomly generated with α ∈ [−1, 1]. The same interval for α is used for the second
random edge and the optimized edge. For evaluating the expected collision probability a belief
tree with Ns = 100 is generated to represent the future position of the object. The cost function
for optimizing the edge is

cost(ũ) = h(P (C|ũ), L(ũ)) =
1

1− P (C|ũ)
l(ũ),

with L(ũ) = l(ũ), representing the length of the trajectory. This cost functions has the following
properties

cost(ũ) =

∞, P (C|ũ) = 1,

l(ũ), P (C|ũ) = 0,

l(ũ) < cost <∞, else.

The maximum relative improvement of the collision probability of the optimized edge is 45.4%

compared to the randomly generated edge. The minimum improvement is 1.3% and the mean is
16.14%. The individual results are shown in Tab. 5.1. This result shows that additional edges
which are optimized according to the distribution of the object can clearly reduce the expected
collision probability.

On-line Planning

For the evaluation of Alg. 8 a simulation scenario with two moving objects is used. The scenario
is depicted in Fig. 5.7. The initial mean values and the diagonal covariance matrix representing

121

5. Integration into Motion Planning

(a) The initial motion plan is shown in gray. The solid black circles show the 2-σ ellipsoids of
the objects at every 5th time step.

(b) Vertex v1 and v2 are extracted from the initial motion plan. Between v1 and v2 three
additional edges were generated and one between v2 and v3.

Fig. 5.7.: Simulation scenario for evaluating Alg. 8 containing two ignoring objects.

122

5.7. Simulations

the initial states of the objects are

µ1(t0) = [5.0 m, 1.0 m,−0.35 m/s,−0.35 m/s]

µ2(t0) = [1.5 m, 0.5 m, 0.35 m/s,−0.35 m/s]

Σ(t0) = diag[0.01 m2, 0.01 m2, 0.05 m2/s2, 0.05 m2/s2].

The initial trajectory is a solution for the motion planning problem for navigating between the
vertices

v0 = [0 m, 0 m, 0 m/s, 0 m/s, 0 s]

v3 = [6 m, 2 m, 0 m/s, 0 m/s, 4 s].

The initial trajectory ũ0
c is calculated by the trajectory optimization described in Sec. 5.6.1 which

is also used for optimizing the additional multi-edges. The cost for the motion plan is 15.94.
As described in Alg. 8, first, two vertices are extracted from the motion plan by sampling

time-equidistant states from the initial trajectory.

v1 = [1.35 m, 0.04 m, 2.07 m/s, 0.27 m/s, 1.3 s]

v2 = [4.58 m, 1.40 m, 1.95 m/s, 1.14 m/s, 2.6 s].

The number of samples for each distribution in the sampling tree is set to Ns(k) = 20. The
threshold for the necessary improvement of each additional edge is set to τc = 0.5. After de-
termining the costs between all adjacent vertices, the edge e12 is identified as the one causing
the highest cost. Thus, an additional edge between vertices v1 and v2 is calculated. Since the
improvement was bigger than the threshold, the next two edges were also generated between
vertex v1 and v2. Afterwards, one edge is generated between v2 and v3 causing an improvement
below the threshold, since the collision probability has nearly no effect on the cost of this edge.
The final cost of the optimized graph is 7.79 which is an improvement of 51.13% comparing to
the cost of the initial plan.

For reasons of completeness, the cost of the optimal route in this graph is 15.11 meaning
an improvement of 5.2% compared to the initial solution. This improvement results from the
sampled vertices v1 and v2 allowing a different shape of the trajectory between v0 and v3 than
the initial solution.

Off-line Planning

The goal is to evaluate the correlation of the collision probability of multi-edges with its similar-
ity as stated in Prop. 8. Therefore, graphs are generated according to Sec. 2.8.4 which consist of
the two vertices

v1 = [0 m, 2 m, 0 m/s, 0 s]

v2 = [4 m, 2 m, 2 m/s, 3 s]

and one edge generated with α = 1. A total of 10 different second edges are generated with
α ∈ {−1.0,−0.8, . . . , 1.0} resulting in a similarity interval of S(ũ1, ũ2) ∈ [0.33, 1.0]. The graph

123

5. Integration into Motion Planning

0.2 1.4 2.6 3.8

x [m]

0.8

1.6

2.4

3.2

y
[m

]

α = 1.0

α = −1.0, S = 0.33

α = −0.6, S = 0.37

α = 0.0, S = 0.45

α = 0.6, S = 0.73

v1 v2

Fig. 5.8.: The solid line illustrates the given edge and the dashed lines depict the investigated second edges
with their associated similarity regarding the first edge.

with some example second edges is shown in Fig. 5.8. In order to obtain results that do not rep-
resent only one scenario, randomized positions of the object in the workspace are generated. For
the evaluation, 20 random beliefs bt1t0(f

t0) are generated and for each b 100 random distributions
f t1 ∼ bt1t0 are sampled. Therefore, 20 random distribution f t0(t1) = N (µt1 ,Σt1) representing
the position of the object in the workspace at time t1 are generated based on the information
available at time t1 with

Σ(t1) =

0.4305 0 0.1450 0

0 0.4305 0 0.1450

0.1450 0 0.0500 0

0 0.1450 0 0.0500

and µt1 is uniformly distributed in W : x ∈ [0, 5], y ∈ [0, 4]. The belief bt1t0(f

t0(t1)) is
represented by 100 samples. At time t1 each sample f t1s = N (µ+,Σ(t0)), f t1s ∈ bt1t0 has the
initial covariance

Σ(t0) =

0.01 0 0 0

0 0.01 0 0

0 0 0.05 0

0 0 0 0.05

and their mean value is distributed as µ+ ∼ N (µ(t1),Σ(t1) − Σ(t0)) according to Sec. 2.8.2.
The collision probability P (C|e12,b), e12 = {ũ1, ũ2} for all 10 ũ2 are estimated by Alg. 1. For
each ũ2 the mean collision probability is calculated and illustrated with respect to their similarity
measure S(ũ1, ũ2) in Fig. 5.9. As expected, the results show: the greater the similarity, the lower
is the collision probability for traversing between two vertices. This result is in accordance with
Prop. 8.

124

5.7. Simulations

0.4 0.5 0.6 0.7 0.8 0.9 1

S(ũ1, ũ2)

0.1

0.15

0.2

P
(C
|e

1
2
,f

)

Fig. 5.9.: Estimated collision probability subject to the similarity of the edges.

Tab. 5.2.: Goal and cost function parameters. Parameters for goal function from [18].

goal function L(·) cost function C(·)
wdist wvel wacc wα wβ wγ

0.0085 0.05/Th/(1 + v2
d) 0.05/Th/a

2
max 0.5 0.5 0.4

5.7.3. Interactive Navigation

In order to demonstrate that the proposed navigation algorithm from Sec. 5.5 is useful for pop-
ulated environments, an example scenario containing 4 reactive objects is used. The scenario is
illustrated in Fig. 5.10. The scenario has been chosen to contain a few typical problems regarding
motion planning in populated environments. Object 2 and 3 need to cross their path to reach their
goals. Furthermore, object 1 prefers to take a trajectory between both objects to reach its goal.
The highest risk in this scenario originates from the objects 1, 2 and 3. Object 4 represents the
case of free-space motion since its goal and motion should not be influenced by the other objects
in the environment. The motion planning Alg. 9 is applied to each object and the results are
depicted in Fig. 5.10. The used parameters for the trajectory generation are listed in Tab. 3.6 and
the trajectories are generated for a fixed time duration of Th = 2 s. The weights for the collision
probabilities are higher compared to the weight of the goal function since the focus is set on safe
trajectories.

In summary, the four trajectories minimizing the cost function of all four objects are colli-
sion free during this time interval. Each of the four trajectories has a collision probability of
P (CA) < 5%. Object 4 chooses a trajectory which is close to a straight constant velocity tra-
jectory which is expected due to the goal function and the fact that no interaction between other
objects occurs. The trajectories of object 1, 2 and 3 show a different behavior. As can be seen,
object 3 and 4 avoids object 1 by delaying their change of direction towards their goal. Thereby,
object 1 gains enough space to choose a trajectory between both objects. It is noted, that these
four trajectories are independently generated for each object, although the result seems to be
generated by a centralized approach at a first glace. Due to the consideration of the interaction
between the objects by both collision probabilities P (CA), P (CB) and the heuristics predictabil-
ity and detectability this result is achieved.

Determining the preferred trajectories of all objects only according to their goal function L(·),
leads to a collision between the objects 2 and 3.

