DC-SIGN als Zielstruktur zur Verbesserung von Vakzinierungen

Theresa Förg

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. E.J. Rummeny

Prüfer der Dissertation:

1. Univ.-Prof. Dr. D. Busch
2. Univ.-Prof. Dr. U. Protzer

I INHALTSVERZEICHNIS

I Inhaltsverzeichnis .. 1
II Abkürzungen .. 3
III Abbildungsverzeichnis ... 8

1 Einleitung ... 9
 1.1 Das Immunsystem: Ein Zusammenspiel zwischen angeborener und adaptiver Immunabwehr ... 9
 1.2 Dendritische Zellen ... 10
 1.3 Rezeptoren Dendritischer Zellen ... 16
 1.4 Das C-Typ Lektin DC-SIGN ... 18
 1.5 Generierung einer transgenen hSIGN Maus ... 25
 1.6 C-Typ Lektine: Zielstrukturen für die Entwicklung neuer Vakzine 27
 1.7 Ziele der Arbeit .. 30

2 Material und Methoden .. 32
 2.1 Materialien ... 32
 2.1.1 Ausstattung .. 32
 2.1.2 Chemikalien .. 32
 2.1.3 Verbrauchsmaterialien ... 34
 2.1.4 Kits .. 35
 2.1.5 PCR-Primer .. 35
 2.1.6 Oligonukleotide .. 35
 2.1.7 Antikörper für die FACS-Analyse .. 35
 2.1.8 Proteine und Enzyme .. 36
 2.1.9 Peptide ... 37
 2.2 Methoden .. 37
 2.2.1 Zellbiologie ... 37
 2.2.1.1 Medium für Zellkulturen mit Dendritischen Zellen .. 37
 2.2.1.2 Gewinnung von Dendritischen Zellen aus Knochenmarkskulturen 37
 2.2.1.3 Einfrieren von Dendritischen Zellen .. 38
 2.2.2 Mäuse ... 38
 2.2.3 Molekularbiologie ... 39
 2.2.3.1 Puffer und Lösungen .. 39
 2.2.3.2 Isolation genomischer Maus-DNS aus Gewebeproben 40
 2.2.3.3 Agarosegelelektrophorese .. 41
 2.2.3.4 PCR ... 41
 2.2.4 Immunologie .. 41
 2.2.4.1 Durchflusszytometrie (FACS) .. 41
 2.2.4.2 FACS-Analyse von Oberflächenmolekülen .. 42
 2.2.4.3 Protokolle für Experimente mit T-Zellen ... 43
 2.2.4.4 In vitro Ko-Kulturen ... 45
 2.2.4.5 In vivo Experimente .. 46
 2.2.4.6 Verwendete Vakzine .. 48
 2.2.5 Statistik ... 48

3 Ergebnisse ... 49
 3.1 Phänotypische Analyse von Dendritischen Zellen .. 49
 3.2 Analyse von T-Zell Proliferation mittels CFSE Markierung .. 53
 3.3 T-Zell Proliferationsanalyse mittels Thymidin Inkorporation 58
3.4 Das Humane DC-SIGN als Zielstruktur von Vakzinen in vivo: Analyse von T-Zell Antworten im hSIGN Mausmodell ... 64
3.5 Funktionelle Analyse der zytotoxischen Aktivität nach Vakzinierung 68

4 Diskussion ... 73
4.1 Zielrezeptoren für die Entwicklung neuer Impfstoffe .. 74
4.2 Zielstruktur DC-SIGN: Induktion von potenten T-Zell Antworten 76
 4.2.1 Targeting von DC-SIGN in vitro ... 76
 4.2.2 Targeting von DC-SIGN in vivo .. 79
4.3 Die Wahl von Antikörpern und Adjuvanzien bei der Neuentwicklung von
Impfstoffen ... 82
 4.3.1 Die Wahl des richtigen Antikörpers .. 83
 4.3.2 Impfstoffe und ihre Adjuvanzien ... 85
4.4 Ausblick: DC-SIGN – Therapeutische Einsatzmöglichkeiten und Chancen in
der Medizin ... 88

5 Zusammenfassung .. 94

6 Summary .. 96

7 Literaturverzeichnis .. 98

8 Danksagung .. 112
Abkürzungen

% Prozent
°C Grad Celsius
AK Antikörper
APC Allophycocyanin
APC(s) Antigen presenting cell(s), Antigen-präsentierende Zelle(n)
BAC Bacterial artificial chromosome
BDCA-2 Blood dendritic cell antigen 2
BSA Bovine serum albumin, Rinderserumalbumin
CD Cluster of differentiation
cDC(s) Conventional dendritic cell(s), konventionelle Dendritische Zelle(n)
cDNA Complementary DNA, komplementäre DNS
CFSE 5-(6)-Carboxyfluorescein Diacetat Succinimidyl Ester
CLEC-1 C-type lectin-like receptor 1
CLP(s) Common lymphoid progenitor(s), gemeinsame lymphoide Vorläuferzelle(n)
CLR(s) C-type lectin receptor(s), C-Typ Lektin(e)
CMP(s) Common myeloid progenitor(s), gemeinsame myeloische Vorläuferzelle(n)
CMV Zytomegalie Virus
CpG Cytosin-Guanosin Oligonukleotid
cpm Counts per minute, Zählimpulse pro Minute
CRD(s) Carbohydrate recognition domain(s), Erkennungsregion(en) für Kohlenhydratstrukturen
CTL(s) Cytotoxic T-cell(s), zytotoxische T-Zelle(n)
d Day, Tag
DC-SIGN Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin
DC-SIGNR DC-SIGN-related gene
DC(s) Dendritic cell(s), Dendritische Zelle(n)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCIR</td>
<td>Dendritic cell immunoreceptor</td>
</tr>
<tr>
<td>Dectin-1/-2</td>
<td>DC-associated C-type lectin 1 oder 2</td>
</tr>
<tr>
<td>DLEC</td>
<td>Dendritic cell lectin</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA, DNS</td>
<td>Desoxyribonucleic acid, Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP(s)</td>
<td>Desoxyribonukleotid Tri-Phosphat(e)</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EcoRI</td>
<td>Restriction Endonuclease isolated from E.coli, Restriktionsendonuklease isoliert aus E.coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EMA</td>
<td>Ethidiummonoazid</td>
</tr>
<tr>
<td>engl.</td>
<td>Englisch</td>
</tr>
<tr>
<td>ERK(s)</td>
<td>Extracellular signal-regulated protein kinase(s)</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting</td>
</tr>
<tr>
<td>Fc</td>
<td>Fragment crystallisable</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum, fetales Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein-5-isothiocyanat</td>
</tr>
<tr>
<td>FLT3(-L)</td>
<td>FMS-like tyrosine kinase 3(-Ligand)</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony-stimulating factor, Granulozyten Makrophagen koloniestimulierender Faktor</td>
</tr>
<tr>
<td>H₂O<sub>dd</sub></td>
<td>Aqua double-distilled, doppelt destilliertes Wasser</td>
</tr>
<tr>
<td>H₂O<sub>PCR</sub></td>
<td>Aqua ad injectabilia, Wasser für Injektionszwecke</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>hSIGN</td>
<td>Bezeichnung für transgene DC-SIGN Mauslinie</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>i.v.</td>
<td>Intravenös</td>
</tr>
<tr>
<td>ICAM</td>
<td>Interzellular adhesion molecule, interzelluläres Adhäsionsmolekül</td>
</tr>
<tr>
<td>iDC(s)</td>
<td>Immature dendritic cell(s), unreife Dendritische Zellen</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Isotyp:OVA AK</td>
<td>Isotyp zu αhDC-SIGN:OVA Antikörper</td>
</tr>
<tr>
<td>ITAM</td>
<td>Immunoreceptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDA</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KLH</td>
<td>Keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>L-SIGN</td>
<td>Liver/lymph node–specific ICAM-3-grabbing non-integrin</td>
</tr>
<tr>
<td>LARG</td>
<td>Leukemia-associated Rho guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>LK</td>
<td>Lymphknoten</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony-stimulating factor, Makrophagen koloniestimulierender Faktor</td>
</tr>
<tr>
<td>ManLAM</td>
<td>Mannose capped lipoarabinomannan</td>
</tr>
<tr>
<td>MBL</td>
<td>Mannose-bindendes Lektin</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MMR/MR</td>
<td>(Macrophage) mannose receptor, (Makrophagen) Mannose Rezeptor</td>
</tr>
<tr>
<td>moDC(s)</td>
<td>Monocyte-derived dendritic cell(s), von Monozyten abstammende Dendritische Zelle(n)</td>
</tr>
<tr>
<td>MPL</td>
<td>Monophosphoryl Lipid A</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-kappaB, Kernfaktor KappaB</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>Abkürzungen</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>NK Zellen</td>
<td>Natürliche Killer Zellen</td>
</tr>
<tr>
<td>NLR(s)</td>
<td>Nucleotide binding oligomerization domain (NOD)-like receptor(s)</td>
</tr>
<tr>
<td>OTI Zellen</td>
<td>OVA Peptid Klasse I spezifische T-Zellen</td>
</tr>
<tr>
<td>OTII Zellen</td>
<td>OVA Peptid Klasse II spezifische T-Zellen</td>
</tr>
<tr>
<td>p38</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>PAMP(s)</td>
<td>Pathogen-associated molecular pattern(s), mit den Pathogenen assoziierte molekulare Muster</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline, phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction, Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>pDC(s)</td>
<td>Plasmacytoid dendritic cell(s), plasmazytoide Dendritische Zelle(n)</td>
</tr>
<tr>
<td>PDCA</td>
<td>Dendritic cells expressing plasmacytoid marker</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumjodid</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositid-3-Kinase</td>
</tr>
<tr>
<td>pMol</td>
<td>Pikomol</td>
</tr>
<tr>
<td>PRR(s)</td>
<td>Pattern-recognition receptor(s), Mustererkennungsrezeptor(en)</td>
</tr>
<tr>
<td>RLH(s)</td>
<td>Retinoid-acid-inducible gene like helicase(s)</td>
</tr>
<tr>
<td>RNA, RNS</td>
<td>Ribonucleic acid, Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per minute, Umdrehungen pro Minute</td>
</tr>
<tr>
<td>s.</td>
<td>Siehe</td>
</tr>
<tr>
<td>Salp15</td>
<td>Ixodes scapularis salivary protein</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfat</td>
</tr>
<tr>
<td>SIGNR</td>
<td>SIGN-related</td>
</tr>
<tr>
<td>sog.</td>
<td>Sogenannte</td>
</tr>
<tr>
<td>SP-A</td>
<td>Surfactantprotein A</td>
</tr>
<tr>
<td>SP-D</td>
<td>Surfactantprotein D</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor, T-Zell Rezeptor</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming Growth Factor, transformierender Wachstumsfaktor</td>
</tr>
<tr>
<td>T<sub>H</sub> cell(s)</td>
<td>T helper cell(s), T-Helferzelle(n)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor, Toll-like Rezeptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor, Tumornekrosefaktor</td>
</tr>
<tr>
<td>T_{reg(s)}</td>
<td>Regulatory T-cell(s), regulatorische T-Zelle(n)</td>
</tr>
<tr>
<td>TREM(s)</td>
<td>Triggering receptor(s) expressed on myeloid cells</td>
</tr>
<tr>
<td>TRP-2</td>
<td>Tyrosinase-related protein 2, B16 Melanom Antigen</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp Maus</td>
</tr>
<tr>
<td>α</td>
<td>Anti</td>
</tr>
<tr>
<td>α_{hDC-SIGN:OVA AK}</td>
<td>Anti-human-DC-SIGN Antikörper gekoppelt an OVA Protein</td>
</tr>
<tr>
<td>μCi</td>
<td>Mikrocurie</td>
</tr>
<tr>
<td>μg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>μl</td>
<td>Mikroliter</td>
</tr>
</tbody>
</table>
III ABBILDUNGSVERZEICHNIS

Abbildung 1: Immunregulation durch DCs ... 14
Abbildung 2: Unterschiedliche Subpopulationen von CD4+ und CD8+ T-Zellen 15
Abbildung 3: Rezeptortypen auf DCs .. 17
Abbildung 4: Überblick über die wichtigsten Typ I und Typ II CLRs 19
Abbildung 5: Aufbau und Struktur von DC-SIGN .. 20
Abbildung 6: Die räumliche Konformation der CRD von DC-SIGN 21
Abbildung 7: DC-SIGN Signaltransduktionswege verschiedener Pathogene 22
Abbildung 8: Schematischer Überblick über die Struktur der murinen und humanen SIGN-Moleküle ... 26
Abbildung 9: Struktur des transgenen hSIGN Mauskonstrukts 27
Abbildung 10: Zeitschema zum Targeting von DC-SIGN in vivo 47
Abbildung 11: FACS Analyse der unstimulierten DCs am Kulturtag acht 50
Abbildung 12: FACS Analyse der stimulierten DCs am Kulturtag acht 51
Abbildung 13: Expression von DC-SIGN in transgenen hSIGN Mäusen 52
Abbildung 14: OTI T-Zell Proliferation bei spezifischem Beladen der DCs mit Antikörpern oder Protein ... 56
Abbildung 15: OTI und OTII T-Zell Proliferation bei gezieltem Beladen der DCs mit Antikörpern ... 57
Abbildung 16: OTI T-Zell Proliferation bei Targeting von DC-SIGN in vitro 60
Abbildung 17: OTII T-Zell Proliferation bei Targeting von DC-SIGN in vitro 62
Abbildung 18: Proliferation transferierter CD45.1+ x OTI Zellen in vitro 66
Abbildung 19: Proliferation transferierter CD45.1+ x OTII Zellen in vivo 67
Abbildung 20: Verringerung der CFSElow Fraktion in der Milz 69
Abbildung 21: Verringerung der CFSElow Fraktion in den inguinalen Lymphknoten ... 71
1 EINLEITUNG

1.1 Das Immunsystem: Ein Zusammenspiel zwischen angeborener und adaptiver Immunabwehr

1.2 Dendritische Zellen

größte Anstrengungen betrieben, um die Differenzierungs- und Abstammungswege, Phänotypen, Aufgaben und Besonderheiten der DCs aufzuklären.

DCs differenzieren sich aus Knochenmarkstämmen und wandern als Vorläufer DCs in das periphere Blut ein. Dort machen sie nur einen geringen Prozentsatz der Zellen aus, sodass ihre Isolierung und Kultivierung lange Zeit ein großes Hindernis für die Forschung an diesen Zellen darstellte. Inzwischen können DCs jedoch in großen Mengen durch Kultivierung mit verschiedenen Zytokinen aus humanen Blutmonocyten, menschlichem Nabelschnurblut oder Knochenmark, sowie aus Knochenmark oder Blut von Mäusen gewonnen werden (Inaba et al., 1992; Reid et al., 1992; Santiago-Schwarz et al., 1992; Inaba et al., 1993; Peters et al., 1996). Ursprünglich wurde davon ausgegangen, dass DCs rein myeloiden Ursprungs sind. Inaba et al. konnten bereits früh zeigen, dass Granulozyten, Monocyten und DCs mit Hilfe des Granulozyten Makrophagen koloniestimulierenden Faktors (GM-CSF) aus murinen Knochenmarksvorläuferzellen generiert werden können (Inaba et al., 1992; Inaba et al., 1993). Kulturen humaner CD34+ Knochenmarksvorläuferzellen entwickelten sich zu CD1a⁻ Monocyten, Granulozytenvorläuferzellen oder zu einer bipotenten Vorläuferzellpopulation, die sich wiederum in Kultur mit GM-CSF zu DCs oder zusammen mit dem Makrophagen koloniestimulierenden Faktor (M-CSF) zu Monozyten weiterentwickelte (s. Übersichtsarbeiten von Shortman and Caux, 1997). Beweisend für eine myeloide Abstammung muriner DCs waren jedoch verschiedene Studien, in denen schon kurze Zeit nach der Transplantation muriner myeloider Vorläuferzellen (CMPs) in bestrahlte Empfängermausen plasmazytoide DCs (pDCs) und konventionelle DCs (cDCs) in der Milz und im Thymus der Mäuse nachzuweisen waren (Traver et al., 2000; Manz et al., 2001a; Wu et al., 2001). Inzwischen liegen aber ausreichend viele Belege dafür vor, dass neben myeloïden auch lymphoide Vorläuferzellen für DCs existieren. DCs und verschiedene lymphoide Zellen verfügen über gemeinsame Oberflächenmarker wie CD8 (als αα Homodimer), CD2, BP-1 und CD25, was Vremec et al. bereits früh mutmaßen ließ, dass eine gemeinsame lymphoide Vorläuferzellen vorliegen könnte (Vremec et al., 1992). Außerdem sind lymphoide Vorläuferzellen (CLPs) aus murinem Knochenmark sowohl in vitro als auch in vivo in der Lage, sich zu DCs zu entwickeln (Manz et al., 2001b; Wu et al., 2001).
Um die multiplen Aufgaben im Immunsystem zu erfüllen, entwickelten sich unterschiedliche Untergruppen von DCs. In der Maus werden die DCs in zwei große Hauptgruppen eingeteilt: Zum einen in die Gruppe der pDCs (CD11c^+ B220^- CD45RA^+ PDCA1^+), die auch als Typ-1 Interferon produzierende Zellen bekannt sind und zum anderen in die Gruppe der cDCs (CD11c^+ B220^- CD45RA^- PDCA1^-) (s. Übersichtsarbeit von Shortman and Liu, 2002). Es konnte bereits gezeigt werden, dass murine DCs, die von lymphoiden Vorläuferzellen abstammen, große Mengen an IL-12 produzieren und weniger Phagozytose als DCs myeloider Abstammung betreiben (Pulendran et al., 1997; Leenen et al., 1998). Es konnte jedoch sowohl für DCs lymphoider als auch myeloider Abstammung in der Maus in vivo gleichermaßen eine effektive CD4^+ T-Zell Aktivierung nachgewiesen werden (Maldonado-López et al., 1999).

Darüberhinaus scheint der FLT3-Ligand (FLT3-L) eine wichtige Rolle bei der Differenzierung muriner Knochenmarksvorläuferzellen zu DCs zu spielen. Außerdem konnte gezeigt werden, dass FLT3-L Injektionen zu einer deutlichen Vermehrung von DCs myeloider und lymphoider Herkunft in mehreren Organen der Maus führten, wohingegen GM-CSF in erster Linie eine Vermehrung der DCs abstammend von myeloiden Vorläuferzellen auslöste (Shurin et al., 1997; Lyman and Jacobsen, 1998; Pulendran et al., 1999). Inwiefern es bei der Maus eine Verknüpfung zwischen der Entwicklung von Langerhans Zellen, den Langerin exprimierenden DCs der Haut und DCs lymphoider und myeloider Abstammung gibt, ist noch nicht bis ins Detail erforscht. Verschiedene Studien konnten jedoch zeigen, dass die Entwicklung von Langerhans Zellen in der Maus abhängig ist von der Anwesenheit von TGF-beta 1 (Borkowski et al., 1996). Im Menschen wurden die Subgruppen von DCs bislang nicht so ausführlich untersucht wie im murinen Organismus, sie lassen sich aber ebenfalls in die beiden Hauptgruppen cDCs (CD11c^+ CD123^{low} BDCA-2^+) und pDCs (CD11c^- CD123^{high} BDCA-2^+) einteilen (Ito et al., 2005). Die Entwicklung humaner DCs nimmt ihren Ausgang bei CD34^+ Vorläuferzellen im Knochenmark. Myeloide CD34^+ Vorläuferzellen differenzieren sich im Blut zu CD14^+ CD11c^+ CD1^- oder CD14^- CD11c^- CD1^- Vorläuferzellen. Die CD14^+ CD11c^- CD1^- Population reift unter Einfluss von IL-4 und GM-CSF zu interstitiellen DCs heran, während GM-CSF, IL-4 und TGF-beta die CD14^- CD11^+ CD1^- Population zur Differenzierung zu Langerhans Zellen anregen (Romani et al., 1994; Ito et al., 1999). TGF-beta scheint also sowohl bei der Maus als auch beim Menschen...
Einleitung

Ein wichtiger Faktor für das Heranreifen von Langerhans Zellen zu sein (Borkowski et al., 1996; Strobl et al., 1997). Lymphoide CD34⁺ Vorläuferzellen entwickeln sich im peripheren Blut zu CD14⁺ CD11⁺ CD4⁺ hi IL-3Rα⁺ Zellen, die nur unter dem Einfluss von IL-3 überleben können und sich bei Anwesenheit von CD40-Liganden zu reifen humanen pDCs weiter entwickeln (Grouard et al., 1997; Banchereau et al., 2000). Möglicherweise stellen sie das Pendant für murine DCs lymphoider Abstammung dar (Banchereau et al., 2000; Shortman and Liu, 2002). Die Injektion von FLT3-L erhöht ähnlich wie im Organismus der Maus die Anzahl nachweisbarer DCs im menschlichen Blut (Maraskovsky et al., 2000).