125

5. Integration into Motion Planning

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

4

Fig. 5.10.: The results for each workspace object with the proposed navigation Alg. 9 are illustrated.
The tiny lines depict all trajectory candidates and the thick line is the most promising one. The squares
illustrate the goal position for each object.

126

5.7. Simulations

Tab. 5.3.: Simulation Results

Ns NũC mean
∣∣∣P (CB|ũC)−P (CB)

P (CB)

∣∣∣ max
∣∣∣P (CB|ũC)−P (CB)

P (CB)

∣∣∣
1000 171 10.5% 39.3%

Collision Excluding the Robot

In order to show the necessity of considering the collision probability between workspace objects
excluding the robot P (CB|u), random scenarios are generated. Therefore, the same setup as in
Sec. 3.10.4 is used. However, the workspace objects are only generated for the 10th x-region
and 100 scenarios including 10 different robot trajectories are investigated. Then, the difference
of P (CB|ũ) and P (CB) is determined for the 1000 robot trajectories ũ. P (CB) is the collision
probability that a collision between any object excluding the robot occurs, when the robot is
ignored. In order to estimate the necessity for this calculation, the number of robot trajectories
leading to a higher collision probability between the workspace objects are determined. These
trajectories are denoted as ũC . Furthermore, the difference of both probabilities are obtained
by calculating the mean relative difference of P (CB|ũC) and P (CB) and the maximum relative
difference for all scenarios. The simulation results are shown in Tab. 5.3. It can be seen that
there is a significant difference in 17% of all cases with a mean value of 10.5% and a maximum
observed difference of 39.3%. This shows, that the robot needs to take into account the collision
probability of all objects in the workspace, otherwise the avoidance behavior of reactive objects
may lead to a collision between objects excluding the robot. However, this behavior contradicts
the definition of reactive objects from 1.2.2.

Collision Avoidance Behavior

In Sec. 5.5 a goal function is presented which models the collision avoidance behavior of re-
active objects. The purpose of this goal function is to relax the FRP as described by [117]. In
Fig. 5.11 an example scenario is evaluated by the goal function for ignoring and reactive objects.
The sampled trajectories of the robot and the objects are generated as described in Sec. 5.5 and
allow the robot to navigate to its goal location and to avoid the other objects. The result assum-
ing ignoring objects shows that there exists no clear preference for the robot. The trajectories
leading to its goal location have a slightly higher collision probability, but the trajectories avoid-
ing the other objects are not leading to its goal. Depending on the maximum accepted collision
probability, the robot can be in a FRP since no acceptable trajectory exists. The assessment of
the trajectories is different if the avoidance behavior of the reactive objects is taken into account.
Since the objects are facing towards the robot, the detectability (5.15) of the trajectories of the
objects is very high. As a result, the collision probability of the two trajectories of the robot lead-
ing through the reactive objects is clearly reduced (25%) and thereby relaxing the FRP for this
scenario. The collision probability of the other trajectories of the robot is nearly not changing,
since the corresponding predictability is very low.

127

5. Integration into Motion Planning

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

(a) Collision probability P (CA|ũ) without col-
lision avoidance model.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

(b) Collision probability P (CA|ũ) with colli-
sion avoidance model.

Fig. 5.11.: Diameter of circles depict the probability of collision for each trajectory candidate and the
squares illustrate the goal locations for each object.

5.8. Discussion

This chapter presented the integration of safety assessment concepts from previous chapters into
motion planning algorithms: integration of safety assessment beyond the planning horizon into
optimal control; incremental optimization for improving trajectories by motion graphs; approach
for interactive motion planning.

Optimal Control The optimal control based motion planner [125] was extended to address
former limitations regarding safety guarantees. By integrating the cICS checker from Chap. 4,
this approach fulfills all three safety criteria introduced in Sec. 1.2.1. The presented safety assess-
ment guarantees motion safety during and beyond the planning horizon. This novel framework
for autonomous driving is especially suitable for high-speed navigation on freeways. The defi-
nition of cICS and its integration into optimal control is applicable to various motion planning
problems such as motion planning for helicopters and unmanned aerial vehicles.

In order to make this motion planning framework able to handle many different traffic situ-
ations, it must be capable to handle stochastic motion prediction of all traffic participants. The
prediction of other traffic participants in real-world experiments is a critical point since it em-
bodies the basis of the motion planning approach. Furthermore, the current implementation of
the cICS checker evaluates each trajectory independently. It should be possible, however, to use
the result from one cICS evaluation to assess other states at the same time. For instance, if one
trajectory leads to an cICS due to the resulting high velocity, the same holds for trajectories with
higher velocities on the same lane. The computing time of the algorithm could be reduced by
making use of these properties.

Motion Graph Planning The approach for motion graph planning extends the idea of
closed-loop safety assessment from Chap. 2 to motion planning. Instead of addressing the orig-
inal problem of generating the optimal motion graph with a finite set of vertices and edges, the
presented approach is incrementally improving a given solution to the motion planning problem.
In a first step, an appropriate common motion planner is used to generate a trajectory which
solves the motion planning problem. In a second step, additional edges and vertices are gener-

128

5.8. Discussion

ated to reduce the expected navigation cost of the initial solution. This is done by incrementally
optimizing additional edges between vertices with high cost. Although this approach is not gen-
erating the optimal motion graph, this approach allows one to incrementally improve any given
solution to the motion planning problem, even if the given solution is the optimal trajectory. Due
to its incremental characteristic, the presented algorithm can be interrupted at any time. This
kind of algorithm is called an anytime algorithm. An example implementation is used to evalu-
ate this approach by simulation scenarios and the simulation results show a clear improvement
already after few iterations compared to the the initial solution.

Drawbacks of this approach are, that it is based on heuristics and on the initial solution to the
motion planning problem. Thus, it is not likely that this approach will find the optimal motion
graph for a specified number of vertices and edges. Furthermore, the gained improvement by
the motion graph algorithm compared to the initial solution cannot be predicted, however, the
improvement can be guaranteed.

Interactive Motion Planning Furthermore, the problem of motion planning in dynamic un-
certain environments populated by reactive objects – interactive motion planning – was discussed
in this chapter. It was shown that it is not possible to decouple the problem of interactive motion
planning into motion prediction of the objects and trajectory planning based on this prediction as
done in most common motion planning approaches. A novel motion planner was presented in-
corporating the interaction between the workspace objects and the robot. Therefore, assumptions
and heuristics are introduced which model the avoidance behavior of reactive objects regarding
the future motion of the robot. The resulting algorithm can be seen as a preliminary study to
evaluate the potential of interactive motion planning compared to the common motion planning
approach. An example implementation has shown by simulation studies that interactive motion
planning is a promising research direction to address the freezing robot problem.

However, due to the use of heuristics the approach does not explicitly consider all neces-
sary constrains such as collision-free motion of all objects. Hence, a more detailed evaluation
especially by real-world scenarios is necessary.

129

6. Conclusions

Summary This chapter provides a summary and discussion of the presented approaches and
methods of each chapter from this thesis. In addition, possible directions of future research work
are outlined.

6.1. Summary

Nowadays, robots are used in industrial settings to improve productivity and to perform tasks
that are potentially harmful to humans. Their benefits compare to human workers are their high
precision, non-stop operation, and high moving speed. More recently, attention has turned to the
idea of the robotic co-worker e.g. [47]. In environments such as homes and offices the robots
should aid and support humans. A typical field of application arises from the aging population
in developed worlds entailing a strong demand on aging care. Robots should support and reveal
nurses in the aging care sector to prevent rising health care costs.

Safe and reliable motion planning capabilities in the presence of humans are one of the key
capabilities a robotic system must have to meet the goal of the robotic co-worker. Safe hardware
design, safe motion planning and safe motion execution must be investigated to ensure a safe
robotic system. In this thesis, the problem of safe motion planning, especially the involved
safety assessment, of robotic system is addressed. The following paragraphs briefly describe the
main contributions of this thesis.

Closed-loop Assessment In Chap. 2 a novel safety assessment approach is presented that
estimates the collision probability of a motion graph also called roadmap. Instead of defining
the safety of a roadmap by the route with the minimum collision probability, the optimal policy
is determined allowing the robot to navigate through the roadmap with the smallest expected
collision probability. The optimal policy considers the possibility of the robot to replan its route
during execution depending on new received information about the environment. That means, if
new received measurements allow a more precise prediction of the environment, the robot is able
to adopt its route in order to minimize its collision probability regarding the new information.
Since the future measurements are not known at the time of the safety assessment, a finite set of
possible future measurements are simulated so the optimal policy and the associated expected
collision probability can be estimated. Therefore, a graph reduction algorithm is presented that
allows assessing the safety of any motion graph. Furthermore, it was shown that the collision
probability of the entire graph is always smaller than the collision probability of any route in
the graph. This safety assessment algorithm can be applied to any roadmap based planner for
uncertain environments.

Two different implementations, one for mobile robot applications and one for automotive
applications, are presented. Both implementations are verified by various simulation scenarios

131

6. Conclusions

and showed that the expected collision probability could be clearly reduced. In summary, the
consideration of replanning possibilities leads to a more reliable safety assessment in uncertain
environments.

Assessment Beyond Planning Horizon In Chap. 3 the problem of assessing the safety
of partial trajectories beyond their planning horizon is addressed. Therefore, the concept of ICS
is recalled from literature and the novel generalization PCS is introduced which is applicable to
uncertain environments. The PCS value represents the probability of the robot being in an ICS
regarding the uncertain information about the environment. In order to retrieve a safety crite-
rion that considers the collision probability during the planning horizon of a trajectory and their
probability ending in an ICS, the overall collision probability was introduced. This allows for
the first time to extend the idea of partial motion planning to stochastic modeled environments.
Additionally, the probabilistic collision cost is introduced as an alternative safety criterion tak-
ing into account the severity of the collision. Simulation results showed, that this criterion is
especially useful for crowded environments assuming that objects can bear up against weak col-
lisions. Furthermore, the problem of determining unions of ICS sets is addressed by presenting a
novel iterative algorithm that allows a more efficient calculation of ICS than previous ICS check-
ers. This novel algorithm leads to the definition of the robot maneuverability which represents
the number of future motion possibilities preventing the robot to end in an ICS. It was shown
that a higher maneuverability minimizes the probability of collision with unforeseen changes or
objects in the environment.

Interactive Assessment In Chap. 4 the problem of interactive safety assessment was de-
fined and addressed. Therefore, extensions of the ICS and PCS concepts were introduced consid-
ering the avoidance behavior of reactive objects in the environment. For deterministic environ-
ments the cICS definition is introduced which aims to find at least one trajectory for each object
preventing it from ending in an ICS. Two concepts for uncertain environments are presented
that differ in the available information to the robot and the other objects about the environment.
These novel definitions allow to assess the safety beyond the planning horizon while taking into
account the reciprocal avoidance behavior of reactive objects. Thereby, the FRP is addressed
since the consideration of reactive behavior gives each object more space for navigation result-
ing in lower collision probabilities. This is also verified by several simulation results of the
presented implementations for mobile robot and automotive applications.

Integration into Motion Planning In Chap. 5 some of the safety assessment approaches
from the previous chapters are integrated into or extended to motion planning algorithms. First of
all, the integration of the cICS concept into optimal control based motion planners is presented
allowing to guarantee safety for an infinite time horizon. An implementation for autonomous
driving on highways is used to demonstrate the necessity of assessing the safety beyond the
planning horizon. Based on the idea of closed-loop assessment, the idea of motion graph plan-
ning is presented. A given solution (trajectory) for the motion planning problem is improved by
generating additional trajectories resulting in a roadmap. It was shown that any given solution
can be optimized by a roadmap allowing the robot to replan its route. Finally, based on the con-
cept of interactive assessment an interactive motion planning algorithm is presented. It considers
the reciprocal collision avoidance of reactive objects by reasoning about the safety of all objects.

132

6.2. Discussion and Future Directions

6.2. Discussion and Future Directions

The concepts presented in this thesis give rise to various topics for future research. The following
paragraphs describe selected research projects:

Semi-autonomous control Semi-autonomous control of vehicles or robotic systems can
be seen as an intermediate step towards fully autonomous systems. The interplay of the human
operator and the control approach is one of the critical research questions. One possibility to
address this problem is to apply invariance control [126], a control approach for constrained
nonlinear systems. Invariance control is already applied to various problems such as trajectory
supervision and haptic rendering [102]. The proposed control concept consists of two separate
controllers: the nominal and the invariance controller. The purpose of the nominal controller
is to achieve the main control objectives without considering the constraints, while the role of
the invariance controller is to ensure stability and feasibility of the complete system. In the case
of semi-autonomous vehicles, the human driver takes the role of the nominal controller and the
invariance controller ensures that the driver is not entering a state which will lead to a collision.
A reliable safety assessment approach is used to identify the admissible space for the considered
vehicle. Therefore, other dynamic objects, safety beyond the planning horizon, and uncertain
changes in the environment need to be taken into account. Thus, semi-autonomous control is a
well-suited field of application for the safety assessment concepts from this thesis.

Game-theory based Interactive Motion Planning Results from Chap. 5 on interactive
motion planning have shown, that the consideration of the reactive behavior of objects has a
considerable effect on the quality of the navigation result. In order to extend and continue this
work, the problem of motion planning in the presence of reactive objects (e.g. humans or human-
driven cars) can be formulated using differential game theory [11]. In this sense, interaction
describes the mutual avoidance behavior between humans resulting from the assumption that
humans incorporate the future motion of the surrounding persons into their own motion planning
and expect similar anticipation from them. Game theory can be used to model different agents
with own interests and the corresponding multi-decision making process. It assumes that all
agents aim to minimize their cost by anticipating actions of other agents. The solutions may
consider the individual goals of the agents, their kinematic and dynamic constraints, and their
limited perceptual capabilities. Important issues in this context are: type of game, single shot or
multi-shot games; convergence criteria of the algorithm; approximation techniques for on-line
capable algorithms. In order to include uncertainties in the current state of the objects or in their
payoff, the problem can be extended to stochastic games [89].

Combination of Reachability Analysis and Inevitable Collision Obstacles Another
important field of safety assessment is reachability analysis e.g. [64] that is mainly used for
automatic verification tools. Reachability analysis is also used to verify the safety of various
applications such as autonomous driving [4]. As stated in [2], reachability analysis determines
the set of all states that a system can reach given a set of control inputs and the set of initial
states of the system. The purpose of the ICO concept described in Chap. 3 is to determine all
states that will inevitably lead to a collision with a certain object. The reachability analysis

133

6. Conclusions

and the calculation of ICO sets are similar problems. Existing algorithms for calculating or
approximating the ICO sets [130] can only be used for a limited class of robotic systems and
polygon-shaped objects. Hence, the algorithms for calculating the ICO sets could be improved
by reachability analysis tools in terms of computational efficiency and applicability.

134

A. Estimation of Collision Probability

Summary Uncertain environments pose a particular challenge for the safety assessment of
robot trajectories. Due to the uncertainty in the future position of other objects, it is not possible
to perform a binary assessment: safe or unsafe trajectory. Hence, the expectation of a possible
collision is calculated as a safety criterion. This is expressed as the collision probability of a
certain trajectory. The aim of this chapter is to present two approaches for estimating the collision
probability of a robot trajectory that are used in this thesis to assess the safety of trajectories in
uncertain environments.

The outline of this chapter is as follows: Sec. A.1 gives the problem formulation and two
different methods for estimating the collision probability for an entire trajectory are presented.
In Sec. A.2 the collision probability is estimated by discretizing the workspace using a proba-
bilistic occupancy grid. Sec. A.3 presents a method based on Monte Carlo simulation. Finally, a
discussion of this chapter is given in Sec. A.4.

A.1. Problem Formulation

This chapter addresses the problem of assessing the safety of a given robot trajectory in uncer-
tain environments. The uncertainty occurs in the state of all workspace objects and in their future
states. Whereby, in real-world scenarios, the uncertainty associated with the robot states is con-
siderably smaller than the uncertainty in the states of the other objects. This is in particular true
for dynamic objects, since the quality of the motion prediction depends on the reliability of the
stochastic motion model, whereby its uncertainty usually grows over time.

It is assumed, that the robot and all objects in the workspace are rigid bodies. The objects or
the robot may have arbitrary shape that changes over time, and their uncertainty can be repre-
sented by an arbitrary PDF.

Collision Probability Given the future motion of the robot system and the stochastic motion
prediction of all workspace objects, compute the probability that the robot will collide with at
least one object during its intended trajectory.

In the following, some notion is introduced and two possible approaches are presented to esti-
mate the collision probability of a robot trajectory.