Auch wenn über die genauen Abstammungswege der DCs noch keine allgemeine Einigkeit herrscht und sich die Subpopulationen in ihren Oberflächenmarkern, Lokalisationen und Migrationseigenschaften unterscheiden, haben DCs eine gemeinsame Eigenschaft: Es handelt sich um APCs, die an der Schnittstelle zwischen angeborenem und erworbenem Immunsystem wirken (s. Übersichtsarbeiten von Steinman, 1991; Banchereau and Steinman, 1998). Sie sind in der Lage Antigene aufzunehmen, in ihrem Zellinneren zu prozessieren und sie dann mit Hilfe von MHC Molekülen an ihrer Oberfläche zu präsentieren. DCs durchlaufen während ihrer Entwicklung verschiedene Phasen, in denen sich Migrationseigenschaften, Reifegrad, Expression von Oberflächenmolekülen und Sekretion von Botenstoffen verändern. Sind keine inflammatorischen Signale vorhanden, wie es im immunologischen Gleichgewichtszustand (sog. steady-state) der Fall ist, verbleiben DCs in einem unreifen, gering aktivierten Zustand (iDCs) und exprimieren nur wenige MHCII und kostimulierende Moleküle auf ihrer Oberfläche. Als iDCs besiedeln sie den gesamten Körper, internalisieren und präsentieren kontinuierlich körpereigene Antigene und können so T-Zell Reaktionen gegen Selbstantigene regulieren und die Aktivität des Immunsystems kontrollieren (s. Übersichtsarbeiten von Geijtenbeek et al., 2004). Außerdem können iDCs die Generierung regulatorischer T-Zellen (Tregs) vorantreiben. Diese beiden Mechanismen sind wichtig, um der Entstehung von Autoimmunprozessen entgegen zu wirken und eine Immunbalance aufrechtzuerhalten. Bei mikrobieller Infektion, Zelluntergang oder Entzündung (sog. Gefahrensignale (danger signals)), werden DCs über den Blutstrom in die betroffenen inflammatorischen Gewebe verteilt, nehmen dort Fremd- oder Selbstantigene auf und wandern anschließend in sekundäre lymphatische Organe, meist Lymphknoten (LKS), ein. Als nun reife DCs exprimieren sie zusätzliche kostimula-

Abbildung 1: Immunregulation durch DCs

et al., 1999; Pulendran et al., 1999; Napolitani et al., 2005). CD4⁺ T_{H}17-Zellen und IL-17 produzierende CD8⁺ T-Zellen reifen unter dem Einfluss von TGF-β und pro-inflammatorischer Zytokine wie IL-6, IL-21 und IL-23 (He et al., 2006; Veldhoen et al., 2006). IL-4, das von spezifischen DCs und Basophilen sezerniert wird, führt zur Entstehung von CD4⁺ T_{H}2-Zellen (Sokol et al., 2008). T_{H}2-Zellen produzieren IL-4, IL-5 und IL-13 und können so effizient Parasiten bekämpfen (Seder et al., 1992). Sie beeinflussen aber auch T_{H}1-induzierte Immunantworten und führen zu allergischen Erkrankungen wie Asthma bronchiale (s. Übersichtsarbeiten von Luster and Tager, 2004; Kaufmann, 2007; Steinman and Banchereau, 2007; Stephani, 2008; Koyasu and Moro, 2011). Abbildung 2 veranschaulicht die Entwicklung unterschiedlicher Subpopulationen von T-Zellen.

Abbildung 2: Unterschiedliche Subpopulationen von CD4⁺ und CD8⁺ T-Zellen

Naive CD4⁺ T-Zellen entwickeln sich zu T_{reg}, T_{H}1-, T_{H}2- oder T_{H}17-Zellen. Naive CD8⁺ T-Zellen werden zu CTLs und IL-17 produzierenden Zellen. Abbildung 2 modifiziert nach Luster and Tager, 2004; Kaufmann, 2007; Stephani, 2008.

Abkürzungen: CD, cluster of differentiation; CTL, zytotoxische T-Zelle; GM-CSF, Granulozyten Makrophagen koloniestimulierender Faktor; IFN, Interferon; IL, Interleukin; TGF, transformierender Wachstumsfaktor; T_{H}, T-Helferzelle; TNF, Tumornekrosefaktor; T_{reg}, regulatorische T-Zelle.
1.3 Rezeptoren Dendritischer Zellen

Für die Unterscheidung zwischen Pathogenen und Selbstantigenen verfügen DCs auf ihrer Oberfläche über eine Bandbreite an Rezeptoren, die den DCs ermöglichen, Antigene zu erkennen, diese in ihr Zellinneres aufzunehmen und verschiedene Signaltransduktionswege zu aktivieren. So können entweder effektive Immunantworten gegen die Pathogene generiert oder die immunologische Aktivität gedrosselt werden. Diejenigen Rezeptoren, die zur Erkennung von Pathogenen wichtig sind, werden als Mustererkennungsrezeptoren (PRRs) bezeichnet. Die PRRs erkennen mit den Pathogenen assoziierte molekulare Muster (PAMPs), welche charakteristische Erregerbestandteile darstellen und für das Überleben von Pathogenen essentiell sind. Es handelt sich hierbei insbesondere um Bestandteile der Zellwand oder Ribonukleinsäuren, wobei die meisten Pathogene über mehrere verschiedene PAMPs verfügen und somit auch gleichzeitig von unterschiedlichen PRRs erkannt werden können (s. Übersichtsarbeit von Janeway and Medzhitov, 2002). Die beiden größten Rezeptorgruppen stellen die Toll-like Rezeptoren (TLRs) und die C-Typ Lektine (CLRs) dar. Außerdem verfügen DCs über NOD-like Rezeptoren (NLRs), RIG-like Helikasen (RLHs), Triggering receptors expressed on myeloid cells (TREM) und Fc-Rezeptoren (s. Übersichtsarbeit von Guy, 2007).

Aus Abbildung 3 werden die verschiedenen Rezeptortypen von DCs ersichtlich.

Die am besten erforschte und charakterisierte Gruppe ist die Familie der TLRs. Aktuell sind zehn Subtypen beim Menschen und 12 in der Maus bekannt, wobei diese entweder auf der Zelloberfläche (TLR 1, 2, 4, 5, 6, 10-13) oder auf der Membran von Endosomen (TLR 3, 7, 8, 9) im Zellinneren vorkommen. TLRs sind in der Zell- oder Endosomenmembran verankert und erkennen spezifische Pathogenkomponenten wie Lipoproteine, Lipopolysaccharide (LPS), Flagellin oder bakterielle Desoxyribonukleinsäure (DNS), aber auch endogene Proteine wie Hitzeschock Proteine, die bei Schädigung von Gewebe freigesetzt werden. Die TLRs geben nach der Bindung Informationen über ihre Liganden mit Hilfe von Signalkaskaden in das Zellinnere der DCs weiter und lösen Prozesse aus, die zur Reifung der DCs führen, die Produktion von Zytokinen und kostimulatorischen Molekülen vorantreiben und auf diese Weise die T-Zell Aktivierung ermöglichen (s. Übersichtsarbeiten von Figdor et al., 2002; Janeway and Medzhitov, 2002).
Einleitung

TREM, NLR, RLHs und TLR erkennen spezifische PAMPs und führen über verschiedene Signaltransduktionswege zur Aktivierung von DCs. CLR und Fc-Rezeptoren hingegen sind speziell für die Antigenaufnahme in die DCs wichtig. Abbildung 3 modifiziert nach Guy, 2007 und Stephani, 2008.

Abkürzungen: CLR, C-type Lektine; Fc, Fragment crystallisable; NLR, NOD-like Rezeptoren; RLH, RIG-like Helikasen; TLR, Toll-like Rezeptoren; TREM, Triggering receptors expressed on myeloid cells.

Eine zweite große Gruppe bilden die CLR. Diese Familie besteht aus 17 verschiedenen Rezeptoren, die als Transmembranproteine oder in löslicher Form vorkommen. Zu den löslichen Formen zählt man unter anderem das Mannosebindende Lektin (MBL), welches im Blutplasma zu finden ist und die Surfactantproteine A und D (SP-A oder SP-D), die von Epithelzellen in der Lunge produziert werden (Kawasaki et al., 1983; Wintergerst et al., 1989). Die membrangebundenen CLR werden hauptsächlich auf iDCs exprimiert, kommen aber auch auf anderen APCs wie Makrophagen vor und sind selten auf DCs aus dem Blut oder auf Langerhans-Zellen zu finden. Die CLR setzen sich aus einem zytoplasmatischen und einem extrazellulären Anteil zusammen, die über eine transmembranöse Region verbunden sind. Der zytoplasmatische Anteil besteht je nach CLR aus unterschiedlichen Elementen, die für die Signalübertragung und Antigenaufnahme wichtig sind. Der extrazelluläre Anteil enthält eine spezielle Erkennungsregion für komplexe Zuckerstrukturen.
Einleitung

1.4 Das C-Typ Lektin DC-SIGN

Abbildung 4: Überblick über die wichtigsten Typ I und Typ II CLR

Die Typ I Lektine MMR und DEC-205 verfügen über ein Aminoterminal Cysteine-Rich Repeat (S-S) und acht bis zehn CRDs. Die Typ II Lektine haben nur eine CRD, die sich am Carboxylende ihres extrazellulären Anteils befindet. Während die Anzahl der Tandem Repeats im extrazellulären Anteil von DC-SIGN immer konstant ist, variiert diese bei L-SIGN zwischen vier und zehn. Abbildung 4 modifiziert nach Figdor et al., 2002.

Abkürzungen: BDCA-2, Blood DC Antigen-2; CLEC-1, C-type lectin-like receptor 1; CRD, Erkennungsregion für Kohlenhydratstrukturen; DCIR, dendritic cell immunoreceptor; DC-SIGN, Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin; Dectin-1/2, DC-associated C-type lectin 1 oder 2; DLEC, dendritic cell lectin; L-SIGN, liver/lymph node-specific ICAM-3-grabbing non-integrin; MMR, Makrophagen Mannose Rezeptor.

Die Gensequenz von DC-SIGN ist auf Chromosom 19p13 lokalisiert, wo sie zusammen mit Genen, die auch für L-SIGN und CD23 kodieren, eine Einheit von 105kb bildet (Soilleux et al., 2000). DC-SIGN wird in erster Linie von DCs exprimiert, ist aber in geringen Mengen auch auf Makrophagen und einer kleinen Gruppe von pDCs im Blut zu finden (Geijtenbeek et al., 2000c; Engering et al., 2002b; Soilleux et al., 2002). DC-SIGN+ DCs können in der Haut, in der Schleimhaut, in der Lunge, im Gastrointestinaltrakt, in der Cervix, in der Plazenta und in Lymphknoten nachgewiesen werden. DC-SIGN wird jedoch nicht auf dermalen Langerhans Zellen exprimiert (Koppel et al., 2005). Außerdem konnten zwei DC-SIGN+ Vorläufferpopulationen im peripheren Blut identifiziert werden, die sich in
Einleitung

ihrer CD14 Expression unterscheiden (Geijtenbeek et al., 2000a). Die Struktur von DC-SIGN bilden ein zytoplasmatischer und ein extrazellulärer Anteil, die über eine transmembranöse Region verbunden sind. Der zytoplasmatische Anteil enthält wichtige Elemente für die Signalübertragung (immunoreceptor tyrosine-based activation motif (ITAM/Y)) und Antigenaufnahme (di-leucine motif (LL) und tri-acidic cluster (EEE)). Der extrazelluläre Anteil besteht aus einer tetrameren CRD. Diese wird durch eine alpha-helikale Aminosäuresequenz bestehend aus sieben kompletten und einem inkompletten Tandem Repeat, der so genannten Neck Region stabilisiert (s. Abbildung 5). Die Neck Region wird außerdem für die Oligomerisierung des Rezeptors benötigt, welche die spezifische Erkennung von Kohlenhydraten ermöglicht (s. Übersichtsarbeit von van Kooyk and Geijtenbeek, 2003).

Abbildung 5: Aufbau und Struktur von DC-SIGN

Abkürzungen: CRD, Erkennungsregion für Kohlenhydratstrukturen; EEE, tri-acidic cluster; ITAM/Y, incomplete immunoreceptor tyrosine-based activation motif; LL, di-leucine motifs.

Der kugelförmige molekulare Aufbau der CRD Region, welcher aus Abbildung 6 hervorgeht, wird aus 12 β-Faltblattstrukturen, zwei α-Helices und drei Disulfidbrücken gebildet und verfügt über zwei Kalziumbindestellen, welche für die räumliche Konformation der CRD und Bindung der Zuckerverbindungen essentiell sind (s. Übersichtsarbeit von van Kooyk and Geijtenbeek, 2003). Nur mit Hilfe von Kalziumionen kann die CRD Region eine selektive Bindung mit verschiedenen Oligosacchariden eingehen (Mitchell et al., 2001).

DC-SIGN ist insbesondere in cholesterin- und glycosphingolipidreichen Membranmikrodänen (sog. lipid rafts) zu finden (Caparrós et al., 2006). Soll Antigen über DC-SIGN in die DC aufgenommen werden, sind für die Endozytose verschiedene Membranbestandteile wie Cholesterin, GTPasen wie Dynamine und sogenannte clathrin-coated pits nötig (Cambi et al., 2009).

Einem anderen Schema der Signalverarbeitung folgt der DC-SIGN Ligand Salp15, ein Protein, das im Speichel von *Ixodes scapularis* vorkommt (Anguita et al., 2002). Salp15 führt über die Bindung an DC-SIGN zwar zu einer Aktivierung von Raf-1, im weiteren Verlauf werden jedoch nicht p65 und NF-κB rekrutiert, sondern *Mitogen-activated protein kinase* Kinasen (MEK Kinasen) aktiviert. Raf-1 scheint demnach eine zentrale Rolle in der DC-SIGN Singalkaskade zu spielen. Die nachgelagerten Effekten, welche die TLR Signaltransduktionswege und die Zytokinantworten beeinflussen, unterscheiden sich jedoch (den Dunnen et al., 2009). Caparrós et al. konnten zeigen, dass durch αDC-SIGN Antikörper *extracellular signal-regulated protein kinases* (ERKs) und Phosphoinositid-3-Kinase (PI3K) aktiviert werden, jedoch weder eine Reifung der DCs noch eine Aktivierung der *Mito-
Einleitung

DC-SIGN erfüllt als PRR eine wichtige Funktion bei der Erkennung von zahlreichen Pathogenen und Fremdantigenen. Es stellt einen bedeutenden Rezeptor für
Einleitung

verschiedene Viren wie Ebola-, Zytomegalie- (CMV), Dengue-, Marburg- und Coronaviren, sowie für das Hepatitis C Virus (HCV) und HIV dar. Hier erkennt DC-SIGN insbesondere Glykoproteine der Virushülle. HIV und HCV werden nach der Bindung an DC-SIGN in nicht-lysosomale Zellorganellen transportiert, sind dort vor dem Verdau geschützt und können so der Immunabwehr entkommen. DC-SIGN fungiert aber auch als Rezeptor für viele Bakterien. Es bindet Lewis Antigene oder mannosylierte Proteine von Helicobacter pylori oder gewissen Stämmen von Klebsiella pneumoniae (Appelmelk et al., 2003; Bergman et al., 2004). Das Mycobacterium tuberculosis verdankt seine Affinität zu DC-SIGN dem Mannose capped lipoarabinomannan (ManLAM) und kann durch die Bindung dem intrazellulären Verdau entkommen und eine immunsuppressive IL-10 Antwort induzieren (Geijtenbeek et al., 2003). Der Hefepilz Candida albicans wird über N-Mannan von DC-SIGN gebunden (Cambi et al., 2003; Cambi et al., 2008). Die fukosylierten GalNac-beta(1-4)-GlcNac Sequenzen, sowie die Pseudo-LewisY oder LewisX Antigene der Eier und Zerkarien von Schistosoma mansoni sind weitere Liganden von DC-SIGN. Außerdem werden die Lipophosphoglykane der amastigoten Formen von Leishmania pifanoi und die hohen Mannosekonzentrationen auf der Oberfläche von Leptospiria interrogans von DC-SIGN erkannt (van Die et al., 2003; Meyer et al., 2005; Gaudart et al., 2008).

1.5 Generierung einer transgenen hSIGN Maus

In der Maus konnten bisher acht homologe Rezeptoren der SIGN-Familie identifiziert werden: mDC-SIGN (mSIGNR5), mSIGNR1 bis -R4 und mSIGNR6 bis -R8. Alle befinden sich auf benachbarten Genorten auf Chromosom acht. Die Neck Region der murinen SIGN-Moleküle ist kürzer als bei den humanen Formen, es gibt jedoch eine vergleichbar spezifische CRD. mSIGNR2 liegt als einziger Rezeptor in der löslichen Form vor, da diesem eine transmembranöse Region fehlt. Alle anderen sind Typ II Transmembranrezeptoren. Bei mSIGNR6 handelt es sich um ein Pseudogen (Koppel et al., 2005; Powlesland et al., 2006). **Abbildung 8** gibt einen Überblick über die SIGN-Moleküle bei Mensch und Maus und deren Struktur.

Das am intensivsten erforschte Protein ist mSIGNR1 (mCD209b), das auf Makrophagen in der Milz, in Lymphknoten und im Peritoneum, sowie auf sinusoidalen Endothelzellen in der Leber gefunden wurde und demnach am meisten Ähnlichkeiten mit L-SIGN aufweist. mDC-SIGN hingegen konnte als einziger Rezeptor auf DCs nachgewiesen werden und wird in hohen Konzentration in Milz, Lunge und Knochenmark exprimiert. Außerdem kommt er auf B-Zellen und Vorläuferzellen von pDCs vor und zeigt seiner Expression zufolge größte Ähnlichkeiten mit DC-SIGN (Caminschi et al., 2001; Geijtenbeek et al., 2002a; Koppel et al., 2005).
Einleitung

Abbildung 8: Schematischer Überblick über die Struktur der murinen und humanen SIGN-Moleküle

In der Maus existieren acht homologe Rezeptoren für DC-SIGN. mSIGNR2 liegt in löslicher Form vor, mSIGNR6 ist ein Pseudogen. Alle Anderen sind Transmembranproteine. Die Mitglieder der SIGN-Familie verfügen bis auf mSIGNR6 über eine spezifische CRD (im Bild gelb unterlegt) und eine Neck Region, die jedoch bei den Rezeptoren der Maus kürzer ist als bei den SIGN-Molekülen im Menschen. Schematische Abbildung 8 modifiziert nach Koppel et al., 2005 und Powlesland et al., 2006.

Abkürzungen: DC-SIGN, Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin; DC-SIGNR, DC-SIGN-related gene; SIGNR, SIGN-related.

Über die Expression der übrigen homologen Moleküle ist bisher wenig bekannt. Obwohl es insgesamt acht SIGN-Moleküle in der Maus gibt, wurden bisher nur mSIGNR1, mSIGNR3 und mDC-SIGN auf professionellen APCs gefunden (Geijtenbeek et al., 2002a; Koppel et al., 2005).