A.1.1. Notation

The workspace of the robot systemA is denoted byW and the subset of the workspace occupied
by A in state x(t) is expressed as A(x(t)) ⊂ W . The state x = [p,v] is represented by its posi-
tion p and its velocity v. The state x(t) and input u(t) of the considered robot system A (for a

135

A. Estimation of Collision Probability

point in time t) can take values from the state space X and the control space U . An input trajec-
tory of the robot system is denoted by ũ which maps the time t to the input space: [0,∞)→ U .
The set of input trajectories is denoted by Ũ . The workspace occupancy generated from the
input trajectory at time t is denoted by A(ũ(t)) and the occupancy of the robot at position p(t)

is denoted as A(p(t)). The occupancy of the ith object at time t in the workspace is denoted
by Bi(t). The unified occupancy of all objects is written in short notation as B =

⋃
i=1,...,Nb

Bi,
where Nb is the number of workspace objects. Due to the lack of a perfect model of the envi-
ronment, the states of the objects are represented by probabilistic density functions (PDF). The
PDF describing the state of the ith object Bi at time t is denoted by f t′i (x, t), t ≥ t′ and their
position uncertainty is expressed as f t′i (p, t). The superscript t′ indicates the time point of the
information which is used for the prediction at time t. This time point is called the observation
time, since it represents the time of the information at which the object was last detected or ob-
served. Since one can only formulate a probability distribution for a random vector and not an
occupancy set, fi represents the probability distribution of a reference point c of Bi. The PDF
describing the state of the robot is denoted by fA(x, t).

A.1.2. Collision Probability for a Single Time Point

First, the calculation of the collision probability for one point in time regarding one object is
shown. It is based on the definition of [115] which can be seen as an extension of the definition
of [29]. Toit and Burdick [115] extended the former definition to allow joint distributions of the
robot and object, describing interaction between them. The collision probability that the robot is
in collision with the ith object at time t is expressed as

Pi(C|t) =

∫
W

∫
W

Ind(pA(t),pi(t))fA(pA, t)fi(pi, t) dpA dpi (A.1)

with

Ind(pA,pi) =

{
1, if A(pA) ∩ Bi(pi) 6= ∅
0, otherwise.

(A.2)

It is noted, that instead of the position, the state of the objects needs to be considered if their
shape changes over time. In this work, it is assumed that the shape of all objects is constant. In
real-world applications, the uncertainty of the future states of the robot is negligible compared
to the much higher uncertainty of the future states of the objects. Hence, it is assumed that the
future trajectory of the robot is without any uncertainty and that the workspace occupied by the
robot at a certain time point is deterministic. This assumption allows to reformulate (A.1) in two
possible ways. However, even for the simplified equations, no closed-form expression is known
for arbitrary PDFs. The first one

Pi(C|pA, t) =

∫
W

Ind(pA,pi)fi(p, t) dp (A.3)

136

A.2. Workspace Discretization

- 3 - 2 - 10.4

0.0

0 2 4−2−4

Fig. A.1.: Discretized Gaussian PDF for the bounded support [−4,+4].

will be solved by Monte Carlo simulation in Sec. A.3 The second possibility formulates the
problem by enlarging the robot system A → Abi .

Pi(C|pA) =

∫
Abi (pA)

fi(p, t) dp. (A.4)

The enlargement is performed by Minkowski addition, so that the indicator function can be
omitted, this is explained in Sec. A.2. In the following, both approaches are presented to estimate
the collision probability for a complete trajectory.

A.2. Workspace Discretization

Occupancy grid maps are a common approach for generating maps with noisy and uncertain
sensor measurements [112]. The map discretizes the robot workspace in evenly spaced cells
and its value represents the probability that this cell is occupied by an obstacle. The idea of
discretization can also by used to represent arbitrary PDFs in the workspace of the robot as a set
of cells with an associated probability of occupancy. For instance, this approach is used in [35]
and [4] to estimate the collision probability for autonomous vehicles.

In order to estimate the collision probability according to (A.4), the integral is approximated
by the sum of a finite set. This is achieved by discretizing the workspace into evenly spaced cells
assuming uniform distribution in the cells and by enlargement of the robot system allowing to
model other objects as point masses. If the PDF has an infinite support, it is transformed to a
truncated PDF having bounded support to ensure a finite set representing the PDF. The approxi-
mation of a Gaussian function is sketched in Fig. A.1. The approximation for a multidimensional
PDF is analogous. The enlargement is performed by Minkowski addition of the area (−Bi + ci)

to A, so that the new occupancy of the robot is Abi = A ⊕ (−Bi + ci), that is explained in
more detail in [81]. The Minkowski addition of the occupancy sets is visualized in Fig. A.2 for
a two-dimensional workspace with position coordinates x and y.
The probability that a certain region R of the workspace is occupied by an object Bi is obtained

by integration:

P (R ∩ Bi 6= ∅, t) =

∫
R⊕(−Bi+ci)

f t
′

i (p, t) dp.

The probability that the robot system A, applying the input trajectory ũ, has a collision C with

137

A. Estimation of Collision Probability

Fig. A.2.: Minkowski addition of the workspace occupancy of the robot and another object.

another probabilistic object Bi at time t arises from

Pi(C|ũ(t), t′) = P (A(ũ(t)) ∩ Bi 6= ∅|t′) =

∫
Abi (ũ(t))

f t
′

i (p, t) dp,

where the index i of the collision probability refers to the ith workspace object, p is a position
in the workspace, and t′ is the observation time. Additionally, the probability that a collision
occurs within a time interval [tk, tk+1) is considered, where tk = k T , k ∈ N+ is a time step and
T ∈ R+ is the step size. The set occupied in the workspace for a time interval is denoted by
A
(
ũ([tk, tk+1))

)
such that the collision for a time interval is obtained by

Pi(C|ũ([tk, tk+1)), t′) =

∫
Abi (ũ([tk,tk+1)))

f t
′

i

(
p, [tk, tk+1)

)
dp. (A.5)

Due to the discretization of the workspace, this equation can be rewritten as

Pi(C|ũ([tk, tk+1)), t′) =
∑

cell∈CA([tk,tk+1))

P (p ∈ cell), (A.6)

where CA([tk, tk+1)) is the set of cells which are occupied by the enlarged robot system during
the time interval [tk, tk+1) and cell is one cell of the occupancy grid. The probability that the
position p of the object is inside a cell is expressed as

P (p ∈ cellj) = af t
′

i (γj, t), a ∈ R+,

where γj is the center of the cell cellj and a is the area of the cell. Loosely speaking, the
probability of a collision is finally obtained by summing up the probabilistic occupancies P (p ∈
cellj) for all cells which are occupied by the robot. An example of the deterministic occupancy
of the robot and the probabilistic occupancy of another workspace object is visualized in Fig.
A.3. The collision probability during a time interval considering all Nb objects Bi is derived as

P (C|ũ([tk, tk+1)), t′) = 1−
Nb∏
i=1

(
1− Pi(C|ũ([tk, tk+1)), t′)

)
,

138

A.3. Monte Carlo Approximation

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. A.3.: Numerical integration of the collision probability by workspace discretization.

assuming that the collision probability of the time intervals are independent. Finally, the collision
probability for the complete trajectory results in

P (C|ũ, t′) = 1−
Nk−1∏
k=0

(
1− P (C|ũ([tk, tk+1)), t′)

)
, (A.7)

where Nk is the number of all time intervals for ũ.

A.3. Monte Carlo Approximation
In this section, a Monte Carlo based algorithm is presented for estimating collision probabilities.
More precisely, finite-horizon simulation of dynamic objects is used as described in [100]. It is
inspired by the work of [18, 25, 29] which use Monte Carlo simulation for threat analysis of road
scenes. In [71] Monte Carlo simulation is used to estimate the collision probabilities between
vehicles which future motions are modeled as Gaussian processes.

Compared to the occupancy grid approach, this method does not discretize the workspace
of the robot. Furthermore, this approach does not need a stochastic motion model providing
f t
′
(x, t), instead it uses a so-called goal function that weights deterministic motions of the ob-

jects. The basic principle is to simulate a set of possible future trajectories of all workspace
objects approximating their reachability set for the considered time horizon. These trajectories
have to fulfill the kinematic and dynamic constraints of the object. In this work, the complete
input space U of an object is used to generate the trajectories. In order to retrieve the probabilis-
tic density function of their future motion, the trajectories are weighted by their goal function,
representing the motion model of the objects. The trajectories together with their corresponding

139

A. Estimation of Collision Probability

weights represent the approximated density function of the future motion.