Die Bindungseigenschaften der murinen SIGN-Moleküle wurden von Powlesland et al. sehr genau untersucht. mSIGNR1, -R3 und -R7 binden insbesondere Fukose und mit geringerer Affinität Mannose. mSIGNR5 und -R8 zeigen hingegen eine sehr hohe Affinität zu Mannose und ähneln daher L-SIGN. mSIGNR3 bindet bevorzugt komplexe Zuckermoleküle mit hohen Konzentrationen an Mannose und fukosehaltigen Oligosacchariden. Somit scheint mSIGNR3 das murine Homolog zu sein, das DC-SIGN bezüglich der Ligandenspezifität am meisten ähnhlt (Powlesland et al., 2006).
Einleitung

In vitro konnte bereits gezeigt werden, dass durch spezifisches Beladen mit Antigen von DC-SIGN spezifische T-Zell Antworten induziert werden können. Diese Ergebnisse machen DC-SIGN somit zu einem vielversprechenden Rezeptor für die Entwicklung und Erprobung neuer Impfstoffe, welche auf Targeting Strategien basieren. Da sich die SIGN-Moleküle in der Maus aber bezüglich ihrer Expressionsmuster und Erkennung glykosylierter Zucker deutlich von DC-SIGN unterscheiden, konnte man die Maus lange Zeit nicht als Modelorganismus für in vivo Versuche verwenden. Vor einigen Jahren gelang es Schäfer et al., eine konventionelle transgene hSIGN Maus zu generieren. Humane komplementäre DNS (cDNA) von DC-SIGN wurde mit Hilfe der Restriktionsendonuklease EcoRI unter Kontrolle des CD11c Promoters gebracht und so eine genspezifische Expression von DC-SIGN ermöglicht (Schaefer et al., 2008). Abbildung 9 zeigt dieses transgene hSIGN Mauskonstrukt. Da CD11c als Hauptmarker von DCs bekannt ist, konnte gewährleistet werden, dass DC-SIGN in transgenen hSIGN Mäusen eine spezifische Expression nur auf DCs zeigt. Seither können im Vergleich zu Wildtyp Mäusen nun auch in vivo die Funktionen von DC-SIGN untersucht werden.

Abbildung 9: Struktur des transgenen hSIGN Mauskonstruks

Humane DC-SIGN cDNA (hCD209) wurde mit Hilfe von EcoRI unter Kontrolle des CD11c Promoters gebracht. Die neue Maus erhielt die Bezeichnung hSIGN (Schaefer et al., 2008). Abkürzung: CD, cluster of differentiation; hCD209, humanes CD209 (DC-SIGN); EcoRI, restriction endonuclease isolated from E.coli.

1.6 C-Typ Lektine: Zielstrukturen für die Entwicklung neuer Vakzine

Die Tatsache, dass DCs zu den wichtigsten Regulatoren des Immunsystems gehören und seit geraumer Zeit schnell und einfach große Mengen von DCs aus in vitro Kulturen gewonnen werden können, führte dazu, dass sich die Forschung zunehmend mit dem Potential dieser Zellen auseinander setzte und sich ihre Fähigkeiten für die Erprobung neuer und effektiverer Impfstoffe zu Nutze machte. Daher werden neue Immuntherapieverfahren, die auf DCs basieren, insbesondere
Einleitung

Seit geraumer Zeit arbeitet man an einer zweiten Strategie, bei der eine Antigenaufnahme in die DCs gezielt und über an Rezeptor bindende Antikörper oder glykosylierte Moleküle angestrebt wird (s. Übersichtsarbeit von Tacken et al., 2007). Die hierfür generierten Antikörper oder Moleküle sind an Antigene gekoppelt und binden spezifisch an den jeweils gewünschten Zielrezeptor (Bonifaz et al., 2004; Singh et al., 2009; Unger et al., 2012). Bereits Mitte der 1980er Jahre wurde bekannt, dass T-Zell Antworten durch die Erkennung von Antigen über Fc-Rezeptoren auf APCs verstärkt werden können (Celis and Chang, 1984). Dies führte zu der Annahme, dass spezifisches Beladen von Oberflächenrezeptoren der APCs mit an Antikörper gekoppeltem Antigen, kurz Targeting, T-Zell vermittelte Immunantworten verstärken könnte. Zunächst kamen bispezifische Antikörper gegen Oberflächenmoleküle verschiedener APCs zum Einsatz (Snider and Segal,
Einleitung

1987; Snider et al., 1990). Mit der Identifizierung von für DCs spezifischen Rezeptoren rückte auch die Entwicklung von für DCs spezifischen Vakzinen in den Vordergrund. Viele Rezeptoren, die heute in neuen Vakzinierungsstudien verwendet werden, gehören zur Familie der CLRs. Da die CLRs an immunregulatorischen Prozessen wie Antigenaufnahme, Fortbewegung von DCs im Gewebe oder an der Interaktion zwischen T-Zellen und DCs beteiligt sind, wurden sie als Zielstrukturen für die Entwicklung neuer Impfstoffe zunehmend interessant (s. Übersichtsarbeit von Figdor et al., 2002). Durch die vergleichsweise einfache Produktion großer Mengen an Antikörpern ist das Targeting kostengünstiger und kann einem größeren Patientenkollektiv zur Verfügung gestellt werden. Außerdem kann der Vorgang im natürlichen Milieu der DCs ablaufen und die Antikörper erreichen sämtliche Subtypen an DCs in multiplen Organen. Dennoch ist die Effizienz der Methode von vielen Faktoren abhängig. Hierzu zählen z.B. das Expressionsmuster und die biologischen Eigenschaften des Zielrezeptors, der Aktivierungs- und Reifezustand der betroffenen DCs oder die Antigenverarbeitung im Zellapparat der DCs. Die Rezeptoren DEC-205, MR und DC-SIGN sind häufige Zielmoleküle experimenteller Studien. Sie spielen allesamt eine wichtige Rolle bei der Antigenaufnahme in die DCs und sind daher vielversprechende Kandidaten hinsichtlich erfolgreicher Immunisierungen (Bonifaz et al., 2002; Engering et al., 2002a; Cambi et al., 2003; Ludwig et al., 2004; Dudziak et al., 2007). So führte die Verwendung von Antikörper-Antigen-Komplexen, die sich spezifisch gegen den MR richteten, zu einer verstärkten Antigenaufnahme und Antigenpräsentation auf MHCI und MHCII Molekülen humaner DCs (Ramakrishna et al., 2004; He et al., 2007). Mäuse, die transgen für den menschlichen MR sind, wurden ebenfalls mit für den MR spezifischen Antikörpern behandelt, was zu einer deutlichen humoralen Immunantwort führte, die durch Zugabe des Adjuvans Cytosin-Guanosin Oligonukleotid (CpG)-DNA zusätzlich gesteigert werden konnte (He et al., 2007). Eine spezifische Aufnahme des Modelantigens Ovalbumin über DEC-205 Antikörper unter Zugabe des Antikörpers αCD40 als Aktivierungsadjuvans führte zu starker Proliferation von OVA spezifischen CD4+ und CD8+ T-Zellen in vivo (Bonifaz et al., 2004). Mahnke et al. konnten in einem B16 Melanom Mausmodell zeigen, dass die Versuchstiere durch die Injektion von αDEC-205 Antikörpern, die an das Melanom Antigen tyrosinase related protein 2 (TRP-2) gekoppelt worden waren, vor einem Wachstum des B16 Melanoms geschützt wurden. Außerdem konnten etwa 70% der Mäuse vom B16
Einleitung

Melanom geheilt werden, nachdem die Tiere mit αDEC-205 Antikörpern gekoppelt an die Melanom Antigene TRP-2 und gp100 vakziniert worden waren (Mahnke et al., 2005).

1.7 Ziele der Arbeit

2 MATERIAL UND METHODEN

2.1 Materialien

2.1.1 Ausstattung

CO₂-Inkubator
Elektrische Pipettierhilfe Filler 3000
FACS Calibur
Gefrierschrank -20°C
Gefrierschrank -80°C
Gefriertüte -150°C
Glaswaren
Kühlschrank 4°C
Mehrkanalpipetten
Neubauer Zellzählkammer
Plastikwaren
Szintillationszähler
Vortexgerät Vortex Genie 1
Waage EMB500-1
Wasserbad WNB14
Zentrifuge, Multifuge3

2.1.2 Chemikalien

1 kb Ladepuffer GeneRuler TM
10 x Buffer A
³H Thymidin
Material und Methoden

5-(6)-Carboxyfluorescein Diacet
Succinimidyl Ester (CFSE) Invitrogen

Agarose Roth
Ammoniumchlorid Sigma
Chloroform Sigma
D-Glucose Roth

Desoxyribonukleotid Tri-Phosphate (dNTPs), Roti-Mix®, für Polymerase-Kettenreaktion (PCR) Roth

Dimethylsulfoxid (DMSO) Sigma
Ethanol 70% und 100% Ratiopharm/Pharmacy KR
Ethidiumbromid Roth
Ethidiummonooazid (EMA) Roth
Ethylendiamintetraacetat (EDTA) Roth
Glycerol Roth
Heparin 25.000 I.E./5 ml Ratiopharm
Ionomycin Invitrogen
Isopropanol Sigma
L-Glutamin 200 mM Fisher Scientific
LPS Sigma
Magnesiumchlorid Biochrom
Methanol Merck
Natriumchlorid (NaCl) Invitrogen
Orange G Merck
Paraformaldehyd Ratiopharm/Pharmacy KRI
PBS, endotoxinfrei Pharmazie KRI
Penicillin/Streptomycin 100 x Sigma
Phenol Roth
Material und Methoden

Phosphatgepufferte Salzlösung (PBS) Biochrom
Potassium Hydrogencarbonate Biochrom
Propidiumiodid Biochrom
Rinderserumalbumin (BSA) Sigma
RPMI 1640 Medium Sigma
Sodium dodecyl sulfate (SDS) Sigma
Tris Roth
Trypanblau Lösung (0,4 %) Sigma
Trypsin/EDTA Lösung Biochrom
β-Mercaptoethanol 50mM Roth

2.1.3 Verbrauchsmaterialien

96-Vertiefungsplatte, V- und U-Boden Greiner
Ependorfröhrchen (1 ml und 1,5 ml) Sarstedt
FACS Röhrchen Corning Costar
Falconnröhren (15 ml und 50 ml) Greiner
Filtermembran für Zell-Harvester Perkin Elmer
Insulinspritzen BD
Magnetsäulen Milteny
Parafilm Pechiney Plastic Packing
Petrischalen Sarstedt (DC Kultur)
Pipettenspitzen (verschiedene Größen) Sarstedt ungestopft, Roth gestopft
Spritzen, Nadeln BD
Zellkulturschalen BD Falcon
(6-, 12- und 96-Vertiefungen)
Zellsiebe (70 µm und 100 µm) BD Falcon
2.1.4 Kits

Dynal Mouse CD4 negative isolation kit
Invitrogen
Dynal Mouse CD8 negative isolation kit
Invitrogen

2.1.5 PCR-Primer

<table>
<thead>
<tr>
<th>Gen</th>
<th>5´ - 3´ - Sequenz</th>
<th>Firma</th>
</tr>
</thead>
</table>
| DC-SIGN | - CGGGATCCCGAGTGGGGTGCATGAGTGACT -
 | - ACGCGTCCACAAAAAGGGGTGAAGTTCTGCTACG - | Eurofins MWG Operon |
| OTI | - AAGGTGAGAGAGACAAAGGATC-
 | - TTGAGAGCTGTCTCC- | Eurofins MWG Operon |
| OTII | - GCTGCTGACACAGCTACT-
 | - CAGCTCACCTAACACGAGGA-
 | - AAAGGGAGAAAAAGCTCTCC-
 | - ACACAGCAGGTTCTGGGTTC- | Eurofins MWG Operon |
| Rag -/- | - AGACACAACGGCTTGCAACACAGTGCC-
 | - GAGAAAGTCCTCTTCTGCCCAGGTGGAATGAG-
 | - TGCGAGGCGCAGA- | Eurofins MWG Operon |

2.1.6 Oligonukleotide

<table>
<thead>
<tr>
<th>CpG</th>
<th>5´ - 3´ - Sequenz</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1668 (Typ B)</td>
<td>- TCCATGACGTTCTGTAGTGGCT-</td>
<td>Eurofins MWG Operon</td>
</tr>
</tbody>
</table>

2.1.7 Antikörper für die FACS-Analyse

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Spezies</th>
<th>Isotyp</th>
<th>Konjugat</th>
<th>Verdünnungsfaktor</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>Maus</td>
<td>Ratte, IgG<sub>2b</sub>,κ</td>
<td>APC</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD4</td>
<td>Maus</td>
<td>Ratte, IgG<sub>2a</sub>,κ</td>
<td>FITC</td>
<td>1:100</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD4</td>
<td>Maus</td>
<td>Ratte, IgG<sub>2b</sub>,κ</td>
<td>PE</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
</tbody>
</table>
2.1.8 Proteine und Enzyme

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetales Kälberserum (FCS)</td>
<td>Hyclone</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Eigenproduktion</td>
</tr>
<tr>
<td>Kollagenase</td>
<td>qb Perbio</td>
</tr>
<tr>
<td>Ovalbumin (Reinheitsgrad V)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Platinum Taq DNA Polymerase</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Proteinkinase K</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD8α</th>
<th>Maus/Ratte, IgG_{2a,k}</th>
<th>APC</th>
<th>1:200</th>
<th>eBiosciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8α</td>
<td>Maus/Ratte, IgG_{2a,k}</td>
<td>FITC</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD8α</td>
<td>Maus/Ratte, IgG_{2a,k}</td>
<td>PE</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD11c (Integrin α- Kette)</td>
<td>Maus/Armenischer Hamster IgG_{1,λ}</td>
<td>APC</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD11c (Integrin α_{x}-Kette)</td>
<td>Maus/Armenischer Hamster IgG_{1,λ}</td>
<td>PE</td>
<td>1:300</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD86</td>
<td>Maus/Ratte, IgG_{2a,k}</td>
<td>PE</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD209 (αhDC-SIGN)</td>
<td>Mensch/Maus, IgG_{2b} R-PE</td>
<td>1:200</td>
<td>R+D</td>
<td></td>
</tr>
<tr>
<td>I-A/I-E (MHC-II)</td>
<td>Maus/Ratte, IgG_{2a,k}</td>
<td>FITC</td>
<td>1:1000</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td>CD45.1</td>
<td>Maus/Maus, IgG_{2a,k}</td>
<td>APC</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>CD45.1</td>
<td>Maus/Ratte, IgG_{2a,k}</td>
<td>PE</td>
<td>1:200</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>Vß-chain tg OTI/II 5.1 5.2 T-cell Receptor</td>
<td>Maus/Maus, IgG_{1,κ}</td>
<td>PE</td>
<td>1:100</td>
<td>BD Bioscience</td>
</tr>
</tbody>
</table>
2.1.9 Peptide

<table>
<thead>
<tr>
<th>Name</th>
<th>Aminosäuresequenz</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIINFEKL OTI Peptid OVA257-264</td>
<td>Ser-Ile-Ile-Asn-Phe-Glu-Lys-Leu</td>
<td>Biosyntan</td>
</tr>
<tr>
<td>OTII Peptid OVA323-339</td>
<td>Ile-Se-Gin-Ala-Val-His-Ala-Ala-His-Ala-Glu-Ile-Asn-Glu-Ala-Gly-Arg</td>
<td>Biosyntan</td>
</tr>
</tbody>
</table>

2.2 Methoden

2.2.1 Zellbiologie

2.2.1.1 Medium für Zellkulturen mit Dendritischen Zellen

500 ml RPMI 1640
50 ml Hitze inaktiviertes FCS
500 µl 2-Mercaptoethanol (50 mM)
5 ml Penicillin/Streptomycin (100 U/ml)
5 ml Glutamin (200 mM)

2.2.1.2 Gewinnung von Dendritischen Zellen aus Knochenmarkskulturen

DCs lassen sich in großer Zahl aus Vorläuferzellen des murinen Knochenmarks generieren. Hierfür wurden die entsprechenden Mäuse getötet, die Oberschenkenknöch en (Femur) und Unterschenkelknöch en (Tibia) abgetrennt, gründlich von Muskel- und Sehnenmaterial gesäubert und mit 70% Ethanol desinfiziert. Alle folgenden Schritte wurden ausschließlich unter der Sterilbank durchgeführt. Nach der Desinfektion wurden die Knochen mit PBS gewaschen und mit Hilfe einer Schere an beiden Enden eröffnet. Das Knochenmark wurde mit einer 1 x PBS gefüllten Kanülenpritsze aus dem Knochen gespült, mit einem Spritzenstempel durch ein 100 µm Zellsieb gepresst und mit PBS in ein 50 ml Falcon überführt. Nach siebenminütigem Zentrifugieren bei 1300 rpm wurde der Überstand vorsichtig abgesaugt und das Zellpellet für 1 min in 1 ml Erythrozyten-Lysepuffer aufgenommen. Im nächsten Schritt wurden 10 ml PBS zur Suspension hinzugefügt und diese für 7 min bei 1300 rpm zentrifugiert. Der Überstand wurde danach erneut abgesaugt und das Zellpellet in 10 ml Kulturmedium resuspendiert, um die Zellen in Trypanblauverdünnung mit Hilfe einer Neubauer Zellzählkammer zu zählen. Anschließend wurden zwei bis vier Millionen Zellen in 10 ml Kulturmedium aufge-

2.2.1.3 Einfrieren von Dendritischen Zellen

Da in den Kulturen immer eine große Menge an DCs geerntet werden konnte, wurde ein Teil der DCs eingefroren. Hierfür wurden zwischen 4x10^6 und 6x10^6 Zellen am Kulturtag fünf resuspendiert in 500 µl sterilem FCS und weiteren 500 µl bestehend aus 20% DMSO und 80% FCS in speziellen Kälte beständigen Röhrchen eingefroren. Zu beachten war hierbei, dass die Zellen schrittweise zunächst für einen Tag bei -80°C und ab dem zweiten Tag bei -150°C eingefroren wurden.