Trajectory Model The trajectory space Ũ of an object contains an infinite number of input
trajectories. In order to generate random trajectories from Ũi for the ith object, Nc different
control inputs are sampled from the input space of the object resulting in the the random vector
ui

ui = [u1, . . . , uNc], ui ∈ U i.

The resulting space of all random input vectors is denoted as

ˆ̃Ui = U1
i × U2

i ×, . . . ,×UNc
i ,

where× is the Cartesian product and the superscript denotes the time points at which the control
inputs are sampled. Each control input is valid for a fixed time duration and the time interval It
described the time span of the resulting trajectory. The time interval is denoted by It = [0, Th]

and Th is the finite time horizon of the simulation. For discretization, the sampling time Tc is
used and during the time interval Ic = [kTc, (k + 1)Tc] the control input is constant. Using the
motion model ẋ = m(x(t), u(t)) of the object, the object states are obtained given the initial
state x0

i = xi(0) for the ith object. The simulation time Ts (Ts < Tc < Th) is defined for
discretizing the object states along the resulting trajectory

si(x
0
i ,ui) = [x1, . . . ,xNd], x ∈ X ,

where si(ui) contains all Nd sampled states of the resulting object trajectory. In the following,
the collision probability is defined and then approximated by Monte Carlo simulation. Therefore,
random samples of ui and si are generated, whereby the nth sample of the ith object is described
by ui,n and si,n.

Estimation of Collision Probability For estimating the collision probability for the com-
plete trajectory and not only one time point, (A.3) is extended by exchanging the state of the
object and the robot by their complete trajectories. The collision probability is defined as

Pi(C|ũ) =

∫
ˆ̃Ui

Ind(C|ũ,ui)f(ui) dui, (A.8)

where f(ui) is the density function of the control inputs and Ind(C|ũ,ui) is an indicator function

Ind(C|ũ,ui) =

{
1, collision occurs

0, collision free.

It is one, if a collision between the robot trajectory ũ and the ith object trajectory ui occurs and
is zero otherwise. The density function f(ui) represents the preferred control inputs vectors of
the ith object.

140

A.3. Monte Carlo Approximation

Sampling Strategies The integral of (A.8) can be approximated by Monte Carlo sampling.
An unbiased estimator for the collision probability is the sample mean

P̂i(C|ũ) =
1

Ns

Ns∑
n=1

Ind(C|ũ,ui,n), ui,n ∼ f(ui),

where ui,n is randomly sampled from f(ui) as proposed by [100] and Ns is the number of
samples. A goal function L(·) is used to rank each sample according to, e.g. smoothness or goal
directness. The goal function is used to determine the density function

f(ui) = ne−L(ui),

where n is a normalizing constant. Since it is not always possible to directly generate samples
according to f(·), they are generated with a different distribution p(·). This method is called
importance sampling [48]. This allows to write (A.8) as

Pi(C|ũ) =

∫
ˆ̃Ui

Ind(C|ũ,ui)
f(ui)

p(ui)
p(ui) dui.

This leads to the so called importance sampling estimator

P̂i(C|ũ) =
1

Ns

Ns∑
n=1

Ind(C|ũ,ui,n)
f(ui,n)

p(ui,n)
.

The samples are now generated with respect to the density function p(·) which is called the
importance sampling density.

In this work, a uniform importance sampling density p(ui,n) = const, ∀ui,n ∈ ˆ̃U is used
which allows to define the weighted sample estimator

P̂i(C|ũ) =
Ns∑
n=1

Ind(C|ũ,ui,n)wn, with
Ns∑
n=1

wn = 1 (A.9)

as described by [100]. Wherewn = const
f(ui,n)

is the weight of the random sample ui,n which is based
on the goal function L(·). The weighted samples {si,n, wn} can be seen as an approximation of
f(·), denoted as f̂(·). The bias of the weighted sample estimator decreases if Ns is increased.
By the strong law of large numbers, P̂ (C|ũ) will almost surely (a.s.) converge to P (C|ũ) with
Ns → ∞ as presented by [7]. In other words, the probability that the robot trajectory ũ will
collide with an object, is the sum of the weights wn of all trajectories leading to a collision.

Collision Detection In this thesis, all objects are either disc-shaped or their hull form a
rectangle. Regarding disc-shaped objects, a collision between two objects is determined by
checking the distance between them. If the distance is smaller than the sum of both radii, a
collision occurs. The OBB-Tree algorithm [42] is used to efficiently determine collisions of
objects with rectangular shape.

141

A. Estimation of Collision Probability

Trajectory Generation In order to calculate the collision probabilities it is necessary to gen-
erate trajectories for obtaining the random vectors ui and si. These contain the control inputs
and corresponding states for one sample representing one possible trajectory of the ith object.
For generating the trajectories the sequential Monte Carlo method (SMC) is used. An Overview
of SMC methods is given by [20] and the first instance of modern SMC was proposed by [41].

The approach presented in the following is the sequential importance sampling (SIS). For SIS
the random variable u and the sampling density must be decomposable [100]. Since uniform
sampling is used for the sampling density p(·) = const, the weighted sample estimator (A.9) is
applied. First of all, Ns samples are generated according to the initial density function f(x, t0) to
obtain the initial states x0 and the initial weights are computed. Then, the samples are propagated
according to p(·) and the new weights are computed. This is repeated, till the simulation reaches
the desired time horizon. An overview of the SIS approach for one object is given in Alg. 10.

Algorithm 10: SIS
for n = 1 to Ns do

Sample x0
n ∼ f(x, t0)

end for
{Propagation}
for n = 1 to Ns do

for k = 1 to Nc do
{Generate random inputs}
uk ∼ p(·)

end for
un = [u1, . . . , uNc]
for k = 0 to Nd − 1 do

xk+1 = m(xk, u), u ∈ un
end for
sn = [x0

n,x
1, . . . ,xNd]

end for
{Compute normalized weight wn}
{Compute final estimate}

P̂ (C|ũ) =
Ns∑
n=1

Ind(C|ũ,un)wn

A.4. Discussion
The advantages and disadvantages of both presented approaches are discussed in qualitative
terms. The occupancy grid approach is especially suitable for objects predicted with a stochastic
motion model and for objects with a complex shape, that can be efficiently considered by the
Minkowski addition. However, given only the goal function for predicting future motion of the
objects or high dimensional workspaces, the Monte Carlo approach is preferable. This is due to
the fact, that the occupancy grid approach suffers from the curse of dimensionality.

The occupancy grid approach has a constant estimation error which results mainly due to the
discretization of the workspace. This effect can be directly influenced by adjusting the resolution

142

A.4. Discussion

of the occupancy grid. Furthermore, this approach has a deterministic execution time since no
randomness is involved.

The estimation error from the Monte Carlo approach does not suffer from the discretization of
the workspace but from the discretization of the control inputs and the sampling of trajectories
from the infinite set of possible future trajectories. In addition, the estimation error depends
mainly on the number of samples which makes it possible to control the estimation error during
the calculation and individually for each object. For instance, a more accurate estimation can be
made for close objects and objects with a high collision risk for the robot system. However, it is
often not possible to get information about the estimation error of the calculation.

Another important aspect is, that the Monte Carlo approach identifies the trajectories that are
leading to a collision. This aspect is important for the interactive assessment which is discussed
in Chap. 4.

143

Bibliography

[1] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart. Optimal recip-
rocal collision avoidance for multiple non-holonomic robots. In Proc. of the 10th Inter-
national Symposium on Distributed Autonomous Robotic Systems (DARS), 2010.

[2] M. Althoff. Reachability Analysis and its Application to the Safety Assessment of Au-
tonomous Cars. PhD thesis, Technische Universität München, 2010.

[3] M. Althoff and A. Mergel. Comparison of Markov Chain abstraction and Monte Carlo
simulation for the safety assessment of autonomous cars. IEEE Trans. on Intelligent
Transportation Systems, 12(4):1237–1247, 2011.

[4] M. Althoff, O. Stursberg, and M. Buss. Model-based probabilistic collision detection in
autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 10:299–
310, 2009.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing good distance
metrics and local planners for probabilistic roadmap methods. In IEEE Transactions on
Robotics & Automation, pages 442–447, 2000.

[6] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma. An optimal-control-based
framework for trajectory planning, threat assessment, and semi-autonomous control of
passenger vehicles in hazard avoidance scenarios. Int. Journal Vehicle Autonomous Sys-
tems, 8:190–216, 2010.

[7] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for
machine learning. Machine Learning, 50:5–43, 2003.

[8] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How. Probabilistically safe
motion planning to avoid dynamic obstacles with uncertain motion patterns. Autonomous
Robots, 35:51–76, 2013.