2.2.2 Mäuse

Die transgenen hSIGN Mäuse wurden in der eigenen Laborgruppe generiert und etabliert und waren zum Beginn dieser Forschungsarbeit bereits in einigen vorausgehenden Experimenten eingesetzt worden (Schaefer et al., 2008; Singh et al., 2009). Die OVA_{257–264} Peptid spezifischen transgenen CD8^+ T-Zellrezeptor C57BL/6 OTI Mäuse, die OVA_{323–339} CD4^+ Peptid spezifischen transgenen T-Zellrezeptor C57BL/6 OTII Mäuse, sowie die Rag1⁻/⁻ und C57BL/6 WT Mäuse

2.2.3 Molekularbiologie

2.2.3.1 Puffer und Lösungen

Mix für Proteinverdau (*Kill Juice*)

\[
\begin{align*}
50 &\text{ mM Tris-HCL, pH 8,0} \\
100 &\text{ mM NaCl} \\
25 &\text{ mM EDTA} \\
0,9 &\text{% SDS}
\end{align*}
\]

Phenol/Chloroform:

Phenol (Tris gepuffert), pH 8,0
Chloroform
Isoamyl Alkohol
Ratio 25:24:1

TAE (50 x TAE):

\[
\begin{align*}
242 &\text{ g Tris} \\
500 &\text{ ml H}_2\text{O}_{dd} \\
100 &\text{ ml Na}_2\text{EDTA (0,5 M, pH 8,0)} \\
0,9 &\text{% SDS} \\
\text{am Ende mit H}_2\text{O}_{dd} &\text{auf 1 L auffüllen}
\end{align*}
\]

10 x Orange G Puffer für Agarosegele:

\[
\begin{align*}
50 &\text{ mg Orange G} \\
500 &\text{ µl Tris (1M)}
\end{align*}
\]
15 ml Glycerol
35 ml \(\text{H}_2\text{O}_{dd} \)

Erythrozytenlysepuffer:

8,29 g Ammoniumchlorid
1 g Potassium Hodrogencarbonat
37,2 mg EDTA
800 ml \(\text{H}_2\text{O}_{dd} \) (pH 7,2 – 7,4)

am Ende mit \(\text{H}_2\text{O}_{dd} \) auf 1 L auffüllen

FACS Puffer:

1% BSA in 1 x PBS

FACS Färbepuffer:

2% FCS in 1 x PBS

2.2.3.2 Isolation genomischer Maus-DNS aus Gewebeproben

2.2.3.3 Agarosegelelektrophorese

2.2.3.4 PCR

PCR Ansatz für 25 µl:

<table>
<thead>
<tr>
<th>Volumen (µl)</th>
<th>Konzentration/Compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>10 mM dNTPs</td>
</tr>
<tr>
<td>0,5</td>
<td>10 µM Primermix (5' und 3' Primersequenzen 10 pMol)</td>
</tr>
<tr>
<td>1,0</td>
<td>Taq Polymerase</td>
</tr>
<tr>
<td>2,5</td>
<td>10 x Puffer</td>
</tr>
<tr>
<td>19,5</td>
<td>H$_2$O$_2$</td>
</tr>
<tr>
<td>50</td>
<td>DNS gelöst in 1 µl</td>
</tr>
</tbody>
</table>

Der Ablauf einer PCR folgte diesem Protokoll:

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur (°C)</th>
<th>Zeit (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>94</td>
<td>5</td>
</tr>
<tr>
<td>(2)</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>(3)</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>(4)</td>
<td>72</td>
<td>1,5</td>
</tr>
<tr>
<td>(5)</td>
<td>72</td>
<td>10</td>
</tr>
<tr>
<td>(6)</td>
<td>16</td>
<td>∞</td>
</tr>
</tbody>
</table>

2.2.4 Immunologie

2.2.4.1 Durchflusszytometrie (FACS)

Mit der Durchflusszytometrie können neben der Größe einer Zelle auch präzise Aussagen zur Granulierung und Präsenz von Oberflächenmarkern und intrazellulär produzierten Stoffen gemacht werden. Die Markierung der extra- und intrazellul-

2.2.4.2 FACS-Analyse von Oberflächenmolekülen

Die zu färbenden Zellen wurden aus Organen präpariert bzw. direkt aus der Kultur entnommen und bis zu 1×10^6 Zellen/Vertiefung in eine 96-Vertiefungs-V-Bodenplatte auf Eis transferiert. Bei Milz- und Blutproben musste zunächst eine Erythrozytenlyse durchgeführt werden. Die Zellen wurden zentrifugiert (1300 rpm, 3 min), der Überstand vorsichtig abgeschüttet und die verbleibenden Zellpellets zweimal mit je 150 µl FACS Puffer gewaschen (Zentrifugation bei 1300 rpm, 3 min). Um die Fc-Rezeptoren an der Oberfläche der Zellen zu blockieren und so eine unspezifische Bindung der Antikörper zu verhindern, wurden 50 µl Fc-Blocklösung (αCD16/-CD32 gelöst in FACS-Puffer) aufgetragen und die 96-Vertiefungsplatte für 15 min auf Eis inkubiert. Währenddessen wurden die Färbelösungen mit den verschiedenen Antikörpern vorbereitet und die unspezifische Bindung der Antikörper zu verhindern, wurden 50 µl Fc-Blocklösung (αCD16/-CD32 gelöst in FACS-Puffer) aufgetragen und die 96-Vertiefungsplatte für 15 min auf Eis inkubiert. Währenddessen wurden die Färbelösungen mit den verschiedenen Antikörpern vorbereitet. Nach 15 min wurden die Zellen erneut zentrifugiert (1300 rpm, 3 min), anschließend die Antikörper Mischungen aufgetragen und die Platte für 20 min im Dunkeln auf Eis gelagert. Darauf folgten zwei Waschschriften mit je 150 µl FACS Puffer. Die Zellpellets wurden in 150 µl FACS Puffer angereichert mit dem Lebend-Tod-Farbstoff Propidiumiodid (PI, 2 µg/ml) resuspendiert und in FACS Röhrchen überführt. Die gefärbten Proben wurden am FACS Calibur eingelesen und die Daten mit Hilfe der Software FlowJo ausgewertet.
2.2.4.3 Protokolle für Experimente mit T-Zellen

2.2.4.3.1 Isolation und CFSE Färbung von OTI und OTII T-Zellen

T-Zell Rezeptor (TCR) transgene OTI oder OTII Mäuse wurden getötet und deren Milz, sowie inguinale und axiläre Lymphknoten zur T-Zell Isolation präpariert. Zur Erstellung von Einzelzellsuspensionen wurden die Organe mit einem Spritzenstempel durch 100 µm Zellsiebe gepresst und anschließend mit sterilen Puffer (Puffer 1 (Bestandteil des Dynal Mouse CD4/8 negative isolation kit): steriles PBS, 2% FCS) nachgespült. Alle folgenden Arbeitsschritte wurden unter der Sterilbank durchgeführt und jeder Zentrifugationsschritt dauerte 7 min bei 1300 rpm. Nach Zentrifugation der erstellten Suspension wurde der Überstand abgesaugt, das Pellet in 5 ml sterlem Erythrozytenlysepuffer resuspendiert und für 5 min bei Raumtemperatur inkubiert. Anschließend wurde die Lösung auf 20 ml mit Puffer 1 aufgefüllt, um eine Zählung der Zellen in einer 1:10 Verdünnung mit Trypanblau und unter Zuhilfenahme einer Neubauer Zählkammer durchzuführen. Die restliche Zellsuspension wurde abzentrifugiert, der Überstand vorsichtig abgesaugt, das Pellet in 10 ml Puffer 1 resuspendiert und erneut abzentrifugiert. Dieser Schritt diente dem Waschen der Zellen. Nach Absaugen des Überstandes wurden die Zellen in 0,1 ml Puffer 1 pro 1x10^7 Zellen resuspendiert und noch bestehende Bindegewebsreste vorsichtig mit einer Pipette entfernt. Nach Zugabe von 7,5 µl Antikörper-Mix (jeweils entweder für OTI und OTII) pro 1x10^7 Zellen wurde die Suspension gründlich gemischt und bei 4°C für 20 min inkubiert. Mit weiteren 2 ml Puffer 1 pro 1x10^7 Zellen wurde die Zellsuspension verdünnt, zentrifugiert und das Pellet nach Absaugen des Überstandes in 0,8 ml Puffer 1 pro 1x10^7 Zellen resuspendiert. Für die negative Depletion wurden 75 µl pro 1x10^7 Zellen der zuvor gewaschenen Magnetkugelchen (engl. Magnet Beads, ebenfalls Bestandteil des Dynal Mouse CD4/8 negative isolation kit) hinzugegeben und die Zell-Magnet-Lösung anschließend für 15 min bei Raumtemperatur auf der Drehvorrichtung (engl. Rotator) inkubiert. Danach wurde die Lösung mit Hilfe einer großen Pipette vorsichtig resuspendiert und erneut 1 ml Puffer 1 pro 1x10^7 Zellen untergemischt. Für die magnetische Trennung waren einzelne 5 ml Suspensionen in 15 ml Falconröhrchen zu erstellen, die dann für mindestens 2 min im Magnet verweilten. Der Überstand, der nun die isolierten CD8+ OTI bzw. CD4+ OTII Zellen enthielt, wurde vorsichtig in ein neues 50 ml Falconröhrchen pipettiert und in einer 1:5 Verdünnung mit Trypanblau in einer Neubauer Zählkammer gezählt. Die Zellen
wurden auf 0,5x10⁶/ml bis 1x10⁶/ml eingestellt, in ein 15 ml Falconröhrchen überführt, auf 5 ml Gesamtvolumen mit Puffer 1 aufgefüllt und erneut abzentrifugiert. Danach war ein Einstellen der Zellen mit vollständigem RPMI Medium auf 2x10⁵/ml nötig, um mit der CFSE Färbung fortfahren zu können. Wichtig war, dass eine kleine Menge der Zellsuspension sowohl vor als auch nach der T-Zell Isolation für eine Qualitäts- und Reinheitskontrolle via FACS abgenommen wurde (CD8 bzw. CD4 und ß-chain 5.1.5.2). Die restliche Zellsuspension wurde erneut abzentrifugiert, der Überstand abgesaugt und das verbleibende Zellpellet in 1 ml pro 1x10⁷ Zellen vorgewärmtem, sterilen PBS resuspendiert. Für die folgende CFSE Markierung wurde 1 ml von einem 1,6 µM CFSE-Stock pro 1x10⁷ Zellen hinzugegeben. Die Suspension wurde anschließend für 9 min bei 37°C im Wasserbad inkubiert und gelegentlich vorsichtig geschüttelt. Nach genau 9 min wurde die Zellsuspension aus dem Wasserbad genommen, mit Puffer 1 auf etwa 20 ml aufgefüllt und zentrifugiert. Nach Absaugen des Überstandes musste das Zellpellet in 5 ml Puffer 1 resuspendiert und die Zellen in einer 1:5 Verdünnung mit Trypanblau in der Neubauer Zählkammer gezählt werden. Anschließend erfolgte eine erneute Zentrifugation und für die weitere Verwendung eine Einstellung der Zellen auf 2x10⁵/ml mit sterilen RPMI Medium. Bei dieser Färbemethode war zu beachten, dass etwa ein Drittel der Ausgangszellen durch das wiederholte Zentrifugieren verloren geht und daher zu Beginn genügend Zellen eingesetzt werden mussten. Nach der CFSE Färbung wurde erneut eine kleine Menge vom Gesamtvolumen abgenommen, um die Qualität der CFSE Färbung mittels FACS zu kontrollieren.

2.2.4.3.2 Proliferationsanalyse mittels ³H Thymidin Inkorporation

Tag wurde die Zellkultur mit Hilfe eines Zell-Harvesters ausgewertet. Hierbei wurden die Zellen mit H_2O_{4d} aus den 96-Vertiefungsplatten gelöst, wobei die Zellfragmente und die radioaktiv markierte DNS an einer speziellen Glasfaser-Filtermembran hafteten, da nur Partikel kleiner als 1,5 µm die Membran passieren konnten. Die Glasfaser-Filtermembranen wurden anschließend getrocknet und über Nacht die Menge an Radioaktivität (Zählimpulse pro Minute, cpm) mit Hilfe eines Szintillationszählers gemessen.

2.2.4.4 In vitro Ko-Kulturen

2.2.4.4.1 Protokoll 1

DCs von hSIGN und WT Mäusen wurden am Kulturtag sieben geerntet, gezählt (1:2 Verdünnung mit Trypanblau für Lebend-Tod-Färbung), zentrifugiert (7 min, 1300 rpm) und in frischem RPMI Medium auf eine Zellkulturplatte mit 96 Vertiefungen verteilt (1x10^4 DCs pro Vertiefung). Anschließend wurden die Toll-Like Rezeptor Liganden LPS (2 µg/ml) oder CpG (20 µM) zu den DCs hinzugegeben. Zusätzlich wurden der Zellkultur verschiedene Konzentrationen an αhDC-SIGN:OVA Antikörpern, Isotyp:OVA Antikörpern, OVA Protein (endotoxinfrei, Reinheitsgrad V), OVA257-264 Peptid (1 µg/ml) oder OVA323-339 Peptid (1 µg/ml) beigemischt und anschließend bei 37°C über Nacht bebrütet. Am Folgetag wurden die Zellkulturen vorsichtig zentrifugiert, in frischem RPMI Medium aufgenommen, mit zuvor isolierten und CFSE markierten oder unmarkierten CD4^+ OTII bzw. CD8^+ OTI Zellen (2x10^4 Zellen pro Vertiefung) inkubiert und für fünf Tage bei 37°C bebrütet. Am sechsten Tag erfolgte die Analyse und Auswertung der Zellproliferation mittels FACS.

2.2.4.4.2 Protokoll 2

DCs von hSIGN und WT Mäusen wurden am Kulturtag sieben geerntet, gezählt (1:2 Verdünnung mit Trypanblau), zentrifugiert (7 min, 1300 rpm) und in frischem RPMI Medium auf eine Zellkulturplatte mit 96 Vertiefungen verteilt (1x10^4 DCs pro Vertiefung). Anschließend wurden die DCs zunächst mit αCD40 Antikörpern (5 µg/ml) inkubiert. Zusätzlich wurden der Zellkultur verschiedene Konzentrationen von entweder αhDC-SIGN:OVA Antikörpern, Isotyp:OVA Antikörpern, OVA Protein (Endotoxinfrei, Reinheitsgrad V), OVA257-264 Peptid (1 µg/ml) oder OVA323-339
Peptid (1 µg/ml) beigemischt und die Zellkultur anschließend bei 37°C über Nacht inkubiert. Am Folgetag wurden die Zellkulturen vorsichtig abzentrifugiert, in frisches RPMI Medium aufgenommen, mit zuvor isolierten CD4+ OTII bzw. CD8+ OTI Zellen (2x10^6 Zellen pro Vertiefung) inkubiert und für drei Tage bei 37°C bebrütet. Am vierten Tag wurde der Zellkultur ³H Thymidin (1 µCi pro Vertiefung) beigegeben und die Zellkultur für weitere 16 Stunden bei 37°C bebrütet. Anschließend wurde eine Analyse nach dem Thymidin Protokoll vorgenommen (s. 2.2.4.3.2 Proliferationsanalyse mittels ³H Thymidin Inkorporation).

2.2.4.5 In vivo Experimente

2.2.4.5.1 Targeting von DC-SIGN in vivo

Für alle in vivo Experimente wurden männliche und weibliche hSIGN und WT Mäuse etwa gleichen Alters verwendet. Zunächst wurden frisch isolierte CD45.1+ x OTI oder CD45.1+ x OTII Zellen aus Milz und Lymphknoten mit steriles PBS auf 1x10^6/ml eingestellt und anschließend ein Volumen von 200 µl (entspricht 2x10^5 Zellen CD45.1+ x OTI oder CD45.1+ x OTII) in die Schwanzvene von WT und hSIGN Mäusen injiziert (Tag -1). Am nächsten Tag (Tag 0) wurden die Mäuse s.c. mit je 5 µg pro Maus αDC-SIGN:OVA Antikörper oder OVA Protein (Endotoxin-frei, Reinheitsgrad V) vakziniert und erhielten alle zusätzlich αCD40 Antikörper (50 µg pro Maus). Am Tag sieben bekamen die Mäuse eine zusätzliche Injektion i.p. mit OVA Protein (50 µg pro Maus) und αCD40 Antikörpern (50 µg pro Maus). An den Versuchstagen eins, fünf und zehn wurde den Mäusen Blut abgenommen und mit Hilfe einer FACS-Färbung (CD8 bzw. CD4 und ß-chain 5.1.5.2) die Expansion der transferierten T-Zellen überprüft. Am Tag 14 wurden die Tiere getötet und deren Milz und inguinale Lymphknoten entnommen. Zur Erstellung von Einzelzellsuspensionen wurden die Organe mit einem Spritzenstempel durch 100 µm Zellsiebe gepresst und anschließend mit steriles Puffer (steriles PBS, 2% FCS) nachgespült. Alle folgenden Arbeitsschritte wurden unter der Sterilbank durchgeführt und jeder Zentrifugationsschritt dauerte sieben Minuten bei 1300 rpm. Nach Zentrifugation der erstellten Suspension wurde der Überstand abgesaugt, das Pellet in 5 ml steriles Erythrozytenlysepuffer resuspendiert und für 5 min bei Raumtemperatur inkubiert. Anschließend wurden die Zellen erneut abzentrifugiert und in frisches steriles RPMI Medium aufgenommen. Danach folgte eine Analyse der Zellzahlen.
via FACS. Die Zeitachse für die \textit{in vivo} Versuche ist im Überblick in \textbf{Abbildung 10} dargestellt.

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=0.3\textwidth,
 no markers,\]
\addplot[dashed] table [x=d, y=Analyze d14]
{\begin{tabular}{cc}
 d-1: & Transfer CD45.1\(^+\) x OTI/CD45.1\(^+\) x OTII Zellen (i.v.) \\
 d0: & Antikörper bzw. Protein Injektion (s.c., Schwanzbasis) \\
 d7: & OVA Protein und \(\alpha\)CD40 Boost (i.p.) \\
 d1/5/10: & Blutabnahme und Kontrolle der T-Zell Expansion \\
 d14: & Schlussanalyse
\end{tabular}};
\end{axis}
\end{tikzpicture}
\end{center}

\textbf{Abbildung 10: Zeitschema zum \textit{Targeting} von DC-SIGN \textit{in vivo}}

Abkürzungen: \(\alpha\), anti; CD, cluster of differentiation; d, Tag; i.v., intravenös; i.p., intraperitoneal; OVA, Ovalbumin; s.c., subkutan.

\subsection*{2.2.4.5.2 \textit{In vivo} Zytotoxizitätsprotokoll (\textit{in vivo killing assay})

Frisch isolierte CD45.1\(^+\) x OTI Zellen aus Milz und inguinalen Lymphknoten wurden mit steriles PBS auf 1x10\(^6\)/ml eingestellt und anschließend ein Volumen von 200 µl (entspricht 2x10\(^5\) Zellen) in die Schwanzvene von WT und hSIGN Mäusen injiziert (Tag -1). Am nächsten Tag (Tag 0) wurden die Mäuse s.c. mit je 5 µg pro Maus entweder von \(\alpha\)hDC-SIGN:OVA Antikörpern oder OVA Protein (Endotoxin-frei, Reinheitsgrad V) vakziniert und erhielten alle zusätzlich \(\alpha\)CD40 Antikörper (50 µg pro Maus). Eine Gruppe erhielt anstatt Antikörper oder Protein lediglich PBS. Am Tag sieben wurden mehrere männliche und weibliche WT Mäuse unterschiedlichen Alters getötet, deren Milz und Lymphknoten entnommen und diese dann mit Hilfe eines Spritzenstempels durch ein Zellsieb gedrückt. Nach Zentrifugation der Zellsuspension (7 min bei 1300 rpm) wurde der Überstand abgeschüttet und die Zellen für 5 min bei Raumtemperatur mit Erythrozytenlysepuffer (5 ml pro 15 ml Zellsuspension) inkubiert. Zur Beendigung der Erythrozytenlyse wurden 10 ml PBS hinzugefügt, die Zellen zentrifugiert, mit endotoxinfreiem PBS gewaschen und auf 2x10\(^7\)/ml eingestellt. Die Zellen wurden anschließend in zwei Fraktionen
mit je gleichen Zellzahlen aufgeteilt und für 10 min bei 37°C mit zwei unterschiedlichen Konzentrationen von CFSE gefärbt. Die eine Fraktion erhielt 10 µM (CFSEhigh), die andere 1 µM CFSE (CFSElow). Danach wurden zu beiden Fraktionen vorgekühltes RPMI Medium und 10% FCS hinzugefügt, beide Fraktionen für 5 min auf Eis gelagert, zweimal gewaschen und je in 1 ml RPMI und 10% FCS resuspendiert. Die CFSElow Fraktion wurde zusätzlich bei 37°C für 60 min mit 1 µM SIINFEKEL Peptid inkubiert (OTI spezifisches OVA Peptid), während die CFSEhigh Fraktion im Wasserbad bei 37°C verweilte. Die CFSElow Zellen wurden nach 60 min zweimal gewaschen, beide Fraktionen gezählt und die Zellen auf 1x10^8/ml mit sterilm PBS eingestellt. Die beiden Fraktionen CFSElow und CFSEhigh wurden in einem Verhältnis von 1:1 eingesetzt. Schließlich wurden 200 µl von dieser 1:1 Zellsuspension in die Schwanzvenen der immunisierten und nicht immunisierten Mäuse injiziert. Idealerweise sollten pro Maus 30 bis 40 Millionen Zellen pro 200 µl injiziert werden. Nach 18 Stunden erfolgte die Analyse. Hierfür wurden die Mäuse getötet und die Verringerung der CFSElow Fraktion in der Milz und den inguinalen Lymphknoten mittels FACS gemessen und ausgewertet.

2.2.4.6 Verwendete Vakzine

<table>
<thead>
<tr>
<th>Vakzinname</th>
<th>Konzentration</th>
<th>gelöst in</th>
</tr>
</thead>
<tbody>
<tr>
<td>αCD40 Antikörper</td>
<td>11,87 mg/ml</td>
<td>PBS (steril)</td>
</tr>
<tr>
<td>α(h)DC-SIGN:OVA Antikörper</td>
<td>2,75 mg/ml</td>
<td>PBS (steril)</td>
</tr>
<tr>
<td>Isotyp:OVA Antikörper</td>
<td>1,54 mg/ml</td>
<td>PBS (steril)</td>
</tr>
<tr>
<td>OVA Protein (Endotoxinfrei, Reinheitsgrad V, Stocklösung)</td>
<td>50 mg/ml</td>
<td>RPMI Medium (steril)</td>
</tr>
</tbody>
</table>

2.2.5 Statistik

Aufgrund der kleinen Gruppengröße in den Versuchsreihen wurden keine statistischen Test berechnet. Daher erfolgte die Auswertung deskriptiv. Hierfür wurden die Mittelwerte und Standardabweichungen mit Hilfe von Microsoft Exel 2010 berechnet. Die Software FlowJo (Tree Star, Ashland, Oregon, USA) diente zur Auswertung der FACS Daten und Erstellung der FACS Graphen. Die Graphiken für den Ergebnisteil wurden mit GraphPad Prism Software Version 5.0 (GraphPad Software, San Diego, Kalifornien, USA) erstellt.
3 ERGEBNISSE

3.1 Phänotypische Analyse von Dendritischen Zellen

Die DC Kulturen wurden nach den von Lutz et al. publizierten Empfehlungen angesetzt (Lutz et al., 1999). Die ausreichend gereiften DCs konnten nach sieben Tagen in GM-CSF Kultur geerntet werden. Um zum einen die Eignung der DCs für Ko-Kulturen zu testen und zum anderen mögliche Unterschiede im Verhalten zwischen DCs von WT und hSIGN Mäusen zu untersuchen, wurde jede Kultur mit Hilfe einer FACS Färbung auf die Aktivierungsmarker MHCII und CD86 getestet. Exemplarisch für alle angesetzten GM-CSF Kulturen wurde eine FACS Analyse zur Veranschaulichung der Ergebnisse für diese Arbeit gewählt. Hierbei zeigte sich kein Unterschied im Aktivierungszustand zwischen DCs von WT und hSIGN Mäusen. In beiden Gruppen war die Expression der Aktivierungsmarker MHCII und CD86 nach achttägiger Zellkultur gering. Unter den CD11c⁺ Zellen der hSIGN Kultur exprimierten 23% MHCIIhigh und 21% CD86. Bei den WT DCs lagen die Werte für MHCIIhigh bei 27% und für CD86 bei 26% (s. Abbildung 11).

Um festzustellen, ob DCs von WT und hSIGN Mäusen auf Stimulation mit verschiedenen Reagenzien gleichermaßen reagieren, wurden die DCs der WT und hSIGN GM-CSF Knochenmarkskulturen am siebten Kulturtag entweder mit LPS oder CpG₁₆₆₈ inkubiert. Die Überprüfung des Aktivierungszustandes mittels MHCII Expression am folgenden Tag nach 24-stündiger Inkubation durch FACS Analyse ergab keine wesentlichen Unterschiede zwischen WT und hSIGN DCs. Transgene hSIGN DCs zeigten bei beiden Reagenzien eine Hochregulierung von MHCII auf etwa 60%. Bei WT DCs lag die MHCII Expression etwas höher und belief sich auf 77% für LPS und 69% für CpG₁₆₆₈ (s. Abbildung 12).
DCs wurden nach achttagiger Knochenmarkskultur mit GM-CSF auf ihre Expression von CD86 und MHCII untersucht. Die Histogramme veranschaulichen die Expression von CD86 und MHCII auf lebenden CD11c exprimierenden Zellen (DCs) von hSIGN Mäusen (linke Spalte) und WT Mäusen (rechte Spalte). **Abbildung 11** zeigt exemplarisch eine FACS Färbung, wie sie identisch bei jeder GM-CSF Kultur nach acht Tagen durchgeführt wurde.

Abkürzungen: CD, cluster of differentiation; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; MHC, major histocompatibility complex; WT, Wildtyp Maus.
Nach siebentägiger GM-CSF Kultur wurden die DCs für 24 Stunden mit LPS oder CpG\textsubscript{1668} inkubiert. Die Histogramme veranschaulichen die Expression von MHCII auf lebenden CD11c exprimierenden Zellen (DCs) von hSIGN Mäusen (obere Zeile) und WT Mäusen (untere Zeile) nach Inkubation mit LPS (linke Spalte) oder CpG\textsubscript{1668} (rechte Spalte). \textbf{Abbildung 12} zeigt exemplarisch das Ergebnis, welches in drei weiteren identisch aufgebauten und unabhängig voneinander durchgeführten Zellkulturen und FACS Färbungen bestätigt werden konnte. Abkürzungen: CD, cluster of differentiation; CpG\textsubscript{1668}, Cytosin-Guanosin Oligonukleotid; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; LPS, Lipopolysaccharid; MHC, major histocompatibility complex; WT, Wildtyp Maus.
Da es sich bei den DCs von hSIGN Mäusen um Zellen aus transgenen Tieren handelt, musste die zuverlässige und ausreichende Expression des humanen DC-SIGN auf CD11c⁺ Zellen getestet werden. Laut vorausgegangener Forschungsarbeiten exprimieren 60% bis 70% der CD11c⁺ Zellen nach achttägiger GM-CSF Knochenmarkskultur humanes DC-SIGN (CD209) (Schaefer et al., 2008). Dies konnte in der vorliegenden Arbeit bestätigt werden. Nach siebentägiger Kultur wurden die DCs aus hSIGN GM-CSF Kulturen auf ihre Expression von DC-SIGN in einer FACS Färbung getestet. Hierbei zeigte sich, dass etwa 70% der CD11c⁺ Zellen der transgenen Mäuse humanes DC-SIGN exprimierten (s. Abbildung 13).

Abbildung 13: Expression von DC-SIGN in transgenen hSIGN Mäusen

3.2 Analyse von T-Zell Proliferation mittels CFSE Markierung

In verschiedenen Publikationen konnte bereits gezeigt werden, dass spezifisches Beladen von C-Typ Lektinen mit Antigen über Antikörper (engl. Targeting) die Antigenaufnahme in die DCs verstärkt. Über das Beladen von DEC-205 und dem MR konnte beispielsweise eine Präsentation von Antigenen auf MHCI und MHCII Molekülen beobachtet werden, was wiederum zu einer verstärkten und effizienteren Antigenpräsentation an T-Zellen führte (Apostolopoulos et al., 2000a; Apostolopoulos et al., 2000b; Steinman, 2000). Außerdem war in einigen Veröffentlichungen deutlich geworden, dass die Zugabe von Reagenzien, die zur Reifung von DCs führen, die Antigenpräsentation an T-Zellen noch effizienter macht (Sparwasser et al., 2000; de Vries et al., 2003; Loré et al., 2003; Bonifaz et al., 2004). Aufgrund dieser Ergebnisse war es naheliegend, dass auch spezifisches Targeting von DC-SIGN die Antigenpräsentation an naive T-Zellen verstärken würde. In den folgenden Versuchsreichen wurden OVA Peptid (entweder Klasse I oder Klasse II) spezifische T-Zellen verwendet, da bekannt ist, dass OVA Peptide auf MHC Molekülen der DCs präsentiert werden können und dort durch die transgenen T-Zellen erkannt werden (Bonifaz et al., 2002). Um die Auswirkungen des spezifischen Beladens von DC-SIGN auf hSIGN DCs im Hinblick auf eine T-Zell Proliferation zeigen zu können, wurden WT oder hSIGN DCs mit OTI T-Zellen inkubiert. Um die DCs zur Reifung anzuregen, waren diese zuvor mit CpG\textsubscript{1668} oder LPS inkubiert worden. Außerdem wurden den Zellkulturen entweder α\textsubscript{hDC-SIGN}:OVA Antikörper, Isotyp:OVA Antikörper oder reines OVA Protein hinzugefügt. Nach 24 Stunden Inkubation wurden die DCs mit frisch isolierten und CFSE markierten OTI T-Zellen in Ko-Kultur gesetzt. Die Auswertung am sechsten Tag nach Beginn der Ko-Kultur ergab, dass die spezifische Beladung von DC-SIGN mit α\textsubscript{hDC-SIGN}:OVA Antikörpern eine deutliche OTI Proliferation in Ko-Kultur mit hSIGN DCs hervorrief (s. Abbildung 14). Bei 0,1 µg/ml und 1,0 µg/ml des α\textsubscript{hDC-SIGN}:OVA Antikörpern belief sich die Proliferation auf nahezu 100%. Dieses Ergebnis war sowohl bei Prästimulation der DCs durch CpG\textsubscript{1668} als auch durch LPS gleichermaßen festzustellen. Die WT DCs zeigten in den Proben mit α\textsubscript{hDC-SIGN}:OVA Antikörpern sowohl für die Ko-Kultur mit LPS als auch mit CpG\textsubscript{1668} mit
im Durchschnitt zwischen 20% und 30% eine geringere OTI Proliferation (s. Abbildung 14).

In Proben, welche mit Isotyp:OVA Antikörpern und OVA Protein inkubiert wurden, konnten keine Unterschiede im Proliferationsausmaß der OTI T-Zellen zwischen Ko-Kulturen mit WT und hSIGN DCs festgestellt werden. Außerdem war auch hier ersichtlich, dass es nicht relevant war, ob die Prästimulation mit LPS oder CpG\textsubscript{1668} erfolgte, da in beiden Gruppen gleiche Proliferationswerte erzielt werden konnten. Die T-Zell Proliferation blieb in den Proben, die mit Isotyp:OVA Antikörpern inkubiert worden waren, geringer und lag für 0,1 µg/ml bei maximal 15%, für 1,0 µg/ml bei maximal 40%. In den Proben mit OVA Protein proliferierten die OTI Zellen in noch geringerem Ausmaß und erreichten eine Proliferation von 10% bei 0,1 µg/ml und maximal 20% bei 1,0 µg/ml (s. Abbildung 14).

In einem weiteren Experiment wurde die Auswirkung des Beladens der DCs mit Antikörpern auf die T-Zell Proliferation sowohl für CD8+ OTI als auch für CD4+ OTII T-Zellen untersucht. Nach siebentägiger GM-CSF Kultur wurden WT oder hSIGN DCs mit LPS und zusätzlich entweder mit αhDC-SIGN:OVA Antikörpern oder Isotyp:OVA Antikörpern für 24 Stunden inkubiert. Am Folgetag wurden die DCs mit frisch isolierten und CFSE markierten OTI oder OTII T-Zellen in Ko-Kultur gesetzt. Die Analyse am Tag sechs nach Beginn der Ko-Kultur ergab für das Beladen der hSIGN DCs mit αhDC-SIGN:OVA Antikörpern, dass die OTI Proliferation bereits bei 0,1 µg/ml Antikörpernahezu 100% betrug und diese durch eine Antikörpertitration in 0,25 µg/ml Schritten bis zu 1,0 µg/ml nicht mehr steigerbar war (s. Abbildung 15, A). Des Weiteren war ersichtlich, dass die OTII Proliferation in hSIGN Ko-Kulturen zwar geringer als die OTI Proliferation ausfiel, bei 0,1 µg/ml jedoch auch bei 57% lag und sich bei einer αhDC-SIGN:OVA Antikörperkonzentration von 1,0 µg/ml bis auf 77% erhöhte (s. Abbildung 15, B). Die Proliferation der OTI Zellen war bei einer Inkubation der WT DCs mit αhDC-SIGN:OVA Antikörpern deutlich geringer. Es zeigte sich, dass die OTI Proliferation durch die Erhöhung der Antikörperkonzentration zunahm, bei 1,0 µg/ml eingesetzten Antikörpern aber maximal eine Proliferation von 29% erreicht werden konnte (s. Abbildung 15, A). Für die OTII Zellen wurde bei der Inkubation der WT DCs mit αhDC-SIGN:OVA Antikörpern eine maximale Proliferation von 49% erreicht (s. Abbildung 15, B). Das Beladen der DCs mit Isotyp:OVA Antikörpern zeigte keine Un-
Erschien in der T-Zell Proliferation zwischen WT und hSIGN Ko-Kulturen. Die Proliferation der OTI und OTII T-Zellen nahm bei Erhöhung der Antikörperkonzentrationen gleichermaßen zu und steigerte sich in allen Ko-Kulturen auf maximal 60% (s. Abbildung 15, A und B).
Ergebnisse

Abbildung 14: OTI T-Zell Proliferation bei spezifischem Beladen der DCs mit Antikörpern oder Protein

Abkürzungen: CpG$_{1668}$, Cytosin-Guanosin Oligonukleotid; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; LPS, Lipopolysaccharid; OTI, OVA Peptid Klasse I spezifische T-Zellen; OVA, Ovalbumin; WT, Wildtyp Maus.
Abbildung 15: OTI und OTII T-Zell Proliferation bei gezielter Beladung der DCs mit Antikörpern

Abkürzungen: AK, Antikörper; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OTI/II, OVA Peptid Klasse I/II spezifische T-Zellen; WT, Wildtyp Maus.
3.3 T-Zell Proliferationsanalyse mittels Thymidin Inkorporation

Kultur mit OTII T-Zellen konnte nicht in dem Ausmaß wie bei den OTI Zellen beobachtet werden. Bei \(\alpha \text{hDC-SIGN:OVA} \) Konzentrationen von 0,5 und 0,05 µg/ml konnte die OTII T-Zell Proliferation in Ko-Kulturen mit hSIGN DCs im Vergleich zum WT noch gesteigert werden, war aber bereits niedriger als bei gleichen Bedingungen in den OTI Ko-Kulturen mit hSIGN DCs. Ab Antikörperkonzentrationen von 0,005 µg/ml und niedriger war kein Unterschied mehr zwischen hSIGN und WT Ko-Kulturen bezüglich der OTII Proliferation ersichtlich (s. Abbildung 17). Die Kulturen, welche mit Isotyp:OVA Antikörpern oder OVA Protein angereichert worden waren, zeigten ähnliche Ergebnisse wie bereits zuvor die OTI Kulturen. Die OTII Proliferation war in Kulturen mit 0,5 µg/ml Isotyp:OVA Antikörpern sowohl für hSIGN als auch für WT DCs erhöht, alle anderen Ko-Kulturen zeigten insgesamt eine gering ausgeprägte Zellvermehrung. Bei reinem OVA Protein blieb in allen Ko-Kulturen die Proliferation gleichermaßen auf sehr niedrigem Niveau (s. Abbildung 17). Auch in den Ko-Kulturen mit OTII T-Zellen wurde die Notwendigkeit einer Prästimulation der DCs mit \(\alpha \text{CD40} \) Antikörpern ersichtlich. Ganz ähnlich wie schon bei den Versuchen mit OTI T-Zellen fand sowohl in Ko-Kultur mit WT als auch mit hSIGN DCs kaum T-Zell Proliferation statt, insofern keine \(\alpha \text{CD40} \) Antikörper verwendet wurden (s. Abbildung 17).
Kontrollen: DCs und T-Zellen in Ko-Kultur, nur Medium, ohne αCD40 AKs, ohne AKs oder Protein
Ohne αCD40: DCs und T-Zellen in Ko-Kultur, ohne αCD40 AKs, mit AKs oder Protein
Peptid: SIINFEKL OTI Peptid (OVA257-264)

Abbildung 16: OTI T-Zell Proliferation bei Targeting von DC-SIGN in vitro

WT (graue Balken) oder hSIGN (blaue Balken) DCs wurden nach siebentägiger GM-CSF Kultur für 24 Stunden mit αCD40 AKs und zusätzlich entweder mit OVA Protein, Isotyp:OVA AKs oder αhDC-SIGN:OVA AKs inkubiert. Am Folgetag wurden CD8⁺ OTI T-Zellen hinzugegeben. Nach drei Tagen erfolgte eine radioaktive Markierung mit ³H Thymidin und nach weiteren 16 Stunden eine

Abkürzungen: AK, Antikörper; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, ovalbumin; WT, Wildtyp Maus.
Ergebnisse

Kontrollen: DCs und T-Zellen in Ko-Kultur, nur Medium, ohne αCD40 AKs, ohne AKs oder Protein Stimulus
Ohne αCD40: DCs und T-Zellen in Ko-Kultur, ohne αCD40 AKs, mit AKs oder Protein Stimulus
Peptid: OTII Peptid (OVA323-339)

Abbildung 17: OTII T-Zell Proliferation bei Targeting von DC-SIGN in vitro

WT (graue Balken) oder hSIGN (blaue Balken) DCs wurden nach siebentägiger GM-CSF Kultur für 24 Stunden mit αCD40 AKs und zusätzlich entweder mit OVA Protein, Isotyp:OVA AKs oder αhDC-SIGN:OVA AKs inkubierte. Am Folgetag wurden CD4⁺ OTII T-Zellen hinzugegeben. Nach drei Tagen erfolgte eine radioaktive Markierung mit ³H Thymidin und nach weiteren 16 Stunden

Abkürzungen: AK, Antikörper; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, Ovalbumin; WT, Wildtyp Maus.
3.4 Das Humane DC-SIGN als Zielstruktur von Vakzinen in vivo: Analyse von T-Zell Antworten im hSIGN Mausmodell

Forscher an der Rockefeller Universität und an der Mount Sinai School of Medicine in New York konnte bereits 2004 zeigen, dass das Beladen des Rezeptors DEC-205 mit spezifischem Antigen in vivo nicht nur zu einer Reifung von DCs führt, sondern auch die MHC Präsentation verstärkt und somit in erhöhtem Maße CD8⁺ und CD4⁺ T-Zellen aktiviert (Bonifaz et al., 2002; Bonifaz et al., 2004). Basierend auf dieser Grundlage und den zuvor beschriebenen in vitro Daten dieser Arbeit war zu erwarten, dass der Effekt der verstärkten T-Zell Aktivierung auch bei spezifischem Targeting von DC-SIGN in vivo eintreten würde. Um dies festzustellen, wurde eine in vivo Versuchsreihe begonnen, die sich in der Methodik eng an die Arbeiten von Bonifaz et al. anlehnte (Bonifaz et al., 2004).

Hierfür wurden CD45.1⁺ x OTI oder CD45.1⁺ x OTII T-Zellen in die Versuchstiere injiziert, die Tiere zusätzlich mit αCD40 Antikörpern und entweder αhDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert und im Verlauf die Expansion der transferierten CD45.1⁺ x OTI oder CD45.1⁺ x OTII T-Zellen mit Hilfe von Blutanalysen verfolgt. Die CD45.1⁺ x OTI oder CD45.1⁺ x OTII T-Zellen eignen sich für in vivo Versuche dieser Art im Besonderen, da sie in späteren Organanalysen durch ihren zusätzlichen Marker von tiereseigenen T-Zellen unterschieden werden können. Hierbei zeigte sich für CD45.1⁺ x OTI T-Zellen in hSIGN Mäusen, die mit αhDC-SIGN:OVA Antikörpern immunisiert worden waren, eine starke Proliferation, die sich von Tag eins auf Tag fünf deutlich erhöhte und Spitzenwerte von bis zu 60% erreichte. Trotz einer zusätzlichen Stimulation mit αCD40 Antikörpern und OVA Protein (engl. Boost) am Tag sieben, konnte die Proliferation der CD45.1⁺ x OTI T-Zellen bis zum zehnten Tag nicht weiter gesteigert werden und die Anzahl der CD45.1⁺ x OTI Zellen nahm wieder bis auf unter 20% ab (s. Abbildung 18). In den Kontrollgruppen der WT Mäuse, denen OVA Protein oder αhDC-SIGN:OVA Antikörper injiziert worden waren, erhöhte sich die CD45.1⁺ x OTI T-Zell Proliferation ebenfalls. Die Gruppe mit OVA Protein erreichte jedoch nur eine Zellvermehrung bis zu 30% und auch die Proliferation in WT Mäusen mit αhDC-SIGN:OVA Antikörpern blieb bei unter 20%. Bis zum Tag zehn verringerte sich in allen Kontrollgruppen die T-Zell Proliferation auf unter 20% und auch hier schien der Boost
am Tag sieben wirkungslos zu bleiben (s. Abbildung 18). Wildtyp Mäuse, denen lediglich PBS injiziert wurde, zeigten keine CD45.1\(^+\) x OTI T-Zell Proliferation zwischen Tag eins und zehn.