[9] G. Arechavaleta, J-P. Laumond, H. Hicheur, and A. Berthoz. Optimizing principles un-
derlying the shape of trajectories in goal oriented locomotion for humans. In IEEE-RAS
International Conference on Humanoid Robots, 2006.

[10] I. Asimov. The Rest of the Robots. Doubleday, 1964.

[11] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, 1999.

[12] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sosnowski, T. Xu,
K. Kühnlenz, D. Wollherr, and M. Buss. The autonomous city explorer: Towards natural
human-robot interaction in urban environments. International Journal of Social Robotics,
1(2):127–140, 2009.

145

Bibliography

[13] M. Bennewitz. Mobile Robot Navigation in Dynamic Environments. PhD thesis, Univer-
sity of Freiburg, Department of Computer Science, 2004.

[14] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[15] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams. A probabilistic particle-control
approximation of chance-constrained stochastic predictive control. IEEE Transactions on
Robotics, 26(3):502–517, 2010.

[16] S. Bouraine, T. Fraichard, and H. Salhi. Provably safe navigation for mobile robots with
limited field-of-views in dynamic environments. Autonomous Robots, 32(3):267–283,
2012.

[17] G. E. P. Box and G. C. Tiao. Bayesian Inference in Statistical Analysis. Wiley, 1973.

[18] A. Broadhurst, S. Baker, and T. Kanade. Monte Carlo road safety reasoning. In Proc. of
the IEEE Intelligent Vehicle Symposium, pages 319–324, 2005.

[19] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA,
USA, 1988.

[20] O. Cappe, S.J. Godsill, and E. Moulines. An overview of existing methods and recent
advances in sequential Monte Carlo. Proc. of the IEEE, 95(5):899–924, 2007.

[21] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Pearson, 1976.

[22] E. P. F. Chan and Y. Yaya. Shortest path tree computation in dynamic graphs. IEEE
Transactions on Computers, 58(4):541 –557, 2009.

[23] N. Chan, J. J. Kuffner, and M. Zucker. Improved motion planning speed and safety using
regions of inevitable collision. In 17th CISM-IFToMM Symposium on Robot Design,
Dynamics, and Control, pages 103–114, 2008.

[24] C. Chucholowski, M. Vögel, O. Stryk, and T. M. Wolter. Real time simulation and online
control for virtual test drives of cars. In High Performance Scientific and Engineering
Computing, volume 8, pages 157–166. Springer Berlin Heidelberg, 1999.

[25] S. Danielsson, L. Petersson, and A. Eidehall. Monte Carlo based threat assessment: Anal-
ysis and improvements. In Proc. of the IEEE Conference on Intelligent Vehicles Sympo-
sium, pages 233–238, 2007.

[26] R. de Nijs, M. Julia, N. Mitsou, B. Gonsior, K. Kühnlenz, D. Wollherr, and M. Buss.
Following route graphs in urban environments. In Proc. of the IEEE Int. Symposium on
Robot and Human Interactive Communication, pages 363–368, 2011.

[27] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of a*.
Journal of the ACM, 32(3):505–536, 1985.

[28] A. Doucet, N. De Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in Practice.
Springer, 2001.

146

[29] A. Eidehall and L. Petersson. Statistical threat assessment for general road scenes using
Monte Carlo sampling. IEEE Transactions on Intelligent Transportation Systems, 9:137–
147, 2008.

[30] P. Fiorini and Z. Shillert. Motion planning in dynamic environments using velocity obsta-
cles. International Journal of Robotics Research, 17:760–772, 1998.

[31] T. Fraichard. A short paper about motion safety. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 1140–1145, 2007.

[32] T. Fraichard and H. Asama. Inevitable collision states. a step towards safer robots? In
Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pages 388–393, 2003.

[33] T. Fraichard and H. Asama. Inevitable collision states. a step towards safer robots? Ad-
vanced Robotics, 18(10):1001–1024, 2004.

[34] C. Fulgenzi. Autonomous navigation in dynamic uncertain environment using probabilis-
tic models of perception and collision risk prediction. PhD thesis, INRIA Rhône-Alpes,
2009.

[35] C. Fulgenzi, A. Spalanzani, and C. Laugier. Dynamic obstacle avoidance in uncertain
environment combining pvos and occupancy grid. In Proc of the IEEE Int. Conf. on
Robotics and Automation, pages 1610–1616, 2007.

[36] C. Fulgenzi, A. Spalanzani, and C. Laugier. Probabilistic rapidly-exploring random trees
for autonomous navigation among moving obstacles. In Proc of the IEEE Int. Conf. on
Robotics and Automation, 2009.

[37] R. Fuller. A conceptualization of driver behavior as threat avoidance. Ergonomics, 27:
1139–1155, 1984.

[38] C. Garcia and M. Prett. Model predictive control: theory and practice. Automatica, 25(3):
335–348, 1989.

[39] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Second
Edition. Chapman and Hall, 2003.

[40] R. Geraerts and M. Overmars. Sampling techniques for probabilistic roadmaps planners.
In Proc. of the Int. Conf. on Intelligent Autonomous Systems, pages 600–609, 2004.

[41] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE Proceedings F Radar and Signal Processing, 140
(2):107–113, 1993.

[42] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid
interference detection. In Proc. on ACM Siggraph 96, 1996.

[43] M. Greytak and F. Hover. Motion planning with an analytic risk cost for holonomic
vehicles. In Proc of the 48th IEEE Conf. on Decision and Control, pages 5655–5660,
2010.

147

Bibliography

[44] R. W. Grubbström and O. Tang. The moments and central moments of a compound
distribution. European Journal of Operational Research, 170(1):106–119, 2004.

[45] L. J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty roadmaps for
path planning. In Proc. of the Int. Workshop on the Algorithmic Foundations of Robotics,
2008.

[46] S. Haddadin. Towards Safe Robots: Approaching Asimov’s 1st Law. PhD thesis,
Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011.

[47] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and G. Hirzinger.
Towards the robotic co-worker. In ISRR, volume 70 of Springer Tracts in Advanced
Robotics, pages 261–282. Springer, 2009.

[48] J. Handschin and D. Mayne. Monte Carlo techniques to estimate the conditional expec-
tation in multi-stage non-linear filtering. International Journal of Control, 9(5):547–559,
1969.

[49] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical Review
E, 51:4282–4286, 1995.

[50] D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay. Self-organizing pedestrian movement.
Planning and Design, 28:361–383, 2001.

[51] C. Hermes, C. Wohler, K. Schenk, and F. Kummert. Long-term vehicle motion prediction.
In IEEE Intelligent Vehicles Symposium, pages 652–657, 2009.

[52] T. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled mobile
robots. International Journal of Robotics Research, 26(2):141–166, 2007.

[53] J. Jansson. Collision Avoidance Theory with Application to Automotive Collision Mitiga-
tion. PhD thesis, Linköping University, 2005.

[54] R. Platt Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez. Belief space planning as-
suming maximum likelihood observations. In Proc. of Robotics Science and Systems VI,
2010.

[55] L. E. Kavraki, J. C. Latombe P. Svestka, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-diemnsional configuration spaces. IEEE Transactions on Robotics
and Automation, 12:566–580, 1996.

[56] E. C. Kerrigan and J .M. Maciejowski. Invariant sets for constrained nonlinear discrete-
time systems with application to feasibility in model predictive control. In IEEE Conf. on
Decision and Control, 2000.

[57] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Books on Electrical Engi-
neering. Dover Publications, 2004.

[58] B. Kluge and E. Prassler. Reflective navigation: Individual behaviors and group behaviors.
In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 4172–4177, 2004.

148

[59] B. Kluge and E. Prassler. Recursive probabilistic velocity obstacles for reflective naviga-
tion. In Shinichi Yuta, Hajima Asama, Erwin Prassler, Takashi Tsubouchi, and Sebastian
Thrun, editors, Field and Service Robotics, volume 24 of Springer Tracts in Advanced
Robotics, pages 71–79. Springer Berlin / Heidelberg, 2006.

[60] K. Madhava Krishna, R. Alami, and T. Simeon. Safe proactive plans and their execution.
Robotics and Autonomous Systems, 54:244–255, 2006.

[61] T. Kunz, U. Reiser, M. Stilman, and A. Verl. Real-time path planning for a robot arm
in changing environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 5906–5911, 2010.

[62] H. Kurniawati, T. Bandyopadhyay, and N. Patrikalakis. Global motion planning under un-
certain motion, sensing, and environment map. In Proc. of Robotics Science and Systems
VII, 2011.