In transgenen hSIGN Mäusen konnte durch spezifisches Beladen von DC-SIGN die Proliferation der CD45.1\(^+\) x OTII T-Zellen bis Tag fünf nur minimal gesteigert werden und blieb mit maximal 2,7\% deutlich unter den Spitzenwerten, die in vivo von den OTI Zellen erreicht worden waren. Außerdem unterschied sich die Proliferation der CD45.1\(^+\) x OTII T-Zellen in den Kontrollgruppen der WT Mäuse mit OVA Protein und αhDC-SIGN:OVA Antikörpern nur geringfügig von den Werten der hSIGN Mäuse. Auch hier zeigte der Boost am Tag sieben keine Wirkung und in allen Gruppen verringerte sich die T-Zell Anzahl bis Tag zehn auf Werte unter 1\%.

Bei WT Mäusen, denen PBS injiziert worden war, konnte keine CD45.1\(^+\) x OTII T-Zell Proliferation festgestellt werden (s. Abbildung 19).
Ergebnisse

Abbildung 18: Proliferation transferierter CD45.1⁺ x OTI Zellen in vivo

Es wurden CD45.1⁺ x OTI aus den Lymphknoten von CD45.1⁺ x OTI Mäusen isoliert und die Zellen i.v. in hSIGN und WT Mäuse injiziert. Am Tag 0 wurden die Mäuse s.c. mit αhDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert und erhielten alle zusätzlich αCD40 Antikörper. Eine Gruppe erhielt nur PBS. Am Tag sieben wurde eine Injektion i.p. mit OVA Protein und αCD40 Antikörpern durchgeführt. An den Tagen eins, fünf und zehn wurde den Mäusen Blut entnommen und die Zellen mit FACS Antikörpern für CD8 und CD45.1 gefärbt. Die Graphik zeigt die Entwicklung der Proliferation der CD45.1⁺ x OTI Zellen im Blut (Y-Achse) über zehn Tage (X-Achse) gezeigt sind repräsentativ Mittelwerte und Standardabweichungen aus einem von zwei identisch aufgebauten und unabhängig voneinander durchgeführten Experimenten. Die hSIGN Gruppe bestand aus vier Mäusen, die WT Gruppen zu je aus zwei Mäusen.

Abkürzungen: AK, Antikörper; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, Ovalbumin; PBS, Phosphate-buffered saline; WT, Wildtyp Maus.
Es wurden CD45.1\(^+\) x OTII Zellen in vivo transferiert. Die Zellen wurden aus den Lymphknoten von CD45.1\(^+\) x OTII Mäusen isoliert und i.v. in hSIGN und WT Mäuse injiziert. Am Tag 0 wurden die Mäuse s.c. mit αhDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert und erhielten αCD40 Antikörper. Eine Gruppe erhielt nur PBS. Am Tag sieben wurde eine Injektion i.p. mit OVA Protein und αCD40 Antikörpern durchgeführt. An den Tagen eins, fünf und zehn wurde den Mäusen Blut entnommen und die Zellen mit FACS Antikörpern für CD4\(^{+}\) und CD45.1 gefärbt. Die Graphik zeigt die Entwicklung der Proliferation der CD45.1\(^+\) x OTII Zellen im Blut (Y-Achse) über zehn Tage (X-Achse). Gezeigt sind repräsentativ Mittelwerte und Standardabweichungen aus einem von zwei identisch aufgebauten und unabhängig voneinander durchgeführten Experimenten. Die hSIGN Gruppe bestand aus vier Mäusen, die WT Gruppen zu je aus zwei Mäusen.

Abkürzungen: AK, Antikörper; hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, Ovalbumin; PBS, Phosphate-buffered saline; WT, Wildtyp Maus.
3.5 Funktionelle Analyse der zytotoxischen Aktivität nach Vakzinierung

Um zu überprüfen, ob die proliferierten CD8\(^+\) OTI Zellen \textit{in vivo} über eine zytotoxische Funktion verfügen, sollten in einem weiteren Experiment die Auswirkungen von spezifischem DC-SIGN \textit{Targeting} im Zytotoxizitätsprotokoll untersucht werden. Hierfür wurden erneut CD45.1\(^+\) x OTI T-Zellen in die Versuchstiere injiziert und die Tiere zusätzlich mit \(\alpha\)CD40 Antikörpern und entweder \(\alpha\)hDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert. Sieben Tage nach Vakzinierung wurden CFSE markierte WT Zellen in die vakzinierten Versuchstiere injiziert. Diese Zellen waren zuvor entweder zusätzlich mit SIINFEKL Peptid inkubiert worden (CFSE\textsubscript{low}) oder nur CFSE markiert (CFSE\textsubscript{high}). Die finale Analyse erfolgte am Tag acht und 18h nach Injektion der CFSE markierten WT Zellen. Sowohl in der Milz, als auch in den inguinalen Lymphknoten aller Versuchstiere zeigte sich eine Verringerung der CFSE\textsubscript{low} Fraktion, die am stärksten in den hSIGN Mäusen ausgeprägt war, welche zuvor mit \(\alpha\)hDC-SIGN:OVA Antikörpern immunisiert worden waren. Hier verringerte sich die CFSE\textsubscript{low} Fraktion auf 6,4\% in der Milz und 6,0\% in den inguinalen Lymphknoten. In den WT Mäusen mit \(\alpha\)hDC-SIGN:OVA Antikörpern lagen die Werte bei 15,1\% in der Milz und 7,8\% in den inguinalen Lymphknoten. WT Mäuse, die mit OVA Protein vakziniert worden waren, zeigten eine Reduktion der CFSE\textsubscript{low} Zellen auf 24\% in der Milz und 9,1\% in den inguinalen Lymphknoten (s. Abbildungen 20 und 21). In den Abbildungen 20 und 21 sind in Abschnitt A jeweils Auszüge aus den originalen FACS Graphen zu sehen, Abschnitt B zeigt jeweils die graphische Auswertung.
Abbildung 20: Verringerung der CFSElow Fraktion in der Milz
Es wurden CD45.1\(^+\) x OTI aus den Lymphknoten von CD45.1\(^+\) x OTI Mäusen isoliert und diese Zellen i.v. in hSIGN Mäuse (blaue Balken) und WT Mäuse (schwarze und graue Balken) injiziert. Am Tag 0 wurden die Mäuse s.c. mit αhDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert und erhielten alle zusätzlich αCD40 Antikörper. Die WT Kontrollen erhielten PBS. Am Tag sieben wurde allen Versuchstieren eine Mischung aus 2x10\(^7\) CFSE markierten gen-identischen Zellen isoliert aus Lymphknoten und Milz von WT Mäusen injiziert. Diese Zellen waren zuvor entweder zusätzlich mit SIINFEKL Peptid inkubiert (CFSE\(^{low}\)) oder nur CFSE markiert (CFSE\(^{high}\)) worden. 18 Stunden nach der Injektion wurde die Beseitigung der CFSE\(^{low}\) Zellen mittels FACS als Parameter für die zytotoxische Aktivität der transferierten CD45.1\(^+\) x OTI Zellen gemessen. Die FACS Histogramme zeigen den Anteil der CFSE positiven Zellen unter den lebenden Zellen in der Milz (Y-Achse, s. Abbildung 20, A). Die graphische Auswertung stellt Mittelwerte und Standardabweichungen aus einem durchgeführten Experiment dar (s. Abbildung 20, B). Pro Gruppe wurden zwei Mäuse eingesetzt.

Abkürzungen: hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, Ovalbumin; PBS, Phosphate-buffered saline; WT, Wildtyp Maus.
Abbildung 21: Verringerung der CFSElow Fraktion in den inguinalen Lymphknoten
Es wurden CD45.1\(^+\) x OTI aus den Lymphknoten von CD45.1\(^+\) x OTI Mäusen isoliert und diese Zellen i.v. in hSIGN Mäuse (blaue Balken) und WT Mäuse (schwarze und graue Balken) injiziert. Am Tag 0 wurden die Mäuse s.c. mit αDC-SIGN:OVA Antikörpern oder OVA Protein vakziniert und erhielten alle zusätzlich αCD40 Antikörper. Die WT Kontrollen erhielten PBS. Am Tag sieben wurde allen Versuchstieren eine Mischung aus 20x10\(^6\) CFSE markierten gen-identischen Zellen isoliert aus Lymphknoten und Milz von WT Mäusen injiziert. Diese Zellen waren zuvor entweder zusätzlich mit SIINFEKL Peptid inkubiert (CFSE\(^{low}\)) oder nur CFSE markiert (CFSE\(^{high}\)) worden. 18 Stunden nach der Injektion wurde die Beseitigung der CFSE\(^{low}\) Zellen mittels FACS als Parameter für die zytotoxische Aktivität der transferierten CD45.1\(^+\) x OTI Zellen gemessen. Die FACS Histogramme zeigen den Anteil der CFSE positive Zellen unter den lebenden Zellen in den inguinalen Lymphknoten (Y-Achse, s. Abbildung 21, A). Die graphische Auswertung stellt Mittelwerte und Standardabweichungen aus einem durchgeführten Experiment dar (s. Abbildung 21, B). Pro Gruppe wurden zwei Mäuse eingesetzt.

Abkürzungen: hSIGN, Bezeichnung für transgene DC-SIGN Mauslinie; OVA, Ovalbumin; PBS, Phosphate-buffered saline; WT, Wildtyp Maus.
4 DISKUSSION

DCs spielen eine zentrale Rolle bei der Initiierung von adaptiven Immunantworten, da sie kontinuierlich Antigene aufnehmen und diese an T-Zellen präsentieren. So kontrollieren sie die Aktivität von B- und T-Lymphozyten, den Mediatoren des adaptiven Immunsystems. Im letzten Jahrzehnt wurde das Potential von Immuntherapeutika basierend auf *ex vivo* generierten DCs in vielen klinischen Studien untersucht. Jedoch blieb der erhoffte Erfolg bisher aus. Dies ist zum einen darauf zurückzuführen, dass die *ex vivo* Methoden nur einem limitierten Patientenkollektiv zugänglich sind, nämlich Patienten, die an einem schweren Tumorleiden mit schlechter Prognose erkrankt sind. Zum anderen müssen die Impfstoffe teuer und aufwendig für jeden Patienten individuell hergestellt werden. Eine Alternative bilden neue Impfstoffe, bei denen durch spezifisches Beladen Antigene direkt über verschiedene Rezeptoren in die DCs aufgenommen werden können. Dies hat einerseits den Vorteil, dass der immunologische Prozess im natürlichen Umfeld der DCs ablaufen kann und die Antikörper über das Blut- und Lymphsystem verschiedene Untergruppen an DCs in unterschiedlichen Organen und Geweben des Organismus erreichen. Andererseits können Antikörper einfacher, kostengünstiger und in größeren Mengen als *ex vivo* generierte DCs produziert werden und so einem breiteren Patientenkollektiv zur Verfügung gestellt werden. Die Mehrzahl an Rezeptoren, die im *Targeting* Verwendung finden, gehört zur Familie der CLRs. Da sie sowohl im Menschen als auch im Modellorganismus Maus speziell auf professionellen APCs exprimiert werden, scheinen sie sich besonders gut für neue Vakzinierungsstrategien zu eignen (s. Übersichtsarbeit von Tacken et al., 2007). In der vorliegenden Arbeit wurde in erster Linie die Rolle des Lektins DC-SIGN untersucht. Es existieren zwar murine Homologe, diese unterscheiden sich jedoch in Funktion und Expressionsmustern deutlich vom humanen DC-SIGN Molekül (Koppel et al., 2005; Powlesland et al., 2006). Somit konnte die Maus bislang nicht als Modellorganismus für die Analyse der Funktion von DC-SIGN dienen. Schäfer et al. gelang die Generierung eines konventionellen transgenen Mausmodells (hSIGN), bei dem das humane DC-SIGN unter dem CD11c Promoter exprimiert wird und somit auch in der Maus spezifisch nur auf DCs zu finden ist (Schaefer et al., 2008). Dadurch war es in der vorliegenden Arbeit möglich, nicht nur *in vitro*
Studien mit DCs aus der Maus durchzuführen, sondern die Funktionen von DC-SIGN auch in vivo zu analysieren.

4.1 Zielrezeptoren für die Entwicklung neuer Impfstoffe

Aktuelle Forschungsergebnisse verdeutlichen zunehmend, dass der Typ einer Immunantwort davon abhängt, welche Untergruppe von DCs die Immunantwort initiirt (Dudziak et al., 2007; Tacken and Figdor, 2011). Um über neue Impfstrategien die Art der Immunantwort kontrollieren und beeinflussen zu können, muss daher bekannt sein, welche DCs im Einzelnen von den Antikörpern erreicht werden und über welche Eigenschaften die spezifischen DC Untergruppen verfügen. Die Wahl desjenigen Rezeptors, der zum Targeting verwendet wird, beeinflusst im weiteren Verlauf auch ganz evident die DC Subpopulation, die durch den Antikörperimpfstoff erreicht wird (Tacken and Figdor, 2011). cDCs sind professionelle APCs, für die bereits überzeugende Daten für Targeting Studien in der Maus präsentiert wurden (Dudziak et al., 2007). cDCs exprimieren eine Reihe an CLRs, zu denen neben DC-SIGN auch DEC-205 und der MR gehören (Tacken and Figdor, 2011). DEC-205 wurde in der vorliegenden Arbeit bereits mehrmals erwähnt und gehört zu den am besten erforschten Rezeptoren für Targeting Strategien der CLR Familie. Der größte Nachteil an DEC-205 liegt in seiner unspezifischen Expression, da dieses Lektin im menschlichen Organismus nicht nur auf DCs, sondern auch auf Monozyten, B-Zellen, NK Zellen und T-Zellen zu finden ist (Witmer-Pack et al., 1995; Guo et al., 2000; Kato et al., 2006). In der Maus findet sich DEC-205 jedoch in erster Linie auf DCs in lymphatischen Organen. Daher ist es nicht verwunderlich, dass durch Antikörper vermitteltes Beladen von Antigen auf DEC-205 sowohl in vitro als auch in vivo überzeugende Ergebnisse in Mausstudien präsentiert werden konnten. Es werden bereits erste klinische Studien mit αDEC-205 Antikörpern durchgeführt, die beispielsweise an das HIV Protein p24 gekoppelt sind (www.clinicaltrials.gov).

Für die Entwicklungen von neuen humanen Impfstoffen ist jedoch nicht das Expressionsprofil in der Maus entscheidend, sondern die Situation im Menschen. Aufgrund der unspezifischen Expression ist zu erwarten, dass die Ergebnisse der Targeting Strategien mit DEC-205 in der Maus im menschlichen Organismus nicht
überzeugend genug reproduziert werden können und αDEC-205 Antikörper un-
spezifisch und ineffizient das Immunsystem aktivieren (Kato et al., 2006; Aarntzen
et al., 2008; Hesse et al., 2013). Dies könnte nicht zuletzt mit gefährlichen Neben-
wirkungen für die Patienten verbunden sein oder große Mengen an Antikörpern
nötig machen. DC-SIGN ist zwar auch vorwiegend in lymphatischen Organen zu
finden ist, zeigt jedoch im Menschen ein spezifisches Expressionsprofil nur auf
DCs, sodass DC-SIGN ein besserer Zielrezeptor für die Entwicklung neuer Impf-
stoffe darstellt und DEC-205 als Rezeptor überlegen ist (Geijtenbeek et al., 2000c;
Soilleux et al., 2002; Hesse et al., 2013).

Als ein weiteres wichtiges CLR ist der MR zu nennen. Der MR ist in der Maus
speziell auf Makrophagen und Endothelzellen in der Leber und im lymphatischen
Gewebe exprimiert (Linehan et al., 1999). Außerdem ist er oft auf DC-SIGN+ DCs
to finden. Interessanterweise wird der MR nur auf in vitro generierten DCs der
Maus exprimiert, nicht aber in vivo (McKenzie et al., 2007). Beim Menschen konn-
ten der MR auf verschiedenen Zelltypen der Haut, in venösen Sinusoiden der Milz
und der Leber, auf T-Zellen und DCs nachgewiesen werden (Engering et al.,
1997; Wollenberg et al., 2002; Martinez-Pomares et al., 2005). Spezifisches Bela-
den des MR mit Antigen wurde unter anderem von Ramakrishna et al. in einem
Melanom Modell erprobt. Targeting des MR mit Hilfe von humanen αMR Antikör-
pern, die an ein Melanomantigen gekoppelt wurden, führte zur Aktivierung Tumor-
antigen-spezifischer CTLs und CD4+ T-Helferzellen (Ramakrishna et al., 2004).
Eine andere Arbeitsgruppe erprobte das Targeting am Bacterial artificial chromo-
some (BAC) Mausmodell, wobei der BAC die Sequenz des humanen MR trug. Die
Daten aus diesen Experimenten zeigen, dass das Beladen mit Antigen über den
humanen MR potente humorale und zelluläre Immunantworten auslöst und gleich-
zeitig die Mäuse vor Tumorwachstum schützt (He et al., 2007; Tacken and Figdor,
2011). Einige klinische Studien testen momentan die Wirkung des Targeting bei
Patienten mit Brust-, Kolorektal-, Pankreas-, Ovarial- und Blasenkarzinomen.
Hierbei werden αMR Antikörper mit der β-Untereinheit des Tumormarkers
Gondadotropin fusioniert (www.clinicaltrials.gov). Ähnlich wie auch bei DEC-205
scheint DC-SIGN dem MR als Zielrezeptor für spezielle Vakzinierungsstrategien
überlegen zu sein. Durch das variable Expressionsmuster des MR können die
Auswirkungen des Targeting nicht eindeutig auf durch DCs induzierte Mechanis-
men zurückgeführt werden. Zudem muss mit unerwünschten Nebenwirkungen

4.2 Zielstruktur DC-SIGN: Induktion von potenter T-Zell Antworten

4.2.1 Targeting von DC-SIGN in vitro

Das Lektin DC-SIGN ist, wie in dieser Arbeit schon mehrmals dargelegt wurde, ein vielversprechender Kandidat für die Entwicklung und Erprobung neuer Impfstoffe. DC-SIGN zeigt im Gegensatz zu vielen anderen CLR s ein auf DCs beschränktes Expressionsmuster und ist insbesondere auf APCs in den immunologisch aktiven lymphatischen Organen und auf Schleimhauteoberflächen zu finden (Geijtenbeek et al., 2000c; Soilleux et al., 2002). In der vorliegenden Arbeit konnte mit in vitro Experimenten zum Targeting von DC-SIGN gezeigt werden, dass durch die Inkubation von DC-SIGN⁺ DCs mit αhDC-SIGN:OVA Antikörpern sowohl eine Proliferation der CD8⁺ OTI T-Zellen als auch der CD4⁺ OTII T-Zellen induziert wird. Hierbei war der Effekt für die Proliferation der CD8⁺ OTI Zellen ausgeprägter als für die CD4⁺ OTII T-Zellen (s. Abbildungen 14 bis 17). Eine starke OTI T-Zell Proliferation resultierte aus der Verwendung geringster Konzentrationen an αhDC-SIGN:OVA Antikörpern. Die Ko-Kultur mit DC-SIGN⁺ DCs führte bei Antikörperkonzentrationen im Nanogrammbereich zu einer 20fach höheren OTI T-Zell Proliferation als eine alleinige Verwendung gleicher Konzentrationen an reinem OVA Protein oder an Isotyp:OVA Antikörpern. Dieses Ergebnis ließ vermuten, dass noch weit aus geringere Konzentrationen des αhDC-SIGN:OVA Antikörpers verwendet werden könnten und die starke Proliferation der OTI T-Zellen dennoch erhalten bliebe. Dies zeigt, dass das Targeting von DC-SIGN in vitro eine sehr effektive Möglich-
keit darstellt, spezifische CD8⁺ T-Zellen zu aktivieren und DC-SIGN⁺ DCs über wirkungsvolle Mechanismen zur Verstärkung der Kreuzpräsentation verfügen. Außerdem wird deutlich, dass bereits geringste Antikörperkonzentrationen ausreichend sind, um eine vielfach höhere T-Zell Proliferation auszulösen, was beispielsweise erst aus der Verwendung erheblich größerer Mengen an löslichem Protein resultierte. Zusätzlich geht aus den in vitro Daten hervor, dass die Expression von DC-SIGN auf murinen DCs deren Fähigkeit zur Antigenverarbeitung und -präsentation nicht beeinflusst. Die Proliferation von OTI und OTII Zellen als Antwort auf die Inkubation von WT und hSIGN DCs mit reinem OVA Protein fiel in beiden Gruppen vergleichbar aus (s. Abbildungen 14 bis 17).

Die in der vorliegenden Arbeit präsentierten in vitro Daten stellen Vorversuche zur einer erst kürzlich publizierten Arbeit von Hesse et al. dar, welche die hier beschriebenen in vitro Daten bekräftigt. Auch hier konnte in verschiedenen in vitro Experimenten mit hSIGN⁺ und WT DCs gezeigt werden, dass durch die Verwendung von αhDC-SIGN:OVA Antikörpern sowohl OTI als auch OTII T-Zellen stärker zur Proliferation angeregt werden, als bei Verwendung vergleichbarer Konzentrationen an reinem OVA Protein oder an Isotyp:OVA Antikörpern. Außerdem zeigten Hesse et al., dass nur die αhDC-SIGN:OVA Antikörper messbare Proliferation von T-Zellen auslösen, welche direkt an OVA Protein gekoppelt sind, wohingegen vergleichbare Konzentrationen an reinem αhDC-SIGN Antikörper und löslichem OVA Protein gemeinsam keinen Effekt auf die T-Zell Proliferation haben. Damit kann ausgeschlossen werden, dass die Bindung an DC-SIGN per se die Fähigkeit der DCs zur Antigenpräsentation verstärkt (Hesse et al., 2013).

Die starke Induktion von CD8⁺ T-Zellen über DC-SIGN spezifische Antikörper in vitro ist ein erster Schritt dahingehend, DCs zur Aktivierung von Tₜ1-Zellen und CTLs anzuregen, welche dann in der Lage sind, als Effektorzellen Tumoren und schwerwiegende Infektionen wie HIV, Malaria oder Tuberkulose zu bekämpfen (Speiser and Romero, 2010; Tacken and Figdor, 2011; Trumpfheller et al., 2012). Bestimmte Untergruppen von DCs können neben Selbstantigenen auch Fremdantigene auf MHCI Molekülen präsentieren, ein Prozess, der als Kreuzpräsentation bezeichnet wird und für die Aktivierung von CTLs notwendig ist. Normalerweise dient die Präsentation auf MHCI Molekülen insbesondere der von endogenen Antigenen. Die genauen molekularen Mechanismen der Kreuzpräsentation sind bis-
her noch nicht vollständig aufgeklärt. Die ursprüngliche Annahme, dass Fremdantigene im Proteasom prozessiert werden, von dort in das Endoplasmatische Retikulum gelangen und an MHCI Moleküle gebunden werden, scheint nicht komplett zuzutreffen. So wurde kürzlich demonstriert, dass der sogenannte *early endosome* eine zentrale Rolle zuteil wird, da es über eine Reihe an Peptidtransportern verfügt und Peptide ohne Hilfe des Endoplasmatischen Retikulums an MHCI Moleküle gebunden werden können (Heath et al., 2004; Burgdorf et al., 2008; Saveanu et al., 2009; Tacken et al., 2011).

Auch wenn die genauen Mechanismen der Kreuzpräsentation noch nicht bekannt sind, zeigen die Ergebnisse der vorliegenden Arbeit, dass DC-SIGN⁺ DCs im Gegensatz zu normalen WT DCs durch das *Targeting* von DC-SIGN ihre Mechanismen zur Kreuzpräsentation aktivieren können und so Antigen an naive CD8⁺ OTI T-Zellen präsentiert wird, wodurch diese zur Proliferation angeregt werden. Während in den *in vitro* Experimenten die Proliferation von OTI T-Zellen erheblich anstieg, zeigte die Proliferation der OTII T-Zellen geringere Werte, insbesondere bei niedrigeren Antikörperkonzentrationen in Ko-Kultur mit DC-SIGN⁺ DCs unter Zugabe von αhDC-SIGN:OVA Antikörpern. Hesse et al. verwendeten nur Antikörperkonzentrationen bis 0,005 µg/ml und konnten bereits ab 0,01 µg/ml keine Unterschiede mehr in der Proliferation von OTI und OTII T-Zellen zwischen Ko-Kulturen mit WT oder DC-SIGN⁺ DCs herausarbeiten. Beide Gruppen zeigten eine verstärkte Proliferation von OTI und OTII T-Zellen in Ko-Kultur mit DC-SIGN⁺ beladenen DCs im Gegensatz zu WT DCs. Dass der Effekt bei OTI T-Zellen jedoch ausgeprägter ist, wurde nicht ersichtlich (Hesse et al., 2013). Die *Abbildungen 16 und 17* zeigen aber, dass im Gegensatz zu WT DCs bei Antikörperkonzentrationen kleiner 0,005 µg/ml immer noch eine deutlich stärkere OTI Proliferation in Ko-Kultur mit DC-SIGN⁺ DCs (beladen mit αhDC-SIGN:OVA AKs) induziert werden konnte, wohingegen sich die Anzahl proliferierter OTII T-Zellen in Ko-Kultur mit DC-SIGN⁺ DCs bei Antikörperkonzentrationen kleiner 0,005 µg/ml kaum mehr von der in Ko-Kultur mit WT DCs unterschied.

Andere *in vitro* Studien bekräftigen die in dieser Arbeit gewonnenen Erkenntnisse. Humanisierte αDC-SIGN Antikörper wurden mit dem Modellantigen *keyhole limpet hemocyanin* (KLH) fusioniert und führten nach Inkubation mit humanen, von Monozyten abstammenden DCs (moDCs) oder Lymphozyten, die aus humanem Blut
Diskussion

isoliert wurden, zu einer potenzen Antigenpräsentation an naive T-Zellen und zu deren Proliferation (Tacken et al., 2005). Singh et al. wählten anstatt Antikörper Zuckerliganden von DC-SIGN und fusionierten diese mit dem Modellantigen OVA. Auch dies führte zu einer erhöhten Antigenpräsentation an naive OVA Peptid spezifische CD4+ und CD8+ T-Zellen und zu einer verstärkten Proliferation besonders der CD8+ T-Zellen (Singh et al., 2009). Unger et al. verwendeten in ihren Experimenten Vakzine auf Basis glykosylierter Liposomen, die ebenfalls zu einer verstärkten Antigenpräsentation DC-SIGN+ DCs führten (Unger et al., 2012). Die beschriebenen Daten anderer Arbeitsgruppen und die dargelegten Ergebnisse der vorliegenden Arbeit machen deutlich, dass transgene DCs aus hSIGN Mäusen in gleichem Maße wie humane DC-SIGN+ DCs zur Antigenpräsentation und Aktivierung naiver T-Zellen in der Lage sind, wenn Antigen über DC-SIGN in die Zelle aufgenommen wird (Singh et al., 2009; Tacken et al., 2011; Hesse et al., 2013).

Dass auch das spezifische Targeting anderer CLRs DCs zur Kreuzpräsentation befähigt, demonstrierten beispielsweise Bonifaz et al., die in ihren in vitro Studien mit dem Endozytosesrezepor DEC-205 zeigen konnten, dass mit Hilfe von αDEC-205:OVA Antikörpern in erster Linie die Aktivierung und Proliferation von CD8+ OTI T-Zellen verstärkt wird und CD4+ OTII T-Zellen eine weniger ausgeprägte Proliferation zeigen (Bonifaz et al., 2002). Nichtsdestotrotz birgt das Targeting von DC-SIGN ein größeres Potential und vielversprechendere Ansätze für eine spätere Therapie im Menschen, da DEC-205 im humanen Organismus nicht spezifisch auf DCs exprimiert wird.

4.2.2 Targeting von DC-SIGN in vivo

In den in vivo Experimenten der vorliegenden Arbeit bestätigten sich die zuvor gewonnenen Befunde der in vitro Untersuchungen. Im hSIGN Mausmodell löste die Vakzinierung mit αhDC-SIGN:OVA in Kombination mit αCD40 Antikörpern eine starke Proliferation transferierter CD8+ OTI Zellen aus, wohingegen CD4+ OTII Zellen deutlich weniger proli fierierten (s. Abbildungen 18 und 19). Allerdings ist zu bedenken, dass die Expansion der T-Zellen nur an den Versuchstagen eins, fünf und zehn untersucht wurde, es liegen jedoch keinerlei Informationen darüber vor, wie sich die T-Zell Proliferation zwischen Tag fünf und Tag zehn entwickelte, da es den Tieren nicht zumutbar war, eine erneute Blutabnahme an Tag sieben

In der vorliegenden Arbeit konnte mit Hilfe des Zytotoxizitätsprotokolls gezeigt werden, dass die generierten CD8⁺ T-Zellen über eine potente zytotoxische Funktion verfügen (s. Abbildungen 20 und 21). Da sich die Arbeitsgruppe am klassischen Protokoll orientierte, erfolgte die Analyse am achten Tag. Der Unterschied der CFSElow Verringerung zwischen vakzinierten hSIGN und WT Mäusen hätte aber, wie die Daten von Hesse et al. zeigen, deutlicher dargestellt werden können, wenn die abschließenden Analysen zu einem früheren Zeitpunkt stattgefunden hätten. Aus den zuvor im Rahmen dieser Arbeit durchgeführten in vivo Experimenten war ersichtlich geworden, dass die Zellzahlen der CD8⁺ OTI-Zellen bereits am Tag fünf ihr Maximum erreicht hatten. Hesse et al. führten die Analysen im Zytotoxizitätsmodell sechs Tage nach der Immunisierung mit αhDC-SIGN:OVA und αCD40 Antikörpern durch und konnten in hSIGN Mäusen, jedoch nicht in WT Mäusen, eine starke CTL Antwort beobachten, die sich in einer massiven Abnahme der CFSElow Fraktion äußerte (Hesse et al., 2013). Nichtsdestotrotz konnten auch in der vorliegenden Arbeit schon erste überzeugende Daten präsentiert werden, die aufzeigen, dass durch das Targeting von DC-SIGN in vivo wirksame CTL Antworten generiert werden können.

Ähnliche Ergebnisse zum Targeting von DC-SIGN in vivo demonstrieren auch andere Publikationen. Kretz-Rommel et al. zeigten in einem speziellen humanisierten Mausmodell, dass DC-SIGN Targeting in vivo potente T-Zell Antworten induziert. αDC-SIGN Antikörper des AZN-D1 Klons wurden an Tetanustoxoid Peptide oder an das Modellantigen KLH gekoppelt und aktivierten humane, Antigen-spezifische T-
Diskussion

Die Methodik für die in vivo Experimente dieser Arbeit lehnte sich eng an die Arbeiten von Bonifaz et al. an, die das spezifische Beladen mit Antigen von DEC-205 untersuchten. Diese Arbeitsgruppe demonstrierte in einer Versuchsreihe zum Targeting von DEC-205, dass sich IFNγ⁺/IL-2⁺ OTI Zellen nach Vakzinierung mit αDEC-205:OVA und αCD40 Antikörpern in großen Mengen nachweisen lassen und die OTI Zellen zudem über eine zytotoxische Funktion verfügen, wenn zuvor eine Aktivierung der DCs mit αCD40 Antikörpern stattfand (Bonifaz et al., 2002). Die Forscher um Mahnke et al. konnten zeigen, dass die Fusion der Melanomantigene gp100 und tyrosinase-related protein 2 (TRP-2) mit einem αDEC-205 Antikörper dazu führte, dass bei 70% der an Melanom erkrankten Mäuse eine Regression des Tumors erreicht werden konnte (Mahnke et al., 2005). Auch wenn diese Studien vielversprechende Ergebnisse darlegen, muss bedacht werden, dass das Targeting von DEC-205 aufgrund seines unspezifischen Expressionsmusters zu unerwünschten Nebenwirkungen und zu einer Verfälschung der Ergebnisse führen kann. DC-SIGN hingegen zeigt durch seine exklusive Expression auf DCs einen deutlichen Vorteil gegenüber DEC-205. Diana Dudziak et al. konnten durch das spezifische Beladen von DEC-205 zeigen, dass nur CD8⁺ DEC-205⁺ DCs zur Kreuzpräsentation fähig sind und diese zudem über große Konzentrationen an MHC I Molekülen verfügen. CD4⁺ DCs hingegen exprimieren den Rezeptor DCIR2 (33D1), sind reich an MHCII Molekülen und spezifisches Targeting von 33D1 induzierte potente CD4⁺ Antworten (Dudziak et al., 2007). Da DEC-205 generell nicht auf CD4⁺ DCs exprimiert wird, können bei in vivo Targeting Studien mit
DEC-205 keine Aussagen darüber getroffen werden, ob tatsächlich ausschließlich CD8⁺ DCs Kreuzpräsentation betreiben, oder ob CD4⁺ DC nicht auch über entsprechende Mechanismen verfügen. Außerdem kann nicht beurteilt werden, ob letztendlich der Zielrezeptor selbst oder die Untergruppe der DCs für eine Kreuzpräsentation ausschlaggebend sind. Der bisherige Forschungskonsens vertritt die Ansicht, dass allein CD8⁺ CDs zur Kreuzpräsentation befähigt sind. Die Frage ist jedoch, ob nicht vielmehr der für das Targeting verwendete Rezeptor entscheidend dafür ist, dass die DC Antigene kreuzpräsentieren kann. DC-SIGN wird sowohl auf CD4⁺ DCs als auch auf CD8⁺ DCs exprimiert. Das in dieser Arbeit vorgestellte und verwendete hSIGN Mausmodell eignet sich daher explizit dafür, die Fähigkeit zur Kreuzpräsentation verschiedener DC Unterklassen zu untersuchen. Wichtig ist hierbei, dass für diese Versuche nur DCs aus murinen Milzen verwendet werden können, da DCs aus GM-CSF Knochenmarkskulturen weder CD4 noch CD8 exprimieren (Vremec et al., 2000; O'Keeffe et al., 2002; Wu and Liu, 2007). In zukünftigen Experimenten könnte man Mäuse in vivo zunächst mit spezifischen αhDC-SIGN:OVA Antikörpern und einem Stimulanz, beispielsweise mit αCD40 Antikörpern, vakzinieren. Anschließend könnten DCs aus den Milzen der Mäuse isoliert, nach verschiedenen Oberflächenmolekülen sortiert und dann mit naiven CD4⁺ oder CD8⁺ T-Zellen in Kultur gebracht werden. So könnte gezeigt werden, dass die Expression von DC-SIGN die DCs zur Kreuzpräsentation von Fremdantigen befähigt und nicht die Zugehörigkeit zu einer bestimmten Untergruppe entscheidend ist.

4.3 Die Wahl von Antikörpern und Adjuvanzien bei der Neuentwicklung von Impfstoffen

Nach wie vor sind die entscheidenden Faktoren für die Effektivität und die Art der induzierten Immunantwort beim spezifischen Beladen von DCs ungeklärt. Es herrscht Uneinigkeit darüber, ob hauptsächlich die Untergruppe der Ziel DCs, der Zielrezeptor oder der Ligand selbst ausschlaggebend für die induzierte Immunantwort sind. Neue Erkenntnisse legen nahe, dass zusätzlich auch die Wahl des Epitops am Zielrezeptor, an das der Antikörper-Antigen Komplex bindet, entscheidend dafür sein kann, welcher Teil des Immunsystems im Folgenden aktiviert wird (Tacken et al., 2011). Des Weiteren wird zunehmend deutlich, dass Stimuli, die
zur Reifung der DCs führen (*engl. maturation adjuvants*), unabdingbar für die Generierung einer Immunität sind und der Aktivierungszustand der DCs auf den Typ der ausgelösten Immunität Einfluss nimmt.

4.3.1 Die Wahl des richtigen Antikörpers

Obwohl DC-SIGN bereits in einer Vielzahl an Studien untersucht wurde, ist bisher noch nicht vollständig aufgeklärt, was nach der Bindung eines Liganden im Zellinneren der DCs mit dem Rezeptor-Liganden-Komplex passiert. Für DC-SIGN existieren aktuell insbesondere Antikörper, die an die extrazellulär gelegene CRD binden. Diese und auch Zuckerliganden werden nach der Clathrin-abhängigen Endozytose in lysosomale Kompartimente transportiert. Interessanterweise verbleiben Antikörper, die an die Neck Region von DC-SIGN binden oder Zuckermoleküle des HCV nach der Clathrin-unabhängigen Endozytose für längere Zeit im sogenannten *early endosome* (Ludwig et al., 2004; Tacken et al., 2011). Neuere Erkenntnisse legen darüberhinaus nahe, dass αCRD und αNeck Antikörper unterschiedliche Transkriptionsmechanismen im Zellinneren aktivieren. Auch scheint eine Blockierung der CRD mehr Einfluss auf die Funktion der DCs zu haben, als eine vorübergehende Blockierung der Neck Region (Tacken et al., 2011). Diese Ergebnisse machen deutlich, dass die Identifizierung neuer Rezeptordomänen von DC-SIGN dahingehend sinnvoll wäre, solche Domänen ausfindig zu machen, die wenig Einfluss auf die Fähigkeit der DC zur Antigen- und Pathogenerkennung haben, sondern speziell die T-Zell Aktivierung und Proliferation von DC-SIGN⁺ DCs modulieren können.

Tacken et al. konnten kürzlich zeigen, dass αDC-SIGN Antikörper nach der Endozytose für längere Zeit im Zellinneren an DC-SIGN gebunden blieben, kein Rezeptorreycling stattfand und somit auch keine wesentliche Akkumulation von Antikörpern möglich war. Außerdem führte die Bindung von αDC-SIGN Antikörpern zur Verminderung der DC-SIGN Expression auf der DC Oberfläche, ein Effekt, der bei der Bindung von Kohlenhydratliganden ausblieb (Tacken et al., 2012). Es ist jedoch fraglich, ob diese Ergebnisse auch auf andere Antikörpertypen übertragen werden können. Möglicherweise treffen die von Tacken et al. dargestellten Eigenschaften nur allein auf den von ihnen verwendeten Subtyp zu. Laut Tacken et al. wären Antikörper folglich nicht die am besten geeigneten Strukturen für den Anti-
gentransport, da durch die abnehmende Dichte an DC-SIGN-Molekülen auf der Oberfläche keine Anreicherung von Antikörper-Antigen-Komplexen im Zellinneren möglich wäre.

Als Alternative verwendeten Cruz et al. bereits Nano- und Mikropartikel, die auf ihrer Oberfläche αDC-SIGN Antikörper trugen und mit größeren Mengen an löslarem Antigen beladen wurden. Für die Aufnahme der Partikel in die DC war folglich nur eine geringe Anzahl an DC-SIGN Rezeptoren notwendig. Gleichzeitig konnte aber dennoch eine große Menge an Antigen in das Zellinnere aufgenommen werden, woraus effektive Antigen-spezifische T-Zell Antworten resultierten (Cruz et al., 2010). Es sollte geprüft werden, ob möglicherweise Vakzine, die sich aus unterschiedlichen Antikörperekomponenten zusammensetzen, den klassischen Antigen-Antikörper-Komplexen überlegen sein könnten. Hierfür könnte eine Kombination von Nanopartikeln und Antigen-Antikörper-Komplexen in Betracht gezogen werden.