[63] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How.

[64] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for fami-
lies of linear vector fields. Symbolic Computation, 32:231–253, 2001.

[65] A. Lambert, D. Gruyer, and G. S. Pierre. A fast Monte Carlo algorithm for collision prob-
ability estimation. In The 10th Int. Conf. on Control, Automation, Robotics and Vision,
2008.

[66] A. Lambert, D. Gruyer, G. S. Pierre, and A. Ndjeng. Collision probability assessment for
speed control. In Proc. of the Int. IEEE Conf. on Intelligent Transportation Systems, pages
1043–1048, 2008.

[67] A. Lambert, D. Gruyer, and G. St. Pierre. A fast Monte Carlo algorithm for collision
probability estimation. In Proc of the Int. Conf. on Control, Automation, Robotics and
Vision, pages 406–411, 2008.

[68] F. Large, D. A. Vasquez Govea, T. Fraichard, and C. Laugier. Avoiding Cars and Pedes-
trians using V-Obstacles and Motion Prediction. In Proc. of the IEEE Intelligent Vehicle
Symp., 2004.

[69] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[70] C. Laugier and R. Chatila. Autonomous navigation in dynamic environments. Springer
Tracts in Advanced Robotics. Springer, 2007.

[71] C. Laugier, I. Paromtchik, M. Perrollaz, Y. Mao, J. Yoder, C. Tay, K. Mekhnacha, and
A. Nègre. Probabilistic analysis of dynamic scenes and collision risk assessment to im-
prove driving safety. Intelligent Transportation Systems Journal, 3(4):4–19, 2011.

[72] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
report, University of Illinois, Department of Computer Science, 1998.

149

Bibliography

[73] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006.

[74] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having
independent goals. IEEE Trans. on Robotics and Automation, 14(6), 1998.

[75] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int.
Conf. on Robotics and Automation, 1999.

[76] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The Int. Journal of
Robotics Research, 20:378–401, 2001.

[77] S. M. LaValle and R. Sharma. A framework for motion planning in stochastic environ-
ments: Modeling and analysis. In Proc. IEEE Int. Conf. on Robotics and Automation,
1995.

[78] A. Lawitzky, D. Wollherr, and M. Buss. Maneuver-based risk assessment for high-speed
automotive scenarios. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 1186–1191, 2012.

[79] A. Lazo and P. Rathie. On the entropy of continuous probability distributions. IEEE
Transactions on Information Theory, 41(1):120–122, 1978.

[80] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. M. Stavens, A. Teichman,
M. Werling, and S. Thrun. Towards fully autonomous driving: Systems and algorithms.
In Intelligent Vehicles Symposium, pages 163–168, 2011.

[81] J. Lien. Hybrid motion planning using minkowski sums. In Proceedings of Robotics:
Science and Systems IV, 2008.

[82] M. Likhachev and D. Ferguson. Planning long dynamically-feasible maneuvers for au-
tonomous vehicles. International Journal of Robotics Research, 28(8):933–945, 2009.

[83] L. Martinez-Gomez and T. Fraichard. An efficient and generic 2d inevitable collision
state-checker. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, pages
234–241, 2008.

[84] L. Martinez-Gomez and T. Fraichard. Collision avoidance in dynamic environments: an
ics-based solution and its comparative evaluation. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 100–105, 2009.

[85] H. Michalska and D.Q. Mayne. Robust receding horizon control of constrained systems.
IEEE Transactions on Automatic Control, 38(11):1623–1633, 1993.

[86] P. E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain maps. In
IEEE Int. Conf. on Robotics and Automation, pages 1261–1267, 2006.

[87] K. Mombaur, A. Truong, and J.-P. Laumond. From human to humanoid locomotion – an
inverse optimal control approach. Autonomous Robots, 23(3):369–383, 2009.

150

[88] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Hähnel,
T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski,
J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun. Junior: The stanford entry in the urban
challenge. Journal of Field Robotics, 25(9):569–597, 2008.

[89] A. Neyman and S. Sorin, editors. Stochastic Games and Applications, volume 570 of
Series C: Mathematical and Physical Sciences. Kluwer Academic Publishers, 2003.

[90] R. Parthasarathi and T. Fraichard. An inevitable collision state-checker for a car-like
vehicle. In Proc. of the IEEE International Conference on Robotics and Automation,
pages 3068–3073, 2007.

[91] S. Patil, J. van den Berg, and R. Alterovitz. Estimating probability of collision for safe
motion planning under gaussian motion and sensing uncertainty. In In Proc. of Int. Conf.
on Robotics and Automation, pages 3238–3244, 2012.

[92] S. Petti and T. Fraichard. Safe motion planning in dynamic environments. In Proc. of the
IEEE Int. Conf. on Intelligent Robots and Systems, pages 2210–2215, 2005.

[93] R. Philippsen. Motion Planning and Obstacle Avoidance for Mobile Robots in Highly
Cluttered Dynamic Environments. PhD thesis, ETH Zürich, Institute of Robotics and
Intelligent Systems, 2004.

[94] M. Pivtoraiko and A. Kelly. Efficient constrained path planning via search in state lat-
tices. In Proc. of the Int. Symposium on Artificial Intelligence, Robotics and Automation
in Space, 2005.

[95] E. Prassler, J. Scholz, and M. Strobel. Maid: mobility assistance for elderly and disabled
people. In Proc. of the 24th Annual Conference of Industrial Electronics Society, 1998.

[96] L. A. Rastrigin. The convergence of the random search method in the extremal control of
a many parameter system. Automation and Remote Control, 24(10):1337–1342, 1963.

[97] J. Reif. Complexity of the mover’s problem and generalizations. In Proc. IEEE Sympo-
sium on Foundations of Computer Science, pages 224–241, 1979.

[98] P. Resende and F. Nashashibi. Real-time dynamic trajectory planning for highly auto-
mated driving in highways. In Proc. of Intelligent Transportation Systems, 2010.

[99] D. B. Rubin. Bayesianly justifiable and relevant frequency calculations for the applies
statistician. Annals of Statistic, 12(4):1151–1172, 1984.

[100] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. Wiley-
Interscience, 1981.

[101] T. Sasaki and H. Hashimoto. Human observation based mobile robot navigation in intel-
ligent space. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
1044–1049, 2006.

151

Bibliography

[102] M. Scheint, J. Wolff, and M. Buss. Invariance control in robotic applications: Trajectory
supervision and haptic rendering. In Proc. of the American Control Conference, pages
1436–1442, 2008.

[103] T. Schouwenaars. Safe Trajectory Planning of Autonomous Vehicles. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[104] T. Schouwenaars, B. De Moor, E. Ferson, and J. How. Mixed integer programming for
multi-vehicle path planning. In Proc. European Control Conference, pages 2603–2608,
2001.

[105] J. T. Schwartz and M. Sharir. On the “piano movers” problem i. the case of a two-
dimensional rigid polygonal body moving amidst polygonal barriers. Communications
on Pure Applied Mathematics, 36(3):345–398, 1983.

[106] R. Siegwart, K. O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin,
B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen, R. Piguet, G. Ramel, G. Ter-
rien, and N. Tomatis. Robox at expo.02: A large-scale installation of personal robots.
Robotics and Autonomous Systems, 42:203–222, 2003.

[107] E. A. Sisbot and R. Alami. A human-aware manipulation planner. IEEE Transactions on
Robotics, 28(5):1045–1057, 2012.

[108] T. Smith and R. G. Simmons. Point-based POMDP algorithms: Improved analysis and
implementation. In Proc. Int. Conf. on Uncertainty in Artificial Intelligence (UAI), pages
542–549, 2005.

[109] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. Smooth and collision-free navi-
gation for multiple robots under differential-drive constraints. In Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, 2010.

[110] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha. Real-time navigation
of independent agents using adaptive roadmaps. In ACM Symposium on Virtual Reality
Software and Technology, 2007.

[111] S. Thompson, T. Horiuchi, and S. Kagami. A probabilistic model of human motion and
navigation intent for mobile robot path planning. In Proc. of Int. Conf. on Autonomous
Robots and Agents, pages 663–668, 2009.

[112] S. Thrun and A. Bücken. Integrating grid-based and topological maps for mobile robot
navigation. In Proc. of the National Conference on Artificial Intelligence, 1996.

[113] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[114] N. E. Du Toit and J. W. Burdick. Robotic motion planning in dynamic, cluttered, uncertain
environments. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 966–
973, 2010.