Neben der Rezeptordomäne, die vom verwendeten Antikörper gebunden wird, kann auch der Aufbau des Antikörpers eine Variationsmöglichkeit darstellen. Birkholz et al. verwendeten beispielsweise in einer Studie zum Targeting von DEC-205 anstelle von kompletten Antikörpern sogenannte single-chain fragments variable (scFv). Da sie günstig produziert werden können, Gewebe leichter penetrieren und zudem keine Fc-Rezeptoren binden, bieten sie eine Reihe an Vorteilen, die man sich bei der Entwicklung von neuen auf Antikörper-Antigen-Komplexen basierenden Impfstoffen zu Nutze machen könnte (Birkholz et al., 2010). Vakzine aus αDEC-205 scFv Antikörpern fusioniert mit dem Melanom Modellantigen gp100 lösten in der Maus bereits Antigen-spezifische CD4⁺ und CD8⁺ T-Zell Antworten aus und führten zu einer Reduktion des Tumorvolumens um 66% (Johnson et al., 2008). Die Arbeitsgruppe um Birkholz fusionierte αDEC-205 scFv Antikörper mit dem Tumorantigen MAGE-A3, welches in Hoden-, Lungen-, Brust- und Plattenepithelkarzinenomen, sowie auch in malignen Melanomen zu finden ist. Dies führte zu einer 100fach stärkeren Präsentation des Modellantigens auf MHCII Molekülen und aktivierte Antigen-spezifische T-Zellen (Birkholz et al., 2010). Auch für DC-SIGN existieren αDC-SIGN scFv Antikörper, die jedoch bisher noch wenig erprobt wurden (Tacken et al., 2012). In der vorliegenden Arbeit wurden αDC-SIGN Antikörper aus dem bereits zuvor beschriebenen AZN-D1 Klon verwendet.

4.3.2 Impfstoffe und ihre Adjuvanzien

Die Autoren verschiedener Targeting Studien mit Mäusen und auf DC basierenden Therapiestudien im Menschen sind sich darüber einig, dass die Aktivierung und Reifung von DCs wichtige Voraussetzungen für den Erfolg der auf DC basierenden Vakzine sind. Unreife DCs induzieren sowohl in vitro als auch in vivo Toleranz und führen zur Generierung von T_{regs} (Dhodapkar et al., 2001; Bonifaz et al., 2002; Mahnke et al., 2003; Aarntzen et al., 2008; Tacken and Figdor, 2011). In der Entwicklung neuer Impfstrategien liegt der Schwerpunkt auf Krankheiten, die nach momentanem Wissensstand nur schwer zu therapieren sind und zu deren Bekämpfung effektive CTL Antworten und ein immunologischen Gedächtnis generiert werden müssen (Birkholz et al., 2010; Speiser and Romero, 2010; Tacken and Figdor, 2011). Die meisten gängigen Impfstoffe enthalten Adjuvanzien, welche die Antigen-spezifischen Immunantworten verstärken, indem sie beispielsweise das Ausmaß oder die Dauer der Immunantwort beeinflussen oder DCs aktivieren. Momentan ist nur eine geringe Anzahl an Adjuvanzien zur Herstellung von humenen Impfstoffen verfügbar. Am häufigsten werden momentan Aluminium Salze (Alum) als Zusatzstoffe verwendet, eine große Anzahl an anderen Adjuvanzien befindet sich jedoch bereits in Entwicklung und klinischer Erprobung (O'Hagan et al., 2001; Kool et al., 2008a; Kool et al., 2008b; Dubensky and Reed, 2010; Speiser and Romero, 2010; Tacken and Figdor, 2011). Mit den aktuell verbreiteten
Zusatzstoffen für Impfungen wird das Immunsystem aber hauptsächlich zur Gene-
rierung einer T\textsubscript{H}\textsubscript{2}-Antwort angeregt. Daher müssen neue, auf Antikörper-Antigen-
Komplexen basierende Impfstoffe mit Adjuvanzien versehen werden, die in erster
Linie zur Proliferation von T\textsubscript{H}1-Zellen und CTLs führen (Speiser and Romero,
2010; Tacken and Figdor, 2011). Außerdem sollten therapeutische Vakzine in der
Lage sein, Mechanismen, die Erreger und Tumoren zur Evasion des Immunsys-
tems entwickelt haben effizient zu umgehen (Dubensky and Reed, 2010).

Die gängigsten Adjuvanzien für das Targeting von DCs sind Antikörper gegen
CD40 oder PRR Liganden, da sie DCs suffizient aktivieren und deren Fähigkeit
die Kreuzpräsentation von Antigen an CD8+ T-Zellen verstärken (Bonifaz et al.,
2002). CD40 ist ein Mitglied der TNF-Familie und wird von DCs, B-Zellen, Makro-
phagen, Monozyten und vielen anderen Zellen exprimiert (Quezada et al.,
2004; Tacken et al., 2007). Außerdem ist CD40 auch auf soliden Tumoren und Non-
Hodgkin Lymphomen zu finden. Die Anwesenheit von αCD40 Antikörpern erhöht
die Dichte an kostimulatorischen Molekülen, führt zur Produktion von proinflamma-
torischen Zytokinen, verlängert die Antigenpräsentation auf MHC Molekülen und
letztlich sogar das Überleben der DCs (Quezada et al., 2004). Außerdem scheint
es so, als könnten DCs CTL Antworten nur nach vorheriger Reifung generieren,
andernfalls induzieren sie Immuntoleranz (Hawiger et al., 2001; Bonifaz et al.,
2002).

Da αCD40 Antikörper bisher in vielen Versuchen zum Targeting von DCs verwen-
det wurden, setzte man diese Antikörper auch in der vorliegenden Arbeit als Ad-
juvanzien der Vakzine ein. Hierbei wurde ersichtlich, dass in Proben, die zwar mit
Antikörpersen oder Protein versehen wurden, jedoch keine αCD40 Antikörper erhiel-
ten, sowohl in Kultur mit WT als auch mit DC-SIGN+ DCs kaum T-Zell Proliferation
messbar war (s. Abbildungen 17 und 18). Hesse et al. konnten zeigen, dass bei in vitro Experimenten zum Targeting von DC-SIGN die Zugabe von αCD40 Anti-
körpern nur die Proliferation von OTI T-Zellen, die mit DC-SIGN+ DCs und αhDC-
SIGN:OVA Antikörpern inkubiert worden waren, verstärkte. Die Proliferation von
OTII T-Zellen hingegen wurde nur unwesentlich durch die Hinzugabe von αCD40
Antikörpern gesteigert. Außerdem verstärkte die Anwesenheit von αCD40 Anti-
körpern signifikant die Menge an IFN\textsubscript{γ} produzierenden OTI Zellen, wohingegen die
Anzahl IFN\textsubscript{γ} produzierender OTII Zellen bei Zugabe von αCD40 Antikörpern in
Kombination mit αhDC-SIGN:OVA Antikörpern unbeeinflusst blieb (Hesse et al., 2013). In den in vivo Experimenten dieser Arbeit wurden grundsätzlich in allen Versuchen αCD40 Antikörper eingesetzt, da die Literatur sowohl in Mausstudien als auch in humanen Therapiestudien mit Antikörpervakzinen für DCs ausreichend überzeugende Hinweise dafür bietet, dass die Prästimulation der DCs unverzichtbar für die Induktion einer potenten Immunantwort ist (Dhodapkar et al., 2001; de Vries et al., 2003; Tacken and Figdor, 2011). Hesse et al. weisen sogar daraufhin, dass ohne Adjuvanz in vivo keinerlei Kreuzpräsentation stattfindet und CD4⁺ T-Zellen mit einem Phänotyp ähnlich dem von T_{reg} nachgewiesen werden können (Hesse et al., 2013).

Signalverarbeitungsmechanismen von TLRs und CLRs im Zellinneren könnten bei der Verwendung von Adjuvanzien, welche die TLRs stimulieren, die Auswirkungen des DC Targeting nicht eindeutig zugeordnet werden. Dies könnte die Aufklärung der genauen Mechanismen erschweren. Außerdem zeigten verschiedene Forschungsarbeiten, dass die Signaltransduktionswege von CD40 ausreichend für eine potente DC Aktivierung und Immunaktivierung sind (Bennett et al., 1998; Schoenberger et al., 1998). Im Gegensatz dazu stehen Publikationen, die beschreiben, dass eine Kombination aus verschiedenen Adjuvanzien die zelluläre Immunantwort um ein Vielfaches potenzieren kann (Sparwasser et al., 1998; Maxwell et al., 2002; Quezada et al., 2004). Aktuell ist nur das LPS Derivat Monophosphoryl Lipid A (MPL®) als TLR Ligand für humane Impfstoffe zugelassen. MPL® stellt ein potentes Stimulanz für T-Zell Antworten und die Produktion von Antikörpern dar und wurde bisher sehr erfolgreich in Impfstudien eingesetzt (Dubensky and Reed, 2010). Aufgrund dieses Erfolges ist momentan bereits ein weiterer TLR4 Agonist in Erprobung (Baldwin et al., 2009). Allerdings werden in Zukunft noch viele Untersuchungen notwendig sein, um die genauen Wirkmechanismen der neuen Adjuvanzien aufzuklären, gefährliche Nebenwirkungen vor der Erprobung im Menschen auszuschließen und eine kostengünstige Produktion in großen Mengen zu ermöglichen (Dubensky and Reed, 2010).

4.4 Ausblick: DC-SIGN – Therapeutische Einsatzmöglichkeiten und Chancen in der Medizin

Neben HIV stellt auch HCV eine große Belastung für die Medizin dar. Weltweit sind etwa 170 Millionen Menschen an Hepatitis C erkrankt und bisher fehlen kurative Therapiemaßnahmen oder präventive Impfstoffe, wie sie beispielsweise bereits für das Hepatitis A und B Virus verfügbar sind (WHO, 2011). Außerdem tragen die infizierten Patienten eine sehr hohes Risiko für die Entstehung einer Leberzirrhose und folglich eines Leberkarzinoms. Der hohe Prozentsatz an Patienten mit chronischer HCV Infektion ist höchstwahrscheinlich darauf zurückzuführen, dass das HCV erfolgreich Mechanismen entwickelt hat, die es ihm erlauben, dem Immunsystem zu entkommen. DC-SIGN und sein Homolog L-SIGN binden Hüllenproteine von HCV und sind ausschlaggebend für die Aufnahme von HCV in DCs und sinusoidale Endothelzellen der Leber. Dies hat zur Folge, dass die Viren dem intrazellulären Verdau entkommen können, die immunstimulatorischen Eigenschaften von DCs gehemmt werden und ein Wechsel von einer protektiven T⁺H1-Antwort zu einer nicht protektiven T⁺H2-Antwort stattfindet (Ludwig et al., 2004; Steinman and Banchereau, 2007). Da Antikörper gegen DC-SIGN und L-SIGN die Aufnahme von HCV Partikeln in DCs spezifisch blockieren, ist davon auszugehen,

Neben schweren Virusinfektionen bereiten nosokomiale Infektionen zunehmend Probleme. Candida albicans (C. albicans) ist der Hauptverursacher von nosokomialen Pilzinfektionen und Mukositiden immunsupprimierter Patienten nach Transplantation, bei Chemotherapie oder schweren Infektionskrankheiten wie AIDS. C. albicans dringt insbesondere über Haut und Schleimhäute in den Wirt ein (Cambi et al., 2003). Die Zellwand von C. albicans besteht in erster Linie aus Glykanen, die im Besonderen von DC-SIGN und dem MR gebunden werden, was dann wiederum die Aufnahme von C. albicans in humane DCs ermöglicht. Cambi et al. konnten zeigen, dass die Struktur der Pilzglykanen ganz spezifisch von CLRs auf humanen DCs erkannt wird und direkten Einfluss auf die Produktion proinflammatorischer Zytokine und die Art der Immunantwort hat (Cambi et al., 2008). Diese Erkenntnis trägt zur Überlegung bei, dass Zellwandglykanen als Bestandteile therapeutischer DC-SIGN oder MR Antikörper Vakzine gezielt Immunzellen und Immunmechanismen aktivieren könnten, die für die Eliminierung der Pilze nötig sind, wozu der Organismus bei Immunsuppression jedoch nicht mehr in der Lage ist.

DCs werden in vielen Tumoren von Mensch und Mause gefunden. Tumoren exprimieren beispielsweise Interleukine, welche die Funktionen von DCs eindämmen oder diese zur Aktivierung von T_{regs} anregen. So können Tumore die Immunabwehr unterdrücken und ungestört an Größe und Volumen zunehmen. Inwiefern
Diskussion

DCs spielen nicht nur eine wichtige Rolle bei der Aktivierung der Immunabwehr, sondern tragen maßgeblich zum Erhalt der Immunbalance bei. Sind diese Mechanismen gestört, kann es zur Entstehung von Autoimmunkrankheiten und allergischen Krankheitsbildern wie beispielsweise Asthma, Typ-1 Diabetes, Psoriasis, rheumatischer Arthritis, chronisch-entzündliche Darmerkrankungen oder Multipler Sklerose kommen (Steinman and Banchereau, 2007). DC-SIGN wird auf DCs der Haut und der Schleimhäute exprimiert, wo sich ein bedeutender Anteil der oben genannten Krankheitsbilder manifestiert. In der vorliegenden Arbeit wurde anhand verschiedener Publikationen bereits mehrfach aufgezeigt, dass spezifisches Targeting von DC-SIGN in Abwesenheit von Reifestimulanzien zur Induktion von Toleranz führt. DC-SIGN⁺ iDCs könnten beispielsweise Tregs aktivieren oder verschiedene supprimierende Zytokine produzieren, die wiederum die autoreaktiven Mechanismen eindämmen. Dies könnte sich bei der Bekämpfung von Autoimmunkrankheiten und Allergien, aber auch bei der Prävention von Transplantatabstoßungen zu Nutze gemacht werden. Da DC-SIGN auch auf DCs in der Zervix und Plazenta zu finden ist, liegt die Überlegung nahe, dass DC-SIGN zudem eine Rolle bei der Immunsuppression in der Plazenta und bei der Initiierung von Aborten spielt. Außerdem stellt die Expression von DC-SIGN einen frühen Marker für die
Implantation des Embryos dar (Breburda et al., 2006). Durch die Expression von HLA-G auf der Plazenta und Sezernierung verschiedener immunsuppressiver Substanzen ist der Fötus normalerweise vor Angriffen durch das mütterliche Immunsystem geschützt (Hunt et al., 2007). Bei Aborten scheint dieses System jedoch gestört zu sein. Inwiefern DC-SIGN eine Rolle bei der Etablierung der maternal-fetalen Immuntoleranz spielt und seine Funktion sogar für therapeutische Zwecke beispielsweise bei multiplen Aborten eingesetzt werden kann, muss vor der Entwicklung von neuen Therapeutika in weiteren Untersuchungen aufgeklärt werden.
5 ZUSAMMENFASSUNG

6 SUMMARY

Dendritic cells are the sentinels of the immune system and continuously sample their environment for antigens. Therefore, they are equipped with different surface receptors like members of the family of the c-type lectins. With their carbohydrate recognition domain they can recognize different endogenous and exogenous antigens, internalize and present them as antigen fragments on their cell surface. In addition to that, binding and internalization of antigens trigger different signaling pathways leading migration to lymph nodes, expression of co-stimulatory molecules and secretion of immune stimulatory cytokines. Then, dendritic cells are able to initiate an antigen specific immune response, making them an interesting target for vaccination strategies. Vaccination is one of the oldest and still most effective methods to prevent infectious diseases. Yet, eradication of intracellular pathogens and other diseases like cancer or strong infections remains a medical challenge. Thus, targeting antigens to dendritic cells via specific antibodies against surface receptors represents a successful approach to induce strong cytotoxic immune responses. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a c-type lectin receptor with a highly restricted expression on dendritic cells and certain macrophages in humans and has several functions as antigen uptake receptor. It therefore represents an ideal candidate for dendritic cell targeting. First in vitro and in vivo data demonstrated that specific antigen targeting via αDC-SIGN antibodies strongly enhances antigen presentation. Simultaneously, it led to activation of dendritic cells and boosted antigen specific immune responses. In mice, eight DC-SIGN homologues were identified so far, but they show different function, expression pattern and ligand specificity than the human DC-SIGN. For this reason a conventional transgenic mouse model using the human DC-SIGN cDNA under control of the murine CD11c promoter was introduced and named hSIGN. This allowed analysing the follow-ups of antigen targeting of the human DC-SIGN with murine dendritic cells in vitro and within the mouse organism in vivo. In this study αDC-SIGN antibodies coupled to the model protein Ovalbumin (OVA) were used (αhDC-SIGN:OVA antibodies). The αDC-SIGN antibodies originate from the previously described αDC-SIGN antibody clone AZN-D1 that specifically recognizes the carbohydrate recognition domain of DC-SIGN. This work demonstrates that αhDC-SIGN:OVA antibodies enhance antigen presenta-
tion to and proliferation of OVA peptide specific CD8⁺ OTI and CD4⁺ OTII cells *in vitro*. Lowest antibody concentrations induced 20 times higher OTI cell proliferation than comparable amounts of OVA protein or isotype control. OTII cells instead only showed a 3–5 times higher proliferation. These results could be also confirmed by *in vivo* studies. Vaccination of hSIGN mice with αhDC-SIGN:OVA antibodies together with the maturation signal αCD40 induced strong proliferation of transferred OVA peptide specific CD8⁺ OTI cells. Furthermore these cells showed cytotoxic properties. Again transferred OTII cells showed only low proliferation. Thus, the *in vitro* and *in vivo* studies of this work demonstrate that targeting DC-SIGN results in potent cross presentation and the induction of cytotoxic T-cells. Therefore, specific antibody targeting holds great promise for future vaccination strategies.
7 LITERATURVERZEICHNIS

dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. Journal of immunology (Baltimore, Md : 1950) 168:2118-2126

Liu Y, Janeway CA, (1992). **Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells.** Proceedings of the National Academy of Sciences of the United States of America 89:3845-3849

Seder RA, Paul WE, Davis MM, Fazekas de St Groth B, (1992). **The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice.** The Journal of experimental medicine 176:1091-1098

Shortman K, Caux C, (1997). **Dendritic cell development: multiple pathways to nature's adjuvants.** Stem cells (Dayton, Ohio) 15:409-419

and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106:1278-1285

8 DANKSAGUNG

Ein besonderer Dank gilt meinem Doktorvater Univ.-Prof. Dr. Dirk Busch, der sich nach dem Wechsel von Prof. Dr. med. Tim Sparwasser an die Medizinische Hochschule Hannover sogleich bereit erklärt hat, meine Betreuung an der TU München zu übernehmen. Ein großer Dank geht an meinen Betreuer Univ.-Prof. Dr. Tim Sparwasser, der mir ermöglicht hat, meine Dissertation in seinem Labor zu erstellen. Die kritische Betrachtung meiner Ergebnisse und die weiterführenden Diskussionen waren eine ständige Motivation für meine Forschungstätigkeit und unerlässlich für den Erfolg meiner Arbeit.

Danken will ich weiterhin zwei ehemaligen Mitarbeitern des TWINCORE Instituts in Hannover, Dr. Bastian Höchst und Dr. Christiane Meller, die mich stets unterstützt und mich in meiner Arbeit ermutigten. Danke für die vielen schönen Gespräche und die Anregungen zur Korrektur meiner Doktorarbeit. Danke Christiane und Rupert, dass ich in Euch so gute Freunde gefunden habe!

Ein besonderer Dank gilt auch Hermine Wenzlaff, die mir in technischen Fragen rund um Word und Endnote zur Seite stand und mich immer erfolgreich motiviert hat.

Ohne die stetige ideelle und finanzielle Förderung meiner Familie wären mein Studium und die Verwirklichung meiner Pläne nicht möglich gewesen. Danke, dass ihr mich immer unterstützt habt und ich in allen Situation auf eine liebevolle
und verständnisvolle Familie hoffen kann. Ich möchte diese Arbeit meinen Eltern widmen.