[115] N. E. Du Toit and J. W. Burdick. Probabilistic collision checking with chance constraints.
IEEE Transactions on Robotics, 27(4):809–815, 2011.

152

[116] N. E. Du Toit and J. W. Burdick. Robotic motion planning in dynamic,uncertain environ-
ments. IEEE Transactions on Robotics, 28(1):101–115, 2012.

[117] P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense, interacting
crowds. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2010.

[118] C. Urmson, C. Baker, J. M. Dolan, P. Rybski, B. Salesky, W. L. Whittaker, D. Fergu-
son, and M. Darms. Autonomous driving in traffic: Boss and the urban challenge. AI
Magazine, 30:17–29, 2009.

[119] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and Ming Lin. Interactive navigation of
individual agents in crowded environments. In Proc. of the Symposium on Interactive 3D
Graphics and Games, 2008.

[120] J. van den Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning for robots
with motion uncertainty and imperfect state information. In Proc. of Robotics Science and
Systems VI, 2010.

[121] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha. Reciprocal n-body collision avoid-
ance. In Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger, editors, Robotics Re-
search, volume 70 of Springer Tracts in Advanced Robotics, pages 3–19. Springer Berlin
Heidelberg, 2011.

[122] D. Vasquez. Incremental Learning for Motion Prediction of Pedestrians and Vehicles.
PhD thesis, Institut National Polytechnique de Grenoble, 2007.

[123] M. Werling and D. Liccardo. Automatic collision avoidance using model-predictive online
optimization. In IEEE Conf. on Decision and Control, 2012.

[124] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. Optimal trajectory generation for dy-
namic street scenarios in a frenét frame. In Proc. of Int. Conf. on Robotics and Automation,
2010.

[125] M. Werling, S. Kammel, J. Ziegler, and L. Gröll. Optimal trajectories for time-critical
street scenarios using discretized terminal manifolds. Int. Journal of Robotics Research,
2011.

[126] J. Wolff and M. Buss. On stability of invariance controlled linear systems. In Proc. of the
European Control Conference, pages 3281–3288, 2007.

[127] J. Yan and R. R. Bitmead. Incorporating state estimation into model predictive control
and its application to network traffic control. Automatica, 41(4):595–604, 2005.

[128] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv., 38
(4), 2006.

[129] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell amd
M. Hebert, A. K. Dey, and S. Srinivasa. Planning-based prediction for pedestrians. In
IEEE Int. Conf. on Intelligent Robots and Systems, 2009.

153

Bibliography

[130] M. Zucker. Approximating state-space obstacles for non-holonomic motion planning.
Technical report, Carnegie Mellon University, Robotics Institute, 2006.

Own Publications

[131] M. Althoff, D. Althoff, D. Wollherr, and M. Buss. Safety verification of autonomous
vehicles for coordinated evasive maneuvers. In Proc. of the IEEE Intelligent Vehicles
Symposium, 2010.

[132] D. Althoff, O. Kourakosand, M. Lawitzky, A. Mörtl, M. Rambowand F. Rohrmüller,
D. Brščić, D. Wollherr, S. Hirche, and M. Buss. An architecture for real-time control in
multi-robot systems , human centered robot systems. In H. Ritter, G. Sagerer, R. Dillmann,
and M. Buss, editors, Cognitive Systems Monographs, pages 43–52. Springer, 2009.

[133] D. Althoff, M. Althoff, D. Wollherr, and M. Buss. Probabilistic collision state checker
for crowded environments. In Proc. of the IEEE Int. Conf. on Robotics and Automation,
2010.

[134] D. Althoff, C. N. Brand, D. Wollherr, and M. Buss. Computing unions of inevitable
collision states and increasing safety to unexpected obstacles. In In Proc. of Int. Conf. on
Intelligent Robots and Systems, 2011.

[135] D. Althoff, J. J. Kuffner, D. Wollherr, and M. Buss. Safety assessment of robot trajectories
for navigation in uncertain and dynamic environments. Springer Autonomous Robots, SI
Motion Safety for Robots, 2011.

[136] D. Althoff, D. Wollherr, and M. Buss. Safety assessment of trajectories for navigation
in uncertain and dynamic environments. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, 2011.

[137] D. Althoff, M. Buss, A. Lawitzky, M. Werling, and D. Wollherr. On-line trajectory gen-
eration for safe and optimal vehicle motion planning. In P. Levi, O. Zweigle, K. Häußer-
mann, and B. Eckstein, editors, Autonomous Mobile Systems, Informatik aktuell, pages
99–107. Springer Berlin Heidelberg, 2012.

[138] D. Althoff, M. Werling, N. Kaempchen, D. Wollherr, and M. Buss. Lane-based safety as-
sessment of road scenes using Inevitable Collision States. In Proc. of the IEEE Intelligent
Vehicles Symposium, 2012.

[139] D. Althoff, B. Weber, D. Wollherr, and M. Buss. Closed-loop safety assessment of uncer-
tain roadmaps: Incorporation of replanning possibilities. Springer Autonomous Robots,
2014, accepted.

[140] K. Klasing, D. Althoff, D. Wollherr, and M. Buss. Comparison of surface normal estima-
tion methods for range sensing applications. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2009.

154

[141] A. Lawitzky, D. Althoff, D. Wollherr, and M. Buss. Dynamic window approach for
omnidirectional robots with polygonal shape. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2010.

[142] A. Lawitzky, D. Althoff, C. F. Passenberg, G. Tanzmeister, D. Wollherr, and M. Buss.
Interactive scene prediction for automotive applications. In Proc. of the IEEE Intelligent
Vehicles Symposium, pages 1028–1033, 2013.

155

	Introduction
	Motivation
	Problem Formulation
	Safety Criteria
	Environment Description
	Closed-loop Safety Assessment
	Safety Assessment Beyond Planning Horizon
	Interactive Safety Assessment

	Contributions and Outline of this Thesis

	Closed-loop Assessment
	Motivation and Problem Formulation
	Related Work
	General Idea
	Notation and Environment Description
	Workspace Description
	Graph Representation
	Environment Model
	Safety Assessment

	Trajectory with Minimum Collision Probability
	Collision Probability Incorporating Replanning
	Collision Probability Regarding Multi-edges
	Collision Probability for Serial Edges

	Collision Probability for the Entire Graph
	Reduction of Vertices with Single Output
	Graph Reduction

	Implementations
	Estimation of Collision Probabilities for the Entire Graph
	Environment Model for Mobile Robot Applications
	Environment Model for Automotive Applications
	Roadmap for Mobile Robot
	Roadmap for Automotive Scenario

	Simulations
	Determining the Safest Route
	Mobile Robot Applications
	Automotive Applications

	Discussion

	Assessment beyond Planning Horizon
	Motivation and Problem Formulation
	Related Work
	Inevitable Collision State and Inevitable Collision Obstacle
	Union of Inevitable Collision Obstacles
	Motion Safety Regarding Unexpected Objects
	Probabilistic Collision State
	Overall Collision Probability
	Probabilistic Collision Costs
	Implementations
	Inevitable Collision State Checkers
	Probabilistic Collision State Checker

	Simulations
	Inevitable Collision State Checkers
	Motion Safety Regarding Unexpected Objects
	Probabilistic Collision State Checker
	Overall Collision Probability
	Probabilistic Collision Cost

	Discussion

	Interactive Assessment
	Motivation and Problem Formulation
	Related Work
	Cooperative Inevitable Collision State
	Cooperative Probabilistic Collision State
	Definition of cPCSd
	Definition of cPCSu
	Discussion

	Implementations
	Automotive Application
	Mobile Robot Application

	Simulations
	Automotive Applications
	Mobile Robot Application

	Discussion

	Integration into Motion Planning
	Motivation and Problem Formulation
	Motion Planning in Deterministic Environments
	Motion Planning in Uncertain Environments

	Related Work
	Autonomous Navigation of Vehicles
	Mobile Robot Navigation in Populated Environments

	Optimal Control Considering Safety Beyond the Planning Horizon
	Motion Graph Planning
	On-line Planning
	Off-line Planning

	Interactive Motion Planning
	Implementations
	On-line Motion Graph Planning
	Off-line Motion Graph Planning
	Interactive Motion Planning

	Simulations
	Optimal Control
	Motion Graph Planning
	Interactive Navigation

	Discussion

	Conclusions
	Summary
	Discussion and Future Directions

	Estimation of Collision Probability
	Problem Formulation
	Notation
	Collision Probability for a Single Time Point

	Workspace Discretization
	Monte Carlo Approximation
	Discussion

	Bibliography

